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利用聲音回饋警示於 

增加駕駛者清醒程度的影響 
 

學生：陳建安      指導教授：林進燈 博士 

國立交通大學生醫工程研究所 
 

中文摘要 
駕駛者分心被普遍認為是導致車禍事故的主要原因。使用合適的警示刺激或

許可降低注意力上的失誤，或者有效的避免災難性的後果。過去許多研究也都曾

指出聲音回饋警示明顯有助於改善實驗任務的表現，但行為程度上的改變到底可

反應多少大腦的動態改變還未清楚。而這個研究探討的是，當受測者顯示出短暫

瞌睡的認知狀態時，給予受測者聲音警示刺激後的相關神經反應。共有十一位受

測者參與此虛擬實境的開車實驗。藉由虛擬環境下的事件相關開車偏移任務以模

擬長時間的公路駕駛，並且腦電波的長期與暫態變化會透過獨立訊號分析、時域

頻域轉換、及無母數統計檢定等方法進行分析比較。結果顯示，聲音警示刺激不

僅可加速反應時間，而且還可使駕駛者恢復到較清醒的精神狀態。此外利用聲音

警示以降低駕駛者的瞌睡層度的效果可大約持續 10 秒鐘左右。未來可針對不同

的聲音刺激方法，或者甚至結合不同的聲音刺激形態應用在未來的研究上。 

 

關鍵字： 
瞌睡、聲音警示、腦電波、α頻帶、θ頻帶、時域頻域分析、獨立成份分析 
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Abstract 
Driver inattention was widely attributed as a leading cause of car 

accidents. Using appropriate stimulating warnings might considerably reduce 

the lapses of attention and in turn, effectively avoid catastrophic consequences. 

Several studies have reported that the auditory feedback could contribute 

significantly to improving task performance. To what extent such behavioral 

changes could reflect on what already altered in the brain dynamics was 

unclear. The aim of this study is to explore the neural correlates of arousing 

signals delivered to subjects when they suffered from momentary cognitive 

drowsiness. Eleven subjects participated in virtual-reality (VR)-based highway 

driving experiments. The event-related lane-departure task was used in the VR 

environment to simulate the long-term high way driving and the task-related 

EEG spectral dynamics in terms of tonic and phasic changes were analyzed 

using independent component analysis, time-frequency and non-parametric 

statistical assessments. Results demonstrated the warning sounds can 

accelerate the response time and partially inhibit the drowsiness related brain 
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oscillations. Furthermore, the effects of warning sounds on reducing the 

driver’s drossiness could sustain at least for 10 sec. In the future, methods to 

refine the characteristics the warning sounds and the combination with other 

warning modalities are needed for further studies. 

 

Keyword:  
Drowsiness, auditory warning, electroencephalograph (EEG), alpha band, 
theta band, time frequency analysis, independent component analysis (ICA) 
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1. Introduction 

1.1. The importance of drowsiness detection 

Studies reported that fatigue, which, in turn, caused drivers inattention or 

drowsiness, was the major risk factor for serious injury and death in car 

accidents [1-4] National Sleep Foundation (NSF) reported that 60% of drivers 

had felt drowsy during driving, and 37% of the drivers had actually fallen 

asleep. The National Highway Traffic Safety Administration (NHTSA) also 

reported that at least 100,000 police-reported crashes were directly caused by 

drowsy driving in 2006 and leaded to 1,500 deaths, 71,000 injuries and $12.5 

billion in monetary losses (National Sleep Foundation 2007 State of the States 

Report on Drowsy Driving). Therefore, to early detect the drivers’ drowsiness 

and to help to keep the drivers’ alertness for avoiding the car accidents that 

caused by drowsiness are important to protect living safeties of people. 

Drowsiness detection changes of the subject’s alertness have been widely 

investigated by different measurements [5, 6] including the monitoring 

subject’s behavior and image based techniques and physiological 

signal-based system. The advantage and limitation of these methods were 

described in the following paragraphs.  

1.2. The behavioral monitoring 

Previous studies had shown that subject’s response performance is 

deteriorated along with the drowsiness. The response performances were 

defined in terms of response time [7, 8], driving trajectories [9, 10] and patterns 
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of drivers’ moving handle wheel [11, 12]. The limitation of behavioral monitory 

system is highly depended on driving behavior, experiences, road conditions, 

and all other environmental variables. Therefore, it is difficult to be generalized 

for regular use. However, it can be used as an auxiliary method in the 

image-based techniques or physiological signal based system to define or 

verify the subject’s alertness according to the car deviation from the cruising 

lane and the response time (RT) to specific driving conditions. Such methods 

have difficulties to apply in the real driving since it is easily affect by the 

sounded environment and it is still unclear to what extend the behavioral 

responses can fully reflect the real cognitive status. But, previous have showed 

that behavioral performance is opposite correlated with the driver’s alertness. 

Specifically, the subject’s response performances, which index by response 

time, are decreased along with the increases of drivers’ drowsiness [13, 14]. 

1.3. The image-based technique  

The image-based technique uses the video camera to record the eye 

gaze position, eye closure or the head position [15] to derive the duration of 

eye gaze fixation and the eye closure or frequency of eye movement, eye 

blinking [16-18] or head movement [19] for correlating the subject’s drowsiness 

level. The advantage of the image based detecting system is nearly no need 

for preparation before the experiment, which is contrast to the long preparation 

time in the EEG based monitoring system. However, the quality of recorded 

image is easily influenced by the environment [20], with which is necessary for 

the camera needed to interact. Furthermore, it is difficult to get enough space 

to mount two cameras inside the cabin and without blocking the driver’s 
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viewing angle and therefore reducing the driver’s visual field [21]. Second, the 

response time for detecting driver’s drowsiness was too long to feedback to 

the driver in real time [22]. 

1.4. The physiological signal based system 

Abundance of studies used the physiological signals, including the 

electrocardiograph (ECG), electro-oculograph (EOG), or 

electroencephalograph (EEG), to monitor the subject’s alertness.  The heart 

rate or heart rate variability [23] which derived from the ECG signals has been 

known easily affected by the subject’s psychological and physiological 

conditions and therefore the ECG signals is not a good index for monitoring the 

driver’s alertness. Some laboratories tried to use the EOG signals to index the 

driver’s alertness. For example, they found that the rate of eye blinking [24] 

was declined along with the decreases of subject’s alertness. However, the 

time window for analyzing the EOG signals to assess the driver’s drowsiness 

was around 240 sec, which is too long to use in the drowsiness warning 

system in the real driving. Hence, the EEG signals se the limitation of long 

average windows to detect drowsiness. Therefore, EEG remains the most 

popular modality and the better methods used to monitor drowsiness state in 

real-time. 

1.5. Drowsiness related EEG features 

Studies had shown that the brain activities are changed with the subject’s 

drowsiness level, especially the neural activities generated from the occipital 

lobe. In addition, the power of occipital alpha (8-12 Hz, [25-29]) and theta band 
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(4-7 Hz, [27-30]) were incremented along with the decreases of subject’s 

performances.  The similar brain dynamic changes are also observed in the 

simulated driving condition. Lin et al. [31] reported that the power of occipital 

alpha band was linearly increased from alertness to mild drowsy and then the 

alpha power was maintain at the same level or slightly decreased from mild 

drowsiness. In addition, the occipital theta power was also found increased 

monotonically from alert to deep drowsy. The above results suggested that 

occipital alpha and theta bands would be as good EEG features for indexing 

the subject’s drowsiness.  

1.6. Effects of warning signals under drowsy 

condition 

Many studies had tried to use the warning signals to keep driver’s 

attention [32-34]. They delivered the warning stimulations mainly via the 

acoustic [35], visual [36] or vibrated stimuli [37, 38]. Furthermore, some studies 

also tried to simultaneously present the warning signals via the multiple 

modalities [39]. Belz et al. compared the above warning modalities in terms of 

the  reaction time (RT) to each warning modality [40]. Results showed that 

subject responded to the visual alarms with the longest RT since the driver 

needed to pay attention to the road condition and the dashboard. Therefore, 

the visual alarms are adequate as the warning stimulus. The multiple-warning 

modality significantly improved the driver’s performances by accelerating the 

RT. The acoustic stimuli also greatly improve the driver’s RT while the 

characteristics of the warning signal would significantly affect the results of the 

warning.  
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The warning sounds could be classified into two types, the conventional 

warning signals and the auditory icon [41, 42]. The conventional sounds were 

generated with specific acoustic parameters, such as pure tones, bells, 

buzzers and sirens. The auditory icons were sounds with specific stereotypical 

meanings defined by the objects or actions. For example, the horn or tire-skid, 

imply the emergency braking or car accident. Graham assessed these two 

types of sounds by measuring the driver’s RT [41]. Though results revealed 

that auditory icons significantly reduced the RT compared to the responses to 

conventional warnings, the auditory icons are also known to cause the driver to 

respond alarms improperly and increasing the risk of car accidents. Therefore, 

the auditory icons would not be safe to widely apply on real driving. Our 

previous studies evaluated effects of the spectrum and delivering patterns of 

conventional sounds on keeping the driver’s attention [43]. We delivered two 

types of sound patterns (continuous tone and tone bursts) and each pattern 

was tested by three different carrier frequencies (500, 1750, and 3000 Hz). 

Results showed that tone bursts with the carrier frequencies at 1750 Hz 

significantly improved the driver’s performances and without side effects on 

driver’s driving behavior. 

1.7. Aims of this study 

Effects of alarms on maintaining driver’s attention and alertness were 

assessed in terms of the behavioral responses. To what extent the behavioral 

performance can reflect on the subject’s cognitive status and neural activities 

remains unclear. Some studies have observed that the behavioral 

performance might not be sufficient to fully mirror the real cognitive state 
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though lots of results showed that the behavioral performance was highly 

correlated with the brain dynamic [44, 45].  

The first aim of this study was to determine the effects of the auditory 

alarm on the brain dynamics, which explored by the EEG. The second aim of 

this study was tried to elucidate whether the brain activities could fully mirror 

the behavioral indexes.  

2. Methods 

2.1. Subjects 

Eleven subjects (ages from 18-29 years, 10 males and 1 female) were 

paid to participate in this experiment. They didn’t have psychological and 

neurological diseases. They had normal or corrected-to-normal vision and 

normal hearing. All subjects had no sleep disorders and they were required to 

go to sleep before the 1:00 AM at the night before the experiment. The subject 

had a lunch before the experiment and the experiment started around 2:30 PM 

since previous studies suggested that the drowsiness easily occurs from late 

night to early morning and during the early afternoon, especially after the lunch. 

All the experimental procedures was explained to the subjects in details and 

required by the instructions (Appendix I). Subjects were required to sign the 

research consent before the experiment. After the placement of electrodes, 

subjects were asked to practice to keep the car on the center of the cruising 

lane by maneuvering the car with the steering wheel at least for 5 min until they 

had expected performance. After the end of the experiment, every subject was 
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required to fill a questionnaire (Appendix II). Each subject had to complete the 

experiment for at least 60 min. 

2.2. Experimental apparatus 

2.2.1. Virtual reality driving simulation environment 

The driving simulated environment was composed of the virtual reality 

(VR) scenes and the driving simulator. A real car without engine and other 

non-necessary parts was mounted on a 6-degree of freedom motion platform 

(Figure 1A). All the VR based driving simulated environment was built up in our 

previous studies [46, 47]. The VR-based high way scenes were generated 

from seven personal computers which synchronized by the internet connection 

and then were projected to seven screens via seven projectors (Figure 1B).  

 

 
Figure 1. The virtual reality environment. A: A real car without the engine and 
other unnecessary parts were mounted on the motion platform. B: The 
schematic picture shows the 360°-surrounded virtual reality scenes which 
projected from seven projectors. C: The picture shows the four-lane highway 
scene which used in the event-related lane-departure task. 
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2.3. Experimental paradigm 

2.3.1. The event-related lane-departure task  

The event-related lane-departure task [48] was designed to index the 

driver’s drowsiness level. The event-related lane-departure task was a 4-lane 

high way scene (Figure 1C). The digitized VR scene was divided into 233 

points and the width of the individual lane and car were 60 and 32 points 

respectively. The refresh rate of the VR scene was 60 Hz, which can properly 

emulate a car driving at a fixed speed of 100 km/hr on the highway. All scenes 

were updated according to the displacement of the car and the subject’s wheel 

handling. The car was randomly drifted away from the center of the cruising 

lane, which was controlled and triggered from the WTK program, to mimic the 

consequences of a non-ideal road surface [49-51]. The inter-deviation intervals 

were varied from 8 to 12 sec and the car was deviated either left or right with 

the equal chance. This task required subjects to compensate the drifting by 

manipulating the steering to keep the car on the center of third cruising lane 

(from left to right counted). During the experiment, subjects were instructed to 

continuously perform the task as best as they could even if they began to feel 

drowsy. No intervention was made when the subjects was occasionally fell 

asleep and stopped responding. After such non-responsive periods subjects 

resumed task performance without experimenter intervention. The onset of 

each deviation and the subject’s response time were recorded at the rate of 60 

times per second via a synchronous pulse marker train that was recorded in 

parallel by the EEG acquisition system for the further off-line analysis. Figure 2 

illustrates the experimental paradigm and the temporal profile of a typical 

deviation event in the event-related lane-departure task. Though the task is a 
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60- to 90-min continuous experiment, it contained the single trials in this task. 

Each complete single trial started from the 3 second before the car drifting to 

the subject’s response offset. The baseline period of individual trials was the 

duration of 3 sec before the deviation onset, and the response time (RT) was 

calculated the period from the deviation onset to the subject responded to the 

deviates by manipulating the wheel handling. 

 

Figure 2. A bird’s eye view of the event-related lane-departure event. The car 
cruises with a fixed velocity of 100 km/hr on the VR-based highway scene and 
every 8-12 sec the car is randomly drifted either to the left or to the right from 
the cruising position to mimic the non-ideal road surface. Subjects are 
instructed to steer the vehicle back to the center of the cruising lane as quickly 
as possible. The solid black arrows mean the virtual car trajectory. The open 
circle is the deviation onset. The double circle is the response onset. The circle 
with cross is the response offset. The baseline is the duration from 3 sec 
before to the onset of car drifting. The response time (RT) is the time duration 
between the deviation onset and response onset. A completed trial is from 3 
sec before the deviation onset to the response offset. 
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2.3.2. Warning criterion 

We used the 1 tone bursts with frequencies and intensities at 1,750 Hz 

and 68.5 (±1.5 dB) as the warning stimuli since our behavior studies had 

shown that the stimuli can effectively keep the driver’s alertness [43]. The 

background high way noise was 54 ±1.5 dB. The speaker was mounted on the 

back seat which is 90 cm apart from the subject. The first 5 min after the onset 

of the experiment, every subject was keep alert and the average RT was 

recorded and calculated as the criteria for delivering the warning signals. 

When the subject got drowsy and their RTs were longer than 3 times of the 

mean alert RT [31], the waning sound was delivered to the subjects randomly. 

Specifically, only half of drowsy trials, which the RTs were longer than 3 times 

of averaged RT under alert condition, were alarmed by the tone bursts (Figure 

3). The response time and the EEG traces of those trials with warning (w/) and 

without warning (w/o) were extracted and compared for the offline analysis.  

 

Figure 3. The schematic picture showed the criteria of delivering warning 
stimuli. The length of the arrows represents the response time of each single 
trial. Black solid arrows are those trials in the alert session. The threshold 
(dashed line) is set at the three times of mean alertness RT. Blue solid arrows 
are those trials with RTs longer than the threshold but without warning (w/o 
trials). Red solid arrows those trials with RTs longer than the threshold with 
warning (w/ trials). 
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2.4. Data acquisition 

2.4.1. Behavior data 

The sensor on the steer wheel was a variable resister and the output 

range was ±10 V depending on the rotation angle. The analog voltage signals 

were digitized by the analog to digital convert with the 12 bit vertical resolution 

and then stored into the personal computer for the offline analysis.  The onset 

of car drifting and the subject’s responses, including the response onset and 

offset, were recorded at the rate of 60 times per second and saved as log file 

and recorded in parallel by the EEG acquisition system via a synchronous 

pulse marker train. Since the sampling rate of the EEG system was 500 Hz, 

the EEG system was easily to over sampled the same point, the log file was 

used as the look-up table for deleting the oversample data points. Figure 4 is 

the flowchart of the relationship among the VR scene EEG data acquisition 

system and behavioral data acquisition system.  
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Figure 4. Data acquisition flow chart. The flowchart illustrates the relationship 
among the VR scene EEG data acquisition system and behavioral data 
acquisition system.  
 

2.4.2. EEG data 

2.4.2.1. Channel location measurement 

A sintered Ag/AgCl electrode cap with 30 channels (plus 2 references) 

was mounted on the subject’s head for recording the brain activities from the 

skull. All channels were displaced according to the modified International 10 - 

20 system (Figure 5A and 5B). The actual location of each channel were 

redigitized by the 3D digitizer (Fastrak®, Polhemus, Figure 6) for rebuild 

individual subject’s head model by the mathematical algorithms [52] for 

localizing the sources of brain activities. 
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Figure 5. EEG recording apparatus. A: The schematic picture shows the 
channel locations of 30-channel recording system. B: A photomicrograph 
shows the real electrode cap placed on a head model. C: A photomicrograph 
shows the EEG amplifier used in the experiment. Our caps had 30 channels. 
Note the channel locations of each subject depended on the 3D measurement 
results. 
 

2.4.2.2. Amplify the EEG signals 

To minimize the contact impedance of each electrode is necessary for 

reducing the external noise coupling and increasing signal to noise ratio during 

the EEG recording.  For minimizing the contact impedance, the conductive 

gel (Quik-GelTM, Compumedics NeuroMedical SuppliesTM) was carefully filled 

into each channel. Before data collection, the contact impedance of the EEG 

electrodes was less than 10 kΩ. The EEG activities were recorded and 

amplified by the Neural Scan Express System (NuAmps, Compumedics Ltd., 

VIC, Australia, Figure 5C). The input range of the EEG amplify is ±130 mV and 

the sampling rate and the vertical resolution are 500 Hz and 16-bit 

respectively.  
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Figure 6. 3D digitizer system. The 3D digitizer (Fastrak®, Polhemus) was 
used to measure 3D positions. A: The System Electronics Unit (SEU) can 
supply power and connect to other parts and computer. B: the transmitter is 
the device which produced the electro-magnetic field and is the reference for 
the position and orientation measurements of the receivers. C: The receivers 
are the smaller device whose position and orientation was measured relative 
to the transmitter. D: The stylus is a pen shaped device with a receiver coil 
assembly built inside and a push button switch mounted on the handle to 
effect data output. 
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Figure 7. Channel location recording by 3D digitizer system. A photograph 
shows the 3D digitizer system for digitizing and recording the real locations of 
each channel in individual subject. The processing is described as following. 
While we measured the 3D position of the channels, we mounted the 
transmitter behind the subject and put the 3 receivers under the Oz, T3, and 
T4 channel inside the electrode cap. The transmitter should far from the 
metallic surface and located in close proximity to the receivers. Beside, we 
routed the transmitter cable separate from the receiver cables in order to avoid 
possible noise problems. After these setups, we used the stylus to point out 
each channels and recorded the 3D channel locations. 
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2.5. Data analysis 

2.5.1. Behavior data processing 

2.5.1.1.  Removing incomplete trials 

A total of 4073 trials were recorded from 11 subjects and 521 incomplete 

trials were removed before the further analysis. The criteria marked as the 

incomplete trials were determined by the following rules. First, events recorded 

were incomplete. For example, each trial was recorded the occurrences of 

three events (deviation onset, response onset and response offset), and those 

missed one of the three event were first removed from the total trials. Second, 

those trails show the subjects didn’t follow the experimental instruction in terms 

of the trajectories were removed. Specifically, once the subjects didn’t follow 

the experimental instructions, the position of the deviation onset was located 

outside the third lane or the sawing line instead of the straight line was showed 

in the baseline line trajectories. Third, those trials with the RT less than 0.4 sec 

or longer than 9 sec were removed. The RTs shorter than 0.4 sec were due to 

subjects adjust the steering wheel but not responses to the car drifting. The 

RTs longer than 9 sec were due to the subjects were fall asleep and these 

trials were not defined as the drowsy trials.   

2.5.1.2. RT normalization 

Since the data were pooled across 11 subjects for the limited recording 

time from each single subject, we first needed to normalize the response time 

for reducing the inter-subject variation. The RTs of each subject were divided 
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by their individual mean RT. The mean RTs were varied from 0.52 to 0.9 sec 

across 11 subjects (Table 1).  

 

Table 1. The mean and standard deviation (S.D.) of alertness RT. 

Subject Mean (sec) S.D. (sec) 

S10_070731 0.79 0.300 
S02_070808 0.57 0.075 
S12_070820 0.90 0.281 
S10_071128 0.66 0.096 
S18_071130 0.62 0.119 
S20_071205 0.76 0.138 
S21_071227 0.72 0.153 
S23_080125 0.52 0.087 
S32_080717 0.57 0.099 
S33_080723 0.68 0.128 
S37_080807 0.69 0.081 

 

2.5.2. EEG data analyses 

2.5.2.1. Preprocessing and extracting epoch 

The raw EEG signals were first filtered by a low pass and a high pass 

filtering with the frequencies at 50 Hz and 0.5 HZ respectively to remove the 

60Hz line noise, high-frequency artifacts and the low frequency drifting. The 

filtered signals were down-sampled into the 250 Hz sampling rate for the 

simplicity of data processing. EEG epochs were extracted from the continuous 

EEG signals and the duration of each epoch was 45 sec, 15 sec preceding and 

30 sec following the deviation onset of each trial. A total of 4058 epochs were 

extracted and the number of epoch was varied from 273 to 432 across 11 

subjects (Table 2). 
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2.5.2.2. Artifacts rejection 

The extracted epochs were further examined and manually removed 

those epochs contaminated with muscle activities, body movements and bad 

contact channels. Figure 8 shows the example of the rejected epochs from a 

typical subject (S02). The EMG artifacts embedded in the epoch during the 

periods from 18 to 21sec and 23 to 24 sec was first selected and marked by 

yellow background and then was removed from the EEG signals. The FCz 

channel showed in the Figure 8 was identified as the bad contacted channel 

and was removed from the EEG signals.  

A total of 3253 epochs were submitted to the further analysis after the 

artifact rejection and the number of epoch was varied from 11 subjects. (Table 

2)  

 

Table 2. The epoch and channel number of each subject. 

 Epoch number Channel number 
Subject Raw Remaining % Raw Remaining Removed 

S10_070731 377 321 85.1 30 29 F8 
S02_070808 391 303 77.5 30 30  
S12_070820 377 342 90.7 30 29 F4 
S10_071128 432 304 70.4 30 30  
S18_071130 273 141 51.6 30 30  
S20_071205 383 264 68.9 30 30  
S21_071227 411 335 81.5 30 29 F8 
S23_080125 426 394 92.5 30 29 FT7 
S32_080717 280 192 68.6 30 27 FT8, T4, FT7
S33_080723 351 311 88.6 30 29 FT7 
S37_080807 357 346 96.9 30 27 T3, T4, P7 
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Figure 8. The picture shows the artifacts contaminated epoch and channel 
from the subject S02. Two epochs are shown in the figure, and the two epochs 
were separated by a blue dash line. The red (event number 251), green (event 
number 253), and pink (event number 254) lines represent the deviation onset, 
response onset and response offset respectively. Note the artifacts are 
embedded in the first epoch with the periods at 18-21 and 23-24 sec. The 
epoch with artifacts is indentified and marked as yellow background and is 
removed from the extracted epochs. The channel (FCz) contaminated with 
noise is also indentified and rejected manually from the extracted epochs. 
 

2.5.2.3. Independent component analysis (ICA) 

Because of the volume conduction of the skull and scalp tissue [52], the 

signal recorded from individual electrode is easily mixed with signals 

generated from other brain regions or which are not located at the position 

around the electrode or other sources outside of our brain, such as the eye 

blinking and the eye movement (Figure 9). For indentifying the more corrected 

brain sources from the mixing EEG signals and removing the unrelated signals 

to obtain the pure neural activities we applied the ICA algorithm (the runica 

function of the EEGLAB toolbox) on the EEG signals to separate these mixing 

signals of each subject. 
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The independent component analysis has extensively applied on blind 

source separation problem [53-55]. The ICA theorem had four basic 

assumptions. First, the source signals (neuron activities, noises, or artifacts) 

were independent to each other and the correlation between each two sources 

was zero or close to zero. Second, the propagation delay from sources to 

sensors was negligible. Third, the sources were analog and the possibility 

density function (p.d.f.) was not the gradient of a linguistic sigmoid. Fourth, the 

number of sources was the same as the number of sensors (channel signals) 

[56].  

 

 
Figure 9. The schematic picture shows the relationship between the channel 
and component activities. The channel signals (channel A, B) ideally were a 
linear combination of many independent sources (component 1, 2) produced 
by the weight matrix W. By the ICA analysis, we could get the values of matrix 
W and separate the each component signals from the mixing channel data. 
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Due to the characteristic of the independent neuron activities in human 

brain, the EEG model could satisfied the 1’st, 2’nd, and 3’rd assumption. 

Although no one knows how many sources can the brain be activated and 

classified, based on the reports of past studies [57, 58], the ICA algorithm is 

still a good solution to solve the EEG source separation, identification, and 

localization. The ICA mathematical description was as follows.  
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S represents the real neuron activities (or artifacts) that generate from 

total m (we did not know and too many) sources. The X is the n (channel 

number) channel signals that we recorded. The matrix A is the real weight that 

is used to transform the source signals into the channel activities. The matrix 

W and the U, which represented the n (component number) main components 

can be obtained by the ICA analysis. Once the channel number n is close to 

the real number of sources, m, the components U obtained by ICA algorithm, 

will be very close to the real source activities, S. EEG signals were separately 

into 27-30 component from each single subject.  
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2.5.2.4. Component selection 

The scalp map, the dipole location and the power spectrum of each 

component from individual subject were generated by using the function 

topoplot and pop_dipfit_gridsearch of EEGLAB toolbox. The scalp maps of 

each component represented the relative weight to compose from the 

channels (Figure 10). The scalp maps were also revealed the spreading of the 

component topography.  

The separated components from each subject were further selected 

according to the scalp map, dipole location of each component and the 

characteristics of the power spectrum and only those scalp maps represented 

the sources generated from the occipital, somatomotor, central and frontal 

areas were submitted for the further analysis. Figure 10 shows the example of 

the 30 isolated component scalp map from the single subject (S02). Only the 

component 3, 4, 5, 7, 8, and 10 were selected for the further analyzed.   
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Figure 10: The scalp maps of 30 ICs derived from the event-related 
lane-departure response epochs from a single subject (S02). The noise 
components including the IC 1, 2, 6, 9, and 11-30 were excluded and the 
activities of IC 3-5, 7, 8 and10 were selected (circled) for further analyses.  
 

2.5.2.5. component clustering 

The selected components across 11 subjects were further classified 

manually into five clusters based the scalp maps, dipole locations and the 

baseline power spectra. EEG signals of the five main component clusters 

represented activities recorded from the central, left somatomotor, right 

somatomotor, parietal, and occipital areas (Figure 11). Activities of the central 

left-somatomotor, right-somatomotor, parietal and occipital components which 

are known to highly correlate with the drowsiness or motor responses were 

selected for the following studies. 
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Figure 11. Pictures shows the IC clusters of central, parietal, occipital, left and 
right somatomotor components. The left panel shows the individual scalp 
maps of included in the corresponded component clusters. The subject index 
and component number was marked on the top of each scalp map, and the 
larger scalp maps are the mean of the scalp map averaged from the 
individual ICs. The right panels were the dipole locations of each single 
component across 11 subjects. 
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2.5.2.6.  Component activities back projected to channel activities 

According to the ICA algorithm, the signal excursion of each component 

only represented the relative amplitude of the brain activities generated from 

the specific brain area. In order to transform the amplitude of component 

activities into the real scale, activities of the central, left-somatomotor, 

right-somatomotor, parietal, and occipital components were need to back 

projected to Cz, Cp3, Cp4, Pz, and Oz respectively.  

2.5.2.7. EEG signal normalization 

Since the amplitude of EEG signals was varied across different sessions 

and subjects and such differences would lead to the differences observed in 

the EEG power spectra, the back projected channel activities were normalized 

by dividing the EEG signals to the standard deviation (SD) of the signal 

distribution before advanced analysis.  

Figure 12 showed the baseline power spectrum of projected channel 

activities in occipital area cross 11 subjects before (A) and after (B) EEG data 

normalization. The results showed that baseline power spectrum after 

normalization had smaller power differences than before normalization.  
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Figure 12. The baseline power spectra of projected channel activities in 
occipital area before (A) and after (B) the EEG data normalization. 
 

2.5.3. Data grouping 

The normalized behavior and EEG data of each single subject were 

selected and grouped together according to the following procedures. 

First, trials recorded in the alert session were selected and classified as 

the alert trials. Trials with normalized RT more than 3 times of mean RT under 

alertness were selected and classified as drowsiness trials. 

Second, drowsiness trials with or without warnings, including the current, 

next and 2’nd next trials, were selected and separately grouped together for 

the next step processing. The details of the data selection were included in the 

Appendix III. 
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2.6. Time-frequency analysis 

Previous studies suggested that drowsy dependant EEG dynamics can be 

observed from two different aspects, the tonic and phasic changes [59, 60] and 

both aspects were processed by frequency analysis. Specifically, tonic 

changes referred to changes of baseline power spectra associated with 

changes in cognitive state (e.g., arousal or drowsiness) while phasic changes 

referred to those power changes triggered by specific events, such as the 

behavioral responses or warning stimuli. In this study, we first used the 

time-frequency analysis [61] to transform the grouped data trials into 

time–frequency data matrices and derived the baseline spectra and the 

event-related power perturbation to reveal effects of warning on tonic and 

phasic changes. The flow chart of time-frequency analysis shows in Figure 13. 
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Figure 13. Schematic overview of baseline power spectral analysis. The 
moving-window discrete wavelet transforms (DWTs) was used to transform 
the time domain EEG activities into spectrotemporal activations. The baseline 
spectrum and the event-related power perturbation were derived from the 
time-frequency data matrices. 
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2.6.1. Baseline power spectral analysis 

The normalized EEG activities were transformed into a (400 latencies by 

193 frequencies) time-frequency data matrix using a moving-window average 

of discrete wavelet transforms (DWTs, timef function from EEGLAB, [60]). 

DWTs were computed for 1.5-sec moving windows centered at 400 evenly 

spaced latencies from 15 sec before to 30 sec after the deviation onset using a 

data-window length of 375 points (1.5 sec), zero-padded to 3000 points. Log 

power spectra were estimated at 193 evenly-spaced frequencies from 2 Hz to 

50 Hz, and the log mean power spectral baseline was the averaged power 

change during the pre-deviation period (-3-0 sec).  

2.6.2. Event-related spectrum perturbation (ERSP) 

For assessing the sustainable effects of warning sounds, we extracted the 

long epochs (-15-130 sec) to estimate the changes of ERSPs. The activities of 

long epochs were transformed into a (725 latencies by 263 frequencies) 

time-frequency data matrix using a moving-window average of discrete 

wavelet transforms (DWTs, timef function from EEGLAB, [60]). DWTs were 

computed for 4.0-sec moving windows centered at 725 evenly spaced 

latencies from 15 sec before to 130 sec after the deviation onset using a 

data-window length of 725 points (4.0 sec), zero-padded to 2900 points. Log 

power spectra were estimated at 263 evenly-spaced frequencies from 0.75 Hz 

to 49.875 Hz. The temporal profile of the alpha (8-12 Hz) and theta (4-7 Hz) 

band power changes were extracted and averaged from the time-frequency 

data matrix for the advanced comparison. 
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2.6.3. Statistics 

The Kolmogorov-Smirnov test (kstest, Matlab statistical toolbox, 

Mathworks) was used to assess whether the behavior RTs and EEG power 

were normally distributed (with zero mean and unit variance). Since tested 

results showed the behavior RT and EEG power were not normally distributed, 

three non-parametric statistic tests were used for the following statistical 

analysis. The Kruskal-Wallis one-way analysis (kruskalwallis, Matlab statistical 

toolbox, Mathworks) were used to assess the differences of inter-subjects’ 

normalized RTs across 11 subjects. The Wilcoxon rank sum test (ranksum, 

Matlab statistical toolbox, Mathworks) was used to evaluate the warning effect 

on RTs. Third, the permutation-based statistics [62-64], or called bootstrapping 

(statcond, EEGLAB toolbox, UCSD) was used to test the significance of the 

power changes of specific frequency bins induced by drowsiness or warning 

sounds. We boosted the sample size from about 200 trial number to 5000 by 

the bootstrapping methods.  

3. Results 

3.1. Behavioral performance 

Figure 14 showed the alertness RT distribution of 11 subjects before and 

after behavior data normalization. Results showed that alertness RTs before 

normalization had significant differences across 11 subjects by the 

Kruskal-Wallis test (p<0.001) and such inter-subject difference was not 

significant after normalization (p=0.53). 
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Figure 14. The box-plot of alertness RT for 11 subjects before (A) and after (B) 
RT normalization. The red lines represent the medians of the alertness RT 
distribution of each subject. The top and bottom of the blue box are the third 
and first quartile. The dash lines represent the region of RT between the 
maximum and minimum after outlier removal. The red crosses mark the 
outliers. Note the alertness RT distribution has significant difference (p<0.001) 
across 11 subjects before normalization and such difference was not 
significant after normalization (p=0.53). 
 

3.1.1. Effects of warning sounds 

A total of 1232 trails were included and presented in these results. Three 

conditions were included in these trials (alertness, drowsiness with warning 

and drowsiness without warnings) and all individual conditions contained the 

current, next and second next trials. Table 3 shows the number of trials, 

medians and quartiles of normalized RTs across these three conditions under 

different groups of trials. 

Figure 15 shows the cumulated normalized RT of current, next and 2’nd 

next across the alertness, drowsiness with warning and without warnings. 
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Figure 15A shows the cumulated distribution of the RTs of current, next and 

2’nd next trials under alertness and drowsiness with and without warning. The 

RT distributions were different among the alert, drowsy with and without 

warning trials. RTs of all alertness trials were shorter than 3 normalized unit (nu) 

while RTs of all drowsy trials were longer than 3 nu. The warning sound 

significantly accelerated the RT. The cumulated curves of 50% trials with 

warning and without warning are statistically different (p <0.001, two sample 

KS test; Figure 15A left panel). The effect of warning on alerting the RT 

distribution was sustained to the next trials (p <0.01, Figure 15B). However, the 

effect of warning sound on RT was not significant in the 2’nd next trials (p 

=0.16, Figure 15C).  

Table 3. The summary of RTs for current, next and 2’nd next trials under 
alert, drowsy with and without waning conditions. 

 Medium QD1 QD3 Trial number

alertness 0.96 0.86 1.09 216 
Current     
w/o warning 5.19 4.02 6.76 196 
w/ warning 4.16 3.79 4.35 182 

Next     
w/o warning 1.57 1.09 3.66 196 
w/ warning 1.20 1.02 1.79 182 

2’nd next     
w/o warning 1.30 1.05 2.31 132 
w/ warning 1.20 1.07 1.73 128 
 Normalized unit (nu) Number
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Figure 15. A: Cumulative RT curves of the current, next, and 2’nd next trials 
under alert, drowsiness with and without warning conditions. The black, red 
and blue curves represent the RTs of alert, drowsy with and without warning 
trials, respectively. The black dash line at left panel marks the onset time of 
warning. B: The box-plots of the same data as in A. The horizontal lines inside 
the boxes represent the median. The top and bottom lines of the boxes are the 
third and first quartiles. The dash line marks the maximum and minimum after 
removing the outliers. Results showed that the RTs were significantly fast 
under the alertness condition in comparison with the drowsiness. Note: the 
drowsiness and warning sound can alter the distribution of RTs (drowsiness vs 
alertness: p<0.001; w/ vs w/o: p<0.001) and the effect of warning can sustain 
to the next trials (*: p<0.05, **:  p<0.01, ***: p<0.001).  
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3.1.2. Effects of warning on brain activities 

3.1.2.1. Occipital region 

Since the occipital neural activity is known to highly correlate with 

drowsiness, we first assessed the effects of warning on altering occipital 

dynamics. Figure 16 shows the EEG baseline spectra of alertness (black 

curve), with (red curve) and without warning (blue curve) trials. Comparing with 

the alertness, the averaged baseline power spectra of the drowsy trials were 

significant higher at frequencies from 2 to27 Hz (p<0.01 Figure 16, left panel). 

From alert to drowsy, the alpha band power was elevated around 11 dB and 

the theta band power was increased around 5 dB (Table 4). No apparent 

differences of alpha- and theta-band power were found between trials with and 

without warning (Figure 17, alpha: p=0.46, theta: p=1.00). 

The effect of warning on altering the occipital activities was revealed on 

the mean of baseline power spectra of next trails. Comparing with trails without 

warning, the amplitude of the averaged baseline power spectrum of warning 

trials was significant lower at frequencies from 2 to 9 Hz (Figure 16, middle 

panel). The theta- and alpha- brand power were significantly suppressed by 

the warning sounds (Table 4, alpha: 1.60 dB, p=0.01; theta: 1.74 db, p<0.001, 

by permutation-based statistics). Comparing with the alert trials, the grand 

mean power spectral baseline exhibited significant tonic power increases from 

2 to 20 Hz in the trials with and without warning. The effects of warning did not 

extend to the 2’nd next trails. Though the tonic baseline power showed 

increases between alpha and theta bands in warning relative to without 
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warning trials (Figure 16, right panel), such differences were not statistically 

significant (alpha: p=0.07, theta: p=0.13, Figure 16). 

 

 
Figure 16. The grand mean of baseline power spectra of the occipital area in 
current, next and 2’nd next trials across the alert (black), drowsy with (red) 
and without (blue) warning conditions. The green horizontal lines represent 
frequencies exhibiting significant (p<0.01) tonic spectral power increases 
(w/o warning minus w/ warning). The blue horizontal lines mark frequencies 
exhibiting significant (p<0.01) tonic spectral power increases (w/o warning 
minus alertness). The red horizontal lines show frequencies exhibiting 
significant (p<0.01) tonic spectral power increases (w/ warning minus 
alertness). The inset shows the averaged scalp map of occipital region 
across 11 subjects. 
 

Table 4. The alpha and theta power of curent, next and 2’nd net trails 
under alert, drowsy with and without waning conditions. 

 Current Next 2’nd next 

w/o warning 35.06 33.89 33.10 
w/ warning 35.35 32.29 31.83 

A
lp

ha
 

alertness 24.26   

w/o warning 28.21 27.33 27.15 
w/ warning 28.19 25.59 26.22 

Th
et

a 

Alertness 23.22   

    Power (dB) 
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Figure 17. The box-plots of the alpha (A) and theta power (B) of current, next 
and 2’nd next trails across alert, with and without warning conditions. Panels 
as Figure 15B (*: p<0.05, **:  p<0.01, ***: p<0.001). 
 

3.1.2.2. Other brain areas 

Figure 18 shows the averaged baseline power spectra of other brain area 

including the central, left and right somatomotor as well as parietal areas. 

Similar to the occipital area, the grand mean of power spectral baselines 

showed significant (p<0.01) tonic increases between 3-12 and 20-25 Hz in 

drowsy relative to alert trials for four brain areas (Figure 18). The tonic 

increases of baseline power spectra were not significant in warning relative to 

without warning trails for the central, left and right somatomotor and parietal 

areas.  
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Figure 18. The grand mean of baseline power spectra of the central (A), left 
(B) and right (C) somatomotor and the parietal (D) areas in current, next and 
2’nd next trials across the alert (black), drowsy with (red) and without (blue) 
warning conditions. The insets on the right panel shows the averaged scalp 
maps of central, left and right somatomotor and parietal regions across 11 
subjects. Panels as Figure 16A. 
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3.2. The influence of drowsiness level on the outcome 

of warning  

The effect of warning on the RT distribution of next trials was mainly at 

those trials with RT from 1 to 4 nu (Figure 15). To determine to what extent the 

differential effects of warning signals would revealed on the brain dynamics, 

the current and next trials were all divided into three groups according to the 

distribution of next trials’ RTs (Figure 19, inset) and they were long (RT: 4-10 

nu, A), medium (RT: 1-4 nu, B) and short RT (RT: 0-1 nu, C) groups. The 

averaged baseline power spectra of these three groups were calculated and 

compared as shows in the Figure 19. 

The distribution of long and short RT groups were not significant different 

between the warning and without warning trials (long RT: p=0.4 and short: RT: 

p=0.05, Table 5). For the medium RT group, the RTs were significant 

accelerated in warning trials relative to those without warning trials (p<0.001, 

Table 5).  

Figure 19 shows the differential effects of warning on the occipital neural 

activities for the current and next trials in long, medium and short RT groups. 

Both the current and next trials, the increased tonic baseline power was found 

in the drowsy relative to alert trials. Such differences between the alert and 

drowsy trials were not affected by the RTs. For the current trials, no apparent 

suppression on the increases of tonic baseline power spectra in the warning 

relative to those without warning trials and no clear differences were found 

among the three RT groups. In the next trials, the effects of warning on the 

tonic changes of the baseline power spectra were similar to those presented in 
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the Figure 16. For the medium RT groups, the grand average of power spectral 

baselines of next trials showed decreases between 2-9.5 Hz (Figure 19, B) in 

warning relative to without-warning trials, and for the medium RT groups the 

mean difference was significant (p<0.01) between 5-7 and 9.5-10.5 Hz (Figure 

19, C). In the alpha and theta bands (8–12 Hz and 4–7 Hz) of both medium 

and short RT groups, mean tonic baseline power in warning trials was 

significantly (p<0.01) smaller than in without-warning trials (Figure 20, Table 6). 

 

Table 5. Summary of spectral characteristics of three RT groups 

   Medium QD1 QD2 Mean SD 

A 1.22 1.16 1.32 1.25 0.11 
B 0.96 0.90 1.03 0.97 0.08 

 

C 
alertness 

0.79 0.73 0.82 0.77 0.06 

w/o warning 5.35 4.24 7.31 5.85 1.96 A 
w/ warning 4.21 3.90 4.49 4.20 0.52 
w/o warning 5.06 3.93 6.61 5.41 1.80 

B 
w/ warning 4.18 3.74 4.33 4.11 0.55 
w/o warning 5.39 4.01 6.37 5.43 1.73 

C
ur

re
nt

 

C 
w/ warning 4.00 3.62 4.24 4.04 0.53 

w/o warning 5.30 4.25 6.20 5.46 1.40 A 
w/ warning 4.56 4.24 6.07 5.22 1.40 
w/o warning 1.57 1.23 2.59 1.96 0.93 

B 
w/ warning 1.20 1.10 1.42 1.35 0.45 
w/o warning 0.93 0.86 1.00 0.91 0.09 

N
ex

t 

C 
w/ warning 0.88 0.79 0.95 0.87 0.10 

      Normalized unit (nu) 
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Figure 19. The grand mean of baseline power spectra of the occipital area in 
current and next trials across short, medium and long RT groups. The inset 
represents the sorted RT curves of next trial. All the trials are divided into long 
(A), medium (B), and short (C) RT groups. Panels as Figure 16. 
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Table 6. Summary of effects of warning on averaged alpha- and 
theta-band power of current and next trials across three RT 
groups. 

  Current Next 

w/o warning 35.15 35.18 
w/ warning 34.85 35.59 A 

alertness 24.16  
w/o warning 35.20 33.77 
w/ warning 35.67 31.34 B 
alertness 24.22  
w/o warning 34.54 32.55 
w/ warning 34.76 28.94 

A
lp

ha
 

C 
alertness 24.46  

w/o warning 27.75 28.04 
w/ warning 27.83 27.66 A 
alertness 22.97  
w/o warning 28.46 27.49 
w/ warning 28.34 25.13 B 
alertness 23.35  
w/o warning 27.83 25.85 
w/ warning 28.09 24.02 

Th
et

a 

C 
alertness 23.04  

    Power (dB) 
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Figure 20. The box-plots of the alpha (A) and theta power (B) of current and 
next trials under alert, with and without warning conditions across three 
different RT groups. Panels as Figure 16 (*: p<0.05, **: p<0.01, ***: p<0.001). 
 

3.3. Alpha and theta bands perturbation 

Figure 21 shows the power perturbations of alpha and theta band in with- 

(blue line), and without- warning (red line), as well as the alertness (black line). 

Before response onset, alpha- and theta-band power in drowsiness trails 

including the warning and without warning trials were 11.5 (alpha) and 5 dB 

(theta) higher than in the alertness trials. The alpha- and theta-band power of 

all drowsy trials, including the warning and without warning trails, showed brief 

decrease from 38 to 28 dB (alpha) and from 30.5 to 25.5 dB (theta) around the 

response onset. Comparing with the trials without warning, the event related 
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alpha band power was significant decreased in the warning trails mainly at 

5-10 sec after the response onset. The event related theta band power of the 

warning trials was significantly lower at 5-35 sec after the response onset than 

in the trials without warning.  

 

 
Figure 21. The mean response-locked event related alpha- (upper panel) and 
theta-band (lower panel) power perturbations of alert (black traces), drowsy 
with (red traces) and without (blue traces) warning trials in the occipital area. 
The green horizontal lines represent frequencies exhibiting significant 
(p<0.01) phasic spectral power decreases (w/o warning minus w/ warning). 
The inset shows the averaged scalp map of occipital region across 11 
subjects. 
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4. Discussion： 
Aims of this study are to assess the effect of warning on behavioral 

performance and brain dynamics and to determine the sustainable duration of 

warning in terms of behavioral responses and neural activities. Results 

showed that the warning sounds can accelerated the responses to the car 

drifting and suppress the tonic and phasic power increases at the alpha and 

theta bands in the occipital area. Furthermore, the effects of the warning 

sounds on the behavior and brain activities could sustain to 12.6±2.7 and 10 

sec respectively. 

4.1. Effects of drowsiness 

Behavioral results showed that the sorted RT curves of drowsy trials, 

including the warning and without warning trials were all significantly departed 

from the sorted RT curves of alert current. This finding was consistent with 

previous studies suggested that the subjects’ behavioral performance was 

decreased along with changes of cognitive states from alert to drowsy [13]. 

The decremented behavioral performances could be assessed in terms of 

response time or driving trajectory [8, 9]. 

Our results also showed that the neural activities were also altered with 

the cognitive states. Specifically, both the tonic and phasic changes of the 

occipital area showed that the alpha and theta band power were increased in 

the drowsy relative alert trials. This finding was consistent with previous 

reports and our previous studies. For example, the tonic EEG power was 

higher on average in the drowsiness than in the alertness. In addition, the 
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increases of power in the low-theta frequencies near 4 Hz were highly 

correlated with the drowsiness [59, 65]. Huang et al. also reported the baseline 

spectra had tonic broad band power increases at the occipital area during 

periods of relatively poor driving performance and the prominent spectral 

changes were observed in alpha and theta bands [60]. Taken together, our 

results demonstrated that our experimental paradigm could successfully 

induced the drowsiness under driving condition in terms of behavioral 

performances and changes of brain rhythm at the occipital region. In addition, 

the warning sounds randomly delivered to the subjects did not affect the 

drowsiness induction during the experiment. 

Except the occipital region, the power of the EEG spectra for central, left 

and right somatomotor and the parietal regions were increased around 

frequencies at 3-12 Hz (alpha and theta band) and 20-25 Hz (beta band). 

Results showed that the power increases at alpha, beta and theta bands 

associated with the drowsiness could be involved in large brain areas. Such 

phenomenon may due to the drowsy related brain dynamics was probably 

modulated by the independent modulators. The concept of the independent 

modulator hypothesized that the independent modulator could modulate the 

brain oscillations across several distinct cortical areas [66]. Effects of warning 

on altering the brain oscillations did not observed in other brain area. Such 

results suggested that those changes of brain dynamics were not due to the 

neural responses to the sounds. 
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4.2. Effects of warnings 

4.2.1. Behavior performance 

Results showed that warning sounds improved the subject’s behavior 

performance by accelerating their RT. Specifically, the RTs of the current trials 

were significant shorten about 1.03 nu in the warning relative to without 

warning trials. The effects of warning on enhancing the behavioral 

performance also sustained to the next trails. Specifically, the warning could 

accelerate the RT about 0.37 nu faster than the RT of trials without warning. 

Lin et al. [43] showed that the mean RT of sessions with warning was 

significantly faster than that of sessions without warning. The mean RT was 

reduced by approximately 1.15 seconds. Several studies also reported that the 

warning sounds could help drivers to react promptly [67, 68] and reduce the 

probability of collision [68, 69]. 

Comparing with the RTs of alertness, the intervals between the onset of 

warning signals and the subject’s responses were still longer than the RTs of 

alert trials. The results implied that the warning signals could enhanced the 

behavioral performance but the subject’s conscious could be not as clear as 

the alert. The reasons may relate to the characteristics of warnings sound is 

not ideal or the single stimulus may not be enough to awake the subject. Study 

suggested that the characteristic of most powerful sounds to awake the drowsy 

driver is auditory icon, such as the horn or tire skid [40, 41]. In addition, 

auditory neuron has know easily adapt to the pure tone or pure tone burst [70]. 

In the auditory cortices, the majority of neurons are only responses to the 

complex sounds and only few neurons can respond to the pure tone or pure 
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tone burst [71]. Previous studies also suggested that warning signals delivered 

by the single modality may not sufficient to total awake the subjects and they 

suggested that warning signals delivered through the multimodalities, such as 

the combined the warning sounds and vibrations, could be a better methods to 

keep drivers’ alertness [72]. 

4.2.2. Brain dynamics altered by the warning sounds 

The significantly inhibited the tonic increases of the mean baseline power 

were observed in the warning trials comparing with those trails without warning. 

The suppressed brain oscillations were mainly found at the theta and alpha 

bands, which are widely used as drowsiness related features [27]. The phasic 

decreases of the theta-band and alpha-band power were also observe in the 

ERSPs around the onset of the warning sounds and such the decreased of 

theta and alpha band power could sustain at least for around 10 sec. The 

findings suggested that that warning sounds would help drivers to reduce the 

drowsiness reflected on both behavioral performance and brain oscillations. 

This is the first study to show that the warning feedback could partially change 

the driver’s cognitive states. Consistent with the behavioral results, the 

neurophysiologic data also showed that the warning sounds couldn’t totally 

remove the driver’s drowsiness. In addition to the non-ideal characteristics and 

presentation modality of warning signals, such results may also relate to the 

effectiveness of warning feedback may decrease along with the increases of 

drowsiness. Comparing effects of the warning on altering the brain activities 

among three different RT groups, results suggested that the warning sounds 

could be effective when the normalized RTs was less than 4 nu, which indexed 

the subjects was with moderate drowsiness. The thalamus gate has known to 
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block all the sensory inputs during the sleep [73]. It is still unclear that the 

thalamus gate would be digitally blocked or decreased the sensory inputs 

analogically from drowsy to sleep. According to our preliminary results, we 

speculated that the sensory inputs probably may be attenuated along with the 

degradation of the alertness. The control mechanisms of thalamus gate in 

details need to further assess in the future.   

4.3. Duration of the warning effects 

The alpha- and theta bands showed different intervals of phasic power 

decreases. The duration of phasic alpha band decreases was around 10 sec, 

while the theta-band power decrease was around 35 sec. Such difference may 

due to the alpha band power have nonlinear and relative larger fluctuations in 

the theta band power during the transition from alert to drowsy. Studies 

showed the alpha activities increased and then started to decrease during 

wake-sleep transition [74-76]. Chuang et al. also reported that during mild 

drowsy period, the fluctuation of alpha activations was larger than theta and 

beta fluctuation [66]. Such alpha fluctuations could result from event-related 

desynchronization (ERD) and synchronization (ERS) of alpha activities [48, 60, 

77] during the responses to the car deviation by manipulating the steering 

wheel. 

The effects of warning sound can sustain for a short duration around 10 

sec. This implies that the warning sounds could only transiently change the 

driver’s drowsiness. For the safety concerned, it is necessary to either 

combine with other feedback methods or to include the automatically driving 

system in the future to help the drowsy drivers to avoid the car crashes.  
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5. Conclusions 
In this study, we investigated effects of warning sounds on the behavior 

performance and the brain dynamics when drivers were drowsy or inattention 

due to fatigue. The event-related lane-departure task was used in the VR 

environment to simulate the long-term high way driving and the task-related 

EEG spectral dynamics in terms of tonic and phasic changes were analyzed 

using independent component analysis, time-frequency and non-parametric 

statistical assessments. Results demonstrated the warning sounds can 

accelerate the response time and partially inhibit the drowsiness related brain 

oscillations. Furthermore, the effects of warning sounds on reducing the 

driver’s drossiness could sustain at least for 10 sec. In the future, methods to 

refine the characteristics the warning sounds and the combination with other 

warning modalities are needed for further studies. 
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Appendix I. Instructions and consent 

受測者注意事項： 

 實驗過程中會有人全程監控(攝影機)，身體若有任何不適，必須

立刻停止實驗。 

 本實驗時間長達一個半小時。若因實驗過久，造成強烈煩燥感，

而無法專心於實驗，也請您通知我們(像攝影機揮手)，以中止實

驗。 

 實驗進行中，必須模擬真實駕駛，使車保持再第三線道；若發現

有偏移，要立即拉回車道。 

 實驗剛開始五分鐘必須保持清醒，以量測清醒時的正常腦波。 

 本實驗為打瞌睡實驗，心情千萬別太緊張，若因開車疲累而造成

打瞌睡的情形，正是我們期望的。 

 注意！實驗過程中，任何肌肉動作都會干擾腦波訊號，所以盡量

不要任何大動作(如伸懶腰)，或臉部肌肉用力(如打呵欠)的行

為。 

 

國立交通大學腦科學研究中心 

受試者同意書 

本人已充分了解本實驗的流程，並了解腦事件相關

電位為非侵入性的實驗方法，願意擔任受試者，並在

實驗過程中，會完全遵照規定的實驗要求行動。 

受試者：                          (請簽名) 

日期：   年   月   日 
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Appendix II. Questionnaire 

睡眠習慣：(近期一個月內) 

1. 睡眠節律狀況： 

(□白天清醒，夜間睡覺 □白天睡覺，夜間清醒 □白天夜間睡眠習慣不規則) 

2. 大約幾點上床睡覺？     (晚上  點) 

3. 上床後大約多久後入睡？    (  分鐘左右) 

4. 通常幾點起床？      (早上  點左右) 

5. 晚上睡眠時間(入睡開始)總共多久？ (  小時) 

6. 是否常常從半夜警醒後就無法入睡？ (□很少 □偶爾 □常常) 

7. 整體而言，睡眠品質如何？   (□非常好 □尚可 □不太好 □很差) 

8. 過去這個月內，失眠(睡眠品質差)是否影響你的情緒、做事效率、及日常生活？ 

(□無 □輕度 □中度 □重度) 

9. 白天是否覺得容易疲倦？    (□否 □輕度 □中度 □重度) 

10.白天是否常常覺得想睡？    (□否 □輕度 □中度 □重度) 

11.中午吃完飯後是否想睡？    (□否 □是，大約  分鐘後就想午睡) 

12.是否有午睡的習慣？     (□否 □是，大約  分鐘) 

 

最近兩天的睡眠狀況：(48 小時內) 

1. 大約幾點上床睡覺？     (晚上  點) 

2. 上床後大約多久後入睡？    (  分鐘左右) 

3. 大約幾點起床？      (早上  點左右) 

4. 晚上睡眠時間(入睡開始)總共多久？ (  小時) 

5. 整體而言，睡眠品質如何？   (□非常好 □好 □尚可 □差 □很差) 

 

實驗問卷： 

1. 平時坐車時是否容易睡著？ (□否 □輕度 □中度 □重度) 

2. 過去是否有開車睡著的經驗？ (□否 □是，總共  次) 

3. 請問您是否有專心於實驗？ （□很專心 □專心 □普通 □不專心 □很不專心） 

4. 請問您在實驗前的精神狀態？ （□很好 □好 □普通 □不太好 □很不好） 

5. 您在實驗過程中打瞌睡的時間？ （□很多 □多 □普通 □少 □很少） 

6. 實驗過程中警示聲出現的時間？ （□很多 □多 □普通 □少 □很少） 

7. 警示聲能加快您的反應時間？ （□很同意 □同意 □普通 □不同意 □很不同意） 

8. 警示聲能讓您恢復清醒狀態？ （□很同意 □同意 □普通 □不同意 □很不同意） 

9. 其他補充意見？ 
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Appendix III. Data grouping criterions 

In order to compare the effects of warning and the duration of the warning 

effects, we classified the total trials into three conditions and they were 

alertness, drowsiness without warning (w/o) and with warning conditions. Each 

condition contained three trials, the current trials (trails with or without 

warnings), next trials (one trial after with or without warnings) and the next two 

trials (two trials after with our without warnings). 

We searched all the alertness, drowsiness with and without warning trials. 

We only classified and grouped the trials satisfied both the following criterions. 

First, the current, next, and 2’nd next trial all had no irregular behavior and 

noisy EEG. Second, the next, and 2’nd next trial both were not the warning trial. 

For example in Figure 22, the data set beginning from the C trial would not be 

selected, because the EEG epoch of 2’nd next trial contaminated with noises 

(marked with forbidden symbol). For another example, the data set beginning 

from the B trial would be excluded, because the next trial (red square) had 

warning stimulus. 

Except the 2’nd next trials data, we also used the two-trial selection to 

increase the available data of current and next trials. 
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Figure 22. The figure shows the examples of three-trial and two-trial selection 
in upper and lower panel. The squares represent the trials in the whole 
experiment. The colors represent the condition that data belongs to. The trials 
with irregular behavior or noisy EEG epoch are marked with the crosses or 
forbidden symbols. The available data sets after selection are shown below 
the squares. 
 
 


