
 

 

題目：路網均衡指派之非合作賽局性質 

Non-cooperative Game Properties of 

Equilibrium Assignment 

研 究 生：吳如君 
 

指導教授：卓訓榮 教授 
 

中 華 民 國  9 9  年  1  月 



 

i 

 

路網均衡指派之非合作賽局性質 

Non-cooperative Game Properties of Equilibrium Assignment 

 

 

 

 

研 究 生：吳如君          Student：Ju-Chun Wu 

指導教授：卓訓榮          Advisor：Hsun-Jung Cho 

 

 

 

國 立 交 通 大 學 

運輸管理科學系 

碩 士 論 文 

A Thesis 

Submitted to Department of Transportation Technology and Management 

College of Management 

National Chiao Tung University 

in partial of Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Transportation Technology and Management 

 

January 2010 

Hsinchu, Taiwan, Republic of China 

中華民國九十九年一月 



 

ii 

 

路網均衡指派之非合作賽局性質 

研究生：吳如君        指導教授：卓訓榮 

國立交通大學運輸科技與管理學系碩士班 

 

 

摘要 

  交通指派是運輸規劃過程中重要的一環，透過指派模式所預測出的路網流

量，對於運輸管理的決策是重要的參考指標。目前交通指派模式的發展已趨於成

熟，透過 Wardrop 的道路行為準則，交通指派模式利用各種數學理論被寫成各種

問題，包括數學規劃問題、非線性互補問題、變分不等式問題、不動點問題等均

衡指派模式。近年來由於賽局理論的發展，交通問題開始以賽局的觀點來討論，

透過兩人賽局的概念，更有雙層規劃模式的產生。 

本研究利用使用者均衡的行為準則，以賽局理論的視角與定義，構建一 n

人的非合作凹性賽局，證明其唯一性與存在性，並推導其與傳統的靜態均衡指派

變分不等式模型之間的關聯性。最後利用 Zukhovitsky 對賽局的假設，證明此 n

人路網賽局的解，相當於解一兩人零和賽局的解。此一概念對於雙層規劃模式在

路網指派的運用為一重要的根據。 

關鍵字：交通指派；非合作賽局;變分不等式 
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Non-cooperative Game Properties of Equilibrium Assignment 

Student：Ju-Chun Wu                  Advisor：Hsun-Jung Cho 

National Chiao Tung University 

Institute of Transportation Technology and Management 

 

 

Abstract 

Traffic assignment is one of the important part of transportation planning 

procedure. Though assignment model, we can predict the network flow which is the 

vital norm for decision-making of transportation management. Traffic assignment 

model already tends to be mature at present. Based on the principle proposed by  

Wardrop, traffic assignment problem are formulated in different formulation by 

several mathematical theory, includes Mathematical Programming problem,      

Nonlinear Complementarity Problem, Fixed-Point Problem, and Variational 

Inequality Problem.  

This research based on the concept of user equilibrium, construct a n-person 

non-cooperative concave game, and demonstrate the relation with the static 

equilibrium assignment model through the variation inequality form. In the latest part 

of the paper use the assumption proposed by Zukhovitsky to prove the equivalent 

between n-person concave game and two-person zero-sum game. The demonstration 

process help us analysis the assignment problem in different view and the proof of 

equivalent simplify the problem and help us solve problem in easily way.  

Key words：Traffic Assignment, Non-cooperative Game,Variational Inequality 

Problem  
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1. Introduction 

1.1 Background 

Within the rational planning framework, transportation forecasting is important 

to transportation management. It followed the sequential four-step model or urban 

transportation planning (UTP) procedure. The four steps of the classical urban 

planning system model includes Trip Generation, Trip Distribution, Modal Split 

process, and Traffic Assignment.  

Traffic Assignment Problem(TAP) is a multicommodity flow problem which 

arises when users (or commodities) must share a common resource, the street network. 

It is to assign flows by various modes in given link to paths in transportation networks. 

It describe how road-users to choose the optimal route between an origin-destination 

(OD) pairs, and can be used for analyzing and forecasting traffic flows on every link 

or route furthermore. However, each user’s choice is dependent upon other users’ 

choices as well, because the travel time on each street depends on the total number of 

cars on that street: more congestion means longer travel times. Meyer and Miller 

(2001) introduced several traffic assignment techniques as follows: 

(1) Static assignment model 

Network flows will not vary with time in the above approaches. In static 

assignment techniques, these procedures assume that each vehicle is 

simultaneously located on every link on its chosen path and assign all flow 

simultaneously to all links on the chosen paths. The commonly static assignment 

technique as follows: 



 

2 

 

 All-or-nothing assignment: It is the simplest approach involving the 

selection and loading between each origin and destination. It makes a 

previous assumption that road capacity is unlimited, and link cost is fixed. 

For each OD pair, find the shortest path and assign all the travel demand 

into it. The method ignores the limitations imposed by restriction on the 

capacity of the network. Links may be allocated far greater flows than they 

are capable of carrying. 

 Equilibrium assignment: The idea of equilibrium in the analysis of 

transportation networks arises from the dependence of the link travel time 

on the link flows. Travelers will strive to find the shortest path (least 

resistance) path from origin to destination, and network equilibrium occurs 

when no traveler can decrease travel effort by shifting to a new path. In this 

situation, no user can changing travel path unilaterally to reduce the travel 

cost or time. 

 Stochastic assignment: The second assignment technique is also called 

deterministic user equilibrium, because it assumes all travelers obtain 

perfect information on travel costs on any given path are perfect, resulting 

in making rational route choices. However, in real world, traveler cannot 

always obtain the whole network information. This leads to development of 

stochastic assignment, in which link travel time function is viewed as 

random variables varying with users’ preferences, perception and 

experience. 

(2) Dynamic assignment  
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In real world, the static representation of network performance is not 

sufficiently accurate. A dynamic representation of route choice behavior and 

resulting network performance is required in which the movements of vehicles 

along their chosen paths is explicitly simulated through time. Dynamic assignment 

models may be either probabilistic in terms of the simulation of users’ route 

choices and/or determination of vehicles’ travel times along given links, or they 

can be deterministic. 

It is unrealistic assumption obviously, but for many regional transportation 

planning applications, static assignment assumption is acceptable and can yield useful 

results. The research use the game theory to analyze the equilibrium assignment 

which is classified in static assignment. 

1.2 Research Objective 

Game theory aims to help people understand situations in which decision-makers 

interact. It had been applied in transportation in many different aspects. Fisk (1983) 

discuss some transportation problem as the game theory models, include Nash 

non-cooperative and Stackelberg games. The discussion serves to underline 

differences between two categories of transportation problems and introduces the 

game theory literature as a potential source of solution algorithms. The purpose of 

research is to demonstrate why the n-person assignment problem can be regard as a 

two-person game. The research construct a n-person non-cooperation game, use the 

technique of game theory to consider the assignment problem. Then prove the 

equivalent between the constructed n-person concave game to a two-person zero sum 
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game. The research use the idea proposed by Zukhovitshii et al. (1973), demonstrate 

the theory step by step.   

1.3 Research Procedure 

Figure 1.3-1 is the procedure of the research  

 

Figure 1.3-1 The research flow chart 

Network equilibrium model 

Review 

 

Game theory  

Review 

 

Model Formulation 

 

Demonstration process 

 

Conclusion 

 

Problem definition 
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The research was divided in following part: 

(1) Problem definition: 

This paper tends to make a completely proof that the network traffic 

assignment problem can be represented in a n-person concave game, which is 

equivalent to a two-person zero-sum game. It can help us analyze the problem in 

different way. 

(2) Review:  

Before we start to discuss the traffic assignment game, we first review the 

existed assignment model. Chapter 2 review the article about network 

equilibrium, include the development of the equilibrium model and their 

foundation concept. Because of changing our view to the game based side, 

Chapter 3 reviews the basic theory of game, and introduces the application of 

game theory to the traffic side. 

(3) Model Construction and Demonstration: 

In Chapter 4, we first construct a network game, and use several mathematic 

theorems to demonstrate the element of the game, include the existence and 

uniqueness to the equilibrium point. Then make the demonstration to prove the 

equivalent to the n-person game with two person game. 

(4) Conclusion and contribution 

Finally, this paper presented some conclusions of this literature and the 

contribution for the traffic field. 
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2. Network equilibrium model 

This section reviews principle of the equilibrium in network, and the 

development of mathematic model of traffic equilibrium network. 

Notation definition: 

N : Node set  

A : Arc(link) set  

P : Path set 

ji, : Node i ,node j , Nji ,  

:a  Arc (link) a , Aa    

p : Path p , Pp  

ijP : The set of all path between node i and node j , Nji ,  

ac : Arc cost 

pc : Path cost  

af :Flow on arc a  

f : The set of all arc flow ,  ,...,...,, 21 affff   

ph : Flows on path p  

h : The set of all path flow,  ,...,...,, 21 phhhh    
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iju : The minimum cost between node i and node j , Nji ,  

u : The set of all O/D pair,  ,...,...,11 ijuuu 
 

ijT : Demand of the origin i  to destination j  

T : The set of all demand of different OD pairs,  ,...,...,11 ijTTT 
 

ap : Indicator variable, 1ap  if arc a  path p ; 0ap , otherwise 

 : Arc/ Path incidence matrix. 

 : O/D path incidence matrix 

2.1Principle of User behavior 

The network equilibrium is a nonnegative flow pattern occurring on a given 

network which is consistent with marketing clearing (i.e. with supply equals demand 

in either the transportation market or in the underlying commodity market) or flow 

conservation (Friesz, 1985). It is the main concept of the traffic assignment model. To 

find the network equilibrium, the first thing is to introduce several concepts  

presented by Wardrop(1952). 

 Wardrop(1952) assume that users have full information , and give the 

conclusion to the principle of user behaviors as below:  

(1). The journey times on all the routes actually used are equal, and less than 

those which would be experienced by a single vehicle on any unused route 

(2). The average journey time is a minimum value. 
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In Wardrop’s first Principle, each user non-cooperatively seeks to minimize 

his cost of transportation. The traffic flows that satisfy this principle are usually 

referred to as "user equilibrium" (UE) flows, since each user chooses the route 

that is the best. Specifically, a user-optimized equilibrium is reached when no 

user can lower his transportation cost through unilateral action.
 

To define the user equilibrium, the flow pattern satisfying the following 

conditions:  

      0 uhCh pp
,  

ijPpji  ,,                     (2.1-1) 

  0 ijp uhC ,  
ijPpji  ,,                        (2.1-2) 

  0


uTh ij

Pp

p

ij

, 
 ji,

                           (2.1-3) 

 
p

papa hf 0
  

a
                             (2.1-4) 

0h
                                   (2.1-5) 

0u                                    (2.1-6) 

Expressions (2.1-1) and (2.1-2) above are readily recognized as equivalent 

to Wardrop’s first principle, which require that for utilized paths between a given 

origin - destination pair, path cost equals the minimum path cost; paths whose 

costs exceed that minimum are not utilized. This principle conform the actual 

user behavior, can be applied on the assignment issue on roadway network. 

The second principle is implies that each user behaves cooperatively in 

choosing his own route to ensure the most efficient use of the whole system. 

Traffic flow satisfying Wardrop's second principle is generally deemed "system 

optimal" (SO). Economists argue this can be achieved with marginal cost road 
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pricing. The system optimal equilibrium only attach when all user cooperate to 

choosing route, therefore, it’s not adapted in the real urban network. The most 

application of system optimal is in the other system, like railroad, marine 

transportation and air transportation field. 

2.2 Mathematic model  

This part introduces the manly mathematical model development of the traffic 

assignment problem. 

2.2.1 Mathematical Programming 

Beckmann et al. (1956) formulate a Mathematical Programming (MP) model to 

find the Wardrop’s equilibrium. The model assumes that the cost-flow function of 

link can be separable. In other word, the link cost only influenced by the object link 

flow. The model successfully show that original network equilibrium problem could 

be transformed into an equivalent optimization problem: if the cost on any link is a 

function of the flow and of no other flows, then the flows satisfying user equilibrium 

principle are unique and are the same as the following minimize a specified objective 

function. 

)(min fZ
f

 (2.2-1) 

= 
a

f

a
f

a

dxxC
0

)(min  (2.2-2) 

fts ..  (2.2-3) 

}0,,{  hThhff  (2.2-4) 
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By the K-K-T condition of the above non-linear programming, we can find the 

necessary condition of this mathematic programming model, the following function 

are K-K-T condition  

0)(  pijp huc  
ijPp  ji,  (2.2-5) 

0 ijp uc  (2.2-6) 

The above model follows the Wadrop’s first principle. Equation (2.2-5) and 

equation (2.2-6) plus the constraint equation (2.2.1) and equation (2.2-4) equal to the 

equation (2.1-1) to (2.1-4). Therefore we can transfer the original network equilibrium 

assignment problem to mathematic programming model as above form. We can also 

transfer equation (2.2-5) and equation (2.2-6) to following formulation:  

If 
ijpp uch  0  

ijPp  ji,  (2.2-7) 

If 0 pijp huc  
ijPp  ji,  (2.2-8) 

Equation (2.2-7) describe that if the path p from origin node i  to destination 

node j is already be used ( i.e. flow on path 0ph  ) , the travel cost is equal to the 

minimum travel cost from origin node i  to destination node j . Equation (2.2-8) 

describe that if the travel cost on path p  more than the minimum travel cost from 

origin node i  to destination node j , then the user would not use the path p  (i.e. 

flow on path 0ph ) . 

Beckmann (1956) assumes that link travel cost is separable. In fact, if we 

consider different direction on crossroad, the link travel cost will be affected by the 
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other links’ flow, and each link has different weight effect to another. Therefore, the 

assumption which assumes the dividable link cost is unreasonable. Dafermos (1972) 

assumes that the Jacobian matrix of link travel cost is symmetrical. This assumption 

allows the link cost function contain the influence of flow on other links. 

Take A and the B two link sections as the example, the influence on B which is 

affected by the unit increase (or reduction) flow on link A, must be equal to that the 

influence on A which is affected by the unit increase (or reduction) flow on link B. 

The following equation can explain the situation: 

a

b

b

a

f

fC

f

fC








 )()(

                         (2.2-9)

 

However, a speaking of intersection, if the links nearby the objective link have 

different link width, the level of influence will be different. Even if the links nearby 

the objective link all have the same link width, if the marginal cost function which is 

affected by the other impact factor of the cost function is different, that is, the 

marginal effect cause by the increase unit are different. Thus, the assumption that 

equation (2.2-9) express will be unreasonable.  

Dafermos (1980) relax the assumption that link travel cost is separable, transfer 

the network equilibrium model into following linear integral form: 


a

a
hf

dxxC
f

)(
0

min
,

                        (2.2-10) 

In equation (2.13), the impact factor to link cost, not only include the current flow on 

itself, but also affected by the flow on the other related links. The equation (2.2-10) is 

formulated to vector integral form, therefore, we must define its integral path first, 
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and different definition of integral path will be different resolve. Hence, the equation 

(2.2-10) is not a complete definition mathematical model. The model which has 

objective function (2.2-10) is unable to solve. 

2.2.2 Nonlinear Complementarity Problem 

Aashtiani (1979) drop the assumption that link travel cost is separable, proposed 

that the assumption to take the path as variable to formulate mathematical model, 

which is called the Nonlinear Complementarity Problem (NCP). This model ignores 

the assumption of link cost function assumed by Beckmann and Defermos. The 

main assumption of NCP problem which is assumed that path as variable, however, 

in the real world, the network problems have great amount of paths, it will make the 

model become too complex to solve. Thus, NCP problem is not adapted to solve the 

large scale network problem. Li (1987) also proposed that NCP model can’t be 

convergence to great accuracy in some network type. The model formulation is as 

following: 

  0 pijp huc  
ijPp  ji,             (2.2-11) 

0 ijp uc                          (2.2-12) 

h                            (2.2-13) 

}0,{  hThh                     (2.2-14) 

By above equations we can find that the resolution from NCP problem is also 

satisfied the network equilibrium K-K-T condition. So that we can use NCP 

formulation to describe the network traffic assignment problem. Though the above 
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equations are similar with equation (2.2-5) and equation (2.2-6), it cost function have 

less assumption than mathematic programming model which 2.2-1 mention.  

2.2.3 Variational Inequality Problem 

Smith (1979) and Dafermos (1980) proposed another model which is called 

Variational Inequality Problem (VIP). The model also relaxes the assumption that link 

travel cost is separable proposed in Beckmann’s model. Take link (Smith) and path 

(Dafermos) as variables to construct the VIP model. Tobin (1986, 1987, 1988) Friesz 

(1990), and Kyparisis (1987) all make the sensitivity analysis to this model. The 

model can express as following: 

find the solution *f , which is satisfied the following equation 

0))(( **  fffc       for all f  (2.2-15) 

which 

}0,,{  hThhff  

2.2.4 Fixed Point Problem 

Kuhn (1968) proposed the Fixed Point problem (FPP). All model mention above 

(MPP, NCP, VIP) can be transfer to a FPP problem as following equations: 

))(( ijppp uchh   
ijPp  ji,  (2.2-16) 

0)(  ijp uc  
ijPp  ji,  (2.2-17) 





ijPp

ijp Th 0  
ijPp  ji,  (2.2-18) 
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The equation ))(,0())(( ijppijpp uchMaxuch   

i.e. 0ph  

2.3 Summary 

In this chapter, we first introduce the Wardorp’s principle of the user behavior, 

which is the important basic concept in our model. In the second section, we list the 

several mathematic program models in the traffic assignment field, which formulate 

the model in diverse ways: as a nonlinear complementarity problem, a fixed-point 

problem, a system of nonlinear equations, and as variational inequality.  
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3. Game theory 

Game theory is the important tool when people face the competition. It can help 

people to analyze the situation to decide the strategy which he/ she should take when 

he/ she need to make a decision to compete with his/her competitors. Situations 

modeled as games typically involve several parties having different interests, who 

need to decide how to behave. The level of benefit that each party gains depends not 

only on its own actions, but also on the choices of the other parties. The mathematical 

formulation of all games is similar, either explicitly or implicitly, to an optimization 

problem that includes more than one objective, and the decision variables are shared 

by the different objectives. Defining a game requires identification of the players, 

their alternative strategies and their objectives. Formulating a problem as a game is 

worthwhile if the solution, such as Nash equilibrium or Stackelberg equilibrium, leads 

to new insights on the analyzed problem. 

3.1 Development of Game theory  

The first known discussion of game theory occurred by James Waldegrave in 

1713. Cournot (1838) publicated a general game theoretic analysis, considers a 

duopoly and presents a solution that is a restricted version of Nash equilibrium. But 

the major development of the theory began in the 1920s with the work of the 

mathematician Emile Borel and the polymath John von Neumann (1928). A decisive 

event in the development of the theory was the book public by Von Neumann and 

Morgenstern (1944), which established the foundations of the field. In the early 1950s, 

Nash’s (1950) Ph.D. thesis, 28 pages in length, introduces the equilibrium notion now 

known as “Nash equilibrium” as the following equation 
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   *

1

*

1

** ,,:,,   xxfxxfxxSxi iiiiiiii  

Nash equilibrium is a solution concept of a game involving two or more players, 

in which each player is assumed to know the equilibrium strategies of the other 

players, and no player has anything to gain by changing only his or her own strategy 

unilaterally. If each player has chosen a strategy and no player can benefit by 

changing his or her strategy while the other players keep their unchanged, then the 

current set of strategy choices and the corresponding payoffs constitute a Nash 

equilibrium.  

Game theory is the most popularity tool when people tend to make the decision 

in competition. The next section will introduce the application of the game theory in 

the transportation field. 

3.2 The application of game theory in transport field 

This part introduces the application of game theory in the transport application. 

Colony(1970) formulates a route choice problem as a zero-sum game. One of the 

players is a driver that chooses whether to use an arterial road, the other is an 

imaginary entity which chooses the level of service on the road, and tries to disturb 

the driver’s journey. Rosenthal (1973) and James(1998) formulates a general game 

between n- individuals who choose the road segment out of a given set, where the cost 

of each road segment increases if more individuals choose it. The former formulated a 

programming problem, which solution is always a pure-strategies Nash equilibrium of 

the game, and shown that a solution always exists. Fisk(1984) mentions that the user 

equilibrium principle, introduced by Wardrop(1952), is in fact a game since it meets 

the conditions of Nash equilibrium. Van Vugt et al. (1995) present a two-player 

http://en.wikipedia.org/wiki/Solution_concept
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strategic form game, where each player chooses either car or public transport. The 

conclusion is that the selfish way travelers make their choices is bad for everyone, 

that is , the prisoner's dilemma in game theory.  

Table 1 The game theory application in traffic field  

Source Year Players Strategies/decision variable 

Wardrop 1952 Drivers Route choice 

Colony 1970 Driver Route choice: arterial road or 

motorway  

Level of service 

Rosenthal 1973 Drivers Route choice 

Fisk 1984 Authority 

Drivers 

Traffic control settings 

Route choice 

Van Vugt et al. 1995 Travellers Car/public transport 

James 1998 Drivers Travel/ not travel 

Lucking et al. 2004 Drivers Routing game 

Sun 2007 Drivers Routing game/Mode choice 

Gairing 2008 Drivers  Routing game 

In the recent paper, Sun(2007) construct a urban transit non-cooperative static 

game, and assume the prefect information, to find the generalized Nash equilibrium, 

which is to describe both the competitions among different transit operators and the 

interactive influences among passengers. Lucking et al. (2008) use the concept of 

Nash equilibrium to construct a self routing non-cooperative network model. In the 

hybrid model which consist of KP model and Worst-cast model, each of n users is 

using a mixed strategy to ship it unsplittalbe traffic over a network consisting of m 
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parallel links. Gairing et.al (2008) use the simaliar concept to discuss a discrete 

routing game. 

3.3 The Non-cooperative Game 

From the Wardrop’s principle, the concept of user equilibrium, every user 

pursuit one’s maximum utility (we can also said, minimum travel cost). We know that 

users all non-cooperative to pursuit one’s maximum utility. That is, the character of 

the route choice game is non-cooperative game. By this reason, the application of 

game theory in transportation field almost non-cooperative game.  

Game theory is divided into two branches, co-operative and non-cooperative 

game theory. The distinction can be fuzzy at time but, essentially, in non-cooperative 

game theory the unit of analysis is the individual participant in the game who is 

concerned with doing as well for himself as possible subject to clearly defined rules 

and possibilities. In comparison, in co-operative game theory the unit of analysis is 

most often the group or, in the standard jargon, the coalition; when a game is 

specified, part of the specification is what each group or coalition of players can 

achieve, without reference to how the coalition would effect a particular outcome or 

result. 

N.N. Vorb’ev(1977) give this kind of game a briefly definition: 

   
IiiIii HSI


 ,,

                  (3.3-1) 

iS represent the situation 

S  is the situation set, and 



Ii

iSS .  
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 sH i  is the payoff function of player i  in the situation s .  

iH  represent the payoff function of player  i .  

I is the player set. 

Definition 3.3-1: Let a constant c , for Ss , we define  constant-sum game if the 

following game exist 

  cSH
Ii

i 
                        (3.3-2)

 

If 0c , We called this type of game zero-sum game. 

                                                                                                                                                                                                       

3.4 summary  

We aim to use the view of game theory to analyze the network assignment 

process. First we have to understand the basis concept of the game theory. In this 

chapter briefly reviews the game theory, and introduces the history of the game theory. 

The second part of the chapter review the application of game theory in the issue 

relate to traffic assignment problem. Most of them is a concept game assume a entity 

which aims to reduce the user’s utility. The last part of the chapter introduces several 

important definition of game. We define the Nash equilibrium, the non-cooperative 

game, and the zero-sum game, which are the special cases in constant game. 
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4. Model Construction and Demonstration 

In this Chapter, we start to consider the traffic assignment problem by the game 

theory. The flowchart of demonstration process is below 

 

Figure. 4.1-1 The flowchart of the demonstration process 

4.1Network Game Definition 

In this section define some foundation concept and the definition to the 

demonstration process.  

Because of the concept of the user equilibrium which is introduced by Wardrop, 

the network equilibrium is a concave n-person non-cooperative game that every user 

tends to gain their maximum utility.  

Equal to two-person zero sum game

Saddle Point

“=“ of VIP

Uniqueness of equilibrium point

Existence of equilibrium point

compact set

Pay –off function can  be formulated as VIP form

pay-off function of N-person Game is pseudo concave

Use user behavier to construst an N-person game
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4.1.1 Problem region 

The network concave n-person game to be considered is described in terms of 

the individual strategy vector for each of the n  players. The strategy of the i th 

player is represented by ix  which chose from the path set im
P , ni ,...,1  ,which is 

the path in the target Network. The vector mPx  then denotes the simultaneous 

strategies of all players, where mP  is the product space. 

nmmm
PPP  21  and  


n

i imm
1

 

O D

Path 1

Path 2

Path 3

Path 4

Path 5

Path 7

Path 6

N 

人
事

Figure 4.1-2 The graph of network game 

Players choose the paths jp  which they use to gain the maximum utility, so the 

strategy set of the i th player is  mii pppXx ,...,, 21  , mi ,...,1  is the number of 

path in the same OD. Let K be the user/path instance matrix, we have 

phxK   

fh   
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The allowed strategies will be limited by the requirement that the selected x ,  

which can transfer to the link flow f  by the above process, satisfied the convex, 

closed, and bounded set  

}0,,{  hThhff  

Denote the path jp  of  ,then we have a bounded product set S ,

nxxxS  21 . The figure 4.1-3 illustrate for 2n . 

 

Figure 4.1-3 The region of the game 

4.1.2 Payoff function and some basic theorem 

The payoff function for the i th player depends on the strategies of all the other 

players as well as on his own strategy, and is given by the function  

   niii xxxx ,...,,...,1 
 

Define the above function as the payoff function for each user in the network game. 
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If we know the link cost function  fc , we can use the instance matrix   to find the 

path cost function   p

T Cfc  , then we can know the cost function pC  

By the hypothetic of the network game, users tend to gain their maximum utility is 

equal to find the minimum cost path of the OD pair, so we can say that 

   xMinCxMax
ipi   

    xCMaxxMax
ipi   

Now we consider the definition of equilibrium of network game. 

Definition 4.1-1: Assumed that Sx ,  xi  is continuous in x  and is concave in 

ix  for each fixed value of  nii xxxx ,..,,,..., 111  , that is , the i -th player under 

selection by the other players’ strategies . With this formulation an equilibrium point 

of the n-person concave game is given by a point *x , such that 

       **

1

**

1

* ,...,,...,|,...,,...,max ninii
y

i xyxxyxx
i

   ni ,...,1     (4.1-1) 

At such a point no player can increase his payoff by a unilateral change in his strategy. 

The idea of the equilibrium point for the concave n-person game was first presented in 

Nash (1961). 

Definition 4.1-2: Assumed that the function  yx,  defined for   yx,  by 

   



n

i

nii xyxyx
1

1 ,...,,...,,                  (4.1-2) 
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Observe that for   yx,  have   Sxyx ni ,...,,...,1 , ni ,...,1 , so that 

 yx,  is continuous in x  and y and  is concave in y  for every fixed x . The 

point *x , for which 

      yyxxx |,max, ***
                  

Which is call a normalized equilibrium point ( NEP) for the game that mention by 

Rosen (1965). It is easy to see that every NEP is also an ordinary EP. However, 

equilibrium points exist which are not normalized.  

NEP helps people consider the problem in the general way. They can have different 

weight factor with the same payoff function. Then the equation (4.1-2) can be 

formulated as below 

   



n

i

niii xyxryx
1

1 ,...,,...,,             (4.1-3) 

The concept can be applied in the network game, the people in the network game who 

choose the same path may have different effect to the network system. For example, 

the truck user brings more influence then the car user. 

By the definition of the payoff function,  xi is concave with respect to the 

fixed point x . Combined with the definition of function  yx, , we know that 

 yx,  is also concave with the fixed point x . 

Now we define the gradient function  xg of  x . Consider the vector function 

below: 
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 
       
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x
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
,...,,...,,...,

11

1

11

1

1                   (4.1-4)

 

Assume that all the derivatives exist and are continuous. Obviously, 

    xyy yxxg  ,
 

Definition 4.1-3: Let 
mEg : , where   is a nonempty convex set in nE . The 

function   is said to be concave on   if  yx, ,  1,0 , we have 

        yxyx   11               (4.1-5) 

 

Fig 4.1-3 Geometric interpretation of Definition 4.1-3 

The above graphic is the geometric interpretation to the Theorem. Then the 

following figure briefly show the different type function relate to the theorem. 
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Figure 4.1-4 Convex and concave functions   (graph from Bazaraa et.al(2006)) 

Theorem 4.1-4：Set   be a nonempty convex open set in nE , and let 
mE : .  

And g  is said to be differentiable on  . Then   is concave if and only if for any

yx, , we have 

        xyxxy
T

                    (4.1-6)  

Similarly, is strictly concave if and only if for any yx, , we have 

        xyxxy
T

                    (4.1-7)  

Proof:  

(Necessary)  

Suppose that   is concave, let  1,0  yx, , and we set that 

),...,,( 21 nxxxx   

),...,,( 21 nyyyy   
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So we can get the gradient function  

  
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by Definition 4.1-3, we have equation (4.1-5) 

        xysy   11  

Then we get 

    xyxxyx   )()(           (4.1-9) 

 is differentiable, then we can get the gradient function: 

      

 nnn
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
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11111

1                                                                 

(4.1-10) 

Let 0,...,1 n (when 0 ), then take (4.1-10) into (4.1-9), we have  

     xyxyxyxy
x

x
xy

x

x
nnnnn

n










 )(...)(
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...)(

)(
11111

1

(4.1-118) 

Set 0 , and let (4.1-11) divided by  ,  and set 0 , then we get 

 xyxy
x

x
xy

x

x
nn

n










)()(

)(
...)(

)(
11

1

          (4.1-12) 



 

28 

 

Observe the left hand side of equation (4.1-12), it is equal to (4.2-8), then we get 

     xyxxy  )(  

  xyxxy  )()(  

The proof of necessary is complete.  

In above equation, if we take the equality away, we can get the proof of strictly 

concave function. 

 

(Sufficiency) 

Let yx, ,  1,0  , we set that 

   yxz  1                      (4.1-13) 

    yxz   1                     (4.1-14) 

And By the hypothesis of the theorem, we have 

      zxzzx                    (4.1-15) 

      zyzzy                    (4.1-16) 

Let (4.1-15) multiplied by  , and (4.1-16) multiplied by  1 , then we get 

      zxzzx                 (4.1-17) 
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            zyzzy   111               (4.1-18) 

Plus equation (4.1-17) to equation (4.1-18), we can get 

                   )(111 zyzzxzzzyx    

(4.1-19) 

Consider the right hand side of equation (4.1-19) 

             )(11 zyzzxzzz    

      zyxzz   1  

    zzzz   

    yxz   1    

Then consider the equation 4.1-19, we have 

        )11 yxyx    

By Definition 4.1-3,  x  is concave.  

The proof of sufficient is completed. 

Q.E.D. 

Theorem 4.1-5: when  x  function is (strictly) concave, the gradient function 

 xg  exists following relation: 
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       yxyxxyygxg  ,,,0,            (4.1-20) 

Proof: 

i. If strictly is untenable, that is, proof        0 xyygxg
T

 

Set  x  be a concave function, let yx, , by Theorem 4.1-4, we know that 

the following relation:  

        xyxxy
T

              (4.1-21) 

        yxyyx
T

              (4.1-22) 

Plus equation (4.1-21) and equation (4.1-22), we can get 

              xyyxyxyx
T

    (4.1-23) 

Then 

       0 xyyx
T

 

By the definition of  xg  (equation 4.1-4)  

       0 xyygxg
T

 

Q.E.D. 

ii. If strictly hold, that is, proof      0,  xyygxg  

       xyxxy
T

                  (4.1-24) 
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       yxyyx
T

                  (4.1-25) 

Plus the above equation (4.1-24) and equation (4.1-25), finally we can get 

       0 xyyx
T

 

Then 

       0 xyygxg
T

                    (4.1-26) 

Q.E.D. 

4.1.3 The VIP network model 

From the chapter 2, we have the foundation Variation Inequality network model, 

to find the solution *f , which is satisfied the following equation 

0))(( **  fffc       for all f  

}0,,{  hThhff
 

 fc  is strictly monotone function. 

It can be represent in the following type 

    0),  xyyx
T

 

The above equation can be transfer in following equation 

       0 xyyx
T

 

Compare with the theorem 4.1-5, it match the character of concave game. 
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We take the path flow as variable to construct the network game. Now, let yx  , 

because  hc  is strictly monotone function, The equality of above equation will be 

refused. We have 

0))(( **  hhhc                    (4.1-29) 

The above equation matches the character of strictly concave and can be represented 

as below: 

    0),  xyyx
T

 

It can easily find that the equation of network model match the gradient of the 

network concave game we assume.  

 Now we face the problem that the amount of path is a large number that is too 

hard to solve. Smith (1979) proposed a equivalent to the VIP form which take the path 

and link as variable. As the following equation : 

    pp hhChhc   

  
papa hfC   

     papa hfC   

  aa ffC  

  ffc   

By the above theorem, we can also take link flow as variable to consider our network 

game . 
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4.2 The existence and uniqueness of network game  

This section proves the existence and uniqueness of the network assignment 

model.  The method of proof is essentially a rearrangement of Rosen’s (1965) proof 

for existence and uniqueness of equilibrium point of the concave n-person game. 

In the former section, we assume that the network game is a concave n-person 

game, and proof that the variation inequality model matches the assumption of the 

game. By the preliminary concept of game, the equilibrium point (EP) of the game 

might have three situations. It is possible to have no equilibrium, several equilibria, or 

one unique equlibrium. For instance, the figure 4.2-1 show the situation of EP of two 

person game. 

 

Figure 4.2-1 Best strategy curve for a game with a continuous action space(Krishnan,2006) 

We are interested in a subset of continuous games that have a unique equilibrium. 

It turn out that a set of games that can satisfy this criteria is concave game.  

By the reason of above, we want to prove the existence of the equilibrium first, 

and second, we prove the uniqueness of Nash equilibrium in this network game. 
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4.2.1 Existence of equilibrium point 

From section 4.1, we define the payoff function  x  and the function  x , 

by the equation 4.1-2,  yx,  is continuous in x  and y and  is concave in y  

for every fixed x .We now prove the existence theorem for the concave n- person 

game.  

Definition 4.2-1: A single-valued mapping YXf :  sends a point x  of X  to a 

point  xf  of Y . But on some occasions, we need to consider a mapping f  that 

lets correspond to each point x  of X  a subset  xf  of Y . Such a mapping is 

termed a set-valued mapping or a point-to-set mapping. 

Definition 4.2-2: An  -net of a metric space X is a finite subset  sia i ,...,2,1|   

of X such that the family of  -neighborhoods   siaN i ,...,2,1|,   is a covering 

of X . Here,       axdisxaN ,|,  denotes an  -neighborhoods in X . 

 

Figure 4.2-2 The  -neighborhoods  

Definition 4.2-3: A set X  is compact if any sequence of its points contains a 

sub-sequence that converges to a point in X . 
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Corollary 4.2-4: If a metric space X is compact in the sense of definition 4.2-3, it 

has an  -net for any 0 . 

Proof. Suppose that X  had no  -net. Take any one point 1a .  

Since there is no  -net, the  -neighborhoods  ,1aN  cannot cover X . 

So that some Xa 2 does not belong to  ,1aN .  

Again, for the same reason, there is some 3a  belonging to none of  ,1aN  and

 ,2aN . 

Continuing this procedure, we obtain a sequence  va  such that  ,
1

1 v
v

i

v aNa 


  . 

By construction, the sequence has the property   vu aadis ,  for vu  . Such a 

sequence has no convergent sub-sequence, contradicting the compactness of X , 

Q.E.D. 

Definition 4.2-5 (convexity): A vector y  in nR  is said to be a convex combination 

if y  can be written as  





s

i

ii xy
1

  





s

i

i

1

1 , 0i  , for ki ,...,1                  (4.2-1) 

Definition 4.2-6: If iX  are convex subsets in nR  si ,...,2,1 , their linear 

combination 


n

i

ii X
1



 

is also convex.  
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Definition 4.2-7: (upper semi-continuous)  

(a) Point : A numerical function defined on X  is said to be upper semi-continuous 

at 0x , if, to each 0 , there corresponding exist a neighborhood  0xN   

such that 

        00 xfxfxNx                       (4.2-2) 

 

Figure 4.2-3 An upper-semi continuous function 

(b) Mapping: Let   be a mapping of a YX  . Let 0x  be a point of X . We say 

  is upper semi-continuous at 0x  if for each open set G  containing ox  

there exists a neighborhood  0xN  such that  

  GxxNx  0  

Corollary 4.2-8: (Brouwer, 1909,1910). Let X be a nonempty compact convex set in 

nR , and XXf :  be a continuous mapping that carries a point x  of X  to 

some point  xf  of X . Then f  has a fixed point x̂  so that  xfx ˆˆ   
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Figure 4.2-4 One dimensional case(fixed point) 

Theorem 4.2-9: (Kakutani, 1941). Let X  be a nonempty compact convex set in nR , 

and 
XXf 2:  be a set-valued mapping which satisfies 

(a) For each Xx the image set  xf  is a nonempty convex subset of X ;and 

(b) f  is a closed mapping 

Then f  has a fixed point. 

 

Figure 4.2-5 Fixed point for set-valued function 

Proof.  Since X is compact, recall the Corollary 4.2-4 on the existence of  -net , 

for every 0 , it has an  -net  
 siaN i ,...,1|  . Next choose an arbitrary 

point ib of  iaf 
. Then, we define the continuous functions  xi

  on X  by 

   0,max i

i axx       si ,...,1                (4.2-2) 

http://en.wikipedia.org/wiki/File:Kakutani.s
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According to Definition 4.2-2, Since N  an  -net, for each x  we have 

iax    for some i , so that we have 0 i
 for this i . With these function we 

can obtain the weight functions 

 
 

 













s

j

j

i
i

x

x
xw

1

   si ,...,1                     (4.2-3) 

Using these weight function, we define a single-valued continuous mapping  

    






s

i

i

i bxwxf
1

 Xb i    si ,...,1                  

  0xwi

 , 1 
iw                       (4.2-4) 

Because of the convexity of X  which define in Definition 4.2-5. Then we obtained 

a single-valued continuous mapping XXf :
 for every 0 . By the Brouwer 

fixed-point theorem (Theorem 4.2-6), there is a fixed point x , 

  xfx                                (4.2-5) 

Now apply equation 4.2-5 to a sequence  v  of positive numbers with limit 0v . 

Since X  is compact, the correspoinding sequence of fixed point  vx ,

 vvv xfx    contains a convergent sub-sequence with a limit x̂ .  

Without loss of generality, assume that we have chosen a sequence  v  of positive 

numbers fulfilling following constraints 
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a. 0lim 


v
v

  

b. xx v

v
ˆlim 




 

c.  vvv xfx                                                    (4.2-6) 

We tend to show that x̂  is a desired fixed point of f . Consider the set  

   UxfO  ˆ  

   uuU |   for a 0  

If Oxˆ  for any 0 , we have    0ˆ,ˆ xfxdis , which entails  xfx ˆˆ  

because  xf ˆ  is closed in X . The subsequent discussion will clarify that Oxˆ  

for any 0 . 

First note that O  is an open set containing  xf ˆ . This can be seen by noting that 

    UxO   

This union taken over all  xfx ˆ , and also the openness of U .By the definition 

4.2-6, we know the convexity of O
 

f  is upper semi-continuous. Since O  is an open set containing  xf ˆ , there is an 

 -neighborhood  XxxxxV  ,ˆ|   of x̂  such that    OVf  . By 

( ))( ,we have 
2


 V  and 2

 Vx V   for large v . 



 

40 

 

For these large v ,   0vv

i xw   implies 
2

  v

vvi xa , so that 

xxxaxa vvvivi ˆˆ    

< 



22
 . 

In summary for large v , we have 

 Va vi   for i  with   0vv

i xw  , which entails 

    
 OVfafb vivi  . In view of  

  vivv

i

v bxwx 
 

vx   turns out to be a convex linear combination for only vib  lying in O  for large 

v . The convexity of O  therefore implies 

 Ox v   for large v . Letting v  tend to 

infinity in view of   , we have in the limit 2
ˆ Ox .  

The replacement of   by 2  in the resulting relation is due to the possibility that 

x̂ , the limit of  vx

, may lie on the boundary of U . 

However, 2
ˆ Ox  for any 0  is equivalent to Oxˆ  for any 0 , whence 

 xfx ˆˆ  in the light of the preliminary discussion above. This completes the proof, 

Q.E.D. 

The following part we use Rosen(1965) method to proof the existence and uniqueness 

of the Equilibrium point. 

Theorem 4.2-10: An equilibrium point exists for every concave n-person game. 
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Proof: 

Consider the point-to-set mapping  xx , given by 

    zxyxyx
Rz

,max,| 


            (4.2-1) 

It follows from the continuity of  zx,  and the concavity in z  of  zx,  

for fixed x  that   is an upper semi-continuous mapping that maps each point of 

the convex , compact set R  into a closed convex subset of R . Then by the Theorem 

4.2-9, there exists a point Rx *  such that ** xx  , or  

   zxxx
Rz

,max, *** 


                    (4.2-2) 

The fixed point *x  is an equilibrium point satisfying equation (4.1-1), which we 

rewrite below..  

       **

1

**

1

* ,...,,...,|,...,,...,max ninii
y

xyxxyxx
i

   ni ,...,1     

If we suppose that *x  were not be the equilibrium point. Then, say for li  , there 

would be a point ll xx   such that   Rxxxx nl  **

1 ,...,,..., and    *

1 xx l  . Then 

we have    *** ,, xxxx  , which contradicts (4.2-2). 

Then the proof is completed. 

Recall the network game problem, if we assumed the set 

  0|  xhx
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For the special case of the orthogonal constraint set nS  ...21 , we 

have 

  0|  iii xhx                       (4.2-3) 

Then the Kuhn-Tucker conditions equivalent to (4.1-1) 
 
with 

 
given by 

(4.2-3) can now be stated as follows 

  00 xh                          (4.2-4) 

And for ni ,...,1 , 00  iu , k

i Eu 0 , such that 

  0'0 xhui
                        (4.2-5) 

     0

1
0'000

1

0 ,...,,...,,...,,..., niiniii xyxhuxyxx              (4.2-6) 

Since  xi  and  xh j
 are concave and differentiable, the inequality (4.2-6) is 

equivalent to  

    0
1

000  


k

j

jiijii xhux    ni ,..,1                   (4.2-7) 

We shall also use the following relation by the Theorem 4.1-4, which holds as a result 

of the concavity of  xh j
. For every Rxx 10 ,  we have 

           



n

i

jiiijjj xhxxxhxxxhxh
1

0'010
''0101         (4.2-8) 

Now consider the network game, if we consider the weight value of the all player, to 

find the weighted nonnegative sum of the functions  xi , then we have 
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    0,,
1

 


rxrrx
n

i

ii                       (4.2-9) 

For each nonnegative vector nEr . For each fixed r , we defined the related 

mapping  rxg ,  of mE in term of the gradients  xii  , which is given by 

 

 
 

 

























xr

xr

xr

rxg

nnn 






222

111

,                        (4.2-10) 

Definition 4.2-12: The function  rx,  will be called diagonally strictly concave 

for Rx  and fixed 0r  if for every Rxx 10 ,  we have 

        0,, 1'100'01  rxgxxrxgxx                

We can also represent as Theorem 4.1-5 

    rxgrxgxx ,,, 1001  >0                (4.2-11) 

Theorem 4.2-13: There exists a normalized equilibrium point to a concave n-person 

game for every specified 0r . 

Proof: For a fixed value rr  , let 

   



n

i

niii xyxrryx
1

1 ,...,,...,,,                  (4.2-12) 

Using the fixed point theorem as in Theorem 4.2-9 (Kakutani fixed point theorem), 

there exists a point *x  such that 



 

44 

 

      0|,,max,, ***  yhryxrxx
y

             (4.2-13) 

Then by the necessity of the Kuhn-Tucker conditions,   0* xh , and 0* u , such 

that   0**' xhu  and 

    0
1

***  


k

j

jijiii xhuxr    ni ,...,1                (4.2-14) 

Let 
i

j

ij
r

u
u

*

*  , which the same with equation (4.2-7) , are sufficient to insure that *x  

satisfies (4.1-1); *x  is therefore a normalized equilibrium point for the specified 

value of  rr  . 

The proof is completed. 

 

 

4.2.2 Uniqueness of equilibrium point 

In order to prove the uniqueness of the network game, we have following theorem:
 

Theorem 4.2-14: If  rx,  is diagonally strictly concave for some 0r , then the 

equilibrium point *x  satisfying (4.1-1) is unique. 

Proof: 

Assume there exist two distinct equilibrium points 0x  and Rx 1 , each of which 

satisfies (4.1-1). By the necessity of the Kuhn-Tucker conditions we have for 1,0l  

and ni ,...,1 : 
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  0l

ii xh  

iml

i

l

i Euu  ,0                     (4.2-12) 

Such that 

  0' l

ii
l

i xhu                       (4.2-13) 

    0
1

 


im

j

l

iij

l

ij

l

ii xhux                 (4.2-14) 

Multiply equation (4.2-14) by  '01

iii xxr  for 0l  and by  10

iii xxr  , we have 

      00

1

00'01 












 



iiji

m

j

ijiiiii xhuxxxr
i

             (4.2-15) 

      01

1

11'10 












 



iiji

m

j

ijiiiii xhuxxxr
i

             (4.2-16) 

Then let the equation (4.2-15) plus the equation (4.2-16) and sum on i , we have 

            
  









































n

i

iiji

m

j

ijiiiiiiiji

m

j

ijiiiii xhuxxxrxhuxxxr
ii

1

1

1

11100

1

00'01 

                0
1 1

11010'010

1

10'01  
 

n

i

m

j

iijiiijiijiiiji

n

i

iiiiiii

i

xhxxuxhxxurxxxxr 

 

 (4.2-17) 

The equation (4.2-17) can divided in two parts, we can write in the following 

statement: 
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0                       (4.2-18) 

Where 

      



n

i

iiiiiii xxxxr
1

10'01 
 

        
 


n

i

m

j

iijiiiijiijiiiiji

i

xhxxuxhxxur
1 1

1'1010'010  

To consider  , we have  

      



n

i

iiiiiii xxxxr
1

10'01 
 

       



n

i

iiiii xxrxx
1

10'01                                 

By the equation (4.2-10), we define the function  rxg ,  as below 

 

 
 

 

























xr

xr

xr

rxg

nnn 






222

111

,                  

Then the equation can be rewrite in the following relation 

      rxgrxgxx ,, 10'01                  (4.2-19) 

By the hypothesis of the Theorem,  rx,  is diagonally strictly concave, we have 

0                                

Now we consider  ,  Because of equation (4.2-8), we have  
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        
 


n

i

m

j

iijiiiijiijiiiiji

i

xhxxuxhxxur
1 1

1'1010'010  

         
 


n

i

m

j

ijijijjijiji

i

xhxhuxhxhur
1 1

101010
    

        
 


n

i

m

j

ijijjijijijijiji

i

xhuxhuxhuxhur
1 1

11010010
 

From the Kuhn-Tucker condition, we have the relation of equation 4.2-13, so we have 

    
 


n

i

m

j

ijijijij

i

xhuxhu
1 1

0110  

    



n

i

iiiiii xhuxhu
1

0110                                         

Then from equation (4.2-12), we know that 0l

iu ,   0l

ii xh , then we can find that 

      0
1

0110 


n

i

iiiiii xhuxhu                       (4.2-20) 

From (4.2-19), (4.2-20), we have 0 , 0 , which contradicts equation (4.2-18), 

and th2 proof is complete. 

 If we consider a special kind of equilibrium point such that 
i

j

ij
r

u
u

0

0  , for some 

0r  and 00 u , we will call this a normalized equilibrium point. Then we have 

following theorem: 
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Theorem 4.2-15: Let  rx,  be diagonally strictly concave for every Qr  , 

where Q  is a convex subset of the positive orthant of nE . Then for each Qr   

there is a unique normalized equilibrium point. 

Proof: 

We first assum that for some Qrr   we have two normalized equilibrium point 

0x  and 1x . Then we have for 1,0l  and ni ,...,1  

By the theorem 5, the Kuhn-Tucker conditions are below: 

  0lxh , 0 lu , kl Eu  , such that   0' ll xhu , and 

    0
1

 


k

j

l

ji

l

j

l

iii xhuxr                      (4.2-21) 

Multiply equation (4.2-21) by  '01

ii xx  for 0l , and by  '10

ii xx  for 1l , and 

sum on i . Then we have 

            
 











































n

i

iji

m

j

ijiiiiiiji

m

j

ijiiiii xhuxxxrxhuxxxr
ii

1

1

1

11'100

1

00'01 0

 

(4-2-22)

 

The equation (4-2-22) is similar with equation (4.2-17). As in the proof of Theorem 6, 

the equation can be divided in   and  , which 

0   

where   is given by (4.2-19). Then since  rx,  is diagonally strictly concave we 

have 0 , and 
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        
 


k

j

n

i

jiiijjiiij xhxxuxhxxu
1 1

1'1010'010  

          



k

j

jjjjjj xhxhuxhxhu
1

10'101'0  

         10'1010 '

xhxhuxhxhu jjjj   

    00'1'0  xhuxhu h

l

h
 

0  and  0, which contradicts 0   and proves the theorem. 

4.2.3 Summary 

By the combination of the above theorem, we can make the conclusion as below: 

For every concave n-person game, there exists a normalized equilibrium point (NEP) 

which is unique if the following so-called condition of strictly decreasing g(x) hold:  

       yxyxxyygxg  ,,,0,          (4.2-21) 

Or the conditions 

a.    xxg ,0
                                                 

 

b.         yxxyygxg ,,0,                                  

c.   is strictly convex                                         (4.2-22) 

If there exists a Jacobian  xH  of the vector function  xg  

n

jiji xx
1,

2





















                      (4.2-23) 
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Theorem 4.2-16: Let 
mE  be a convex set,    nxxx ,...,1

 
is continuous 

and is   is said to be twice differentiable at x ,   is concave function if and 

only if and nn  symmetric matrix  xH , which display below 

 
n

jiji xx

f
xH

1,

2






















 

We called it Hessian matrix , which form as below is semi-negative definition, that is  

   0, xH  

Proof: 

Necessary 

 yx, , based on Taylor theorem, we have 

 xyx       10   

             


















2

1

11 ...
!2

1

n

nn
x

xy
x

xyxxyxy

    (4.2-24)
 

Consider the last term of above equation  

     


















2

1

11 ...
n

nn
x

xy
x

xy  

  
 


 




n

ji ji

iiii
xx

xyxy
1,

2 
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 
 














































nn

ji

nn

xy

xy

xy

xx

f
xyxyxy


22

11

2

2211 ,...,,


  

   ,xH  

By the hypothesis, if the Hessian matrix is negative definite: 

   0, xH  

Then the equation (x) can be rewritten to an inequality below 

       xxyxy                        (4.2-25) 

By Corollary 4.1-4 we can know that the function  x  is concave 

Sufficiency 

By the hypothesis, we know that the function f(x) is concave in ,, let 

   0, xH    x ,  

 nhh ,...,1
 

That is 

 
 

0,...,
12

1 
































nji

n

h

h

xx

x
hh   

According to Taylor’s theorem, we can have following equation 
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       
   2

12

1 ,...,
2

1
ho

h

h
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x
hhxhxhx

nji
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


 
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


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









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
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     
   2
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2
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hhxhx
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n 































   

     
 

 
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
























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
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


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




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1 12

1

2 o
h

h

xx

xf
hhxhx

nji

n 

          (4.2-26)

 

Because of the hypothesis    0, xH ,when 0 ， the third part of 

equation (4.2-26) as below  

 
 

  01,...,
2

1 12

1

2 






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





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













































o

h

h

xx

xf
hh

nji

n 

 

So that we have

 

     xhxhx                         (4.2-27) 

Let hxy  , then the equation above can be represented to 

       xxyxy                         (4.2-28) 

It contradicts the concavity of the function. 

The proof of sufficiency is complete 

Use the Theorem 4.1-5, when    0, xH ,
mEx  , ,we have the relation 
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        yxxyygxg ,,0,  

That is, the condition can also be 

a.    xxg ,0  

b.    0, xH  

c.   is strictly convex set                                      (4.2-29) 

By the theorem and the proportion in this part, we prove the existence and 

uniqueness of the normalized equilibrium point of network concave game which is 

described by variation inequality model. By the reason, we can consider the network 

assignment problem into a non-cooperative n-person game.  

4.3 The equivalence of an n-person game to a Zero-Sum game 

By the forward theorem, we proved the existence and uniqueness of the 

normalization equilibrium point of the network equilibrium model. Though the 

following theorem, we want to prove the equivalence of an n-person game to a 

two-person game. We use the method  which Zukhovisky (1973) proposed  to 

finish this proof, so that we can consider the problem with a simplified form. 

Theorem 4.3-1: Let the vector function  xg  be decreasing, by the Theorem N, we 

have   

        yxxyygxg ,,0,  
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Then in order that the point *x  be an NEP, it is necessary and sufficient that the 

point  ** , xyxx   be a saddle point of the function   yxyg , , on the set 

 , i.e., that for    yx, ,the following equations hold: 

        yxygxxxgxxxg  ****** ,,,      yx,    (4.3-1) 

Then we can get the equation: 

           0,,minmax,maxmin *** 


xxxgyxygyxyg
yxxy

    (4.3-2) 

In order words, the NEP problem is equivalent to a two-person zero-sum game in 

which the strategies of both players are chosen from the set  , and the gain functions 

are as following: 

    yxygyx  ,,1                       (4.3-3) 

      yxxyygyx ,,, 12                         (4.3-4) 

Proof: 

(Necessary) 

Let *x  be an NEP. By the definition of NEP, we have 

    *** ,|,max xxxxx                 (4.3-5) 

This means that from the point *x  there does not exist a direction of ascent for the 

concave function  xx ,* , which does not come out of the set  , so that 
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     ***** ,0, xxxgxxxg                (4.3-6) 

It remains to establish the right-hand inequality of equation (4.3-1). 

assume that the right-hand inequality of equation      yxygxxxg  **** ,,  is 

not hold. Let y~ , and the following inequality of equation holds: 

   0~,~ *  yxyg                           (4.3-7) 

Considering the decreasing condition of the vector function  xg ,  by the theorem 

4.1-5, we get 

       0~~ **  xyygxg  

        0~~~ ***  yxygyxxg                        

       yxygyxxg ~~~ ***                 (4.3-8)                             

By equations (4.3-7) and (4.3-8), we have the equation 

    0~ **  xyxg                          (4.3-9) 

Contradicts the left-hand inequality of (4.3-1) 

Sufficiency. 

Let *x satisfy equation (4.3-1). By the left- hand inequality of (4.3-1), we have 

     ***** ,, xxxgxxxg                
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    xxxxg ,0, **
                  

There follows the lack of a direction of ascent of the function  xx ,*  from the 

point *xx  , not coming out of  . Therefore, we have 

    *** ,,max xxxxx   

the point *x is an NEP. 

We can use the graph to explain the above theorem. When the equivalent of VIP 

function is hold, it means that we have a saddle point of the game. In this situation, we 

can randomly choose the two players(users) from the n person set, then their saddle 

point of the game is equal to the original n-person game. 

 

Figure 4.3-1 The saddle point in n=2 

Then the solution (equilibrium) of the n-person network game is equal to the 

solution of the two-person zero sum game.  

4.4 Summary 

This chapter use several theorems to describe and prove the network game, 

which can transfer into the two-zero sum game. That is, when the game reach the 
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equilibrium state, the equilibrium point of the n-person is equal to the equilibrium 

point of the two players of  these game. In the first section, we first define the 

equilibrium point (Def. 4.1-1, 4.1-2) , Then Def. 4.1-3, Corollary 4.1-4, and Theorem 

4.1-5 describe the character of the concave function (set). We use the Wardrop’s 

concept which describe in the chapter 2 to construct the network concave game, use 

these theorems to derive the equivalence to the supposed model and variation 

inequality network model.  

In the second part, we aim to prove the existence and uniqueness of the 

equilibrium point of the network game. Firstly, we introduce the mapping concept in 

Def. 4.2-1. Def. 4.2-2 and Corollary 4.2-4 introduce the definition and character of 

neighborhood. Def. 4.2-7 illustrates the upper semi-continuous. We use these 

corollaries and definition to prove the fixed point theorem (Def. 4.2-8 Corollary 

4.2-9). Then the Theorem 4.2-11, 4.2-13 uses the mapping of   into   and the 

Kakutani fixed point theorem to show the existence of the equilibrium point of the 

game. Theorem 4.2-14, 4.2-15 shows the uniqueness of the equilibrium point of the 

game.  

In the last part, Theorem 4.3-1 use the concept of saddle point shows the 

equivalence of an n-person game to a two-person game.  
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5. Conclusing remark 

This chapter aims to conclude the results of the preview chapters, and illustrate the 

contribution of this research as following. 

1. Construct a network assignment game which is belong to n-person concave 

game, and demonstrate the equivalence to the game and the VIP network 

model. 

We uses the wardrop’s user equilibrium concept to construct a n-person 

concave network assignment game, and recommend several theorem to prove the 

equivalence to this network assignment game and the original network assignment 

VIP model. We record the mathematic processes explicitly and explain our 

thought and the meaning of the model clearly. 

2. Analyze problem in different view. 

By the process of the demonstration, we can consider the assignment 

problem in game theory view and can analyze the traffic assignment problem in 

the different view. It can help us consider the network assignment in the micro 

scale.  

3. The demonstration with equivalence to the n-person concave game and two 

person zero-sum game 

The research also shows the demonstration which is the equivalence to the 

n-person concave game and two-person zero-sum game. This conclusion can 

simplify the problem and help us to solve it in the easily way. 
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