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國立交通大學生醫工程研究所 

中文摘要 

 

駕駛者分心已經證實是造成車禍發生的重大原因之一，因此若能及早偵測到

駕駛者心理狀態的變化並給予適當地回饋機制是重要的。因此，本論文以自我映

射 組 織 圖 (Self-Organizing Map, SOM) 來 分 析 、 辨 識 人 類 的 腦 電 波

(Electroencephalogram, EEG)，探討駕車行為下之目標物時距（Stimulus Onset 

Asynchrony, SOA）影響人類分心效應之腦部反應變化，其中 SOM 是模擬人類大

腦學系過程與學習後結果的類神經網路架構。本論文分析、辨識的腦電波，是經

過去除雜訊及獨立成份分析(Independent Component Analysis, ICA)處理後的

前額區以及運動感覺區這兩個腦部皮質收集到的 EEG 訊號，再經過降低維度、特

徵擷取、去除基準、消除差異、標準化、以及平滑化等前處理步驟後才是完整的

輸入資料。本實驗建構的自我映射組織圖大小為 25*25，上述的資料當成輸入並

設定兩階段學習。結果顯示學習後的自我映射圖是呈現二維圖形，經由觀察可以

清楚地分辨單一任務與雙重任務的腦波資料，特別是單純開車和單純回答數學這

兩個任務的腦波資料分別群聚在此映射圖的兩個角落，而雙重任務之腦波資料則

群聚於映射圖中央，儘管有一些神經元是交錯坐落在此圖形中，但經過標示神經

元此一步驟，每一個類別的辨識正確率皆超過百分之 90。藉由此一研究發現雖

然人類的行為表現經有統計檢定沒有顯著性的差異，但是在腦波反應上的確是存
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在細微的變化，而原本個體間差異相當大的腦電波訊號，經過消除差異這一個演

算法處理後，可以大幅降低個體間訊號強弱的差異，並且完整保留處理不同任務

時腦電波訊號的差異性。 

 

關鍵字：自我映射組織圖、腦電波、分心、雙重任務、虛擬實境、目標物時距、

駕車 
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Abstract 

Driver distraction is widely recognized as a leading cause of car accident. It is 

important to detect and determine the mental condition during driver distraction. In 

this study the self-organizing map (SOM) is adopted to recognize of the cross-session 

variability in EEG dynamics for dealing with dual task involving driving and 

answering simple math questions in the stimulus onset asynchrony (SOA) conditions. 

EEG signal from the frontal and the motor cortex are integrated to use as the input 

data. Each trial of the input data was processed with removal of baseline, feature 

extraction, and normalization. Then, the processed data was recognized by the SOM 

which constructed 25*25 maps through a two phase training scheme. Our results 

demonstrated that five cases (three dual-task and two single-task cases) can be 

distinguished clearly by the SOM-based method. Especially each single-task case was 

clustered in a distinct spatial area of the maps and the other dual-task cases showed 

several subgroups in the middle of the maps. Although some neurons were mixed in 

the maps, the accuracy of each case was higher than 90% after labeling. In conclusion, 

even if there was no significant difference in the behavioral data between two cases, 

such as response time and driving performance, the proposed SOM-based exploratory 
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algorithm using EEG suggested existence of distinct signatures among the five cases.  

We have also suggested a method to reduce the variation among subjects for the same 

task and thereby could yield better maps. 

 

Keyword: SOM, EEG, distraction, dual task, Virtual Reality, SOA, driving 
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1. Introduction 

 

1.1 Motivation 

Driving is a complex task, requiring the concurrent execution of various 

cognitive, physical, sensory and psychomotor skills [1]. An enduring question about 

the human mind concerns the ability to do two or more things during driving. Driver 

distraction is a significant cause of traffic accidents and is believed to account for 

more deaths. The National Highway Traffic Safety Administration (NHTSA) and the 

Virginia Tech Transportation Institute (VTTI) reported that driver distraction is 

involved in 25-80% of traffic accidents [2]. That is because driver distraction is a 

significant contributor to road traffic accidents [3] [4]. Recognizing driver’s attention 

related brain resources during driving is very important and verifying the distraction 

level is still a challenge for researchers. 

While driving, drivers must continually allocate their brain resources about 

attention to both driving and non-driving tasks. As technological and informational 

capabilities of our environment increase, the number of available information streams 

increases, and hence the opportunities for complex multitasking increase. Reasons of 

distractions found during diving were quite widespread, including eating, drinking 

talking with passengers, use of mobile phones, reading fatigue, problem-solving, and 

using in the car equipment. Recently, technology skills increase, commercial vehicle 

operators with complex in-car technologies (such as navigation, road traffic 

information, mobile telephones and in-vehicle entertainment system) are also at 

increased risk since drivers may become easily distracted in the years to come, thus 

making it likely that the problem of driver inattention [5] [6]. And a large number of 
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behavioral studies have now shown that performing another cognitive task while 

driving an actual or virtual car substantially degrades driving performance [3] [4] [7] 

[8]. Experimental studies have also been conducted to assess the impact of specific 

types of driver distraction on driving performance.  

Drivers can, however, be distracted by an activity or event to the extent that they 

no longer allocate sufficient attention to the driving task and their behavior 

representations may change. So monitoring and identifying driver’s distraction 

/inattention while driving has the potential to detect the dangerous behaviors that are 

related to distraction, such as head swinging, eye movement, blinks, body movement, 

and response time of steering car. But some studies show that few aspects of driving 

are unaffected by a secondary task [9] and in some cases certain aspects improve [10] 

[11]. That is, distracted drivers impact their normal cognitive processes and divide 

their attention between the steering and other secondary tasks. Although numerous 

behavioral indicators are available to monitor the driver distraction, the brain 

activities of “divided attention” refer to attention divided between two or more 

sources of information, such as visual, auditory, shape, and color stimuli. The relation 

between the brain activities and human cognitive state is higher than the reactions of 

behavior.  

The EEG has been used for 80 years in clinical practices as well as basic 

scientific studies. Nowadays, many studies show that Electroencephalogram (EEG) 

measurement might be the most predictive and reliable physiological indicator of 

driver fatigue [12-16]. EEG is much less expensive and has the superior ability of 

temporal resolution. Some studies used EEG to investigate mental arithmetic-induced 

workload increasing, and the finding is power increase in theta band in the region of 

frontal lobes [17] [18]. And several neuroimaging studies showed the importance of 

the prefrontal network in dual-task management [19] [20]. Since the effect of changes 
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in cognitive state on EEG is quite strong, in this study we will use EEG as our 

information source. In order to provide a driver more information before traffic 

accidents, we extract the features of brain activities during driving and analysis the 

recoded Electroencephalography (EEG) signal from designed different conditions.  

 

1.2 Previous Literature 

    In several brain-computer interface (BCI) studies, most approaches are 

EEG-based, because the EEG system is small and easy to take it with you. They 

depict a BCI as a pattern recognition system and emphasize the role of classification 

[21] [22] [23]. And it also is sensitive to variations in cognitive and behavioral states. 

We can monitor the changing of EEG about distracted driving and identify “patterns” 

of brain activity through the classification algorithms. 

Supervised classification methods are employed to learn to recognize the 

recorded patterns of EEG signal [22]. The classes of every sample used in teaching 

the classifier must be defined. But there are two problems for this learning method 

[23]. Firstly, the EEG data is noisy and correlated as many electrodes need to be fixed 

on the small scalp surface and each electrode measures the activity of thousands of 

neurons [24]. In our study, we employed an independent component analysis (ICA) to 

remove this type of noisy and previous studies demonstrated that ICA algorithm is an 

efficient processing method [25] [26]. Secondly, the quality of the data is affected by 

the different degree of the subject and changes in their concentration. It may be 

difficult to treat and define the samples containing two or more phenomena of interest 

[27]. In an unsupervised learning process, the samples are unlabeled as contrasted 

with supervised training. 

Linear classifiers are probably the most popular algorithms for EEG 
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classifications like the well-known Fisher linear discriminant [28]. But previous 

studies found that neural networks such as signal space projection (SSP) achieve 

significantly better recognition rates than linear approaches such as [29] [30]. SSP is 

similar to principal component analysis (PCA) and related methods in that reference 

vectors can be estimated directly from data. However, contrary to SSP’s reference 

vectors do not need to be orthogonal and each reference vector can be the 

representation of the corresponding patterns. The study [30] shows that it is a good 

performance for classifying the recorded EEG signal by Self-Organizing Maps (SOM) 

[31] [32], and the SOM algorithm is related to SSP. By these advantages, we choose 

the SOM to carry out classification. 

Self-Organizing Map (SOM) is implemented through a neural network 

architecture that is believed to be similar in some ways to the biological neural 

networks [31] [32] [33] [34]. This artificial neural network offers an alternative 

approach to brain activities that provide a mechanism for visualizing the complex 

phenomenon of cognitive states. SOM is an unsupervised algorithm that clusters 

similar input to allow its output neurons to compete among themselves to become 

activated. 

The principal goal of Kohonen’s SOM is not only to transform an incoming 

signal pattern of high dimension into a 1-D, 2-D, or 3-D discrete map, but also 

presentation of structure in the data. The SOM creates an easy visualization of 

topographic relations for a high-dimensional input space during training process. This 

is a characteristic of SOM and this specialty differs from traditional cluster algorithm. 

The maintenance of similarity relations allows an easily understandable visualization 

of topographic EEG patterns: similar patterns are represented near each other on the 

trained map. While the end results of the SOM analysis is some form of data 

clustering, unlike clustering algorithm the basis SOM methodology is not just 
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primarily concerned with grouping data or identifying clusters. 

Another major difference with most cluster algorithms is that it is not only the 

closest node that is updated during the unsupervised learning process, but all 

surrounding neurons are also incrementally adjusted toward the input vector in 

inverse proportion to their distance from the best-matching (winning) neuron [35]. 

The reference vector of the best-matching neuron is then modified such as to reduce 

the difference with the input vector by defined learning rate. Each location on a 

Self-Organized Map entails a model for a cluster of similar signal patterns that 

occurred during this Self-Organization. And the training data does not become part of 

a group at this time.  

 

1.3 Thesis Organization 

The main goal of this study is to investigate the driver’s distraction level through 

the SOM algorithm. A Virtual-Reality based realistic driving environment is 

constructed to provide the drivers kinesthetic perceptions during driving. Unlike the 

previous studies, our experiment has three main characteristics. First, the stimulus 

onset asynchrony (SOA) experimental design, the different appearance time of dual 

tasks (mathematical questions and unexpected car deviation) is the benefit for us to 

investigate the driver’s cognitive and physiological response under multiple 

conditions and multiple distraction levels. Second, the ICA-based advanced signal 

analysis methods are combined with the SOM algorithm. Third, we reduce the 

relatively large subjective variability in EEG dynamics and find that EEG suggests 

existence of distinct signatures although there is no significant difference in the 

behavioral data. 
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This thesis was organized in 6 chapters. Chapter 1 briefly introduced current 

knowledge of cognitive states during distracted driving and the analytical 

classification algorithms. Chapter 2 detailed the apparatus and materials of the study. 

Chapter 2 also described the details of designed experiment, including the time course 

of event onset asynchrony setup. In chapter 3, we expound the feature processing to 

prepare the analysis of SOM. Chapter 4 showed the results and we discussed and 

compared with our finding in Chapter 5. Finally, we conclude our findings in 

Chapter6. 
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2. Experiment Design and System Architecture 
    

The most concerned issue in dual-task studies was the effect of distraction on 

driving because it directly related to public safety. For example, using cell-phone, 

tuning radio or looking at the road-sign could distract the drivers from their driving 

task and cause serious traffic accidents. However, the driving experiments were very 

dangerous if they were took place on road. The environment was employed in the 

setup of dual-task experiment as shown in Fig. 2-1. 

 

 
Fig. 2-1: The illustration of the experimental setup. 
It includes the dynamic VR driving environment and the EEG-based physiological 
measurement system. 

 

With combining the technology of virtual reality (VR), a driving environment 

was constructed for the safety of driving experiments in our lab. In this study, a 

VR-based driving system was applied for interactive driving experiment. VR 
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technology is gradually being recognized as a useful tool for the study and assessment 

of normal and abnormal brain function, as well as for cognitive rehabilitation [17]. It 

included three major parts as shown in (1) the 3D highway driving scene based on the 

virtual reality technology, (2) a real vehicle mounted on a 6-DOF motion platform, 

and (3) a physiological signal measurement system with 36-channel EEG/EOG/ECG 

sensors. The full details of experimental system architecture will be described as 

followers.  

 

2.1 Dynamic Driving Environment 

A virtual-reality (VR) based highway-driving environment was used to 

investigate the changes on drivers’ distraction effect. Some of our previous studies to 

investigate changes in drivers’ cognitive states during a long-term monotonous 

driving have also used the same VR-based environment [12] [17] [36]. The VR 

driving environment includes 3D surround scenes projected by seven projectors and a 

real car mounted on a 6-degree-of-freedom (as showed in Fig. 2-2(A)) Stewart 

platform to provide the kinesthetic stimuli [37]. During the driving experiments, all 

scenes move according to the displacement of the car and the subject’s maneuvering 

of the wheels (as showed in Fig. 2-2(B)) which make the subject feel like driving the 

car on a real road. The dynamic driving environment provided a safe, time saving and 

low cost approach to study human cognition under realistic driving events. The 

subjects could interact directly with the environment and receive the most realistic 

driving conditions during the experiments. 
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Fig. 2-2: Pictures showed the dynamic VR driving environment. 
This equipment is in the Brain Research Center of National Chiao Tung University, 
Taiwan, and ROC. (A) One real car in the 3D VR environment was mounted on the 
6-DOF motion platform. (B) The steering wheel of this car was used to handle the car 
and the subjects interacted directly with VR-environment through this steering wheel. 
There were two buttons (yellow and green) on the steering wheel for subjects to 
answer the mathematic equations. A camera was places at the left part of the steering 
wheel to monitor each subject during the experiment. 

 

The VR scene was generated by the Virtual-Reality technology with a World 

Tool Kit (WTK) library. The VR scenes of different viewpoints were projected on 

corresponding locations. Fig. 2-3 showed the layout of our simulator. The front screen 

marked 1 and 2 was overlapped by two polarized frames to reach the binocular 

parallax. The frames for the left and right eyes were projected onto the frontal screen 

with two projectors, respectively. By wearing special glasses with a polarized filter, 

the configuration provided a stereoscopic VR scene for a 3D visualization. In our VR 

scene, the surrounded screens covered 206° frontal FOV and 40° back FOV, as shown 

in Fig. 2-4. Frames projected from 7 projectors were connected side by side to 

construct a surrounded VR scene. The size of each screen had diagonal measuring 

2.6-3.75 meters. The vehicle was placed at the center of the surrounded screens. 

Detailed information was shown in Table-1. 
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Fig. 2-3: The picture showed the configuration of the 3D surrounded scene.  
The 3D VR scene consisted of 7 projectors, creating a surrounded view. The frontal 
screen was overlapped by 2 projector frames in different polarizations, providing a 
stereoscopic VR scene for 3D visualization. 

 

 
Fig. 2-4: The picture showed the overview of surrounded VR scene.  
The VR-based four-lane highway scenes were projected into surround screen by seven 
projectors. 
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2.2 Experimental Design  

To investigate the effect of stimulus onset asynchrony (SOA) on the behavioral 

performance and differences on brain activities between single- and dual- task 

conditions in a virtual environment, we designed two tasks: unexpected car deviation 

and calculation of mathematical equations. The combinations of these two tasks 

provided different distraction effects to the subjects. 

We developed a VR highway environment with a monotonic scene and 

eliminated all unnecessary visual stimuli as shown in Fig. 2-5. The four lanes from 

left to right were separated by a median strip in the VR-based scene. Our design was 

that the car must be kept in the third lane form the most left. The distance from the 

left side to the right side of the road was equally divided for outputting digital signal 

from WTK program, and the width of each lane and the car was 61 units and 32 units, 

respectively (as showed in Fig. 2-5). In the VR scene, the simulated driving speed was 

controlled by a scheduled program, thus subjects need not to step on paddles, to 

prevent large muscle activity on the throttle or brake. 

 

Table-1: The Specification of driving simulator 
Screen Number or Location Dimension 
Screen Number 1, 2, 3, 4 (FOV 42°) (W)×(H) = (300 cm)×(225 cm) 
Screen Number 5, 6 (FOV 40°) (W)×(H) = (270 cm)×(202 cm) 
Screen Number 7 (FOV 40°) (W)×(H) = (210 cm)×(157 cm) 

Vehicle Dimension 
(L)×(W)x(H) = 
(430 cm)×(155 cm)×(140 cm) 

Driver to Front Screen (1, 2) 370 cm 
Driver to Left and Right Screen (5, 6) 220 cm (Left) and 300 cm (Right) 
Driver Head Height Relate to Screen 1 120 cm 
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Fig. 2-5: The illustration of the monotonic high way scene.  
The monotonous scene was designed to reduce the visual disturbance. The width of 
highway from the left to right side was equally divided into 256 units and the width 
of the car was 32 units. 

 

We designed four sessions in one complete driving simulation experiment for 

each subject and the session duration was 15 minutes. In each session, the subject sat 

in front of the monitor with their hands on the steering wheel to control the car in the 

center of the third lane (from the most left lane). Among these four-session 

experiments, the subjects were forced to rest for ten minutes between every two 

sessions to avoid getting tried. On the other hand, to avoid anticipative effect for 

subjects the events were presented to the subjects randomly [38], as shown in Fig. 2-6. 

The inter-trial intervals were set from 6 to 8 seconds and the independent trials were 

not interaction to affect the subject. Thus a total of 100 trials could be presented to the 

subject in each session to ensure the number of events is enough for statistical 

analysis. There were about 80 trials in each case during one entire experiment. 
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Fig. 2-6: The illustration of the experimental paradigm. 
Five cases were randomly appeared and the inter-trial intervals were varied from six 
to eight seconds. There were four sessions (15 minutes / per session) in each 
experiment. 

 

Since the main purpose of this experiment was to investigate the distraction 

effect in dual-task conditions. Therefore, two tasks were designed including the car 

unexpected deviation and the mathematical equations. The car would randomly drift 

from the third lane of the road in the deviation task. When this event was occurred, 

subjects had to operate the steering wheel to keep car in the original third lane. The 

detail descriptions of this driving task were shown in the Fig. 2-7. 

Response time 
was recorded

A B C D

Response time 
was recorded
Response time 
was recorded
Response time 
was recorded
Response time 
was recorded

A B C D

 
Fig. 2-7: The illustration of the deviation event.  
There are four steps in one complete deviation event. (A) Vehicle moving in straight 
line; (B) the onset of deviation event; (C) response to the deviation and (D) vehicle 
back to middle lane. 



 14

Two-digit addition equations were presented to the subjects in the mathematics 

task as shown in Fig. 2-8. The answers to the equations were already designed to 

present with the equations but they could be either right or wrong. The subjects were 

asked to press the buttons on the steering wheel as soon as they can. When the 

equation is correct, the subjects must press the right button. On the other hand, they 

would press the left button for the wrong mathematic equation. The event allotment 

ratios were 50% and 50% for right and wrong equations, respectively. 

 

 
Fig. 2-8: The illustration of the mathematic equation.  
The mathematic equation would be showed in front of the windscreen and the 
subjects were asked to response the answer. If the equation was correct, the right 
button on the steering wheel (as showed in Fig. 2.2(B)) might be pressed. On the 
other hand, the subject might press the left button when the equation was wrong. 

 

The combinations of these two tasks were used to provide different distraction 

effect to the subjects. Five conditions were developed to study the interaction of the 

two tasks, they are: (A) math was presented at 400ms before deviation 

(math-400ms-deviaiton), (B) two tasks were presented at the same time 

(math-deviation) (C) math was presented at 400ms after deviation 
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(deviation-400ms-math), (D) only math presented (single-math) and (E) only 

deviation occurred (single-deviation). The illustrations of the five conditions were 

shown in Fig. 2-9. A pilot study was designed to determine the time of stimulus onset 

asynchrony, and the result suggested the interaction between tasks is significant with 

400ms time interval. Thus, we adopted 400 ms as the time of stimulus onset 

asynchrony. 

 

 

 

 

 
Fig. 2-9: The illustration of five cases in our experiment. 
The 5 cases were randomly appeared in the whole experiment. Each sub-figure 
shows the relationship between the deviation onset and math occurred. M is the 
mathematic equation and D is the task of car deviation. (A) Case 1: math was 
presented at 400ms before the deviation onset. (B) Case 2: math and deviation 
occurred at the same time. (C) Case 3: math presented at 400ms after the deviation 
onset. (D) Case 4: only math presented. (E) Case 5: only deviation occurred. 
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2.3 EEG Signal Acquisition 

A standard for the placement of EEG electrodes proposed by Jasper in 1958, 

which is known as the 10-20 International System of Electrode Placement [39] is used 

in the electrode cap. An illustration of the 10-20 system is shown in Fig. 2-9(A), the 

electrodes are named according to the location of an electrode and the underlying area 

of cerebral cortex. An electrode cap was mounted on the subject’s head for signal 

acquisition as shown in Fig. 2-9(B).  

The letters F, C, T, P, and O were refer to the frontal, central, temporal, parietal, 

and occipital cortical regions on the scalp, respectively. The term “10-20” means 10% 

and 20% of the total distance between specified skull locations. The percentage-based 

system allowed differences in skull locations. The physiological data acquisition used 

30 sintered Ag/AgCl EEG/EOG electrodes with a unipolar reference at right earlobe 

and 2 ECG channels in bipolar connection placed on the chest.  

The 36 electrodes including 34 EEG/EOG channels , 2 ECG channels (bipolar 

connections between the right clavicle and left rib), and one 8-bit digital signal 

produced form VR scene were simultaneously recorded by the Scan NuAmps Express 

system (Compumedics Ltd., VIC, Australia) shown in Fig. 2-10. It was a high-quality 

40-channel digital EEG amplifier capable of 32-bit precision sampled at 1000 Hz. 

Table-2 showed the specifications of the NuAmps amplifier. Before acquiring EEG 

data, the contact impedance between EEG electrodes and skin was calibrated to be 

less than 5kΩ by injecting NaCl based conductive gel. The EEG data were recorded 

with 16-bit quantization levels at a sampling rate of 500 Hz in this study. All EEG 

data were preprocessed using a low-pass filter with a cut-off frequency of 50 Hz in 

order to remove the power line noise and other high-frequency noise. Similarly, a 

high-pass filter with a cut-off frequency at 0.5 Hz was applied to remove baseline 
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drifts. 

 
Fig. 2-10: The EEG apparatus. 
This figure showed the EEG apparatus of the physiological recording. A: the 30 
channel location. The letters used are: F: Frontal lobe. T: Temporal lobe. C: Central 
lobe. P: Parietal lobe. O: Occipital lobe. Z: refer to an electrode placed on the 
mid-line. B: The NuAmps EEG amplifier and the electrode cap. 

 

 

2.4 Subjects 

We have used a set of 11 subjects to collect EEG data for the investigation and 

the participants were the same as used in [17]. The subjects’ ages range between 20 to 

28 years old, with a mean of 24 years. They were requested not to drink tea, smoke, 

drink caffeine, use drugs, or drink alcohol, all of which could influence the central 

and autonomic nervous system, for a week prior to the main experiment. The subjects 

had to pay attention to the designed conditions and respond as quickly as they can. We 

Table-2: Specifications of NuAmps 
Analog inputs 40 unipolar (bipolar derivations can be computed) 
Sampling frequencies 125, 250, 500, 1000 Hz per channel 
Input Range ±130mV 
Input Impedance Not less than 80 MOhm 
Input noise 1 µV RMS (6 µV peak-to-peak) 
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arranged the experiment in the morning and asked each subject to wash their hair right 

before coming for experiment so that we can collect more useful data. Before the 

beginning of each experiment, the subject needed a 15~30 minutes practice depending 

on when they got used to perform designed two tasks. Each subject had to achieve 4 

sessions (15 minutes per session) and took a break between sessions. So a complete 

experiment took about one and a half hours to complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19

3. Methods 
 

After the recording of the multi-channel EEG signals from 11 subjects, the data 

were analyzed for the study of distraction effect. EEG epochs were extracted from the 

recorded EEG signals after sown sampling, filter and artifact removal. We used 

Independent Component Analysis (ICA) [40] to separate independent brain sources. 

After the recorded EEG data analysis, we choose the data in Frontal and Motor 

components to be our feature for investigating the distraction levels. The extracted 

feature about EEG power must be processed first to be compatible with SOM. The 

steps of processing included downsizing the dimension, removing the baseline, 

reducing the variation among all subjects, normalizing and smoothing. The data have 

been adequately represented in the input space, and SOM training was performed. The 

algorithm of SOM was first demonstrated in an abstract system, without reference to 

any biological structures or signal types. Then we defined a mapping from the input 

data space R500 onto a two-dimensional array of neurons. We chose a rectangle lattice 

with dimensions 25×25 and two phases learning process [27]. In this study, we 

proposed two methods to recognize the EEG epochs which were not trained the maps. 

The data base was created by the some taught maps and used the data set for the 

recognition of new EEG epochs from new or the same subjects. 

 

3.1 EEG Signal Processing 

Fig. 3-1 showed the flowchart of the proposed data analysis procedure for EEG 

signals. The EEG data were recorded with 16-bit quantization level at a sampling rate 

of 500 Hz and the recording were down-sampled to sampling rate equaled 250 Hz for 

the simplicity of data processing. The EEG data were then processed using a simple 
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low-pass filter with a cut-off frequency of 50 Hz to remove the line noise (60 Hz and 

its harmonic) and other high-frequency noise for further analysis. A simple high-pass 

filter with a cut-off frequency of 0.5 Hz was used to remove the DC drift.  

 

Fig. 3-1: The flowchart showed the EEG signal processes. 
The EEG raw data were pre-processing by this flowchart. At the beginning, we used 
low-pass filter and high-pass filter to remove the line noise and the DC draft. All 
epochs in the same case were extracted from the continuous EEG data and run the 
ICA. After running ICA, the source segregation of each subject was extracted. 

 

Since we had designed different cases with the combinations of the driving and 

the mathematic tasks, thus the EEG response related to different cases should be 

extracted from the original EEG signals for further analysis. We extracted epochs 

from continuous EEG data and combine all epochs to run Independent Component 

Analysis (ICA) [40]. The epoch is a length of EEG signal and this segment of EEG 
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data equals to the length of a case. The ICA methods were extensively applied to 

solve the problem of EEG source separation, identification, and localization since 

1990s [41-46]. We used the method of ICA to separate independent brain sources. The 

activation in Frontal areas was induced by mental task which were reported in the 

previous studies [17, 18]. The studies also showed that the spectra in Motor 

component were difference between the single- and dual- task conditions. We 

extracted the processed EEG signal in Frontal and Motor components to be our 

features for investigation the distraction levels by SOM in this study. 

 

3.2 Features Extraction 

The features were the EEG data in Frontal and Motor component. Before we 

analyzed the extracted component data by SOM, the feature had to be processed.  

We wanted the features clearer and less variation. The flowchart of features 

processing was showed in the Fig. 3-2. We proposed some methods to process our 

extracted data. The detail steps and meaning of each method would be described in 

detail. 

 

Downsizing 

We designed the stimulus onset asynchrony (SOA) experiment, especially the 

different time interval of the dual tasks. The extracted features were the epoch-based. 

There was huge amount of information in our original EEG data. The data were 

epoch-based and included the information of timing. There were five thousand time 

points (1 second is the baseline and the other 4 seconds is phasic) in one epoch. In this 

research, the feature with combined with the EEG signals in Frontal and Motor 
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components to provide the more clear phenomenon than the data in each single 

component. Although the time points of EEG epochs in the two components equaled 

to five seconds, the dimensions of combined features were twice than the original 

EEG epochs in single component. We wanted to reduce the dimensions of the 

combined features and not lose any information about time and the perturbation of 

frequencies in each epoch. We could see the Fig. 3-3 to understand the detail 

information. Each epoch was equally divided into ten intervals. The length of phasic 

part in each epoch was 4 seconds so one interval was 400 milliseconds. We applied 

Fast Fourier Transform (FFT) for each interval to transform the signal from time 

domain to frequency domain.  

. 

 
Fig. 3-2: The flowchart of steps about EEG data processing and analyzing. 
The two parts are feature processing and then using the processed data to train the 
maps by SOM algorithm. We applied these steps to process the EEG signals (as 
showed in the left part of this figure). Then the power spectra were the input data for 
the Self-Organizing Map. 
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After applying the FFT, The main difference in power spectra among five cases 

could be observed about 5~14 Hz in Fontal component and 8~25 Hz in Motor 

component [17]. But there were 50 frequencies for each time point in the original 

EEG epoch. To reduce the dimensions of each interval, these values in the active 

bands by dealing with tasks were reserved. We just preserved the 1~20 Hz of Frontal 

component and 1~30Hz of Motor component in each interval. Then the data for 

Frontal (Motor) component in each interval were 20 (30) Hz and there were 10 

intervals in each epoch. The features of Frontal or Motor components were reduced 

from 4000 time dimensions to 200 or 300 frequency and time dimensions, 

respectively. After this step, we got fewer dimensions and preserved the timing and 

frequency information in each interval.  

 

 

Removing Baseline 

There were four designed sessions in one complete experiment and the EEG 

signal was collected during one hour. There were many epochs in each session, and 

Fig. 3-3: The figure showed ten intervals and the baseline.  
The length of each epoch from event-onset to event-offset during the experiment was 
4000 milliseconds (4 seconds). One trial was divided to ten intervals so the length of 
all intervals was 400 milliseconds. The frequencies less than 20 (30) Hz in Frontal 
(Motor) component were reserved in this step. There were 50 points in each intervals 
and one epoch would be reduced to 500 points. 
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the events were presented to the subjects randomly in order to prevent anticipative 

[38]. Since we had designed different cases with the combination of the driving and 

the mathematic tasks, thus the EEG response related to different cases should be 

extracted from the analyzed EEG signals. To investigate the changing on brain 

activities between single- and dual- task conditions in a virtual environment, we just 

analyzed the EEG signals from onset of the event to the end of that epoch. The 

baseline was the mean of the EEG signal one second before the event onset. In order 

to investigate the changes in spectral power and the perturbations in the oscillatory 

dynamics of ongoing EEG, the baseline of each EEG epoch was removed by a 

dividing method. The unit of EEG signal is decibel (dB), and the dB is a logarithmic 

unit of measurement that expresses the magnitude of a physical quantity relative to a 

specified or implied reference level.  

Because the FFT was applied to all EEG epochs, there were 50 frequency points 

originally. However, after the step of downsizing was processed, there were just 20/30 

frequency points (1~20Hz/1~30Hz) for Frontal/Motor component. The length of 

baseline was 1000 milliseconds in Fig. 3-3. In other words, there were 1000 time 

points and 20 or 30 frequency points in each time point. The baseline was averaging 

all same frequencies which located at this time interval. Because dB is a logarithmic 

unit, each particular frequency in the EEG epoch was divided by that frequency 

during the baseline. After this step, we can ensure the EEG signals were main caused 

by the responding the tasks, excluded of reasons by the “state of mind”. 

There were four sessions in one complete experiment. Each session of all 

experiments was set in the same circumstance, and the subjects were asked to keep 

the same psychological and physical situation during the experiment. However 

different people might not have the same phenomena for the same task; in other words, 

the degree of spectrum power or mental situation for the same tasks were not the same 
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among people. We wanted to analysis the influence of distraction instead of the 

difference among all subjects. In order to decrease the diversity in people and keep the 

variation among all five cases, we proposed this method of subtracting mean vector.  

 

Reducing Variation 

All epochs of five cases in the same subject were extracted from the data set. 

There were five hundred points in each epoch which was contained two hundred 

points from Frontal component and three hundred points from Motor component. 

Each dimension of all epoch extracted before from case 1 to case 5 was averaged to 

get one mean value. There was one mean number for one dimension from these 

extracted EEG epochs. We called this vector mean vector. The dimensions of mean 

vector and processed EEG signals were the same. The method of computing was 

showed in Fig. 3-4. 

 

 

We subtracted this mean vector from each EEG epochs in that subject. If this step 

Fig. 3-4: The method of calculating the mean vector.  
All EEG epochs of five conditions in the same subject were extracted from the data 
set. The mean value would be calculated for each dimension of these epochs by 
averaging all number in the current dimension. There were five hundred dimensions 
in each epoch and we would get the same numbers of mean value. These mean 
values were called mean vector. 



 26

of subtracting mean vector was not performed, the variation among subjects would be 

presented by the SOM map. In practice, the performance of the maps with subtracting 

the mean vector would be better. We would discuss this issue into details in Section 

5-1. 

 

Normalizing 

Although we subtracted the mean vector for all epochs in each subject, the 

variation among the trials was still in our data. For example, someone performed two 

tasks A and B. However these two tasks were in the same condition, they were not 

happened in sequence. Many events in other condition would be appeared during the 

interval between A and B. by reason of events random occurred, the level of excited 

for these two tasks might be different. Before running the Self-Organizing Map with 

the multiple high dimension data, it is important to reduce the variation among 

different epochs. We carried out a normalization method like Z-Score to remove this 

abnormality. This algorithm was applied for each particular case by the order number 

of subjects. There were n trials in each case of one subject. First the mean value (Smean) 

of those trials was computed by the following equation (1): 

 

                                                         (1) 

 

Where X is the input space, n is the total number of epochs in each case, i is the index 
of epoch number, and d is the dimensions of the input space. 

In the second step the standard deviation (Sstd) was calculated by the same data by the 

following equation (2): 
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                                       .                       (2) 

 

Then we took these two values to normalize all epochs in that case. Each frequency in 

every trial was subtracted by the mean value (Smean) and divided by the standard 

deviation (Sstd). The normalization of trial T was processed by the following equation 

(3): 

 

                                       .                       (3) 

 

Smoothing 
We used a componentwise moving average to smooth the power spectra data. 

The size of moving window was the 10% epochs of that case in that subject, and the 

window was shifted by 1 epoch. The moving was processed by circular motion. For 

example, there were 100 EEG epochs in that case. The first window used epochs 1 

through 10, the second window used epochs 2 to 11, and the latest window was used 

epochs 100 through 9. A moving average (computed using the 10% epochs) was used 

to minimize the presence of artifacts in the EEG signals of all epochs in that case. 

Thus for each case and subject, EEG signals in Frontal and Motor were well enough 

to be input data for the SOM model.  

 

3.3 Computation of Self-Organization Maps 

Self-Organizing Maps (SOM) offer an approach to brain activities that provides a 
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mechanism for visualizing the complex distribution of cognitive states. The maps is 

defined by k neurons (locations) arranged as 1-, 2-, or 3-D lattice and easily realized 

that the topographic organization of the data. Increasing the number of locations k 

increases the accuracy of the results of labeling. Each neuron in the map contains an 

n-dimensional (same as the input data) reference vector during the unsupervised 

learning (training) process. When the unsupervised training process is over, the 

topographic organization of the map will adequately represent the input space. Thus, 

similar inputs will project near each other onto the near neurons in the map. Then the 

map will construct a structure by the input data. Topological neighborhoods can be of 

different shapes such as rectangle or hexagonal. In this research, we chose k = 625 (a 

rectangle lattice with dimensions 25 and 25). The maps were initialized, taught, and 

evaluated by SOM toolbox for MATLAB [47]. 

The initial step in the SOM routine is to define a random distribution of neurons, 

and there is one reference vector in each neuron in this map. All reference vectors mi 

(i=1~k) must have random initial value and equal the dimension in the input space. 

Each neuron in the map will have a reference vector of 500 coefficients. In Fig. 3-5, 

for each input vector x(t), a reference vector mc(t) with minimum Euclidean distance 

from the input is searched for by the following equation (4): 

                  (4) 

The input data does not become part of a group at this time; it is simply used to adjust 

the location of the SOM node in the input space.  
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In Fig.3-6, the best-matching model vector mc and the model vectors mi in its circular 

neighborhood are then modified toward the value of the input vector by the following 

equation (5): 

                  (5) 

The magnitude of the learning coefficient α(t) decreases monotonically. Also the 

size of the neighborhood of mc decrease at successive inputs. At the beginning of the 

self-organizing its neighborhood on the map is wide, while at the end only the nearest 

neighbors of mc(t) are modified. The learning consisted of two phases. In the first 

phase, the learning coefficient α(t) decreased from 1 to 0 in 75000 steps, while the 

radius of the neighborhood decreased from 25 to 1. In the second phase, α(t) 

decreased from 0.1 to 0 in 50000 steps, while the neighborhood radius decreased from 

6 to 1. In both phases, the samples were presented randomly. 

 

 

Fig. 3-5: The properties of the map 
The X in the input data was mapping onto the map. The Euclidean distance from X 
to mc(t) was the minimum. 
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    By the end of the training phase, this map may be useful until each neuron in the 

map is labeled. In ordered to label all neurons in the map, the input data was 

pre-classified into designated categories. There is a model vector in each neuron, and 

the Euclidean distance would be computed to each labeled patterns. The pattern 

would be located in that neuron with smallest distance then became the best stimulus 

for that neuron. This procedure closely resembles the way sites in the brain get 

labeled by stimulus features that maximally excite neurons at that time. Such a 

labeling procedure was applied to all the neurons in the map. Then we can run the 

voting scheme. Each neuron will be finally assigned a label that corresponds to the 

species whose patterns elicited a maximal response with the highest frequency. In 

other words, there may be several patterns in one neuron after the step of locating. For 

example, 9 patterns were in the same neuron (case-1:1, case-2:0, case-3:1, case-4:7, 

case-5:1), and the neuron would be assigned as ‘case-4’. The reason was that the 

patterns in that neuron mostly came from case-4. If there were no pattern in one 

 

Fig. 3-6: The illustration of the neighborhood size 
The reference vectors in the best-matching neuron and its neighbor neurons would 
be adaptive to fit that input vector. (A) The neighborhood function in this study was 
used the Gaussian function. (B) The coverage of different neighborhood size. 
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neuron, we would not label that neuron. The method of labeling would eventually 

produce a well ordered partition of the map such that groups or clusters of neurons 

will respond maximally to the same class of patterns. Such a topographic map creates 

similarity relationships and can be used for pattern classification. 

    The maps were trained by the description as the above. The structure of the 

trained maps represented the phenomenon of all EEG epochs in each case. There were 

still some unlabeled neurons in the middle of each main area. We set a reference 

vector for each neuron during the steps of training and each reference vector would be 

adapted during the learning phase. The neighborhood size was reducing by the steps 

of training, and the neurons in the area of influence would get the chance of adapting. 

The structure of all maps was more consistent with the input data during this learning 

mechanism. Although there were no any data in these unlabeled neurons, there was a 

reference vector in the unlabeled neuron to represent the phenomenon and it must be 

similar to the reference vector or EEG epochs which located on the neighbor neurons. 

By this learning theorem, we marked each unlabeled neuron. If there was an 

unlabeled neuron in the middle of an array like Fig. 3-7, the distance (Euclidean 

distance) to each neighbor neuron would be computed. We could find the minimum 

distance between the two neurons, and then that unlabeled neuron would be labeled. 

The label of these two close neurons must the same. After applying this step, there 

were no unlabeled neurons in the trained maps and the better maps would be 

generated. We could create a data base to recognize the EEG signals of distraction 

effects. 
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3.4 Recognizing EEG through SOM 

    SOM was applied not only for training the maps but also testing the data by 

trained maps. We designed two methods to verify the testing data by these trained 

maps. The difference between these two methods was the training data. In the first 

model, the half EEG epochs from each subject were the training data. On the other 

hand, we chose all EEG epochs from one subject to be the training data in the second 

method.  

The first method was cutting all EEG epochs into 2 parts and those EEG epochs 

were processed as description before. The separation was based on the subjects. The 

half of the data in one subject was partitioned into the training data and the other EEG 

epochs were the testing data. We used the training data to get the maps by SOM with 

the same parameters. All unlabeled neuron in the maps would be made up first. The 

reason was the EEG epochs in the testing data might not always stimulate labeled 

neurons. In other words, A EEG epoch might have the minimum distance to an 

unlabeled neuron. Then this EEG epoch would be the wrong classification. After 

 

Fig. 3-7: The enhancement of labeling. 
The method of labeling the unlabeled neurons. (A) The grey neuron in the middle of 
this array is the unlabeled neuron. This unlabeled neuron neighbors two labeled 
neurons (blue and res). (B) We compute the Euclidean distance from the unlabeled 
neuron to all neighborhood neurons and find the minimum value. The label of that 
unlabeled neuron equals to the neighborhood neuron with the minimum distance. 
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making up the map, the testing data could be verifying this trained map. The 

flowchart about the first method about training and testing was showed in Fig. 3-8. 

 

 

    The other simulation was in the second method. There were still training data 

and testing data. All EEG epochs were processed by the steps showed in Fig. 3-1 in 

order to remove the variation and difference between subjects and trials. Then we 

chose the EEG epochs in one subject to be the testing data and the other was the 

training data. Nine maps were generated by the same parameters as before setting. 

The unlabeled neurons in these nine maps would be labeled first to provide complete 

information about relations among neighborhood. Then a data base was created by 

 

Fig. 3-8: The flowchart about first method of train and test. 
All epochs were processed first and then separated into two parts. The half of 
epochs was the training data and the other half epochs the testing data. The 
parameters of SOM were the same as before. 
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these nine filled maps and we applied it to verify the testing data. Each epoch of 

testing data located on one neuron of each map in this data base and could be 

estimated case which was this epoch was belonged. We got nine results by the data 

base and classified the EEG epoch by voting. The class with maximal frequency was 

assigned to that EEG epoch. Fig 3.9 showed the flowchart about the second method of 

train and test. 

 

 

 

 

 

Fig. 3-9: The flowchart about second method of train and test. 
All epochs were processed first and then the EEG epochs of one subject were chose 
to be the testing data. 9 maps were trained by the other epochs and the parameters 
about SOM were the same as the first method of train and test. A data base was 
created by these nine trained maps and we applied it to classify all EEG epochs in 
testing data by voting. 
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4. Results 
 

The main difference of brain activities among the five designed conditions was 

observed by the EEG analysis. The EEG signals in Frontal and Motor components 

which were collected from 11 subjects were the features for this study. We extracted 

EEG epochs in these two components to be the feature of distracted. Before running 

SOM algorithm, the features must be processed to reduce the variation. All processed 

EEG epochs were the input data into the Self-Organizing Map (SOM). The artificial 

neural network was used for the study of distraction. After training, the topological 

structure of input data was presented by the SOM to determine which neuron 

exemplified that particular distracted state. For each runs of SOM, a visual inspection 

was performed. Then, this agglomerative and partitive clustering algorithm was 

applied.  

We characterize the phenomenon of components in the first section and compare 

processed features with the original features in the next section. The maps are trained 

by the processed features so the results of maps and analysis these maps are showed 

in the third section, including labeling, distributions of each subject’s EEG epochs, 

and the relation among neurons. Finally the results of recognition through two 

different models are shown in the latest section. Our results showed that the adaptive 

SOM process, in general way, may explain the organizations found in various brain 

structures. 

 

4.1 Behavior and EEG Results 

    The normalized response time to deviation was given in Fig. 4-1(A). The 
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response time to deviation for dual tasks (case-1, case-2, and case-3) were 

significantly shorter than that for the single task (case-5). But there were no 

significant difference among the three dual-task conditions. The normalized response 

time to math was given in Fig. 4-1(B). The response time to math presented for dual 

tasks (case-1, case-2, and case-3) were significantly longer than that for the single 

task (case-4). But the normalized response times to math question and deviation for 

dual tasks were no statistical significantly difference. 

 

Fig. 4-1: Bar charts of normalized response time.  
These figures presented the normalized response time to the deviation (A) and 
mathematic equations (B) among 5 cases across 11 subjects. 

 

The spectra in Frontal component were difference between the single-deviation 

and the dual-task cases in 5~17 Hz band. The activation in Frontal areas was induced 

by mental task which were reported in the previous studies [17, 18]. The studies also 

showed that the spectra in Motor component were difference between the single- and 

dual- task conditions around 8~25 Hz band. We chose these two components as the 

dominant feature to verify the distraction levels during driving as shown in Fig. 4-2. 
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Fig. 4-2: The phenomenon of Frontal and Motor components. 
We extracted the features form Frontal and Motor components. (A) The main 
activations among the five conditions in Frontal were from 2 to 15 Hz. (B) We could 
observe the decrease of power from 8 to 25 Hz in Motor component. 

 

4.2 Processed Features 

    We extracted the component data and the EEG signals in these two components 

were combined to be the features for this study. In order to reduce the variation and 

difference among all subjects, we proposed the processing methods for our extracted 

EEG epochs (as showed in Fig. 3-2). Fig. 4-3 shows the features without processing. 

The features just applied the method of downsizing so the dimensions of each EEG 

epochs equal 500. We can see that the value of power is not same strong among all 

subjects. Then we applied all methods showed in Fig, 3-2 to process the extracted 

EEG epochs. Fig. 4-4 shows the processed features. There is less variation in the 

processed features showed and the data is the input for the Self-Organizing Maps in 

this study.  
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Fig. 4-3: The features without processing. 
The data showed in this figure is just reducing the dimensions. There is still some 
difference among all 11 subjects and 5 designed conditions. 
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4.3 SOM Results 

4.3.1 Maps 

Depending upon the random initialization, different features will settle in 

different parts of the 25*25 plane. However, the topological relations should be 

preserved in each trained map. We choose the EEG epochs of 4 cases (case-1, case-3, 

case-4, and case-5) to train the maps. The reason is that the effect of distraction is 

highest when two things were happened at the same time. In Fig. 4-5(A), there are 4 

main clusters in this trained map with 2 phase training. We know that the EEG epoch 

of 4 cases are clearly recognized by the trained maps and there is some difference 

 
Fig. 4-4: The input data. 
This was the inputs for the Self-Organizing Map. The input data was pre-processed 
by the steps described above. 
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when human response these 4 cases. The filled map by enhanced labeling is showed 

in Fig. 4-5(B). We can see 4 main clusters clearly in this filled map. 

 

Fig. 4-5: Results of agglomerative clustering of EEG signals by SOM. 
The map was trained by 4 cases. Four clusters mark by special colors are showed in 
the map. (A) The trained map by EEG epochs in 4 cases. (B) The filled map. The 
interaction of designed two tasks is indicated at the right part. M is the mathematic 
equation and D means the car deviation. In this map, the EEG epochs of case-2 (M 
and D are appeared at the same time) are not used. 

 

In Fig. 4-6 we show maps. The investigations of SOM results allow concluding 

that SOM type algorithm can be used interpreting some mental tasks representing 

EEG data. We got many maps rapidly and the same phenomenon was found in these 

maps. We can find that some neurons which located in the middle of particular 

clusters are not labeled. The winning neurons are activity during training steps, and 

the neighborhood neurons are also adjusted. The connection among neurons is a key 

role in this algorithm. Competitive learning algorithm is competition among lateral 

neurons in a layer (via lateral interconnections) to provide selectivity (or localization) 

of the learning process. These unlabeled neurons are labeled by the close neighbor 

labeled neuron. After this computing, we get the better and clearer map in Fig. 4-7. 
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Fig. 4-6: Results of agglomerative clustering of EEG signals by SOM. 
There are four maps in this figure. We verify the results by applying the algorithm 
many times. Five clusters mark by special colors are showed in each map. The 
interaction of designed two tasks is indicated at the right part. M is the mathematic 
equation and D means the car deviation. We combine these two tasks and stimulus 
onset asynchrony (SOA) to design five cases. The case-1~case-3 are the dual tasks 
and case-4~case-5 are the single tasks.  

     

Our SOM based exploratory data analysis using EEG suggests existence of 

distinct signatures among these five cases. Fig. 4-6 and 4-7 show the topology 

relations of the collected EEG epochs. The EEG epochs of two single tasks are 

clustered well, but there are several subgroups to the dual tasks, especially the case-2. 

Although most neurons labeled case-2 are clustered to some main area, several special 

neurons are mixed together. The neurons labeled single conditions are mapped to the 

corners of each map and these two clusters are so congeries. The reason is the 

changing of brain signals for dealing with single task is consistent with each subject. 

When the mathematic question or car deviation appeared, the subject must response 
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them quickly and correctly. The brain resources are allocated to dealing with just one 

task during these two single conditions. But these two designed mental tasks are also 

combined to provide the dual-task situations in our experiment. Each subject is asked 

to response the tasks as soon as they can. When the subjects must do more than one 

task at the same time, these tasks scramble brain resources each other. Every subject 

doesn’t use the same strategy for responding dual-task condition. Someone answer the 

easy task first then deal with the complex task, but some people can deal with two 

tasks well. 

Fig. 4-7: The filled map. 
These four maps come from the maps showed in Fig. 4-1. Each unlabeled neuron in 
the map is marked a case by the method of flooding. Then all neurons represent one 
special case to show the topological relations. After flooding, these maps are clearer 
and easier to understand the distribution of EEG epochs among the five cases.  

 

    The three dual-task cases are clustered at the middle of the trained maps. The 

EEG epochs of case-1 and case-3 are grouped into two main areas, but we can see the 

neurons labeled case-2 are scattered. The mathematic equations and car deviation are 
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appeared at the same time. When these two tasks are appeared suddenly, subjects 

chose one tasks to respond first. By the different decision processes, the neurons 

labeled are close neurons labeled case-4 or labeled case-5. The two tasks are appeared 

with a 400ms interval and the subjects can have a short time to response one task well. 

In our maps, we can see the distribution of the cognitive state and investigate the 

distraction levels. 

 

4.3.2 Labeling 

We labeled all neurons by voting [31] [32] [48]. There might be several epochs 

from some cases in one neuron, because the phenomenon or characters of these 

epochs were too similar to recognize correctly. For every neuron, we counted the 

number of these epochs from every case. Then the neuron is labeled one case which 

has the maximum value by our calculating. The accuracy of each case is computable 

with this processing of voting. If the epochs are originally from the same case, these 

epochs are identified the right epochs. Otherwise the epochs do not come from the 

same case; they are mis-classified. In Fig. 4-8, the value in each neuron is the 

percentage of EEG epochs which are consistent with that neuron. When the value is 

less than 1, it means that the EEG epochs mapped into this neuron are more than 2 

cases. We can call them mixed neurons. 
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Fig. 4-8: The frequency of each neuron. 
There is one value in each neuron and this value is the percentage of EEG epochs 
which are consistent with this neuron. 

 

We computed the accuracy of every case after labeling. The accuracy results of 

each trained map showed in Fig. 4-6 are in the Fig. 4-9. The accuracy of five cases is 

more than 90% in all trained map. Especially, the accuracy of case 4 and case 5 is 

even more than 95%. The accuracy of case2 in (C) is an exception and the hit rate is 

less 90%. But those mis-classified EEG epochs are still located in the neurons which 

are labeled case-1 or case-3. The epochs in three dual-task condition are easier to 

match the wrong neurons. In these steps of labeling, the average accuracy of five 

cases is about 90%. We can say that these maps in Fig. 4-4 are trained well and the 

accuracy of each case is so high. That is the size of map fit our data and the learning 



 45

steps are enough to contract fully topology relation. We can classify the five cases 

well through the Self-Organizing Map, and the structure of the map is clearly to 

identify. 

 

 

Fig. 4-9: The accuracy of each case. 
The accuracy of each case was more than 90% in all four maps excepting case-2 in C. 
Especially the accuracy of case-4 and case-5 was near 100%. All EEG epochs were 
classified clearly by SOM in each time. The single-tasks are case-4 and case-5, but 
case-1 ~ case-3 are the dual-tasks considering the SOA. 

  

4.3.3 The Distribution 

The EEG signals were collected from 11 subjects. We applied many methods 

about feature processing to reduce the individual variation. Then the processed signals 
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were the input data and each epoch was mapped onto a 2-D array. It is an interesting 

and important thing to verify the location of all EEG epochs. We analyzed the 

distribution of all EEG epochs from different subjects to study the influence of 

distraction and human. The frequency of occurrence form across the SOM space was 

constructed by accumulating the number of EEG epochs mapped to each neuron. 

There were 2 numbers in each neuron: the first value is the order of each subject and 

the percentage was between the parentheses. We choose (A) map in Fig. 4-6 to 

analyze and draw the distribution of EEG epochs by different conditions and there are 

five cases in our experiment. 

 Case-1 is the dual-task condition. The mathematic questions appear before car 

deviation with a time interval of 400ms. The distribution of all EEG epochs from 

case-1 is showed in Fig. 4-10. The most data of case-1 is at the up part of the map but 

some special data are dispersive on this map.  
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Fig. 4-10: Distribution of EEG epochs in case-1. 
The (A) map in Fig. 4-4 is verified the distribution of case-1. This figure shows the 
locations of all subjects and the percentage of all trials in each subject. 

 

Fig. 4-11 shows the distribution of EEG epochs in case-2 and this array is match 

to (A) map in Fig. 4-6 and Fig. 4-7. It would seem that there are three or four 

sub-groups in this map. The car deviation and mathematic question are appearance at 

the same time to provide the most influenced effect during driving. The distribution of 

the EEG epochs in case-2 is dispersive. For example the EEG signals collected from 

subject 11 are located in these left, right, and down parts of this map. This 

phenomenon is consistent with the concurrence of brain resources. 
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Fig. 4-11: Distribution of EEG epochs in case-2. 
The (A) map in Fig. 4-4 is verified the distribution of case-2. This figure shows the 
locations of all subjects and the percentage of all trials in each subject. There are 
several sub-groups for case-2 in this map. We can explain the distribution by the 
competition of brain resources. 

     

We show the distribution of EEG epochs in case-3 in Fig. 4-12 and this array is 

match to (A) map in Fig. 4-6 and Fig. 4-7. The main cluster is in the middle of this 

map. The order of events in case-3 is opposite to case-1. Each car deviation is 

happened before math with a time interval of 400ms in case-3. So the distribution in 

case-3 is similar to case-1. There is one main cluster and some EEG epochs are 
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dispersive in this map. 

Fig. 4-12: Distribution of EEG epochs in case-3. 
The (A) map in Fig. 4-4 is verified the distribution of case-3. This figure shows the 
locations of all subjects and the percentage of all trials in each subject. 

 

Fig. 4-13 shows the distribution of EEG epochs in case-4 and this array is match 

to (A) map in Fig. 4-6 and Fig. 4-7. We can see one main cluster at the right part of 

this map and few epochs are mapped to the outside of this cluster. The subjects must 

quickly answer the mathematic equations during this condition and do not handle the 

car in this condition. 
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Fig. 4-13: Distribution of EEG epochs in case-4. 
The (A) map in Fig. 4-6 is verified the distribution of case-4. This figure shows the 
locations of all subjects and the percentage of all trials in each subject. There is one 
main cluster at the right-down part of this map. 

 

Fig. 4-14 shows the distribution of EEG epochs in case-5 and this array is match 

to (A) map in Fig. 4-6 and Fig. 4-7. We also see one main cluster at the left-down of 

this map and some EEG epochs are mapped to the neurons which are at the center. 

The subjects are asked to response the deviation when the car is swerved the third 

lane. The phenomenon of EEG epochs among most subjects for driving is so 

consistent. 
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Fig. 4-14: Distribution of EEG epochs in case-5. 
The (A) map in Fig. 4-6 is verified the distribution of case-5. This figure shows the 
locations of all subjects and the percentage of all trials in each subject. The subjects 
just handle the car to keep in the third lane in this case. 
 
 

4.3.4 Relationship among Neurons 

The initial state of the simulation consisted of a random assignment of neurons to 

simulated EEG signals. After adapting of this algorithm by the input data, the 

resulting maps are shown in Fig. 4-6 and Fig. 4-7. The most neurons which are 

labeled case 4 and case 5 are in a cluster in these four maps, especially these 2 cases 
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are single-math and single-deviation. The neurons at the middle of these maps 

represent the EEG power of dealing with 2 things. These three dual conditions are 

combined the two pure tasks and the SOA to provide the different effect of distraction. 

We can see this EEG changing by these resulting maps. The neurons labeled case-1 

and case-3 are clustered into some subgroups, but it is clearly to see that the neurons 

labeled case-2 are spread in the middle of the maps. And some neurons labeled case-2 

are closed to the region case-4 or some neurons neighbor with the region case-5.  

 When one neuron is stimulated by an EEG epoch during the learning processes, 

the reference vectors of this winning neuron and its neighbor neurons are adapted to 

be suitable for that inputting EEG epoch. By this specialty of learning algorithm, the 

EEG epochs with similar phenomenon would be mapped to the closed neurons. When 

there are obvious features in the input data, the map must be clearly partitioned into 

the same cluster that is consistent with the input data. However the neurons are not 

close to each other, the EEG epochs in these neurons would be very different. This 

variation was showed in Fig. 4-15. There are two neurons which are labeled case-4 

and marked the red color at the right corner of this map. The EEG epochs in these two 

same labeled neurons are shown in the right part of Fig. 4-15. Although these two 

neurons are labeled case-4, the character of these EEG epochs mapped to them is not 

similar. We also show the contents in the neighbor neurons at the right-up part of this 

map. The up neuron is labeled case-4 and the down neuron is labeled case-2. There is 

the more similar phenomenon in these EEG epochs. So SOM shows the topology 

relation among neurons of the input data, and we can visualize this virtual structure 

through this trained map. 
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Fig. 4-15: The EEG epochs in the different neurons. 
When the neurons closed, the epochs in these neurons were so similar. If the epochs 
were distinct, these epochs might not be located in neighbor neurons. It was a long 
distance among these neurons. The EEG epochs which were located on the right-up 
part of this map were so conformance. The contents in contraposition neurons were 
so different. Although these two neurons were labeled the same case, the EEG 
epochs which were located on the right-bottom of the map differ from the ones 
which were on the right-up of this map. 

 

4.4 Results of Recognition 

    Since the method is being developed for the recognition of the brain activity with 

distraction, we were interested to see whether the map differentiated among the 

individual EEG epochs. Fig. 4-16 and Fig. 4-17 show the results of testing by two 

methods. We can compare these results to analyze the performance in recognizing the 

EEG epochs.  

    In the first simulation, we are so satisfied at the high accuracy of five conditions, 

especially the dual-tasks. The main difference among these three dual-taks conditions 

is the time interval of our designed mental tasks. So the EEG epochs in these three 
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conditions are easy to match the wrong neurons which are labeled the other dual 

conditions. In general, the map correctly recognize the EEG epochs of five designed 

conditions in the off-line environment. We can use this approach to estimate the 

mind-state of one human by his previous collected data. 

 

 

Fig. 4-16: The result of testing by the first method. 
We use one data set to train a map and then test it by the other data set. The 
accuracy of each case is more than 80%, especially the recognition of case-4 and 
case-5 is high. 
 

    We know the estimation is so important, so another model is created to recognize 

the EEG patterns of one new subject. The result of this testing model is shown in Fig. 

4-15. The accuracy of each case is not so high, but the right hit rate of case-5 (single 

deviation) is more than 90%. Three dual conditions are hard to recognize clearly in 

this testing model, they are mixed to each other in this testing by the created data set. 

The accuracy of only mathematic condition is about 60%, and there are some epochs 

in this pure math condition are classified to three dual conditions. In this testing 
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model, we can classify 2 main clusters: single driving condition and the other 

condition. Or we can identify the case-1~case-3 is the dual-task condition. Then this 

data set can recognize the EEG epochs of one new coming subject to three clusters: 

dual-tasks, pure mathematic questions, and pure driving. 

 

 

Fig. 4-17: The result of testing by the second method. 
There is one data set which is created by multi maps. We use the EEG epochs which 
are not the training data for the data set to verify the hit rate. The accuracy of case-5 
is highest, but the hit rate of the three dual conditions is so low. The EEG epochs of 
case-1~canse-4 are mis-classified in this testing model. But we can use this data set 
to recognize the distraction or not during driving. 
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5. Discussion 

 
In the study, the brain dynamics related to distraction effects of stimulus onset 

asynchrony (SOA) by using EEG and VR-based realistic driving environment are 

investigated and analyzed by Self-Organizing Map. The distraction levels in different 

designed SOA conditions are also investigated. The self-organized map provides an 

easy visualization of topographic spectral patterns in EEG. In this Chapter, the maps 

after two-stages training and the performance will be discussed. The map size 

corrected the accuracy of labeling and the quantization error. In this study, many maps 

with different lengths were generated in order to analysis the EEG epochs of 

distraction levels. We find that the cognitive states are more reliable than the behavior 

during driving. When human responses some tasks without the significant difference 

on behavior, the cognitive states must differ among these mental tasks. The EEG 

signals of people are varied. In this study, we reduce the variation among each subject 

and get the better results for us to analysis the EEG data. 

 

5.1 Brain Dynamics Related Distraction Effects 

    The frontal lobes have been found in response to impulse control, judgment, 

language production, working memory, motor function, problem solving. The reports 

showed divided attention in frontal lobes [49] [50]. In Fig. 4-1, total power in theta (5 

~7.8 Hz) band of dual-task cases (case-1, -2, and -3) were higher than that of 

single-task case. The phenomenon suggested that the dual tasks induced more 

event-related EEG activity, that was, subjects needed to consume more brain source to 

accomplish dual tasks at the same time. During mental work load, the EEG process 
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producing 5-7 Hz frontal midline theta activity [18]. We also found that the power 

increase in beta band (12.2~17 Hz) in all cases. Significant differences were obtained 

in delta and theta band in right posterior areas and in the beta band in frontal areas 

[51]. According to the evidences presented in previous studies, we could first prove 

that the subjects were distracted under dual-task conditions in the experiment. The 

theta and beta activity of EEG in the frontal area could be used as the index of 

distraction effect and distraction extent. 

 Mu rhythm (μ rhythm) is an EEG rhythm recorded usually from the motor cortex 

of the dominant hemisphere. It is a variant of normality, and it can be suppressed by a 

simple motor activity such as clenching the fist of the contra lateral side, or passively 

moved [52] [53] [54]. According to the EEG signal of single deviation and single 

math in Fig. 4-1, the mu suppression was caused mostly by subjects steering the 

wheel and pressing the bottoms (answer mathematical equations). As for in the 

dual-task cases, the mu suppression was mixed by the two main reasons, wheel 

steering and bottom press, and it was weaker in dual -task cases than that in 

single-task. 

 

5.2 Effect of Feature Processing 

It is the diminution of the EEG variation among all subjects for same responses. 

In the steps of feature processing, we applied a method of subtracting mean vector to 

reduce the variation among each subject. All EEG epochs of a subject were subtracted 

from their mean feature. Then the collected EEG epochs from several subjects are 

stable and less variable. Although the variation among the subjects was reduced, the 

changing of brain activities among the five conditions is still in the data. The 

topological relations of the processed data are shown in Fig. 4-3, and the steps of 
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feature processing are shown in Fig. 3-1.  

If the data set was not applied the subtracting mean vector, there was still some 

variation among all subjects. The maps showed in Fig. 5-1 were trained by the data 

which were not processed by subtracting mean vector. The EEG epochs in the same 

case were dispersed to several subgroups in this map. In Fig. 5-4, we showed the 

distribution of EEG epochs for one particular subject. The difference among the 

subjects was still in our data set and this algorithm could efficiently recognize the 

individual subjects.  

 

 

Fig. 5-1: The map without subtracting the mean vector. 
Result of agglomerative clustering of the SOM of EEG signal without subtracting 
the mean vector of each subject. 

 

We wanted to create one model to monitor the distraction levels during driving. 

The subjects were hart to keep similar emotion during the experiment. And every one 
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could not have the equal intension for EEG power of responding the same single-tasks 

even dual-tasks. The EEG signals collected from many subjects were not the similar 

excited level for the same stimulus. The variation among each subject must be 

removed to get the better maps and we could analysis the changing of EEG signal 

which were evoked by designed tasks. Although we could not remove all difference in 

EEG, yet we reduce the influence of human. 

 

Fig. 5-2: The distribution of all EEG epochs collected from 2 subjects. 
All epochs in one were mapped onto the left-up corner of this map. And the neurons 
which were at the left-down corner of this map were represented another subject. 
We can know there were difference among subjects and the maps represented this 
variation. 
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5.3 Evaluation of the Maps 

    SOM can provide an efficient means of visualizing the relationships among the 

neurons and the important topological information can be obtained through an 

unsupervised learning process. A high dimensional EEG epoch is seen as a point 

which is projected onto the trained map. The locations of these projections 

differentiate among various EEG epochs, and indicate cognitive states during the 

allocation of brain resources. They are motivated by the face that representation of 

sensory information in the human brain has a geometrical order [55].  

The unsupervised learning interactions allow clusters of neurons to win the 

competition, and then those neurons are adjusted to bring about a better response to 

the current input however the size of map is. Iterative application of this learning 

process, the specify clusters of this map that are topological close, being sensitive to 

clusters of inputs that are physical close in the input data. In other words, there is a 

correspondence between signal features and response locations on the map. We tried 

many different sizes (10*10, 15*15, 20*20, and 25*25) to get the suitable topology 

for the input data and the final maps are twenty five neurons square in this study. The 

different map size result that our SOM based exploratory data analysis using EEG 

suggests existence of distinct signatures among these five cases. The topographic 

structure of these unequal size maps is so consistent to represent the distraction levels 

during driving. The EEG epochs recorded from two single-tasks are projected onto 

the corner of each map, and the other EEG epochs with competition of brain resource 

are located in the middle of every map.  

The results of 10*10 maps were showed in Fig. 5-3. We conclude that the 

structure of each 10*10 map is concerned with the distraction effect. The values of 

correct recognition of visually labeled epochs by the self-organizing maps are used to 
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quantify the clustering performance of the maps. The average accuracy of each case 

for each size map is shown in table-3 and Fig. 5-4. The correct accuracy of three dual 

conditions for each small map is just about 60% ant it is lower than the bigger ones. In 

the small size map, there is no any unlabeled neuron and we can assume the unlabeled 

neurons to be the boundary among the clusters. Another quality index for maps is the 

mixed neurons. There are EEG epochs of more than two conditions in these mixed 

neurons. The numbers of mixed neurons in different map size are shown in table-4. 

The fewer neurons are mixed, the better results we get.  

Fig. 5-3: The results of SOM with dimensions 10*10. 
These maps are similar to the maps with bigger size shown in Fig. 4-6. The smaller 
maps make the classes (especially for the two single conditions) a little more compact. 
(A) (B) two trained maps and (C) (D) are the labeling accuracy of these two maps. 
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Fig. 5-4: The relation between the map size and the accuracy of labeling. 
This figure shows the accuracy increasing by the bigger map size. The number of 
map size means the length of one dimension. In our research, we use the square to 
represent the map. When the size is more than 24, the accuracy of all 5 cases is not 
significant changing. The map size is 25 in our research and the map with this size 
can provide the high resolution and be trained with less time. 

 

 

 

 

 

 

The third index to evaluate the performance is the quantization error. At the end 

of the self-organization, each reference vector on the map resembles a cluster of 

similar input vectors which occurred during the self-organization [27]. The Euclidean 

distance between the reference vector of best-matching neuron and the input EEG 

epoch gives the quantization error. When samples differ substantially from those 

provided for the self-organization, the quantization errors are large. We evaluate the 

Table-3: Total mixed neurons in each map 
The map size Training 1 Training 2 

10*10 84/100 88/100 
15*15 21/225 18/225 
20*20 57/400 43/400 
25*25 30/625 39/625 
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quantization errors in these maps from small size to bigger ones and the value of error 

is almost equal. The map with small size clustered together; on the other hand, the 

bigger maps could be more accurate in recognizing the difference feature among each 

case. Because the accuracy of each case and the number of un-mixed neurons are 

highest in the 25*25 map, we chose these square maps. 

 

5.4 Distraction Level and Behavior Performance 

    When the subjects just controlled the car or answered the mathematic equations, 

the EEG signals were corresponding to one main cluster of each map (as showed in 

Fig. 4-1). And the other EEG epochs of dual tasks were mapped onto some subgroups 

to present the distraction levels with designed SOA conditions. When the subjects 

process two designed tasks, we can interpret brain activities by the trained maps. 

In our results, we could clearly cluster the EEG epochs of different designed 

cases and the accuracy of each case is more than 90%. According the previous studies, 

the dual tasks involving driving and answering simple math questions in the stimulus 

onset asynchrony (SOA) are no significant difference in the behavior data among 

three dual-task conditions, such as response time and driving performance [17]. This 

study investigated how performance of two overlapping discrete tasks was organized 

and controlled that suggested that sequential performance of overlapping tasks was 

scheduled in advance and was regulated by initially allocating brain resources to one 

task and subsequently switching to the other task [56]. And the designed tasks were 

all visual-stimuli tasks. When the subjects responded these two tasks, the brain source 

in the frontal area and motor area would be compete. Therefore, these two 

visual-stimuli tasks interfered with each other and the interferences presented on brain 

dynamics. In this study, the EEG epochs of dual tasks were clustered into many 
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subgroups as showed in Fig.4-5, Fig. 4-6, and Fig. 4-7. We could find that the brain 

activities in three dual conditions were different.  
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6. Conclusions 
 

A number of measurement procedures for brain activities have been used to 

classify and predict cognitive states. In particular, Artificial Neural Networks have 

been widely employed to model cognitive states by performing EEG data 

classification. In this study, we proposed an unsupervised approach of visualizing and 

verifying the brain activities for distraction levels during driving. Our results show the 

topological relation of the input data. The SOM algorithm provides a new 

visualization method to analysis the EEG data. We extracted the EEG epochs from the 

continuous EEG data in Frontal and Motor components by the independent 

component analysis. The steps of feature processing which we proposed are effective 

to reduce the variation among the different subjects. The processed EEG epochs in the 

same case are clustered through the unsupervised learning processes. In the trained 

maps, the accuracy of each case is more than 90 %. The distributions of all recorded 

EEG epochs are consistent with the human brain activities. Our results demonstrated 

that five cases (three dual tasks and two single tasks) can be distinguished clearly by 

the SOM based method. Especially each single task is clustered in a distinct spatial 

area of the maps and the other dual tasks show several subgroups in the middle of the 

maps. We create two models to test the recorded EEG signal. The results of these two 

testing models show that the EEG epochs of single driving are clearly identified. For 

such dual tasks although there is no significant difference in the behavioral data, such 

as response time and driving performance, our SOM based exploratory data analysis 

using EEG suggests existence of distinct signatures among the five cases. The Frontal 

and Motor components which we extracted are the main activities area of responding 

multiple tasks at the same time during driving. Furthermore, the recognition of 
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distraction levels will help us to monitor the driver safety and warn them to pay more 

attention during driving to decrease or avoid the traffic accidents. 
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