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( )η r   : the square inverse of the permittivity distribution  

lO    : the eigen operator for the Wannier envelope function 

( )Γ r   : the envelope function 

λ    : the eigenvalue for the Wannier envelope function 

Xk   : the position vector of point X in k space of the triangular lattice  

f   : the filling factor  

r   : the radius of the air hole s 

a   : the conventional lattice constant 

xS    : the stretched parameter 

Sx   : the imaginary part of the stretched parameter  

pmlx   : the position of the interface of the PML  

wellx   : the position of edge of the potential well 

L   : the total length of the system 

( )′∆Γ r   : the envelope of the effective Wannier potential distribution  

*m   : The effective mass 

pmlw   : the thickness of the PML 
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1.  Introduction 

1.1  Motivation 

The concept of photonic band gap (PBG) has been one of the most popular 

topics in recent photoelectronic development. Photonic crystal (PC) is widely 

utilized to enhance the optical properties of single mode light emitting diodes, 

add-drop filters, low loss waveguide bends, polarization selectors, planar 

antenna substrates and semiconductor lasers. The future of photonic crystals 

is unequivocally bright. We can foresee highly efficient photonic crystal lasers 

and extremely bright LEDs (light emitting device) entering the marketplace. 

Photonic crystal diodes and transistors, and even a simple logic circuit for a 

prototype optical computer are envisioned to be demonstrated in at most 30 

years. 

In addition, the slab waveguide with a 2D photonic crystal lattice structure is 
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one of the popular candidates to be fabricated following the standard 

microlithographic techniques. The triangular PC lattice with single defect is 

drilled on the chosen slab to form a resonant cavity. In 1999, an optically 

pumping laser made of an InGaAsP slab with a single defect 2D PC pattern 

was experimentally demonstrated [1]. Many works on simulating the 

aforementioned structure have been published [2].  

However, due to the massive computational cost, the topic of an efficient 

artificial absorbing medium to simulate the unbounded system is also 

attractive. Under urgent requirement is an absorbing boundary condition 

(ABC) with reflectionless absorption of incident waves, regardless of incident 

angle or wavelength. To the end, the stretched perfectly matched layer (PML) 

introduced by Chew [3], et al., is suitable for this purpose and for the case 

under discussion now. 

In this thesis, we will employ a simple but powerful method, which is 

different from those introduced by others, to treat the perfectly matched layer. 

A wave equation, that is the envelope of the resonant optical modes of local 

defects within two-dimension periodic dielectric structures, coupled the 

attenuator parameter- stretched parameter, is derived. The states inside the 

cavity, including guided and bounded states, can be easily found, and have the 

eigenvalues increasing with a reasonable way. 
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1.2  Literature review 

At the very beginning, the concepts of pohotonic band-gap can be traced back 

to 1946 when Edward Purcell [4] described the modification of the coupling 

of matter to the electromagnetic field by placing the system in a cavity. 

Almost forty years latter Kleppner [5] reinvestigated the idea of cavity 

modification of spontaneous emission, and latter in 1987, Yablonovitch [6] 

applied these concepts to the modification of the spontaneous emission in 

photonic band gap materials [7]. Thereafter, the blooming of research works 

around the world has begun. Owing to the inherent size scale, initial studies 

were focused on cavity structures for microwave devices [8]. With the 

maturation of nanometer-size photonic crystal fabrication in semiconductors 

[9] and other dielectrics [10], there has been intensive interest in creating 

optical micro-cavities for spontaneous emission control.  

Many methods were used to simulate the complex distributions of the 

electromagnetic fields in photonic crystal structures. For reducing intensive 

computational cost, various absorbing boundary media have been introduced.  

For example, with the aim of synthesizing an absorbing boundary medium for 

the finite-difference time domain (FDTD) method, the perfectly matched 

layer was firstly introduced by Berenger and treated using the so-called 

split-field equation [11] in 1994. Chew and Weedon [3], and Rappapot [12] 
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then independently modified Berenger’s split-field equation and gave a more 

compact and nonsplit form. This nonsplit form of PML formulations was 

named stretched-coordinate formulation after the attenuator parameter derived 

in split form. Mittra and Pekel kept the split form of Berenger’s equations and 

converted them to the frequency domain for the application of the finite 

element method (FEM) in 1995 [13]. Unitil now there has been much research 

on the FDTD or FEM method, following their innovative works and still 

proceeding. 

In order to illustrate the above description, we searched for the number of 

journal and conference articles on PML and PC for the past decade. Fig.1 

shows the increase in the number of the PML- or PC-related articles with time. 

The data were obtained by searching in ISI web of science® using the key 

words “PML”, “Perfectly matched medium”, “PC”, or “PBG”. As can be seen 

from the figure, the number of papers on PC is growing exponentially. Only 

in 2003, the number has exceeded 500 which is the upper limit set by the ISI 

system.  
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FIG 1 The papers with the topics of “PML” and “PC” in ISI web of science® 
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1.3  Organization 

This thesis is divided into five sections. Section 1 introduces the background 

and the intuitive concepts. Section 2 resolves all the settings and formulations 

associated with the PC structure. Mainly, following O. Painter’s work [14], a 

wave equation with a Wannier-like potential distribution for resonant modes 

of local defects in the PC medium is described. In the section 3, adopting the 

stretched PML concept, a novel wave equation for the envelope function of 

localized defect modes is proposed. The simulation results presented in 

section 4 will demonstrate the capability of the perfectly matched absorbing 

medium coupled with the Wannier-like method for simulating the defect 

modes of the 2D PC triangular lattice. Finally, total work is summarized and 

some simulation results and issues are concluded. 
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2.  Photonic crystal 

Now, finding a Wannier—like equation [15] for the envelope of localized 

photon states in triangular dielectric lattices is the main topic. Of most interest 

are the localized resonant modes of planar 2D PCs formed in optically thin 

dielectric slabs. In what follows, only the TE-like modes are under focus: 

 

 
 

FIG 2  The structure of the PC structure. The vertical and in-plane optical confinement for the slab 

waveguide is shown. Besides, the effective refractive index of the slab is 2.650. (This picture is after O. 

Painter’s paper [14].) 
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2.1  2D PC triangular lattice slab waveguide 

At beginning, the Maxwell’s equations in a lossless delectric medium free of 

currents and free charge are shown as: 

 

0

0

( ) ( ),
( ) ( ) ( ),

0,
0,

r

i
i
ωµ
ωε ε

∇× = −
∇× =
∇⋅ =
∇ ⋅ =

E r H r
H r r E r

E
H

                                 (2.1) 

 

where electric and magnetic fields are the harmonic complex fields with time 

dependence i te ω . Assuming that this material is non-magnetic, i.e. , 

 

0( , )µ ω µ, =k r  

 

and the dielectric function does not depend on spatial or temporal frequency, 

 

0
2

0

( , )

               n ( ).
rε ω ε ε

ε

, = ( )

=

k r r

r                                        (2.2) 

 

From above Maxwell’s equations, we find a wave equation for magnetic 

fields  
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2

0 0
2

2

( ) ( )

                           ( ) ,
c

ωη
ε µ

ω

∇× ( )∇× =

=

r H r H r

H r
                                 (2.3) 

 

where the square inverse of relative dielectric function is as: 

 

2

1 ,
n ( )

η( ) ≡r
r                                               (2.4) 

 

and the light velocity is  

 

01/ .c ε µ0=  

 

Here, the 2D situation is extended to a quasi-2D system consisting of weak 

vertical guiding, realizing that this case is only an approximate theory which 

neglects polarization mixing and all out-of-plane effects. 

Then, it starts at the TE modes in which the magnetic field is described by a 

scalar field, . ẑH=H

The Hermitian eigenvalue equation which results from Eq. (2.3) and 

 is ∇ =H 0i

 

ˆ ,TE
H H HλΟ =                                              (2.5) 
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with the TE eigenoperator given by  

 

2ˆ TE
H η ηΟ = − ( )∇ −∇ ( ) ⋅∇r r                                 (2.6) 

 

The eigenvalue, λ , is related to the square of the frequency of the mode. 

The triangular lattice specifies the periodicity of the host dielectric medium 

(see Fig. 3). Fig. 4 shows the fundamental TE-like guided mode band 

structure (r/a=0.380, ), where the light line is shown as a 

solid yellow line. 

2.650eff slabn n= =

 

 

 

 

FIG 3  Illustration of the real spaces of the 2-D triangular PC ( 1 2a a= = a ) 
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And, what should be mentioned is that, the vertical guiding applies the 

effective index method [16]. So, the refractive index, n0, in the material of 

this kind is 2.650. 

 

 

 

FIG 4  The fundamental TE-like guided mode band structure (r/a=0.380, ) 2.650eff slabn n= =
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2.2  Wannier—like equation for defect modes 

An optically thin dielectric slab surrounded by the air and patterned with a 

2D triangular array of holes defined the resonant cavity here (see Fig.2). The 

fundamental TE-like even mode with an absolute frequency band gap is 

considered. The development for the Wannier equations of this case will 

begin as a scalar field eigenvalue equation, Eq. (2.5), for the magnetic field in 

the quasi-2D approximation [14]. Where the eigenoperator from the 

Maxwell’s equations is 

 

[ ] [ ]2
0 0

ˆ .TE
H η η η ηΟ = −∇ ( ) + ∆ ( ) −∇ ( ) + ∆ ( ) ⋅∇r r r r         (2.7) 

 

The fundamental modes of the perfect crystal are eigenmodes of , 0Ο̂

 

( ) ( )0 , , ,
ˆ H Hl l lλΟ =k k kr ,r                                  (2.8) 
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where l is the band index.  are Bloch waves and can be written as  ,l kH

 

( ) ( ), ,
1H h i

l l e
L

⋅= k r
k kr r ,                                     (2.9) 

 

The Bloch modes near the degenerate satellite extrema of a band edge, 

which most strongly coupled together, are used to form the defect modes: 

 

( )d
1H ( ) i

i i i l
i

c
L ,h .e ⋅= Γ −∑ ∑ k r

k
k

r k k�                          (2.10) 

 

where  here are a set of envelope functions in the Fourier space, which in 

the spirit of the effective mass theory, have amplitudes locally around the 

satellite extreme points, ki. See the illustration of the reciprocal space of the 

triangular lattice in Fig. 5. 

 

 

 13



 

 

 

FIG 5  Illustration of the reciprocal spaces of the 2D triangular PC (
1 2 X J4 3 ,  2 3 ,  4 3G G a a aπ π π= = / = / = /k k ). 

Representations of the mirror symmetry are shown. 

 
Note that there is no inter-band mixing and neither is the band edge of 

interest degenerate. 

Transforming the envelope functions into the real space make the defect 

modes become: 
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( ) ( )d ,
1H h i

i

i
i l i

i
c e

L
⋅≈ ∑ k r

kr .Γ r                          (2.11) 

 

which can be viewed a result of the intra-band mixing of the unperturbed 

Bloch modes of the crystal.  

To find an eigenvalue equation for the envelope functions, so return to Eq. 

(2.5): 

 

( ) ( )l', ' , ,
ˆH Hj j j d l l

j
c λ λ ′Γ − − −Ο =∑ ∑ k k k

k
k k� 0.              (2.12) 

 

With the assumption of only keeping the terms that mix states within the lth 

band, the strongest mixing terms is those states with k near the origin. 

A further simplification can be made since the defect perturbations localized 

in k-space, and with this approximation, 

 

( ) ( )3
,0 .l Oλ λ ιλ λ λ′, ,⎡ ⎤≈ + ∆ + ∆⎣ ⎦k k k                          (2.13) 

 

An approximate master equation for the localized magnetic field envelope 

functions of defect states in Fourier space representation is found. 

Transform back to real space results in a set of coupled Wannier-like 

equations, 
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( ) ( ){ } ( )
( ) ( ) ( ), ,

' 1 '
, ,

'
,

ˆ

   0,j i j i

i d l i l i

i G
j j i j

i j

c

c e

ιλ λ η

η

−

− −∆

≠

⎡ ⎤∆ − −∆ Γ⎣ ⎦

⎡ ⎤− ∆ Γ⎢ ⎥⎣ ⎦∑ k r

p r r

r ri

=

=              (2.14) 

 

and an effective perturbation potential, 

 

( ) ( ) ( )
( )( ) (

'
, ,

, ,

, ,

              + , , .

j i l l i j j i

l l i j j i

Kη η

η

⎡∆ = ∆ ⎣
⎤∇ ∆ ⎦

r r k k G

r L k k Gi )
,

                (2.15) 

 

And further, the inter-ki mixing as a perturbation to the envelope functions is 

formed from the local k-space mixing. This allows writing and independent 

Wannier-like equation for each of the ( )iΓ r envelope functions,  

 

                           (2.16) 

 

Of most importance for the types of resonant cavities studied here are the 

ground-state solutions to Eq. (2.16). For the present work, is taken to be 

equal to the ground-state envelope, 

( )iΓ r

( ),0iΓ r . 
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2.3  Donor defect mode around the X point 

As a similar process in  theory for Bloch electrons in crystalline 

materials, following two band magnetic field the eigenoperator is found as: 

ˆk pi

 

 

2 2
0 0 2

2
0 2 0

ˆ X

i

X

X X
X

X X

O
η η

η η
, ,

, ,

⎡ ⎤−
⎢ ⎥=
⎢−⎣ ⎦

0 k

k 0

k k

k k

� �

� � 2 ⎥                      (2.17) 

 

With the known, it’s allowed to write for the local band structure of the 

conduction band in the vicinity of the Xi point, 

 

2 2

, , * *
, , , ,

x yi i

X Xi
i i

c c
c X x c X ym m

λ λ
∆ ∆

= + +k k k

k k
∼                          (2.18) 

 

with the effective “mass” defined as 
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0 2
0*

, , 0

0 2 0
0*

, , 0 0 2

1 1

21 1

X

i

X

i X

c X x

c X y

m

m

η
η

η

η η
η

η η

,
,

,

, ,
,

, ,

⎧ ⎛ ⎞
= −⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛⎪ = − +⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

k
0

0

k 0
0

0 k

�
�

�

� �
�

� �
⎞                         (2.19) 

 

Lastly, for the Wannier equation of the conduction band envelope at the ith 

X point, it becomes  

 

 

( ) ( ) ( ) ( )
2 2

,* *
, , , ,

i i

X Xi
i i

x y
c d c c

c X x c X ym m
η λ λ,

⎡ ⎤⎛ ⎞−∇ −∇
′+ + ∆ Γ = − Γ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

k kr r
Xi,k r                 

(2.20) 
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2.4  Formulation of problem 

The case applicable to the above theory could be a defect cavity that results 

in an approximate harmonic perturbation potential. By appropriately varying 

the hole radii of the PC consisting of a triangular array of air holes in a host 

dielectric material, the inverse of the filling fraction of the triangular crystal 

can be graded in a roughly parabolic fashion, which is shown in Fig. 6: 

 

 
 

FIG 6  Illustration of the inverse filling fraction factor in a roughly parabolic harmonic fashion along x 

and y direction with green and blue lines are shown. In the center, a triangular lattice PC realizes with such 

air hole radii. 
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The filling fraction of the lattice, f, as a function of air hole radius is  

 

221
3

rf
a

π ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

,                                           (2.21) 

 

For a host dielectric constant material of the refractive index , the average 

dielectric constant of the patterned crystal is  

0n

 

( )2
0 ,f nε =             

 

The resulting slowly varying envelope of the effective Wannier potential is  

 

( )
22

2
, X

0

222 2
2

X
0

1

1            .

i i r k
a n

x yk
a n

ρη
⎛ ⎞⎛ ⎞′∆ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

k

k
                            (2.22) 

 

which is variable separable. Then, applying it to Eq. (2.20), then system is 

simplified into two one-dimensional cases, for its potential depends on x and 

y directions equivalently. 

While only the different effective mass should be noticed, for the rest 

paragraph, just the case dependent on x is under consideration. 
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Now, following the theory metioned above, a hermitian operator is defined: 

 

 ( )0, *

1ˆ
x

x

x
x m x

η∂ − ∂ ′Ο = +
∂ ∂

+                                (2.23) 

 

The subscript, ‘0’, indicates the original system, compared to the system 

surrounded with the PML. 

The total eigenvalue problem is then described as: 

 

( ) ( ) ( )0 0
0 , , ,

ˆ 0
x x n x x nλΟ Γ = Γ                                  (2.24) 

 

Assuming an infinite potential well covers the whole region of the PC 

medium, it’s reasonable to define the basis functions as: 

 

( )

( )

0

1

1

2 cos( )

          ,                   1,3,5....

n

N

n
n x x

N

n n
n

nx C x
L L

C x n

π

φ

=

=

Γ ( ) =

= =

∑

∑ N
 

( )0

1

2 sin( )    2, 4,6....
n

N

n
n x x

nx C x n
L L

π
=

Γ ( ) = =∑ N                (2.25)         

 

The sets of even basis functions and odd basis functions form complete 

solutions for the hermitian operator. 

The orthonormal relation is obeyed, 
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( ) ( )0 0
, ' , ',x n x n nLx nφ φ = δ                                      (2.26) 

 

Finally, solving this eigenvalue problem, the expanding coefficients, , and 

the eigenvalue, 

nc

( )0
xλ , can be found simultaneously: 

 

( ) ( ) ( ) ( ) ( )

( )

0 0 0 0 0
, ' 0, , , ' ,

1

0
',

1

ˆ

                           

N

x n x x n n x n x x nLx n
N

x n n n
n

c x

c

φ φ

λ δ

=

=

Ο Γ = ( ) (

=

∑

∑

xλ φ )

         (2.27) 

 

 

And the envelope functions are obtained by expanding with the coefficients 

and the even or odd basis functions. 
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3.  Perfectly matched layer 

3.1  The split-field formulation of PML and the 

stretched PML 

For aforementioned challenges of the efficient and accurate solution of 

electromagnetic wave interaction problems in unbounded regions, a desire of 

introducing the absorbing boundary condition (ABC) at the outer lattice 

boundary to simulate the extension of the wave solution to infinity is urgent. 

Since 1994, a new fervor in this area has been created by J. P. Berenger’s 

introduction of a highly effective absorbing material ABC designated the 

PML [11]. The innovation of Berenger’s PML is that plane waves of arbitrary 

incidence, polarization, and frequency can be matched at the boundary. To 

this end, Berenger derived a split-field formulation of Maxwell’s equations. 
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Each vector field component is split into two orthogonal components. That is, 

in the continuous space, the PML absorber and the host medium are perfectly 

matched. By choosing loss parameters consistent with a dispersionless 

medium, a perfectly matched planar interface is derived.  

The resulting modified curl equations in the time-dependent form can be 

depicted as [17]: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

0

0

0

0

0

0

r y r xy zx zyt y

r z r xz yxt z

r z r yz xy xzt z

r x r yx zxt x

r x r zx yx yzt x

r y r zy xyt y

E H H

E H H

E H H

E H

E H H

E H

ε ε σ ε

ε ε σ ε

ε ε σ ε

ε ε σ ε

ε ε σ ε

ε ε σ ε

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

+ = +

+ = − +

+ = +

+ = − +

+ = +

+ = − +

yz

zy

xz

H

H

                  (3.1) 

 

Many papers appeared are validating Berenger’s seminal work as well as 

applying the FDTD (the finite difference method in the time domain) with the 

PML medium. A number of modifications of the PML were also proposed to 

enhance its performance. And, the original split-field PML concept has also 

been restated in a stretched-coordinate form, which has been adopted and will 

be discussed in next section. 

A much more compact form of the split-field equations was introduced by 

Chew and Weedon [3] and independently by Rappaport [12]. Here, the 
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split-field equations are re-posed in a nonsplit form that maps Maxwell’s 

equations into a complex coordinate space. For the reason, a coordinate 

mapping into a complex space is introduced: 

  

0 0 0
( ') ',   ( ') ',   z ( ') '

x y z

x yx s x dx y s y dy s z dz→ → →∫ ∫ ∫� � � z     (3.2) 

 

The stretched factors appear 

 

1 1 1,   ,     
x yx s x zy s y z s z

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂� � �                     (3.3) 

 

The stretched gradient operator has the form: 

x y z
x y
∂ ∂

∇ = + +
∂ ∂ ∂z

∂� � ��
� � �                                  (3.4) 

 

Maxwell’s equations in the complex—coordinate stretched space are then 

expressed as: 
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1 1ˆ         =x( )+

1 1ˆ           y( )+

1 1ˆ           z( ),

z y
y z

x z
z x

y x
x y

i

H H
s y s z

H H
s z s x

H H
s x s y

ωε = ∇×
∂ ∂

−
∂ ∂

∂ ∂
−

∂ ∂
∂ ∂

−
∂ ∂

E H�

                          (3.5) 

 

 

 

1 1ˆ            =x( )+

1 1ˆ              y( )+

1 1ˆ              z( ).

z y
y z

x
z x

y x
x y

i

E E
s y s z

E E
s z s x

E E
s x s y

ωµ− = ∇×
∂ ∂

−
∂ ∂

∂ ∂
−

∂ ∂
∂ ∂

−
∂ ∂

H E�

z                          (3.6) 

 

With some approximations, one familiar 2D case is that Eq. (3.5) and Eq. 

(3.6) can be coupled to make a wave equation, what will be a similar form 

with the forthcoming equation, Eq. (3.9). 
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3.2  Envelope function with the PML 

 

 

 

FIG 7  Illustration of the nomenclature for the positions along the x axis. The green region is the PML.  

The red line depicts an infinite potential well at the rim of this system. 

 

Considering the one-dimensional case, the graded-filled PC results in a 

parabolic form of the inverse dielectric constant distribution. For this case, it 

emerged as the effective Wannier potential term, ( )xη′∆ , in Eq. (2.23). 

Depicting ( )xη′∆  along the x-axis in this system, (also see Fig. 7) 
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( )

2 2
2

0

2 2
2

0

             

        ,   ,

x well well

x well well well

k x x x x
n

x
k x x x x

n

η

⎧ − < <⎪
⎪′∆ = ⎨
⎪ − > <
⎪⎩

k

k x        (3.7) 

 

 

And, the Eq. (2.23) can be reformed as: 

 

( ) ( ) ( )*

1
x x x

x

x x
x m x

η λ
⎛ ⎞∂ − ∂ ′+ Γ = Γ⎜ ⎟∂ ∂⎝ ⎠

+ x                         (3.8) 

 

The eigenfunction ( )x xΓ  in the above equation described the envelope 

function of the localized modes confined by the parabolic potential well. The 

first several modes, i.e. bound state, is well confined in the potential well, 

while some modes with higher eigen-frequency leak out the well and travel 

through the constant potential region. After leaking out the potential well, the 

modes was subjected unchanged potential, the sovereign equation under this 

situation thus became 

 

( ) ( ) (*

1
well x x x

x

)x x
x m x

η
⎛ ⎞∂ − ∂ ′+ Γ = Γ⎜ ⎟∂ ∂⎝ ⎠

+ xλ                       (3.9) 

 

As a result, the reasonable solution for this equation is plane waves, and a 

PML-applicable condition appears.  
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To investigate these leakage modes evanescent into infinity, the PML 

surrounded the PC medium is introduced, which applied with the concept of 

stretched PML medium and modified the Eq. (3.9) like: 

 

( ) ( ) ( )*

1 1 1 ,x x x
x x x

x x
s x m s x

η λ
⎛ ⎞∂ − ∂ ′+ Γ = Γ⎜ ⎟∂ ∂⎝ ⎠

+ x                 (3.10) 

 

where the  is the complex stretched parameter, and its imaginary part , , 

should be well determined to reach efficient convergence. The discussion 

about the magnitude and properties of  is presented in the next section. 

xS Sx

Sx

In conclusion, when a leakage mode travels in normal medium or PML with 

the position-independent potential, it can be viewed as a plane wave: 

 

( ) ( )( ) ( )
2

*
2 ,x x x well xx m x x

x
λ η∂ ′− Γ = − Γ

∂
+  

( ) ( )( ) ( )*1 1 .x x x well x
x x

x m x x
S x S x

λ η∂ ∂ ′− Γ = − Γ
∂ ∂

+           (3.11) 

 

If these two equations were solved by  

 

( ) ( )exp ,x nx ikΓ = − or x  

and 

( ) ( )exp ,x px ikΓ = − ml x  
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respectively. It would be found 

 

( )( )* .nor x x wellk m xλ η′= −+                                 (3.12) 

 

Then, 

 

.pml x nork S k=                                            (3.13) 

3.3  Determination of the stretched parameter 

In this section, it is to find out the value and dependent properties of the 

stretched parameter for the PML layer in this system. Only under 

consideration is the one-dimensional planar PML medium, which is as the one 

shown in Fig. 7.  
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FIG 8  The plot for field travels in the form of plane waves through the interface between the normal 

medium and the PML. 

 

 

By Fig. 8,when a plane wave incident through the interface between the 

normal medium and the planar PML medium in the x direction, one 

transmitted wave and one reflective wave take place. After passing through 

the PML medium, the transmitted wave was totally reflected by the artificial 

interface (plotted by pink line at / 2x Lx= ). And, introducing the non-reflection 

boundary condition for the total fields located at both sides of the PML 

interface is the next step. That is, they were made equal: 

 

( )nor pmlik x xAe −

x

y

PML

p m lx
2

Lx

( )nor pmlik x xe− − ( )/ 2pmlik x LxBe− −

( )/ 2pmlik x LxBe −−

pmlW
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( ) ( ) ( ) (/ 2 / 2nor pml nor pml pml pmlik x x ik x x ik x Lx ik x Lxe Ae Be Be− − − − − −+ = − )        (3.14) 

 

And, the amplitude of the reflective wave can be represented as: 

 

2 ,pml pmlik WA e= − i
 

 

By the relation in Eq. (3.13), 

 

2 ,nor pmliSk WA e= − i
 

 

The reflectivity at the PML interface is 

 
2 2 2 1nor pmlk Sx WR A e−= = i �                           (3.15) 

 

where the stretched parameter 

 

1xS i= + .Sx                                             (3.16) 

 
So, here is an approximation that the envelopefunction evanescence at 

/ 2x Lx= . The reflectivity in this system was made as samll as . exp( 8)−

Observing the Eq. (3.15), the dimension of the imaginary part of the 

stretched parameter depends on the effective mass and the thickness of the 
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PML layer. In the Table 1, some S values (imaginary part only) on different 

PML thicknesses along two different directions are shown.  

 

 

Sx 
Wpml 

=5(a) 

Wpml 

=13(a) 
Sy 

Wpml 

=5(a) 

Wpml 

=13(a) 

Sx,1 -2.1432 -1.6123 Sy,1 -3.0403 -2.8766 

Sx,2 -1.1711 -0.4804 Sy,2 -1.4293 -1.5718 

Sx,3 -0.8280 -0.3218 Sy,3 -1.0624 -1.1113 

 

Table 1  Some calculated imaginary part of the stretched parameter for different width of the PML and the 

different direction, x and y. 

 

 

However, since the acceptable range of choosing approximate zero at the 

rim of the system, what really matters is the dimension, not the accurate value 

of S. The negative sign is reasonable for the planewave field proportional to 

harmonic time part, i te ω , decaying with increasing distance in the PML. 
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3.4  Formulation of problem 

For the system surrounded the PML, a new eigenoperator: 

 

( )*

1 1 1ˆ .
x x x

x
s x m s x

η∂ − ∂′Ο = +
∂ ∂

+ ′                          (3.19) 

Here, the same notation following Chew’s stretched parameter, xs , is used. 

And expanded it with the orthonomal functions, sine and cosine, i.e., the 

basis functions in the system without the PML, 

 

( ) ( )0 0
, ,

ˆ .x x n x x nx λ′Ο Γ ( ) = Γ ( )x                                    (3.20) 

 

Then, following the same procedure described in the section 2.4, 

diagonalizing this nonhermitian matrix,  

 

( ) ( )0 0
, ' ,x n x n Lx

φ ′Ο Γ
�

                                      (3.21) 

 

can find the eigenvalue for the frequency of the defect states and the 

corresponding coefficients which can expand the envelope functions. 
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4.  Simulation results 

To investigate the effect of the PML layer and optimize the stretched 

parameter, some simulation results throughout this chapter perform. And 

some results of the original system without the absorbing medium are present 

to compare. 

This chapter is divided into three sections. In the first section, the main topic 

is focusing on the bounded state with two different systems. One is the PC 

slab wave surrounding an infinite well, while another is placing the PML into 

the medium. In the next section, the leaky modes of this system with the aid 

of the PML are found and signified by the distribution of the envelope 

function. The third section shows the calculated defect mode frequencies. 
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4.1  Photonic band-gap for 2D triangular lattice  

The plane-wave expansion method [18] was used here to calculate the 

photonic band-gap and obtain the photonic band structure for this system. 

Fig.2 and Fig.9 differ in their average relative permittivities of each unit cell, 

which are iε  and fε , respectively. The parabolically changed drilling radius 

of air holes results in different average permittivities. The ratios of the radii to 

the conventional lattice constant, , are 0.380 and 0.400, respectively. What 

should be noticed is that 0.380,

/r a

( )0
/r a , it determines the unperturbed 

parameter in my PC system. Following the effective index method for the 

z-direction optical guiding, the refractive index  is 2.650 for this quasi 2D 

system. In addition, to obtain this figure, the number of plane waves used is 

more than 1000. Further, the line with yellow color specifies the location of 

light-line in the normalized photonic band-gap structure. Finally, the gray 

sections locate the absolute gap for TE modes in 2D triangular PC lattice 

under these conditions.  

0n

Besides, this method is utilized to determine the magnitude of ,cλ xk , which is 

the square value of the conduction band edge. 
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FIG 9  The fundamental TE-like guided mode band structure (r/a=0.380, 2.650eff slabn n= = ). 
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 /r a  

CB 

Edge 

( 0/aω λ )

VB 

Edge 

( 0/aω λ ) 

Bandgap 

( 0/aω λ ) 

Fig.2 0.3800 0.4337 0.3036 0.130 

Fig.9 0.4000 0.4599 0.3184 0.142 

 

Table 2  Some parameters and results for the photonic band structure by plane wave expansion method. 

 

In the Table. 2, some important parameters used in simulating process are 

specified. 
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4.2  The envelope function for the defect 

mode — guided mode 

In this section, the simulation results that plot the envelope functions of the 

guided defect modes in this graded-filled photonic crystal medium are 

demonstrated. Eq. (2.24) and Eq. (3.20) are followed by two different cases.  

Some parameters for the donor defect cavity are tabulated in Table.3. 

 

 

*
xm  *

ym  
0

r
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
f

r
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2.2049 0.1811 0.38 0.40 

 

wellx  

(a) 
K ( )wellxη′∆ 0N  pmlN  

11.90 0.002 0.0134 600 800 

 

Table 3  Some important parameters used to simulate are tabulated. 
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In Fig. 9, Fig. 10 and Fig. 11, guided modes estimated by the system without 

the PML, are found. 

Fig.9 and Fig. 10 show the envelope functions expanded with the even and 

odd basis functions, respectively, which depict the guided modes (eigenvalues 

locate at states below the potential wall barrier) localized in the potential well. 

With the settings, there are about seven allowed guided states along x 

direction. The seventh state in Fig. 9 (e), that is, the highest guided mode has 

a long leaky tail into the potential barrier region. For efficient convergence of 

higher-order eigenvalues, and valid evanescence of envelope function at the 

edge, at least 100 basis ( ) is needed.  0N

Fig.11 performs the guided modes along y direction. For the “lighter” 

effective “mass”, there are only two modes guided in the same potential well. 

 Simultaneously, by observing the eigenvalues, for a parabolically 

distributed potential well, almost equivalent distance between each 

neighboring state was found.  

In all the figures of envelope functions, (a) picture plots the envelope 

function of the Wannier-like well potential in order to show the location of the 

finish of potential change. 
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FIG 10  The envelope functions of the guided even modes along x-direction. The total length is 60a. 
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FIG 11  The envelope functions of the guided odd modes along x-direction. The total length is 60a. 
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FIG 12  The envelope functions of the guided modes along y-direction. The total length is 60a. 

 

To proceed, placing a layer of the absorbing medium, PML, can also reach 

similar simulation results of guided modes. In the Fig.13, the system with 

total length the same as the above case was be put the PML at the edge, 

whose thickness is 13 a ( a means the conventional lattice constant). A similar 

profile of the envelope function is got and the difference of eigenvalues with 

the case without the PML is at the third figure after the decimal point. For 

comparison, there are 24 sets of systems with different thickness of the PML 

and different total length of the PC medium used. 
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L 

(a) 
Wpml (a) S N 

60 8 

60 13 

60 18 

Sx 

=-2.1432 

Sy 

=-1.5718 

800 

 

Table 4  Different parameters for calculating the envelope functions. 

 

 

L 

(a) 
Wpml (a) S N 

3 

5 40 

8 

Sx 

=-2.1432 

Sy 

=-1.5718 

800 

 

Table 5  Different parameters for calculating the envelope functions. 

 

The simulation results of each set of parameters meet well with the results in 

the case without the PML. 
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FIG 13  The envelope functions of the guided even modes along x-direction. Surrounding the PML with 

thickness=13a. The total length is 60a. 
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FIG 14  The envelope functions of the first guided mode along y-direction. Surrounding the PML with 

different thickness=8a, 13a 18a. The total length is 60a. 

 

Fig. 14 is plotted to compare the effect of the thickness of the PML on the 

envelope function. The first guided modes for the y-direction eigenvalue 

equation are shown. Most importantly, when the thickness increases and 

reaches the well edge, unwanted truncation occurs, which results in a small 

dimension of inaccuracy at the magnitude of the eigenvalue. Besides, 

compared to the system without the PML, this system needs more basis 

functions in order to make sure the complex eigenvalues convergent well. 
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4.3  The envelope function for the defect 

mode—leakage mode 

Introducing the PML into the system, it’s able to investigate the properties 

and distribution profile of the leaky modes. Some reasonable and reliable 

simulation results are shown. 

Surrounded the PML layer, the leakage modes are computed with three 

different sets of parameters (see Table. 4 ) tunneling through the medium, 

where the Fig.15, Fig.16 and Fig. 17 depict the first four leakage modes for 

different settings. The arrow sign in each picture points out the position of the 

interface between the PC medium and the PML layer. As mentioned in 

chapter 3, the wave solutions here can be classified into two kinds [19]. One 

is the quasi-bounded states, what is wanted and have the form as (c), (d), (e), 

(f). There are also infinite radiation modes, which form as (b).  

Examining the eigenvalues of these leaky modes, those for the radiation 

modes exist unexpectedly, while those for the quasi-bounded states appear 

with their magnitude in a reasonable periodic way. That is, near the bottom of 

the infinite square potential well, the difference of the eigenvalues of 

neighboring quasi-bound states is smaller.  
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FIG 15  The envelope functions of the leaky even modes along x-direction. Surrounding the PML with 

thickness=8a. The total length is 60a. 
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FIG 16  The envelope functions of the leaky even modes along x-direction. Surrounding the PML with 

thickness=13a. The total length is 60a. 
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FIG 17  The envelope functions of the leaky even modes along x-direction. Surrounding the PML with 

thickness=18a. The total length is 60a. 

 

However, when focusing the (c), (d), (e), (f) in the Fig.15, Fig.16 and Fig.17, 

the distribution of the leaky modes is strongly affected by the width of the 

PML unlike the case for guided modes. The effect reflects on the eigenvalues 

as the increase with the larger width of the PML. 
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FIG 18  The envelope functions of the leaky even modes along y-direction. Surrounding the PML with 

thickness=13a. The total length is 60a. 

 

Fig. 18 shows the leaky modes along the y-direction with the same total 

length. Along the y-direction, the third mode becomes leaky. Two similar 

profiles are obtained and appear in (e) and (f). They have similar profile and 

eigenvalues, but they are not totally the same. 

 

 

 51



 

 

FIG 19  The envelope functions of the leaky even modes along y-direction. Surrounding the PML with 

thickness=5a. The total length is 40a. 

 

Decreasing the total length of the system, the efficiency to get the 

guasi-bounded states for the PML is increasing. The thinner of the potential 

well, the more unwanted radiation states disappear. In Fig. 18, (b) shows the 

last guided mode, which has a long tail into the barrier. The figures (c), (d), 

and (e) show the first three leaky even modes. 

 

In summary, a suitable but shorter total length can improve the efficiency of 
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the PML. This also means less number of basis functions to reach 

convergence is needed. In addition, the system with the too thin PML, the 

magnitude of eigenvalues is unstable, especially for the higher modes, and the 

modes near the top of the potential well. However, the system with too thick 

PML close to the edge of the well, the tail of distribution of the field is forced 

to decay and the eigenvalue of the state is affected. 
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4.4 The defect frequency  

In the last section, the defect frequencies for several above cases are present, 

and discuss their differences. 

Firstly, the eigenvalues in Eq. (2.24) and Eq. (3.20) along x and y directions 

have been obtained. Following the Eq. (4.1), and coupling the results in first 

section of this chapter, it’s easy to find the donor defect mode near the 

conduction band edge,  

 

( ) , ,d x y cλ λ λ λ= + +
xk                                   (4.1) 

 

and so the normalized frequency is as 

 

.d dω λ=  

 

Table 4 shows the eigenvalues in the case without PML. The defect 

frequency is real. Since this model is suitable for guide modes, the higher 

modes are expected to be inaccurate. 
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L=60 

1st 0.4234 

2nd 0.4259 

3rd 0.4283 

4th 0.4307 

5th 0.4314 

6th 0.4331 

7th 0.4338 

8th 0.4362 

9th 0.4366 

10th 0.4386 

 

Table 6  The defect modes frequency calculated by the original system. 

 

Then, the case with the PML is under discussion. Table 7 shows the system 

with total length equal to 60a.  
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Wpml=8 Wpml=13 Wpml=18 L= 

60 Real Imaginary Real Imaginary Real Imaginary

1st 0.4234 1.0451E-7 0.4234 1.1865E-5 0.4235 1.6543E-4

2nd 0.4257 1.0220E-6 0.4258 1.5050E-5 0.4259 2.0003E-4

3rd 0.4283 1.0332E-6 0.4284 1.5084E-5 0.4285 2.1111E-4 

4th 0.4304 2.5555E-6 0.4307 1.5097E-5 0.4309 2.1308E-4

5th 0.4313 4.1290E-6 0.4314 1.5224E-5 0.4314 2.1320E-4

6th 0.4331 4.4049E-6 0.4332 1.6088E-5 0.4334 2.8269E-4

7th 0.4336 5.2026E-6 0.4337 6.3210E-5 0.4338 7.3188E-4

8th 0.4338 8.5265E-6 0.4343 6.3592E-5 0.4351 7.3657E-4

 

Table 7  The value of the first several frequencies of the defect modes for the system with the PML. Total 

length L is 60a. 

 

And, Table 8 tabulates the defect mode frequencies in the system with the 

total length equal to 40a. 

For the different total length with different width of the PML, real and 

imaginary parts of the defect frequency both change. Generally, the longer 

and the thicker both make the value become higher. The increasing rate is 

lager for the imaginary part, which means the decay time of the field in the 

medium. The higher order modes, the difference between the two systems 

increases. 
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Wpml=3 Wpml=5 Wpml=8 L= 

40 Real Imaginary Real Imaginary Real Imaginary

1st 0.4234 1.0159E-6 0.4234 5.1405E-6 0.4234 2.1440E-6

2nd 0.4258 1.6518E-6 0.4258 5.0679E-6 0.4258 7.3557E-6

3rd 0.4282 1.6635E-6 0.4283 6.5128E-6 0.4283 1.8646E-5

4th 0.4304 2.6129E-6 0.4305 8.4093E-6 0.4309 7.3024E-5

5th 0.4312 8.8797E-6 0.4314 1.0792E-5 0.4316 1.1605E-4

6th 0.4330 2.5984E-5 0.4331 6.4327E-5 0.4335 1.8544E-4

7th 0.4335 8.8272E-5 0.4337 2.0982E-4 0.4342 2.1307E-4

8th 0.4349 1.6446E-4 0.4352 8.3667E-4 0.4371 3.2649E-4

 

Table 8  The value of the first several frequencies of the defect modes for the system with the PML. Total 

length L is 40a. 

 

Finally, an illustration of putting the fundamental defect mode into the 

photonic band structure is shown in Fig. 20. 
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FIG 20  The blue line specifies the fundamental defect state ( dω =0.4234) in the photonic band structure. 
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5.  Conclusion  

This thesis proposed a novel formulation, in a form with the concept from 

the perfectly matched layer, to treat the envelope functions of resonant modes 

of localized perturbations within periodic dielectric structures. Some 

simulation results of the envelope of the donor type defect modes are 

demonstrated to discuss and optimize the performance of the parameters for 

the PML. 

The structure of the system in this thesis consists of a 2D photonic crystal 

slab waveguide with a triangular array of air holes. By using the effective 

index method for vertical guiding, whole system is viewed as quasi-2D. Only 

the TE-like modes are here under discussion. And putting emphasis around 

the conduction band edge, several donor-type defect modes are found. 

Following the work of the O. Painter’s group, a decoupled and simplified 

Wannier envelope function is adopted. The perturbed potential is 

approximately designed as a parabolic potential well. 

Introducing the stretched parameters in the PML into the Wannier envelope 

functions makes investigating the unbounded leaky modes become practical.  
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The simulation results with 12 sets of different settings are presented for 

comparison and optimization. From the results for calculating the envelope of 

guided modes and leaky modes, it firstly shows that the PML is suitably used 

to be coupled with the Wannier envelope function, not only the Maxwell’ s 

equation. The envelope function for the leaky modes and their eigenvalue are 

obtained easily and efficiently. By comparing the results, it’s found that the 

desire envelope functions and precise eigenvalues are obtained with 

appropriate total length of the system and thickness of the PML. Finally, some 

donor type defect modes are calculated and shown. 
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