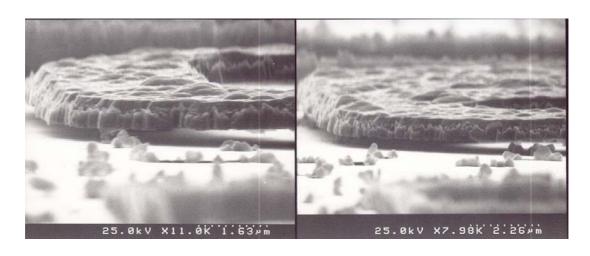
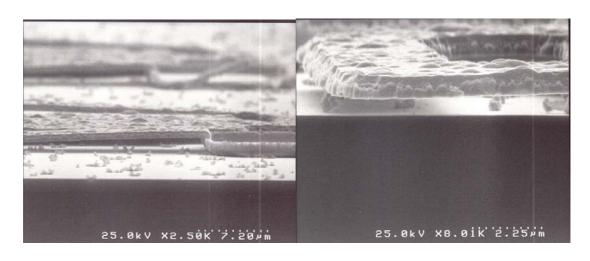
第四章 實驗結果與討論


雖然實驗結果和模擬趨勢大致相同,但是實際製程中會面臨到的問題,諸如機台穩定度高低、每次曝光的效果不同以及一些環境非理想因素和人為疏失等,並不是模擬所能涵蓋完全,所以實驗歷經了許多次失敗,其中,光罩版本也幾經修改,然而,最後在不斷重複試驗與嚴格控制實驗流程下,我們以一般 CMOS 晶圓代工廠後段相容低溫製程,成功地製作出適用於紅外線感測器之低應力且平整的懸浮薄板結構。

在 4.1 小節中,我們先對實際製程上會面臨的問題詳加探討,並且說明低應力薄膜製作方式和需要特別注意的地方,而在 4.2 小節裡,我們以拍攝到的掃描式電子顯微鏡照片(SEM picture),證明懸浮薄板結構在低應力狀態下成功懸浮於矽基板。


4.1 實驗探討

如下圖(4.1)到(4.4)為實驗過程中所拍攝的懸浮結構 SEM 照片, 可以發現懸浮結構並沒有完全成功懸浮於矽基板,因此,以下我們 就失敗原因以及照片中所觀察到的現象做相關的分析與探討,並說

明可行之解決方案。

圖(4.1) 懸浮結構 SEM 照片 圖(4.2)

圖(4.3) 懸浮結構 SEM 照片 圖(4.4)

1.鋁犧牲層的形成、蝕刻以及釋放(release)問題

用鋁當作犧牲層在實驗中面臨的挑戰,首先是如何形成厚達 2.5 um 的犧牲層結構。一般而言,鋁膜在半導體製程最簡易的沉積方法為熱阻絲蒸鍍法(thermal coater),此方式是藉由加熱鎢舟上之鋁錠產生鋁蒸氣,以沉積於所需要的位置,但是沉積 2.5 um 厚的鋁膜,對本校奈米中心之熱阻絲蒸鍍系統有相當困難度,其主因為機台老

舊,所以往往沉積還沒到達需求厚度,鎢舟就已經斷裂,以致蒸鍍 失敗。

有鑑於此,我們便把試片送至中區微機電中心以代工方式,用電子槍(E-Gun)濺鍍鋁膜,但是由圖(4.1)到(4.4)可發現,去除鋁犧牲層後的懸浮結構下方殘留有大量微小顆粒,不僅破壞懸浮結構下之四分之一光波長共振腔,更造成了判別浮板結構是否成功懸浮的困擾,並且,這些微粒經過鹽酸、硫酸長時間浸泡後仍無法去除。對於這些微粒的產生,我們判斷大概是 E-Gun chamber 過髒或者是鋁靶材的純度不夠所造成。所以,在其後實驗裡,我們採用國家毫微米實驗室的濺鍍機(sputter)鍍鋁,以得到品質較佳的鋁膜。

其次,在鋁的蝕刻上,產生懸浮結構兩 anchor 時會有過度蝕刻或蝕刻不足之困擾,因為兩 anchor 是否蝕刻完成最主要是以肉眼判斷,即在鋁犧牲層被蝕刻完全後,矽基板會顯露出不同於未蝕刻鋁膜的顏色,但是,此時不能立刻將試片取出,必須要在蝕刻溶液中多放置一段時間,讓支腳爬坡處較為傾斜並使集中應力下降,以利支腳結構攀爬 2.5 um 的高度,然而也不能因此就過度蝕刻,否則若因為 anchor 區域面積過大,會造成之後浮板結構圖案定義困難。對於這個問題,則須倚賴實際經驗的累積來克服。

最後,釋放犧牲層簡單、經濟又有效率的方法,是本論文一開

始就積極研究之重點,我們捨棄二氧化碳超臨界蒸乾昂貴的儀器設備,而從修改懸浮結構邊角形狀著手,將邊腳圓弧化有效地降低液體黏滯效應,並且配合低表面張力取代溶液,如丙酮、甲醇、IPA(異丙醇)等,不僅得到較為乾淨的晶圓表面,最重要的是,以往困擾已久的黏滯效應問題也一併解決。

2.懸浮結構層的微影(lithography)與蝕刻問題

在懸浮結構層的微影中,首先,因為 anchor 部分與懸浮薄板有 2.5 um 之高度差,使得光罩在微影聚焦時產生困難,並且,這個問題會因為犧牲層被過度蝕刻而加劇。另外,懸浮結構在長短懸桁等處的最小尺寸只有三、四微米寬,而浮板和長短懸桁也只有兩、三微米的間隔,實驗上如果是使用奈米中心的微影機台以肉眼微調校正,就更加深了光罩以及試片兩者對準上之難度。其次,當結構與相鄰間隔精確對準後,如果曝光過度或是曝光不足,仍會造成間隔無法於顯影時開出,導致整個元件結構相連在一起,所以,當元件尺寸微縮,曝光顯影技術就會成為重要關鍵。

要克服以上的問題,除了使用全自動對準的微影機台外,實驗中我們嘗試應用不同型號之光阻,分別是 AZ6112 和 FH6400L。光阻若選用型號 AZ6112 會有較好的對準、曝光效果,在顯影上也較容易控制,但因為 AZ6112 厚度較薄,所以,之後在高密度電漿反

應離子蝕刻(HDPRIE)懸浮結構層時,抗蝕刻能力較 FH6400L 相對明顯不足。因此,為了能夠抵擋 HDPRIE 長時間蝕刻,我們最後仍然選用型號 FH6400L 的光阻,不過,對於曝光時間跟製程技術均需要嚴格控制。

因為使用的 HDPRIE 機台停止蝕刻時間,會隨著薄膜種類以及薄膜沉積條件而有所不同,並且,機台之 RF power 若有更換,蝕刻停止時間與參數就必須重新調整,這是製程中需要反覆實驗的步驟。依據經驗,蝕刻 0.5 um 厚的懸浮結構層時,大約需要兩分多鐘來完成。

3. 犧牲層以及懸浮結構層之殘餘應力探討

由以往論文發現,作者在討論懸浮結構為何會塌陷以致元件製作失敗時,大都將主要原因歸咎於釋放犧牲層後產生的液體黏滯效應,但是我們經由實驗推測,懸浮結構本身的殘餘應力以及與犧牲層之整體內應力,可能才是懸浮結構層能否成功懸浮的最主要關鍵。因為很多情況中,若懸浮結構殘餘應力過大,就會在去除犧牲層當下,結構便立刻彎曲變形或產生挫曲形變,使得懸浮結構在還未經液體取代,便已塌陷黏附於基板上。故以下將針對如何降低犧牲層和懸浮結構之殘餘應力分別做一詳細實驗探討。

(1)鋁犧牲層應力探討

試片一

試片二

試片三

試片四

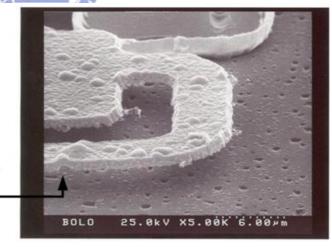
在 2.5 um 的鋁膜形成以及開完兩 anchor 圖案後,我們並不直接 進行後續製程,而是先將試片放入 400°C 含有氮氯的爐管中退火, 因為不管是由電子槍蒸鍍、濺鍍或經蝕刻後得到之鋁試片,其表面 狀態仍然不夠穩定、平滑均勻。如下表(8)所示為應力量測前後變化 結果,可以發現鋁膜在進爐管退火前均為壓應力,但是經兩小時退 火後,殘餘應力會轉變為張應力,且應力絕對值大小並不如預期般 有下降趨勢,反而和退火前差異變化不大。

鋁膜 (2.5 um) 退火前 退火後 -55.67 MPa +57.4 MPa -48.88 MPa +62.49 MPa -60.75 MPa +45.69 MPa

表(8) 鋁薄膜應力量測前後變化結果

-53.99 MPa

وبالللاه


(表中"-"號代表壓應力,"+"號代表張應力)

+52.24 MPa

針對上表的實驗結果,我們可以根據文獻[34]得到相同印證,因 為文獻中同樣顯示,當鋁膜經退火後,會呈現和加熱過程中相反之 張應力,這個傾向與上表結果符合。而對於鋁膜呈現壓應力或張應 力,主要是因為鋁的熱膨脹係數遠大於矽所導致。另外,文獻中也 提及經熱處理後的鋁膜殘餘應力,會因降溫冷卻的速度而有所不 同,也就是以快速冷卻之鋁膜樣本,殘餘應力小於那些置放於爐管 中,採慢速冷卻的樣本;並且,當樣本採慢速冷卻時,鋁膜最大的

殘餘應力會發生於退火溫度 350°C,若是採快速冷卻,則鋁膜的殘餘應力和退火溫度無關。所以,在實際製程上,當鋁膜於爐管中退火兩小時後,我們不會等到爐溫降低再把試片拿出,而是直接把試片從爐心緩慢拉出,以防止應力值增加。

觀察圖(4.1)到(4.4)的懸浮結構 SEM 照片,可以發現其表面形態高低起伏、並不均勻,除了可能是因為加熱過程中氣體向薄膜表層散逸(outgas)造成外,也有一部分可能是鋁膜在加熱過程中的壓應力形成小丘(hillocks)突起、或於降溫過程中的張應力以致有空孔(voids)凹陷所產生,其局部放大圖如(4.5)所示。雖然這些孔洞使得後續薄膜沉積之均覆性變差,但是對於應力鬆弛卻有實質上的助益[34]。

因鋁膜產生小丘,造成懸浮結 構表面突起

圖(4.5) 因鋁膜的空孔凹陷及小丘突起,造成懸浮結構表面高低起伏 之局部放大圖

(2)懸浮結構層應力探討

依據第三章模擬結果,當懸浮結構之殘餘應力值低於所設定的 100 MPa,整體結構形變位移量將不至於使懸浮薄板塌陷至基板,因此,以下將提出製作低應力(小於 100 MPa)懸浮結構的方法。

由於全部製程溫度不能超過 400°C,所以我們使用國家毫微米實驗室的 PECVD 機台沉積所需之薄膜結構,用此 PECVD 機台要沉積出低應力薄膜,除了可藉由調整氣體流量、氣體混合比例外,工作壓力以及頻率也是可調變的參數。不過,雖然降低薄膜應力是首要課題,但是也不能忽略所沉積之薄膜性質與混合均勻度,因此,我們將不刻意調整機台內建參數,仍舊選擇以先前所建立之最佳參數來沉積二氧化矽和氮化矽薄膜。

以下所列,為實驗中沉積二氧化矽與氮化矽薄膜所使用的機台參數,其資料來源,取自國家毫微米實驗室之 PECVD 設備(型號 STS multiplex):

<二氧化矽>

O ₂ (sccm)	TEOS(sccm)	壓力(mT)	功率(W)	温度(°C)	鍍率(Å/min.)
400	10	300	200	250/300	約 2000

<氮化矽>

SiH ₄ (sccm)	NH ₃ (sccm)	N_2 (sccm)	壓力	功率	溫度	鍍率
			(mT)	(W)	(°C)	(Å /min.)
20	80	500	500	50	250/300	約 440

此外,考慮到懸浮結構下層鋁膜退火後為張應力,而且由下表

(9)可知,由 PECVD 技術沉積的二氧化矽和氮化矽薄膜,在經 400°C 含有氮氮的爐管中退火二小時後,也分別會形成張應力與壓應力, 所以實驗上,我們採用應力補償的方式[33,35],也就是在鋁膜上方 接續沉積一層壓應力氮化矽薄膜,然後,再沉積一層張應力二氧化 矽薄膜,達成低應力薄膜之要求。

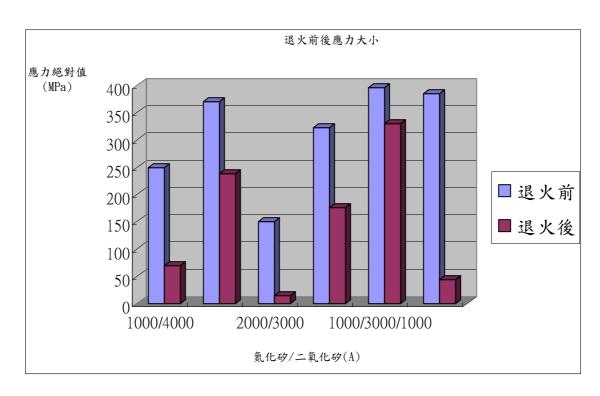
表(9) 氮化矽和二氧化矽退火前後應力量測變化結果

氮化矽沉積厚度	退火前	退火後
1000 Å	-1912 MPa	-1051 MPa
2000 Å	-826 MPa	-234 MPa
3000 Å	-824 MPa	-288 MPa
4000 Å	-781 MPa	-299 MPa
5000 Å	-810 MPa	-335 MPa
二氧化矽沉積厚度	退火前	退火後
1000 Å	-102 MPa	+369 MPa
2000 Å	-98 MPa	+255 MPa
3000 Å	+13 MPa	+265 MPa
4000 Å	+113 MPa	+207 MPa
5000 Å	+156 MPa	+215 MPa

(表中"-"號代表壓應力,"+"號代表張應力)

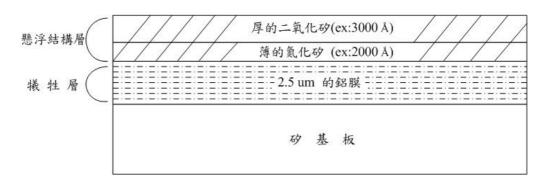
一般而言,退火溫度必須高至 850°C 才能達到降低薄膜應力的效果[35,38],所以由上表可以發現,經過兩小時的退火,薄膜應力絕對值大小不一定有明顯地下降,在某些厚度絕對值大小反而會升高。不過,退火步驟確實有助於薄膜應力表徵的穩定,舉例來說:1000 Å 和 2000 Å 之二氧化矽在退火後應力表徵才由壓應力轉變成張應力。所以,在沉積完懸浮結構、以及懸浮結構經反應性離子蝕

刻開出浮板圖案後,我們均會把試片放入 400°C 含有氮氣的爐管中進行退火步驟,這個步驟除了能使薄膜結構穩定外[36],對於薄膜中之水氣和氫原子等氣體也有一定的釋放效果[35]。


為了形成 5000 Å 厚之懸浮結構層,我們分別以不同比例之氮化矽和二氧化矽組合所需膜厚。如表(10)數據所示,實驗中兩種薄膜材質經由適當比例堆疊並退火後,藉由使用薄的氮化矽薄膜結合厚的二氧化矽薄膜,可以沉積出只有 14 MPa 之低應力薄膜結構。

表(10) 兩種薄膜材質經由適當比例堆疊並退火後,應力排序以及和退火前的應 加力絕對值差

	77.10五 蓝王		
氮化矽薄膜與二氧化矽薄膜	退火前	退火後	應力絕對值大
混合比例以及沉積順序	應力	應力	小排序
THE PARTY OF THE P	2		應力絕對值差
配方(1)	N. S.		4
$SiN_x : SiO_2 = 1:4$	-250 MPa	-70 MPa	180
配方(2)			2
SiN_x : $SiO_2 = 4$: 1	-370 MPa	-238 MPa	132
配方(3)			6
$SiN_x : SiO_2 = 2:3$	-150 MPa	+14 MPa	136
配方(4)			3
SiN_x : $SiO_2 = 3: 2$	-323 MPa	-176 Mpa	147
配方(5)			1
$SiN_x : SiO_2 : SiN_x = 1: 3:1$	-396 MPa	-330 MPa	66
配方(6)			(5)
$SiN_X : SiO_2 = 2.5: 3 (5500 \text{ Å})$	-385 MPa	-44 MPa	341


(表中"-"號代表壓應力,"+"號代表張應力)

由配方(1)、(3)、(6)可以得知,對於降低懸浮結構層之殘餘應力, 藉由薄的氮化矽薄膜結合厚的二氧化矽薄膜,並經兩小時 400°C、 在含有氮氣的爐管中進行退火步驟後,是可行且容易實現的方法。雖然,配方(5)也是厚二氧化矽薄膜複合薄氮化矽薄膜,但殘餘應力反而為表中所有配方之最大值(由下面柱狀圖可以清楚比較)。推論其因,可能是氮化矽和二氧化矽不同的熱膨脹係數,因多重界面相接所導致。所以,若想要以應力補償(stress compensation)方式得到平整且低應力之懸浮薄板,仍需注意熱應力帶來的影響。

表(10)之柱狀圖

表(11)是分別採用上表(10)中,配方(1)、(3)、(6)之混合比例, 並且將鋁膜、氮化矽薄膜以及二氧化矽薄膜三者連續沉積,得到的 應力量測結果。而下圖(4.6)為薄膜連續沉積之整體結構橫截面示意 圖。

圖(4.6) 連續沉積之整體薄膜結構横截面示意圖

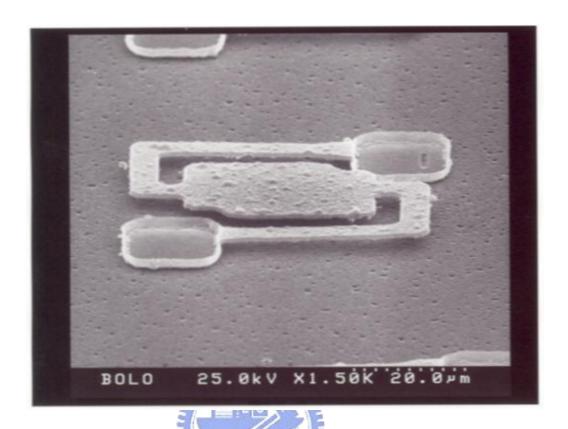
表(11) 將三層薄膜連續沉積並且置放一日後,量測所得之應力大小比較表

沉積流程步驟	配方(1)	配方(3)	配方(6) (5500 Å)
(依順序)	$SiN_x : SiO_2 = 1:4$	$SiN_x : SiO_2 = 2: 3$	$SiN_{x}:SiO_{2}=2.5:3$
2.5 um 的鋁沉積			
並退火後應力值	+30.2 MPa	-3 MPa	+22 MPa
(形成犧牲層)			
沉積懸浮結構層	WILLIAM TO THE PARTY OF THE PAR	le.	
後應力值	+26.8 MPa	-0.8 MPa	-2 MPa
(5000 Å)	E	2 E	
退火兩小時		8	
後應力值	+53.5 MPa	+35.88 MPa	+55 MPa
置放一日	The same of the sa	In.	
後再測得應力值	+26.4 MPa	+9.5 MPa	+36 MPa

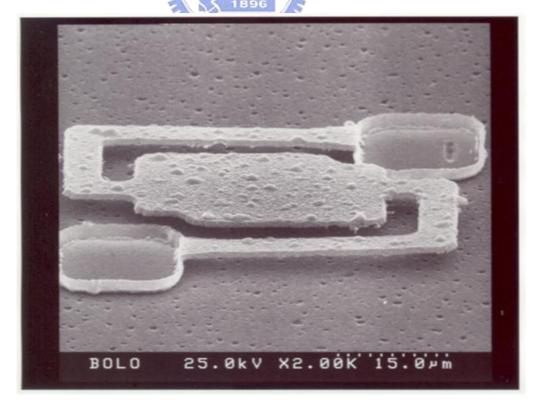
(表中"-"號代表壓應力,"+"號代表張應力)

在表(11)中顯示,懸浮結構之應力值藉由補償機制,即使在三層 總共厚達 3 um 的薄膜連續疊加下,不但不會隨沉積膜厚的增加而上 升,反而會讓應力值趨近於零。

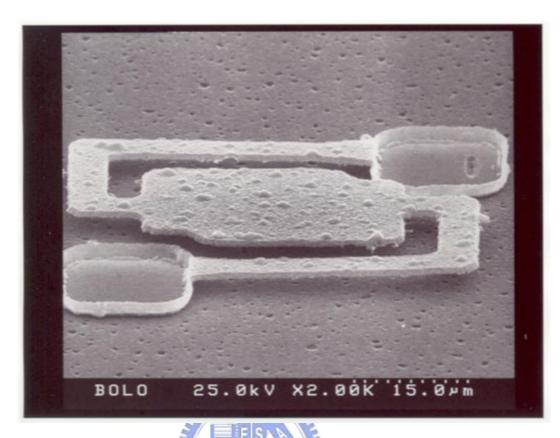
另外,由上表依舊可以發現,薄膜因為彼此熱膨脹係數之不同, 退火後應力值會稍微上升,但是總應力仍不會超過模擬設定的 100 MPa,若再把薄膜退火兩小時(總共退火四小時),應力也幾乎不會有 明顯變化。所以,薄膜結構退火兩小時已足以達到穩定狀態。此外, 將試片置放一日再量測其應力,發現薄膜性質與應力大小皆沒有劣化的趨勢,這可證明應力不受外界環境影響,仍可保持低於 100 MPa,相對提高了實驗上的彈性。

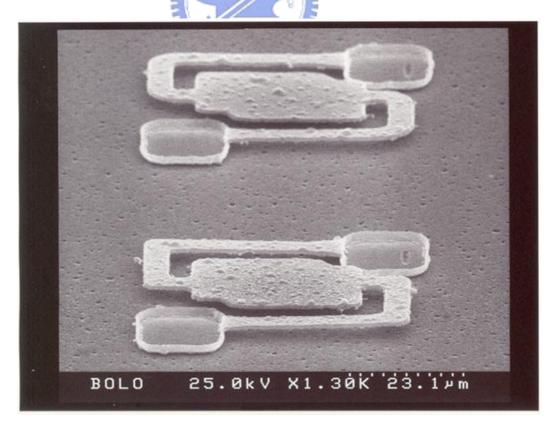

4.2 實驗結果

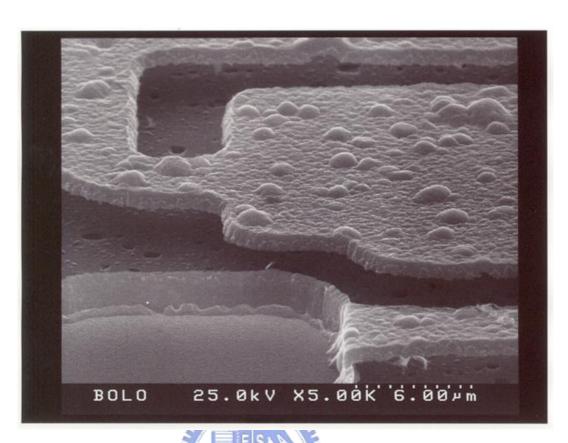
根據第三章的製程步驟以及多次實驗修正,可應用於紅外線感測器之懸浮薄板結構,成功地以表面微加工技術在低溫製程下製作完成。

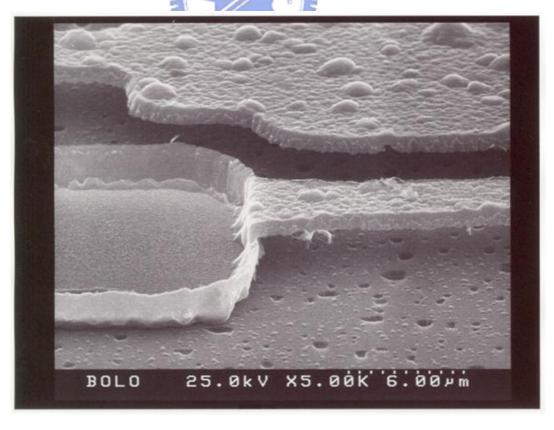

如下圖(4.7)到(4.10)所示,為整體懸浮結構的 SEM 照片。圖中, 矽基板上已經沒有任何微粒殘留,並且,由照片中基板和懸浮結構 之色差可以清楚看出,懸浮薄板以及長短懸桁均未與矽基板有任何 接觸,整體結構平整地懸浮於矽基板上。

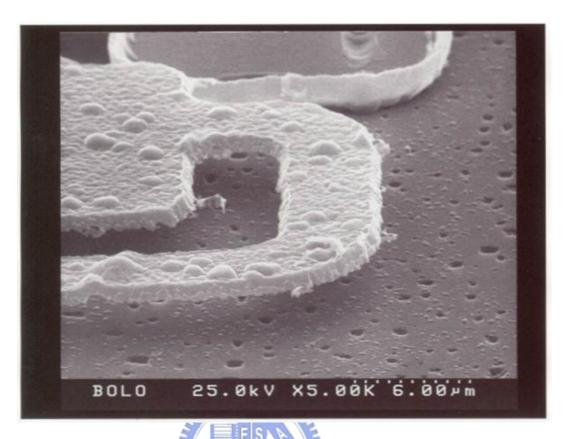
圖(4.11)與(4.12)為懸浮結構 anchor 部分的放大圖,可以發現 anchor 因側壁傾斜角度不足,所以,支腳在爬坡處有變得較薄,不 過因為微影蝕刻以及應力控制良好,因此支腳結構並未斷裂。另外, 圖(4.13)是長短懸桁於相接轉角處的放大圖,這個區域也完整懸浮,並沒有因為液體黏滯效應而使得懸浮結構塌陷。最後,圖(4.14)為懸浮結構剖面側視圖,由矽基板上的陰影,更加證明整體懸浮結構成

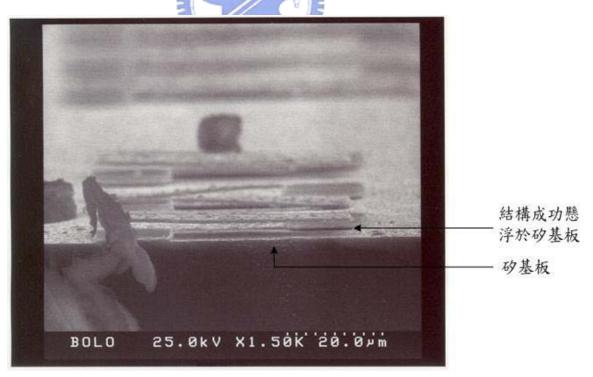

功懸浮。


圖(4.7) 整體懸浮結構的 SEM 照片


圖(4.8) 整體懸浮結構的 SEM 照片


圖(4.9) 整體懸浮結構的 SEM 照片


圖(4.10) 整體懸浮結構的 SEM 照片


圖(4.11) 懸浮結構 anchor 部分的放大圖

圖(4.12) 懸浮結構 anchor 部分的放大圖

圖(4.13) 長短懸桁於相接轉角處的放大圖

圖(4.14) 懸浮結構剖面側視圖

(懸浮結構與矽基板之高度差約為 2.4 um)