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Effects of Auditory Feedback on

Increasing Drivers' Alertness

Student: Jian-Ann Chen Advisor: Dr. Chin-Teng Lin

Institute of Biomedical Engineering

National Chiao Tung University

Abstract

Driver inattention was widely attributed as a leading cause of car
accidents. Using appropriate stimulating warnings might considerably reduce
the lapses of attention and in turn, effectively avoid catastrophic consequences.
Several studies have reported that the auditory feedback could contribute
significantly to improving task performance. To what extent such behavioral
changes could reflect on what already altered in the brain dynamics was
unclear. The aim of this study is to explore the neural correlates of arousing
signals delivered to subjects when they suffered from momentary cognitive
drowsiness. Eleven subjects participated in virtual-reality (VR)-based highway
driving experiments. The event-related lane-departure task was used in the VR
environment to simulate the long-term high way driving and the task-related
EEG spectral dynamics in terms of tonic and phasic changes were analyzed
using independent component analysis, time-frequency and non-parametric
statistical assessments. Results demonstrated the warning sounds can

accelerate the response time and partially inhibit the drowsiness related brain



oscillations. Furthermore, the effects of warning sounds on reducing the
driver’s drossiness could sustain at least for 10 sec. In the future, methods to
refine the characteristics the warning sounds and the combination with other

warning modalities are needed for further studies.

Keyword:
Drowsiness, auditory warning, electroencephalograph (EEG), alpha band,
theta band, time frequency analysis, independent component analysis (ICA)
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1. Introduction

1.1. The importance of drowsiness detection

Studies reported that fatigue, which, in turn, caused drivers inattention or
drowsiness, was the major risk factor for serious injury and death in car
accidents [1-4] National Sleep Foundation (NSF) reported that 60% of drivers
had felt drowsy during driving, and 37% of the drivers had actually fallen
asleep. The National Highway Traffic Safety Administration (NHTSA) also
reported that at least 100,000 police-reported crashes were directly caused by
drowsy driving in 2006 and leaded to 1,500 deaths, 71,000 injuries and $12.5

billion in monetary losses (National Sleep Foundation 2007 State of the States

Report on Drowsy Driving). Therefore, to early detect the drivers’ drowsiness

and to help to keep the drivers’ alertness for avoiding the car accidents that

caused by drowsiness are important to protect living safeties of people.

Drowsiness detection changes of the subject’s alertness have been widely
investigated by different measurements [5, 6] including the monitoring
subject's behavior and image based techniques and physiological
signal-based system. The advantage and limitation of these methods were

described in the following paragraphs.

1.2. The behavioral monitoring

Previous studies had shown that subject’s response performance is
deteriorated along with the drowsiness. The response performances were

defined in terms of response time [7, 8], driving trajectories [9, 10] and patterns

1



of drivers’ moving handle wheel [11, 12]. The limitation of behavioral monitory
system is highly depended on driving behavior, experiences, road conditions,
and all other environmental variables. Therefore, it is difficult to be generalized
for regular use. However, it can be used as an auxiliary method in the
image-based techniques or physiological signal based system to define or
verify the subject’s alertness according to the car deviation from the cruising
lane and the response time (RT) to specific driving conditions. Such methods
have difficulties to apply in the real driving since it is easily affect by the
sounded environment and it is still unclear to what extend the behavioral
responses can fully reflect the real cognitive status. But, previous have showed
that behavioral performance is opposite correlated with the driver’s alertness.
Specifically, the subject’s response performances, which index by response

time, are decreased along with the increases of drivers’ drowsiness [13, 14].

1.3. The image-based technique

The image-based technique uses the video camera to record the eye
gaze position, eye closure or the head position [15] to derive the duration of
eye gaze fixation and the eye closure or frequency of eye movement, eye
blinking [16-18] or head movement [19] for correlating the subject’s drowsiness
level. The advantage of the image based detecting system is nearly no need
for preparation before the experiment, which is contrast to the long preparation
time in the EEG based monitoring system. However, the quality of recorded
image is easily influenced by the environment [20], with which is necessary for
the camera needed to interact. Furthermore, it is difficult to get enough space

to mount two cameras inside the cabin and without blocking the driver’s



viewing angle and therefore reducing the driver’s visual field [21]. Second, the
response time for detecting driver’s drowsiness was too long to feedback to

the driver in real time [22].

1.4. The physiological signal based system

Abundance of studies used the physiological signals, including the
electrocardiograph (ECQG), electro-oculograph (EOG), or
electroencephalograph (EEG), to monitor the subject’s alertness. The heart
rate or heart rate variability [23] which derived from the ECG signals has been
known easily affected by the subject's psychological and physiological
conditions and therefore the ECG signals is not a good index for monitoring the
driver’s alertness. Some laboratories tried to use the EOG signals to index the
driver’s alertness. For example, they found that the rate of eye blinking [24]
was declined along with the decreases of subject’s alertness. However, the
time window for analyzing the EOG signals to assess the driver’s drowsiness
was around 240 sec, which is too long to use in the drowsiness warning
system in the real driving. Hence, the EEG signals se the limitation of long
average windows to detect drowsiness. Therefore, EEG remains the most
popular modality and the better methods used to monitor drowsiness state in

real-time.

1.5. Drowsiness related EEG features

Studies had shown that the brain activities are changed with the subject’s
drowsiness level, especially the neural activities generated from the occipital

lobe. In addition, the power of occipital alpha (8-12 Hz, [25-29]) and theta band

3



(4-7 Hz, [27-30]) were incremented along with the decreases of subject’s
performances. The similar brain dynamic changes are also observed in the
simulated driving condition. Lin et al. [31] reported that the power of occipital
alpha band was linearly increased from alertness to mild drowsy and then the
alpha power was maintain at the same level or slightly decreased from mild
drowsiness. In addition, the occipital theta power was also found increased
monotonically from alert to deep drowsy. The above results suggested that
occipital alpha and theta bands would be as good EEG features for indexing

the subject’s drowsiness.

1.6. Effects of warning signals wunder drowsy

condition

Many studies had tried to use the warning signals to keep driver’s
attention [32-34]. They delivered the warning stimulations mainly via the
acoustic [35], visual [36] or vibrated stimuli [37, 38]. Furthermore, some studies
also tried to simultaneously present the warning signals via the multiple
modalities [39]. Belz et al. compared the above warning modalities in terms of
the reaction time (RT) to each warning modality [40]. Results showed that
subject responded to the visual alarms with the longest RT since the driver
needed to pay attention to the road condition and the dashboard. Therefore,
the visual alarms are adequate as the warning stimulus. The multiple-warning
modality significantly improved the driver’s performances by accelerating the
RT. The acoustic stimuli also greatly improve the driver's RT while the
characteristics of the warning signal would significantly affect the results of the

warning.



The warning sounds could be classified into two types, the conventional
warning signals and the auditory icon [41, 42]. The conventional sounds were
generated with specific acoustic parameters, such as pure tones, bells,
buzzers and sirens. The auditory icons were sounds with specific stereotypical
meanings defined by the objects or actions. For example, the horn or tire-skid,
imply the emergency braking or car accident. Graham assessed these two
types of sounds by measuring the driver's RT [41]. Though results revealed
that auditory icons significantly reduced the RT compared to the responses to
conventional warnings, the auditory icons are also known to cause the driver to
respond alarms improperly and increasing the risk of car accidents. Therefore,
the auditory icons would not be safe to widely apply on real driving. Our
previous studies evaluated effects of the spectrum and delivering patterns of
conventional sounds on keeping the driver’s attention [43]. We delivered two
types of sound patterns (continuous tone and tone bursts) and each pattern
was tested by three different carrier frequencies (500, 1750, and 3000 Hz).
Results showed that tone bursts with the carrier frequencies at 1750 Hz
significantly improved the driver’s performances and without side effects on

driver’s driving behavior.

1.7. Aims of this study

Effects of alarms on maintaining driver’s attention and alertness were
assessed in terms of the behavioral responses. To what extent the behavioral
performance can reflect on the subject’s cognitive status and neural activities
remains unclear. Some studies have observed that the behavioral

performance might not be sufficient to fully mirror the real cognitive state



though lots of results showed that the behavioral performance was highly

correlated with the brain dynamic [44, 45].

The first aim of this study was to determine the effects of the auditory
alarm on the brain dynamics, which explored by the EEG. The second aim of
this study was tried to elucidate whether the brain activities could fully mirror

the behavioral indexes.

2. Methods

2.1. Subjects

Eleven subjects (ages from 18-29 years, 10 males and 1 female) were
paid to participate in this experiment. They didn't have psychological and
neurological diseases. They had normal or corrected-to-normal vision and
normal hearing. All subjects had no sleep disorders and they were required to
go to sleep before the 1:00 AM at the night before the experiment. The subject
had a lunch before the experiment and the experiment started around 2:30 PM
since previous studies suggested that the drowsiness easily occurs from late
night to early morning and during the early afternoon, especially after the lunch.
All the experimental procedures was explained to the subjects in details and
required by the instructions (Appendix ). Subjects were required to sign the
research consent before the experiment. After the placement of electrodes,
subjects were asked to practice to keep the car on the center of the cruising
lane by maneuvering the car with the steering wheel at least for 5 min until they

had expected performance. After the end of the experiment, every subject was



required to fill a questionnaire (Appendix Il). Each subject had to complete the

experiment for at least 60 min.

2.2. Experimental apparatus

2.2.1. Virtual reality driving simulation environment

The driving simulated environment was composed of the virtual reality
(VR) scenes and the driving simulator. A real car without engine and other
non-necessary parts was mounted on a 6-degree of freedom motion platform
(Figure 1A). All the VR based driving simulated environment was built up in our
previous studies [46, 47]. The VR-based high way scenes were generated
from seven personal computers which synchronized by the internet connection

and then were projected to seven screens via seven projectors (Figure 1B).

Figure 1. The virtual reality environment. A: A real car without the engine and
other unnecessary parts were mounted on the motion platform. B: The
schematic picture shows the 360°-surrounded virtual reality scenes which
projected from seven projectors. C: The picture shows the four-lane highway
scene which used in the event-related lane-departure task.



2.3. Experimental paradigm

2.3.1. The event-related lane-departure task

The event-related lane-departure task [48] was designed to index the
driver’'s drowsiness level. The event-related lane-departure task was a 4-lane
high way scene (Figure 1C). The digitized VR scene was divided into 233
points and the width of the individual lane and car were 60 and 32 points
respectively. The refresh rate of the VR scene was 60 Hz, which can properly
emulate a car driving at a fixed speed of 100 km/hr on the highway. All scenes
were updated according to the displacement of the car and the subject’s wheel
handling. The car was randomly drifted away from the center of the cruising
lane, which was controlled and triggered from the WTK program, to mimic the
consequences of a non-ideal road surface [49-51]. The inter-deviation intervals
were varied from 8 to 12 sec and the car was deviated either left or right with
the equal chance. This task required subjects to compensate the drifting by
manipulating the steering to keep the car on the center of third cruising lane
(from left to right counted). During the experiment, subjects were instructed to
continuously perform the task as best as they could even if they began to feel
drowsy. No intervention was made when the subjects was occasionally fell
asleep and stopped responding. After such non-responsive periods subjects
resumed task performance without experimenter intervention. The onset of
each deviation and the subject’s response time were recorded at the rate of 60
times per second via a synchronous pulse marker train that was recorded in
parallel by the EEG acquisition system for the further off-line analysis. Figure 2
illustrates the experimental paradigm and the temporal profile of a typical

deviation event in the event-related lane-departure task. Though the task is a
8



60- to 90-min continuous experiment, it contained the single trials in this task.
Each complete single trial started from the 3 second before the car drifting to
the subject’s response offset. The baseline period of individual trials was the
duration of 3 sec before the deviation onset, and the response time (RT) was
calculated the period from the deviation onset to the subject responded to the

deviates by manipulating the wheel handling.

Current Trial Next Trial

Baseline RT Baseline
—— > -t >

>

§Random 8~12 sec
«—

Figure 2. A bird’s eye view of the event-related lane-departure event. The car
cruises with a fixed velocity of 100 km/hr on the VR-based highway scene and
every 8-12 sec the car is randomly drifted either to the left or to the right from
the cruising position to mimic the non-ideal road surface. Subjects are
instructed to steer the vehicle back to the center of the cruising lane as quickly
as possible. The solid black arrows mean the virtual car trajectory. The open
circle is the deviation onset. The double circle is the response onset. The circle
with cross is the response offset. The baseline is the duration from 3 sec
before to the onset of car drifting. The response time (RT) is the time duration
between the deviation onset and response onset. A completed trial is from 3
sec before the deviation onset to the response offset.



2.3.2. Warning criterion

We used the 1 tone bursts with frequencies and intensities at 1,750 Hz
and 68.5 (+1.5 dB) as the warning stimuli since our behavior studies had
shown that the stimuli can effectively keep the driver’'s alertness [43]. The
background high way noise was 54 +1.5 dB. The speaker was mounted on the
back seat which is 90 cm apart from the subject. The first 5 min after the onset
of the experiment, every subject was keep alert and the average RT was
recorded and calculated as the criteria for delivering the warning signals.
When the subject got drowsy and their RTs were longer than 3 times of the
mean alert RT [31], the waning sound was delivered to the subjects randomly.
Specifically, only half of drowsy trials, which the RTs were longer than 3 times
of averaged RT under alert condition, were alarmed by the tone bursts (Figure
3). The response time and the EEG traces of those trials with warning (w/) and

without warning (w/o) were extracted and compared for the offline analysis.

3 x Mean RT -- Threshold

- T'i'}'ﬁ}"‘f? ‘

Alert (5min) 85 min

- ——

————
————

Time

—— w/o warning —— w/ warning — alertness

Figure 3. The schematic picture showed the criteria of delivering warning
stimuli. The length of the arrows represents the response time of each single
trial. Black solid arrows are those trials in the alert session. The threshold
(dashed line) is set at the three times of mean alertness RT. Blue solid arrows
are those trials with RTs longer than the threshold but without warning (w/o
trials). Red solid arrows those trials with RTs longer than the threshold with
warning (w/ trials).
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2.4. Data acquisition

2.4.1. Behavior data

The sensor on the steer wheel was a variable resister and the output
range was +10 V depending on the rotation angle. The analog voltage signals
were digitized by the analog to digital convert with the 12 bit vertical resolution
and then stored into the personal computer for the offline analysis. The onset
of car drifting and the subject’s responses, including the response onset and
offset, were recorded at the rate of 60 times per second and saved as log file
and recorded in parallel by the EEG acquisition system via a synchronous
pulse marker train. Since the sampling rate of the EEG system was 500 Hz,
the EEG system was easily to over sampled the same point, the log file was
used as the look-up table for deleting the oversample data points. Figure 4 is
the flowchart of the relationship among the VR scene EEG data acquisition

system and behavioral data acquisition system.
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Visual / auditory EEG signals
stimuli
Responce

VR scene Steer wheel Amplify
Control Event recording
signals VR number

computer ;
Subject ‘ ........... . I IR .
VR system Log file Event file
EEG recording system EEG recording file
e Raw data :' ------------------------- - . -
Sampling rate Sampling rate
60 Hz 500 Hz

Figure 4. Data acquisition flow chart. The flowchart illustrates the relationship

among the VR scene EEG data acquisition system and behavioral data
acquisition system.

2.4.2. EEG data

2.4.2.1. Channel location measurement

A sintered Ag/AgCI electrode cap with 30 channels (plus 2 references)

was mounted on the subject’s head for recording the brain activities from the

skull. All channels were displaced according to the modified International 10 -

20 system (Figure 5A and 5B). The actual location of each channel were

redigitized by the 3D digitizer (Fastrak®, Polhemus, Figure 6) for rebuild

individual subject's head model by the mathematical algorithms [52] for

localizing the sources of brain activities.
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Figure 5. EEG recording apparatus. A: The schematic picture shows the
channel locations of 30-channel recording system. B: A photomicrograph
shows the real electrode cap placed on a head model. C: A photomicrograph
shows the EEG amplifier used in the experiment. Our caps had 30 channels.
Note the channel locations of each subject depended on the 3D measurement
results.

2.4.2.2. Amplify the EEG signals

To minimize the contact impedance of each electrode is necessary for
reducing the external noise coupling and increasing signal to noise ratio during
the EEG recording. For minimizing the contact impedance, the conductive
gel (Quik-Gel™, Compumedics NeuroMedical Supplies™) was carefully filled
into each channel. Before data collection, the contact impedance of the EEG
electrodes was less than 10 kQ. The EEG activities were recorded and
amplified by the Neural Scan Express System (NuAmps, Compumedics Ltd.,
VIC, Australia, Figure 5C). The input range of the EEG amplify is +130 mV and
the sampling rate and the vertical resolution are 500 Hz and 16-bit

respectively.
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Figure 6. 3D digitizer system. The 3D digitizer (Fastrak®, Polhemus) was
used to measure 3D positions. A: The System Electronics Unit (SEU) can
supply power and connect to other parts and computer. B: the transmitter is
the device which produced the electro-magnetic field and is the reference for
the position and orientation measurements of the receivers. C: The receivers
are the smaller device whose position and orientation was measured relative
to the transmitter. D: The stylus is a pen shaped device with a receiver coll
assembly built inside and a push button switch mounted on the handle to
effect data output.
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Figure 7. Channel location recording by 3D digitizer system. A photograph
shows the 3D digitizer system for digitizing and recording the real locations of
each channel in individual subject. The processing is described as following.
While we measured the 3D position of the channels, we mounted the
transmitter behind the subject and put the 3 receivers under the Oz, T3, and
T4 channel inside the electrode cap. The transmitter should far from the
metallic surface and located in close proximity to the receivers. Beside, we
routed the transmitter cable separate from the receiver cables in order to avoid
possible noise problems. After these setups, we used the stylus to point out
each channels and recorded the 3D channel locations.

15



2.5. Data analysis

2.5.1. Behavior data processing

2.5.1.1. Removing incomplete trials

A total of 4073 trials were recorded from 11 subjects and 521 incomplete
trials were removed before the further analysis. The criteria marked as the
incomplete trials were determined by the following rules. First, events recorded
were incomplete. For example, each trial was recorded the occurrences of
three events (deviation onset, response onset and response offset), and those
missed one of the three event were first removed from the total trials. Second,
those trails show the subjects didn’t follow the experimental instruction in terms
of the trajectories were removed. Specifically, once the subjects didn’t follow
the experimental instructions, the position of the deviation onset was located
outside the third lane or the sawing line instead of the straight line was showed
in the baseline line trajectories. Third, those trials with the RT less than 0.4 sec
or longer than 9 sec were removed. The RTs shorter than 0.4 sec were due to
subjects adjust the steering wheel but not responses to the car drifting. The
RTs longer than 9 sec were due to the subjects were fall asleep and these

trials were not defined as the drowsy trials.

2.5.1.2. RT normalization

Since the data were pooled across 11 subjects for the limited recording
time from each single subject, we first needed to normalize the response time

for reducing the inter-subject variation. The RTs of each subject were divided
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by their individual mean RT. The mean RTs were varied from 0.52 to 0.9 sec

across 11 subjects (Table 1).

Table 1. The mean and standard deviation (S.D.) of alertness RT.

Subject Mean (sec) S.D. (sec)
S10_070731 0.79 0.300
S02_070808 0.57 0.075
S12_070820 0.90 0.281
S10 071128 0.66 0.096
S18_071130 0.62 0.119
S20 071205 0.76 0.138
S21 071227 0.72 0.153
S23 080125 0.52 0.087
S32_080717 0.57 0.099
S33 080723 0.68 0.128
S37_080807 0.69 0.081

2.5.2. EEG data analyses

2.5.2.1. Preprocessing and extracting epoch

The raw EEG signals were first filtered by a low pass and a high pass
filtering with the frequencies at 50 Hz and 0.5 HZ respectively to remove the
60Hz line noise, high-frequency artifacts and the low frequency drifting. The
filtered signals were down-sampled into the 250 Hz sampling rate for the
simplicity of data processing. EEG epochs were extracted from the continuous
EEG signals and the duration of each epoch was 45 sec, 15 sec preceding and
30 sec following the deviation onset of each trial. A total of 4058 epochs were
extracted and the number of epoch was varied from 273 to 432 across 11

subjects (Table 2).
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2.5.2.2. Artifacts rejection

The extracted epochs were further examined and manually removed

those epochs contaminated with muscle activities, body movements and bad

contact channels. Figure 8 shows the example of the rejected epochs from a

typical subject (S02). The EMG artifacts embedded in the epoch during the

periods from 18 to 21sec and 23 to 24 sec was first selected and marked by

yellow background and then was removed from the EEG signals. The FCz

channel showed in the Figure 8 was identified as the bad contacted channel

and was removed from the EEG signals.

A total of 3253 epochs were submitted to the further analysis after the

artifact rejection and the number of epoch was varied from 11 subjects. (Table

2)

Table 2. The epoch and channel number of each subject.

Epoch number

Channel number

Subject Raw Remaining % Raw Remaining Removed
S10 070731 | 377 321 85.1 30 29 F8
S02_ 070808 | 391 303 77.5 30 30
S12 070820 | 377 342 90.7 30 29 F4
S10 071128 | 432 304 70.4 30 30
S18 071130 | 273 141 51.6 30 30
S20 071205 | 383 264 68.9 30 30
S21 071227 | 411 335 81.5 30 29 F8
S23 080125 | 426 394 92.5 30 29 FT7
S32 080717 | 280 192 68.6 30 27 FT8, T4, FT7
S33 080723 | 351 31 88.6 30 29 FT7
S37 080807 | 357 346 96.9 30 27 T3, T4, P7
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Figure 8. The picture shows the artifacts contaminated epoch and channel
from the subject S02. Two epochs are shown in the figure, and the two epochs
were separated by a blue dash line. The red (event number 251), green (event
number 253), and pink (event number 254) lines represent the deviation onset,
response onset and response offset respectively. Note the artifacts are
embedded in the first epoch with the periods at 18-21 and 23-24 sec. The
epoch with artifacts is indentified and marked as yellow background and is
removed from the extracted epochs. The channel (FCz) contaminated with
noise is also indentified and rejected manually from the extracted epochs.

2.5.2.3. Independent component analysis (ICA)

Because of the volume conduction of the skull and scalp tissue [52], the
signal recorded from individual electrode is easily mixed with signals
generated from other brain regions or which are not located at the position
around the electrode or other sources outside of our brain, such as the eye
blinking and the eye movement (Figure 9). For indentifying the more corrected
brain sources from the mixing EEG signals and removing the unrelated signals
to obtain the pure neural activities we applied the ICA algorithm (the runica
function of the EEGLAB toolbox) on the EEG signals to separate these mixing

signals of each subject.
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The independent component analysis has extensively applied on blind
source separation problem [53-55]. The ICA theorem had four basic
assumptions. First, the source signals (neuron activities, noises, or artifacts)
were independent to each other and the correlation between each two sources
was zero or close to zero. Second, the propagation delay from sources to
sensors was negligible. Third, the sources were analog and the possibility
density function (p.d.f.) was not the gradient of a linguistic sigmoid. Fourth, the
number of sources was the same as the number of sensors (channel signals)

[56].

Channel A

‘ g l Channel B

Component 1 W

Component 2

Figure 9. The schematic picture shows the relationship between the channel
and component activities. The channel signals (channel A, B) ideally were a
linear combination of many independent sources (component 1, 2) produced
by the weight matrix W. By the ICA analysis, we could get the values of matrix
W and separate the each component signals from the mixing channel data.
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Due to the characteristic of the independent neuron activities in human
brain, the EEG model could satisfied the 1’st, 2’'nd, and 3’rd assumption.
Although no one knows how many sources can the brain be activated and
classified, based on the reports of past studies [57, 58], the ICA algorithm is
still a good solution to solve the EEG source separation, identification, and

localization. The ICA mathematical description was as follows.

X =AS U=WX
™
S = [S(m S®z v+ S@mm

X= [X(t)l X2 - X(t)n:T

U= [U(t)1 Utz - U(t)n:T
_a11 dz -+ dim g _W11 W - Wln_

A K . Woas

A = W —

_anl e cee anm_ _Wnl cee cee Wnn_

S represents the real neuron activities (or artifacts) that generate from
total m (we did not know and too many) sources. The X is the n (channel
number) channel signals that we recorded. The matrix A is the real weight that
is used to transform the source signals into the channel activities. The matrix
W and the U, which represented the n (component number) main components
can be obtained by the ICA analysis. Once the channel number n is close to
the real number of sources, m, the components U obtained by ICA algorithm,
will be very close to the real source activities, S. EEG signals were separately

into 27-30 component from each single subject.
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2.5.2.4. Component selection

The scalp map, the dipole location and the power spectrum of each
component from individual subject were generated by using the function
topoplot and pop_dipfit_gridsearch of EEGLAB toolbox. The scalp maps of
each component represented the relative weight to compose from the
channels (Figure 10). The scalp maps were also revealed the spreading of the

component topography.

The separated components from each subject were further selected
according to the scalp map, dipole location of each component and the
characteristics of the power spectrum and only those scalp maps represented
the sources generated from the occipital, somatomotor, central and frontal
areas were submitted for the further analysis. Figure 10 shows the example of
the 30 isolated component scalp map from the single subject (S02). Only the

component 3, 4, 5, 7, 8, and 10 were selected for the further analyzed.
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Figure 10: The scalp maps of 30 ICs derived from the event-related
lane-departure response epochs from a single subject (S02). The noise
components including the IC 1, 2, 6, 9, and 11-30 were excluded and the
activities of IC 3-5, 7, 8 and10 were selected (circled) for further analyses.

2.5.2.5. component clustering

The selected components across 11 subjects were further classified
manually into five clusters based the scalp maps, dipole locations and the
baseline power spectra. EEG signals of the five main component clusters
represented activities recorded from the central, left somatomotor, right
somatomotor, parietal, and occipital areas (Figure 11). Activities of the central
left-somatomotor, right-somatomotor, parietal and occipital components which
are known to highly correlate with the drowsiness or motor responses were

selected for the following studies.
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Figure 11. Pictures shows the IC clusters of central, parietal, occipital, left and
right somatomotor components. The left panel shows the individual scalp
maps of included in the corresponded component clusters. The subject index
and component number was marked on the top of each scalp map, and the
larger scalp maps are the mean of the scalp map averaged from the
individual ICs. The right panels were the dipole locations of each single
component across 11 subjects.
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2.5.2.6. Component activities back projected to channel activities

According to the ICA algorithm, the signal excursion of each component
only represented the relative amplitude of the brain activities generated from
the specific brain area. In order to transform the amplitude of component
activities into the real scale, activities of the central, left-somatomotor,
right-somatomotor, parietal, and occipital components were need to back

projected to Cz, Cp3, Cp4, Pz, and Oz respectively.

2.5.2.7. EEG signal normalization

Since the amplitude of EEG signals was varied across different sessions
and subjects and such differences would lead to the differences observed in
the EEG power spectra, the back projected channel activities were normalized
by dividing the EEG signals to the standard deviation (SD) of the signal

distribution before advanced analysis.

Figure 12 showed the baseline power spectrum of projected channel
activities in occipital area cross 11 subjects before (A) and after (B) EEG data
normalization. The results showed that baseline power spectrum after

normalization had smaller power differences than before normalization.
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Figure 12. The baseline power spectra of projected channel activities in
occipital area before (A) and after (B) the EEG data normalization.

2.5.3. Data grouping

The normalized behavior and EEG data of each single subject were

selected and grouped together according to the following procedures.

First, trials recorded in the alert session were selected and classified as
the alert trials. Trials with normalized RT more than 3 times of mean RT under

alertness were selected and classified as drowsiness trials.

Second, drowsiness trials with or without warnings, including the current,
next and 2'nd next trials, were selected and separately grouped together for
the next step processing. The details of the data selection were included in the

Appendix IlI.
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2.6. Time-frequency analysis

Previous studies suggested that drowsy dependant EEG dynamics can be
observed from two different aspects, the tonic and phasic changes [59, 60] and
both aspects were processed by frequency analysis. Specifically, tonic
changes referred to changes of baseline power spectra associated with
changes in cognitive state (e.g., arousal or drowsiness) while phasic changes
referred to those power changes triggered by specific events, such as the
behavioral responses or warning stimuli. In this study, we first used the
time-frequency analysis [61] to transform the grouped data trials into
time—frequency data matrices and derived the baseline spectra and the
event-related power perturbation to reveal effects of warning on tonic and

phasic changes. The flow chart of time-frequency analysis shows in Figure 13.
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Figure 13. Schematic overview of baseline power spectral analysis. The
moving-window discrete wavelet transforms (DWTs) was used to transform
the time domain EEG activities into spectrotemporal activations. The baseline
spectrum and the event-related power perturbation were derived from the
time-frequency data matrices.
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2.6.1. Baseline power spectral analysis

The normalized EEG activities were transformed into a (400 latencies by
193 frequencies) time-frequency data matrix using a moving-window average
of discrete wavelet transforms (DWTs, timef function from EEGLAB, [60]).
DWTs were computed for 1.5-sec moving windows centered at 400 evenly
spaced latencies from 15 sec before to 30 sec after the deviation onset using a
data-window length of 375 points (1.5 sec), zero-padded to 3000 points. Log
power spectra were estimated at 193 evenly-spaced frequencies from 2 Hz to
50 Hz, and the log mean power spectral baseline was the averaged power

change during the pre-deviation period (-3-0 sec).

2.6.2. Event-related spectrum perturbation (ERSP)

For assessing the sustainable effects of warning sounds, we extracted the
long epochs (-15-130 sec) to estimate the changes of ERSPs. The activities of
long epochs were transformed into a (725 latencies by 263 frequencies)
time-frequency data matrix using a moving-window average of discrete
wavelet transforms (DWTs, timef function from EEGLAB, [60]). DWTs were
computed for 4.0-sec moving windows centered at 725 evenly spaced
latencies from 15 sec before to 130 sec after the deviation onset using a
data-window length of 725 points (4.0 sec), zero-padded to 2900 points. Log
power spectra were estimated at 263 evenly-spaced frequencies from 0.75 Hz
to 49.875 Hz. The temporal profile of the alpha (8-12 Hz) and theta (4-7 Hz)
band power changes were extracted and averaged from the time-frequency

data matrix for the advanced comparison.
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2.6.3. Statistics

The Kolmogorov-Smirnov test (kstest, Matlab statistical toolbox,
Mathworks) was used to assess whether the behavior RTs and EEG power
were normally distributed (with zero mean and unit variance). Since tested
results showed the behavior RT and EEG power were not normally distributed,
three non-parametric statistic tests were used for the following statistical
analysis. The Kruskal-Wallis one-way analysis (kruskalwallis, Matlab statistical
toolbox, Mathworks) were used to assess the differences of inter-subjects’
normalized RTs across 11 subjects. The Wilcoxon rank sum test (ranksum,
Matlab statistical toolbox, Mathworks) was used to evaluate the warning effect
on RTs. Third, the permutation-based statistics [62-64], or called bootstrapping
(statcond, EEGLAB toolbox, UCSD) was used to test the significance of the
power changes of specific frequency bins induced by drowsiness or warning
sounds. We boosted the sample size from about 200 trial number to 5000 by

the bootstrapping methods.

3. Results

3.1. Behavioral performance

Figure 14 showed the alertness RT distribution of 11 subjects before and
after behavior data normalization. Results showed that alertness RTs before
normalization had significant differences across 11 subjects by the
Kruskal-Wallis test (p<0.001) and such inter-subject difference was not

significant after normalization (p=0.53).
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Figure 14. The box-plot of alertness RT for 11 subjects before (A) and after (B)
RT normalization. The red lines represent the medians of the alertness RT
distribution of each subject. The top and bottom of the blue box are the third
and first quartile. The dash lines represent the region of RT between the
maximum and minimum after outlier removal. The red crosses mark the
outliers. Note the alertness RT distribution has significant difference (p<0.001)
across 11 subjects before normalization and such difference was not
significant after normalization (p=0.53).

3.1.1. Effects of warning sounds

A total of 1232 trails were included and presented in these results. Three
conditions were included in these trials (alertness, drowsiness with warning
and drowsiness without warnings) and all individual conditions contained the
current, next and second next trials. Table 3 shows the number of trials,
medians and quartiles of normalized RTs across these three conditions under

different groups of trials.

Figure 15 shows the cumulated normalized RT of current, next and 2’'nd

next across the alertness, drowsiness with warning and without warnings.
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Figure 15A shows the cumulated distribution of the RTs of current, next and
2’'nd next trials under alertness and drowsiness with and without warning. The
RT distributions were different among the alert, drowsy with and without
warning trials. RTs of all alertness trials were shorter than 3 normalized unit (nu)
while RTs of all drowsy trials were longer than 3 nu. The warning sound
significantly accelerated the RT. The cumulated curves of 50% trials with
warning and without warning are statistically different (p <0.001, two sample
KS test; Figure 15A left panel). The effect of warning on alerting the RT
distribution was sustained to the next trials (p <0.01, Figure 15B). However, the
effect of warning sound on RT was not significant in the 2'nd next trials (p
=0.16, Figure 15C).

Table 3. The summary of RTs for current, next and 2’'nd next trials under
alert, drowsy with and without waning conditions.

Medium QD1 QD3 Trial number
alertness 0.96 0.86 1.09 216
Current
w/o warning 5.19 4.02 6.76 196
w/ warning 4.16 3.79 4.35 182
Next
w/0 warning 1.57 1.09 3.66 196
w/ warning 1.20 1.02 1.79 182
2'nd next
w/o warning 1.30 1.05 2.31 132
w/ warning 1.20 1.07 1.73 128

Normalized unit (nu) Number
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Figure 15. A: Cumulative RT curves of the current, next, and 2’'nd next trials
under alert, drowsiness with and without warning conditions. The black, red
and blue curves represent the RTs of alert, drowsy with and without warning
trials, respectively. The black dash line at left panel marks the onset time of
warning. B: The box-plots of the same data as in A. The horizontal lines inside
the boxes represent the median. The top and bottom lines of the boxes are the
third and first quartiles. The dash line marks the maximum and minimum after
removing the outliers. Results showed that the RTs were significantly fast
under the alertness condition in comparison with the drowsiness. Note: the
drowsiness and warning sound can alter the distribution of RTs (drowsiness vs
alertness: p<0.001; w/ vs w/o: p<0.001) and the effect of warning can sustain
to the next trials (*: p<0.05, **: p<0.01, ***: p<0.001).
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3.1.2. Effects of warning on brain activities

3.1.2.1. Occipital region

Since the occipital neural activity is known to highly correlate with
drowsiness, we first assessed the effects of warning on altering occipital
dynamics. Figure 16 shows the EEG baseline spectra of alertness (black
curve), with (red curve) and without warning (blue curve) trials. Comparing with
the alertness, the averaged baseline power spectra of the drowsy trials were
significant higher at frequencies from 2 to27 Hz (p<0.01 Figure 16, left panel).
From alert to drowsy, the alpha band power was elevated around 11 dB and
the theta band power was increased around 5 dB (Table 4). No apparent
differences of alpha- and theta-band power were found between trials with and

without warning (Figure 17, alpha: p=0.46, theta: p=1.00).

The effect of warning on altering the occipital activities was revealed on
the mean of baseline power spectra of next trails. Comparing with trails without
warning, the amplitude of the averaged baseline power spectrum of warning
trials was significant lower at frequencies from 2 to 9 Hz (Figure 16, middle
panel). The theta- and alpha- brand power were significantly suppressed by
the warning sounds (Table 4, alpha: 1.60 dB, p=0.01; theta: 1.74 db, p<0.001,
by permutation-based statistics). Comparing with the alert trials, the grand
mean power spectral baseline exhibited significant tonic power increases from
2 to 20 Hz in the trials with and without warning. The effects of warning did not
extend to the 2’'nd next trails. Though the tonic baseline power showed

increases between alpha and theta bands in warning relative to without
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warning trials (Figure 16, right panel), such differences were not statistically

significant (alpha: p=0.07, theta: p=0.13, Figure 16).
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Figure 16. The grand mean of baseline power spectra of the occipital area in
current, next and 2'nd next trials across the alert (black), drowsy with (red)
and without (blue) warning conditions. The green horizontal lines represent
frequencies exhibiting significant (p<0.01) tonic spectral power increases
(w/o warning minus w/ warning). The blue horizontal lines mark frequencies
exhibiting significant (p<0.01) tonic spectral power increases (w/o warning
minus alertness). The red horizontal lines show frequencies exhibiting
significant (p<0.01) tonic spectral power increases (w/ warning minus
alertness). The inset shows the averaged scalp map of occipital region
across 11 subjects.

alertness ‘

w/o warning ——— w/ warning

Table 4. The alpha and theta power of curent, next and 2'nd net trails
under alert, drowsy with and without waning conditions.

Current Next 2'nd next

g W/owarning 35.06 33.89 33.10
S w/ warning 35.35 32.29 31.83
< alertness 24.26

© w/o warning 28.21 27.33 27.15
2w/ warning 28.19 25.59 26.22
~  Alertness 23.22

Power (dB)
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3.1.2.2. Other brain areas

Figure 18 shows the averaged baseline power spectra of other brain area
including the central, left and right somatomotor as well as parietal areas.
Similar to the occipital area, the grand mean of power spectral baselines
showed significant (p<0.01) tonic increases between 3-12 and 20-25 Hz in
drowsy relative to alert trials for four brain areas (Figure 18). The tonic
increases of baseline power spectra were not significant in warning relative to
without warning trails for the central, left and right somatomotor and parietal

areas.
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3.2. The influence of drowsiness level on the outcome

of warning

The effect of warning on the RT distribution of next trials was mainly at
those trials with RT from 1 to 4 nu (Figure 15). To determine to what extent the
differential effects of warning signals would revealed on the brain dynamics,
the current and next trials were all divided into three groups according to the
distribution of next trials’ RTs (Figure 19, inset) and they were long (RT: 4-10
nu, A), medium (RT: 1-4 nu, B) and short RT (RT: 0-1 nu, C) groups. The
averaged baseline power spectra of these three groups were calculated and

compared as shows in the Figure 19.

The distribution of long and short RT groups were not significant different
between the warning and without warning trials (long RT: p=0.4 and short: RT:
p=0.05, Table 5). For the medium RT group, the RTs were significant
accelerated in warning trials relative to those without warning trials (p<0.001,

Table 5).

Figure 19 shows the differential effects of warning on the occipital neural
activities for the current and next trials in long, medium and short RT groups.
Both the current and next trials, the increased tonic baseline power was found
in the drowsy relative to alert trials. Such differences between the alert and
drowsy trials were not affected by the RTs. For the current trials, no apparent
suppression on the increases of tonic baseline power spectra in the warning
relative to those without warning trials and no clear differences were found
among the three RT groups. In the next trials, the effects of warning on the

tonic changes of the baseline power spectra were similar to those presented in
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the Figure 16. For the medium RT groups, the grand average of power spectral
baselines of next trials showed decreases between 2-9.5 Hz (Figure 19, B) in
warning relative to without-warning trials, and for the medium RT groups the
mean difference was significant (p<0.01) between 5-7 and 9.5-10.5 Hz (Figure
19, C). In the alpha and theta bands (8—-12 Hz and 4-7 Hz) of both medium
and short RT groups, mean tonic baseline power in warning trials was

significantly (p<0.01) smaller than in without-warning trials (Figure 20, Table 6).

Table 5. Summary of spectral characteristics of three RT groups

Medium QD1 QD2 Mean SD

A 1.22 1.16 1.32 1.25 0.1

B alertness 0.96 0.90 1.03 0.97 0.08

C 0.79 0.73 0.82 0.77 0.06

A w/o warning  5.35 4.24 7.31 5.85 1.96

w/ warning 4.21 3.90 4.49 4.20 0.52

E B w/o warning  5.06 3.93 6.61 5.41 1.80
3 w/ warning 418 3.74 4.33 4.11 0.55
c w/o warning  5.39 4.01 6.37 5.43 1.73

w/ warning 4.00 3.62 4.24 4.04 0.53

A w/o warning  5.30 4.25 6.20 5.46 1.40

w/ warning 4.56 4.24 6.07 5.22 1.40

*5 5 w/o warning  1.57 1.23 2.59 1.96 0.93
z w/ warning 1.20 1.10 1.42 1.35 0.45
c w/o warning  0.93 0.86 1.00 0.91 0.09

w/ warning 0.88 0.79 0.95 0.87 0.10

Normalized unit (nu)
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Figure 19. The grand mean of baseline power spectra of the occipital area in
current and next trials across short, medium and long RT groups. The inset
represents the sorted RT curves of next trial. All the trials are divided into long
(A), medium (B), and short (C) RT groups. Panels as Figure 16.

40




Table 6. Summary of effects of warning on averaged alpha- and
theta-band power of current and next trials across three RT

groups.

Current Next

w/0 warning 35.15 35.18

A w/warning 34.85 35.59
alertness 24.16

© w/o warning 35.20 33.77

S B w/ warning 35.67 31.34
< alertness 24.22

w/0 warning 34.54 32.55

C w/ warning 34.76 28.94
alertness 24 .46

w/o warning 27.75 28.04

A w/warning 27.83 27.66
alertness 22.97

© w/0 warning 28.46 27.49

L B w/warning 28.34 25.13
- alertness 23.35

w/o warning 27.83 25.85

C w/ warning 28.09 24.02
alertness 23.04

Power (dB)
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Figure 20. The box-plots of the alpha (A) and theta power (B) of current and
next trials under alert, with and without warning conditions across three
different RT groups. Panels as Figure 16 (*: p<0.05, **: p<0.01, ***: p<0.001).

3.3. Alpha and theta bands perturbation

Figure 21 shows the power perturbations of alpha and theta band in with-
(blue line), and without- warning (red line), as well as the alertness (black line).
Before response onset, alpha- and theta-band power in drowsiness trails
including the warning and without warning trials were 11.5 (alpha) and 5 dB
(theta) higher than in the alertness trials. The alpha- and theta-band power of
all drowsy trials, including the warning and without warning trails, showed brief
decrease from 38 to 28 dB (alpha) and from 30.5 to 25.5 dB (theta) around the

response onset. Comparing with the trials without warning, the event related
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alpha band power was significant decreased in the warning trails mainly at
5-10 sec after the response onset. The event related theta band power of the
warning trials was significantly lower at 5-35 sec after the response onset than

in the trials without warning.
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Figure 21. The mean response-locked event related alpha- (upper panel) and
theta-band (lower panel) power perturbations of alert (black traces), drowsy
with (red traces) and without (blue traces) warning trials in the occipital area.
The green horizontal lines represent frequencies exhibiting significant
(p<0.01) phasic spectral power decreases (w/o warning minus w/ warning).
The inset shows the averaged scalp map of occipital region across 11
subjects.
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4. Discussion :

Aims of this study are to assess the effect of warning on behavioral
performance and brain dynamics and to determine the sustainable duration of
warning in terms of behavioral responses and neural activities. Results
showed that the warning sounds can accelerated the responses to the car
drifting and suppress the tonic and phasic power increases at the alpha and
theta bands in the occipital area. Furthermore, the effects of the warning
sounds on the behavior and brain activities could sustain to 12.6+2.7 and 10

sec respectively.

4.1. Effects of drowsiness

Behavioral results showed that the sorted RT curves of drowsy trials,
including the warning and without warning trials were all significantly departed
from the sorted RT curves of alert current. This finding was consistent with
previous studies suggested that the subjects’ behavioral performance was
decreased along with changes of cognitive states from alert to drowsy [13].
The decremented behavioral performances could be assessed in terms of

response time or driving trajectory [8, 9].

Our results also showed that the neural activities were also altered with
the cognitive states. Specifically, both the tonic and phasic changes of the
occipital area showed that the alpha and theta band power were increased in
the drowsy relative alert trials. This finding was consistent with previous
reports and our previous studies. For example, the tonic EEG power was

higher on average in the drowsiness than in the alertness. In addition, the
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increases of power in the low-theta frequencies near 4 Hz were highly
correlated with the drowsiness [59, 65]. Huang et al. also reported the baseline
spectra had tonic broad band power increases at the occipital area during
periods of relatively poor driving performance and the prominent spectral
changes were observed in alpha and theta bands [60]. Taken together, our
results demonstrated that our experimental paradigm could successfully
induced the drowsiness under driving condition in terms of behavioral
performances and changes of brain rhythm at the occipital region. In addition,
the warning sounds randomly delivered to the subjects did not affect the

drowsiness induction during the experiment.

Except the occipital region, the power of the EEG spectra for central, left
and right somatomotor and the parietal regions were increased around
frequencies at 3-12 Hz (alpha and theta band) and 20-25 Hz (beta band).
Results showed that the power increases at alpha, beta and theta bands
associated with the drowsiness could be involved in large brain areas. Such
phenomenon may due to the drowsy related brain dynamics was probably
modulated by the independent modulators. The concept of the independent
modulator hypothesized that the independent modulator could modulate the
brain oscillations across several distinct cortical areas [66]. Effects of warning
on altering the brain oscillations did not observed in other brain area. Such
results suggested that those changes of brain dynamics were not due to the

neural responses to the sounds.
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4.2. Effects of warnings

4.2.1. Behavior performance

Results showed that warning sounds improved the subject's behavior
performance by accelerating their RT. Specifically, the RTs of the current trials
were significant shorten about 1.03 nu in the warning relative to without
warning trials. The effects of warning on enhancing the behavioral
performance also sustained to the next trails. Specifically, the warning could
accelerate the RT about 0.37 nu faster than the RT of trials without warning.
Lin et al. [43] showed that the mean RT of sessions with warning was
significantly faster than that of sessions without warning. The mean RT was
reduced by approximately 1.15 seconds. Several studies also reported that the
warning sounds could help drivers to react promptly [67, 68] and reduce the

probability of collision [68, 69].

Comparing with the RTs of alertness, the intervals between the onset of
warning signals and the subject’s responses were still longer than the RTs of
alert trials. The results implied that the warning signals could enhanced the
behavioral performance but the subject’s conscious could be not as clear as
the alert. The reasons may relate to the characteristics of warnings sound is
not ideal or the single stimulus may not be enough to awake the subject. Study
suggested that the characteristic of most powerful sounds to awake the drowsy
driver is auditory icon, such as the horn or tire skid [40, 41]. In addition,
auditory neuron has know easily adapt to the pure tone or pure tone burst [70].
In the auditory cortices, the majority of neurons are only responses to the

complex sounds and only few neurons can respond to the pure tone or pure
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tone burst [71]. Previous studies also suggested that warning signals delivered
by the single modality may not sufficient to total awake the subjects and they
suggested that warning signals delivered through the multimodalities, such as
the combined the warning sounds and vibrations, could be a better methods to

keep drivers’ alertness [72].

4.2.2. Brain dynamics altered by the warning sounds

The significantly inhibited the tonic increases of the mean baseline power
were observed in the warning trials comparing with those trails without warning.
The suppressed brain oscillations were mainly found at the theta and alpha
bands, which are widely used as drowsiness related features [27]. The phasic
decreases of the theta-band and alpha-band power were also observe in the
ERSPs around the onset of the warning sounds and such the decreased of
theta and alpha band power could sustain at least for around 10 sec. The
findings suggested that that warning sounds would help drivers to reduce the
drowsiness reflected on both behavioral performance and brain oscillations.
This is the first study to show that the warning feedback could partially change
the driver’'s cognitive states. Consistent with the behavioral results, the
neurophysiologic data also showed that the warning sounds couldn’t totally
remove the driver’s drowsiness. In addition to the non-ideal characteristics and
presentation modality of warning signals, such results may also relate to the
effectiveness of warning feedback may decrease along with the increases of
drowsiness. Comparing effects of the warning on altering the brain activities
among three different RT groups, results suggested that the warning sounds
could be effective when the normalized RTs was less than 4 nu, which indexed

the subjects was with moderate drowsiness. The thalamus gate has known to
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block all the sensory inputs during the sleep [73]. It is still unclear that the
thalamus gate would be digitally blocked or decreased the sensory inputs
analogically from drowsy to sleep. According to our preliminary results, we
speculated that the sensory inputs probably may be attenuated along with the
degradation of the alertness. The control mechanisms of thalamus gate in

details need to further assess in the future.

4.3. Duration of the warning effects

The alpha- and theta bands showed different intervals of phasic power
decreases. The duration of phasic alpha band decreases was around 10 sec,
while the theta-band power decrease was around 35 sec. Such difference may
due to the alpha band power have nonlinear and relative larger fluctuations in
the theta band power during the transition from alert to drowsy. Studies
showed the alpha activities increased and then started to decrease during
wake-sleep transition [74-76]. Chuang et al. also reported that during mild
drowsy period, the fluctuation of alpha activations was larger than theta and
beta fluctuation [66]. Such alpha fluctuations could result from event-related
desynchronization (ERD) and synchronization (ERS) of alpha activities [48, 60,
77] during the responses to the car deviation by manipulating the steering

wheel.

The effects of warning sound can sustain for a short duration around 10
sec. This implies that the warning sounds could only transiently change the
driver’s drowsiness. For the safety concerned, it is necessary to either
combine with other feedback methods or to include the automatically driving

system in the future to help the drowsy drivers to avoid the car crashes.
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5. Conclusions

In this study, we investigated effects of warning sounds on the behavior
performance and the brain dynamics when drivers were drowsy or inattention
due to fatigue. The event-related lane-departure task was used in the VR
environment to simulate the long-term high way driving and the task-related
EEG spectral dynamics in terms of tonic and phasic changes were analyzed
using independent component analysis, time-frequency and non-parametric
statistical assessments. Results demonstrated the warning sounds can
accelerate the response time and partially inhibit the drowsiness related brain
oscillations. Furthermore, the effects of warning sounds on reducing the
driver’s drossiness could sustain at least for 10 sec. In the future, methods to
refine the characteristics the warning sounds and the combination with other

warning modalities are needed for further studies.
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Appendix I. Instructions and consent
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Appendix Il. Questionnaire
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Appendix lll.Data grouping criterions

In order to compare the effects of warning and the duration of the warning
effects, we classified the total trials into three conditions and they were
alertness, drowsiness without warning (w/o0) and with warning conditions. Each
condition contained three trials, the current trials (trails with or without
warnings), next trials (one trial after with or without warnings) and the next two

trials (two trials after with our without warnings).

We searched all the alertness, drowsiness with and without warning trials.
We only classified and grouped the trials satisfied both the following criterions.
First, the current, next, and 2’nd next trial all had no irregular behavior and
noisy EEG. Second, the next, and 2’nd next trial both were not the warning trial.
For example in Figure 22, the data set beginning from the C trial would not be
selected, because the EEG epoch of 2'nd next trial contaminated with noises
(marked with forbidden symbol). For another example, the data set beginning
from the B trial would be excluded, because the next trial (red square) had

warning stimulus.

Except the 2’'nd next trials data, we also used the two-trial selection to

increase the available data of current and next trials.
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Three-trial selection
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Figure 22. The figure shows the examples of three-trial and two-trial selection
in upper and lower panel. The squares represent the trials in the whole
experiment. The colors represent the condition that data belongs to. The trials
with irregular behavior or noisy EEG epoch are marked with the crosses or
forbidden symbols. The available data sets after selection are shown below
the squares.
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