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Study on the Uniformity Improvement of
Low-Temperature Polycrystalline-Silicon Thin
Film Transistors with the Device Structures and

Compensated Circuits

Student: Bo-Ting Chen Advisor: Dr. Huang-Chung Cheng
Dr. Ya-Hsiang Tai

Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering.and Computer Science
National Chiao Tung Untversity

ABSTRACT

The uniformity issues of the low-temperature polycrystalline silicon thin film
transistors (LTPS TFTs) were investigated from the individual aspects of device
structure and the display driving circuits design in this dissertation. In this work, the
device structure is adjusted to improve the uniformity of LTPS TFTs by changing
layout method. Furthermore, active matrix organic light emitting diode pixel circuits
and a source follower type analog buffer circuit with highly compensating capability
are also proposed.

First of all, the device uniformity of LTPS TFTs is studied from the view point

of device structure. The interdigitated and multi-channel structure with slicing layout

v



method is adopted in this work. According to the experimental results, it is observed
that the interdigitated layout the multi-channel structure can promote the matched
transistors and overall uniformity of threshold voltage and subthreshold swing of
LTPS TFTs. The possible mechanisms of the improving uniformity of multi-channel
structure are discussed and it is considered that probability effect is the most major
reason.

In the active matrix organic light emitting diode (OLED) pixel design, each
function of transistors and capacitor are investigated. Through the measured results in
the typical pixel circuits, there is clear difference existing in OLED anode voltage
when the threshold voltages of driving transistors are varied. Therefore, the output
currents are varied from pixel to pixel leading the non-uniform brightness. Compared
with conventional layout method, ‘the multi-channel structure with slicing layout of
driving TFT in previous work can.enhance the output current and promote uniformity
of the pixel anode voltage effectively:

A pixel circuit with new operation.mode-i§ proposed to compensate the variation
of threshold voltage in LTPS TFTs. By means of experimental results, it is verified
that the proposed pixel circuit can solve the problem of output voltage variation
effectively and higher output voltage can be obtained. However, the power
consumption is increased because current flow through OLED device in the reset
period. Therefore, a modified circuit design is further proposed to overcome the issue.
By modifying pixel design, an n channel TFT is replaced by a p channel TFT
controlled by the switching signal in order to block the current flow through OLED

during pre-charge period and the overall power consumption can be lowered.

In the analog buffer circuit, the device variations may lead to the difference

between input voltage and output voltage when the analog buffer is applied to the



source driver of liquid crystal displays or integrated into glass substrate. Meanwhile,
the output variations of the conventional source follower with multi-channel structure
are also introduced. It can be observed that the output variations are apparently
reduced comparing with conventional source follower. It is proved that the uniformity
of previous pixel circuit or analog buffer circuit can be improved by multi-channel
structure. The traditional analog buffer circuit can not achieve the specific
requirement like the one of pixel circuit. Therefore, the compensation circuit for
analog buffer is necessary. In this dissertation, all kinds of analog buffer circuits are
introduced and compared, while the source follower type is considered as the better
choice.

The conventional source follower consists of one driving transistor. It is
observed from the simulation results that the final.output voltage is not kept constant,
but exceeds the value of Vgs--.Vth expected .in-principle. It is ascribed to the
sub-threshold current which charges:the cireuit continuously. As a result, it will be
sensitive to the charging time for various product specifications. Therefore, an active
load is added to eliminate this unsaturated phenomenon of the output voltage and the
deviation of output voltage has no relation to the charging time. Although this offset
voltage deviation is larger, it can be compensated by external gamma correction.
Therefore, the conventional source follower with an active load has better
performance for the designers.

Nevertheless, the simulation results show that the circuit suffers from huge
variations and output voltage is not the same due to the variations of TFTs even
eliminating the output voltage unsaturated phenomenon. Therefore, a new analog
buffer which consists of four switches, a capacitor, and two LTPS TFTs is proposed
for the compensation of the device variation. The operating principles are described as

follows. The output voltage is compensated by the voltage stored in Cvt and almost

vi



equals to input voltage. Besides, the bias voltage of an active load has great influence
on output voltage deviation. By means of proper bias voltage design, a highly
uniformed, excellent output characteristic and low power consumption analog buffer

circuit can be obtained.
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Monte Carlo simulation results of the offset voltage variations of

matching TFTs type analog buffer.
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Fig. 5-19. Conventional source follower and its output waveform simulation results.

Fig. 5-20. Schematic of conventional source follower with an active load and its
output waveform simulation results.

Fig. 5-21. Offset voltage comparison of conventional source follower and source
follower with an active load in various charging time.

Fig. 5-22. Twenty times of Monte Carlo simulation results of the conventional
source follower with an active load when input voltage 2V to 4V.

Fig. 5-23. The proposed analog buffer and its timing diagram of signal lines.

Fig. 5-24. Twenty times of Monte Carlo simulation results of the proposed analog

buffer when input voltage 2V to 4V.

Chapter 6

Fig. 6-1. Schematic configuration of the'conventional analog buffer with the signal
channel (left) and multi-channel (right) driving TFT.

Fig. 6-2. Ten sets measured results of the offset voltage (Vin-Vout) variations
versus varied input voltages employed single channel structures.

Fig. 6-3. Ten sets measured results of the offset voltage (Vin-Vout) variations
versus varied input voltages employed multi-channel structures.

Fig. 6-4. Comparison of the measured output offset voltage variations between the
single channel and multi-channel structure.

Fig. 6-5. The optical micrograph of the proposed of fabricated circuit.

Fig. 6-6. Comparison of the measured offset voltage versus input voltage curve of
the conventional and proposed analog buffers.

Fig. 6-7. Variations of eight buffer circuits between the offset voltage versus input
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voltage of the conventional and proposed analog buffers.

Fig. 6-8. Simulation results of the output offset voltage and the power dissipation
for the proposed analog buffer with different bias voltage.

Fig. 6-9. Comparison of the offset voltage versus bias voltage curve of the
simulation and measured results when input voltage 3V.

Fig. 6-10. Comparison of the offset voltage versus bias voltage curve of the

simulation and measured results when input voltage 2V.
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