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考慮韋伯製程變異數發生變動下之製程能力調整 

研究生：廖律瑋                        指導教授：彭文理 博士 

國立交通大學工業工程與管理學系碩士班 

 

摘要 
 製程能力指標被用來衡量製程製造產品符合規格的能力，不僅是提供品質保

證的工具，也是在品質改善方面的一個方針。計算製程能力指標需服從製程為穩

態的前提假設，也就是在生產過程中平均數和標準差不會改變，但是在實務上製

程為動態。當製程之平均數發生微小偏移時，有些管制圖可能無法偵測到，造成

製程能力指標高估製程良率，因此必須將製程能力指標進行調整。自從 1980 年

代，Motorola 公司提出 6 個標準差的觀念，許多統計學家質疑提倡 6 個標準差

的學者，為什麼在衡量製程能力時需要對製程平均數做 1.5 被標準差的調整。

Bothe (2002) 提出製程服從常態分配下之製程能力調整方法，他以統計的方法解

釋了 1.5 倍標準差的調整之原因。但 Bothe 的研究是在製程服從常態分配的假設

之下，而非常態分配製程在業界時常出現，過去的研究也針對了非常態分配的調

整方法。事實上，製程標準差也是會改變的，因此本研究在變異數微小變動時，

針對製程服從韋伯分配提出製程能力調整方法。在本研究的最後，以實例來說明

如何在非常態的製程中，考慮製程變異數發生改變的情況下，調整製程能力指標

pkC 之計算。 

 

關鍵字：非常態、韋伯分配、變異數微小變動、製程能力指標。 
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Capability Adjustment for Weibull Processes with Variance Change 

Consideration 

Student: Lu-Wei Liao                  Advisor: Dr. W. L. Pearn 

 

Department of  Industrial Engineering and Management 

National Chiao Tung University 

 

 
Abstract 

 Process capability indices (PCIs) have been proposed in the manufacturing 
industry to provide numerical measures on process reproduction capability, which 
are effective tools for quality assurance and guidance for process improvement. 
The assumption that the process is stable (the process mean and variance are not 
change) must be made before PCIs are calculated. In practice, the process is 
dynamic. If  the process mean has a small shift, and the control chart doesn’t 
detect, then the PCIs will overestimate the true process capability. For this reason, 
the PCIs have to be adjusted under those cases. Motorola, Inc. introduced its Six 
Sigma quality initiative to the world in the 1980s. Some quality practitioners 
questioned why the Six Sigma advocates claim it is necessary to add 1.5σ . Bothe 
(2002) provided the adjustment method for normality processes. Bothe (2002) 
provided a statistical reason for including such a shift in the process average that is 
based on the chart’s subgroup size. Data in Bothe’ study was assumed to be 
approximately normally distribution, but the process output is usually not from 
approximately normally. Some research is about the PCIs adjustment for process 
output has a non-normal distribution. In fact, the process variance could also 
change. In this paper, we consider the variance change adjustments to compute 
reliable estimates for capability index pkC  Weibull distribution data. For 
illustration purpose, an application example is presented. 

Keywords: Process capability index, Weibull distribution, Variance Change, 
Dynamic pkC
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Chapter 1. Introduction 

1.1. Research Background and Motivation 

Process capability indices (PCIs) which provide numerical measure of  
production characteristic to reflect the quality of  product have been used in the 
manufacturing industry. Those indices have become popular as unit-less measures 
on process potential and performance. The most commonly used ones, pC  and 

pkC  discussed in Kane (1986), and more-advanced indices pmC  and pmkC  
developed by Chan et al. (1988) and Pearn et al. (1992). Many authors have 
promoted the use of  various PCIs for evaluating a supplier’s process capability. 
Based on analyzing the PCIs, a production department can trace and improve a 
poor process so that the quality level can be enhanced and the requirements of  the 
customers can be satisfied. These PCIs have been defined explicitly as: 

μ μ
σ σ σ σ μ
− − − −⎧ ⎫= = =⎨ ⎬

⎩ ⎭ + −2 2
,  min , ,  

6 3 3 6 ( )
p pk pm

USL LSL USL LSL USL LSL
C C C

T
,     

μ μ
σ μ σ μ

⎧ ⎫− −⎪ ⎪= ⎨ ⎬
+ − + −⎪ ⎪⎩ ⎭

2 2 2 2
min , ,

3 ( ) 3 ( )
pmk

USL LSL
C

T T
                           

where USL  is the upper specification limit, LSL  is the lower specification limit, 
μ  is the process mean, σ  is the process standard deviation, and T  is the target 
value.  

The first capability index pC  considers the overall process variability relative 
to the manufacturing tolerance, reflecting product quality consistency. Due to the 
design is simplicity, pC  can not reflect the tendency of  process centering.  

 The index pkC  was created in Japan to offset some of  the weaknesses in 

pC , primarily because the fact that pC  measures capability in terms of  process 
variation only and does not take process location into consideration. However, 

pkC   considers process variation and the location of  process mean. It has been 
regarded as a yield-based index since it provides lower bounds on process yield, 
and is always used to measure the quality of  the process. For example, when the 

=1pkC  means that the product’s fractions of  defectives is not more than 2700 
parts per million (ppm) fall outside the specification limits. At =1.33pkC , the 
defect rate drops to 66 ppm. To achieve that defect rate less than 0.544 ppm, a 

pkC  level of  1.67 is required. At a pkC  level of  2.0, the defective rate reduced to 
0.002 ppm. The exact number of  nonconformities with fixed pkC  is very 
depending upon the location of  the process mean and the magnitude of  the 
process variation. Before pkC  is calculated, we assumes that the process is stable 
(the process mean and variation are not change), but in practice, the process is 
dynamic and the mean and variation always change with small movement for 
momentary. We use some control charts to monitor our process, but we can not 
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detect this movement obviously. So that the pkC  will be underestimated the true 
number of  nonconformities. At the present time, the pkC  index is used more 
than any other index for measuring process capability. It is the reason why we 
study pkC  more than other indices here. 

Since Motorola, Inc. introduced its Six Sigma quality initiative, followers of  
this philosophy notion should add 1.5σ  when estimating process capability. 
When asked the reason for such an adjustment, six-sigma user claim it is 
necessary, but offer only personal experiences and three dated empirical literature. 
Bothe (2002) provided a statistical reason to adjust the pkC  be overestimated, and 
he set the adjustment of  shift in average that was dependent on the same detection 
power of  the control chart, and the data of  Bothe’s study was assumed to be 
approximately normality distribution. However effectively non-normal process 
occurs frequently in practice. Pyzdek (1995) has mentioned the distributions of  
certain chemical processes such as zinc plating thickness of  a hot-dip galvanizing 
process are very quite often skewed. Choi (1996) presents an example of  a skewed 
distribution in the ‘active area’ shaping stage of  the wafer’s production process. 
Cygan et al. (1989) have mentioned that the lifetimes of  polypropylene films under 
high ac and dc field stresses be shown as a two-parameter Weibull distribution. 
The Weibull distribution, denoted as Weibull (α β,  ), with various values of  scale 
parameter α  and shape parameter β , covers a wide class of  non-normal 
applications, including product life, product reliability and tensile strength of  
brittle materials, such as carbon and boron. The abundance of  outputs from 
skewed distribution, the censoring, etc, makes the normality assumption often 
being illegitimate. Specifically, we assure the product lifetime which be from 
skewed distribution by statistic test and historical data. It will lead to underrate 
the probability of  nonconformance that using the adjustment for normal case to 
adjust the non-normal cases. 

1.2. Research Purpose  

 For some non-normal cases, Hsu et al. (2007) provided the process capability 
adjustment for gamma processes, and Li (2007) provided the process capability 
adjustment for Weibull processes, but they only investigate the change of  the 
process mean shift. In real world, the process is dynamic, the mean and variance 
could change with small movement for momentary. In this thesis, we focus on the 
process variance change for non-normal cases. 

We investigate Weibull distribution to calculate the ARL(average run length) 
by simulation. We also show the detection power performance of  2S chart under 
variance change. In the cases, we show that the detection power in this control 
chart is very sensitive. When the data are from Weibull distribution, we provide 
the statistical derived variance change adjustment based on the chart subgroup 
size and distribution parameter to calculate the estimate of  dynamic pkC  when 
the data is non-normal distribution. It can make sure our process capability do not 
overestimate. 

1.3. Thesis Organization  
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First, we introduce the research motivation and purpose in Chapter 1. 
Secondly, a brief  introduction of  Bothe’s study and adjustment reason for mesn 
shift are included, and adjustment for Weibull process is also in Chapter 2. In 
Chapter 3, we introduce the characteristic of  Weibull distribution, and introduce 
some properties for 2S  of  Weibull process. Then, we compare the difference 
between normal process and Weibull process on variance distribution. In chapter 
4, we use the MATLAB program to create a Monte-Carlo simulation to find 
upper and lower control limits for detecting variance change. We provide the 
simulation derived adjustments based on the chart’s subgroup size (for Weibull 
distribution) to calculate the estimator of  dynamic pkC when the data is Weibull 
distribution. For illustrative purpose, application is presented in Chapter 5. Finally, 
we give some conclusion in Chapter 6. 
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Chapter 2. Literature Review 

 The process capability adjustment for mean shift for normal and non-normal 
distributions had been researched. In this section, we will review those papers 
about adjustments for normal process and Weibull process.  

2.1. Process Capability Adjustment for Normal Process with Mean Shift 

Bothe (2002) provided a statistical reason why to add a 1.5σ  shift to the 
average. Assuming the processes approximately normal distribution, control 
charts can not reliably detect small movement in average. When μ  had a small 
movement (ex: 0.5σ , 1σ ) and the detection power of  Shewhart X  control 
chart is too small to discover. Then, small mean movement affects the PCIs 
accuracy. However, the probability of  nonconformance will increase obviously. 
For example, when pkC  is 1.33, the probability of  nonconformance is 64 ppm. If  
average occur 1 σ  shift that be difficultly detected by control chart, the 
probability of  nonconformance becomes 1350 ppm. The probability of  
nonconformance will increase twenty-fold. Bothe considered that adjustments 
should accord with the same detection standard.  

Bothe (2002) considered providing the same detection power in order to 
define the several adjustments with different subgroup size and called the 
adjustment 50S . By this idea, he set the detecting power to 50 percent and 
computed the several adjustments for different subgroup size. The reason which 
Bothe set the power to 50 percent was we want detect the processes out of  control 
immediately if  the process mean shifts and the 1ARL (average run length)=1 is 
the perfect condition. But in fact, the 1 1ARL =  is impossible. For this reason we 
can just only set the 1 2ARL = , and the detection power is 11 ARL , so we can 
know if  1 2ARL =  the detecting power is 0.5. The results showed in Table 1. 
Table 1 displays shift sizes that have 50 percent chance of  remaining undetected 
for subgroup sizes 1 through 6. Because shifts ranging in size from 0 up to 50S σ  
are the ones likely to remain undetected, a conservative approach is to assume 
that every missed shift is as large as 50S σ . And Bothe invented dynamic pkC  be 
defined as 

 50 50( ) ( )
 min , .

3 3pk

USL S S LSL
dynamic C

μ σ μ σ
σ σ

− + − −⎡ ⎤= ⎢ ⎥⎣ ⎦
  

Bothe (2002) suggested that the adjustment value for normal distribution 
should be determined by the subgroup size n . 
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Table 1. Adjustment values for normal distribution with several subgroup size. 

 
Subgroup Size 50S  

1 3 

2 2.12 

3 1.73 

4 1.5 

5 1.34 

6 1.22  

 

2.2. Process Capability Adjustment for Weibull Process with Mean Shift 

Li (2007) provided the process capability adjustment for non-normal 
processes. Weibull distribution does not have reproductive property, and the 
distribution of  the X  distribution is analytically intractable. Lu (2003) provided 
to approximate the cumulative density function of  nX  for Weibull processes. 
The UCL  and LCL  was set to 99.865th and 0.135th percentile of  nX  
distribution. We call the control chart they used as percentile Weibull control 
chart. Then, these two papers used the control limits to calculate the detection 
power for Weibull processes under various subgroup sizes n  and shape 
parameter β .  

Since the shape of  the Weibull distribution changing from positive skewness 
to negative skewness with increasing the shape parameter, Li (2007) discussed two 
different cases. Process mean had right and left shifts. He used this cumulative 
density function to compute the relationship between the mean shift and Type Ⅱ 
error and calculate the mean shift adjustment 50AS  which means that the 
processes mean shift 50AS σ  when the detection power of  control chart is 0.5. 
The result is as below: 
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Table 2. 50AS  values for several n and various β  values with mean right shift. 

 

50AS  Weibull distribution(1, β ) for right shift 

n 1 2 3 4 5 6 7 8 9 10 

2 3.611 2.492 2.009 1.767 1.632 1.536 1.470 1.424 1.387 1.359 

3 2.735 1.967 1.642 1.482 1.373 1.307 1.261 1.228 1.197 1.182 

4 2.250 1.663 1.448 1.309 1.232 1.175 1.138 1.103 1.087 1.071 

5 1.944 1.484 1.301 1.196 1.127 1.084 1.047 1.025 1.006 0.988 

6 1.716 1.343 1.201 1.104 1.043 1.009 0.981 0.960 0.942 0.932 

7 1.569 1.239 1.119 1.037 0.990 0.954 0.928 0.907 0.892 0.881 

8 1.440 1.159 1.051 0.984 0.939 0.905 0.883 0.864 0.852 0.839 

9 1.340 1.086 0.991 0.930 0.891 0.865 0.845 0.828 0.814 0.805 

10 1.251 1.031 0.943 0.889 0.853 0.828 0.811 0.797 0.784 0.773  
 

Table 3. 50AS  values for several n and various β  values with mean left shift. 

 

50AS  Weibull distribution(1, β ) for left shift 

n 1 2 3 4 5 6 7 8 9 10 

2 0.820 1.532 1.888 2.098 2.236 2.333 2.405 2.461 2.504 2.540 

3 0.813 1.356 1.591 1.723 1.808 1.866 1.909 1.941 1.967 1.987 

4 0.802 1.225 1.399 1.494 1.554 1.596 1.626 1.649 1.667 1.681 

5 0.776 1.125 1.263 1.337 1.384 1.416 1.439 1.456 1.470 1.481 

6 0.749 1.047 1.160 1.221 1.259 1.285 1.304 1.318 1.329 1.338 

7 0.724 0.983 1.079 1.131 1.163 1.185 1.201 1.213 1.222 1.230 

8 0.700 0.929 1.013 1.058 1.086 1.105 1.118 1.129 1.137 1.144 

9 0.678 0.884 0.958 0.998 1.022 1.039 1.051 1.060 1.067 1.073 

10 0.658 0.844 0.911 0.947 0.969 0.984 0.994 1.003 1.009 1.014  

     

Table 2 and Table 3 display the magnitude of  mean shift adjustments 50AS  
based on the detection power set to 0.5 and data from Weibull (1,  β ) distribution 
for various value of  β = 1(1)10 and n=2(1)10 with right shift ( 0k > ) and left shift 
( 0k < ). They also used the most common method for modifying PCIs in the 
non-normal case is the technique of  quantile estimation, and the dynamic pkC  
was as the same as gamma processes which Hsu et al. (2007) provided. 

Noting that a process will experience shifts in 50.0X (median) of  various 
magnitudes and knowing that not all of  these will be discovered, some allowance 
for them must be made when estimating outgoing quality so customers are not 
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disappointed. Because shifts ranging in size from 0 up to σ50AS  are likely to 
remain undetected, a conservative approach it to assume that every missed shift it 
as large as 50AS . When estimating capability, 5.0X  minus σ50AS  is used to 
evaluate how well the process output meets the LSL and 5.0X  plus σ50AS  is 
used for determining conformance to the USL. Both of  these adjustments are 
incorporated into the pkC  formula, now called the “dynamic” pkC  index, by 
making the following modifications: 

0.5 50 0.5 50

0.5 0.135 99.865 0.5

0.5 50 0.5 50

0.5 0.135 99.865 0.5

( ) LSL USL ( ) min{ , }

LSL USL                    min{ , }

pk
X AS X ASdynamic C

X X X X
X AS X AS

X X X X

σ σ

σ σ

− − − +
=

− −
− − − −

=
− −

 

The capabability adjustments for Weibull processes are related to which 
control chart chosen to control the process. The Shwehart X  control chart 
assumes that the process data come from a normal or near-normal distribution. 
When the data comes from Weibull distribution, we should choose control charts 
for non-normal processes or for Weibull processes to control production process. 
Padgett and Supurrier (1990) used Monte Carlo simulation to construct 
Shewhart-type control charts for percentiles of  strength distributions. Chan and 
Cui (2003) provided a skewness correction X  and R  charts for skewed 
distributions. This control chart proposed a skewness correction method for 
constructing the X  and R  control charts for skewed process distributions. 
Their asymmetric control limits are based on the degree of  skewness estimated 
from the subgroups. Nichols and Padgett (2006) provided a bootstrap Weibull 
control chart. This control chart  use bootstrap method to simulate the UCL  
and LCL  for monitoring Weibull percentiles. Erto (2007) provided a Weibull 
control chart which used Bayes theorem to calculate the sampling distribution of  
Weibull percentile. 

Lu (2008) considered the problem of  how to determine the adjustments for 
process capability with mean shift when data follows the Weibull distribution.  
Lu (2008) compared the detection powers of  the percentile Weibull control chart, 
bootstrap Weibull control chart and the Erto’s Weibull control chart under the 
Bothe’s adjustments, and showed the Bothe’s adjustments are inadequate when 
data come from Weibull processes. He finds the Erto’s Weibull control chart is the 
best powerful control chart than the others. For Weibull processes, Lu (2008) 
calculated the adjustments for various sample sizes ( n ) and Weibull shape 
parameter (β ) with detection power of  the Erto’s Weibull control chart fixed to 
0.5. Using the adjusted process capability formula, the engineers can determine 
the actual process capability more accurately. 
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Chapter 3. Investigation for Weibull Process 

    In this section, we introduce the characteristic of  Weibull distribution first. In 
the second part, we investigate the Weibull variance distribution to study the effect 
on the detection power of  the 2S control chart. 

3.1. Weibull Process 

    The Weibull distribution has been widely used in the field of  life data 
analysis due to its flexibility. It has similar behavior of  other statistical 
distributions such as normal and the exponential distributions. The Weibull 
distributions are also used to model the time until a given technical device fails. In 
practical, the Weibull has been used include electronic devices such as memory 
element, mechanical components such as bearings, and structural elements in 
aircraft and automobiles,...,etc. The Weibull distribution can also be used to 
model the distribution of  wind speeds at a given location on Earth. Moreover, 
every location is characterized by a particular shape and scale parameter. 

If  the failure rate of  the device decreases over time, one chooses 1<β  (β  is 
the shape parameter). If  the failure rate of  the device is constant over time, one 
chooses 1=β , again resulting in a decreasing function f. If  the failure rate of  the 
device increases over time, one chooses 1>β  and obtains a density f which 
increases towards a maximum and then always decreases. 

In this thesis, we consider Weibull distribution as the process population to 
study the effect on the capability estimates when the process output has a 
non-normal distribution with process variance change. Observations from the 
Weibull distribution is non-negative. The Weibull distribution can be denoted as 
Weibull ( βα , ) with cumulative density function and the probability density 
function given by 

 ( / )( ) 1 e , 0,x
XF x x

βα−= − ≥    

and 

 
( )1( ) , 0,

x

f x x e x
β

β β αβα
−− −= ≥   

where  ( 0)α > is the scale parameter, and ( 0)β > is the shape parameter. The 
mean and variance of  Weibull distribution are 

 1[ (1 )],μ α β −= Γ +    

and 

 2 2 1 2 1[ (1 2 ) (1 )].σ α β β− −= Γ + −Γ +    

    The Weibull distribution is very flexible, and by appropriate selection of  the 
parameters α and β , we can obtain a various shapes. Since the Weibull 
distribution is skewed, we utilize the coefficient of  skewness and kurtosis to 
explain how this distribution is different from normal distribution, the coefficient 
of  skewness and kurtosis of  Weibull distribution can be expressed as follows: 

http://www.answers.com/main/ntquery;jsessionid=g3tig0t03fc2q?tname=failure-rate&sbid=lc08a
http://www.answers.com/main/ntquery;jsessionid=g3tig0t03fc2q?tname=failure-rate&sbid=lc08a
http://www.answers.com/main/ntquery;jsessionid=g3tig0t03fc2q?tname=failure-rate&sbid=lc08a
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3 1 1 1 1

1 1 2 1 3/ 2

2 (1 ) 3 (1 ) (1 2 ) (1 3 ) ,
[ (1 2 ) (1 )]

β β β βγ
β β

− − − −

− −

Γ + − Γ + Γ + +Γ +
=

Γ + −Γ +
   

and  

 2 1 2 1 2

( ) ,
[ (1 2 ) (1 )]

βγ
β β− −=

Γ + −Γ +
f

   

where )(xΓ  is the gamma function and 

 
4 1 2 1 1

2 1 1 1 1

( ) 6 (1 ) 12 (1 ) (1 2 )
            3 (1 2 ) 4 (1 ) (1 3 ) (1 4 ).
f β β β β

β β β β

− − −

− − − −

≡ − Γ + + Γ + Γ + −

Γ + − Γ + Γ + +Γ +
   

Table 4 presents the coefficient of  skewness and the coefficient of  kurtosis of  
the Weibull distribution under study. 

Table 4. Values of  skewness and kurtosis of  various Weibull distributions. 

Weibull(α β,  ) skewness Kurtosis 

Normal(0,1) 0 0 

Weibull(1,1) 2 6 

Weibull(1,2) 0.631111 0.245089 

Weibull(1,3) 0.168103 -0.27054 

Weibull(1,3.6) 0 -0.283255 

Weibull(1,4) -0.087237 -0.25217 

Weibull(1,5) -0.25411 -0.11971 

Weibull(1,6) -0.373262 0.035455 

Weibull(1,7) -0.46319 0.187183 

Weibull(1,8) -0.533726 0.327676 

Weibull(1,9) -0.590657 0.455204 

Weibull(1,10) -0.637637 0.570166  

     

Figure 1 shows the plot of  probability density function of  Weibull 
distribution with various values of  α , while β  is fixed. From Figure 1, we can 
find the scale parameter only control the mean and the variance to adjust the 
shape of  the distribution. Figure 2 presents Weibull distribution with various β , 
while α  is fixed. In Figure 3, we observed that the Weibull distribution is more 
similar to normal distribution while the shape parameter β  exceeds 2. From 
Table 1, we also observe that when β  is 3.6 with the coefficient of  skewness is 0, 
but the coefficient of  kurtosis is -0.28, so it has a more acute “peak” leptokurtic. 
The coefficient of  kurtosis is most similar to normal when β  fall into the 
interval [5, 6]. 
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Figure 1. Weibull distribution with various α . 

 

       
Figure 2. Weibull distribution with various β  
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Figure 3(a). Probability density 
functions for Weibull(1,0.5) along 
with a Normal distribution. 

Figure 3(b). Probability density 
functions for Weibull(1,1) along 
with a Normal distribution. 
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Figure 3(c). Probability density 
functions for Weibull(1,2) along 
with a Normal distribution. 

Figure 3(d). Probability density 
functions for Weibull(1,3) along 
with a Normal distribution. 
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Figure 3(e). Probability density 
functions for Weibull(1,4) along 
with a Normal distribution. 

Figure 3(f). Probability density 
functions for Weibull(1,5) along 
with a Normal distribution. 
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Figure 3(g). Probability density 
functions for Weibull(1,9) along 
with a Normal distribution. 

Figure 3(h). Probability density 
functions for Weibull(1,10) along 
with a Normal distribution. 

Figure 3(a)-3(h). Probability density functions for Weibull distributions along 
with a Normal distribution for the same mean and variance. Let β  = 0.5, 1, 2, 
3, 4, 5, 9, and 10. 

3.2. Sampling Distribution of Sample Variance for Weibull Process  

    Because the sampling distribution of  variance for Weibull process is difficult 

to find, so we use the Matlab program to generate 1,000,000 preliminary samples 
from Weibull( ,α β ), each of  size k, and let iS  be the variance of  the ith sample 

to simulate the empirical distribution. We want to know about the distribution 

when shape parameter changed for Weibull distribution. In Figure 4, we draw 

several empirical probability density functions of  the sample variance when data 

come from Weibull and normal populations having the same mean and variance, 
we let β  = 0.5, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The sample size is set to be 11. We 

can find the empirical sampling distribution of  variance as below:  

 
Figure 4(a). Empirical distribution 
of  sample variance for  
Weibull(1,0.5) and Normal(2,20). 

Figure 4(b). Empirical distribution 
of  sample variance for Weibull(1,1) 
and Normal(1,1). 
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Figure 4(c). Empirical distribution 
of  sample variance for Weibull(1,2) 
and Normal(0.8862,0.2146).  

Figure 4(d). Empirical distribution 
of  sample variance for Weibull(1,3) 
and Normal(0.893,0.1053). 

Figure 4(e). Empirical distribution 
of  sample variance for Weibull(1,4) 
and Normal(0.9064,0.0674). 

Figure 4(f). Empirical distribution of  
sample variance for Weibull(1,5) 
and Normal(0.9182,0.0442). 

Figure 4(g). Empirical distribution 
of  sample variance for Weibull(1,6) 
and Normal(0.9277,0.0323). 

Figure 4(h). Empirical distribution 
of  sample variance for Weibull(1,7) 
and Normal(0.9354,0.0247). 
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Figure 4(i). Empirical distribution of  
sample variance for eibull(1,8) and 
Normal(0.9417,0.0195). 

Figure 4(j). Empirical distribution of  
sample variance for Weibull(1,9) 
and Normal(0.947,0.0158 ). 

Figure 4(a)-4(j). Empirical distribution of  sample variance for Weibull 
distribution along with Normal distribution on the same mean and variance. 

    It follows from Figure 3 that when the shape parameter is larger than 2, the  

Weibull distribution appears to be near normal distribution. So we can infer that 

the sampling distribution of  variance from Weibull distribution is close to the 
sampling distribution of  variance from normal population when β  is larger than 

2. This phenomenon can be verified from the simulation result shown in Figure4. 
Moreover, From Figure 4 we also observe that as β  is smaller than 2, the tail 

will be more elongate (distribution is strongly skewed). In Figure 5, we draw 
several empirical sampling distribution of  variance for Weibull withβ  = 0.5, 0.7, 

0.9, 1.1, 1.3, 1.5, 1.7, and 1.9 , and sample size = 11. 

Figure 5(a). Empirical 
distribution of  sample variance 
for Weibull(1,0.5). 

Figure 5(b). Empirical 
distribution of  sample variance 
for Weibull(1,0.7). 
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Figure 5(a). Empirical 
distribution of  sample variance 
for Weibull(1,0.9). 

Figure 5(b). Empirical 
distribution of  sample variance 
for Weibull(1,1.1). 

Figure 5(b). Empirical 
distribution of  sample variance 
for Weibull(1,1.3). 

Figure 5(b). Empirical 
distribution of  sample variance 
for Weibull(1,1.5). 

Figure 5(b). Empirical 
distribution of  sample variance 
for Weibull(1,1.7). 

Figure 5(b). Empirical 
distribution of  sample variance 
for Weibull(1,1.9). 

Figure 5(a)-5(h). Empirical distribution of  sample variance for Weibull 
distributions with β  = 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, and 1.9. 
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Chapter 4. Process Variance Change Investigation for 
Weibull Process 

    In this chapter, we introduce a percentile control chart to investigate the 

detection power for the process variance change. Then we use it to find the 

modified standard deviation adjustment for Weibull process. 

4.1. Average Run Length 

    ARL of  the control chart means the average number of  points that must be 

poltted before a point indicates an out-of-control condition. If  the process 

observations have some problems, the ARL can be calculated as below: 

                               1
ARL=

p
,  

where p means the probability of  any point exceeds the control limits.  

     There are two kinds of  ARL for any Shewhart control chart. The first one 
we can be expressed as 0ARL  for the in-control ARL. It means that the process 

observations are corrected, but there will be an out of  control single generated 
every 0ARL  samples, on average. We can easily calculate as below: 

                               0

1
ARL =

α
,  

where α  is the probability of  indicating a shift when none has occurred. 

    The second one for the out-of-control ARL can be also be expressed as 

1ARL . It means the process observations are uncorrected, so we will find out the 

out of  control single generated every 1ARL  samples, on average. It can be 

calculated as below: 

                               1

1
ARL =

1 β−
,  

where β  is the probability of  failing to indicate a real shift in process level. 

    In this paper, we will use the 1ARL  to find the modified standard deviation 

adjustment for Weibull process, then we can use it to modify our process 

capability index pkC . 
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4.2. Monte-Carlo Simulation for Determining UCL and LCL 

The main purpose of  individuals control chart is assisting on identifying 
shifts or drifts in processes and it’s easily to be implemented. In this paper we 
study the effects on the capability estimates when the process output obeys 
gamma distribution with process variance change is remained unknown, so the 

2S  control chart is a convention tool to monitor process variability and can help 
us quickly determine whether the process is stable or not. But, when we adopt the 
control chart, some assumptions should be satisfied, such as the process 
characteristics must follow normal distribution. However, since our study is based 
on the gamma processes, violating the assumption, we will need to replace the 
traditional upper and lower control limits, ( )2 2

2, 11 nS n αχ −−  and 
( ) ( )

2 2
1 2 , 11 nS n αχ − −− , as quantiles of  the cumulative distribution function from 

different parameters of  Weibull( ,α β ), where 2S is an unbiased estimator of  2σ . 

 In order to calculate the probability of  misjudgment, one will first need to 
know the upper and lower control limits (UCL  and LCL , respectively) of  the 
process run. It is extremely difficult, if  not impossible, to obtain the explicit 
formula of  the distribution of  sample variance when data follow gamma 
distribution. In this paper, Monte-Carlo simulation method was performed to 
investigate the behavior of  sampling distribution of  variance for gamma data and 
determine the estimated upper and lower control limits. So, in our study, the 
UCL  and LCL  are estimated through Monte-Carlo simulation method. The 
steps of  Monte-Carlo algorithm to determine the control limits of  2S control 
chart are summarized as follows: 

Step1:  We generate N preliminary samples from Weibull(α ,β ), each of  size k, 
and let iS  be the variance of  the ith sample.  

Step2:  To sort iS , we obtain (1) (2) (N)S <S <...<S , let ˆ
pt  be the percentile for iS . 

For example N= 610 , then ˆ
60.1 (10 )

t =S , so ˆ
p (N*p)t =S . 

Step3:  The upper and lower control limits for Weibull(α ,β ) can be estimated 
by ˆ

0.99865t and ˆ
0.00135t . 

 

4.3. Detection Power of 2S for Weibull Data 

Utilizing the UCL  and LCL  obtained by Monte-Carlo approach, we 
derived the power of  2S for Weibull process data. Since the Type II error β  is 

( )
( )
( ) ( )

β σ σ

σ σ

= ≤ ≤ =

= ≤ ≤ =

= −2 2

2
1 0

2
0.00135 0.99865 1 0

0.99865 0.00135

| k

| k

,
S S

P LCL S UCL

P F S F

G F G F

 

where 1 β−  is the detection power of  the process, ( )2S
G ⋅  represents the 
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empirical cumulative distribution function of  sample variance from Weibull 
distribution with that variance has changed and 1σ  is the standard deviation 
after process change ( 0σ  is the standard deviation of  the original process). The 
control limits LCL  and UCL  are calculated as 0.00135F  and 0.99865F  
respectively. 

We develop a Matlab program to compute the probability of  process variance 
out of  control limits. When process variance changes from 2σ to σ×2 2k , and 
mean is fixed, the parameters α  and β  will change to new parameters 

'α and 'β , then we can obtain the detection power under the situation that the 
process variance changes. The parameters 'α and 'β  can be found by untilizing 
the following steps:  

Step1:  Assume the new standard deviation 1 kσ σ= × , and k,μ ,andσ are all 
known.  

Step2:  The mean and variance of  Weibull distribution are 1[ (1 )]μ α β −= Γ +  
and 2 2 1 2 1[ (1 2 ) (1 )].σ α β β− −= Γ + −Γ +  Then, we compute 1σ  divided 
by μ  as below: 

α β βσ
μ α β

− −

−

Γ + −Γ +
Γ +

2 1 2 1
1

1

[ (1 2 ) (1 )]
=

[ (1 )]
 

β β
β

− −

−

Γ + −Γ +
Γ +

1 2 1

1

[ (1 2 ) (1 )]
 = .

[ (1 )]
 

Step3:  We can find the new scale and shape parameters 'α and 'β . 

    Table 5 displays the detection power when data come from Weibull 
distribution with 1 and 3, 4, and 5α β= = . The change magnitude is 1.0(0.5)3.5 
adjustments. From Table 5, we observe the detection power gets larger as sample 
size (n) increasing. 

Table 5. Detection power for various weibull distributions. 

 

Weibull(1,3) 

                Subgroup Size n 

 

Magnitude of  

change in σ  9 10 11 12 13 

 

1 0.00272 0.00286 0.00268 0.00266 0.00276 

1.5 0.23732 0.26349 0.28855 0.31660 0.34155 

2 0.58041 0.62368 0.66314 0.70087 0.73517 

 

2.5 0.72655 0.76466 0.80016 0.83068 0.85645 
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3 0.78041 0.81628 0.84627 0.87217 0.89399 

3.5 0.80037 0.83348 0.86098 0.88494 0.90451 

 

Weibull(1,4) 

                Subgroup Size n 

 

Magnitude of  

change in σ  9 10 11 12 13 

 

1 0.00264 0.00277 0.00259 0.00273 0.00275 

1.5 0.23987 0.27072 0.29748 0.32572 0.35763 

2 0.64447 0.69275 0.73354 0.77036 0.80625 

2.5 0.81486 0.85297 0.88250 0.90716 0.92722 

3 0.87588 0.90519 0.92758 0.94490 0.95854 

 

3.5 0.89843 0.92341 0.94229 0.95637 0.96773 

 

 

 

Weibull(1,5) 

                Subgroup Size n 

 

Magnitude of  

change in σ  9 10 11 12 13 

 

1 0.00262 0.00261 0.00267 0.00271 0.00275 

1.5 0.21636 0.24175 0.27207 0.29781 0.32945 

2 0.65080 0.69954 0.74586 0.78218 0.81768 

2.5 0.84854 0.88345 0.91227 0.93255 0.95023 

3 0.91675 0.93968 0.95792 0.97026 0.97916 

 

3.5 0.94173 0.95917 0.97233 0.98074 0.98706 

 

 

4.4. Modified Standard Deviation Adjustment for Weibull Process 

We set a given sample size (n) 1=α  and given β , then sampling large data 
( 710 ) which are from Weibull distribution to estimate the control limits and 
compute the detection power of  2S for Weibull data with the given change 
magnitude and n .  

From the mentioned above, we fix power = ( )σ σ≤ ≤ =2
1 0|P LCL S UCL k  = 

0.5 to find k . We develop a Matlab program to compute the standard deviation 
change adjustment 50AS . The standard deviation adjustment 50AS  means that 
the detection power is fifty percent when process variance change from 2σ  to 

2 2
50 σ⋅AS . The 50AS  is adjustment in pkC , and it was calculated by how distance 

change the detection power reach 50 percent. Therefore, Table 6 display the 
magnitude of  standard deviation adjustments 50AS  based on the detection power 
is 50 percent and data from Weibull( β,1 ) distribution for various value 
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of =β 1(1)11 and n=8(1)35. For example, if  β  is 3 with n=10, the standard 
deviation change adjustment 50AS  is 1.785. When β =1, 50AS  are all greater 
than 5. From Figure 4, we find the shape is extraordinarily unlike the normal 
distribution when β =1. When shape parameter is smaller than 1.5 (see Figure 5), 
we note that the distribution is a long-tail right skewed distribution.  

Why not discuss the relationship between 50AS  and scale parameter α ? By 
Lu (2003), we can compute the probability of  nX  when 1,..., nX X  is a random 
sample from Weibull( ,α β ), and if  we let /i iY X α=  then we have  

 / ~ Weibull(1, )i iY X α β=  and 1 1
/

1~ Weibull( , )

n n

i i
i i

Y X
Y

n n n

α
β= == =

∑ ∑
.  (1) 

From (1) we get 

{ }
.

P LCL X UCL

LCL UCLP Y
α α

≤ ≤

⎧ ⎫= ≤ ≤⎨ ⎬
⎩ ⎭

           (2) 

So from (2), without loss of  generality, we can set 1α = to find the 50AS . Because 

of  that, we may infer the standard deviation adjustments 50AS  would not be 

affected by the scale parameter α . But, we can not prove this result theoretically. 
Figure 6 depicts the 50AS  curves of  the Weibull process with scale parameter 

α =1 and α =3 for subgroup sizes n =10, 15, and 20. It can be seen that the 

magnitude of  standard deviation change would not change for α  values
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Table 6. 50AS  values for several subgroup size n and various β  values. 

50AS  Weibull distribution(1,β )  

n (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) (1,10) (1,11) 

8 11.865 2.672 1.934 1.854 1.861 1.906 1.943 1.992 2.031 2.072 2.109 

9 11.797 2.383 1.848 1.787 1.797 1.836 1.873 1.914 1.957 2.000 2.031 

10 11.563 2.195 1.785 1.729 1.748 1.779 1.824 1.861 1.896 1.934 1.967 

11 11.250 2.078 1.727 1.688 1.699 1.740 1.771 1.814 1.847 1.884 1.904 

12 11.094 1.984 1.689 1.646 1.670 1.695 1.736 1.770 1.799 1.834 1.861 

13 10.660 1.914 1.656 1.618 1.635 1.665 1.699 1.731 1.764 1.795 1.824 

14 10.195 1.857 1.617 1.592 1.605 1.637 1.670 1.705 1.734 1.759 1.785 

15 9.758 1.809 1.592 1.566 1.584 1.613 1.643 1.677 1.706 1.732 1.756 

16 9.854 1.768 1.568 1.543 1.559 1.590 1.620 1.649 1.679 1.705 1.729 

17 9.703 1.734 1.549 1.527 1.543 1.570 1.600 1.627 1.654 1.682 1.705 

18 9.047 1.703 1.523 1.508 1.525 1.550 1.580 1.604 1.633 1.657 1.680 

19 8.500 1.670 1.508 1.494 1.509 1.536 1.563 1.589 1.611 1.638 1.659 

20 8.227 1.648 1.492 1.478 1.497 1.518 1.544 1.574 1.598 1.618 1.643 

21 8.063 1.627 1.479 1.465 1.484 1.503 1.531 1.557 1.580 1.601 1.620 

22 7.297 1.607 1.467 1.456 1.467 1.495 1.518 1.543 1.563 1.586 1.606 

23 6.422 1.586 1.453 1.442 1.457 1.480 1.506 1.528 1.552 1.574 1.590 

24 6.094 1.575 1.446 1.432 1.449 1.471 1.491 1.515 1.541 1.558 1.573 

25 5.656 1.552 1.434 1.426 1.438 1.459 1.482 1.503 1.527 1.548 1.563 

26 5.109 1.540 1.422 1.413 1.428 1.449 1.473 1.494 1.514 1.535 1.550 

27 4.445 1.529 1.412 1.405 1.420 1.438 1.463 1.483 1.504 1.522 1.540 

28 3.953 1.516 1.406 1.397 1.411 1.432 1.453 1.476 1.496 1.515 1.532 

29 3.748 1.504 1.398 1.391 1.402 1.425 1.444 1.465 1.484 1.503 1.521 

30 3.516 1.494 1.392 1.382 1.397 1.414 1.437 1.457 1.476 1.493 1.508 

31 3.270 1.480 1.384 1.377 1.389 1.408 1.427 1.446 1.47 1.484 1.500 

32 3.254 1.479 1.380 1.368 1.377 1.401 1.428 1.447 1.469 1.467 1.490 

33 3.133 1.464 1.375 1.365 1.381 1.395 1.412 1.438 1.454 1.473 1.484 

34 2.907 1.455 1.366 1.362 1.371 1.395 1.410 1.429 1.442 1.462 1.479 

35 2.859 1.451 1.360 1.347 1.366 1.387 1.406 1.411 1.432 1.453 1.465  
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Figure 7 presents the power curves of  estimated 2S control chart for various 
sample size. The mean of  power curve is detection power with various vary 
magnitude units for standard deviation. For small change in 2S  all curves are 
close to zero. As the magnitude of  change creasing, so does the power of  chart to 
detect it. The horizontal line drawn on this graph shows that is a 50% chance of  
missing a 1.777 times the size of  standard deviation when n  is 11, where as σ  
must change 1.873 times to have this same probability when n  is 9. 

Figure 6(a). The 50AS curves of  
the Weibull process with 1α =  
for different n values on the 
horizontal. 

Figure 6(b). The 50AS curves of  
the Weibull process with 3α = for 
different n values on the 
horizontal. 

Figure 6. 50AS  values with different α  values. 
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Figure 7. Power curves of  estimated 2S control chart for subgroup size 9, 10, and 
11 when ( ,α β ) = (1,7). 

4.5. Capability Adjustment for Weibull Process 

The index pkC  has been referred to as a yield-based index since it provides 
bound on the process on the process yield for a normality distribution process 
with a fixed value of  pkC .This index pkC  is defined in chapter 1. The proper use 
of  process capability, is based on several assumptions. One of  the most important 
assumption is that the process monitored is supposed to be stable and the output 
is approximately normal distribution.  

When the distribution of  a process characteristic is non-normal, PCIs 
calculated using existing method often lead to erroneous and misleading 
interpretation of  the process capability. Several approaches to the problems of  
PCIs for the non-normal populations have been suggested. Chen and Pearn (1997) 
consider come generalizations of  these basic capability indices to cover 
non-normal distribution. In the non-normal case, if  we are able to find a better 
distribution from the data, which provides a vary satisfactory fit (this can be tested 
by means of  goodness-of-fit tests), we can obtain more accurate measures of  the 
three quantiles ( 0.00135X , 0.05X , and 0.99865X ) under consideration, the 
corresponding puC  and plC  are defined as: 
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0.5

0.99865 0.5
pu

USL X
C

X X
−

=
−

, and 0.5

0.5 0.00135
pl

X LSL
C

X X
−

=
−

 

The index pkC  will then be calculated as the minimum of  puC  and plC , 
namely: 

    { }min ,pk pu plC C C=  

       0.5 0.5

0.99865 0.5 0.5 0.00135

min ,
USL X X LSL

X X X X

⎧ ⎫− −
= ⎨ ⎬− −⎩ ⎭

 

Acknowledging that a process will experience change in 0.99865 0.5X X−  or 

0.5 0.00135X X−  of  various magnitudes and knowing that not all of  these will be 
discovered, some allowance for them must be made when estimating outgoing 
quality so customers are not disappointed. Because change ranging in times from 
0 up to 50AS  are the likely to remain undetected, a conservative approach it to 
assume that every missed change it as large as 50AS .  

When utilizing dynamic pkC  to estimate process capability, we replace 

0.99865 0.5 0.5 0.00135 and X X X X− − with 50 0.99865 0.5 0.5 0.00135( ) and ( )AS X X AS X X− − in the 

pkC formula just mentioned above, respective. Both of  these adjustments are 
incorporated into the pkC  formula, now called the “dynamic” pkC  index, by 
making the following modifications: 

Dynamic 0.5 0.5

50 0.5 0.00135 50 0.99865 0.5

LSL USLmin{ , }
( ) ( )

− −
=

− −pk
X XC

AS X X AS X X
 

0.5 0.5

50 0.5 50 0.00135 50 0.99865 50 0.5

LSL USLmin{ , }− −
=

⋅ − ⋅ ⋅ − ⋅
X X

AS X AS X AS X AS X
 

By including the adjustment in this assessment for undetected variance 
change, the estimate of  capability decreases and the number nonconforming parts 
measured (calculated) will increase.  
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Chapter 5. Application 
Surface-mount technology (SMT) is a method for constructing electronic 

circuits in which the components (SMC, or Surface Mounted Components) are 

mounted directly onto the surface of  printed circuit boards (PCBs). Electronic 

devices so made are called surface-mount devices or SMDs. In the industry it has 

largely replaced the through-hole technology construction method of  fitting 

components with wire leads into holes in the circuit board. 

An SMT component is usually smaller than its through-hole counterpart 

because it has either smaller leads or no leads at all. It may have short pins or 

leads of  various styles, flat contacts, a matrix of  solder balls (BGAs), or 

terminations on the body of  the component. 

    The SMD resistors come into several possible case sizes. Each size is 

described as a 4 digits number. The first 2 digits indicate the length; the last 2 

indicate the width (in 0.01", or 10 mils units). Figure 9 display a view on common 

SMDs. For example, the three most popular sizes are “0603”, “0805”, and “1206”. 

That mean 1.6×0.3mm, 1.8×0.5mm, and 11.2×0.6mm. 

 

 
Figure 8. A view on common SMDs. 

 

    At SMT process, one of  the most important factors is the size of  the SMD. 
The SMD resistor “0603” as shown in figure 9, we let the LSL and USL of  the 
length for line segment “H” are 0.1mm and 0.5mm. This company utilize 

2S control chart to monitor the process. Generally, 2S charts are preferable to 
their more familiar counterparts, x R−  charts, when either 

1. The sample size n  is moderately large-say, 10n > or12. 

2. The sample size n  is variable. 

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Through-hole_technology
http://en.wikipedia.org/wiki/Lead_(electronics)
http://en.wikipedia.org/wiki/Ball_grid_array
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Figure 9. Dimension of  SMD. 

 

This company use n =10 to monitor the process. The collected sample data 
(a part of  historical data) are shown in Table 7. From Figure 10, we use Minitab 
program to conclude the data collected from the factory are not normal 
distributed. The data analysis results justify that the process is significantly away 
from the normal distribution. By the goodness-of-fit tests as shown in figure 11, 
the historical data indicates that the process pretty approximates to be distributed 
as Weibull distribution. The parameters α  and β  of  this Weibull process could 
be estimated from the historical data, giving α =ˆ 0.304  and β =ˆ 6.299  by MLE 
(maximum likelihood estimate) 
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n
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i
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n

β
βα

=

⎡ ⎤
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∑ ,                      (2) 
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ˆ 1
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i i n
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X
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β

ββ
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=

= −
∑

∑
∑

.                (3) 

    Using the maximum likelihood Equations (2) and (3), we can estimate β  
and α  parameter when data are from Weibull distribution with the samples. 
Then we use the bootstrap to compute confidence intervals for shape parameter. 
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Figure 10. Histogram plot of  the historical data. 
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Figure 11. Weibull probability plot of  the historical data. 

 
Table 7. The 100 observations are collected from the historical data. 

0.1795 0.2641 0.2689 0.3114 0.3333 0.2827 0.3735 0.2584 0.3206 0.2433 

0.2018 0.3194 0.259 0.3329 0.2876 0.2795 0.2866 0.1837 0.3523 0.3727 

0.3154 0.2916 0.3195 0.2989 0.2545 0.3281 0.2697 0.2405 0.3196 0.3498 

0.3191 0.2816 0.2758 0.2636 0.3037 0.2802 0.3008 0.3152 0.2396 0.2844 

0.3018 0.2514 0.3949 0.2572 0.3235 0.3631 0.3398 0.2659 0.2357 0.2052 

0.3122 0.3035 0.2447 0.3932 0.3259 0.31 0.3268 0.2792 0.3152 0.2646 

0.231 0.2544 0.2057 0.3325 0.3407 0.3198 0.2508 0.2998 0.2099 0.268 

0.2605 0.322 0.1443 0.3601 0.3039 0.2706 0.3125 0.3209 0.2177 0.1992 

0.2606 0.293 0.3395 0.2319 0.2274 0.2817 0.219 0.1726 0.3661 0.2686 

0.1785 0.2933 0.2706 0.1941 0.2392 0.2366 0.3512 0.3196 0.3254 0.2136 
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    We utilize this control chart to monitor the process, and collect another new 
dara are shown in Table 8. By the goodness-of-fit tests as shown in figure 12, the 
new data indicates that the process pretty approximates to be distributed as 
Weibull distribution. The parameters α  and β  of  this Weibull process could be 
estimated from the historical data, giving α =ˆ 0.3041 and β =ˆ 0.5677  by MLE.  
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Figure 12. Weibull probability plot of  the new data. 

 
Table 8. The 100 observations of  the new data. 

0.3114 0.2577 0.3851 0.2976 0.2509 0.2785 0.2032 0.2085 0.3123 0.2167 

0.2172 0.2125 0.3085 0.2436 0.3209 0.2847 0.297 0.159 0.3274 0.2532 

0.2908 0.2597 0.2209 0.2545 0.3907 0.272 0.2348 0.3345 0.2425 0.2379 

0.2448 0.3157 0.3358 0.1581 0.3013 0.2311 0.2884 0.3055 0.1951 0.3037 

0.1431 0.3473 0.2516 0.3034 0.2848 0.2636 0.3981 0.307 0.4135 0.2855 

0.3433 0.3175 0.2944 0.3351 0.1861 0.3503 0.2198 0.2506 0.3348 0.2551 

0.2448 0.3551 0.308 0.2301 0.1826 0.3463 0.2598 0.3072 0.3279 0.2644 

0.1497 0.2452 0.383 0.2449 0.3383 0.3208 0.3235 0.2054 0.3257 0.2866 

0.3644 0.3269 0.286 0.2341 0.2872 0.2883 0.2513 0.3035 0.347 0.3135 

0.2634 0.2871 0.33 0.3247 0.2325 0.3333 0.3359 0.1721 0.3007 0.2539 

 

Therefore, it is appropriate to use this approach and we can obtain more 
accurate measures of  three quantile: =0.00135 0.102105X , =0.5 0.282017X , and 

=0.99865 0.411047X under consideration. Then “dynamic” pkC index can be 
calculate as follows: 
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0.5 0.5

50 0.99865 0.5 50 0.5 0.00135

USL LSLdynamic min ,
( ) ( )

0.5 281962 0.281962 0.1                    min ,
1.779 (0.411047 0.281962) 1.779 (0.281962 0.102105)

                    

pk
X XC

AS X X AS X X
⎧ ⎫− −

= ⎨ ⎬− −⎩ ⎭
⎧ ⎫− −

= ⎨ ⎬× − × −⎩ ⎭
= { }min 0.949468,0.5687

                    0.5687,=

 

with 50AS =1.779 for n=10 from Table 6. Compared it to the value of  the 
following index: 

{ }

0.5 0.5

0.99865 0.5 0.5 0.00135

USL LSLmin ,

0.5 0.281962 0.281962 0.1     min ,
0.411047 0.281962 0.281962 0.102105

     min 1.6891,1.0117
     1.0117,

pk
X XC

X X X X
⎧ ⎫− −

= ⎨ ⎬− −⎩ ⎭
− −⎧ ⎫= ⎨ ⎬

− −⎩ ⎭
=

=

 

That we do not consider the change in σ , we can find that the value of  
dynamic pkC much smaller. By increasing n , change in σ have a higher 
probability to be detected. For example, if  n =15, the 50AS would be 1.613 for 
Weibull distribution ( 0.3α =  and β = 6 ) then 

0.5 0.5

50 0.99865 0.5 50 0.5 0.00135

USL LSLdynamic min ,
( ) ( )

0.5 0.281962 0.281962 0.1                    min ,
1.613 (0.411047 0.281962) 1.613 (0.281962 0.102105)

                   

pk
X XC

AS X X AS X X
⎧ ⎫− −

= ⎨ ⎬− −⎩ ⎭
⎧ ⎫− −

= ⎨ ⎬× − × −⎩ ⎭
{ } min 1.04718,0.6272

                    0.6272,
=

=

 

Increasing n  from 12 to 15 increases the dynamic pkC index from 0.5687 to 
0.6272. 
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Chapter 6. Conclusion 

This paper has considered the problem for adjusting estimates of  process 
capability by including a variance change when data is from non-normal 
distribution. In the Bothe’ studies, statistically derived adjustments are proposed 
under the data assumed to be approximately normally distributed. But the case of  
non-normal processes occurs frequently in practice. We also provide tables for the 
engineers to use for their in-plant applications. However, this “Dynamic” pkC  
index assume μ  remain stable when σ  change. If  μ  and σ  subjected to 
undetected increases and decreases? Further studies are need to determine how 
those change would affect estimates of  outgoing quality. 
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Appendix A. AS50 values for several subgroup sizes and 
various shape parameter. 

Table 9. 50AS  values for n=8(1)35 and β =12(1)21 values. 

50AS  Weibull distribution(1,β )   

n (1,12) (1,13) (1,14) (1,15) (1,16) (1,17) (1,18) (1,19) (1,20) (1,21) N(0,1) 

8 2.154 2.167 2.198 2.231 2.255 2.267 2.285 2.309 2.319 2.334 1.928 

9 2.062 2.093 2.110 2.140 2.156 2.176 2.206 2.219 2.229 2.243 1.858 

10 1.998 2.021 2.051 2.063 2.082 2.104 2.122 2.137 2.152 2.171 1.802 

11 1.941 1.957 1.988 2.008 2.029 2.045 2.057 2.075 2.090 2.096 1.755 

12 1.887 1.914 1.936 1.951 1.973 1.983 2.004 2.017 2.032 2.052 1.716 

13 1.848 1.869 1.887 1.906 1.926 1.941 1.954 1.970 1.983 1.995 1.682 

14 1.807 1.826 1.852 1.873 1.885 1.899 1.916 1.933 1.937 1.959 1.652 

15 1.777 1.801 1.820 1.834 1.852 1.863 1.882 1.893 1.904 1.910 1.626 

16 1.752 1.771 1.791 1.805 1.822 1.832 1.842 1.855 1.867 1.880 1.602 

17 1.728 1.741 1.762 1.777 1.791 1.801 1.812 1.826 1.839 1.849 1.581 

18 1.699 1.720 1.736 1.754 1.770 1.773 1.789 1.803 1.810 1.816 1.562 

19 1.677 1.699 1.711 1.726 1.741 1.754 1.765 1.769 1.784 1.790 1.545 

20 1.656 1.678 1.688 1.705 1.719 1.729 1.744 1.756 1.763 1.769 1.529 

21 1.641 1.656 1.671 1.688 1.695 1.715 1.722 1.738 1.744 1.749 1.514 

22 1.625 1.639 1.652 1.670 1.682 1.693 1.698 1.715 1.721 1.728 1.501 

23 1.610 1.622 1.639 1.648 1.659 1.678 1.681 1.692 1.705 1.712 1.488 

24 1.592 1.610 1.623 1.637 1.644 1.661 1.669 1.680 1.689 1.693 1.477 

25 1.578 1.595 1.608 1.622 1.631 1.644 1.648 1.660 1.672 1.680 1.466 

26 1.564 1.582 1.592 1.605 1.619 1.625 1.634 1.643 1.656 1.663 1.456 

27 1.557 1.567 1.580 1.595 1.607 1.617 1.626 1.631 1.638 1.650 1.446 

28 1.547 1.555 1.572 1.580 1.594 1.604 1.611 1.619 1.625 1.633 1.438 

29 1.535 1.549 1.558 1.570 1.582 1.592 1.598 1.607 1.612 1.623 1.429 

30 1.521 1.534 1.551 1.561 1.571 1.578 1.585 1.594 1.601 1.608 1.421 

31 1.521 1.526 1.545 1.544 1.556 1.571 1.573 1.583 1.590 1.600 1.414 

32 1.510 1.520 1.528 1.542 1.545 1.560 1.568 1.566 1.571 1.599 1.406 

33 1.496 1.507 1.521 1.524 1.539 1.543 1.546 1.564 1.575 1.566 1.400 

34 1.488 1.504 1.506 1.522 1.532 1.540 1.548 1.551 1.557 1.572 1.393 

35 1.481 1.492 1.507 1.513 1.537 1.528 1.523 1.537 1.552 1.558 1.387 
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Table 10. 50AS  values for n=8(1)35 and β =22(1)31 values. 

50AS  Weibull distribution(1,β )   

n (1,22) (1,23) (1,24) (1,25) (1,26) (1,27) (1,28) (1,29) (1,30) (1,31) N(0,1) 

8 2.346 2.373 2.375 2.390 2.388 2.413 2.423 2.436 2.435 2.438 1.928 

9 2.253 2.277 2.277 2.284 2.298 2.313 2.313 2.331 2.343 2.345 1.858 

10 1.998 2.021 2.051 2.063 2.082 2.104 2.122 2.137 2.152 2.171 1.802 

11 1.941 1.957 1.988 2.008 2.029 2.045 2.057 2.075 2.090 2.096 1.755 

12 1.887 1.914 1.936 1.951 1.973 1.983 2.004 2.017 2.032 2.052 1.716 

13 1.848 1.869 1.887 1.906 1.926 1.941 1.954 1.970 1.983 1.995 1.682 

14 1.807 1.826 1.852 1.873 1.885 1.899 1.916 1.933 1.937 1.959 1.652 

15 1.777 1.801 1.820 1.834 1.852 1.863 1.882 1.893 1.904 1.910 1.626 

16 1.752 1.771 1.791 1.805 1.822 1.832 1.842 1.855 1.867 1.880 1.602 

17 1.728 1.741 1.762 1.777 1.791 1.801 1.812 1.826 1.839 1.849 1.581 

18 1.699 1.720 1.736 1.754 1.770 1.773 1.789 1.803 1.810 1.816 1.562 

19 1.677 1.699 1.711 1.726 1.741 1.754 1.765 1.769 1.784 1.790 1.545 

20 1.656 1.678 1.688 1.705 1.719 1.729 1.744 1.756 1.763 1.769 1.529 

21 1.641 1.656 1.671 1.688 1.695 1.715 1.722 1.738 1.744 1.749 1.514 

22 1.625 1.639 1.652 1.670 1.682 1.693 1.698 1.715 1.721 1.728 1.501 

23 1.610 1.622 1.639 1.648 1.659 1.678 1.681 1.692 1.705 1.712 1.488 

24 1.592 1.610 1.623 1.637 1.644 1.661 1.669 1.680 1.689 1.693 1.477 

25 1.578 1.595 1.608 1.622 1.631 1.644 1.648 1.660 1.672 1.680 1.466 

26 1.564 1.582 1.592 1.605 1.619 1.625 1.634 1.643 1.656 1.663 1.456 

27 1.557 1.567 1.580 1.595 1.607 1.617 1.626 1.631 1.638 1.650 1.446 

28 1.547 1.555 1.572 1.580 1.594 1.604 1.611 1.619 1.625 1.633 1.438 

29 1.535 1.549 1.558 1.570 1.582 1.592 1.598 1.607 1.612 1.623 1.429 

30 1.521 1.534 1.551 1.561 1.571 1.578 1.585 1.594 1.601 1.608 1.421 

31 1.615 1.605 1.618 1.612 1.619 1.641 1.625 1.612 1.661 1.651 1.414 

32 1.583 1.593 1.602 1.611 1.617 1.624 1.620 1.611 1.638 1.624 1.406 

33 1.571 1.595 1.602 1.592 1.594 1.604 1.613 1.592 1.620 1.612 1.400 

34 1.569 1.571 1.590 1.584 1.589 1.595 1.611 1.584 1.610 1.611 1.393 

35 1.561 1.559 1.579 1.575 1.582 1.583 1.598 1.575 1.601 1.610 1.387 
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Appendix B. The Average Run Length of Weibull 
Distributions. 
 

Table 11. Average run length of  Weibull with 1.5 times standard deviation 

change. 

ARL Weibull(1,β ) Normal

n   1 2 3 3.6 4 5 6 7 8 9 10 N(0,1) 

7 20.964 7.457 5.467 5.147 5.671 6.186 7.251 8.622 9.547 11.531 12.376 7.222 

8 19.033 6.660 4.664 4.616 4.757 5.211 6.068 7.179 8.497 9.633 10.723 6.175 

9 17.762 6.044 4.158 4.033 4.200 4.612 5.450 6.115 7.350 7.700 8.971 5.402 

10 15.941 5.191 3.905 3.582 3.694 4.084 4.446 5.132 5.959 6.854 7.792 4.768 

11 15.340 4.683 3.457 3.240 3.359 3.707 4.209 5.050 5.393 6.096 6.671 4.272 

12 14.51 4.475 3.179 3.002 3.06 3.392 3.775 4.381 4.592 5.414 5.849 3.840 

13 14.055 4.166 2.912 2.826 2.827 3.025 3.436 3.937 4.285 4.78 5.552 3.542 

14 13.300 3.826 2.774 2.627 2.648 2.789 3.212 3.674 3.866 4.557 4.854 3.222 

5 12.781 3.618 2.527 2.482 2.448 2.720 2.847 3.287 3.712 4.136 4.732 2.992 

16 12.021 3.421 2.421 2.296 2.288 2.514 2.801 2.914 3.450 3.835 4.113 2.781 

17 11.639 3.283 2.278 2.113 2.134 2.193 2.524 2.908 3.062 3.273 3.835 2.594 

18 11.312 3.033 2.154 1.988 2.070 2.178 2.388 2.695 2.935 3.270 3.540 2.450 

19 11.018 2.897 2.053 1.983 1.927 2.020 2.234 2.442 2.882 3.003 3.497 2.328 

20 10.416 2.749 1.983 1.851 1.848 1.986 2.135 2.313 2.576 2.808 3.173 2.203 

21 9.966 2.651 1.875 1.782 1.776 1.895 1.981 2.284 2.365 2.813 2.964 2.094 

22 9.838 2.545 1.784 1.731 1.714 1.815 1.929 2.127 2.314 2.618 2.802 2.000 

23 9.532 2.340 1.738 1.69 1.658 1.746 1.859 2.028 2.299 2.456 2.705 1.924 

24 9.231 2.346 1.679 1.611 1.612 1.647 1.772 1.986 2.209 2.194 2.500 1.842 

25 8.797 2.348 1.645 1.564 1.568 1.606 1.658 1.876 2.066 2.156 2.380 1.777 

26 8.365 2.184 1.57 1.498 1.528 1.538 1.646 1.860 1.962 2.064 2.255 1.711 

27 8.103 2.152 1.528 1.478 1.480 1.496 1.624 1.719 1.923 1.998 2.174 1.668 

28 7.983 2.089 1.514 1.448 1.446 1.445 1.575 1.664 1.759 1.942 2.039 1.619 

29 7.508 2.038 1.480 1.411 1.387 1.430 1.504 1.632 1.746 1.827 1.980 1.560 

30 7.432 2.007 1.449 1.359 1.399 1.379 1.464 1.599 1.686 1.812 1.908 1.526 

31 7.268 1.898 1.406 1.349 1.350 1.368 1.418 1.524 1.651 1.782 1.907 1.494 

32 7.142 1.886 1.401 1.317 1.301 1.346 1.408 1.490 1.628 1.710 1.846 1.451 

33 6.960 1.819 1.363 1.308 1.275 1.323 1.390 1.487 1.556 1.653 1.797 1.419 

34 6.765 1.802 1.335 1.272 1.267 1.305 1.35 1.448 1.510 1.614 1.683 1.390 

35 6.507 1.744 1.316 1.254 1.249 1.262 1.349 1.422 1.470 1.555 1.639 1.366 
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Table 12. Average run length of  Weibull with 2 times standard deviation change. 

ARL Weibull(1,β ) Normal

n   1 2 3 3.6 4 5 6 7 8 9 10 N(0,1) 

7 8.388 3.027 2.101 1.952 1.891 1.883 1.948 2.075 2.246 2.36 2.564 2.046 

8 7.722 2.65 1.884 1.766 1.711 1.688 1.739 1.868 1.949 2.114 2.184 1.814 

9 7.179 2.466 1.736 1.607 1.545 1.523 1.578 1.652 1.704 1.814 1.947 1.635 

10 6.722 2.299 1.614 1.497 1.433 1.434 1.481 1.543 1.589 1.705 1.800 1.510 

11 6.629 2.103 1.512 1.394 1.380 1.361 1.375 1.427 1.473 1.567 1.638 1.416 

12 6.360 1.993 1.422 1.323 1.297 1.277 1.297 1.341 1.380 1.455 1.514 1.335 

13 5.543 1.889 1.377 1.282 1.246 1.216 1.244 1.262 1.339 1.398 1.445 1.276 

14 5.423 1.780 1.304 1.230 1.205 1.188 1.195 1.219 1.264 1.321 1.349 1.142 

5 5.333 1.685 1.265 1.184 1.164 1.146 1.161 1.196 1.223 1.256 1.286 1.187 

16 5.128 1.643 1.221 1.155 1.132 1.119 1.136 1.157 1.181 1.213 1.245 1.155 

17 4.853 1.569 1.199 1.139 1.110 1.098 1.107 1.121 1.181 1.165 1.208 1.126 

18 4.638 1.542 1.170 1.113 1.090 1.078 1.088 1.106 1.126 1.139 1.177 1.105 

19 4.543 1.449 1.146 1.093 1.079 1.067 1.073 1.085 1.094 1.12 1.140 1.087 

20 4.480 1.417 1.125 1.074 1.070 1.053 1.059 1.069 1.086 1.099 1.118 1.072 

21 4.236 1.397 1.112 1.069 1.053 1.044 1.049 1.056 1.066 1.083 1.096 1.059 

22 4.024 1.360 1.096 1.058 1.044 1.037 1.037 1.048 1.055 1.066 1.083 1.049 

23 3.919 1.319 1.078 1.047 1.039 1.032 1.031 1.041 1.045 1.060 1.070 1.041 

24 3.865 1.300 1.072 1.041 1.031 1.023 1.027 1.030 1.037 1.046 1.06 1.034 

25 3.576 1.274 1.061 1.033 1.027 1.02 1.021 1.024 1.03 1.037 1.048 1.028 

26 3.703 1.255 1.056 1.029 1.021 1.017 1.017 1.021 1.026 1.032 1.042 1.022 

27 3.528 1.232 1.045 1.024 1.019 1.013 1.015 1.016 1.021 1.028 1.036 1.018 

28 3.403 1.208 1.041 1.021 1.014 1.011 1.012 1.014 1.018 1.024 1.031 1.015 

29 3.277 1.199 1.034 1.017 1.012 1.008 1.008 1.011 1.014 1.019 1.025 1.013 

30 3.111 1.181 1.028 1.015 1.010 1.006 1.006 1.009 1.012 1.015 1.021 1.011 

31 3.097 1.171 1.027 1.012 1.009 1.005 1.005 1.007 1.010 1.014 1.016 1.008 

32 3.050 1.156 1.022 1.010 1.007 1.004 1.004 1.006 1.008 1.011 1.013 1.007 

33 2.963 1.145 1.021 1.009 1.005 1.003 1.004 1.005 1.006 1.008 1.011 1.006 

34 2.854 1.132 1.017 1.007 1.004 1.003 1.003 1.003 1.005 1.006 1.009 1.004 

35 2.781 1.129 1.015 1.006 1.004 1.002 1.002 1.003 1.004 1.006 1.007 1.004 
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Table 13. Average run length of  Weibull with 2.5 times standard deviation 

change. 

ARL Weibull(1,β ) Normal

n   1 2 3 3.6 4 5 6 7 8 9 10 N(0,1) 

7 6.064 2.286 1.597 1.458 1.403 1.339 1.327 1.34 1.384 1.44 1.485 1.338 

8 5.551 2.085 1.466 1.35 1.313 1.247 1.231 1.253 1.264 1.299 1.333 1.239 

9 5.067 1.926 1.384 1.273 1.224 1.184 1.162 1.174 1.194 1.228 1.24 1.173 

10 4.786 1.798 1.307 1.211 1.172 1.133 1.125 1.126 1.145 1.157 1.175 1.126 

11 4.56 1.674 1.259 1.169 1.127 1.094 1.088 1.098 1.105 1.115 1.134 1.092 

12 4.343 1.618 1.201 1.129 1.101 1.072 1.062 1.069 1.073 1.081 1.103 1.066 

13 4.171 1.525 1.173 1.103 1.08 1.051 1.047 1.048 1.054 1.064 1.077 1.047 

14 3.896 1.467 1.137 1.083 1.065 1.039 1.033 1.035 1.038 1.047 1.052 1.035 

5 3.895 1.413 1.115 1.069 1.049 1.03 1.025 1.027 1.027 1.034 1.039 1.026 

16 3.616 1.373 1.093 1.053 1.036 1.022 1.017 1.019 1.02 1.025 1.03 1.019 

17 3.545 1.318 1.08 1.042 1.03 1.018 1.012 1.012 1.015 1.016 1.019 1.013 

18 3.434 1.302 1.068 1.033 1.022 1.012 1.01 1.01 1.01 1.013 1.015 1.01 

19 3.319 1.267 1.057 1.025 1.017 1.008 1.007 1.008 1.007 1.008 1.012 1.007 

20 3.175 1.24 1.045 1.02 1.013 1.007 1.004 1.005 1.006 1.007 1.008 1.005 

21 3.044 1.215 1.038 1.016 1.01 1.004 1.003 1.003 1.004 1.005 1.006 1.003 

22 3.041 1.196 1.033 1.013 1.007 1.003 1.003 1.002 1.002 1.003 1.004 1.003 

23 2.921 1.174 1.026 1.01 1.006 1.002 1.002 1.002 1.002 1.002 1.003 1.002 

24 2.765 1.16 1.021 1.009 1.005 1.002 1.001 1.001 1.001 1.002 1.002 1.001 

25 2.72 1.146 1.019 1.006 1.003 1.002 1.001 1.001 1.001 1.001 1.001 1.001 

26 2.662 1.135 1.016 1.005 1.003 1.001 1.001 1.001 1.001 1.001 1.001 1.001 

27 2.6 1.119 1.012 1.004 1.002 1.001 1 1 1 1.001 1.001 1 

28 2.521 1.108 1.011 1.003 1.001 1 1 1 1 1 1 1 

29 2.446 1.103 1.008 1.002 1.001 1 1 1 1 1 1 1 

30 2.4 1.087 1.008 1.002 1.001 1 1 1 1 1 1 1 

31 2.393 1.08 1.006 1.001 1.001 1 1 1 1 1 1 1 

32 2.289 1.072 1.005 1.001 1 1 1 1 1 1 1 1 

33 2.279 1.067 1.004 1.001 1 1 1 1 1 1 1 1 

34 2.223 1.059 1.004 1.001 1 1 1 1 1 1 1 1 

35 2.191 1.055 1.003 1.001 1 1 1 1 1 1 1 1 
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Table 14. Average run length of  Weibull with 3 times standard deviation change. 

ARL Weibull(1,β ) Normal

n   1 2 3 3.6 4 5 6 7 8 9 10 N(0,1) 

7 4.773 2.081 1.449 1.315 1.267 1.192 1.155 1.157 1.161 1.168 1.178 1.139 

8 4.494 1.896 1.352 1.24 1.193 1.131 1.109 1.105 1.1 1.115 1.122 1.09 

9 4.303 1.747 1.278 1.18 1.143 1.091 1.072 1.066 1.07 1.073 1.079 1.059 

10 3.993 1.642 1.224 1.137 1.107 1.062 1.047 1.042 1.044 1.045 1.051 1.037 

11 3.825 1.563 1.18 1.105 1.078 1.041 1.032 1.029 1.029 1.03 1.033 1.024 

12 3.739 1.495 1.145 1.081 1.058 1.031 1.022 1.019 1.019 1.02 1.021 1.016 

13 3.515 1.422 1.121 1.064 1.043 1.022 1.014 1.013 1.012 1.013 1.014 1.009 

14 3.411 1.377 1.097 1.049 1.034 1.014 1.01 1.007 1.008 1.008 1.009 1.007 

5 3.334 1.334 1.084 1.038 1.025 1.012 1.006 1.005 1.005 1.005 1.006 1.004 

16 3.125 1.301 1.065 1.029 1.018 1.008 1.004 1.003 1.003 1.003 1.004 1.002 

17 2.996 1.265 1.054 1.023 1.014 1.005 1.003 1.002 1.002 1.002 1.002 1.002 

18 2.933 1.239 1.046 1.017 1.01 1.003 1.002 1.001 1.001 1.001 1.002 1.001 

19 2.836 1.216 1.035 1.014 1.007 1.002 1.001 1.001 1.001 1.001 1.001 1.001 

20 2.735 1.192 1.03 1.011 1.006 1.002 1.001 1.001 1.001 1 1.001 1 

21 2.661 1.173 1.025 1.008 1.004 1.001 1 1 1 1 1 1 

22 2.578 1.153 1.02 1.006 1.003 1.001 1 1 1 1 1 1 

23 2.507 1.138 1.016 1.005 1.002 1 1 1 1 1 1 1 

24 2.479 1.124 1.014 1.004 1.002 1 1 1 1 1 1 1 

25 2.419 1.115 1.011 1.003 1.001 1 1 1 1 1 1 1 

26 2.307 1.105 1.009 1.002 1.001 1 1 1 1 1 1 1 

27 2.344 1.09 1.007 1.002 1.001 1 1 1 1 1 1 1 

28 2.231 1.08 1.006 1.001 1.001 1 1 1 1 1 1 1 

29 2.181 1.073 1.005 1.001 1.001 1 1 1 1 1 1 1 

30 2.164 1.07 1.004 1.001 1 1 1 1 1 1 1 1 

31 2.104 1.061 1.003 1.001 1 1 1 1 1 1 1 1 

32 2.078 1.054 1.003 1 1 1 1 1 1 1 1 1 

33 2.025 1.05 1.002 1 1 1 1 1 1 1 1 1 

34 2.016 1.046 1.002 1 1 1 1 1 1 1 1 1 

35 1.971 1.04 1.001 1 1 1 1 1 1 1 1 1 
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Table 15. Average run length of  Weibull with 3.5 times standard deviation 

change. 

ARL Weibull(1,β ) Normal

n   1 2 3 3.6 4 5 6 7 8 9 10 N(0,1) 

7 4.198 1.98 1.406 1.274 1.216 1.141 1.109 1.091 1.085 1.082 1.083 1.064 

8 3.941 1.813 1.318 1.199 1.153 1.094 1.067 1.053 1.05 1.053 1.051 1.037 

9 3.722 1.679 1.255 1.15 1.113 1.061 1.041 1.034 1.029 1.029 1.031 1.022 

10 3.605 1.589 1.202 1.116 1.082 1.042 1.026 1.019 1.018 1.017 1.017 1.013 

11 3.442 1.52 1.159 1.087 1.064 1.028 1.017 1.013 1.011 1.01 1.011 1.007 

12 3.263 1.452 1.131 1.067 1.044 1.02 1.01 1.007 1.006 1.006 1.006 1.004 

13 3.153 1.398 1.102 1.053 1.035 1.013 1.007 1.004 1.004 1.003 1.003 1.002 

14 3.040 1.349 1.088 1.039 1.026 1.009 1.004 1.003 1.002 1.002 1.002 1.001 

5 2.962 1.313 1.068 1.031 1.019 1.006 1.003 1.002 1.001 1.001 1.001 1.001 

16 2.855 1.275 1.056 1.024 1.014 1.004 1.002 1.001 1.001 1.001 1.001 1.001 

17 2.791 1.248 1.048 1.019 1.01 1.003 1.001 1 1 1 1 1 

18 2.674 1.214 1.04 1.015 1.008 1.002 1.001 1 1 1 1 1 

19 2.578 1.194 1.032 1.011 1.005 1.001 1 1 1 1 1 1 

20 2.508 1.176 1.025 1.009 1.004 1.001 1 1 1 1 1 1 

21 2.459 1.156 1.021 1.006 1.003 1.001 1 1 1 1 1 1 

22 2.39 1.147 1.019 1.005 1.002 1 1 1 1 1 1 1 

23 2.37 1.127 1.015 1.004 1.002 1 1 1 1 1 1 1 

24 2.247 1.114 1.012 1.003 1.001 1 1 1 1 1 1 1 

25 2.249 1.105 1.01 1.003 1.001 1 1 1 1 1 1 1 

26 2.175 1.092 1.008 1.002 1.001 1 1 1 1 1 1 1 

27 2.129 1.086 1.007 1.001 1 1 1 1 1 1 1 1 

28 2.089 1.075 1.006 1.001 1 1 1 1 1 1 1 1 

29 2.035 1.07 1.005 1.001 1 1 1 1 1 1 1 1 

30 2.012 1.062 1.003 1.001 1 1 1 1 1 1 1 1 

31 1.994 1.058 1.003 1.001 1 1 1 1 1 1 1 1 

32 1.938 1.052 1.003 1 1 1 1 1 1 1 1 1 

33 1.911 1.045 1.002 1 1 1 1 1 1 1 1 1 

34 1.868 1.041 1.002 1 1 1 1 1 1 1 1 1 

35 1.874 1.038 1.001 1 1 1 1 1 1 1 1 1 

 
 


