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Non-cooperative Game Properties of Equilibrium Assignment

Student : Ju-Chun Wu Advisor : Hsun-Jung Cho

National Chiao Tung University
Institute of Transportation Technology and Management

Abstract

Traffic assignment is one of the important part of transportation planning
procedure. Though assignment model, we can predict the network flow which is the
vital norm for decision-making of transportation management. Traffic assignment
model already tends to be mature at present. Based on the principle proposed by
Wardrop, traffic assignment problem are formulated in different formulation by
several mathematical theory, includes-Mathematical Programming problem,
Nonlinear Complementarity Problem; Fixed-Point Problem, and Variational

Inequality Problem.

This research based on the concept of user equilibrium, construct a n-person
non-cooperative concave game, and demonstrate the relation with the static
equilibrium assignment model through the variation inequality form. In the latest part
of the paper use the assumption proposed by Zukhovitsky to prove the equivalent
between n-person concave game and two-person zero-sum game. The demonstration
process help us analysis the assignment problem in different view and the proof of

equivalent simplify the problem and help us solve problem in easily way.

Key words : Traffic Assignment, Non-cooperative Game,Variational Inequality
Problem
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1. Introduction

1.1 Background

Within the rational planning framework, transportation forecasting is important
to transportation management. It followed the sequential four-step model or urban
transportation planning (UTP) procedure. The four steps of the classical urban
planning system model includes Trip Generation, Trip Distribution, Modal Split

process, and Traffic Assignment.

Traffic Assignment Problem(TAP) is a multicommodity flow problem which
arises when users (or commodities) must share a common resource, the street network.
It is to assign flows by various modes in given link to paths in transportation networks.
It describe how road-users to choose:the optimal route between an origin-destination
(OD) pairs, and can be used for analyzing and forecasting traffic flows on every link
or route furthermore. However, each-user’s choice is dependent upon other users’
choices as well, because the travel time on each street depends on the total number of
cars on that street: more congestion means longer travel times. Meyer and Miller

(2001) introduced several traffic assignment techniques as follows:
(1) Static assignment model

Network flows will not vary with time in the above approaches. In static
assignment techniques, these procedures assume that each vehicle is
simultaneously located on every link on its chosen path and assign all flow
simultaneously to all links on the chosen paths. The commonly static assignment

technique as follows:



B All-or-nothing assignment: It is the simplest approach involving the
selection and loading between each origin and destination. It makes a
previous assumption that road capacity is unlimited, and link cost is fixed.
For each OD pair, find the shortest path and assign all the travel demand
into it. The method ignores the limitations imposed by restriction on the
capacity of the network. Links may be allocated far greater flows than they
are capable of carrying.

B Equilibrium assignment: The idea of equilibrium in the analysis of
transportation networks arises from the dependence of the link travel time
on the link flows. Travelers will strive to find the shortest path (least
resistance) path from origin to destination, and network equilibrium occurs
when no traveler can decrease travel-effort by shifting to a new path. In this
situation, no user can changing travel path unilaterally to reduce the travel
cost or time.

B Stochastic assignment: The second assignment technique is also called
deterministic user equilibrium, because it assumes all travelers obtain
perfect information on travel costs on any given path are perfect, resulting
in making rational route choices. However, in real world, traveler cannot
always obtain the whole network information. This leads to development of
stochastic assignment, in which link travel time function is viewed as
random variables varying with users’ preferences, perception and
experience.

(2) Dynamic assignment



In real world, the static representation of network performance is not
sufficiently accurate. A dynamic representation of route choice behavior and
resulting network performance is required in which the movements of vehicles
along their chosen paths is explicitly simulated through time. Dynamic assignment
models may be either probabilistic in terms of the simulation of users’ route
choices and/or determination of vehicles’ travel times along given links, or they

can be deterministic.

It is unrealistic assumption obviously, but for many regional transportation
planning applications, static assignment assumption is acceptable and can yield useful
results. The research use the game theory to analyze the equilibrium assignment

which is classified in static assignment.

1.2 Research Objective

Game theory aims to help people understand situations in which decision-makers
interact. It had been applied in transportation in many different aspects. Fisk (1983)
discuss some transportation problem as the game theory models, include Nash
non-cooperative and Stackelberg games. The discussion serves to underline
differences between two categories of transportation problems and introduces the
game theory literature as a potential source of solution algorithms. The purpose of
research is to demonstrate why the n-person assignment problem can be regard as a
two-person game. The research construct a n-person non-cooperation game, use the
technique of game theory to consider the assignment problem. Then prove the

equivalent between the constructed n-person concave game to a two-person zero sum



game. The research use the idea proposed by Zukhovitshii et al. (1973), demonstrate

the theory step by step.

1.3 Research Procedure

Figure 1.3-1 is the procedure of the research

Problem definition

A

Network equilibrium model

Review

v

Game theory

Review

) 4

Model Formulation

A 4

Demonstration process

\ 4

Conclusion

Figure 1.3-1 The research flow chart
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The research was divided in following part:

(1) Problem definition:

This paper tends to make a completely proof that the network traffic
assignment problem can be represented in a n-person concave game, which is
equivalent to a two-person zero-sum game. It can help us analyze the problem in

different way.

(2) Review:

Before we start to discuss the traffic assignment game, we first review the
existed assignment model. Chapter 2 review the article about network
equilibrium, include the development of the equilibrium model and their
foundation concept. Because of changing our view to the game based side,
Chapter 3 reviews the basic theory of game, and introduces the application of

game theory to the traffic side.

(3) Model Construction and Demonstration:

In Chapter 4, we first construct a network game, and use several mathematic
theorems to demonstrate the element of the game, include the existence and
uniqueness to the equilibrium point. Then make the demonstration to prove the

equivalent to the n-person game with two person game.

(4) Conclusion and contribution

Finally, this paper presented some conclusions of this literature and the

contribution for the traffic field.



2. Network equilibrium model

This section reviews principle of the equilibrium in network, and the

development of mathematic model of traffic equilibrium network.
Notation definition:

N : Node set

A Arc(link) set

P : Path set

i, j:Node i,node j, i,jeN

a: Arc(link)a, ac A

p:Path p, peP

P.: The set of all path between node“iand node" j, i,je N

: Arc cost

C,: Path cost

—h

:Flowonarc a

a

seny ar

f: Theset of all arc flow, f =(f, f,,..., f,,...)

h, : Flows on path p

h: The set of all path flow, h = (h,,h,,...,h,...)

R LPRTITTR ] PRI
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u;; - The minimum cost between node iandnode j, i,jeN

u: The set of all O/D pair, u = (uy,..., u,-.)

T, - Demand of the origin i to destination j

T : The set of all demand of different OD pairs, T =(T,,,...,T;,..)

3, - Indicator variable, s,, =1 ifarc ae path p; 5, =0, otherwise

ap

A : Arc/ Path incidence matrix.

A : O/D path incidence matrix

2.1Principle of User behavior

The network equilibrium is anonnegative flow pattern occurring on a given
network which is consistent with marketing clearing (i.e. with supply equals demand
in either the transportation market or in the underlying commodity market) or flow
conservation (Friesz, 1985). It is the main concept of the traffic assignment model. To
find the network equilibrium, the first thing is to introduce several concepts

presented by Wardrop(1952).

Wardrop(1952) assume that users have full information , and give the

conclusion to the principle of user behaviors as below:

(2). The journey times on all the routes actually used are equal, and less than
those which would be experienced by a single vehicle on any unused route

(2). The average journey time is a minimum value.



In Wardrop’s first Principle, each user non-cooperatively seeks to minimize
his cost of transportation. The traffic flows that satisfy this principle are usually
referred to as "user equilibrium” (UE) flows, since each user chooses the route
that is the best. Specifically, a user-optimized equilibrium is reached when no
user can lower his transportation cost through unilateral action.

To define the user equilibrium, the flow pattern satisfying the following

conditions:
h (C,(h)-u)=0, ¥(,jper) (2.1-1)
c,(h)-u; >0, v(i,j,peP,) (2.1-2)
Zp;hp—Tij(u)=O, (i ) (2.1-3)
f,—> 8,h, =0+ Va (2.1-4)
h>0 (2.0:5)
ux>0 (2.1-6)

Expressions (2.1-1) and (2.1-2) above are readily recognized as equivalent
to Wardrop’s first principle, which require that for utilized paths between a given
origin - destination pair, path cost equals the minimum path cost; paths whose
costs exceed that minimum are not utilized. This principle conform the actual
user behavior, can be applied on the assignment issue on roadway network.

The second principle is implies that each user behaves cooperatively in
choosing his own route to ensure the most efficient use of the whole system.
Traffic flow satisfying Wardrop's second principle is generally deemed "system

optimal™ (SO). Economists argue this can be achieved with marginal cost road
8



pricing. The system optimal equilibrium only attach when all user cooperate to
choosing route, therefore, it’s not adapted in the real urban network. The most
application of system optimal is in the other system, like railroad, marine

transportation and air transportation field.

2.2 Mathematic model

This part introduces the manly mathematical model development of the traffic

assignment problem.

2.2.1 Mathematical Programming

Beckmann et al. (1956) formulate a Mathematical Programming (MP) model to
find the Wardrop’s equilibrium. The model assumes that the cost-flow function of
link can be separable. In other word, the-tink cost only influenced by the object link
flow. The model successfully show that original network equilibrium problem could
be transformed into an equivalent ‘optimization problem: if the cost on any link is a
function of the flow and of no other flows, then the flows satisfying user equilibrium
principle are unique and are the same as the following minimize a specified objective

function.

mfinZ(f)

= min ¥ [*C,(x)d
_mflnzaljo L (x)dx
s.t. feQ

Q={f|f =Ah,Ah=T,h>0}

(2.2-1)

(2.2-2)

(2.2-3)

(2.2-4)



By the K-K-T condition of the above non-linear programming, we can find the
necessary condition of this mathematic programming model, the following function

are K-K-T condition

(c,—uy)-h, =0 peP, Vi, j

ij

The above model follows the Wadrop’s first principle. Equation (2.2-5) and
equation (2.2-6) plus the constraint equation (2.2.1) and equation (2.2-4) equal to the
equation (2.1-1) to (2.1-4). Therefore we can transfer the original network equilibrium
assignment problem to mathematic programming model as above form. We can also

transfer equation (2.2-5) and equation (2.2-6) to following formulation:

If h,>0=c¢, =u; pe P, Vi

ij

If c,>u;=h =0 peP. Vi,

ij

Equation (2.2-7) describe that if the path pfrom origin node i to destination

node j is already be used ( i.e. flow onpath h >0 ), the travel cost is equal to the

minimum travel cost from origin node i to destination node j. Equation (2.2-8)
describe that if the travel cost on path p more than the minimum travel cost from

origin node i to destination node j, then the user would not use the path p (i.e.

flowonpath h =0).

Beckmann (1956) assumes that link travel cost is separable. In fact, if we

consider different direction on crossroad, the link travel cost will be affected by the
10

(2.2-5)

(2.2-6)

(2.2-7)

(2.2-8)



other links’ flow, and each link has different weight effect to another. Therefore, the
assumption which assumes the dividable link cost is unreasonable. Dafermos (1972)
assumes that the Jacobian matrix of link travel cost is symmetrical. This assumption

allows the link cost function contain the influence of flow on other links.

Take A and the B two link sections as the example, the influence on B which is
affected by the unit increase (or reduction) flow on link A, must be equal to that the
influence on A which is affected by the unit increase (or reduction) flow on link B.

The following equation can explain the situation:

oc,(f)_oc,(1)
ot o, (2.2-9)

However, a speaking of intersection, if-the. links nearby the objective link have
different link width, the level of influence will be different. Even if the links nearby
the objective link all have the same link width; if the marginal cost function which is
affected by the other impact factor of the cost function is different, that is, the
marginal effect cause by the increase unit are different. Thus, the assumption that

equation (2.2-9) express will be unreasonable.

Dafermos (1980) relax the assumption that link travel cost is separable, transfer

the network equilibrium model into following linear integral form:
. f -
min Z§ 0 Ca(¥dx (2.2-10)

In equation (2.13), the impact factor to link cost, not only include the current flow on
itself, but also affected by the flow on the other related links. The equation (2.2-10) is

formulated to vector integral form, therefore, we must define its integral path first,

11



and different definition of integral path will be different resolve. Hence, the equation
(2.2-10) is not a complete definition mathematical model. The model which has

objective function (2.2-10) is unable to solve.

2.2.2 Nonlinear Complementarity Problem

Aashtiani (1979) drop the assumption that link travel cost is separable, proposed
that the assumption to take the path as variable to formulate mathematical model,
which is called the Nonlinear Complementarity Problem (NCP). This model ignores
the assumption of link cost function assumed by Beckmann and Defermos. The
main assumption of NCP problem which is assumed that path as variable, however,
in the real world, the network problems have great amount of paths, it will make the
model become too complex to solve. Thus, NCP problem is not adapted to solve the
large scale network problem. Li:(1987)also proposed that NCP model can’t be

convergence to great accuracy in some network type. The model formulation is as

following:
(cp—uij)-hp =0 peP, Vi]j (2.2-11)
C,—U; =0 (2.2-12)
heQ (2.2-13)
Q={hAh=T,h =0} (2.2-14)

By above equations we can find that the resolution from NCP problem is also
satisfied the network equilibrium K-K-T condition. So that we can use NCP

formulation to describe the network traffic assignment problem. Though the above

12



equations are similar with equation (2.2-5) and equation (2.2-6), it cost function have

less assumption than mathematic programming model which 2.2-1 mention.

2.2.3 Variational Inequality Problem

Smith (1979) and Dafermos (1980) proposed another model which is called

Variational Inequality Problem (VIP). The model also relaxes the assumption that link

travel cost is separable proposed in Beckmann’s model. Take link (Smith) and path

(Dafermos) as variables to construct the VIP model. Tobin (1986, 1987, 1988) Friesz

(1990), and Kyparisis (1987) all make the sensitivity analysis to this model. The

model can express as following:

find the solution f~ e Q, which is satisfied the following equation

c(f)(f-f)=0 forall f €Q

which

Q={f|f =Ah,Ah=T,h>0}

2.2.4 Fixed Point Problem

Kuhn (1968) proposed the Fixed Point problem (FPP). All model mention above

(MPP, NCP, VIP) can be transfer to a FPP problem as following equations:

hp:(hp_(cp_uij)) pepij
(c,—u;)=0 peP;
2.0, =T;=0 pePh;

pePR;

(2.2-15)
Vi, j (2.2-16)
Vi, j (2.2-17)
Vi, j (2.2-18)

13



The equation (h, —(c, —u;;)) = Max(0,h, —(c, —uj))

i.e. h, >0

2.3 Summary

In this chapter, we first introduce the Wardorp’s principle of the user behavior,
which is the important basic concept in our model. In the second section, we list the
several mathematic program models in the traffic assignment field, which formulate
the model in diverse ways: as a nonlinear complementarity problem, a fixed-point

problem, a system of nonlinear equations, and as variational inequality.

14



3. Game theory

Game theory is the important tool when people face the competition. It can help
people to analyze the situation to decide the strategy which he/ she should take when
he/ she need to make a decision to compete with his/her competitors. Situations
modeled as games typically involve several parties having different interests, who
need to decide how to behave. The level of benefit that each party gains depends not
only on its own actions, but also on the choices of the other parties. The mathematical
formulation of all games is similar, either explicitly or implicitly, to an optimization
problem that includes more than one objective, and the decision variables are shared
by the different objectives. Defining a game requires identification of the players,
their alternative strategies and their objectives. Formulating a problem as a game is
worthwhile if the solution, such as Nash equilibrium or Stackelberg equilibrium, leads

to new insights on the analyzed problem.

3.1 Development of Game theory

The first known discussion of game theory occurred by James Waldegrave in
1713. Cournot (1838) publicated a general game theoretic analysis, considers a
duopoly and presents a solution that is a restricted version of Nash equilibrium. But
the major development of the theory began in the 1920s with the work of the
mathematician Emile Borel and the polymath John von Neumann (1928). A decisive
event in the development of the theory was the book public by Von Neumann and
Morgenstern (1944), which established the foundations of the field. In the early 1950s,
Nash’s (1950) Ph.D. thesis, 28 pages in length, introduces the equilibrium notion now

known as “Nash equilibrium” as the following equation

15



Vi, X, €S, X, #X : fi(xi*,xil)z fi(xi,xfl)

Nash equilibrium is a solution concept of a game involving two or more players,
in which each player is assumed to know the equilibrium strategies of the other
players, and no player has anything to gain by changing only his or her own strategy
unilaterally. If each player has chosen a strategy and no player can benefit by
changing his or her strategy while the other players keep their unchanged, then the
current set of strategy choices and the corresponding payoffs constitute a Nash

equilibrium.

Game theory is the most popularity tool when people tend to make the decision
in competition. The next section will introduce the application of the game theory in

the transportation field.

3.2 The application of game theory in-transport field

This part introduces the application-of game theory in the transport application.
Colony(1970) formulates a route choice problem as a zero-sum game. One of the
players is a driver that chooses whether to use an arterial road, the other is an
imaginary entity which chooses the level of service on the road, and tries to disturb
the driver’s journey. Rosenthal (1973) and James(1998) formulates a general game
between n- individuals who choose the road segment out of a given set, where the cost
of each road segment increases if more individuals choose it. The former formulated a
programming problem, which solution is always a pure-strategies Nash equilibrium of
the game, and shown that a solution always exists. Fisk(1984) mentions that the user
equilibrium principle, introduced by Wardrop(1952), is in fact a game since it meets

the conditions of Nash equilibrium. Van Vugt et al. (1995) present a two-player
16
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strategic form game, where each player chooses either car or public transport. The
conclusion is that the selfish way travelers make their choices is bad for everyone,

that is , the prisoner's dilemma in game theory.

Table 1 The game theory application in traffic field

Source Year Players Strategies/decision variable

Wardrop 1952 Drivers Route choice

Colony 1970 Driver Route choice: arterial road or
motorway

Level of service

Rosenthal 1973 Drivers Route choice

Fisk 1984 Authority Traffic control settings
Drivers Route choice

Van Vugt et al. 1995 Travellers Car/public transport

James 1998 Drivers Travel/ not travel

Lucking et al. 2004 Drivers Routing game

Sun 2007 Drivers Routing game/Mode choice

Gairing 2008 Drivers Routing game

In the recent paper, Sun(2007) construct a urban transit non-cooperative static
game, and assume the prefect information, to find the generalized Nash equilibrium,
which is to describe both the competitions among different transit operators and the
interactive influences among passengers. Lucking et al. (2008) use the concept of
Nash equilibrium to construct a self routing non-cooperative network model. In the
hybrid model which consist of KP model and Worst-cast model, each of n users is

using a mixed strategy to ship it unsplittalbe traffic over a network consisting of m
17



parallel links. Gairing et.al (2008) use the simaliar concept to discuss a discrete

routing game.

3.3 The Non-cooperative Game

From the Wardrop’s principle, the concept of user equilibrium, every user
pursuit one’s maximum utility (we can also said, minimum travel cost). We know that
users all non-cooperative to pursuit one’s maximum utility. That is, the character of
the route choice game is non-cooperative game. By this reason, the application of

game theory in transportation field almost non-cooperative game.

Game theory is divided into two branches, co-operative and non-cooperative
game theory. The distinction can be fuzzy at time but, essentially, in non-cooperative
game theory the unit of analysis is the individual participant in the game who is
concerned with doing as well for himself as possible subject to clearly defined rules
and possibilities. In comparison, in-co-operative game theory the unit of analysis is
most often the group or, in the standard jargon, the coalition; when a game is
specified, part of the specification is what each group or coalition of players can
achieve, without reference to how the coalition would effect a particular outcome or

result.

N.N. Vorb’ev(1977) give this kind of game a briefly definition:
r =<| ) {Si }iel ’{Hi }iel > (3.3_1)
S; represent the situation

S is the situation set,and S =]S;.

iel

18



H.(s) is the payoff function of player i in the situation s.

H, represent the payoff function of player i.

| is the player set.

Definition 3.3-1: Let a constantc, for se S, we define constant-sum game if the

following game exist

D Hi(S)=c

icl (3.3-2)

If ¢=0, We called this type of game zero-sum game.

3.4 summary

We aim to use the view of-game theory to analyze the network assignment
process. First we have to understand ‘the hasis concept of the game theory. In this
chapter briefly reviews the game theory, and introduces the history of the game theory.
The second part of the chapter review the application of game theory in the issue
relate to traffic assignment problem. Most of them is a concept game assume a entity
which aims to reduce the user’s utility. The last part of the chapter introduces several
important definition of game. We define the Nash equilibrium, the non-cooperative

game, and the zero-sum game, which are the special cases in constant game.
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4. Model Construction and Demonstration

In this Chapter, we start to consider the traffic assignment problem by the game

theory. The flowchart of demonstration process is below

Use user behavier to construst an N-person game

\Z

pay-off function of N-person Game is pseudo concave

\Z

Pay —off function can be formulated as VIP form

\Z

compact set

\Z

Existence of equilibrium point

\Z

Uniqueness of equilibrium point

\Z

et of VAP

\Z.

Saddle’Point

\Z

Equal to two-person zero sum game

Figure. 4.1-1 The flowchart of the demonstration process

4.1Network Game Definition

In this section define some foundation concept and the definition to the

demonstration process.

Because of the concept of the user equilibrium which is introduced by Wardrop,
the network equilibrium is a concave n-person non-cooperative game that every user

tends to gain their maximum utility.
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4.1.1 Problem region

The network concave n-person game to be considered is described in terms of

the individual strategy vector for each of the n players. The strategy of the ith

player is represented by x. which chose from the path set P™, i=1,...,n ,whichis

the path in the target Network. The vector x € P™ then denotes the simultaneous

strategies of all players, where P™ is the product space.

n
P™xP™x..xP™ and m=)_m,

Figure 4.1-2 The graph of network game

Players choose the paths p; which they use to gain the maximum utility, so the

strategy set of the ith playeris X, € X, ={p,, Ppyes P} »i=1...m is the number of

path in the same OD. Let K be the user/path instance matrix, we have

K-x:hp

Ah = f
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The allowed strategies will be limited by the requirement that the selected x
which can transfer to the link flow f Dby the above process, satisfied the convex,

closed, and bounded set

Q={f|f =Ah,Ah=T,h>0}

Denote the path p; of «,then we have a bounded product set S 2 Q,

S =X xX,x...xX,. The figure 4.1-3 illustrate for n=2.

Figure 4.1-3 The region of the game

4.1.2 Payoff function and some basic theorem

The payoff function for the i th player depends on the strategies of all the other

players as well as on his own strategy, and is given by the function
0,(})= 01 (%0 X0 X,

Define the above function as the payoff function for each user in the network game.
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If we know the link cost function c¢(f), we can use the instance matrix A to find the

path cost function A"c(f)=C,, then we can know the cost function C,

By the hypothetic of the network game, users tend to gain their maximum utility is

equal to find the minimum cost path of the OD pair, so we can say that
Max g, (x)= MinC  (x)
Maxg; (x) = Max(-C,, (x))
Now we consider the definition of equilibrium of network game.

Definition 4.1-1: Assumed that x € S, (x) is continuousin x and is concave in

x; for each fixed value of (x1 Xi gy Koy es xn), that is , the i-th player under

selection by the other players’ strategies . With this-formulation an equilibrium point

of the n-person concave game is given by-a peintx” € Q, such that
(pi(x*): m;clx{go,(xfy,x:)| (xl*y,xn)e Q} i=1..n (4.1-1)

At such a point no player can increase his payoff by a unilateral change in his strategy.
The idea of the equilibrium point for the concave n-person game was first presented in

Nash (1961).

Definition 4.1-2: Assumed that the function ®(x,y) defined for (x,y)e QxQ by

D(X,Y) =D @ (X Yireer Xy) (4.1-2)
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Observe that for (X,y)eQxQ have (X,,...,Y;,.X,)€S, i=1..,n,so that
CD(X, y) is continuous in x and yand isconcavein y forevery fixed x.The
pointx™ € Q, for which

o(x",x") = max {@(x", )| y e Q}

Which is call a normalized equilibrium point ( NEP) for the game that mention by
Rosen (1965). It is easy to see that every NEP is also an ordinary EP. However,

equilibrium points exist which are not normalized.

NEP helps people consider the problem in the general way. They can have different
weight factor with the same payoff function. Then the equation (4.1-2) can be

formulated as below
(D(X’ y):Zri¢i(xlv"'1yi1"'1xn) (4.1‘3)
i=1

The concept can be applied in the network game, the people in the network game who
choose the same path may have different effect to the network system. For example,

the truck user brings more influence then the car user.

By the definition of the payoff function, ¢, (x) is concave with respect to the
fixed point x . Combined with the definition of function CD(X, y), we know that

d)(x, y) is also concave with the fixed point x .

Now we define the gradient function g(x) of CD(X). Consider the vector function

below:
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you you

OXy, OX OX OX

6(0)= [a%(x) ) o9, (x) %, (x) a0, (X)J

1my nm,

(4.1-4)

Assume that all the derivatives exist and are continuous. Obviously,
g(x)=V ,®@(x, y)‘ yx

Definition 4.1-3: Let g:Q — E™, where o isanonempty convexsetin E" The

function @ is said to be concaveon o if ¥x,yeQ, VAe(0,1), we have

DA+ (L—A)y)> AD(x)+ (1 A)D(y) (4.1-5)

Fig 4.1-3 Geometric interpretation of Definition 4.1-3
The above graphic is the geometric interpretation to the Theorem. Then the

following figure briefly show the different type function relate to the theorem.
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7 A

X; A%+ (1-2) X2 X2 X, AXH(1-4) X2 X = 3
Neither convex nor

concave function

convex function concave function

Figure 4.1-4 Convex and concave functions  (graph from Bazaraa et.al(2006))

Theorem 4.1-4 : Set o be a nonempty convex opensetinE", and let ®:Q—E",

And g issaid to be differentiable on . Then @ isconcave if and only if for any

X,y €Q, we have

@ (y)< 0 ()% (V) (1 1) (4.1-6)
Similarly, @ is strictly concave if and.only if for any x, y € Q, we have

D(y) < @(x)+ (VX)) (y-x) (4.1-7)

Proof:

(Necessary)

Suppose that @ is concave, let 1 e (0,1) X,y € Q, and we set that

X = (X, Xy 500y X,y)
Y =(Y1 Y21 ¥n)
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So we can get the gradient function

V(I)(x):[aq)(x) oD(X) am(x)J

x ok, 7 ox,
(Y- )V(x)= (&géx) 0, 25 0=, 2 2 0, - m} (4.18)
by Definition 4.1-3, we have equation (4.1-5)
DAy +([1-2)s)> AD(y)+ (1-A)D(x)
Then we get
O[x+ Ay — X)]- D(X) > AD(y) - AD(x) (4.1-9)

@ is differentiable, then we can get the gradient function:

oD(x)
aXl

@+ 2y )]~ b(x)- 20y,

(Yi=X)+ ...+ - %)+ &, Ay, =X )+ ...

n

+e, Ay, —x,)
(4.1-10)

Let &,...,e, &> 0(when A —0), then take (4.1-10) into (4.1-9), we have

oD (X oD (X
ax( )(yl _Xl)+"'+%(yn _Xn)+‘9lﬂ‘(y1 _X1)+"'+gn/1(yn _Xn)S ﬂ,(D(y)—/l(D(X)
1 n
(4.1-118)
Set 4 #0,and let (4.1-11) dividedby A, andset A — 0, then we get
oD oD
200 (g, )+t 2 (g, - x,) > 0(y) - 0(x) (4.1-12)
Xy OX

n
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Observe the left hand side of equation (4.1-12), it is equal to (4.2-8), then we get
(y = x)VO(x) = d(y) - ®(x)
= O(y) <D(X) + VD(x )y — x)
The proof of necessary is complete.

In above equation, if we take the equality away, we can get the proof of strictly

concave function.

(Sufficiency)

Let x,yeQ, 1e(01) ,we set that
2=X+{1-A)ye (4.1-13)
D(z)=d(Ax+(1-A)y) (4.1-14)
And By the hypothesis of the theorem, we have
D(x) < D(2)+VD(z)x~2) (4.1-15)
D(y)<D(z2)+VD(z)y-2) (4.1-16)
Let (4.1-15) multiplied by A, and (4.1-16) multiplied by (1—/1), then we get

AD(X) < AD(z)+ AVD(z)(x - 2) (4.1-17)
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L-2)(y)< 1~ 2)0(2)+2-2)Va(z)y~2) (4.1-18)
Plus equation (4.1-17) to equation (4.1-18), we can get

AD(x)+(1-2)D(y) < AD(2)+ (L 2)D(z2)+ AVD(z X~ 2)+ (L~ AVD(z )y — 2)

(4.1-19)

Consider the right hand side of equation (4.1-19)
AD(2)+(1-2)D(z)+ AVD(z)x - 2)+ (1 - 2)VD(z )y - 2)
= ®(2)+VO(z [ ix+(1-A)y 7]
=d(z)+VD(z)z-12)
=®(z)=D(Ax+[1-1)y)
Then consider the equation 4.1-19, we have
A0(x)+(L-A)D(y) < D(Ax+(L-2)y))
By Definition 4.1-3, CD(x) Is concave.

The proof of sufficient is completed.

Q.E.D.

Theorem 4.1-5: when ®(x) function is (strictly) concave, the gradient function
g(x) exists following relation:
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(9(x)-a(y)y—x)>0,v(x,y)eQxQ x=y (4.1-20)

Proof:

i. If strictly is untenable, that is, proof (g(x)-g(y)) (y—x)=>0

Set CD(X) be a concave function, let x,y € Q by Theorem 4.1-4, we know that

the following relation:
D(y) < @(x)+ (Vo (x))" (y—x) (4.1-21)

o(x)< @(y)+(Vea(y)) (x-y) (4.1-22)
Plus equation (4.1-21) and equation (4.1-22), we can get
®(x)+ @(y) @)+ @y)+ (VO (x) - Vo(y)] (y=x)  (41.23)
Then
(Vo(x)-Va(y))' (y-x)=0
By the definition of g(x) (equation 4.1-4)
(g(x)-g(y)" (y-x)=0
Q.E.D.
ii.  If strictly hold, that is, proof (g(x)—g(y),y—x)>0

®(y) < D(x)+VD(x) (y —x) (4.1-24)
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D(x) < ©(y)+Vo(y) (x-y) (4.1-25)
Plus the above equation (4.1-24) and equation (4.1-25), finally we can get
(Vo(x)-va(y))' (y-x)>0
Then
(9(x)-g(y) (y-x)>0 (4.1-26)
Q.ED.

4.1.3 The VIP network model

From the chapter 2, we have the foundation Variation Inequality network model,

to find the solution f~ e Q, which is satisfied the following equation
c(f)(f—F7)=0 forall f eQ

Q={f|f =Ah,Ah=T,h>0}

c(f) is strictly monotone function.

It can be represent in the following type

Va(x,y)' (y-x)=0
The above equation can be transfer in following equation

(Vo (x)-va(y))' (y-x)=0

Compare with the theorem 4.1-5, it match the character of concave game.
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We take the path flow as variable to construct the network game. Now, let x=vy,
because C(h) Is strictly monotone function, The equality of above equation will be

refused. We have
c(h)(h-h")>0 (4.1-29)

The above equation matches the character of strictly concave and can be represented

as below:

Va(x,y) (y-x)>0

It can easily find that the equation of network model match the gradient of the

network concave game we assume.

Now we face the problem that the amount of path is a large number that is too
hard to solve. Smith (1979) proposed a equivalent to the VIP form which take the path

and link as variable. As the following equation :

c(h)-h=>'C,(hh,

- ZZ(Ca(f )é‘ap}'p
- an(f )Z(é‘aphp)
=2.C.(H)f,

=c(f)- f
By the above theorem, we can also take link flow as variable to consider our network

game .
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4.2 The existence and uniqueness of network game

This section proves the existence and uniqueness of the network assignment
model. The method of proof is essentially a rearrangement of Rosen’s (1965) proof

for existence and uniqueness of equilibrium point of the concave n-person game.

In the former section, we assume that the network game is a concave n-person
game, and proof that the variation inequality model matches the assumption of the
game. By the preliminary concept of game, the equilibrium point (EP) of the game
might have three situations. It is possible to have no equilibrium, several equilibria, or
one unique equlibrium. For instance, the figure 4.2-1 show the situation of EP of two

person game.

Figure 4.2-1 Best strategy curve for a game with a continuous action space(Krishnan,2006)
We are interested in a subset of continuous games that have a unique equilibrium.

It turn out that a set of games that can satisfy this criteria is concave game.

By the reason of above, we want to prove the existence of the equilibrium first,

and second, we prove the uniqueness of Nash equilibrium in this network game.
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4.2.1 Existence of equilibrium point

From section 4.1, we define the payoff function ¢(x) and the function ®(x),

by the equation 4.1-2, <D(X, y) is continuous in x and yand is concave in y

for every fixed x .We now prove the existence theorem for the concave n- person

game.

Definition 4.2-1: A single-valued mapping f:X —Y sendsapoint x of X toa
point f(x) of Y .Butonsome occasions, we need to consider amapping f that
lets correspond to each point x of X asubset f(x) of Y.Suchamapping is

termed a set-valued mapping or a point-to-set mapping.

Definition 4.2-2: An ¢ -net of a metric space X is a finite subset {a‘ [1=12,..., s}

of X such that the family of & -neighborhoods {N (ai ,g)l i :1,2,...,5} is a covering

of X .Here, N(a ¢)={x|dis(x,a)<&} denotesan & -neighborhoodsin X .

(@

Figure 4.2-2 The & -neighborhoods
Definition 4.2-3: Aset X is compact if any sequence of its points contains a

sub-sequence that converges to a pointin X .
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Corollary 4.2-4: If a metric space X is compact in the sense of definition 4.2-3, it

hasan &-netforany £>0.

Proof. Suppose that X had no & -net. Take any one point a'.

Since there isno & -net, the & -neighborhoods N(al,g) cannot cover X .
So that some a® e X does not belong to N(al,g).

Again, for the same reason, there is some a® belonging to none of N(al,e) and
N (az,g).

Continuing this procedure, we obtain a sequence {av} such that a'** ¢ U N (a“,g).
i=1

By construction, the sequence has the property. dis(a“,av)z g for u=v.Sucha

sequence has no convergent sub-sequence, contradicting the compactness of X ,

Q.E.D.

Definition 4.2-5 (convexity): A vector y in R" is said to be a convex combination

if y can be written as

D> A=1, 420, for i=1..,k (4.2-1)

Definition 4.2-6: If X, are convex subsetsin R" (i =1,2,...,s), their linear

n
combination >’ X, is also convex.

i=1
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Definition 4.2-7: (upper semi-continuous)

(@) Point : A numerical function defined on X is said to be upper semi-continuous
at x,, if, to each &>0, there corresponding exist a neighborhood N, (x,)
such that

xeN,(x,)= f(x)< f(x,)+e (4.2-2)

4
_
Mix,) \

Figure 4.2-3 An upper-semi continuous function

(b) Mapping: Let T' be a mapping.ofa X=sY  Let x, beapointof X .We say
[ is upper semi-continuous at- X, "if for each open set G containing I'X,
there exists a neighborhood N, (x,) such that

xeN,(x)=>TxcG

Corollary 4.2-8: (Brouwer, 1909,1910). Let X be a nonempty compact convex set in

R",and f:X — X be acontinuous mapping that carries a point x of X to

~

some point f(x) of X.Then f hasafixed point X sothat %= f(X)
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Figure 4.2-4 One dimensional case(fixed point)

Theorem 4.2-9: (Kakutani, 1941). Let X be a nonempty compact convex setin R",

and f :X — 2 be a set-valued mapping which satisfies

(a) Foreach xe X the image set f(x) isa nonempty convex subset of X ;and

(b) T isaclosed mapping

Then f has a fixed point.

fri = [1ap2 1ap4] |

F=x

Figure 4.2-5 Fixed point for set-valued function

Proof. Since X is compact, recall the Corollary 4.2-4 on the existence of &-net,

forevery £>0,ithasan g-net N, ={a"|i=1..,s, }. Next choose an arbitrary

point b of f(a“).Then,we define the continuous functions 97(x) on X by

0) (i=1..s,) (4.2-2)
37
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http://en.wikipedia.org/wiki/File:Kakutani.s

According to Definition 4.2-2, Since N, an ¢ -net, for each x we have

&> Hx—a“ for some i, so that we have 67 >0 for this i. With these function we

can obtain the weight functions

w(= Wl ) (42:3)

_iww

Using these weight function, we define a single-valued continuous mapping
)= w (b b X (i=1...5,)
=
w(x)=0, > w =1 (4.2-4)
Because of the convexity of X which define in Definition 4.2-5. Then we obtained

a single-valued continuous mapping . f£:X =X for every &>0. By the Brouwer

fixed-point theorem (Theorem 4.2-6), there is a fixed point x°,
XE = fg(Xg) (42_5)

Now apply equation 4.2-5 to a sequence {e,} of positive numbers with limit &, =0.
Since X is compact, the correspoinding sequence of fixed point {x‘“},

X% = f‘“(x”“) contains a convergent sub-sequence with a limit X.

Without loss of generality, assume that we have chosen a sequence {gv} of positive

numbers fulfilling following constraints
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c. x¥= f‘“’(x*“") (4.2-6)
We tend to show that X is a desired fixed point of f . Consider the set
0, = f(%)+U,
U, ={ulfu|<s} fora 5>0

If RO, forany &>0,wehave dis(&, f(X))=0, which entails e (&)

because f(X) isclosedin X . The subseguent discussion will clarify that % € O,

forany o6 >0.

First note that O, is an open set containing f(x) This can be seen by noting that

0, = J(x+U,)

This union taken over all x e f(f() and also the openness of U ;.By the definition

4.2-6, we know the convexity of O

f is upper semi-continuous. Since O, is an open set containing f (%), there is an
¢-neighborhood V, ={x||x— %] <&,xe X} of % suchthat f(V,)cO,.By

(a)(B) ,we have &, <§ and x* eV,, forlarge v.
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For these large v, va(x“”)>0 implies Ha‘”i —x””<gv<52,so that

o = & <fat =]+ [ - %

In summary for large v, we have a® eV, for i with w;”(x”)>0,which entails

b e f(a* )< £(V,)< O,. In view of

X = 3w (e

x® turns out to be a convex linear combination for only b* lyingin O, for large

v. The convexity of O, therefore implies. x*€O, forlarge v Letting v tendto

infinity in view of (,3) we have in the limit X € Q.

The replacementof O by 20 in the resulting relation is due to the possibility that

% the limit of X"}, may lie on the boundary of Y.

However, X€0,; forany >0 jsequivalentto X€O;s forany >0, whence

%€ f(%) in the light of the preliminary discussion above. This completes the proof,

Q.E.D.

The following part we use Rosen(1965) method to proof the existence and uniqueness

of the Equilibrium point.
Theorem 4.2-10: An equilibrium point exists for every concave n-person game.
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Proof:

Consider the point-to-set mapping x € Q —I'x c Q, given by

Ix =y |®(x,y)= max o(x,2)f (4.2-1)

It follows from the continuity of ®(x,z) and the concavity in z of ®(x,z)

for fixed x that " is an upper semi-continuous mapping that maps each point of
the convex , compact set R into a closed convex subset of R. Then by the Theorem

4.2-9, there exists a point X" € R suchthat x" eI'x", or

CD(X*, x*) = max CD(X*, z) (4.2-2)

zeR

The fixed point x" is an equilibrium point:satisfying equation (4.1-1), which we

rewrite below..
go(x*): rr?x{qoi (x1 Vi x:)| (x1 Yigeens X:)e Q} i=1..,n

If we suppose that x™ were not be the equilibrium point. Then, say for i =1, there

would be a point X, =X such that >_<=(>q,...,x|,...,x:)e Rand qol()_()>¢)|(x*).Then

we have cD(x*,>_<)> @(x",x"), which contradicts (4.2-2).
Then the proof is completed.
Recall the network game problem, if we assumed the set

Q = {x| h(x)>0}
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For the special case of the orthogonal constraintset Q=S =Q, xQ, x...xQ_, we

have
= {x 1 hi(x)=0} (4.2-3)

Then the Kuhn-Tucker conditions equivalent to (4.1-1) Q with Q given by

(4.2-3) can now be stated as follows

(x)=0 (4.2-4)
And for i=1..,n, 3u’ >0, u’eE"X,such that

u’h(x)=0 (4.2-5)

®; (xo)z ®; (xf Y, x2)+ ui‘)'h(x%,..., Vi x,?) (4.2-6)

Since ¢,(x) and h,(x) are concave and differentiable, the inequality (4.2-6) is

equivalent to
V. (x°)+ Zuovh( °)=0 (i=1..n) (4.2-7)

We shall also use the following relation by the Theorem 4.1-4, which holds as a result

of the concavity of h;(x). Forevery x°,x'eR we have

n ), ()

(4.2-8)

IA
—
x
|
x
~—r
<
0
pon
~
I
—
x
=k
|
x
~—
<
>0
—
~—

Now consider the network game, if we consider the weight value of the all player, to

find the weighted nonnegative sum of the functions ¢, (x) then we have
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O(x,r)= Zn: ro,(x),r=0 (4.2-9)

For each nonnegative vector reE". For each fixed r, we defined the related

mapping g(x,r) of E™in term of the gradients V.o, (x) , Which is given by

nvVie (X)

g(x,r)= rzvzfpz (x) (4.2-10)

r,V,0,(x)

Definition 4.2-12: The function ®(x,r) will be called diagonally strictly concave

for xeR andfixed r>0 ifforevery x°,x' R we have

(xl -~ xo)' g(xo, r)+ (x° —~ xl)' g(xl, r)> 0
We can also represent as Theorem:4.1-5
(xt =x°, g(x°,r)-g(x}, r))>0 (4.2-11)

Theorem 4.2-13: There exists a normalized equilibrium point to a concave n-person

game for every specified r>0.

Proof: For a fixed value r=r, let
Ok, y.1)= D110 (v Yy X,) (4.2-12)
i=1

Using the fixed point theorem as in Theorem 4.2-9 (Kakutani fixed point theorem),

there exists a point x~ such that
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CD(X*, x*,F)z mex {CD(X*, y,F)| h(y)=> O} (4.2-13)

Then by the necessity of the Kuhn-Tucker conditions, h(x*)z 0,and 3u” >0, such

that u*'h(x*)zo and

1V, (x )+ _iju]fvihj (x)=0 (i=1..n) (4.2-14)
u

Let uIJ = =L, which the same with equation (4.2-7) , are sufficient to insure that x"
ri
satisfies (4.1-1); x" is therefore a normalized equilibrium point for the specified

valueof r=r.

The proof is completed.

4.2.2 Uniqueness of equilibrium point

In order to prove the unigueness of the network game, we have following theorem:
Theorem 4.2-14: If ®(x,r) is diagonally strictly concave for some r >0, then the
equilibrium point x” satisfying (4.1-1) is unique.

Proof:

Assume there exist two distinct equilibrium points x° and x'eR, each of which

satisfies (4.1-1). By the necessity of the Kuhn-Tucker conditions we have for 1=0,1

and i=1..,n:
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Ju! >0,ul eE™ (4.2-12)
Such that
u'hi(x!)=0 (4.2-13)
Vo (x' )+ iui'thij (x')=0 (4.2-14)
i1

Multiply equation (4.2-14) by Fi(xil - xi")for =0 and by Fi(xio - xil), we have

) [ vin )1 Sk n ) (4219

b )| Ve )| -o (4210

Then let the equation (4.2-15) plus the equation (4.2-16) and sum on i, we have

{( )[v o)+ v, )jm(xf—x:) [wo.( e Zuivin (s )ﬂ

{ '[Vigoi(x")—vigoi(xl)hiiﬂ[uﬁ(xil—x?)Vh (x )+u”(x - X )V hu( )] 0

(4.2-17)

The equation (4.2-17) can divided in two parts, we can write in the following

statement:
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B+y=0 (4.2-18)

Where

n

B=>1i(x =x)[V,0,(x°)- V0, (x*)]

i=1

n m

=35l v )il v )

i=1 j=1

To consider g, we have

n

B=>rx- X[V, (x°) = V0, (x*)]

z(xl - XO)'ian:[Fi(Viq’i (XO))_Vi(Pi (Xl)]

By the equation (4.2-10), we define the function g(x, r) as below

r1V1¢1(X)
g (X, I’) _ rzvzfoz (X)
rV 10, (%)

Then the equation can be rewrite in the following relation
p=¢ =) {glx”.r)-glx'.r) (42-19)
By the hypothesis of the Theorem, a(x, r) is diagonally strictly concave, we have

£ >0
Now we consider y, Because of equation (4.2-8), we have
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I (I LY e

= i?i{ugh”(l) Oh( )+u”hj( ) Uiljhij(xl)}

From the Kuhn-Tucker condition, we have the relation of equation 4.2-13, so we have

n.m

V= ZZ {uﬁhij (X1)+ ug;hy (XO)}

i1 j=1

Then from equation (4.2-12), we know.that u! > 0, ﬁi(xi' )2 0, then we can find that

7= n )+ uh x> 0 (4.2-20)

i=1
From (4.2-19), (4.2-20), we have g > 0, y >0, which contradicts equation (4.2-18),

and th2 proof is complete.

0
. u;

If we consider a special kind of equilibrium point such that ui‘J? ==L, for some
ri

r>0 and u®=>0,we will call this a normalized equilibrium point. Then we have

following theorem:
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Theorem 4.2-15: Let ®(x,r) be diagonally strictly concave for every reQ,
where Q is a convex subset of the positive orthant of E". Then for each r e Q

there is a unique normalized equilibrium point.
Proof:

We first assum that for some r=reQ we have two normalized equilibrium point

x® and x*. Thenwe have for 1=01 and i=1,...,n

By the theorem 5, the Kuhn-Tucker conditions are below:

h(x')>0, 3u' >0, u' € E¥, suchthat u'h(x')=0, and
v (X )+ Zk:u'jvihj(x')z 0 (4.2-21)
i1

Multiply equation (4.2-21) by (xil 3 x?)for | =0, and by (xi0 - xil)'for | =1, and
sumon i.Then we have

n

z[ b)) Sm )b ) w6 S (xs)ﬂ _o

(4-2-22)

The equation (4-2-22) is similar with equation (4.2-17). As in the proof of Theorem 6,

the equation can be divided in g and y, which
p+y=0

where S is given by (4.2-19). Then since o(x,r) is diagonally strictly concave we

have g >0, and
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>0 and y >0, which contradicts S+ y =0 and proves the theorem.

4.2.3 Summary

By the combination of the above theorem, we can make the conclusion as below:

For every concave n-person game, there exists a normalized equilibrium point (NEP)

which is unique if the following so-called condition of strictly decreasing g(x) hold:
(g(X)— g(y)7 y A\ X) > O! V(X’ y) e Qx Q’ X# y (42_21)
Or the conditions

a. ||g(x}| >0,VxeQ

b.  (9(x)-g(y)y-%)20,¥(x, y)eQxQ

C. Q s strictly convex (4.2-22)

If there exists a Jacobian H (x) of the vector function g(x)

PR
OX;0X; |
i (4.2-23)
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Theorem 4.2-16: Let QcE" be a convex set, ®(x)=d(x,,...,x,) is continuous

11 Ay

and is @ is said to be twice differentiable at xQ, @ is concave function if and

only ifand nxn symmetric matrix H (x) which display below

9 n
OX;OX 4

We called it Hessian matrix, which form as below is semi-negative definition, that is

(H(x).¢)<0

Proof:

Necessary

VX, y € Q, based on Taylor theorem; we have

¢ =x+0(y-x) (0<6<1)

(4.2-24)
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=(H(x).¢)

By the hypothesis, if the Hessian matrix is negative definite:

(H(x)¢,¢)<0

Then the equation (x) can be rewritten to an inequality below

o(y) < O(x)+(y - x)Vo(x)

By Corollary 4.1-4 we can know that the function

Sufficiency

By the hypothesis, we know that the function f(x) is concave in€2,, let

(H(x),¢)>0 3xeQ,

According to Taylor’s theorem, we can have following equation
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is concave

(4.2-25)



- o)+ nva(c)+ | (hl,...,hn)[azf(x)][?j +oll)

(4.2-26)

Because of the hypothesis (H(X)§’§)>O,When A—0 > the third part of

equation (4.2-26) as below

A % (hlhn)(%és()][:} +0o(1)|>0

So that we have
®(x+ h) > (x)+ AhVd(x) (4.2-27)
Let y=x+ 4h, then the equation above can be represented to
@(y)> ©(x)+(y - x)Vad(x) (4.2-28)
It contradicts the concavity of the function.
The proof of sufficiency is complete

Use the Theorem 4.1-5, when (H(X)¢,¢)<0,vxeQ, V¢ e E™ we have the relation

52



(9(x)-g(y)y-x)=0,¥(x,y)e QxQ
That is, the condition can also be

lo(x)|>0,vx e

(H(x).¢)<0

Q s strictly convex set (4.2-29)

By the theorem and the proportion in this part, we prove the existence and
uniqueness of the normalized equilibrium point of network concave game which is
described by variation inequality model. By the reason, we can consider the network

assignment problem into a non-cooperative n-person game.

4.3 The equivalence of an n-person game to a Zero-Sum game

By the forward theorem, we proved the existence and uniqueness of the
normalization equilibrium point of the hetwork equilibrium model. Though the
following theorem, we want to prove the equivalence of an n-person game to a
two-person game. We use the method which Zukhovisky (1973) proposed to

finish this proof, so that we can consider the problem with a simplified form.

Theorem 4.3-1: Let the vector function g(x) be decreasing, by the Theorem N, we

have

(g(x)=g(y) y - x)=0,¥(x, y)eQxQ
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Then in order that the point x~ € Q be an NEP, it is necessary and sufficient that the

point (x =X,y= x*) be a saddle point of the function (g(y),x—Y), on the set

QxQ, ie., thatfor V(x,y)eQxQ the following equations hold:

(0 ) x—x)<(gx ) x =x)<(a(yhx =y) ¥(xy)eQxQ (4.3-1)
Then we can get the equation:

min max (g((y), x— y))=max min (g((y) x - y))=(g(x' ) x =x")=0  (4.3-2)

yeQ) xeQ xeQQ yeQ

In order words, the NEP problem is equivalent to a two-person zero-sum game in
which the strategies of both players are chosen from the set Q, and the gain functions

are as following:
o (xy)=(gly)x—y) (4.3-3)

(% Y)=(9(y) y - x)==¢:(x y) (4.3-2)
Proof:
(Necessary)

Let x" € Q be an NEP. By the definition of NEP, we have
max {CD(X*, x)| Xe Q}z CD(X*, x*) (4.3-5)

This means that from the point x~ there does not exist a direction of ascent for the

concave function d)(x*, x), which does not come out of the set 3, so that
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(g(x*), X — x*)SO:(g<x*), X — x*) (4.3-6)
It remains to establish the right-hand inequality of equation (4.3-1).

assume that the right-hand inequality of equation (g(x*), X — x*)ﬁ (g(y), X — y) is

not hold. Let y € Q, and the following inequality of equation holds:
(0(3).x" -¥)<0 (4.3-7)

Considering the decreasing condition of the vector function Q(X), by the theorem

4.1-5, we get
(9(<)-a@NF-x))=0
(90 ' < 3))-la@hx 7)< 0
= (g X =5 =T Nx - 7)) (4.3-8)
By equations (4.3-7) and (4.3-8), we have the equation
(g(x )7 -x7)>0 (4.3-9)
Contradicts the left-hand inequality of (4.3-1)

Sufficiency.

Let x”satisfy equation (4.3-1). By the left- hand inequality of (4.3-1), we have
(g} x—x)< (g ) x" ~x")
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:(g(x*),x—x*)SO,VXeQ

There follows the lack of a direction of ascent of the function CD(x* , x) from the

point x =x", not coming out of Q. Therefore, we have
mex{®(x", x)x e Q}=d(x", x)

the point x”is an NEP.

We can use the graph to explain the above theorem. When the equivalent of VIP
function is hold, it means that we have a saddle point of the game. In this situation, we
can randomly choose the two players(users) from the n person set, then their saddle

point of the game is equal to the original n-person game.

Figure 4.3-1 The saddle point in n=2
Then the solution (equilibrium) of the n-person network game is equal to the

solution of the two-person zero sum game.

4.4 Summary

This chapter use several theorems to describe and prove the network game,

which can transfer into the two-zero sum game. That is, when the game reach the
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equilibrium state, the equilibrium point of the n-person is equal to the equilibrium
point of the two players of these game. In the first section, we first define the
equilibrium point (Def. 4.1-1, 4.1-2) , Then Def. 4.1-3, Corollary 4.1-4, and Theorem
4.1-5 describe the character of the concave function (set). We use the Wardrop’s
concept which describe in the chapter 2 to construct the network concave game, use
these theorems to derive the equivalence to the supposed model and variation

inequality network model.

In the second part, we aim to prove the existence and uniqueness of the
equilibrium point of the network game. Firstly, we introduce the mapping concept in
Def. 4.2-1. Def. 4.2-2 and Corollary 4.2-4 introduce the definition and character of
neighborhood. Def. 4.2-7 illustrates the upper semi-continuous. We use these
corollaries and definition to prove the fixed point theorem (Def. 4.2-8 Corollary
4.2-9). Then the Theorem 4.2-11, 4.2-13 uses the mapping of Q into Q and the
Kakutani fixed point theorem to show the existence of the equilibrium point of the
game. Theorem 4.2-14, 4.2-15 shows the uniqueness of the equilibrium point of the

game.

In the last part, Theorem 4.3-1 use the concept of saddle point shows the

equivalence of an n-person game to a two-person game.
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5. Conclusing remark

This chapter aims to conclude the results of the preview chapters, and illustrate the

contribution of this research as following.

1. Construct a network assignment game which is belong to n-person concave
game, and demonstrate the equivalence to the game and the VIP network

model.

We uses the wardrop’s user equilibrium concept to construct a n-person
concave network assignment game, and recommend several theorem to prove the
equivalence to this network assignment game and the original network assignment
VIP model. We record the mathematic processes explicitly and explain our

thought and the meaning of the madel clearly.
2. Analyze problem in different-view.

By the process of the demonstration, we can consider the assignment
problem in game theory view and can analyze the traffic assignment problem in
the different view. It can help us consider the network assignment in the micro

scale.

3. The demonstration with equivalence to the n-person concave game and two

person zero-sum game

The research also shows the demonstration which is the equivalence to the
n-person concave game and two-person zero-sum game. This conclusion can

simplify the problem and help us to solve it in the easily way.
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