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考慮 Gamma 製程變異數發生變動下之製程能力調整

研究生：古品倫 指導教授：彭文理 博士

國立交通大學工業工程與管理學系碩士班

摘要

製程能力指標經常被用來衡量製程製造產品符合規格能力，不僅提供品質保

證的工具，也是提供品質改善方面的一個方針。自從 Motorola 公司在 1980 年代

提出 6 倍標準差觀念後，許多品質工程師質疑為什麼在計算製程能力之前要增加

1.5 倍標準差的調整。Bothe (2002) 針對此問題，用統計的方法解釋了原因，且

說明調整量是按照抽樣數來決定。在計算製程能力指標之前，需要先假設製程為

穩態的，也就是在生產過程中平均數和標準差不會改變，但是在實務上製程為動

態。當產品品質特性為非常態且變異數未知時，對我們估算製程能力會有什麼影

響？本研究將針對產品品質特性符合 Gamma分配時，其製程變異數改變時之製

程能力調整方法。針對不同的 Gamma參數來計算不同的檢定力，在基於 Bothe

的假設提出修正量。在本研究的最後，我們將利用一個實例來說明當製程品質特

性服從 Gamma 分配並考慮製程變異數發生變動時，應如何調整製程能力指標

pkC 。

關鍵字：Gamma分配、 2S 管制圖、製程變動、製程能力指標
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Capability Adjustment for Gamma Processes with Variance Change
Consideration

Student: Pin-Lun Ku Advisor: Dr. W. L. Pearn

Department of Industrial Engineering and Management
National Chiao Tung University

Abstract

Process capability indices (PCIs) have been proposed in the manufacturing
industry to provide numerical measures on process capability, which are effective
tools for quality assurance and guidance for process improvement. Motorola, Inc.
introduced its Six Sigma quality initiative to the world in the 1980s. Some quality
practitioners questioned why Six Sigma advocates claim it is necessary to add a
1.5 shift to the average when estimating process capability. Bothe (2002)
provided a statistical reason for including such a shift in the process average that is
based on the chart’s subgroup size. When calculating the process capability, we
have assumed the process is stable (the process mean and variation do not change),
but in practice, the process is dynamic. What is the effect on the capability
estimates when the process output has a non-normal distribution with process
variance change is remained unknown? This research investigates process
capability adjustments when process variance change from Gamma distribution,
and compares the detection power of difference parameters and subgroup size
from Gamma distributions under Bothe’advises. Finally, we add the adjustment
to capability index pkC of non-normal processes. For illustration purpose, an
application example is presented.

Keywords: Gamma distribution, 2S control chart, Dynamic pkC , Process
capability index.
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Chapter 1. Introduction

1.1. Research Background and Motivation

Process capability indices (PCIs) are used widely throughout the world to
give a quick indication of process capability in a format that is easy to use and
understand. During the last decade, numerous process capability indices,
including pC , pkC , pmC and pmkC ( Kane (1986), Chan et al. (1988), Pearn et al.
(1992)), have been proposed in manufacturing industries to provide numerical
measures on process performance. Using process capability indices to express
process capability has made the setting and communicating of quality goals much
simpler, and their use is expected to continue to increase.

Based on analyzing the PCIs, a production department can trace and
improve a poor process so that the quality level can be enhanced and the
requirements of the customers can be satisfied. These PCIs have been defined
explicitly as

 22
, min , , ,

6 3 3 6
p pk pm

USL LSL USL LSL USL LSL
C C C

T

 
    

       
   

   2 22 2
min , ,

3 3
pmk

USL LSL
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 

   

     
     

where USL is the upper specification limit, LSL is the lower specification limit,
 is the process mean,  is the process standard deviation, and T is the target
value.

The first process capability index pC considers the overall process
variability relative to the manufacturing tolerance, reflecting product quality
consistency. Due to the simplicity of the index, pC cannot reflect the tendency
of process centering and thus gives no indication of the actual process
performance. For this reason a more refined index pkC was developed. The index

pkC considers process variation and the location of process mean which has been
viewed as a yield-based index. But this index fails to measure effectively the effect
of process centering on process capability. In fact, it makes no clear distinction
between on-target and off-target processes. More importantly, pkC gives no
indication of the direction in which the process is off-target. The pmC index is
based on the idea of the squared error loss, concentrating on measuring the ability
of the process to cluster around the target. The pmC index involves the variation
of production items with respect to the target value and the specification limits
that are preset in the factory. The index pmkC has been constructed by
appropriately combining the yield-based index pkC and the loss-based index pmC ,
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accounting for the process yield as well as the process loss. This index alerts the
user when the process variance increases and the process mean deviates form its
target value.

1.2. Research Purpose and Objectives

Ever since Motorola, Inc. introduced its Six-Sigma quality initiative to the
world in the 1980s, quality practitioners have questioned why the followers of this
initiative have added a 1.5 shift to the process mean when estimating process
capability. When asked the reason for such an adjustment, six-sigma advocates
claim it is necessary, but offer only personal experiences and three dated empirical
studies as justifications (see Bender (1975), Evans (1975), Gilson (1951)). By
examining the sensitivity of control charts to detect changes of various
magnitudes, Bothe (2002) provided a statistically based reason to this issue. In his
study, Bothe assumed that the process data is approximately normally distributed.
However, non-normal processes occur frequently in practice. If the process
capability indices based on the normal assumption concerning the data are used
with non-normal observations, the value of the process capability indices may be
incorrect and quite likely misrepresent the actual product quality.

The well-known and usual Shewhart 2S control charts assume that the
observed process data come from a near-normal distribution. However, when the
process distribution is unknown or non-normal, the estimator of the parameters
for the sampling distribution may not be available theoretically. We use method of
moments estimator (MME) to estimate the unknown parameters. Then, we look
for 2S control charts under different distributions and use simulation to get
UCL (Upper Control Limits) and LCL (Lower Control Limits).

In this thesis, we show that the detection power performance of 2S control
chart under the Bothe adjustment when the process in control is very sensitive to
the assumption of normality. We provide standard deviation change adjustment
based on various subgroup sizes and distribution parameters to calculate the
estimator of pkC when data is from Gamma distribution.

Existing literatures focused on treating the problem of capability adjustment
with process mean shift but assuming the process variance remained constant.
Very few authors have studied the problem of capability adjustment with process
variance change. This motivates us to study the issue of capability adjustment for
Gamma processes with variance change.
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1.3. Research Organization

In this thesis, we introduce the research motivation and purpose in Chapter 1.
Secondly, a clear introduction of Bothe’study and adjustment reason are included
and adjustment for Gamma processes in Chapter 2. Thirdly, we introduce the
Gamma distribution and the statistical properties. In Chapter 4, we use simulation
method to find UCL and LCL . Further, we calculate the detection power for
various Gamma distributions. We propose the adjustment for standard deviation
change under Gamma processes, calling 50AS , and add the adjustment to pkC
named “dynamic” pkC . For illustrative purpose, an application is presented in
Chapter 5. Finally, we give some conclusions in Chapter 6.
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Chapter 2. Literature Review

The process capability adjustment with mean shift for normal and
non-normal process had been researched. In this chapter, we will review these
papers about adjustments for normal and Gamma processes with mean shift.

2.1. Process Capability Adjustment for Normal Process with Mean Shift

Bothe (2002) advanced a statistical reason why to add a 1.5 shift to the
average. Assuming the process approximately normal distribution, control charts
can not credibly detect every small movement in process average. So, it is difficult
to detect small movements in process. Table 1 presents the probabilities of
detecting changes in  shift=0.5 (0.5) 3 versus subgroup size with n =3, 4
and 5. When  has a small movement and the detection power of Shewhart X
control chart is too small to discover. One way to improve the odds of catching
small movements in  is to increase the subgroup size. In the real world, it is
hard to increasing the subgroup size, because it will increase cost. Then, small
mean movement affects the PCIs accuracy. However, the probability of
nonconformance will increase obviously. For example, when pkC is 1.33, the
probability of nonconformance is 64ppm. If occur 1 shift that will be difficulty
detected by control chart, the probability of nonconformance becomes 1350ppm.
This amount is almost twenty times more than 64ppm expected by customers
from a process having a pkC reported to be 1.33.

When subgroup size is four and mean shift is 1.5, the detection power will
be 0.5. Bothe (2002) considered providing the same detecting power in order to
define the several adjustments with different subgroup sizes. He computed many
detection powers for different subgroup sizes and showed in Table 1. Table 2 lists
shift sizes that have 50 percent chance of remaining undetected, called 50S values,
for subgroup sizes 1 through 6. Mean shift small than 50S  are the ones likely to
remain undetected (larger moves should be caught by the chart), a conservative
approach is to assume that every missed shift is as large as 50S . And Bothe
advocated dynamic pkC be defined as

50 50

50 50

50

50

Dynamic min ,
3 3

min ,
3 3 3 3

min ,
3 3 3

.
3
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Table 1. Probabilities of detecting changes in  versus subgroup size.

Subgroup Size
Mean shift size

3 4 5
0.5 0.0164 0.0228 0.0299
1.0 0.1024 0.1587 0.2225
1.5 0.3439 0.5000 0.6384

2.0 0.6787 0.8413 0.9295
2.5 0.9083 0.9772 0.9952

3.0 0.9860 0.9986 0.9999

Table 2. 50S values for several subgroup sizes.

Subgroup Size 50S Value

1 3.00

2 2.12
3 1.73

4 1.50
5 1.34

6 1.22

2.2. Process Capability Adjustment for Gamma Process with Mean Shift

When using the index pkC , the most important thing is that the process must
be stable and the process characteristic is approximately normally distributed. In
the recent years, several problems of PCIs for non-normal populations have been
proposed (see e.g. Pal (2005), Ding (2004), Pearn and Chen (1997), Kotz and
Lovelace (1998), Somerville and Montgomery (1996), Kocherlakota et al. (1992)),
because when the distribution of process is non-normal, PCIs calculated using
conventional methods could often lead to erroneous and misleading interpretation
of process performance. Several authors used data transformation techniques to
solve this problem, and some replaced the unknown distribution by a known three
or four-parameter distribution. Examples include Clements (1989), Franklin and
Wasserman (1992), Shore (1998) and Polansky (1998).

Hsu et al. (2008) provided the process capability adjustment for Gamma
process with mean shift. For small process mean shift, the control chart may not
detect it and our process capability will be overestimated. Then, they calculated
adjustments which called 50AS with various sample sizes n and Gamma
parameter  under Bothe’ advises detection power. Table 3 displays the
magnitude of adjustments 50AS which they provided and data comes from
Gamma( ,1 ) with 0.5,1 (1) 10 and 2 (1) 10n  .
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Table 3. 50AS values for several subgroup sizes n and various  values.

Hsu et al. (2008) used the most common method, quantile estimation, to
modify PCIs for the non-normal case. Analogous to the normal case, where the
“natural” process width is between the 0.135th percentile and the 99.865th

percentile, PCIs can be redefined in terms of their quantiles for possible
modification for the non-normal case. The quantile definition for pkC is defined
as

0.99865 0.00135

median median
min , .

median medianpk

USL LSL
C

X X
  

    

To investigate the undetected process mean shift, they proposed dynamic

pkC index for non-normal process as following:

   50 50

0.99865 0.00135

median median
min , .

median medianpk

USL AS AS LSL
C

X X
     

    

By considering an adjustment 50AS  in this assessment to account for
undetected shifts in process median, the estimate of capability will decrease and
the expected total number of nonconforming parts will increase. This
nonconforming level assumes that undetected shifts are happening almost
constantly and that every one is equal to 50AS .


n 0.5 1 2 3 4 5 6 7 8 9 10

2 4.182 3.611 3.185 2.992 2.876 2.797 2.738 2.692 2.655 2.625 2.599

3 3.127 2.732 2.443 2.313 2.236 2.182 2.143 2.113 2.088 2.067 2.050

4 2.553 2.252 2.034 1.936 1.878 1.838 1.808 1.785 1.767 1.752 1.738

5 2.188 1.944 1.769 1.690 1.644 1.612 1.588 1.570 1.555 1.543 1.532

6 1.932 1.727 1.581 1.515 1.476 1.450 1.430 1.415 1.403 1.392 1.384

7 1.741 1.565 1.439 1.383 1.350 1.327 1.310 1.297 1.286 1.278 1.270

8 1.592 1.438 1.328 1.279 1.249 1.229 1.215 1.203 1.194 1.186 1.180

9 1.473 1.336 1.237 1.194 1.168 1.150 1.137 1.127 1.118 1.112 1.106

10 1.375 1.251 1.162 1.123 1.100 1.084 1.072 1.063 1.055 1.049 1.044
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Chapter 3. Introduction to Gamma Distribution

In this chapter, we discuss the characteristic of the Gamma distribution, such
as its probability density function, mean, and variance. In order to understand the
relationships between normal distribution and Gamma distribution, we will
compare the third and forth moments of Gamma distribution and standard
normal distribution. To further enhance the differences between Gamma and
standard normal distributions, we will also compare the two distributions via
graphical analysis and observe the changes visually.

Moreover, we will draw the empirical distribution of the sample variance
from Gamma distribution such that we can better understand the behaviors of the
Gamma distribution and have a more solid foundation for our future studies.
Finally, we will discuss the statistical properties of the Gamma distribution, and
how it will aids in our future studies.

3.1. Gamma Distribution

In this section, we discuss the property of Gamma distribution. Observations
from the Gamma distribution are non-negative. The Gamma distribution can be
denoted as Gamma( 0 0, ) with the probability density function given by

  
0 0

0

1
0 0

0 0

1
exp , 0, 0, 0,

x

f x x x 
  

 
   



and the mean and variance are given by 2 2
0 0 0 0,     , respectively.

Denote the family of Gamma distributions with mean 0 0 and variance
0
2

0 by Gamma( 0 0, ). The Gamma distributions are skewed. To see how this
distribution is different from the standard normal distribution in terms of
skewness and kurtosis. The skewness of Gamma( 0 0, ) is 02  and the
kurtosis is  06 3  . Table 4 presents the values of skewness and kurtosis
(which are defined as the third and fourth moments of the standardized
distribution, respectively) of the Gamma distribution and standard normal
distribution. We can find that when 0 increasing the values of skewness and
kurtosis will become small and close to the values of the standard normal
distribution. Whereas, when 0 is decreasing the values of skewness and
kurtosis will become large and far away the values of the standard normal
distribution. From the formula of skewness and kurtosis, we can find that 0 has
not effect on skewness and kurtosis, no matter how we change the values of 0,
skewness and kurtosis will no difference.
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Table 4. Values of skewness and kurtosis for various Gamma distributions.
Distribution Skewness Kurtosis

N(0,1) 0 3
Gamma(10,1) 0.6324 3.6

Gamma(8,1) 0.7071 3.75
Gamma(6,1) 0.8164 4

Gamma(4,1) 1 4.5
Gamma(2,1) 1.4142 6

Gamma(1,1) 2 9

Figure 1 presents several Gamma distributions along with normal
distributions with same mean and variance. In this study, we let 0=1, 2, 4, 6, 8,
and 10, and fixed 0 1 . We can be seen from Figure 1, the Gamma distribution
will appears more nearly normal when 0 increases.

Following the fundamental result regarding normal samples, we have

  2
2

12

1
n

n S


 

 

where 2S is the sample variance from normal population, and 2 is the
variance of normal distribution. Figure 2 depicts several empirical probability
density functions of the sample variance when data come from Gamma and
normal populations with same mean and variance. We let 0=1, 5, 10, 15, 20,
and 30, and subgroup size is set to be 30. The algorithm is described as following:

Step1： Generate Gamma and normal populations with the same mean and
variance.

Step2： Randomly select 30 samples from these two populations to calculate
the variance with R replications. (R=1,000,000)

Step3： Draw empirical probability density function plots.

It follows from Figure 1, we see that as 0 increases, the Gamma
distribution will appear more nearly normal distribution. So, we can infer that the
sampling distribution of the sample variance from Gamma distribution appears to
be quite close to the sampling distribution of the sample variance from normal
population when 0 is large, and this phenomenon can be verified from the
simulation result shown in Figure 2. Moreover, from Figure 2 we also observe that
as 0 is small, the tail will be more elongate (distribution is strongly skewed). In
Figure 3, we present several empirical cumulative distribution functions (C.D.F.s)
of the sample variance from Gamma and normal distributions. The different
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between Figure 2 is that it draws the empirical C.D.F.s of the sample variance
with the data.

Figure 4 presents many empirical distributions of the sample variance from
Gamma population with the same mean but different variance. The algorithm is
described as following:

Step1： Generate Gamma distributions with same mean but different variance.

Step2： Random select 30 samples from these two populations to calculate the
variance R times. (R=1,000,000)

Step3： Draw empirical C.D.F. plots.

From Figure 4, we can see that when 0 increases the graph will be closer to
normal sample variance graph. And when 0 is small, the tail will be more
elongate. Through these discussions above, we wish to study the effects on the
capability estimates when the process output has a Gamma distribution with
process variance change. We can observe that small 0 has larger variance when
mean is fixed.
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Figure 1(a). Probability density functions
for Gamma(1, 1) and Normal(1, 1).

Figure 1(b). Probability density functions
for Gamma(2, 1) and Normal(2, 2).

Figure 1(c). Probability density functions
for Gamma(4, 1) and Normal(4, 4).

Figure 1(d). Probability density functions
for Gamma(6, 1) and Normal(6, 6).

Figure 1(e). Probability density functions
for Gamma(8, 1) and Normal(8, 8).

Figure 1(f). Probability density functions
for Gamma(10, 1) and Normal(10, 10).

Figure 1. Gamma distributions along with normal distributions with same mean
and variance, 0 1, 2, 4, 6, 8 and 10,  and fixed 0 1 .
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Figure 2(a). Empirical distributions of the
sample variance plots from Gamma(1, 1)
and Normal(1, 1).

Figure 2(b). Empirical distributions of the
sample variance plots from Gamma(5, 1)
and Normal(5, 5).

Figure 2(c). Empirical distributions of the
sample variance plots from Gamma(10,
1) and Normal(10, 10).

Figure 2(d). Empirical distributions of the
sample variance plots from Gamma(15,
1) and Normal(15, 15).

Figure 2(e). Empirical distributions of the
sample variance plots from Gamma(20,
1) and Normal(20, 20).

Figure 2(f). Empirical distributions of the
sample variance plots from Gamma(30,
1) and Normal(30, 30).

Figure 2. Empirical distributions of the sample variance from Gamma and
normal distributions with same mean and variance, 0=1, 5, 10, 15, 20, and 30,
and fixed 0 1 .
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Figure 3(a). Empirical C.D.F. of the
sample variance for Gamma(1, 1) and
Normal(1, 1).

Figure 3(b). Empirical C.D.F. of the
sample variance for Gamma(5, 1) and
Normal(5, 5).

Figure 3(c). Empirical C.D.F. of the
sample variance for Gamma(10, 1) and
Normal(10, 10).

Figure 3(d). Empirical C.D.F. of the
sample variance for Gamma(15, 1) and
Normal(15, 15).

Figure 3(e). Empirical C.D.F. of the
sample variance for Gamma(20, 1) and
Normal(20, 20).

Figure 3(f). Empirical C.D.F. of the
sample variance for Gamma(30, 1) and
Normal(30, 30).

Figure 3. Empirical cumulative distribution functions of the sample variance from
Gamma and normal distributions with same mean and variance, 0=1, 5, 10, 15,
20, and 30, and fixed 0 1 .
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Figure 4(a). Empirical distributions of the
sample variance from Gamma(5, 1) and
Gamma(5/4, 4).

Figure 4(b). Empirical distributions of the
sample variance from Gamma(10, 1) and
Gamma(10/4, 4).

Figure 4(c). Empirical distributions of the
sample variance from Gamma (25, 1) and
Gamma(25/4, 4).

Figure 4(d). Empirical distributions of the
sample variance from Gamma(50, 1) and
Gamma(50/4, 4).

Figure 4(e). Empirical distributions of the
sample variance from Gamma(75, 1) and
Gamma(75/4, 4).

Figure 4(f). Empirical distributions of the
sample variance from Gamma(100, 1) and
Gamma(100/4, 4),.

Figure 4. Empirical distributions of the sample variance with difference Gamma
populations but have same mean.
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3.2. Statistical Properties of Gamma Distribution

The Gamma distribution has a reproductive property: if 1X and 2X are
independent random variables and each has a Gamma distribution with possible
different values of 1 2,  of 0 , but with common value of 0 , and with

0 1 2.    Applying this property, let 1 2, , , nX X X be a sequence of
independent distribution of Gamma( 0 0,  ) and then the distribution of

1 2 nX X X   is Gamma( 0 0,n ). Using simple statistical technique, we can
conclude that  1 2 nX X X X n    ~ Gamma( 0 0,n n  ). From Figure 5
we observe that for small 0 the variance is larger when mean is fixed.

Figure 5(a). Probability density function
plots for Gamma when 0 5  , 0 1  ,
and 2n  .

Figure 5(b). Probability density function
plots for Gamma when 0 5  , 0 1  ,
and 4n  .

Figure 5(c). Probability density function
plots for Gamma when 0 5  , 0 1  ,
and 6n  .

Figure 5(d). Probability density function
plots for Gamma when 0 5  , 0 1  ,
and 8n  .

Figure 5. Probability density function plots for Gamma distribution with different
sample sizes.



15

Chapter 4. Process Variance Change Investigation for
Gamma Process

In this chapter, we will first discuss the origin of Average Run Length (ARL)
and introduce Monte-Carlo method. Then, we use this method to find UCL and
LCL . As mentioned above, we calculate the detection powers under various
Gamma populations. We provide 50AS which modified standard deviation
adjustment for Gamma distribution. Then, adding this adjustment to pkC named
“dynamic” pkC .

4.1. Average Run Length

Crowder (1987) has studied the ARL of the combined control chart for
individuals and moving-range chart. He produced ARL for various setting of the
control limits and shifts in the process mean and standard deviation.

ARL is a study of the number of samples required in a process run to detect
fault productions. Theoretically, we hope the value of ARL is the smaller, best
when it equals to one, because smaller ARL will reduces the loss in production for
the detection of faults. However, realistically, ARL will not equal to one in
practical application; therefore, we set the value of ARL to be 2 in this study.
From the formula  ARL 1 1   , one can deduce , the probability of
erroneous judgement to be 0.5. The value , in other words, is the chance of
incorrectly judging an incapable process as capable.

4.2. Monte-Carlo Simulation for Determining UCL and LCL

The major purpose of individual control chart can be used to identify shifts
or drifts in processes and it is easily to be implemented. But, some assumptions
should be satisfied before control charts are used. The assumption include that the
process characteristics must be follow normal distribution. Due to
above-mentioned statements, we replace the tradition,  2 2

2, 11 nS n   and

   
2 2

1 2 , 11 nS n   , by the quantile of empirical cumulative distribution function
for different parameters of Gamma( 0 0, ) to be the upper and lower control
limits, where 2

/2, 1n  and 2
1 ( /2), 1n  denote the upper and lower / 2

percentile points of the chi-square distribution with 1n  degrees of the freedom
and 2S is an average sample variance obtained from the analysis of preliminary
data.

In order to calculate the probability, one will first need to know the upper and
lower control limits (UCL and LCL , respectively) of the process run. Since, to
determine the exact form of the sampling distribution for variance is
mathematically intractable. In this thesis, Monte-Carlo simulation method was
performed to investigate the behavior of sampling distribution for variance with
Gamma data and determine the estimated upper and lower control limits.
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Hence, in our study, UCL and LCL are estimated through Monte-Carlo
simulation method. The steps of Monte-Carlo algorithm to determine the control
limits of 2S control chart are summarized as follows:

Step1： Generate random sample 1 2, , , nX X X from Gamma distribution
 0 0, G R times independently, simulating    1 0 0, , , ,i i

nX X G   
1, 2, , ;i R  (R=1,000,000)

Step2： Calculate    2
2

1
1

in ii
jj

S X X n

    
  , where  

1
,

i n i
jj

X X n



1, 2, , ;i R 

Step3： Arrange the simulated observations 2
iS in increasing order. Denote


2
iS is the thi order statistic as 2

iS ; hence, we have

   
2 2 2
1 2 ;RS S S  

Step4： Calculate the upper  th
100  sample percentile   

2
1R

S
   

, where
 1R    is the largest integer less than or equal to  1R  . Then

  
2

1R
S

   
is an estimator for  2

1 1
s

F   .

We will utilize the estimator to get lower and upper control limits, and then
to obtain the adjustment values.

4.3. Detection Power of 2S for Gamma Data

The main purpose of individual control chart can be used to identify shifts or
drifts in process and it is easily to be implemented. In this thesis, we study the
effect on the capability estimates when the process output obeys Gamma
distribution with process variance change is remained unknown, so the 2S
control chart is a convention tool to help us monitor process variability and can
help us quickly determine whether the process is stable or not. But, in order to use
the 2S control chart, some assumptions should be satisfied, such as the process
characteristics must follow normal distribution. However, due to the search is
focus on the Gamma process, violating this assumption, we will need to replace
the traditional upper and lower control limits,  2 2

2, 11 nS n   and
   

2 2
1 2 , 11 nS n   , as quantiles of the empirical cumulative distribution

function from different parameters of Gamma( 0 0, ).

Let 1 2, , , nX X X be sequence observations of independent and identically
distribution from Gamma( 0 0, ). Using the reproductive property of Gamma
distribution, the mean of the observations is X (

1

n

jj
X X n


 ) which is

distributed in Gamma( 0 0,n n  ). iX and X are distributed from Gamma
distribution, we can obtain the followings:

   22 1i
i

S X X n   , 2 2
0 0iX  , 2 2

0 0X n  .
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Consequently, we can get the power of Gamma process derived from type II
error

 
 
   2 2

2
1 0

2
0.00135 0.99865 1 0

0.99865 0.00135

|

|

,
S S

P LCL S UCL K

P F S F K

G F G F

  

 

   

   

 

where  is the probability of incorrectly judging an incapable process as capable.
Hence, the value of 1  is the detection power of Gamma process. 2S

G 
represents the empirical cumulative distribution function of sample variance from
Gamma distribution with that standard deviation has changed and 1 is the
standard deviation after process change ( 0 is the standard deviation of the
original process). The control limits LCL and UCL are calculated as 0.00135F
and 0.99865F , respectively.

Since  1 2 nX X X X n    ~ Gamma( 0 0,n n  ), we have

0

X
Y


 Gamma 0

1,n
n

 
 
 

. (1)

So from equation (1), without loss of generality, we can set 0 1 to find the
detection power.

Tables 5-7 below depict the detection powers of the Gamma distribution with
the parameters varied from 0 00.5,1 1 10, 1   and subgroup size is 10, 15,
and 30, respectively. The second column on the left is the magnitude of standard
deviation change size.

From Tables 5-7, we notice that when 0 increases, the detection power
also increases accordingly. Moreover, one can see that similar trend exists between
the subgroup size and the detection power. Increasing the subgroup size will
naturally enhance the probability of identifying the process when it is out of
control because more samples are taken into evaluation. Therefore, we should
modify the standard deviation adjustments in our study when data come from
Gamma distribution.
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Table 5. Detection power of various from Gamma distributions with 10n  .
Distribution of Gamma( 0, 1 )Subgroup

size n

Change

 0 =0.5 0 = 1 0 = 2 0 = 3 0 = 4 0 = 5 0 = 6 0 = 7 0 = 8 0 = 9 0 = 10

10 1 0.0027 0.0027 0.0028 0.0026 0.0027 0.0027 0.0027 0.0027 0.0027 0.0026 0.0027

10 1.5 0.0507 0.0557 0.0690 0.0803 0.0898 0.0983 0.1061 0.1111 0.1153 0.1211 0.1277

10 2 0.1529 0.1686 0.2247 0.2704 0.3102 0.3389 0.3668 0.3865 0.4076 0.4260 0.4400

10 2.5 0.2594 0.2774 0.3504 0.4182 0.4783 0.5267 0.5664 0.5952 0.6212 0.6449 0.6624

10 3 0.3568 0.3610 0.4309 0.5090 0.5740 0.6248 0.6693 0.7029 0.7306 0.7556 0.7781

10 3.5 0.4391 0.4267 0.4807 0.5599 0.6227 0.6765 0.7214 0.7578 0.7899 0.8106 0.8310

10 4 0.5122 0.4836 0.5187 0.5861 0.6484 0.7014 0.7470 0.7813 0.8104 0.8335 0.8559

10 4.5 0.5705 0.5355 0.5527 0.6026 0.6597 0.7114 0.7536 0.7904 0.8198 0.8452 0.8649

10 5 0.6222 0.5791 0.5799 0.6189 0.6689 0.7151 0.7559 0.7905 0.8200 0.8454 0.8655

Table 6. Detection power of various from Gamma distributions with 15n  .
Distribution of Gamma( 0, 1 )Subgroup

size n

Change

 0 =0.5 0 = 1 0 = 2 0 = 3 0 = 4 0 = 5 0 = 6 0 = 7 0 = 8 0 = 9 0 = 10

15 1 0.0027 0.0028 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0026 0.0027

15 1.5 0.0569 0.0708 0.0985 0.1183 0.1368 0.1515 0.1634 0.1756 0.1836 0.1925 0.1978

15 2 0.1701 0.2199 0.3136 0.3817 0.4401 0.4885 0.5266 0.5553 0.5828 0.6006 0.6204

15 2.5 0.2775 0.3361 0.4685 0.5644 0.6373 0.6911 0.7346 0.7703 0.7942 0.8140 0.8353

15 3 0.3667 0.4181 0.5503 0.6523 0.7273 0.7844 0.8232 0.8541 0.8785 0.8960 0.9111

15 3.5 0.4408 0.4773 0.5943 0.6937 0.7683 0.8218 0.8599 0.8887 0.9122 0.9276 0.9401

15 4 0.5045 0.5228 0.6204 0.7133 0.7834 0.8356 0.8737 0.9013 0.9227 0.9388 0.9513

15 4.5 0.5591 0.5605 0.6388 0.7237 0.7886 0.8381 0.8772 0.9045 0.9244 0.9423 0.9540

15 5 0.6060 0.5938 0.6537 0.7260 0.7879 0.8365 0.8749 0.9031 0.9248 0.9410 0.9533

Table 7. Detection power of various from Gamma distributions with 30n  .
Distribution of Gamma( 0, 1 )Subgroup

size n

Change

 0 =0.5 0 = 1 0 = 2 0 = 3 0 = 4 0 = 5 0 = 6 0 = 7 0 = 8 0 = 9 0 = 10

30 1 0.0028 0.0026 0.0027 0.0027 0.0027 0.0026 0.0026 0.0026 0.0027 0.0027 0.0029

30 1.5 0.0824 0.1231 0.1928 0.2532 0.2925 0.3307 0.3621 0.3852 0.4058 0.4226 0.4421

30 2 0.2449 0.3700 0.5520 0.6672 0.7450 0.8004 0.8351 0.8662 0.8862 0.9005 0.9145

30 2.5 0.3705 0.5223 0.7236 0.8295 0.8943 0.9313 0.9538 0.9671 0.9759 0.9822 0.9863

30 3 0.4464 0.5976 0.7934 0.8877 0.9374 0.9633 0.9783 0.9866 0.9912 0.9942 0.9962

30 3.5 0.5017 0.6319 0.8185 0.9061 0.9499 0.9734 0.9848 0.9911 0.9948 0.9970 0.9980

30 4 0.5461 0.6589 0.8276 0.9093 0.9532 0.9750 0.9863 0.9924 0.9956 0.9975 0.9984

30 4.5 0.5841 0.6770 0.8252 0.9090 0.9516 0.9743 0.9859 0.9920 0.9954 0.9974 0.9984

30 5 0.6166 0.6879 0.8221 0.9036 0.9481 0.9713 0.9838 0.9909 0.9947 0.9970 0.9981
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4.4. Variance Adjustment for Gamma Process

The undetected standard deviation change adjustments in Table 8 is called

50AS which is the magnitude of standard deviation change we need to adjust
based on designated detection power equal 0.5. We find K using this formula

 2
1 00.5 |P LCL S UCL K       and develop a Matlab program to

compute the standard deviation change adjustment. Table 8 is the standard
deviation adjustment under data come from Gamma( 0, 1 ) distribution with
various parameters of 0 (=0.5 and 1 (1) 10) and n = 10 (1) 30. For example, if
we set 0 =7 and n =15, then the magnitude of standard deviation change
adjustment is 50AS =1.92. We conclude that the standard deviation change
adjustment of 50AS =1.92 is required based on the detection power is 0.5 and
data come from Gamma(7, 1). It can be obviously observed that the adjustment

50AS get closer to the adjustment under normal population adjustment as 0
increases (see Appendix A.), which is reasonable since the corresponding
distribution get closer to the standard normal distribution as 0 increases.
However, it should be noted that when 0 is small (distribution is strongly
skewed), the requirement in the capability index formula is much greater than
those for normal processes. Utilizing the adjusted process capability formula, the
engineers can determine the actual process capability more accurately.

Figure 6 is the plot of power curves. Those lines portray the probabilities of
detecting a change in  for several given sizes (expressed in  units on the
horizontal axis). For small changes in , all curves are close to zero. It means
the power will be small. From Figure 6(a) we can find that when the change is
increased, the power will increase accordingly but not to full 100%. From Figure
6(b) we can find the power will attain to 100% when change as large as possible.
The main reason for this phenomenon is that the parameter of Gamma
distribution, 0 , is large. The dashed horizontal line drawn on these graphs
show that there is a 50% probability of missing a 1.84 times the size change in 
when n is 15, whereas the magnitude of standard deviation change must
increase to 2.1 to have the same probability when n is 10. The magnitude of
change in  that smaller than 50AS are more likely to be missed by a control
chart. Therefore our adjustment 50AS takes into account those changes that are
not detected by the 2S control chart.
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Table 8. 50AS values for several subgroup sizes n and various 0 values.

0
n 0.5 1 2 3 4 5 6 7 8 9 10

10 3.91 4.15 3.70 2.93 2.59 2.41 2.30 2.23 2.17 2.14 2.10

11 3.93 4.09 3.42 2.74 2.44 2.31 2.21 2.15 2.10 2.07 2.03

12 3.95 4.03 3.15 2.58 2.35 2.21 2.13 2.07 2.03 2.00 1.97

13 3.98 3.92 2.97 2.47 2.24 2.14 2.06 2.01 1.97 1.95 1.92

14 3.96 3.86 2.81 2.36 2.18 2.07 2.01 1.96 1.93 1.89 1.87

15 3.96 3.74 2.67 2.28 2.11 2.02 1.96 1.92 1.88 1.86 1.84

16 3.96 3.64 2.55 2.20 2.06 1.98 1.92 1.88 1.84 1.82 1.80

17 3.96 3.53 2.46 2.15 2.01 1.93 1.88 1.84 1.81 1.79 1.77

18 3.94 3.40 2.39 2.10 1.97 1.90 1.84 1.81 1.78 1.75 1.74

19 3.92 3.26 2.31 2.05 1.93 1.86 1.81 1.78 1.75 1.73 1.71

20 3.9 3.16 2.26 2.02 1.90 1.83 1.79 1.75 1.72 1.71 1.69

21 3.96 3.03 2.22 1.98 1.86 1.81 1.76 1.73 1.71 1.68 1.68

22 3.86 2.98 2.18 1.95 1.83 1.79 1.74 1.70 1.68 1.66 1.65

23 3.77 2.82 2.12 1.93 1.82 1.76 1.72 1.70 1.66 1.65 1.62

24 3.80 2.76 2.08 1.89 1.80 1.73 1.71 1.68 1.66 1.63 1.63

25 3.76 2.68 2.05 1.87 1.76 1.71 1.68 1.66 1.63 1.63 1.59

26 3.71 2.66 2.02 1.85 1.75 1.70 1.67 1.64 1.62 1.59 1.58

27 3.61 2.63 1.99 1.83 1.72 1.70 1.65 1.62 1.60 1.59 1.58

28 3.59 2.52 1.99 1.81 1.71 1.67 1.63 1.61 1.58 1.58 1.56

29 3.46 2.45 1.95 1.78 1.69 1.65 1.61 1.60 1.58 1.57 1.55

30 3.50 2.40 1.91 1.76 1.68 1.63 1.61 1.58 1.56 1.56 1.54
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Figure 6(a). Power curves for subgroup
sizes 10 and 15 with 0 =10.

Figure 6(b). Power curves for subgroup
sizes 10 and 15 with 0 = 100.

Figure 6. Power curves for different subgroup sizes and 0 .

4.5. Capability Adjustment for Gamma Process

The index pkC has been viewed as a yield-based index since it provides
bounds on the process yield for a normally distributed process with a fixed value
of pkC . The proper uses of process capability indices, which are statistical
measures of process capability, are based on several assumptions. One of the most
essential is that the process monitored is supposed to be stable and the output is
approximately normal distribution. When the distribution of a process is
non-normal, PCIs calculated using conventional methods could often lead to
incorrect and erroneous interpretation of the process capability.

In the recent years, several approaches to the problems of PCIs for the
non-normal populations have been proposed. Chen and Pearn (1997) consider
come generalizations of these basic capability indices to cover non-normal
distribution. In the non-normal case, if we are able to find a better distribution
from the data, which provides a very satisfactory fit (this can be tested by means
of goodness-of-tests), we can obtain more accurate measures of the three
quantiles ( 0.00135 0.5 0.99865, ,X X X ) under consideration, the corresponding puC and

plC are defined as

  0.99865

median median
,

upper 0.135% point median medianpu

USL USL
C

X
 

 
 

  0.00135

median median
.

median lower 0.135% point medianpl

LSL LSL
C

X
 

 
 

The index pkC will be calculated as the minimum of puC and plC is defines as
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 
0.99865 0.00135

median median
min , , ,

median medianpk pu pl

USL LSL
C C C

X X
  

    

where these percentile points can be obtained easily from a simple calculated.

Acknowledging that a process will experience changes in process variance of
various magnitudes and not all of these will be discovered, we must take them
into account when estimating outgoing quality so customers are not disappointed.
Because standard deviation changes ranging in size from 0 up to 50AS are the
ones likely to remain undetected (larger changes should be caught by the chart), a
conservative approach is to assume that every missed change in process standard
deviation is as large as 50AS .

Considering the undetected process standard deviation change is as large as

50AS . Incorporating the adjustments into the pkC formula we obtained the
“dynamic” pkC index. When estimating capability, USL minus 0.5X
(=median) is divided by 50AS multiple 3 and 0.5X minus LSL is divided
by 50AS multiple 3 where 3 is the estimator for quantile. By making the
following modifications:

     50 0.99865 50 0.00135

median median
min , min , .

median medianpk pu pl

USL LSL
C C C

AS X AS X

         

By including an adjustment in this assessment for undetected change in
standard deviation, the estimate of capability will decrease and the number
nonconforming parts measured (calculated) will increase.
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Chapter 5. Application

To illustrate how to calculate process capability using “dynamic” pkC , we
consider the following example taken from a LCD production plant. TFT LCD is
used widely in television sets, computer monitors, mobile phones and computers,
personal digital assistants, navigation systems, projectors, etc. TFT LCD module
consists of a color filter substrate, LCD driver, IC chips, backlight module, pixel
electrode (ITO), multi-layer PCBs, driving circuits, and chassis assembly. Because
liquid-crystal panel can not be luminescing itself, it must rely on backlight module
to get display function.

Backlight module is one of the key components in LCD panel. It supplies
enough brightness and even light source to let image be displayed. Backlight
module consists of CCFL, LED, lampshade, reflector, light guide plate, diffusion
sheet, brightness enhancement film, LED ASSY, and iron-frame. Figure 7 shows
the structure of backlight module.

Figure 7. Structure of a Backlight module.

When fabricating the backlight module, one of the most important factors
that affect the quality of backlight module is the LED ASSY. From Figure 8 and
Figure 9 we can discover LED ASSY is extremely thin and connecting with other
components. We know that backlight module may easily shut down when it can
not connect with other components so the specification of LED ASSY length is
very essential. It is one of the most important factors to be considered. The length
of the LED ASSY should not fall outside the specification intervals or the
customers will not accept the products.
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Different models of LCD have different designs, shapes, and production
specifications. One characteristic of the LED ASSY which we studied is length.
The upper and lower specification limits, USL and LSL , of the length for a
particular model of LED ASSY, which we studied, were set to 5.2mm and 0.2mm.
The company utilize 2S control chart to monitor the process variance change.
Generally, 2S charts are preferable to their more familiar counterparts, R
charts, when either

1. The sample size n is moderately large, say, n > 10 or 12.

2. The sample size n is variable.

The company use 15n  to monitor the process. Table 9 displays the collected
sample data (a total of 100 observations). We use statistica to test the historical
data.

Figure 8. Side view of LED ASSY at the backlight module.

Figure 9. Top view of LED ASSY at the backlight module.

Table 9. 100 observations are collected from the historical data.
2.4806 1.3633 2.1303 3.2979 3.1802 1.8966 1.5688 1.3464 2.8440 2.5370

2.4708 1.4859 2.1056 3.2820 3.1666 1.8930 1.5691 1.2429 2.8375 2.5061

2.4555 1.5300 2.7667 3.2492 3.1649 1.8867 1.6543 2.4480 2.8229 1.7901

1.2156 1.5443 2.7356 2.9925 3.0897 3.7497 1.6719 2.4170 2.8006 1.7888

1.2005 2.0988 2.6603 2.8731 3.0721 3.7374 1.6772 2.3445 3.4215 1.7869

1.1490 2.0728 1.7036 2.8727 1.9339 3.7294 2.1890 2.3308 3.3219 1.7493

1.1099 2.0508 1.6925 2.8706 1.9273 3.6163 3.5952 1.0401 4.4352 1.7265

2.3021 1.5359 1.6883 1.8627 1.9014 1.7906 3.5020 0.9347 2.0412 2.5430

2.2997 1.5421 5.2060 1.8404 2.5019 3.9577 3.4518 2.8619 2.0306 2.5389

2.2736 1.9654 4.9323 1.8388 2.2215 2.0436 1.8184 2.8462 1.9681 1.7203
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Variable: length, Distribution: Gamma
Chi-Square test = 4.92138, df = 3 (adjusted) , p = 0.17765
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Figure 10. Histogram plot of the historical data.

Figure 10 displays the histogram plot for the collected data. From
goodness-of-tests, we can know the p-value is 0.17765 and we may conclude that
the historical data indicates the process pretty approximate to a Gamma
distribution (this can be tested by means of goodness-of-fit tests). The parameters

0 and 0 of Gamma distribution could be calculated from historical data
utilizing method of moments, giving 0̂ 7.97  and 0̂ 0.297 .

We utilize this control chart to monitor the process variance, and collect
another historical data in Table 10.

Table 10. 100 observations are collected from the historical data.
0.9344 1.2260 2.8183 2.5579 2.9821 1.9371 2.7379 2.3738 2.4632 2.7896

1.1882 1.2760 2.8636 2.5879 1.5828 1.9890 1.6873 2.3918 2.4648 1.8199

1.1927 1.2896 1.2900 3.6060 1.5921 2.9273 1.7042 2.3995 2.5096 1.8349

2.4335 4.2492 2.1425 3.6846 1.5941 1.6168 2.1778 2.9943 2.5129 1.8894

3.0184 1.9990 1.3423 3.7317 2.3328 1.6168 2.2049 1.7349 3.1782 2.0454

3.0676 2.0379 2.1418 1.4496 2.3372 1.6493 2.2517 1.7747 1.7799 2.1315

3.5391 4.0026 1.3266 1.4695 2.3487 2.3058 3.1854 2.6299 1.7800 2.5914

1.9051 2.0261 2.1438 1.5810 3.5000 2.3097 3.2491 2.6641 1.7861 2.5927

1.9102 4.3281 2.1552 3.8022 3.5209 3.1802 3.3434 2.6729 2.7382 3.3624

1.9155 3.7758 3.8512 3.8371 4.3692 4.3704 3.4716 4.7166 2.7836 3.3998
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Variable: Var4, Distribution: Gamma
Chi-Square test = 2.93377, df = 4 (adjusted) , p = 0.56897
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Figure 11. Histogram plot of the historical data.

Figure 11 displays the histogram plot for Table 10. From goodness-of-tests,
we can know the p-value is 0.56897 and we may conclude that the historical data
indicates the process pretty approximate to a Gamma distribution. The
parameters 0 and 0 of Gamma distribution could be calculated from
historical data utilizing method of moments, giving 0̂ 8.37  and 0̂ 0.296 .
Therefore, we can use Monte-Carlo method to estimate three quantiles
( 0.00135 0.5 0.99865, ,X X X ) under consideration from this process and get the value as
follows:

0.00135 0.5 0.998650.26615, 0.70407, 1.67634.X X X  

Then “dynamic” pkC index can be estimated as follows:

   

   

50 0.99865 50 0.00135

median medianˆ min ,
median median

5.2 0.70407 0.70407 0.2
min ,

1.88 1.67634 0.70407 1.88 0.70407 0.26615

0.61,

pk
USL LSLC

AS X AS X

     
   

          


with 50 1.88AS  for 15n  form Appendix A. Compared it to the value of the

following index:
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0.99865 0.00135

median medianˆ min ,
median median

5.2 0.70407 0.70407 0.2
min ,

1.67634 0.70407 0.70407 0.26615
1.15,

pk
USL LSLC

X X
    

  
      



calculated by a traditional capability study (the change of process standard
deviation is not considered), we can find that the value of “dynamic” pkC is
much smaller. This result indicates that if the process variance change still not be
detected then unadjusted pkC would overestimate the actual process yield which
is not desirable. Our adjustment takes into account those changes that are not
detected so that the practitioner would be able to keep its quality promise for this
process. As the adjusted process capability drops below the desired quality level,
the practitioner should stop the process because the process does not meet his
preset capability requirement. The adjustment considered in this thesis should be
able to keep its quality promise for this process.

By increasing the subgroup size n , changing in process variance have a
higher probability to be detected. For example, if 30n  , the 50 1.56AS  for
Gamma distribution then “dynamic” pkC can be estimated as

   

   

50 0.99865 50 0.00135

median medianˆ min ,
median median

5.2 0.70407 0.70407 0.2min ,
1.56 1.67634 0.70407 1.56 0.70407 0.26615

0.74.

pk
USL LSLC

AS X AS X

     
   

          


Increasing n from 15 to 30 will increase the value of dynamic pkC index
from 0.61 to 0.74, and the total number of nonconforming measured (calculated)
would be reduced.
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Chapter 6. Conclusion

This thesis has considered the problem for adjusting estimate of process
capability index by variance change when data is from the Gamma distribution.
In the Bothe’study, statistically derived adjustments are proposed under the data
assumed to be approximately normal distribution. But the case of non-normal
process occurs frequently in practice. We employed the Monte-Carlo simulation
method to determine the control limits of 2S control chart and calculated the
variance change adjustment 50AS based on detection power is 0.5 for data comes
from Gamma distribution with various values of  (=0.5 and 1 (1) 30) and
n =10 (1) 30. For small value of  (distribution is strongly skewed), the require
adjustment in the capability index formula is much greater than those for normal
processes. Using the adjusted process capability formula, the engineers can
determine the actual process capability more accurately. We provided tables for
engineers to use for their in-plant applications. A real-world example taken from
manufacturing process is investigated to illustrate the applicability of our method.
However, this “dynamic” pkC index assume mean remain stable when variance
change. What if mean and variance subjected to undetected increases or decreases?
Further studies are needed to determine how those changes would affect estimates
of outgoing quality.
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Appendix A. 50AS values of Gamma Distributions.
Table 11. 50AS value for several subgroup sizes n and various 0 (=0.5,1 (1) 10)
values when 0 1 .
31

n
0.5 1 2 3 4 5 6 7 8 9 10

10 3.91 4.15 3.70 2.93 2.59 2.41 2.30 2.23 2.17 2.14 2.10

11 3.93 4.09 3.42 2.74 2.44 2.31 2.21 2.15 2.10 2.07 2.03

12 3.95 4.03 3.15 2.58 2.35 2.21 2.13 2.07 2.03 2.00 1.97

13 3.98 3.92 2.97 2.47 2.24 2.14 2.06 2.01 1.97 1.95 1.92

14 3.96 3.86 2.81 2.36 2.18 2.07 2.01 1.96 1.93 1.89 1.87

15 3.96 3.74 2.67 2.28 2.11 2.02 1.96 1.92 1.88 1.86 1.84

16 3.96 3.64 2.55 2.20 2.06 1.98 1.92 1.88 1.84 1.82 1.80

17 3.96 3.53 2.46 2.15 2.01 1.93 1.88 1.84 1.81 1.79 1.77

18 3.94 3.40 2.39 2.10 1.97 1.90 1.84 1.81 1.78 1.75 1.74

19 3.92 3.26 2.31 2.05 1.93 1.86 1.81 1.78 1.75 1.73 1.71

20 3.9 3.16 2.26 2.02 1.90 1.83 1.79 1.75 1.72 1.71 1.69

21 3.96 3.03 2.22 1.98 1.86 1.81 1.76 1.73 1.71 1.68 1.68

22 3.86 2.98 2.18 1.95 1.83 1.79 1.74 1.70 1.68 1.66 1.65

23 3.77 2.82 2.12 1.93 1.82 1.76 1.72 1.70 1.66 1.65 1.62

24 3.80 2.76 2.08 1.89 1.80 1.73 1.71 1.68 1.66 1.63 1.63

25 3.76 2.68 2.05 1.87 1.76 1.71 1.68 1.66 1.63 1.63 1.59

26 3.71 2.66 2.02 1.85 1.75 1.70 1.67 1.64 1.62 1.59 1.58

27 3.61 2.63 1.99 1.83 1.72 1.70 1.65 1.62 1.60 1.59 1.58

28 3.59 2.52 1.99 1.81 1.71 1.67 1.63 1.61 1.58 1.58 1.56

29 3.46 2.45 1.95 1.78 1.69 1.65 1.61 1.60 1.58 1.57 1.55

30 3.50 2.40 1.91 1.76 1.68 1.63 1.61 1.58 1.56 1.56 1.54

0



Table 12. 50AS value for several subgroup sizes n and various 0 (=11 (1) 21)
values when 0 1 .
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n
11 12 13 14 15 16 17 18 19 20 21

10 2.08 2.07 2.04 2.02 2.01 2.00 1.99 1.98 1.97 1.96 1.95

11 2.01 1.98 1.97 1.96 1.94 1.93 1.92 1.92 1.91 1.90 1.90

12 1.95 1.93 1.92 1.91 1.89 1.89 1.87 1.86 1.86 1.85 1.84

13 1.90 1.88 1.87 1.85 1.84 1.84 1.83 1.82 1.81 1.80 1.80

14 1.85 1.84 1.83 1.82 1.80 1.80 1.79 1.78 1.77 1.77 1.76

15 1.82 1.81 1.78 1.78 1.77 1.76 1.75 1.74 1.74 1.74 1.73

16 1.78 1.77 1.76 1.75 1.74 1.73 1.73 1.71 1.71 1.70 1.70

17 1.75 1.74 1.72 1.72 1.71 1.70 1.70 1.69 1.68 1.68 1.68

18 1.73 1.71 1.70 1.69 1.68 1.68 1.67 1.66 1.66 1.66 1.65

19 1.70 1.69 1.68 1.67 1.66 1.66 1.65 1.64 1.64 1.64 1.63

20 1.68 1.66 1.65 1.65 1.64 1.63 1.63 1.63 1.62 1.62 1.61

21 1.66 1.65 1.63 1.62 1.62 1.63 1.61 1.60 1.59 1.60 1.59

22 1.64 1.62 1.61 1.60 1.59 1.60 1.59 1.59 1.59 1.58 1.58

23 1.62 1.61 1.60 1.59 1.60 1.60 1.58 1.58 1.57 1.57 1.56

24 1.61 1.59 1.59 1.58 1.58 1.57 1.56 1.56 1.55 1.56 1.55

25 1.58 1.58 1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.54 1.53

26 1.58 1.57 1.56 1.55 1.53 1.53 1.53 1.54 1.53 1.52 1.53

27 1.56 1.55 1.55 1.55 1.53 1.53 1.52 1.52 1.52 1.51 1.52

28 1.55 1.55 1.53 1.53 1.53 1.52 1.52 1.51 1.51 1.50 1.50

29 1.54 1.52 1.52 1.52 1.51 1.50 1.50 1.50 1.49 1.49 1.48

30 1.54 1.53 1.52 1.50 1.50 1.50 1.49 1.50 1.48 1.48 1.47

0



Table 13. 50AS value for several subgroup sizes n and various 0 (=22 (1) 30)
values when 0 1 .
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n
22 23 24 25 26 27 28 29 30 N(0,1)

10 1.95 1.94 1.93 1.93 1.92 1.92 1.92 1.91 1.91 1.80

11 1.89 1.89 1.87 1.87 1.87 1.87 1.86 1.85 1.85 1.76

12 1.83 1.83 1.82 1.82 1.82 1.82 1.81 1.81 1.81 1.72

13 1.79 1.79 1.78 1.78 1.78 1.77 1.78 1.77 1.77 1.68

14 1.76 1.75 1.75 1.75 1.74 1.74 1.74 1.73 1.73 1.65

15 1.72 1.72 1.72 1.72 1.71 1.70 1.70 1.70 1.70 1.63

16 1.70 1.69 1.68 1.68 1.68 1.68 1.68 1.68 1.67 1.60

17 1.67 1.67 1.66 1.66 1.66 1.66 1.65 1.65 1.65 1.58

18 1.65 1.64 1.64 1.64 1.63 1.63 1.63 1.63 1.63 1.56

19 1.63 1.62 1.62 1.62 1.62 1.61 1.61 1.60 1.61 1.54

20 1.61 1.61 1.60 1.60 1.60 1.59 1.59 1.59 1.59 1.53

21 1.58 1.58 1.58 1.58 1.57 1.57 1.57 1.59 1.57 1.51

22 1.58 1.57 1.57 1.56 1.56 1.55 1.55 1.57 1.55 1.50

23 1.56 1.56 1.55 1.55 1.54 1.54 1.55 1.55 1.54 1.49

24 1.55 1.54 1.53 1.54 1.53 1.53 1.52 1.52 1.53 1.48

25 1.52 1.52 1.53 1.53 1.52 1.52 1.51 1.51 1.50 1.47

26 1.53 1.53 1.51 1.51 1.51 1.51 1.50 1.51 1.50 1.46

27 1.51 1.51 1.50 1.51 1.50 1.50 1.49 1.50 1.49 1.45

28 1.49 1.50 1.50 1.50 1.49 1.48 1.48 1.49 1.48 1.44

29 1.48 1.49 1.49 1.48 1.48 1.48 1.47 1.48 1.48 1.43

30 1.48 1.47 1.47 1.47 1.47 1.48 1.47 1.46 1.46 1.42

0



34

Appendix B. Average Run Length of Gamma Distributions.
Table 14. Average run length of Gamma processes with 1.5 change.

0

n
0.5 1 2 3 4 5 6 7 8 9 10

10 19.67 17.95 14.75 12.85 10.98 10.63 9.68 9.43 8.38 8.11 7.85

11 19.68 17.59 13.09 11.88 9.94 9.64 8.38 7.68 7.46 7.07 6.78

12 18.4 16.46 12.41 11.87 9.05 8.61 7.71 7.21 6.73 6.62 6.42

13 18.39 15.79 11.20 10.18 8.62 7.63 7.17 6.92 6.39 6.20 6.08

14 18.44 14.78 10.60 8.91 7.96 6.97 6.61 6.40 6.05 5.54 5.30

15 16.95 14.47 10.26 8.90 7.35 6.42 6.15 5.94 5.68 5.36 5.07

16 16.81 13.86 9.66 8.27 7.06 6.16 5.63 5.35 4.95 4.83 4.68

17 16.36 11.78 9.79 7.31 6.54 5.93 5.52 4.83 4.59 4.66 4.23

18 16.14 12.87 8.80 6.73 6.17 5.41 4.95 4.76 4.32 4.13 3.92

19 15.42 11.65 8.14 7.03 5.88 5.22 4.73 4.37 3.93 4.01 3.78

20 14.78 10.96 7.69 5.94 5.19 4.60 4.50 4.25 3.78 3.71 3.69

21 15.56 11.61 7.51 6.20 5.15 4.51 4.42 3.76 3.71 3.63 3.58

22 13.86 11.78 7.71 5.58 4.92 4.27 4.04 3.70 3.64 3.47 3.32

23 15.89 10.11 6.79 5.52 4.77 4.06 3.73 3.48 3.29 3.16 2.93

24 14.62 9.83 6.78 5.02 4.45 3.79 3.54 3.38 3.12 3.08 2.85

25 14.07 9.3 6.16 4.90 4.16 3.81 3.52 3.10 3.09 3.02 2.87

26 12.67 9.02 5.83 4.46 4.00 3.47 3.08 2.92 2.86 2.68 2.61

27 12.63 8.93 5.63 4.52 3.72 3.39 3.11 2.88 2.74 2.63 2.60

28 12.83 8.24 5.38 4.09 3.46 3.23 2.97 2.84 2.62 2.60 2.54

29 12.89 8.28 5.32 4.16 3.45 3.16 2.83 2.73 2.58 2.43 2.35

30 11.66 7.85 5.17 4.04 3.63 2.92 2.83 2.59 2.47 2.35 2.30
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Table 15. Average run length of Gamma processes with 2 change.

0

n
0.5 1 2 3 4 5 6 7 8 9 10

10 6.51 5.91 4.52 3.76 3.25 3.01 2.78 2.62 2.43 2.35 2.28

11 6.43 5.77 4.12 3.51 2.97 2.76 2.48 2.31 2.21 2.11 2.04

12 6.28 5.29 3.83 3.33 2.73 2.50 2.31 2.16 2.05 2.00 1.93

13 6.18 5.04 3.52 3.01 2.55 2.31 2.15 2.07 1.93 1.88 1.82

14 6.19 4.86 3.36 2.74 2.38 2.14 2.00 1.92 1.83 1.73 1.68

15 5.67 4.58 3.18 2.65 2.25 2.03 1.89 1.83 1.74 1.67 1.61

16 5.69 4.43 3.03 2.50 2.16 1.94 1.81 1.71 1.62 1.58 1.54

17 5.56 4.02 2.97 2.31 2.05 1.86 1.74 1.62 1.55 1.53 1.46

18 5.36 4.07 2.77 2.20 1.97 1.76 1.64 1.58 1.49 1.44 1.40

19 5.31 3.83 2.62 2.19 1.86 1.71 1.58 1.50 1.42 1.40 1.36

20 5.04 3.64 2.48 1.99 1.75 1.61 1.53 1.46 1.37 1.35 1.32

21 5.17 3.63 2.44 1.99 1.71 1.56 1.50 1.39 1.35 1.32 1.30

22 4.74 3.63 2.41 1.86 1.67 1.51 1.44 1.36 1.33 1.29 1.26

23 5.15 3.34 2.24 1.84 1.62 1.47 1.38 1.32 1.28 1.24 1.21

24 4.84 3.23 2.19 1.74 1.56 1.41 1.34 1.30 1.25 1.22 1.19

25 4.58 3.09 2.09 1.71 1.50 1.40 1.33 1.25 1.23 1.21 1.18

26 4.31 3.03 2.01 1.62 1.46 1.35 1.27 1.23 1.20 1.17 1.15

27 4.34 2.95 1.97 1.61 1.42 1.33 1.26 1.21 1.18 1.16 1.14

28 4.28 2.8 1.91 1.55 1.38 1.29 1.24 1.20 1.16 1.14 1.13

29 4.26 2.78 1.86 1.53 1.36 1.28 1.21 1.18 1.15 1.12 1.11

30 4.05 2.69 1.83 1.49 1.37 1.24 1.20 1.16 1.13 1.11 1.10



36

Table 16. Average run length of Gamma processes with 2.5 change.

0

n
0.5 1 2 3 4 5 6 7 8 9 10

10 3.84 3.64 2.85 2.40 2.09 1.94 1.79 1.70 1.59 1.54 1.50

11 3.83 3.54 2.65 2.23 1.94 1.80 1.65 1.56 1.49 1.44 1.40

12 3.78 3.31 2.50 2.15 1.81 1.67 1.56 1.48 1.42 1.38 1.34

13 3.7 3.23 2.35 1.99 1.72 1.58 1.48 1.43 1.36 1.32 1.29

14 3.71 3.07 2.23 1.84 1.64 1.50 1.41 1.36 1.31 1.26 1.23

15 3.52 2.97 2.14 1.81 1.57 1.44 1.36 1.31 1.27 1.23 1.20

16 3.55 2.86 2.05 1.72 1.52 1.39 1.31 1.27 1.22 1.19 1.17

17 3.45 2.68 1.99 1.63 1.45 1.35 1.28 1.22 1.18 1.17 1.14

18 3.41 2.69 1.91 1.55 1.41 1.30 1.24 1.20 1.16 1.13 1.11

19 3.34 2.54 1.82 1.54 1.37 1.28 1.21 1.16 1.13 1.12 1.10

20 3.21 2.45 1.76 1.46 1.32 1.23 1.19 1.15 1.11 1.10 1.08

21 3.24 2.44 1.71 1.45 1.30 1.21 1.17 1.12 1.10 1.09 1.07

22 3.12 2.44 1.69 1.39 1.27 1.19 1.14 1.11 1.09 1.07 1.06

23 3.23 2.27 1.61 1.37 1.25 1.17 1.12 1.09 1.07 1.06 1.05

24 3.10 2.22 1.58 1.32 1.22 1.14 1.11 1.08 1.06 1.05 1.04

25 2.98 2.14 1.53 1.30 1.20 1.13 1.10 1.07 1.05 1.05 1.04

26 2.87 2.11 1.49 1.27 1.18 1.12 1.08 1.06 1.05 1.03 1.03

27 2.83 2.05 1.46 1.26 1.16 1.11 1.07 1.05 1.04 1.03 1.02

28 2.84 1.97 1.43 1.23 1.13 1.09 1.06 1.05 1.03 1.03 1.02

29 2.82 1.97 1.41 1.22 1.13 1.08 1.06 1.04 1.03 1.02 1.02

30 2.70 1.91 1.39 1.20 1.13 1.07 1.05 1.03 1.03 1.02 1.02
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Table 17. Average run length of Gamma processes with 3 change.

0

n
0.5 1 2 3 4 5 6 7 8 9 10

10 2.81 2.77 2.32 1.99 1.73 1.60 1.50 1.44 1.36 1.32 1.28

11 2.83 2.71 2.17 1.88 1.63 1.52 1.41 1.34 1.29 1.25 1.22

12 2.79 2.61 2.08 1.79 1.56 1.43 1.35 1.29 1.24 1.21 1.19

13 2.8 2.55 1.96 1.68 1.48 1.37 1.29 1.25 1.20 1.17 1.15

14 2.77 2.45 1.88 1.59 1.43 1.31 1.25 1.21 1.17 1.14 1.12

15 2.70 2.39 1.82 1.55 1.38 1.28 1.21 1.18 1.14 1.12 1.10

16 2.71 2.33 1.75 1.50 1.33 1.24 1.19 1.15 1.11 1.09 1.08

17 2.66 2.19 1.70 1.43 1.29 1.22 1.16 1.12 1.09 1.08 1.06

18 2.63 2.19 1.64 1.38 1.26 1.18 1.14 1.11 1.08 1.06 1.05

19 2.60 2.12 1.59 1.37 1.23 1.16 1.12 1.08 1.06 1.05 1.04

20 2.54 2.05 1.54 1.31 1.20 1.14 1.10 1.08 1.05 1.04 1.04

21 2.55 2.04 1.51 1.29 1.18 1.12 1.09 1.06 1.05 1.04 1.03

22 2.45 2.03 1.49 1.26 1.16 1.10 1.08 1.05 1.04 1.03 1.02

23 2.54 1.94 1.43 1.24 1.15 1.09 1.06 1.04 1.03 1.02 1.02

24 2.46 1.89 1.40 1.22 1.13 1.08 1.05 1.04 1.03 1.02 1.01

25 2.4 1.83 1.37 1.20 1.12 1.07 1.05 1.03 1.02 1.02 1.01

26 2.35 1.8 1.34 1.17 1.10 1.06 1.04 1.03 1.02 1.01 1.01

27 2.31 1.77 1.33 1.17 1.09 1.06 1.04 1.02 1.02 1.01 1.01

28 2.31 1.72 1.30 1.15 1.08 1.05 1.03 1.02 1.01 1.01 1.01

29 2.29 1.70 1.28 1.14 1.07 1.04 1.03 1.02 1.01 1.01 1.00

30 2.24 1.65 1.26 1.13 1.07 1.04 1.02 1.01 1.01 1.01 1.00
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Table 18. Average run length of Gamma processes with 3.5 change.

0

n
0.5 1 2 3 4 5 6 7 8 9 10

10 2.27 2.33 2.06 1.80 1.60 1.49 1.39 1.33 1.27 1.23 1.20

11 2.29 2.3 1.97 1.71 1.52 1.42 1.32 1.26 1.22 1.18 1.16

12 2.28 2.23 1.87 1.65 1.45 1.35 1.27 1.21 1.18 1.15 1.13

13 2.28 2.2 1.79 1.56 1.40 1.29 1.23 1.18 1.15 1.12 1.10

14 2.29 2.16 1.72 1.49 1.35 1.25 1.19 1.15 1.12 1.09 1.08

15 2.23 2.1 1.67 1.45 1.30 1.22 1.16 1.13 1.10 1.08 1.06

16 2.28 2.04 1.63 1.40 1.27 1.19 1.14 1.11 1.08 1.06 1.05

17 2.23 1.96 1.59 1.36 1.24 1.17 1.12 1.09 1.07 1.05 1.04

18 2.22 1.97 1.54 1.32 1.21 1.14 1.10 1.07 1.06 1.04 1.03

19 2.21 1.92 1.49 1.30 1.19 1.13 1.09 1.06 1.04 1.03 1.03

20 2.16 1.86 1.45 1.26 1.16 1.11 1.07 1.05 1.04 1.03 1.02

21 2.19 1.85 1.43 1.24 1.15 1.09 1.07 1.04 1.03 1.02 1.02

22 2.12 1.85 1.40 1.21 1.13 1.08 1.06 1.04 1.03 1.02 1.01

23 2.19 1.78 1.37 1.20 1.12 1.07 1.05 1.03 1.02 1.01 1.01

24 2.12 1.74 1.34 1.18 1.10 1.06 1.04 1.03 1.02 1.01 1.01

25 2.09 1.71 1.32 1.16 1.09 1.06 1.03 1.02 1.01 1.01 1.01

26 2.06 1.67 1.29 1.15 1.08 1.05 1.03 1.02 1.01 1.01 1.01

27 2.04 1.65 1.27 1.14 1.07 1.04 1.02 1.01 1.01 1.01 1.00

28 2.02 1.61 1.25 1.12 1.06 1.04 1.02 1.01 1.01 1.00 1.00

29 2.02 1.6 1.24 1.11 1.06 1.03 1.02 1.01 1.01 1.00 1.00

30 1.98 1.56 1.23 1.10 1.06 1.03 1.02 1.01 1.01 1.00 1.00
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Table 19. Average run length of Gamma processes with 4 change.

0

n
0.5 1 2 3 4 5 6 7 8 9 10

10 1.95 2.04 1.92 1.71 1.54 1.43 1.35 1.29 1.23 1.20 1.17

11 1.98 2.04 1.85 1.63 1.47 1.37 1.29 1.23 1.19 1.16 1.13

12 1.98 2.01 1.77 1.58 1.40 1.30 1.24 1.19 1.15 1.12 1.10

13 1.98 1.98 1.70 1.51 1.36 1.26 1.20 1.16 1.12 1.10 1.08

14 1.99 1.94 1.66 1.44 1.32 1.22 1.17 1.13 1.10 1.08 1.06

15 1.96 1.91 1.61 1.41 1.27 1.19 1.14 1.11 1.08 1.07 1.05

16 1.99 1.88 1.56 1.37 1.25 1.17 1.12 1.09 1.07 1.05 1.04

17 1.97 1.83 1.53 1.33 1.22 1.15 1.11 1.08 1.06 1.04 1.03

18 1.95 1.84 1.49 1.29 1.19 1.13 1.09 1.06 1.05 1.03 1.03

19 1.97 1.78 1.45 1.28 1.17 1.11 1.08 1.05 1.04 1.03 1.02

20 1.94 1.75 1.42 1.24 1.15 1.10 1.06 1.05 1.03 1.02 1.02

21 1.96 1.74 1.39 1.23 1.13 1.08 1.06 1.04 1.03 1.02 1.01

22 1.90 1.73 1.37 1.20 1.12 1.07 1.05 1.03 1.02 1.02 1.01

23 1.96 1.68 1.34 1.19 1.11 1.07 1.04 1.03 1.02 1.01 1.01

24 1.92 1.65 1.32 1.16 1.10 1.06 1.03 1.02 1.01 1.01 1.01

25 1.9 1.62 1.29 1.15 1.09 1.05 1.03 1.02 1.01 1.01 1.00

26 1.87 1.60 1.27 1.14 1.08 1.04 1.02 1.01 1.01 1.01 1.00

27 1.86 1.59 1.26 1.13 1.07 1.04 1.02 1.01 1.01 1.00 1.00

28 1.86 1.55 1.24 1.11 1.06 1.03 1.02 1.01 1.01 1.00 1.00

29 1.85 1.54 1.23 1.10 1.05 1.03 1.02 1.01 1.01 1.00 1.00

30 1.82 1.51 1.22 1.10 1.05 1.02 1.01 1.01 1.00 1.00 1.00


