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摘  要 

 

磁振造影已經成為主要的醫療成像技術，用於了解腦部或是身體上的結構以

及功能，它不僅廣泛應用於臨床診斷，而且在神經影像學研究。近年來，以體素

為基礎的形態計量學 (voxel-based morphometry, VBM) 最常被使用於研究分析

群體間大腦結構的差異性，以比較每一個體素的方式來找出其差異性。 VBM 以

統計的方式量化分析群組間的差異性，這個以體素為基礎的分析方法有能力上的

限制，導致它無法偵測群組織間細微的變化。根據我們的經驗指出，同時地將所

有的體素一起做分析會使區域間不相關的體素相互影響，這樣的分析方法是不恰

當的。 

 

本研究中我們提出了一個新的腦部結構分析方法，以區域為單位的多變量形

態計量學方法，可用於偵測群組間腦部結構的差異性。與體素為基礎的分析方法

相比較之下，我們提出的方法是同時考慮一個區域下所有的體素以多變量的方式

來分析群組間腦部結構的差異性，而最重要的是我們將腦部結構區分成許多個小

區域，藉此達到在相同區域下的所有體素有相同的關聯性。多變量的方法是採用

線性鑑別度分析 (linear discriminant analysis, LDA) 是用來找出對於群組

間結構差異性最具鑑別力的投影軸。位於該投影軸上的每一元素代表相對映體素

具有的差異性鑑別能力。此鑑別能力可以視為用來評估影像群組間每一體素結構

差異之程度等級 (significance level)。 

 

我們的實驗方法包含了兩個部分，第一個部分是透過模擬一個區域的萎縮，

用來驗證以區域為單位的多變量型態計量法的效能，另一個是應用在重性抑鬱障

礙 (Major depressive disorder) 以及雙極性情感疾病 (Bipolar disorder) 

的腦部結構分析。透過比較可以了解，以區域為單位的多變量型態計量法確實可

偵測到群組間較細微的搞部結構差異。而此方法也比以體素為基礎的形態計量法

更明顯地找出和病理上相關的腦部結構差異。 

 

 總結，我們提出了一個新的腦部結構分析方法，這個方法是以區域為單位的

分析群組間的差異，而且所採用的多變量方法不會有資訊上的遺失，在分析時能

更用更多的資訊更有效地分析腦部結構細微的差異性。 
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Abstract

Magnetic resonance imaging (MRI) has become primarily a medical imaging technique

to visualize the structure and function of the body or brain. It is widely used not only in

clinical diagnosis but also in neuroimaging research. In recent years, voxel-based mor-

phometry (VBM) is one of the most popular technique for the analysis of structural brain

discrepancy between different subject groups, in a voxel-wise manner. VBM analysis de-

tects group differences by voxel-wise statistics comparisons which have limited power to

identify subtle differences between two populations. And according to our experience, we

figure out that when dealing with all features simultaneously, features in different regions

of whole brain may be unrelated with each other it is incorrect that we take all features into

consideration at one time.

In this work, we propose a parcellation-based multivariate morphometry method which

can be used to detect the anatomical discrepancy in brain between two groups. Compared

to the voxel-wise manner in VBM, the proposed method detects brain discrepancy in a

multivariate manner by simultaneously taking all voxels within an area (or a region) in

consideration. The most important idea is that we divide brain into several parts when

analyzing such that all features in the same region may be correlated with each other. Linear

discriminant analysis (LDA) is used to determine the most discriminant projection vector,

also called a discriminant map separating two populations. Each parameter of the most

discriminant vector represents the discrimination level of each voxel. That is, based on the

discriminant map, each parameter stands for a significant level with each voxel.

To demonstrate the performance of the parcellation-based multivariate method, we car-

ried out experiments by using the simulation data set and on a real medical data composed

of MRI of subjects with major depressive disorder (MDD) and bipolar disorder (BD). The

results with simulation data analysis have shown that the parcellation-based multivariate

method has a better performance than VBM from the area under the ROC curve by compar-

ing to VBM method. The results with real data analysis have also shown that our proposed

method reveals several important findings.

In conclusion, we have proposed a parcellation-based multivariate method for charac-

terizing group differences. And all voxels within the same region are simultaneously taken

vii



into consideration. Moreover, our proposed method uses no feature reduction within anal-

ysis thus no information is lost. Our proposed method have shown that the parcellation-

based multivariate morphometry analysis has a good performance on subtle and widely-

distributed structural difference and it is more flexible within analysis.
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Chapter 1

Introduction



2 Introduction

1.1 Background

1.1.1 Brain Structures

Human brain is the center of the human nervous system and can be extremely com-

plex. It plays an important role in controlling human behavior, emotion and it regulates

involuntary activities such as breathing and heartbeat, it also has been estimated to con-

tain 50 ∼ 100 billion neurons, of which about 10 billion are cortical pyramidal cells. The

function of these pyramidal cells are signal transferring that is they communicate to each

other by transferring signals via around 100 trillion synaptic connections. The weight of

the brain is about 1.5 kilograms on average and the size is about 1130 cubic centimeters in

man and 1260 cubic centimeters in woman.

Human brain consists of three main components: cerebrum, cerebellum and brain stem.

These three components each have its different functions and characteristics, though the

whole brain is highly cooperating with each other. Brain stem is under the cerebellum and

connects the cerebrum spinal cord and cerebellum. This structure is responsible for basic

vital life functions such as maintaining consciousness, heartbeat, breath, blood pressure,

digestion, regulating the sleep cycle. Scientists say that this is the simplest part of human

brains. Cerebellum is under cerebrum and behind brain stem, it is similar to the cerebrum

in that it has two hemispheres and a highly folded surface or cortex. This structure is

associated with regulation and coordination of movement, posture, and balance. Cerebrum

or cortex is the largest part of the human brain, associated with higher brain function such

as thought and action, it is divided into left and right cerebral hemispheres. Two cerebral

hemispheres are connected by a very large nerve bundle called corpus callosum which

communicates left and right cerebral hemisphere. According to sulci and gyri of cerebral

hemispheres, cerebral cortex is segmented into four sections, the frontal lobe, the parietal

lobe, the occipital lobe and the temporal lobe. The Frontal Lobe which is associated with

reasoning, planning, movement, emotions, and problem solving. The parietal Lobe which

is associated with movement, orientation, recognition, perception of stimuli. The Occipital

Lobe which is associated with visual processing. The temporal Lobe which is associated
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Figure 1.1: Brain structures. Main structures of human brain. There are three com-
ponents: cerebrum, cerebellum, and brain stem. According to sulci and gyri of cerebral
hemispheres, the cerebral cortex is segmented into four sections: the frontal lobe, parietal
lobe, occipital lobe, and temporal lobe. Photo acquires from the website of Traumatic Brain
Injury Resource Guide.
(Graphic source : http://www.neuroskills.com/edu/brainfull.jpg)

with perception and recognition of auditory stimuli, memory, and speech. We can see that

each section has different function therefore the concept of brain structure is important for

us to keep in mind. Fig. 1.1 shows main structures of human brain.

There are three types of brain tissues that can be generally segmented into gray matter

(GM), white matter (WM) and cerebrospinal fluid (CSF). Fig. 1.2 is an MR image with gray

and white matter labeled. These names simply derived from their appearance to the naked

eye. Gray matter, which is known as the cortex, consists of the cell bodies of nerve cells

and locates in exterior of brain. White matter, which is known as the medulla, transmitting

the electrical signals that carry the messages between neurons and locates in interior of

brain. Cerebrospinal fluid, which is the most dark of the three tissues and transparent fluid,

fills ventricles and surrounds the brain and spinal cord. Therefore, it can absorb the shock

and let the brain under the protection.

In 1909, regions of the cortex which is defined based on its cytoarchitecture or organi-

zation of cells is called Brodmann areas (BAs). Brodmann areas were originally defined
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Gray matter

White matter

Figure 1.2: MR image. A 3.0 T Human brain magnetic resonance image which is labeling
with Gray and White Matter part. These names simply derived from their appearance to
the naked eye. It displays in sagittal axial and coronal view. The coronal view separates the
body into anterior and posterior parts, sagittal view separates body into right and left parts
and axial view separates the body into Superior and Inferior parts.

and numbered by Korbinian Brodmann based on the organization of neurons he observed

in the cortex and he published his maps of cortical areas [1]. Each and every area is given a

number from 1 to 52. Many of the areas have been correlated closely to diverse functions.

For example, Brodmann areas 1, 2 and 3 in frontal lobe are the primary somatosensory

cortex; BA 4 in frontal lobe is the primary motor cortex; BA 17 and BA 18 in occipital

lobe is the primary visual cortex. Although the Brodmann areas have been discussed, de-

bated, refined, and renamed exhaustively for a century, they have became the most widely

known and commonly cited cytoarchitectural organization of the human cortex. Fig. 1.3 is

Brodmann’s maps. Although, we know Brodmann’s map but we want to know the correct
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Figure 1.3: Brodmann’s map. Brodmann’s map was defined based on its cytoarchitecture
and numbered by Korbinian Brodmann in 1909. It was divided into 52 discrete regions
which was called Brodmann’s areas (BAs). Photo acquires from the web site of Professor
Mark Dubin University of Colorado.
(Graphic source: http://spot.colorado.edu/ dubin/talks/brodmann/brodmann.html)

Brodmann area by using standardized x-y-z coordinates. Thus, an automated coordinate-

based system to retrieve brain labels from Talairach Atlas called the Talairach Daemon is

used [2]. It provided an 87 percent label match to Brodmann area labels BA 4 and BA 6

within a search range of 5 millimeters. The Talairach Atlas of human brain is defined by

Talairach and Tournoux [3] in 1988. They defined a standard coordinate system on a Euro-

pean female brain aged 60 by anatomizing the brain to get the exact coordinate. Therefore,

we can point out that a standardized x-y-z coordinates locates on which Brodmann area. It

is useful for brain tissue location and becomes an invaluable tool in modern neuroimaging.
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However, postmortem-studies were one of the few ways to study brain discrepancy and

the relation between behavior and the brain. It have been used to further the understanding

of the brain for centuries, until the first neuroimaging technique which is called pneumoen-

cephalography (PEG) is shown. The pneumoencephalography, a procedure, was introduced

by the American neurosurgeon Walter Dandy in 1919. With this neuroimaging technique,

we can image the structure of the brain in vivo for clinical purposes or medical science. In

the early 1970s, computerized axial tomography (CAT or CT scanning) was developed by

Allan McLeod Cormack and Godfrey Newbold Hounsfield, and became available for di-

agnostic and research purposes because of the more detailed anatomic images of the brain.

Thereafter, more and more imaging technique is developed such as single photon emission

computed tomography (SPECT) and positron emission tomography (PET) and the struc-

tural imaging, magnetic resonance imaging like computer tomography (CT). In the next

section, we will introduce magnetic resonance imaging (MRI).

1.1.2 Magnetic Resonance Imaging (MRI)

In recent years, magnetic resonance imaging (MRI) has become primarily a medical

imaging technique to visualize the structure and function of the body or brain. It is also

important for clinical diagnosis, medical treatment and further residential care. It was

developed by Dr. Paul Lauterber in 1972 [4]. The major principle technique behind MRI

is the development of nuclear magnetic resonance (NMR). In the past, magnetic resonance

was used only for studying the chemical structure of substances. Until the 1970s NMR

could be used to produce images of the body by Lauterbur’s and Mansfield’s great work.

However, as the word nuclear was associated in the public mind with ionizing radiation

exposure. It is generally now referred to simply as MRI.

There are three major components of an magnetic resonance imaging scanner : A static

magnetic field, an RF transmitter and receiver, and three orthogonal, controllable magnetic

gradients. Fig. 1.4 is a 3.0 T MR scanner. The image quality is directly proportional to the

magnetic field strength. Higher magnetic fields increase signal-to-noise ratio, permitting

higher resolution or faster scanning. However, The higher the magnetic field strength is,
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Figure 1.4: A MR scanner. Photo acquires from the web site of Research Center for
Integrative Neuroimaging and Neuroinformatics (RCINN) National Yang-Ming University.
(Graphic source : http://www.ym.edu.tw/rcinn/introduction.htm)

the better quality image we can acquire. A field strength of 1.0 - 1.5 T is a good compro-

mise between cost and performance for general medical use. However, for certain specialist

uses higher field strengths are desirable, with some hospitals now using 3.0 T scanners. Fig

1.2 is an MR image scanned by a 3.0 T MR scanner in National Yang-Ming University.

With the rapid growth in MR imaging, it is a widely used technology in medical diagnosis,

pathological study, and medical treatment. From head to foot, from cancer to cardiovas-

cular vessel disease, from diagnosing to afterward following observations, it has already

become an important imaging technique indispensable to modern medical centers.

There are many advantages of MR technology. First of all, it is noninvasive when

detecting signals inside the body, so it is more safety for people under operations and

diagnosis. Unlike computed tomography (CT), it uses non-ionizing radiation. Instead, it

uses a powerful magnetic field to align the nuclear magnetization of hydrogen atoms in

water molecules in the body. Which means MR imaging has no harm to patients who take

the MR scan. Another advantage of MR imaging is that it provides much greater contrast

between each different soft tissues of the body than CT does. It is especially useful in

neurological (brain), musculoskeletal, cardiovascular, and oncological imaging and gives

a great assistance in diagnosis of tumor or brain discrepancy in bipolar disorder (BD) or

major depressive disorder (MDD). Another advantage of MR imaging is that it has no side-
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effects which calls supplemental harm to patients. However, a disadvantage of MRI scanner

is that the instrument is quite expensive. A new 1.5 tesla scanner approximately costs one

million US dollars and two million US dollars for a new 3.0 tesla scanners. Constructing a

MRI suite can cost a hundred thousand US dollars.

In human brain diagnosis and its researches, more and more studies are using CT, 2-D

MR image or even higher resolution MR images. Because of the great contrast between

different soft tissues of the brain, we can more easily distinguish gray matter, white matter

and cerebrospinal fluid from brain. Due to the improvement of image resolution and devel-

opment of the image processing tools and computers could handle numerous and complex

operations, a number of unbiased whole brain morphometric analysis methods were pro-

posed to characterize brain discrepancy.

1.2 Morphometrics

Morphometrics is a method to analyze the variation and the change in size or shape of

organisms or brain. With the MR imaging technique, morphometric analysis are now com-

monly performed on in-vivo studies and particularly useful in analyzing the fossil record.

It gives a quantitative element to describe the discrepancy of objects and allows more rigor-

ous comparisons. In morphometric analysis, we can describe complex shapes or variation

in size, and use the numerical comparison between different objects. Furthermore, sta-

tistical analysis can highlight areas where change is concentrated and quantify the level

of significance. The morphometric analysis of brain images originally requires manually

defining a number of regions of interest (ROI). It means that the method is based on an

defined region of interests and analysis each object in this pre-defined ROI to perform the

statistical differences on the volumes in each object [5].

However, the method has many potential drawbacks and limitations, including the de-

mand of subject is always high, subjectivity, lacking of reproducibility. Quite a few lim-
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itations are that it is impossible to know which area in brain might be atrophy or enlarge

by diseases or a surgical trauma, we could not know the relations between diseases and

the area which has been analyzed by the method in advance. Although several regions are

known related to the disease, the measurement may include other surrounding regions blur

the results and reduces statistical power. Therefore, since a priori knowledge of regions of

interest for the disease is quite important, and according to sufficient previous studies, we

can make up to the deficiency of priori knowledge.

More and more complex automatically/semiautomatically morphometric methods in-

clude the techniques of spatial normalization and tissue segmentation are proposed to an-

alyze shape transformation or brain structure discrepancy. These methods can be divided

into two categories: The first category uses the deformation fields computed by spatial

normalization to compare the differences, which are to detect the differences in shape of

the brain. The other category uses the normalized images to make comparisons, that is to

detect the differences in brain tissue under an identical space.

The first category of morphometric method includes methods that measure the spatial

transformation, which is analyzed by the deformation field deformed from templates of

brain to each individual subject in the study. Several methods have been proposed, such

as deformation-based morphometry (DBM) [6, 7] and tensor-based morphometry (TBM)

[8,9]. These approaches are the most direct way of measuring brain shape. But the method

is based on the perfect registration between the template and the subject. Otherwise, a bad

registration with small errors may reduce the accuracy of the method.

The other category of morphometric method includes the well-known method: voxel-

based morphometry (VBM) [10, 11]. It uses a spatial transformation to normalize images

into an identical space. Due to the use of the normalized images, the overall shape dif-

ferences between subjects can be removed. It means that each subjects registered to the

template will be in the same template space and in the same shape, and we can make com-

parisons of brain tissue in normalized images. The method have been commonly used in

several studies within the past decade.
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1.3 Thesis Motivation

In this thesis, we use an multivariat approach method. The preprocessing of this ap-

proach is the same with the second category of morphometric method named voxel-based

morphometry (VBM). The method uses normalized images to detect differences of brain

structure. Although VBM is one of the most popular morphometric method and hase been

used in several studies, there are some limitations in this technique which causes VBM can

not detect the differences of brain structure in a certain case: VBM detect group differences

in a voxel-by-voxel manner at a time. A voxel-wise method means it consider every voxel

independently to detect group differences by a statistic test, and when detecting one voxel,

the neighbor voxels will be out of consideration. This voxel-wise method is simple and

ease to detect every voxel independently. However, the images of the brain are shown in a

3D volume space, in the spatial point of view, the method is defectively in detecting group

differences in voxel-by-voxel manner. The neighbor voxels, nearby brain tissues, should

also be taken into consideration simultaneously [12].

Furthermore, in the previous section, the regions of the brain structure are always cor-

related to diverse functions. For example: the frontal lobe is associated with reasoning,

the parietal lobe is associated with movement, the occipital lobe is associated with visual

processing, the temporal lobe is associated with perception and recognition of auditory

stimuli. That is we should not consider the regions voxel-by-voxel but regions with brain

structures.

In order to overcome these limitations, in this work, we proposed another method by us-

ing a parcellation-based analysis approach, called the parcellation-based multivariate mor-

phometry (PBM) to conquer this limitation of uni-variate analysis and of whole-brain anal-

ysis. This multivariate morphometry method can take the voxles in a region into consid-

eration simultaneously. In this method, a high dimensional classification technique is used

and detects the most hyper-plane to separates groups. The most discriminative hyper-plane

not only minimize the scatter within groups, but also maximize the scatter between groups.

It can separate the different groups and characterizing the discrepancy in the regions. Also,
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we divide the brain into several regions in an anatomical way. The regions which are cor-

related to diverse functions can be separated by the discriminative vector.

1.4 Related Works

Several Multivariate classification techniques applied to these studies typically consist

of three components, feature extraction, feature dimensionality reduction and feature-based

classification. Feature extraction and feature-based classification are important when fea-

ture dimensionality reduction is the next. First of all, feature extraction, When effectual fea-

tures have been extract, the feature-based classification or other analysis can be completed

by using several classification techniques in machine learning. Otherwise a noneffective

feature will be redundant and needless for analysis. Feature dimensionality reduction is

applying a mapping of the multidimensional space into a space of fewer dimensions. This

means that the original feature space is transformed by applying a linear transformation

such as principal components (PCA) analysis method, which is main linear technique for

dimensionality reduction. PCA performs a linear mapping of the data to a lower dimen-

sional space. Finally, in the field of machine learning, the goal of classification is to group

subjects that have similar feature values, into groups. A linear classifier achieves this by

making a classification decision based on the value of the linear combination of the fea-

tures, a linear discrimination analysis technique or support vector machines (SVM)-based

classifier can be used. A number of multivariate statistical classifiers have been adopted to

several studies not only for classification but also for characterization of brain discrepancy.

In 2002, Pettey and Geeadopted [13] proposed a multivariate linear discriminant method

to characterize discrepancy of segmented MR images of the corpus callosum. At first, all

segmented MR images were normalized to a male subject, and obtain for each subject a

vector field or deformation field which tells us the displacement of the voxel needed to

place into the correct position of the template. Finally, the quantity wishes to examine is

the determinant of the jacobian of this transformation. In the pointwise statistics analysis,
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they measured how different the determinant of the jacobian is between the two popula-

tions. In the multivariate analysis, they chose to keep the first few principal components

of the image features, to deal with the small sample size problems. Subsequently, they

find the linear combination which best discriminates between the populations by applying

linear discriminant analysis. The only segmented image features were used to analysis in

this study.

In 2004, Lao et al. [14] proposed a support vector machine (SVM) approach method

based on whole brain images. The procedures are described in the following steps: First of

all, the raw images are smooth with a 3D Gaussian filter and then downsampled by a fac-

tor of 4 in each dimension. Secondly, the smoothed downsampled images are segmented

by using a method based on Markov random fields with inhomogeneity correction. The

smoothed, downsampled and segmented images are normalized. Thirdly, they use the data

of many subjects to train an SVM classifier. In the last stage, they applied the train SVM

classifier to a new subject which is not including in the training set. There are two main

problems in this study. One is the nonlinearity of the classifier, the other is the dimension-

ality reduction before pattern classification. A nonlinear support vector classifier is used,

which means the group differences depend on the morphology itself. The nonlinear SVM

method can only classify the morphology data, it can not be summarized with a single im-

age. Besides, the dimensionality reduction, which may be needed for dealing with a very

high-dimensionality data. Due to this feature selection process, the original brain can not

be reconstructed.

In 2007, Thomaz et al. [15], present a general multivariate linear framework. This is

the first multivariate statistical analysis of the human brain in Alzheimer’s disease (AD)

which uses the whole features simultaneously rather than segmented images. The goal is

to identify and analyze the most discriminating hyper-plane separating two groups. The

feature selection of the images are projected from the original space to a lower dimensional

spaces by the use of Principal Component Analysis (PCA) method. Subsequently, a linear

discriminant method called Maximum uncertainty Linear Discriminant Analysis (MLDA)

is adopted to find the most discriminant hyper-plane on the PCA subspace.
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It is similar to the previous work of our group [16]. Our goal is as well as to find a

most discriminant vector to separate two populations by using a modified linear discrim-

inant analysis method. Before the analysis of the whole brain images, we adopted a 3D

wavelet transformation on the whole brain images in advance to increase spatial correla-

tions between each voxels. Once we found the most discriminant hyper-plane, we perform

the inverse 3D wavelet transformation to get the discriminant map in the original space.

However. from our previous experiences, the voxel-based analysis somehow is defective

without the consideration of nearby voxels. And in the previous work, we can figure out

that the used of a modified linear discriminant method can deal with plenty of features si-

multaneously. But in the whole brain analysis features may be redundant. It is superior

to other multivariate methods owing to no tissue information is missing with the feature

reduction processes during the multivariate analysis. Some brain regions may or may not

assist the detection of group differences and some regions with a great significant level

may be unimportant. A region-based approach is quite important for analyzing anatomi-

cal structure. Therefore we use a parcellation-based multivariate method to analyze brain

structures and detect group differences.

1.5 Thesis Organization

In the following chapters, we will introduce the voxel-based morphometry (VBM),

parcellation-based multivariate morphometry (PBM), experiment results, discussion and

conclusion. In chapter 2, we will introduce what VBM is, the optimized VBM protocol,

the implementation of VBM and then its drawbacks. In chapter 3, we come up our idea

of multivariate morphometry analysis and a framework of parcellation-based multivariate

morphometry analysis. Chapter 4 is the experiment results with simulation data which

is used to estimate the performance between two morphometry method. Then we have

a discussion about the method and experiment results in chapter 5 and the conclusion in

chapter 6.
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Chapter 2

Voxel-based Morphometry
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2.1 Introduction

Voxel-based morphometry (VBM) is a technique that detects the group differences in

brain anatomy through a voxel-wise comparison of spatial normalized MR images [11].

That is to identify differences in relative voxels of brain structures. It is not a region of

interest but whole-brain method to characterize volume and tissue concentration differences

in brain structural MR images, it is also an unbiased statistical method which is a commonly

used tool in the identification of characteristic differences of brain structures. By using

the statistical approach of so-called statistical parametric mapping (SPM), the normalized

images were statistically tested using the general linear model based on the Gaussian field

theory.

In traditional morphometry method, it is based on the pre-defined regions of interest

(ROI) then analyze the images with this pre-defined ROI. However, this is time consuming

to define ROIs, especially when there are a large amount of subjects. And every single

manual error in defining ROIs will cause small differences in volume.

VBM is increasingly applied to detect group differences in brain among various types

of patient group and control groups. In recent years, it is shown that lots of the disease are

correlated with the abnormal brain tissue. The method provides an analysis of inter group

differences in brain tissue or volume on the voxel-wise basis in a standardized space. The

results of VBM studies characterizing group differences in some disease are consistent with

the result of previous studies, such as bipolar disorder (BD) [17, 18] or major depressive

disorder (MDD) [18, 19].

In general, the procedures of VBM analysis can be divided into two parts which are the

preprocessing and the voxel-based parametric statistical analysis. Simply the procedures of

the preprocessing involve spatial normalization, segmentation, and smoothing [10]. Finally,

a voxel-wise statistical inference is applied to these preprocessed images. The standard

VBM procedure involves four steps describe in order figure 2.1 is a standard VBM protocol.
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Figure 2.1: Flowchart of standard VBM protocol. Raw images are first normalized to
a standard space with a template. Secondly, GM, WM and CSF are segmented from the
normalized images. Thirdly, the normalized and segmented images are smoothed with an
isotropic Gaussian kernel to make the data close to normal distribution. Finally, a voxel-
wise statistical inference is applied to those normalized, segmented and smoothed data.
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Figure 2.2: Concept of the spatial normalization. The spatial normalization is to correct
the differences of shape and size between each subjects. All images in native space must
be normalized to a template where the standard space is. After normalization, all voxels in
the same standard space represent same tissues in each subjects.

1. Spatially normalization of all images to the same stereotactic space

As shown in the figure 2.2, the spatial normalization registers brain images of dif-

ferent subjects into the same stereotactic space which is called template space. It is

impossible to compare each voxel of different MR images in native space because of

different sizes, shapes and the diversity of the scanning position. After spatial nor-

malization, all normalized brain images are in an identical space. One certain voxel

in different brain images should represent the same brain tissue. It is important that

the more accurate registration we used, the fewer the choice of the template image

bias the final solution.

2. GM, WM and CSF extraction from the normalized images

As shown in the figure 2.3, in the segmentation, the spatially normalized images are

next segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid
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Figure 2.3: The segmentation. The figure shows an example of segmentation result. A
brain only image is segmented into different tissue classes which are gray matter (GM)
image, white matter (WM) image and cerebrospinal fluid (CSF) image.

(CSF). After segmentation, we could obtain brain tissues and perform the statistical

analysis on these tissues. In consequence of the spatial normalization and segmenta-

tion, the voxel at the same position represents the same brain tissue.

3. Smoothing

In smoothing, the segmented gray and white matter images are now smoothed by

convolving with an isotropic Gaussian kernel. The size of the smoothing kernel

should be comparable to the size of the expected regional differences between the

groups of brains, but most studies have employed a 12 millimeter FWHM kernel. It

makes the data more normally distributed and reduces the registration error which

is resulted from spatial normalization. It also ensures that each voxel in the images

contains the average amount of gray or white matter tissue around the voxel.

4. Voxel-based statistical analysis for localization

As a result of the smoothing step, a VBM analysis involves a voxel-wise statistical

analysis by comparing the normalized and smoothed GM or/and WM images of dif-

ferent groups of subjects. Standard parametric statistical procedures (t tests) are used
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to test the hypotheses at each and every voxel, to measure the group difference is to

find out the area or voxels reach the significant level in statistic two sample t test. The

results comprise the level of group differences and if reaching the significant level,

we can say that there is a difference between the groups at this voxel. Eventually, A

voxel-wise statistical parametric map (SPM) comprises the result of many statistical

tests.

There are various ways to implement voxel-based morphometric methods. The purpose

of different implementation is to maximize the ability of making inferences in group differ-

ences. For example, another method applied the procedure in the order: segmentation first,

normalization, smoothing and statistical analysis which is called RAVENS [5] method. In

the next section, we will introduce another improvement method based on the standard

VBM called optimized VBM [10].

2.2 Optimized VBM Protocol

There are several studies reveal potential problems of the standard VBM. One of those

studies discusses about the imperfect registration effects on VBM. An imperfect registra-

tion may cause the segmentation error because of brain tissue is in the different space, and

it leads into an incorrect comparison between normal control and patient subject [20]. It

is owing to the implementation of segmentation. In the segmentation method, a mixture

model technique is used, and the model contains the distributions of the voxel intensity of

brain tissues (GM, WM, CSF). A priori probability map contains a priori knowledge of the

distribution of the brain tissues in normalized space is used to improve the segmentation of

brain tissues. Furthermore, if the VBM analysis is focus on the brain tissues such as gray

matter or white matter, the segmented image will be normalize into template space which

may cause that, the better segmented images used the better accuracy of the registration.

In conclusion, the registration and segmentation influences each other, an optimized VBM

protocol is proposed by Good et al. [10].
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Figure 2.4: Flowchart of optimized VBM protocol. Optimized VBM protocol consists of
the following seven steps: (1) creation of GM, WM and T1 template, (2) segmentation and
extraction of affine-registered brain images, (3) normalization of GM/WM/CSF images into
the GM/WM/CSF template, (4) normalization of whole brain T1 images with optimized
normalization parameters, (5) segmentation and extraction of normalized T1 images, (6)
modulation, and (7) smoothing.

The optimized VBM protocol [10] for characterizing group differences of gray or white

matter is list below in order, and Fig 2.4 is the flowchart of optimized VBM protocol.

1. Creation of GM, WM, CSF and T1 template

Customized template is created by averaging all the normalized smoothed gray/white

matter subjects from the standard VBM protocol. the optimized template is created to

minimize any potential bias for spatial normalization. All T1 images are normalized

to a template, segmented into GM, WM and CSF images and then smoothed with

an 12 millimeter full-width at half-maximum (FWHM) isotropic Gaussian kernel.
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Each normalized, segmented and smoothed T1/GM/WM/CSF images are averaged

to create T1/GM/WM/CSF templates respectively.

2. Segmentation and extraction of affine-registered brain images

This is a fully automated method to remove scalp tissue, skull and non-brain tissues.

At first, all T1 images in native space are segmented into GM, WM and CSF images.

Then a series of morphological operations is applied to these segmented images to re-

move unconnected non-brain voxels. Finally the gray and white matter are extracted

in native space.

3. Normalization of GM/WM/CSF images into the GM/WM/CSF template

In this step, the segmented GM/WM/CSF images in native space are normalized to

the customized GM/WM/CSF template individually in stereotactic space. Thus we

can obtaining the optimal deformation fields.

4. Normalization of whole brain T1 images with optimized normalization param-

eters

The optimal deformation fields obtained in the previous step are now reapplied to

the raw whole brain T1 images in native space. Therefore we can obtain the raw T1

images which are in the same space with the gray/white matter template.

5. Segmentation and extraction of normalized whole brain images

In order to get a preferable segmentation, the optimally normalized whole brain Ti

images are now in the stereotactic space. Then segmented into gray, white matter

and CSF. A series of morphological operations is applied again to these segmented

images to remove unconnected non-brain voxels. Finally, the optimally normalized

and segmented GM/WM/CSF images are got in stereotactic space.

6. Correction for volume changes which is also calle modulation step (optional)

Due to the nonlinear spatial normalization, volumes of certain brain areas may be

enlarge or atrophy. In order to preserve the volume of a certain region within a voxel,

a correction for volume changes, usually called as modulation. A multiplying voxel

values in the segmented images by the Jacobian determinants which is obtained in
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Figure 2.5: Concept of the modulation. The figure illustrates the modulation of a normal-
ized segmented image. Due to the spatial normalization, after images are normalized into
a standard space, volumes of certain brain areas may be enlarge or atrophy. The result of
modulation are used to correct for volume changes. For example, the pixel in the native
space is 1 millimeter square. after normalization, the pixel becomes 3 millimeter square
in standard space. It means, the concentration should be divided by 3 to preserve total
volumes in each pixels.

the spatial normalization step. Figure 2.5 is a concept of the modulation.

7. Smoothing

It is same with the standard VBM method, the optimally normalized segmented and

modulated images of different tissues are smoothed using an isotropic Gaussian ker-

nel. Smoothing makes the population more normally distributed and reduces the

registration error. The choice of the smoothing kernel is related to the expected dif-

ferences. An 8 millimeter or 12 millimeter FWHM smoothing kernel is often used in

VBM method.

8. Statistical analysis

As the standard VBM method, a voxel-wise statistical analysis is performed on those

optimally normalized, segmented, modulated and smoothed images to characterize

regionally discrepancy between different groups. The use of two-sample t test is to

calculate the significance of group differences at every voxel. The t-test map is a

3D volume, the voxel dimension and voxel size which are the same with every MR
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images. Thus we can make inferences in group differences by each voxel which is

stored in t test map reaches a significance level.

The optimized VBM protocol provides a more preferable normalization and segmen-

tation. And features of the optimized VBM are first creating a separated grey and white

matter templates, and second a fully automatic brain extraction technique. It also adopts a

modulation step to preserve volume change during spatial normalization.

2.3 Implementation of VBM

In order to maximize the ability of making inferences in group differences, an imperfect

registration and a bad segmentation result will reduce the ability of the VBM, which implies

that each of steps in VBM is important and each bad results may affect the VBM studies

badly. Therefore we should be careful when implementing every single step and make

sure that the performance of tools we used is the best. Several tools are used in VBM

studies such as brain extraction, segmentation and spatial normalization. Following is the

implementation of VBM by our group.

The implementation of VBM in this work is illustrated in figure 2.6. It is similar with

standard VBM protocol but in different order of the normalization and the segmentation

step, due to the characteristic of the segmentation tool which can segment images in the

native space instead of a standard space. Moreover the bias correction is done at first to

correct the inhomogeneity of the magnetic field which may cause the image tissues become

difficult to differentiate.

1. Bias correction with N3

An artifact often seen in MRI is for the signal intensity to vary smoothly across an

image, which is referred to as RF inhomogeneity or intensity non-uniformity. It is
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Figure 2.6: Flowchart of VBM implementation. Our implementation of VBM uses sev-
eral tools and can be described in eight steps: (1) Bias correction, (2) non-brain exclusion
of T1 images with HWA, (3) segmentation and extraction of brain T1 images with FAST,
(4) normalization of segmented GM, WM and CSF images, (5) creation of customized
GM, WM and CSF templates, (6) normalization of segmented GM, WM and CSF images
to customized template, (7) correction for volume changes, (8) smoothing and voxel-based
morphometric statistical analysis.

usually due to poor radio frequency (RF) field uniformity. Raw images is first cor-

rected by nonparametric nonuniform intensity normalization (N3) [21] which is a

non-parametric method for correction of intensity non-uniformity in MRI data and

minimize the within-class variance of GM, WM and CSF. Bias correction will also

improve the image quality for segmentation. Figure 2.7 is an example of bias correc-

tion.

2. Non-brain exclusion of T1 images with HWA

The T1 corrected images is secondly skull-stripped using a hybrid watershed algo-

rithm (HWA) [22].Hybrid Watershed algorithm is a relatively more sensitive tool

that often results in a conservative strip that rarely removes any brain tissue. It is

an fully automatic, robust and efficiently algorithm which removes non-brain tissue,

and does not unduly influence the outcome. All images are segmented to remove
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Figure 2.7: Bias correction with N3. The figure shows that the result of bias correction
done by N3 tool is clear between GM and WM. The image is shown in different three slices
and first raw is the raw image, and second raw is done by N3. It can see that WM in the
down left corner is brighter than top right corner.

non-brain parts in native space with HWA. The default parameters were utilized for

automated processing. On average, HWA required less than 8 min of processing time

per dataset. Figure 2.8 is an example of non-brain exclusion.

3. Segmentation and extraction of brain T1 images with FAST

All T1 inhomogeneity corrected images without non-brain tissues derived from the

previous step are segmented into GM, WM and CSF images in native space with

FMRIB’s Automated Segmentation Tool (FAST) in FSL. Its method is based on a

hidden Markov random field model and an associated Expectation-Maximization al-

gorithm [23, 24]. The value of a voxel in segmented images represents a probability

of belonging to one particular tissue, ranged from 0 to 1. We use this probability to

represent the tissue volume of the segmented images.
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Figure 2.8: Brain extraction with HWA. This figure shows non-brain exclusion from a T1
image by using HWA. The left image is T1 images with lower contrast and the right one
is an extracted brain image without non-brain materials after segmentation by HWA. The
quality of the extracted image has been improved and would make a good segmentation
with FAST.

4. Normalization of segmented GM, WM and CSF images

All segmented GM, WM and CSF images are respectively normalized to a template

by first an affine-registration and follow a nonlinear registration [25].

5. Creation of customized GM, WM and CSF templates

All segmented normalized GM, WM and CSF images are in a standard space and av-

eraged to create customized GM, WM and CSF templates. The customized templates

are more close to the population sample of the study and minimize the distortion

caused by normalization in later processes.

6. Normalization of segmented GM, WM and CSF images to customized templates
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The segmented GM, WM and CSF images in native space obtained in third step

are independently normalized to the corresponding GM, WM and CSF customized

templates obtained from the previous step. Then all segmented and normalized

GM/WM/CSF images of different subjects are now in the same space that is the

voxel in the same position will stand for the same tissue. Moreover, during the nor-

malization of the deformation field are stored in order to correct volume changes in

next step.

7. Correction for volume changes (modulation)

Due to the nonlinear spatial normalization, the volumes of certain brain areas may

be enlarge or atrophy. In order to preserve the volume of a certain region within a

voxel, a correction for volume changes, usually called as modulation. A multiplying

voxel values in the segmented and normalized images by the Jacobian determinants

which is obtained in the spatial normalization step. In our analysis, these modulated

images are used to analyze the volume discrepancy between different groups.

8. Smoothing and voxel-based morphometric statistical analysis

The segmented, normalized and modulated images are smoothed to be close to nor-

mal distribution by sing an isotropic Gaussian kernel, and an 12mm FWHM smooth-

ing kernel is used. Then, a voxel-wise statistical analysis is performed on these seg-

mented, normalized, modulated and smoothed GM/WM/CSF images to characterize

regionally discrepancy between different groups. The use of two-sample t test is to

calculate the significance of group differences at every voxel. Then a 3D volume

with t-test map is stored to make inferences in group differences.

In this work, we applied preprocessing of the VBM protocol to deal with MR im-

ages. We maintain concepts of the VBM protocol and implement it with N3 (IDeA Lab,

UC Davis Center for Neuroscience), HWA (FreeSurfer, http://surfer.nmr.mgh.harvard.edu),

FSL (Analysis Group, FMRIB, Oxford, UK), SPM2 softwares in Matlab 7.0 (the Math-

Works, Inc. Natick, MA, USA).
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Figure 2.9: Schematic scatterplots illustrating of significant bias of VBM. There are two
ellipse which stands for two different morphological groups. For example, one is normal
control group the other is affected group. In the right case, there is no overlay along the
voxel 1 axis. it is easy for VBM to detect group difference depending at the voxel 1 even
with a small number of samples, but detect no difference at the voxel 2. In the left case,
VBM may fail to find group difference along each axis because of the high overlay. This is
a significant bias of VBM analysis which is very limited in detecting group differences.

2.4 Drawbacks of VBM

Each of subjects can form a person’s morphological profile by collecting voxel-wise

morphological measurements which is consist of every voxel in volume data. These mea-

surements can be placed into a high-dimensional space, each dimension representing a

voxel. That is, if spatial normalization is perfect, we can say that each voxel in differ-

ent MR image stands for the same tissue, the orientation of group differences in a high-

dimensional space consists of every voxel in a MR image. Then the group differences are

then reflected by the degree of separation of the respective morphological profiles. Fig-

ure 2.9 is a schematic scatterplots in two dimension. The normal morphological profiles

and the affected morphological profiles will form two distributions in two-dimension space.

The dimensionality of the space is much higher and equal to the number of voxels being

interrogated, but here we use 2D examples for display purposes.

Davatzikos [12] points out that VBM determines structural differences directly from



30 Voxel-based Morphometry

the data in an bias way, it is fundamentally limited in making inference of group differ-

ences. Two cases are shown in figure 2.9. The orientation of group differences in a high-

dimensional space in practice, here in our case, 2-dimensional space is used. Owing to

the voxel-based morphometry analysis detect group differences in a voxel-wise manner,

VBM considers only one dimension at a time. That is on the right of figure 2.9, in which

the group difference will be detected along dimension 1 (voxel 1), even with very small

number of samples. Because there is a significant difference at voxel 1. VBM may de-

tect no group difference along voxel 2. In another case, on the left of figure 2.9, VBM

may detect no group difference along each axis because diseased and normal groups might

have different means, but the overlap is high. This is a significant bias of VBM analysis

which is very limited in detecting group differences. In summary, the two cases, show

that voxel-based morphometry analysis will detect group differences easily at one axis in

morphological profile. However, the dimension in MR images is always high and there are

subtle and complex differences in brain structures, may not be easy for VBM to detect the

significance of group differences.

Although voxel-based morphometry analysis in group differences is of great worth. But

the bias of VBM limits the power of detecting subtle and complex structures. This bias is

an fundamental limitation of voxel-based morphometry, because the ways of VBM in de-

tecting group differences is voxel-by-voxel manner rather than the consideration of nearby

voxels or several structures in brain. In the above two cases, it is clear that there is a group

different between two distribution at voxel 1 and voxel 2. If two voxels are in considera-

tion, It is easy to differentiate between two different distribution of morphological profiles.

That is the more voxels we consider, the more subtle or complex structures we may detect.

Therefore, in this thesis, we proposed another unbiased method using a region-based multi-

variate analysis approach which is also automatic to overcome this fundamental limitation.



Chapter 3

Parcellation-Based Multivariate

Morphometry
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3.1 Introduction

According to the drawbacks of voxel-based morphometry analysis method, we use a

multivariate morphometry analysis method which characterizing the group differences of

brain structures. The multivariate morphometry method is an unbiased method that we

can compare voxels in a multivariate manner to overcome the drawbacks of voxel-based

morphometry analysis. Before the multivariate analysis is adopted, the preprocessing of

the raw MR images is also similar with VBM analysis. The main difference of this thesis

is the multivariate analysis.

In multivariate analysis, all voxels in MR images are features simultaneously taken

into consideration in a high-dimensional space. The more voxels this multivariate method

analysis the higher dimension it forms. The goal of the multivariate analysis is to detect

the most discriminative hyper-plane which separates the two different groups in the high-

dimensional space. That is the most discriminative hyper-plane is a linear combination of

features which best separate two or more groups of MR images. Each features are projected

onto this discriminative hyper-plane which best separates two different groups. Further,

each parameters of this discriminative vector is a weight which stands for the discrimina-

tion of each dimensions, features or voxels. That means, once we find a discriminative

projection vector, each weights of the vector is a discrimination of characterizing group

differences and it is also an image called discriminant map. The discriminant map can be

visualized to identify the location in brain.

From the previous work of our group [16], a multivariate whole brain analysis is pro-

posed. The use of whole brain images and linear multivariate classification technique

demonstrated that the method has a good sensitivity to subtle and complex brain struc-

tural differences. Somehow, taking all features into consideration may be redundant in our

experience. And voxel-based analysis method which considers only one voxel at a time

without nearby voxels is also a drawbacks. Thus a parcellation-based approach is needed.

The concept of the parcellation-based analysis method is proposed. That every voxel in

the same regions are taken into account simultaneously for characterizing group differences
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in each regions. The brain will be parcellated into several different regions especially based

on brain structures. The interaction of every voxel in the same region can be sufficiently an-

alyzed by a multivariate method. The relation between disease and brain structures is quite

close but the relation between disease and undefined-regions is relatively small. Moreover,

several voxels or predefined regions which are more important in characterizing in group

differences can be taken into consideration if they were known in advanced. In brief, the

related information of each voxel in same regions are in consideration, it contradicts to the

voxel-based morphometry analysis in characterizing group discrepancy.

In consequence, a parcellation-based multivariate morphometry method is proposed for

characterizing differences of brain structures. we can quantified differences of each regions

through the parcellation-based manner by a linear multivariate classification technique in a

high-dimensional space.

3.2 Framework of Parcellation-Based Multivariate Mor-

phometry

The procedure of parcellation-based multivariate morphometry is similar with voxel-

based morphometry. The first seven steps of the implementation of voxel-based morphom-

etry is used. The preprocessing includes bias correction, brain extraction, segmentation,

normalization, template creation, normalization to customized template and modulation.

Smoothing step is not included because of the subtle differences of brain structures may

be reduced by smoothing data, more details will be listed in chapter 5, discussion. After

the preprocessing, the segmented, normalized and modulated gray/white matter images are

all in the same space. Subsequently, parcellation-based multivariate morphometry analysis

will be adopted to find group differences of brain structures.

The parcellation-based multivariate morphometry analysis can be divided into three

parts. First of all, we extract regions of brain by Anatomical Automatic Labeling (AAL)
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Figure 3.1: Schematic of the Anatomical Automatic Labeling template. The AAL tem-
plate is in three different views which is obtained in MRIcroN software. An official site for
Anatomical Automatic Labeling (AAL) freeware: http://www.cyceron.fr/freeware/

which is a software package and digital atlas of the human brain [26]. The definition of 45

anatomical volumes of interest (AVOI) in each hemisphere were delineated with the Mon-

treal Neurological Institute (MNI) single-subject main sulci. The procedure was performed

using a dedicated software which allowed a 3D following of the sulci on the brain. Re-

gions of interest were then drawn manually with the same software every 2 millimeter on

the axial slices of the high-resolution MNI single subject figure 3.1 is a schematic of AAL

template. There are 116 regions defined by AAL and all of the regions will be extracted by

using this AAL template.

Secondly, the main part of the multivariate analysis, each of the regions will adopt a

modified LDA-based method, the discriminative common vector method [27] to find the

most discriminant projection vector. It is simultaneously minimizes the scatter within each

individual group and maximizes the scatter between groups without the small sample size

problem. The resulting projection vector forms a spatial map, whose image size is the

same with each regions, containing the regions which are most representative of group

differences. That is, each parameters of this discriminative projection vector is a represen-

tative of the discrimination of each groups, features or voxels. Details of the method will

be interpreted in the next section.

Thirdly, combining each regions back into original brain, the resulting projection vec-

tor containing the most representative of group differences of each extracted regions. It
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Figure 3.2: Concept of the relation between projection vector with each standard bases.

is a most discriminant map of each regions that the weight of each feature represents the

degree of importance for characterizing group differences. The resulting projection vector

will form an angle with each standard basis. The angle Θi is computed by the formula

Θi = arccos Plda·êi

|Plda||êi| . Where Plda is the projection vector and êi is the standard basis. That

is each of the weight wi is the same with cos Θi. Even the weights are in different regions

we can combine them all together. Figure 3.2 is the concept of the relation between projec-

tion vector and each standard basis. Before we combine each parameters of the resulting

projection vectors back into original brain, there will be a problem of representing the de-

gree of importance for characterizing group differences. The resulting projection vector

will be a unit vector which is computed by modified linear discriminant method. The more

dimension the unit vector has, the smaller parameters it gets with the same atrophy. The

correction is done before combining each results. Details of the method of the combina-

tion of each results will also be interpreted in the next section. After the combination, we

will get the most discriminant projection vector of two different groups. The weight of

projection vector represents the degree of importance for characterizing group differences.

Finally, for the purpose of displaying each regions of the significance level which is the

weight of the discriminant map. There are two map we will illustrate. One is the t map
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of each regions the other is weights of the discriminant map itself. A t-test map is calcu-

lated by projecting all the subject onto the projection vector. That is a high-dimensional

space reduce to an one dimensional space, a value, which represent a subject from different

groups. A two-sample t test is adopted to these values to calculate t value of each regions.

That means, we can obtain a whole brain confidence to demonstrate the significance level

of each regions by calculating T-statistic. Each voxel in the same regions will have same

t statistic value. Once we know the important regions by T-statistic value, we may be in-

terested not only in the regions we found but also the more precise location of this region.

Therefore, weights of the discriminant map is shown with a smoothing and thresholding

(optional). Each parameter of the discriminating map denotes the discrimination of charac-

terizing the group discrepancy, the changes of the weight of neighboring parameters should

be slight. However, in practice, it does not often look smooth because of the error produced

during the preprocessing of a bad image registration or tissue segmentation or because of

the noise or the variation within groups. Some errors may be produced by an imperfect

image registration. To overcome these problems, the smoothness is used with a 6 millime-

ter FWHM gaussian kernel. The smoothing and thresholding are used for visualization of

discriminant map to show the location of the group differences.

In summary, the parcelation-based multivariate morphometry contains the following

steps:

1. Bias correction of T1 images

2. Brain extraction

3. Segmentation of the brain only images into GM, WM, and CSF

4. Spatial normalization of all images to the same stereotactic space

5. Creation of customized template

6. Spatial normalization of all segmented images to the customized template space

7. Modulation
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8. Multivariate analysis

(a) Extraction of regions of brain

(b) Discriminative common vector method to obtain the most discriminant projec-

tion vector

(c) Combination of resulting discriminant projection vector

9. Visualization of the discrepancy pattern

(a) Smoothing

(b) Thresholding

Figure 3.3 is the flowchart of the parcellation-based multivariate analysis without the

preprocessing steps. In the following sections we will introduce the techniques used in

the multivariate analysis step, including the discriminative common vector method and the

combination method of resulting discriminative common vector.

3.3 Multivariate Analysis using a Modified LDA-Based Method

3.3.1 Conventional Linear Discriminant Analysis and Its Potential Prob-

lem

Fisher’s Linear discriminant analysis (LDA) is one of the most popular linear classi-

fication techniques which is invented in 1936 and the methods has been used in statistics

and machine learning to find the linear combination of features which best separate two

or more classes of objects or events. The objective of this method is to find the most

discriminant projection vector P, in which different groups can be separated with the max-

imum between-class scatter matrix and the minimum within-class scatter matrix. The most

projection matrix Plda that maximizes the Fisher’s linear discriminant criterion, which is
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Figure 3.3: Flowchart of parcellation-based multivariate analysis. After the preprocess-
ing, in the parcellation-based multivariate analysis we first extract the regions of brain, and
then we apply the discriminative common vector method to each region and the correction
is done before combination. Finally, we combine all the results of every region in brain
back to original brain.
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defined as

Plda = arg max
P

F (P) = arg max
P

|PT SbP|
|PT SwP|

. (3.1)

and the between-class scatter matrix and the within-class scatter matrix are defined as fol-

lowing. Let the training set (subjects) be composed of C classes (groups), where each

classes (ith class) contain Sc samples, and let xi
j be a d-dimensional column vector which

denotes the jth sample of the ith class. There will be a total M =
∑C

i=1

∑Sc

j=1 x
i
j samples.

The within-class scatter matrix Sw is defined as

Sw =
C∑

i=1

Sc∑
j=1

(xi
j − µi)(xi

j − µi)T , (3.2)

and the between-class scatter matrix Sb is defined as

Sb =
C∑

i=1

Sc(µ
i − µ)(µi − µ)T , (3.3)

where µi = 1/Sc

∑Sc

j=1 xi
j is the mean of samples in the ith class, and µ = 1/M

∑C
i=1

∑Sc

j=1 xi
j

is the mean of all samples.

According to Lagrange multiplier , the ratio is maximized when the column vectors of

Plda are the eigenvectors of S−1
w Sb. And there are only two classes (groups) in our study

case. Therefore, we can obtain the most discriminant projection vector P by the formula

P = S−1
w (µ1 − µ2).

However, in group analysis of MR images, FLDA cannot be applied directly. It is

because of the dimension (voxels) of the sample space is larger than the number of the

samples of training set. The within-class scatter matrix Sw will be singular in this case

that is S−1
w can not be calculate. This problem is also known as the small sample size

(SSS) problem [28]. Therefore we introduce another method called discriminative common

vector method [27] based on the variation of Fisher’s Linear Discriminant Analysis for

solving the small sample size problem.
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3.3.2 Discriminative Common Vector Method

The discriminative common vector method is based on a modification of the LDA

method by maximizing the modified Fisher’s linear discriminant criterion to solve the small

sample size (SSS) problem . The basic idea of the common vector is extracting the com-

mon properties of classes in the training set by eliminating the differences of the samples

in each class. That is, a common vector for each individual class is obtained by removing

all the features that are in the direction of the eigenvectors corresponding to the nonzero

eigenvalues of the scatter matrix of its own class. After getting each individual common

vector of every class, The principal components analysis (PCA) is used to find the principal

components which actually equate the most discriminant projection vectors of LDA.

Let us use all previous definitions then the total scatter matrix be defined as

St =
C∑

i=1

Sc∑
j=1

(xi
j − µ)(xi

j − µ)T = Sw + Sb. (3.4)

The modified Fisher’s linear discriminant criterion will be

F̂ (P) =
|PT SbP|
|PT StP|

=
|PT SbP|

|PT SwP + PT SbP|
(3.5)

The modified Fisher’s criterion is exactly equivalent to the original Fisher’s criterion which

has been proved by Liu et al. [29], that is in formula:

arg max
P

F̂ (P) = arg max
P

F (P). (3.6)

To solve the small sample size problem, the modified Fisher’s criterion will attain a maxi-

mum in the special case, where pT Swp = 0 and pT Sbp 6= 0, for all p ∈ RN \ {0}. Then

the projection vector p does not necessarily maximize the between-class scatter matrix Sb,

and a better criterion will be

arg max
|PT SwP|=0

|PT SbP| = arg max
|PT SwP|=0

|PT StP|. (3.7)

That is to say, the special case is when all samples are projected onto the null space of Sw
to make the the projected within-class scatter matrix to be a zero matrix, |PT SwP| = 0.
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Then we can obtain the optimal projection vectors by performing PCA. The method solving

the small sample size problem is called the null space method which is proposed by Chen

et al. [28]. However the computation of the null space method can be very large because of

the large dimension in null space. Another efficient way to calculate in a lower dimensional

space is by using the orthogonal complement of the null space of Sw.

The transformation matrix from the original sample space to the null space of Sw is

Q̄Q̄
T , where the column vectors of Q̄ are the vectors spanning the null space of Sw. And

the transformation matrix from the original sample space to the rang space of Sw is QQT ,

where the column vectors of Q are the vectors spanning the range space of Sw. Cevikalp

and Wilkes [27] have proved that, the projections of the samples xi
j (which denotes the jth

sample of the ith class) of the class i onto the null space of Sw produce a unique common

vector xi
com = Q̄Q̄

T
xi

j , in addition, because of

xi
j = Q̄Q̄

T
xi

j + QQT xi
j (3.8)

then the common vector xi
com of the ith class can be calculated without Q̄ by using

xi
com = xi

j −QQT xi
j, (3.9)

We can figure out that, instead of computing the common vector xi
com = Q̄Q̄

T
xi

j , we

compute the common vector xi
com = Q̄Q̄

T
xi

j . which the number of columns in Q̄ is

about d − M (d is the total number of dimension of the sample size and M is the total

sample size) but the number of columns in Q is about M . Thus the size of Q is much

smaller than Q̄. The method greatly reduce the computational rather than the null space

method.

After obtaining the common vectors xi
com, optimal projection vectors will be those

that maximize the total scatter of the common vectors,

arg max
|PT SwP|=0

|PT StP| = arg max
P
|PT ScomP|. (3.10)

where Scom is the scatter matrix of the common vectors,

Scom =
C∑

i=1

(xi
com − µcom)(xi

com − µcom)T , (3.11)
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where µcom is the mean of all common vectors, µcom = 1/Sc

∑C
i=1 xk

com.

In this case, optimal projection vectors can be found by an eigenanalysis of Scom. In

particular, all eigenvectors corresponding to the nonzero eigenvalues of Scom will be the

optimal projection vectors.

Acom =
C∑

i=1

(xi
com − µcom)(xi

com − µcom)T , (3.12)

In our practice, samples are divided into only two groups, there will be one optimal

projection vectors since the rank of Scom is C − 1 (C = 2) if all common vectors are

linearly independent. These principal components of the common vectors are called the

discriminative common vectors. We obtain the most discriminant projection vector P by

computing the eigenvectors of Scom, corresponding to the nonzero eigenvalues. There are

at most C − 1 (C = 2) eigenvectors that correspond to the nonzero eigenvalues which is

the most discriminant projection vector.

So the steps of the discriminative common vector method are as follows:

1. Compute the eigenvectors α1, α2, . . . , αr corresponded to the nonzero eigenvalues of

Sw, where r is the rank of Sw, and set Q = [α1 α2 · · · αr].

2. Obtain the common vectors for each class by choosing any sample from each class

and projecting it onto the null space of Sw, those are

x1
com = x1

j −QQT x1
j , j ∈ {1, . . . , S1}, (3.13)

and

x2
com = x2

j −QQT x2
j , j ∈ {1, . . . , S2}. (3.14)

3. Compute the eigenvectors of Scom, corresponding to the nonzero eigenvalues, by

using the matrix AT
comAcom, There are at most C − 1 eigenvectors that correspond

to the nonzero eigenvalues which is the most discriminant projection vector.
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3.3.3 The Problem of Combining The Unit Projection Vector

Once, we get the most projection vector, the weights of this projection vector which

represents the discrimination level for characterizing group differences is an unit vector.

There is a problem that weights of a unit vector with a highly dimensional space will be

smaller than of a unit vector with a low dimensional space. That is,if there are two different

regions with same variation of brain tissues, the weight of two different regions should be

the same with each other. But the weight of the unit projection vector is much smaller in

a high-dimensional space. For example, assume region 1 has n voxels and region 2 has m

voxels with the same atrophy level a, after analysis we will get

P 1
lda = [w1 · · ·wn], w1 = · · · = wn =

1√
n
, (3.15)

and

P 2
lda = [w1 · · ·wm], w1 = · · · = wm =

1√
m
, (3.16)

where P 1
lda is the projection vector in first region and P 2

lda is the projection vector in second

region. According to the same atrophy level, the weight of two projection vector should be

same. but it is not because of the unit vector. Thus we project two regions onto the most

projection vector, there will form two distance in two different regions which is calculous

by two different means. we can have formula

P 1
dist = P 1

ldaGM
1 = a

√
n, (3.17)

and

P 2
dist = P 2

ldaGM
2 = a

√
m, (3.18)

where P i
dist is the distance of projected group mean in region i, GM i is the group mean in

region i i = 1, 2. The correction of the P 1
lda and P 2

lda is

P 1
correct = P 1

ldaP
1
dist = [a · · · a]T , (3.19)

and

P 2
correct = P 2

ldaP
2
dist = [a · · · a]T . (3.20)
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Therefore, we let the two projection vector in different region with the same weight for

characterizing group differences when the atrophy level is identical.



Chapter 4

Experiment Results
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4.1 Simulation Analysis

In this section we provide experiments that demonstrate the performance of parcellation-

based multivariate approach by using simulated atrophy data. The validation is that the pro-

posed method can detect more subtle differences between different groups. The simulation

data is generated by an atrophy simulation package which is proposed by Bilge Karacali in

2006 [30]. The reason why we use the simulation data is to get the ground truth to compare

the group differences. The method of data generation, accuracy evaluation and experiment

results will be described.

4.1.1 Simulation Data Generation

The atrophy simulation data set is generated by using atrophy simulation package [30]

and the normal data set is selected from real data set. In normal group, normal subjects

are selected and the preprocessing is done in advance including inhomogeneity correc-

tion, brain extraction and tissue segmentation. All normal T1 images are segmented into

GM/WM/CSF and subsequently spatial normalized into a customized template. This image

data set in the same space are taken to be simulated normal group and there are 28 normal

subjects is selected.

In the simulated atrophy data set, we use atrophy simulation package which simulate

atrophy and growth within a spherical region of an input image. That is we generate the

patient group from simulated normal control. The approach of atrophy simulation package

is to seek a deformation that produces volumetric changes or volumetric loss. In order to

make the simulation realistic, there are three conditions is considered. Firstly, the warping

transformation of the atrophy should be obtained with no volumetric restrictions over the

cerebrospinal fluid. That is to say, letting the brain-cerebrospinal fluid boundary move

freely through the simulation. Secondly, the deformation over the skull should be zero

since it does not get affected by the atrophy of the brain tissue. In the last, to constrain

the solution to within a class of deformations for which topology is preserved. With these
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conditions,we use atrophy simulation package to generates the simulated atrophy data from

the simulated normal group one by one. The generated deformation fields are used to

modulate the normal groups to get the patient groups. There will be 28 simulated atrophy

images generated from the other 28 normal data set in the patient group.

In summary, we have generated 28 patients from 28 normal controls, and all of them

are in the same space. The atrophy simulation package produces a simulated atrophy defor-

mation which is used to modulate the normal groups to get the patient groups. The atrophy

scale is from 1 millimeter to 4 millimeter respectively. The location of the center voxel

of the spherical region is at voxel (187, 141, 124) which is in the left precentral gyrus, all

images are normalized to a template space that the voxel size is 1× 1× 1mm3 and the size

of the images is 259× 259× 185.

4.1.2 Accuracy Evaluation

In the accuracy evaluation, we have to know the ground truth of the simulation data.

By the use of the simulation atrophy package, we control the simulation parameters such

as atrophy scale, location and rate. That is, the simulation data is controlled by us. Ground

truth refers to information that contains the discrepancy between simulated normal and pa-

tient groups. It is obtained by subtracting patient groups, which is generated by simulation

package, from normal groups. In practice, we subtract average of the patient groups from

average of the normal groups to get the ground truth of each simulation data set. The pos-

itive value in the ground truth represent the atrophy location and the negative values is the

enlarge location.

Once we know the ground truth and the analysis results of the simulation data which

is the discriminant map of parcellation-based multivariate morphometry analysis or t-test

map of VBM analysis. We can classify every voxels into 4 category which is true-positive

(TP), false-positive (FP), true-negative (TN) and false-negative (FN). The four terms TP,

FP, TN and FN is described in order:
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Figure 4.1: The normal and the simulated atrophy images by Atrophy Simulation
Package. (a) is a normal image which is also a source for the package to generate the
simulated atrophy image. (b),(c),(d),(e) are the simulated patient images with atrophy scale
of 1mm, 2mm, 3mm, 4mm respectively. The images are for display only, actually we use
the GM images with the Atrophy Simulation Package to obtain the atrophy deformation
fields respectively. The size of these images are all 259 × 259 × 185 with a voxel size
1× 1× 1mm3. The red cross is place on the voxel (187,141,124).
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Table 4.1: Definitions of TP, FP, TN, and FN.

Predicted outcome
Yes No

Actual value

Yes TP FN

No FP TN

• True-positive (TP): voxels in the analysis result reveal that it is in the atrophy area,

and voxels in the ground truth reveal that it is also in the atrophy area;

• False-positive (FP): voxels in the analysis result reveal that it is in the atrophy area,

and voxels in the ground truth reveal that it is not in the atrophy area;

• True-negative (TN): voxels in the analysis result reveal that it is not in the atrophy

area, and voxels in the ground truth reveal that it is not in the atrophy area;

• False-negative (FN): voxels in the analysis result reveal that it is not in the atrophy

area, and voxels in the ground truth reveal that it is in the atrophy area;

Table 4.1 shows the definitions of TP, FP, TN and FN. There are four possible outcomes

from a binary classifier. If the outcome from a prediction is yes and the actual value is also

yes, then it is called a true positive (TP); however if the actual value is no then it is said to

be a false positive (FP). Conversely, a true negative has occurred when both the prediction

outcome and the actual value are no, and false negative is when the prediction outcome is

no while the actual value is yes. Moreover, the rates of TP, FP, TN and FN are defined as:

TPrate =
TP

TP + FN
, (4.1)

FPrate =
FP

TN + FP
, (4.2)

TNrate =
TN

TN + FP
, (4.3)

FNrate =
FN

TP + FN
. (4.4)
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These regions can be shown to compare two morphometric analysis methods after la-

beling each voxels with TP, FP, FN and TN. Under the same FP rate, we compare the result

of TP rate and FN rate with each other. The result with more TP regions and fewer FP

regions indicate a high accuracy or performance.

Another evaluation method is receiver operating characteristic (ROC) curve [31]. It

measures the performance of the method and is a graphical plot of the sensitivity and (1

- specificity) for a binary classifier system as its discrimination threshold is varied. The

ROC curve can also be represented equivalently by plotting the fraction of true positives

(TPR = true positive rate) and the fraction of false positives (FPR = false positive rate). The

sensitivity is the TPR which means that the ability of an analysis method to detect voxels

with actually atrophy; and the specificity is the TNR which means the ability of an analysis

method to detect voxels without actually atrophy. We can obtain these rate by varying the

parameter (threshold) of the analysis results, which are refer to the discriminant map of

multivariate analysis or t-test map of VBM. That is, the sensitivity and the 1-specificity

can be plotted with various threshold of discriminative map. Any system that appears in

the lower right triangle performs worse than random guessing in ROC curve. That is,

any method on the diagonal may be said to have no information about the method and the

method above the diagonal is said to have information about the method. However, we may

want to reduce ROC performance to a single scalar value representing the performance to

compare methods. One of the common method is to calculate the area under the ROC curve

(AUC). The AUC is a portion of the area of the unit square, its value will always be between

0 and 1.0. In this work, we look at a specific region of the ROC Curve rather than at the

whole curve by using the partial area under the curve (PAUC) to compare different ROC

curves. The reason is that the curve is not long enough, and we could only focus on the

region of the curve with a same false positive rate. The concept of the AUC and PAUC is

similar that the AUC/PAUC with a larger area will have a better performance to the method

we use. Figure 4.2 gives an example of a ROC curve.
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Figure 4.2: Example of a ROC curve. It measures the performance of the method and
is a graphical plot of the sensitivity and (1 - specificity) for a binary classifier system as
its discrimination threshold is varied. Any method that appears in the upper left triangle
performs better than random guessing in ROC curve. To compare methods, we calculate
the (partial) area under the ROC curve (AUC), which indicates better performance with a
larger AUC/PAUC.

4.1.3 Comparisons of Proposed Method and VBM

Both of the parcellation-based multivariate morphometry method (PBM) and VBM

method is used to analyze the simulation data. The simulation data is smoothed with a

12mm FWHM isotropic gaussian kernel before the VBM analysis. Subsequently, we ap-

plied a voxel-wise two sample t-test to form a discriminant t-test map which can identify

the significance level of each voxel by judging t statistics value. Although the smoothed

simulation data is used, Data smoothing is omitted in proposed method that the information

of each voxel may be damaged by smoothing them. We first parcellate all simulated im-

ages into several regions by a template which is defined by Anatomical Automatic Labeling

(AAL). And then we applied the discriminative common vector method to each region to

obtain the most discriminant map of each region. Finally. we combine these resulting

discriminant map back into original brain rather than a parcellated map.

After we obtain the discriminant map of two method, the ROC curve is formed with

simulation data which is atrophied in the scale of 1mm to 4mm respectively. Thus there
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Figure 4.3: ROC curves of PBM and VBM results with the simulation data. Notice that
both horizontal axes are limited from 0 to 1 and both vertical axes are limited from 0 to 1
for more specific display.
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Table 4.2: PAUC indices for ROC curves of parcellation-based multivariate morphometry
(PBM) and VBM results with the simulation data. The partial area was calculated in a
specific region where the TP rate ranges form 0 to 1 and the FP rate ranges form 0 to 1. As
this specific region denotes 1, we have 0 ≤ PAUC ≤ 1. It is manifest that PBMM PAUC
indices are greater than VBM ones in the same analysis data, especially when the simulated
atrophy scale is small. Comparisons of each ROC curve between each atrophy scale, that
with the increase of the atrophy scale, the performance of both method is also increased.

Atrophy scale = 1 mm Atrophy scale = 2 mm

PBM VBM PBM VBM

0.2592 0.2263 0.2694 0.2075

Atrophy scale = 3 mm Atrophy scale = 4 mm

PBM VBM PBM VBM

0.20185 0.1916 0.28583 0.24055

will be 4 simulation data sets for detecting simulated group difference by our proposed

method and VBM analysis. Figure 4.3 graphically summarizes each result and the TPR

and FPR range from 0 to 1 and 0 to 0.25 and the corresponding PAUC is listed in Table

4.2. The comparisons of PBM and VBM in Figure 4.3 is clear that the ROC curve of PBM

is above the ROC curve of VBM in each result. which means the result of PBM method can

detect more subtle and distributed patterns than VBM method. Besides, with the increase of

the atrophy scale from 1 mm to 4 mm, although the resulting ROC curve of VBM becomes

more and more accurate, the resulting ROC curve of PBM method is always better than

VBM method, as we can see in Figure 4.3. The partial area under the curve (PAUC) is

calculated according to TPR and FPR which is also shown that PBM has greater PAUC

than VBM in the result within a specific atrophy scale. Moreover, the PAUC is increasing

with the atrophy scale from 1mm to 4mm, 6mm and 8mm. That means with the increase

of the atrophy scale, the performance of both method is also increased. Figure 4.3 and

Table 4.2 illustrate a better performance of our method.
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4.2 Real Data Analysis

4.2.1 Materials

The study involved 89 subjects. The subjects suffering from bipolar disorder I (BDI)

is consisted of 10 and 7 female (age : 20 − 55,mean ± SD, 37.29 ± 10.29); the subjects

suffering from bipolar disorder II (BDII) is consisted of 4 male and 15 female (age : 20−
61,mean±SD, 37.58±10.79); the subjects suffering major depressive disorder (MDD) is

consisted of 9 male and 16 female (age : 23− 56,mean± SD, 36.76± 9.91); the healthy

subjects is consisted of 11 male and 17 female (age : 21−57,mean±SD, 37.35±11.68).

The clinical data is summarized in Table 4.3.

Male Female Age Education

BDI 10 7 37.29± 10.29 13.8±2.14

BDII 4 15 37.58± 10.79 14.94±1.95

MDD 9 16 36.76± 9.911 14.28±1.88

Healthy control 11 17 37.35± 11.68 15.35±2.31

Table 4.3: Clinical data of each groups. and all MR images are collected by Integrated
Brain Research Unit (IBRU) of Taipei Veterans General Hospital.

4.2.2 MRI acquisition

All subjects were scanned on the same 1.5 Tesla GE MR scanner, using a 3-dimensional-

FSPGR pulse sequence (TR = 8.67 ms, TE = 1.86 ms, TI = 400 ms, NEX = 1, flip angle =

15◦, bandwidth = 15.63 kHz, matrix size = 256 × 256 × 124, voxel size = 1.02 × 1.02 ×
1.5mm3). All MR scans were collected by Integrated Brain Research Unit (IBRU) of Taipei

Veterans General Hospital.
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4.2.3 Results and Comparisons of PBM and VBM

In the VBM analysis, according to the implementation of VBM, all images were pre-

processed before the voxel-wise statistics analysis including inhomogeneity correction with

N3, brain extraction with HWA, tissue segmentation with FAST, two spatial normalization

and modulation. ALL of the steps were perform on a linux server. These images were

spatial normalized to a customized template without changing the voxel size that is the

normalized images had a high resolution with the voxel size unchanged. And then the

smoothing is perform with a 12 mm FWHM isotropic Gaussian kernel. Subsequently, we

applied a two-sample t-test, and set the significance level at p<0.005 uncorrected (i.e. t

value >2.69 as degree of freedom = 44 in MDD analysis) for the final t-test map. In the

PBM analysis, it is similar with the preprocessing of the VBM analysis, the differences is

that we eliminate the smoothing steps for the PBM analysis. Then we parcelled brain into

several regions to calculate the most discriminant map respectively in each region. Finally,

after we have obtained the most discriminant map of each region, we combine them back

into original brain. An 6 mm FWHM isotropic Gaussian kernel was used for the visualiza-

tion of the PBM result. In the visualization of the discriminant map, a threshold is chosen

by statistics t value which has a significant level at p<0.005 uncorrected in VBM analysis,

but the threshold in PBM can not be chosen in this way. However, we choose a compatible

threshold of PBM by t-test map of VBM analysis result. That is by choosing a range of t

value in VBM then search the regions whose t value are within the range, and finally we

choose the mean threshold of the same regions found in PBM for analysis. Thus we can

have a compatible threshold for visualization of PBM result. A minimum cluster size is

used with the size set in 200 voxels. Finally, there will be a discriminant map and a t-test

map of each regions in PBM analysis. Only a discriminant t test map is shown in VBM

analysis. Figure 4.4 is the concept of choosing the threshold.

Figure 4.5 illustrates statistic t value of each region in MDD patients by PBM analysis

method. The significant level of t value is listed in Table 4.4, As we can see, comparing

the variety of regions of MDD patients to normal controls. Regions with a high significant

level were in frontal lobe (left and right middle frontal gyrus, left and right superior frontal
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Figure 4.4: Concept of choosing a compatible threshold of PBM by t-test map of VBM
analysis result. First we choose a range of t value in VBM then search the regions whose
t value are within the range, and finally we choose the mean threshold of the same regions
found in PBM for analysis. For examples, we choose t value within 2.69 and 3.69. Search
regions whose t value are in this range. And then we map these regions to the PBM result
and calculate the mean weight of these regions to be the threshold in PBM analysis.
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Figure 4.5: Statistics t value within each region in MDD patients by PBM analysis method
is shown. Each statistics t value information within each region is listed in Table 4.4.
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Table 4.4: Statistics t value within each region in MDD patients by PBM analysis method
in MDD. These statistic t values are arranged in order by the t value of each region, and
the corresponding locations in AAL labeling are listed.

AAL label side t value AAL label side t value

AMYGDD Amygdala R 4202 2.694 T3D Temporal Inf R 8302 1.9445

F3TD Frontal Inf Tri R 2312 2.6208 F2G Frontal Mid L 2201 1.9256

F3OPD Frontal Inf Oper R 2302 2.5236 CERCRU1G Cerebelum Crus1 2 R 9997 1.9153

F1OD Frontal Sup Orb R 2112 2.4482 HESCHLG Heschl L 8101 1.8961

LPCD Paracentral Lobule R 6402 2.4119 T1G Temporal Sup L 8111 1.8815

PQD Precuneus R 6302 2.3934 O3D Occipital Inf R 5302 1.8776

V1D Calcarine R 5002 2.3149 FMD Frontal Sup Medial R 2602 1.8753

O3G Occipital Inf L 5301 2.2902 FMOG Frontal Med Orb L 2611 1.8354

V1G Calcarine L 5001 2.2712 PAG Postcentral L 6001 1.8318

FMOD Frontal Med Orb R 2612 2.2697 F1D Frontal Sup R 2102 1.794

FAD Precentral R 2002 2.2595 F1G Frontal Sup L 2101 1.7522

ORD Rolandic Oper R 2332 2.245 T1AD Temporal Pole Sup R 8122 1.7491

LINGG Lingual L 5021 2.23 COBD Olfactory R 2502 1.741

HESCHLD Heschl R 8102 2.2298 F2D Frontal Mid R 2202 1.6967

COBG Olfactory L 2501 2.159 CERCRU1G Cerebelum Crus1 2 L 9996 1.6647

CIPG Cingulum Post L 4021 2.1531 P2D Parietal Inf R 6202 1.5805

F3TG Frontal Inf Tri L 2311 2.1322 FAG Precentral L 2001 1.5734

GSMD SupraMarginal R 6212 2.1247 CER Cerebelum R 9998 1.515

PARA HIPPOD ParaHippocampal R 4112 2.1184 FMG Frontal Sup Medial L 2601 1.5107

CIAG Cingulum Ant L 4001 2.1151 CER Cerebelum L 9999 1.4532

SMAD Supp Motor Area R 2402 2.0814 PAD Postcentral R 6002 1.4437

T1AG Temporal Pole Sup L 8121 2.0678 GRG Rectus L 2701 1.3462

LINGD Lingual R 5022 2.052 VER Vermis all 9995 1.2895

CINMG Cingulum Mid L 4011 2.0448 ORG Rolandic Oper L 2331 1.2541

IND Insula R 3002 2.0116 PARA HIPPOG ParaHippocampal L 4111 1.2282

F3OPG Frontal Inf Oper L 2301 2.0026 THAG Thalamus L 7101 1.1801

T1D Temporal Sup R 8112 1.982 NCG Caudate L 7001 0.66337

F2OD Frontal Mid Orb R 2212 1.9721 CIPD Cingulum Post R 4022 0.50429

NLD Putamen R 7012 1.9636 PALLG Pallidum L 7021 0.44813

F2OG Frontal Mid Orb L 2211 1.961 NLG Putamen L 7011 0.42948
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Figure 4.6: Volumetric atrophy of gray matter in MDD patients by PBM analysis method.
Regions detected as significant group differences are marked with circles. One marked
with a green circle is also found in the VBM analysis result; one marked with a blue circle
is only revealed in the PBM result. Numbers of theses circles represent the importance of
characterizing volume loss in MDD patients. More information of each region is listed in
Table 4.5.
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gyrus, left inferior frontal gyrus), temporal lobe (left and right superior temporal gyrus), oc-

cipital lobe (inferior occipital gyrus, calcarine fissure), parietal lobe (inferior parietal lobe,

supramarginal gyrus) and Cerebellum whose t value is relatively small. Figure 4.6 illus-

trate gray matter volume reduce in MDD patients by PBM analysis method. The detected

significant atrophy is marked with a circle and number in Figure 4.6. The information of

each marked circle is also listed in Table 4.5. Regions marked with green circle is found

by both VBM and PBM method. Regions marked with blue circle is only found by PBM

method.

Figure 4.6 illustrate gray matter volume reduce in MDD patients by VBM analysis

method. The detected significant atrophy is marked with a circle and number in Figure 4.7.

The information of each marked circle is also listed in Table 4.6. As we can see, comparing

brain structures of MDD patients to normal controls, the reduction of GM is detected in the

regions of temporal lobe (left and right superior temporal gyrus, inferior temporal gyrus),

frontal lobe (middle frontal gyrus, superior frontal gyrus, left and right precentral gyrus),

occipital lobe (middle occipital gyrus, lingual gyrus ) and parietal lobe (postcentral gyrus).

Regions marked with green circle is found by both VBM and PBM method. Regions

marked with blue circle is only found by VBM method.

To compare the differences of brain structures of MDD and BD patients, there are

several findings of volume loss of gray matter in dorsolateral prefrontal cortex (DL-PFC

or DLPFC). The DLPFC is the area to develop myelinate in the human cerebrum and it

is roughly consist of lateral portions of Brodmann areas 9 - 12, of areas 45, 46, and the

superior part of area 47. DL-PFC is connected to the orbitofrontal cortex, and to a variety

of brain areas, which include the thalamus, parts of the basal ganglia (the dorsal caudate

nucleus), the hippocampus, and primary and secondary association areas of neocortex.

This brain region has been implicated in planning complex cognitive behaviors, personality

expression, decision making and moderating correct social behavior. The orbitofrontal

cortex (OFC) is a region of association cortex of the human brain involved in cognitive

processes such as decision-making. The name of this region is based upon the region’s

location within the frontal lobes, resting above the orbits of the eyes. It is defined as the part
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of the prefrontal cortex and a more restricted definition of this area describes it as roughly

equivalent to Brodmann areas 11 and 12. The basal ganglia (BG) which is made up of the

caudate, putamen, globus pallidus (GP) subthalamic nucleus (STN), and substantia nigra

(SN), were traditionally conceptualized as a center of motoric integration. The result of the

PBM method in MDD patients detects several regions which is reasonable and consistent

such as middle frontal gyrus and superior frontal gyrus both in OFC. The bilateral volume

reduction is also reported by Lai et al. [32]. This. It plays an important role of cognitive

processes. The detection of the thalamus is also reasonable that thalamus is believed to both

process and relay sensory information selectively to various parts of the cerebral cortex and

it is highly associated with BG. In the VBM analysis of MDD patients, it is also several

finding is associated with middle frontal gyrus and superior frontal gyrus which is the same

with our result. A report by Chen et al.(2008) [33] also detects reduction of insula and

amygdala with MDD patients, however, insula is only detected by PBM method.

Figure 4.9 illustrates statistic t value of each region in BD2 patients by PBM analysis

method. The significant level of t value is listed in Table 4.7, As we can see, comparing the

variety of regions of BD2 patients to normal controls. Regions with a high significant level

were in frontal lobe (left and right middle frontal gyrus, left and right superior frontal gyrus,

left inferior frontal gyrus, precentral), temporal lobe (superior temporal gyrus), occipital

lobe, and insula whose t value is relatively small. Figure 4.10 illustrate gray matter volume

reduce in MDD patients by PBM analysis method. The detected significant atrophy is

marked with a circle and number in Figure 4.10. The information of each marked circle is

also listed in Table 4.8. Regions marked with green circle is found by both VBM and PBM

method. Regions marked with blue circle is only found by PBM method.

Figure 4.10 illustrate gray matter volume reduce in BD2 patients by VBM analysis

method. The detected significant atrophy is marked with a circle and number in Figure 4.11.

The information of each marked circle is also listed in Table 4.9. As we can see, comparing

brain structures of BD2 patients to normal controls, the reduction of GM is detected in

the regions of frontal lobe (right middle frontal gyrus, right superior frontal gyrus, left

precentral gyrus, paracentral lobule), parietal lobe (supramarginal gyrus) and occipital lobe
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Figure 4.7: Volumetric atrophy of gray matter in MDD patients by VBM analysis method.
Regions detected as significant group differences are marked with circles. One marked
with a green circle is also found in the PBM analysis result; one marked with a blue circle
is only revealed in the VBM result. Numbers of theses circles represent the importance of
characterizing volume loss in MDD patients. More information of each region is listed in
Table 4.6.
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Figure 4.8: Volumetric atrophy of gray matter in MDD patients by PBM method only is
labeled with red color; both method is labeled with yellow color; vbm method only is
labeled with green color.
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Figure 4.9: Statistics t value within each region in BD2 patients by PBM analysis method
is shown. Each statistics t value information within each region is listed in Table 4.7.
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Table 4.7: Statistics t value within each region in BD2 patients by PBM analysis method
in BD2. These statistic t values are arranged in order by the t value of each region, and the
corresponding locations in AAL labeling are listed.

AAL label side t value AAL label side t value

CIAG Cingulum Ant L 4001 2.706 F3TG Frontal Inf Tri L 2311 1.7143

F3OPD Frontal Inf Oper R 2302 2.6332 F2OD Frontal Mid Orb R 2212 1.7081

F3OD Frontal Inf Orb R 2322 2.5594 THAD Thalamus R 7102 1.7073

FMOG Frontal Med Orb L 2611 2.5327 FMG Frontal Sup Medial L 2601 1.7048

F3TD Frontal Inf Tri R 2312 2.4669 F2OG Frontal Mid Orb L 2211 1.6895

FUSIG Fusiform L 5401 2.3628 F1G Frontal Sup L 2101 1.68

LPCG Paracentral Lobule L 6401 2.3025 FAD Precentral R 2002 1.6784

F3OPG Frontal Inf Oper L 2301 2.2057 FMOD Frontal Med Orb R 2612 1.6761

CINMG Cingulum Mid L 4011 2.191 F2D Frontal Mid R 2202 1.6717

PAG Postcentral L 6001 2.1699 F3OG Frontal Inf Orb L 2321 1.6717

GRD Rectus R 2702 2.1279 CER Cerebelum L 9999 1.6396

SMAD Supp Motor Area R 2402 2.1244 GRG Rectus L 2701 1.6148

CINMD Cingulum Mid R 4012 2.0459 T3D Temporal Inf R 8302 1.5648

FMD Frontal Sup Medial R 2602 2.0234 CERCRU1G Cerebelum Crus1 2 L 9996 1.5564

F1OG Frontal Sup Orb L 2111 2.0137 T1D Temporal Sup R 8112 1.5522

F1OD Frontal Sup Orb R 2112 2.0127 IND Insula R 3002 1.5262

HESCHLG Heschl L 8101 1.9748 F2G Frontal Mid L 2201 1.5224

LINGG Lingual L 5021 1.9636 AMYGDD Amygdala R 4202 1.5055

O3G Occipital Inf L 5301 1.9438 CERCRU1G Cerebelum Crus1 2 R 9997 1.4962

SMAG Supp Motor Area L 2401 1.9424 PALLG Pallidum L 7021 1.482

THAG Thalamus L 7101 1.9083 COBD Olfactory R 2502 1.4171

GSMD SupraMarginal R 6212 1.84 O3D Occipital Inf R 5302 1.3959

ING Insula L 3001 1.8317 PARA HIPPOG ParaHippocampal L 4111 1.3797

HESCHLD Heschl R 8102 1.825 O2D Occipital Mid R 5202 1.3135

ORD Rolandic Oper R 2332 1.8217 VER Vermis all 9995 1.2067

O1D Occipital Sup R 5102 1.8107 CER Cerebelum R 9998 1.0803

FAG Precentral L 2001 1.7997 PAD Postcentral R 6002 1.0415

F1D Frontal Sup R 2102 1.7656 NLD Putamen R 7012 0.8109

V1G Calcarine L 5001 1.7605 NLG Putamen L 7011 0.51612

LPCD Paracentral Lobule R 6402 1.7482 PALLD Pallidum R 7022 0.29064

V1D Calcarine R 5002 1.7323



68 Experiment Results

Figure 4.10: Volumetric atrophy of gray matter in BD2 patients by PBM analysis method.
Regions detected as significant group differences are marked with circles. One marked
with a green circle is also found in the VBM analysis result; one marked with a blue circle
is only revealed in the PBM result. Numbers of theses circles represent the importance of
characterizing volume loss in BD2 patients. More information of each region is listed in
Table 4.8.
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(lingual gyrus). Regions marked with green circle is found by both VBM and PBM method.

Regions marked with blue circle is only found by VBM method.

There are lot of findings in middle frontal gyrus and superior frontal gyrus by both PBM

and VBM methods. They are all highly associated with the cognitive processes which is

mentioned before. Most of the findings in VBM result are also detected by PBM except

two regions: supramarginal gyrus and lingual gyrus which detects no differences by PBM.

Figure 4.13 illustrates statistic t value of each region in BD1 patients by PBM analysis

method. The significant level of t value is listed in Table 4.10, As we can see, comparing

the variety of regions of BD1 patients to normal controls. Regions with a high significant

level were in frontal lobe (right middle frontal gyrus, left precentral gyrus, left superior

frontal gyrus) and thalamus whose t value is relatively small. Figure 4.14 illustrate gray

matter volume reduce in BD1 patients by PBM analysis method. The detected significant

atrophy is marked with a circle and number in Figure 4.14. The information of each marked

circle is also listed in Table 4.11. Regions marked with green circle is found by both VBM

and PBM method. Regions marked with blue circle is only found by PBM method.

Figure 4.14 illustrate gray matter volume reduce in BD1 patients by VBM analysis

method. The detected significant atrophy is marked with a circle and number in Figure 4.15.

The information of each marked circle is also listed in Table 4.12. As we can see, com-

paring brain structures of BD1 patients to normal controls, the reduction of GM is detected

in the regions of temporal lobe (left superior temporal gyrus), frontal lobe (left superior

frontal gyrus, right inferior frontal gyrus, paracentral lobule), occipital lobe (lingual gyrus)

and limbic lobe (parahippocampal gyrus). Regions marked with green circle is found by

both VBM and PBM method. Regions marked with blue circle is only found by VBM

method.

Both of the methods detect superior frontal gyrus (and paracentral lobule which is a

more more medial part of the superior frontal gyrus) in the analysis of BD1 patients. The

findings in middle frontal gyrus and thalamus is also in consistent with previous studies.

Parahippocampal gyrus which is known as memory encoding and retrieval is also detected
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Figure 4.11: Volumetric atrophy of gray matter in BD2 patients by VBM analysis method.
Regions detected as significant group differences are marked with circles. One marked
with a green circle is also found in the PBM analysis result; one marked with a blue circle
is only revealed in the VBM result. Numbers of theses circles represent the importance of
characterizing volume loss in MDD patients. More information of each region is listed in
Table 4.9.
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Figure 4.12: Volumetric atrophy of gray matter in MDD patients by PBM method only
is labeled with red color; both method is labeled with yellow color; vbm method only is
labeled with green color.
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Figure 4.13: Statistics t value within each region in BD1 patients by PBM analysis method
is shown. Each statistics t value information within each region is listed in Table 4.10.
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Figure 4.14: Volumetric atrophy of gray matter in BD1 patients by PBM analysis method.
Regions detected as significant group differences are marked with circles. One marked
with a green circle is also found in the VBM analysis result; one marked with a blue circle
is only revealed in the PBM result. Numbers of theses circles represent the importance of
characterizing volume loss in BD1 patients. More information of each region is listed in
Table 4.11.
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by VBM and PBM method with BD2 patients. There are findings with decrease in volume

of parahippocampal gyrus by Lochhead et al. (2004) [34].
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Figure 4.15: Volumetric atrophy of gray matter in BD1 patients by VBM analysis method.
Regions detected as significant group differences are marked with circles. One marked
with a green circle is also found in the PBM analysis result; one marked with a blue circle
is only revealed in the VBM result. Numbers of theses circles represent the importance of
characterizing volume loss in BD1 patients. More information of each region is listed in
Table 4.12.
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Figure 4.16: Volumetric atrophy of gray matter in MDD patients by PBM method only
is labeled with red color; both method is labeled with yellow color; vbm method only is
labeled with green color.
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Table 4.10: Statistics t value within each region in BD2 patients by PBM analysis method
in BD1. These statistic t values are arranged in order by the t value of each region, and the
corresponding locations in AAL labeling are listed.

AAL label side t value

PAD Postcentral R 6002 1.8056

LPCD Paracentral Lobule R 6402 1.7599

F2OD Frontal Mid Orb R 2212 1.6642

THAG Thalamus L 7101 1.562

PAG Postcentral L 6001 1.4787

LPCG Paracentral Lobule L 6401 1.4595

FMG Frontal Sup Medial L 2601 1.3473

PALLD Pallidum R 7022 0.19076
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5.1 Using the Parcellation-Based Approach

In this study, A method of pracellation-based multivariate approach is proposed. The

reason is that regions of the brain structures are always corelated to diverse functions and

regions defined by Korbinian Broadmann are also defined by organization. Therefore, we

should take all the voxels within the same region in consideration simultaneously. There

are several advantages of using the parcellation-based approach.

At first, it is more flexible for the analysis. if we can know the region which is not

important in characterizing group differences in advance, then it can be without consid-

eration. Also, it could be a whole-brain analysis in characterizing group differences, that

is to define a whole-brain region without parcellating the brain. Occasionally, regions are

concerned only in several organization with patients suffering certain disease. We can just

analyze regions which are important to characterizing the group differences. Secondly,

using this region-based approach method can help the analysis with collecting the voxels

which may cause by wrong segmentation of the tissues, an imperfect registration or a bad

brain extraction. Thus, the voxel with wrong information or noise may not influence the

result. At last, the most important point is, by using parcellation-based approach all the

information of each voxel are in the same region to analyze brain anatomy with different

disease simultaneously. The parcellation-based approach is used to analyze the neighbor

voxels together instead of smoothing the data.

5.2 Different Size of Each Region

In the proposed method, we have to define the regions before we analyze. There are

several way in defining the region, such as by voxel (which is the VBM), a cube, sulci

and gyri or organization. The size of every region may or may not be the same with each

other. Therefore, there may be some issues when comparing results under different size of

regions.
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One is that regions are in different size with an identical atrophy size. In an ideal

case, voxels which produce no variation between two groups can have no effect to the dis-

criminant map. That is only the voxels with atrophy will be detected, others will have no

contributions to the discriminant projection vector. Thus it may not influence the result

with same atrophy size but different region. The other is that regions and the atrophy size

are both different. According to the discriminative common vector method, the discrimi-

nant projection vector is a unit vector. The weights of the projection vector which represent

the discrimination for characterizing group discrepancy may be diminished by being a nor-

malized (unit) vector. Thus we adopt a correction to the projection vector which we have

mentioned and proved in section 3.3.3. Therefore, with the correction, the weight of the

projection vector may not be diminished and can denote the discrimination for characteriz-

ing group discrepancy in an unbiased way.

5.3 Limitations of the Atrophy Simulation Package

The atrophy simulation package simulates atrophy and growth within a spherical region

of an input image that is to produce the volumetric changes or volumetric loss. It is fast

and realistic to simulate, but the limitations of this simulation package is that it can only

simulate one area for volumetric changes at a time. As we know that in reality, the MDD

or BD patient may not have only one area with gray matter atrophy or enlarge. It always

has more than one area with gray matter atrophy or enlarge. Therefore the simulation data

may not represent as patient in reality. Another limitation is that the atrophy simulation

package can freely move the CSF boundary to produce the volumetric changes. That is we

can only simulate our data with the CSF boundary. In consequently, the simulation area is

highly correlated with CSF boundary.

Moreover, the results of the simulation data have shown that the parcellation-based

multivariate (PBM) method is better than VBM in ROC curve. Once if we can simulate

the gray matter atrophy with more than one area, it may improve the results of the PBM

method and also the simulation will be more close to the MDD or BD patient in reality.
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5.4 Why the Smoothing is Eliminated

In the parcellation-based morphometry (PBM) analysis, the smoothing step which is

used in the preprocessing of the VBM method is eliminated from the preprocessing of our

method for characterizing group differences. The reason is that it is redundant and needless

to our proposed method. However, there are several advantages in smoothing data for VBM

analysis, but in other point of view, the advantage is also associated with some drawbacks

especially to our PBM analysis.

Several advantages of smoothing data for VBM analysis are not taken by our method,

but these are still good for VBM analysis. The advantages of smoothing are listed below:

1. The effect of rendering the data set more normally distributed

2. The consideration of neighbor voxels

3. The elimination of errors within spatial normalization

First of all, the effect of rendering the data set more normally distributed is that to

increase the validity of voxel-by-voxel parametric statistical test. By central limit theorem,

the sum of many independent random variables (voxels), will be approximately normally

distributed and it guarantees the validity of the test even if the populations are nonnormal.

Secondly, owing to the voxel-wise analysis, VBM analysis considers only one voxel at

a time without any other nearby voxels. The smoothness can let each voxel containing

other voxel information around them. Last advantage is to eliminate errors within spatial

normalization. Which means, the registration errors may influence the statistics test in

voxel-eise analysis. By the use of the smoothness can eliminate the variation produce by

registration error and also increase the correctness of the VBM result. However, in our

method, we have already considered each voxel within a region during analysis. That is,

the region information of each voxel is taken into consideration simultaneously. Therefore,

we eliminate the smoothness during the multivariate analysis. It is necessary for voxel-wise

analysis instead of an multivariate method.
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In another point of view, the advantage we mentioned above tends to be drawbacks dur-

ing the analysis. First of all, the consideration of neighbor voxels may be bad when voxels

are near the borders of GM WM and CSF. We may sum up the wrong voxel information

with each other, which are not in the same tissue, that is smoothing can always sum all in-

formation to be together without checking them and it reduces the correctness of the VBM

result. The other is the subtle difference may be weakened during smoothing the data. The

small variance of brain structures may not be detected with smoothed data. In the last, it

is hard for every of us to decide the smoothing kernel size. It is always a problem with

the size of the kernel. However, it is recommended that the size of the smoothing kernel

should be comparable to the size of the expected regional differences between the groups.

In our previous work [16], we have proved that the result of using the smoothed data or

non-smoothed data will either reach the maximum of the Fisher’s criterion, which means

that the use of the smoothing data would not improve the discrimination of the discriminant

map.



88 Discussion



Chapter 6

Conclusions



90 Conclusions

In this study, we proposed a reformatory method which is a parcellation-based mul-

tivariate method for characterizing brain discrepancy of different populations. The proce-

dures of parcellation-based multivariate morphometry are similar to one of the most popular

morphometry method which is called voxel-based morphometry (VBM), it includes image

preprocessing and parcellation-based multivariate analysis. In image preprocessing, several

tools are used to maximize the performance of each step. The main idea of the proposed

method is parcellation-based analysis, that is, we divide brain into several pieces before the

multivariate analysis. we adopted the discriminative common vector method to detect the

most discriminant hyper-plane which represents the discrimination of each region or voxel.

Finally, we combine each region back into the original brain to identify group discrepancy

in an unbiased way. According to our experiment, we have demonstrated that the perfor-

mance of the parcellation-based multivariate method is better than VBM. The multivariate

result is shown that it detects more subtle and widely distributed pattern of brain structures

which are often not detectable by VBM.

There are several important characters of parcellation-based multivariate method. First

of all, the most important point is, all voxels in same region are simultaneously taken

into consideration with multivariate analysis by using parcellation-based approach rather

than using all features in brain. Obviously, features may be redundant especially for those

region which is not important in group difference. Moreover, with an imperfect registration

may cause some regions failed to spatial normalize to a template, these regions may also

reduce the ability of characterizing group differences. Another important character is that

feature reduction is omitted owing to the discriminative common vector method which

can deal with plenty of features simultaneously. Therefore, the information of each voxel

may not loss with feature reduction, every voxel will be in analysis instead. That enables

the proposed method superior to other multivariate analysis which uses feature reduction

within analysis. At last, the smoothness is not included in the preprocessing of the proposed

method since the smoothness may mix up or reduce the information of each voxel. It has

been proved that the maximums of Fisher’s criterion is equivalent with smoothing or not.

These are still some defects within the proposed method. In VBM analysis, that the ef-



Conclusions 91

fect of spatial normalization is different between each subject. Therefore, the global mean

voxel value is included as a confounding covariate in an analysis of covariance (ANCOVA).

Different from VBM analysis, the proposed method take no consideration with this effect.

Another defect is about the discriminant map. The resulting discriminant map of VBM

analysis provides a t-test map, which means the value of each voxel represent a significant

level by a t statistic value. The discriminative map of our proposed method is a discrim-

ination weight which is lack of statistic result. Although, we still provide a result with

two-sample t test which is calculated by projecting all subjects onto the most projection

vector we have found, then all the subjects will be indicated by a value for two sample

t test. However, our proposed method has shown that the parcellation-based multivariate

morphometry analysis has a good performance on subtle and widely-distributed structural

difference and it is more flexible within analysis.
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