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Analysis of Multi-server Queues with Second
Optional Service and Bernoulli Vacation

Student: Chia-Huang Wu Advisor: Dr. W. L. Pearn

Department of Industrial Engineering and Management,

College of Management, National Chiao Tung University

Abstract

In this dissertation, the optimization investigated multi-server queueing systems
with the second optional service (SOS) channel, Bernoulli vacation policy, and customer
retrial behaviors are investigated. Multi-server vacation models are more flexible and
applicable in-practice than single server models::For the multiple server queueing models,
the mathematical analyses.are.complicated and difficult; hence there are only a limited

number of studies.

All arriving customers need the first essential service (FES) provided by the servers.
As soon as the FES of a customer is completed, a customer may leave the system or opt
for the SOS. Bernoulli vacation policy means that the server may take one and only one
vacationof random length with certain probability at each service completion. As the
completion of vacation, the server stays idly for the next new arriving customer or serves
the customers waiting in the queue, if any. That is, the single vacation policy. If the
customer finding all servers busy always joins the orbit and tries to enter the system for
service later. This manner continues until the customer is-eventually served then leave the
system. This is so-called the customer retrial behaviors. Because most of retrial behaviors
of the customers in the orbit are failed without the change of states, we assume that the
number of customers who can generate retrial requests is restricted (truncated) to an

upper bound value N. This setting makes the mathematical model easier to be analyzed.

We investigate four queueing models include the M/M/c (retrial) queue with SOS
channel, the M/M/c (retrial) queue with modified Bernoulli single vacation policy, and
the M/M/c retrial queue with Bernoulli single vacation policy. For those four queueing
systems, we develop the stability conditions and steady-state probability solutions by the
matrix-geometric method and recursive technique. Furthermore, it is rather difficult to
derive the closed-form solution of the rate matrix for those four queueing systems. The

rate matrix is the most important component for implementing the matrix-geometric

il



method to analyze the infinite capacity queueing system. Here, we employ a monotone
and convergent sequence to approximate the rate matrix, and obtain the approximation
solution of the steady-state probability. The expected cost functions are established to
determine the optimal value of the number of servers, mean service rate, mean vacation
rate and other system parameters. By implementing the direct search method and
Quasi-Newton method, we can find the optimal solution heuristically so that the cost
function is minimized. Because of sensitivity investigation on the queueing system with
critical input parameters may provide some information for the system analyst. A
sensitivity analysis is performed to discuss how the system performances and the optimal
solutions are affected by the.input parameters in the investigated queueing models. For

illustration purpose, numerical results are also presented.
Keywords: Bernoulli wvacation policy, direct search method, first essential service,

matrix-geometric method, Quasi-Newton method, rate matrix, retrial, second optional

service.
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Chapter 1

Introduction

Queueing system represents an example of a much broader class of interesting
dynamic systems. Waiting in line is an exhausting activity in our life. How much time
is spent in one’s daily activities waiting in some form of a queue: for breakfast;
stopped at a traffic light; slowed down on the highways and freeways; delayed at the
entrance to one’s parking facility; queued for access to an elevator; standing in line for
the morning coffee; holding the telephone as it rings, and so on. The list is endless,
and too often also are the queues. Therefore, queueing theory is a practical subject and
plays an important role in.scientific disciplines. In. Section 1.1, we describe the
background of the queueing theory. Section 1.2 is devoted to introduce theoretical
analysis techniques. In Section 1.3, we relate our problem to earlier works in the
literature. Section 1.4 shows the description of the queueing models in this thesis. At

the end of this chapter, the scope of the thesis is presented in Section 1.5.

1.1 Background

Erlang in 1909, published “The Theory of Probabilities and Telephone
Conversations” who was also responsible for the notion of stationary equilibrium.
Erlang introduced so-called balance-of-state equations for the first consideration of the
optimization of a queueing system. Many valuable applications of the queueing theory
such as traffic flow, scheduling, and facility design are well documented in the
literatures. Queueing theory originated as a very practical subject that has largely
arisen since the close of World War II. The development of the practice of queueing
theory must not be restricted by a lack of closed-form solutions, and problem solvers

must be able to put the developed theory to good use.

A queueing system can be described as customers arriving for service, waiting
for service if it is not immediate, and if having waited for service, leaving the system
after being served. Queueing theory was developed to provide models to predict the
behavior of systems that attempt to provide service for randomly arising demands.
Mathematically, queueing theory deals with the consequence of two basic types of
random processes, called arrival processes and service time processes, as they interact
under various assumptions concerning the structure of the waiting system. For a
queueing processes, six characteristics provide an adequate description : (1) arrival

pattern of customers, (2) service pattern of servers, (3)queue discipline, (4) system



capacity, (5) number of service channels, and (6) number of service stages.

The process of arrivals is stochastic, so it is necessary to know the customer
arrival process (batch or bulk arrivals) and the reaction of a customer upon entering
the system (balking, reneged, or retrial). More importantly, a probability distribution is
needed to describe the sequence of customer service times. The service process may
depend on the number of customers waiting for service which is so-called
state-dependent service. In general, customers arrive and depart at irregular intervals;
hence queue length will assume no definitive pattern unless arrivals and service are
deterministic. Thus it follows that a probability distribution for queue lengths will be

the result of two separate processes - arrivals and services.

The most common discipline that can be observed in everyday life is first come,
first served (FCES). Another discipline as last come, first served (LCES) is applicable
to many ~inventory systems.. Other priority disciplines as preemptive and
non-preemptive case can-also-be implemented in various situations. Usually, system
capacity is-assumed infinite. A customer, is forced to balk-if the system capacity is
limited and full. Number of service channels means the number of servers in the
system. A multi-channel queueing system may have a single queue or allows a queue
for each channel (multiple queues). In a multi-stage queueing system, a customer may

requests several stages of services (optional service) or has feedback behavior.

1.2 Literature Review

Recently, there have been more studies to multi-server queueing models are
investigated because queues with multiple servers are more flexible and applicable in
practice than single server models. There are numerous- literatures that deal with the
system characterization and optimization problem on the queues with second optional
service channel, vacation policy, or customer retrial behavior. Queueing models with
server vacations are effective tools for performance analysis of manufacturing systems,
local area networks, and data communication systems. Excellent surveys on the single
server vacation models have been reported by Doshi [29], Takagi [54] and Ke et al.
[36]. The variations and extensions of these vacation models were developed by
several researchers such as Lee et al. [42, 43], Choudhury [15, 16], Ke and Chu [34]

and many others.
1. queues with SOS channel

A pioneering work in the queue with SOS channel was proposed by Madhi [48]



who first introduced the concept of a second optional service. It is assumed that all
customers need the first essential service but a part of them may requests the second
optional service at the first essential service completion. Madan [47] studied an M/G/1
queue with a second optional service using the supplementary variable technique, in
which he considered a general service time distribution for the FES service and an
exponential service time distribution for the SOS. Madan [47] also cited some
important applications of this model in many real-life situations. Later, the above
model with general service time distribution was discussed by Al-Jararha and Madan
[2]. Choudhury and Madan [22] and Choudhury and Paul [23] studied the queue size
distribution at a random .epoch as well as at a departure epoch for an M™/G/1
queueing system with a' SOS channel and different considerations under N-policy. The
reliability measures were examined by Wang [59] for the ordinary M/G/1 queue with
channel breakdowns and SOS. Ke [32] investigated a batch arrival M™/G/1 queueing
system with. J optional services..Choudhury and Tadj [24] generalized this type of
model by introducing the-concept of a:server breakdown and a delay-repair-period.
More studied results can be surveyed in Choudhury and Tadj [25], Choudhury et al.
[26], Choudhury-and-Deka [19]; Ke et al. [35],-Wang and Li [60], Wang et al. [61],
Wu et al. [63], and Yang et al. [64].

2. queues with Bernoulli vacation policy

The M/M/c queue with servers’ vacations was introduced by Levy and Yechiali
[44]. Keilson and Servi [37] firstly investigated an oscillating random walk models for
GI/G/1 vacation system with Bernoulli schedules. Bernoulli vacation means that when
the service of a customer is completed, the server may leave for a vacation of random
interval with probability. p or to serve the next customer with probability 1—p
(Choudhury and Madan [21, 22]). A numbers of papers (Tadj et al. [S3], Madan et al.
[46], Choudhury [17, 18]) have appeared in-queueing literature in which the server
provides to each heterogeneous service with Bernoulli schedule vacation (BSV).
Sherman and Kharoufeh [51] developed the optimal Bernoulli routing in an unreliable
M/G/1 retrial queue. They showed that the system exhibits a dual stability structure

and characterized the optimal Bernoulli routing policy.

3. retrial queues

Review of retrial queue literature could be found in Yang and Templetion [65],
Falin and Templeton [30] and Artalejo [4]. Retrial queueing system is characterized by
the feature that the arriving customers who on encountering the busy server will join a

retrial queue called orbit when all servers are busy and unavailable. An arbitrary



customer in the orbit generates a stream of repeated requests that is independent of the
rest of customers in the orbit. This situation arises in telephone switching systems,
telecommunication networks and computer systems. A number of applications of
retrial queues in science and engineering can be found in Kulkarni and Liang [39]
Many interesting studies have been devoted to an approximate approach to the
stationary probabilities for system states (Artalejo and Choudhury [6], Bright and
Taylor [12], Stepanov [52], Breuer et al. [11] and Chakravarthy and Dudin [13]).
Gomez-Corral [31] gave a detailed bibliographical guide to the analysis of retrial
queues through matrix analytic techniques. Amador and Artalejo [3] refer to a busy
period and present a detailed computational analysis of four new performance
measures: the successful retrials, the blocked retrials, the successful primary arrivals,
and the blocked ‘primary arrivals. Kim et al. [38] studied the BMAP/PH/N retrial
queueing system operating in Markoyvian random environment. The main performance
measures of the system were-derived and some numerical example illustrations were
presented. Then, the finite-source MAP/PH/Nuretrial G-queue operating in a random
environment was investigated by Wu ef al. [62]. Formulae for important performance

measures are derived: These results.can model the Ethernet system appropriately.

The ' monotonicity properties of an unreliable M/G.1  retrial queue was
investigated by Taleb and Aissani [55] by using the general ‘theory of stochastic
ordering:"An analysis of the energetic version of retrial M™*/G/1 queue with vacation
under quite general assumptions about parametric.distributions was provided by
Aissani [1]. The computation and optimization problem of a multi-server retrial queue
with geometric loss and feedback was investigated by Lin and Ke [45]. For an M/M/c
retrial queue with PH distribution of retrial time, Yang and Dug [66] presented an
approximation which have some different features from the previous literature and can

be useful for more complicated queueing system.

It is worth noting that the truncation models seem to be the most convenient
method for obtaining reliable numerical solutions for the M/M/c retrial queue. Neuts
and Rao [50] and Artalejo and Pozo [7] proposed several models in this direction and
provided efficient approximate solutions to the stationary distribution of the M/M/c
retrial queue. Artalejo et al. [8-10] presented an algorithmic analysis of the maximum
number of customers in orbit (and in the system) during a busy period. Artalejo [5]
presented a bibliography on retrial queues made during the past decade 2000-2009.
Tien and Ram [58] provided an efficient method to compute the rate matrix for retrial
queues with large number of servers using characteristic matrix polynomial technique.

Furthermore, Tien [56, 57] also presented new and efficient computation algorithms



for the multi-server retrial queues with various conditions.

Recently, the queueing retrial models with SOS channel or and various vacation
policies are discussed. Choudhury [17, 18] investigated the M/G/1 and M™/G/1 queue
with two phases of heterogeneous service and Bernoulli vacation schedule which
operate under various retrial policies. Choudhury and Deka [19] dealt with the
steady-state behavior of M™/G/1 retrial queue with second optional service, unreliable
srever and Bernoulli admission mechanism. Furthermore, Ke and Chang [33] derived
the mathematical model of M[x]/(Gl,Gz)/l retrial queue under Bernoulli vacation
schedules with general repeated attempts and starting failures. Later, Langaris and
Dimitriou [40] investigated a single-server queueing with - n -phases of service and
(n—1) types of retrial customers. Any conditions mentioned earlier can be considered
to be assumptions of a queueing system. Choudhury et al. [27] investigated an
M™/G/1 queue with two phase service and Bernoulli vacation schedule under multiple
vacation policy. Lately, Dimitriou and Langaris [28] discussed a repairable queueing

model with two-phase service, start-up times and retrial customers.

Existing works-with-optional- service or Bernoulli vacation policy, including
those above, mainly focused on single-server queue. Therefore, in this thesis, we deal
with four queueing models with various considerations. The first two are M/M/c
queue with second optional service channel and M/M/c queue with SOS channel and
customer retrial behavior. Then, an"M/M/c queue with modified Bernoulli single
vacation (BSV) policy is considered. Finally, an M/M/c/BSV' retrial queue is

investigated.
1.3 Theoretical Analysis Technique

In this section, ‘we  introduce  two theoretical analysis techniques: matrix-
geometric method and Quasi-Newton method. Furthermore, some methods

implemented in calculations and computations are also presented in detail.
1.3.1. Matrix-geometric method

Neuts [49] introduced the matrix-geometric method which establish a transition
matrix whose entries become matrices. For a quasi-birth-death (QBD) process, the
infinitesimal generator matrix Q can be rewritten in a block-matrix form with
tri-diagonal structure. After formulating the Q values for a specific problem, the
steady-state solution can be determined analytically via the equation IIQ =0 where

I denotes the steady-state probability vector. The QBD process describes a



generalization of the birth-death process. As with the birth-death process movements
between it moves skip free up and down. For an infinite capacity queueing system, a
matrix R, called rate matrix, is an important component as deriving the steady-state
probabilities recursively. The rate matrix is the nonnegative solution of a matrix-

quadratic equation in the following

R’C, +RA_+B =0,

where matrices C,, A_ and B are sub-matrices of the infinitesimal generator Q
of the queueing system. In this dissertation, we will use the property as follow to get

steady-state solution

0,=0R, i>0.

As a result, the developing of rate matrix is a significant object in the investigation of
a queue with infinite capacity. The rate matrix R can be obtained. explicitly in
close-form by using recursive technique via computer software. When the solution of
R becomes more complex-and difficult to be obtained, Neuts [49] provided some
algorithms such as linear progression algorithm and sequence convergence algorithm

to approximate the rate matrix R.
1.3.2. Quasi-Newton method

Constantly, the analytic study of the optimization problem will be an arduous
task because of the high complexity. Therefore, some heuristic algorithms to obtain
the approximate solution are included. In this-dissertation, the Quasi-Newton method
is employed to find the heuristic solution of the optimization problem with continuous
decision variables. It is noted that the derivative of the object function with respect to
input parameters indicates the.direction which the object function increases. That is,
the better (optimal) solution can be found along the opposite direction of the gradient.
(see Chong and Zak [14]). The procedures of Quasi-Newton method are described as

below:

Algorithm : Quasi-Newton Method

Step 1 Set a initial trial solution x* for object function F , and compute VF(x”).
Step 2 While the norm of gradient WF (x" )‘ > & (tolerance) do Steps 3-4.

Step 3 Compute the cost Hessian matrix at point x”’ denoted by H(x"").

Step 4 Find the new trial solution x“*" =x® —[H(x")]"'VF(x").

Step 5 Compute VF(x"*") and back to Step 2.



Comparison with gradient methods, Quasi-Newton method use the second
derivative (Hessian) and it has order of convergence at least 2 (see Chone and Zak
[14]). That is, for quadratic function, Quasi-Newton method converges in one step.
However, it may not have descent property even though it may diverge if the initial
trial solution does not start close the optimal solution sufficiently. Moreover, the
heuristic solution found by the Quasi-Newton method may be local optimal solution

rather than global optimal solution.

1.4 Problem Statement

In this dissertation, we investigate the optimal problem-of an M/M/c (retrial)
queue with second optional service (SOS) channel or Bernoulli single vacation policy.
In day to day.life, one encounters numerous examples of queueing models where all
arriving customers needan-essential service but only some require an additional
optional ‘service. For example, a manufacturing industrial system for a pump that
manufactures different kinds-of pumps which require shafts of various dimensions is
considered. The arrival of shafts from the turning center to the computer numerical
control (CNC) copy turning center follows a random process, which the center owns
multiple CNC machines. The mechanics set up the template in these CNC machines to
perform the copy turning process shafts (i.e., the first essential service). The good
quality shafts items are kept in the storage and are sold. Some of the processed (served)
shafts are defective and need to be rework (re-served) to meet the required
specification (i.e., the second optional service). Furthermore, in reality, the customers
do not always waiting in the queue but retry to enter the system later when the system
is full-loading: This is so-called the customer retrial behavior. In addition, the server
may take a vacation at each service completion. For example, consider a production
process with a number of machines: It may so happen that the production process
either needs to be temporarily stopped for overhauling and maintenance of the system
after each service completion or continue the service for the next unit/customer in the
queue. Hence, the servers may take a vacation with certain probability which is called

Bernoulli vacation policy.

We assume that arrivals of customers follow a Poisson process with rate A.
There are ¢ servers provide service to all arriving customers for FES. Service times
of FRS channel are independent and identically distributed (i.i.d.) random variables
obeying a exponential distribution function with service rate f. As soon as FES of a

customer is completed, a customer may leave the system with probability 1-6 or



may opt for SOS with probability 8 (0<6<1), at the completion of which the
customer departs from the system and the next customer, if any, from the queue is
taken up for his FES. Service times of SOS channel are i.i.d. random variables having
a exponential distribution with service rate 4,. When an arriving customer finding all
servers are busy will joins the orbit and make repeated attempts in random intervals
having length exponentially distribution with retrial rate ¢ . This manner continues
until the customer is eventually served. We assume that there exists an upper bound
N on the number of customers in the orbit that are allowed to conduct retrials (Neuts
and Rao [50], Artalejo and Pozo [7]). The server may take a vacation of random length
with probability p or continue to serve the next customer, if any with probability

q (g =1- p). The vacation times are also exponentially distributed.

It is also assumed. that arriving customers form a single waiting line based on the
FCFS (first-come, first-served) discipline. One server can serve one-only and only one
customer at a time. The service process, the arrival process and the vacation process
are eventually independent. A customer who.arrives and'finds the server busy or on
vacation must wait in the queue until a server is available. At the vacation completion,
the server backs to server the customers waiting in the queue or stays idly in the

system. That is, single vacation policy.
1.5 Scope of Dissertation

The main purposes of this dissertation are to analyze: (i) the M/M/c (retrial)
queue with second optional service channel; and (ii) the M/M/c (retrial) queue with
Bernoulli single vacation policy. This dissertation is organized by six chapters as

follows:

Chapter 1 is an introduction, which introduces the background of the queueing
theory. Some earlier studies and literatures on the multi-server queue with retrial
behaviors and vacation policy are included. Several techniques and methods relevant

to this study are presented.

In Chapter 2, we study the optimization of the M/M/c queue with second optional
service channel. The matrix-geometric method is employed to derive the steady-state
probability vector. One algorithm to obtain the approximate rate matrix is provided.
The exact and explicit expressions of some important system performances are given
by using the matrix-analytical method. Next, the expected cost function per unit time

is constructed by the system performances. We determine the optimal number of



servers and the optimal service rates to minimize the expected cost per unit time. In
addition, a sensitivity analysis is also investigated. Finally, some numerical results are

provided to illustrate the optimization procedures.

In Chapter 3, we more consider the retrial behavior of the customer then extend
the queueing system investigated in Chapter 2 into an M/M/c retrial queue with SOS
channel. The arriving customer joins the orbit and retries to enter the system for
service later. The entries of state-transition matrix are listed explicitly. An algorithm is
provided to solve the steady-state equation system recursively. The expresses of the
system performance are given. The effect of the system parameters on the system

performances is studied: Some numerical examples and graphs are presented.

In Chapter 4, we consider an M/M/c queue with a modified Bernoulli single
vacation policy. Under Bernoulli vacation policy, the server may take a vacation at the
service completion of a customer with a certain probability. Particularly, we modify
the tradition Bernoulli vacation-that the-vacation may occur only when the server is
idle after service completion.. At the vacation completion, the server serves the
customers waiting-in-the queue- or-stays idle in-the system, that is, single vacation
policy. The closed-form expression of the rate matrix is derived explicitly. Some
results about the special case of single server are provided. For this queueing system,
the optimal number of servers, the optimal service rate and the optimal vacation rate

are investigated numerically.

In Chapter 5, the customer retrial behavior is included in the model considered in
Chapter 4. Similarly, the stability condition, the rate matrix, ‘and the steady-state
probability are derived by using matrix-analytical technique. The system performance
expressions are also presented. The optimal number of servers, the optimal vacation
rate, and the optimal service rate are determined to -minimize the expected cost per

unit time.

Chapter 6 presents some conclusions based on results of the investigation, and

recommendations for the future investigations.



Chapter 2

M/M/c Queueing System with Second
Optional Service Channel

In day to day life, second optional services are very commonly observed in some
queueing system (see Madan [47]). For example, all customers come to shops which
sell coffee beans will buy coffee beans or grains but only some of them want to utilize
a grinding facility service. All ships arriving at a port may need unloading service on
arrival but only some of them may require re-loading service soon after the unloading.
All cars arriving at a gas station need gas refueling but only .some of them require a

car wash services:after the refueling.

In this chapter, we study the optimization of the multi-server queueing system
with SOS.” All arriving customers arrive to demand the FES. After the completion of
the FES, a customer may-leave-the system with probability (16 ) or may instantly go
for a SOS with probability~@- (€€ [0,1]). The customers arrive according to a
Poisson process. Service times of the FES and SOS. channels are assumed to be
exponentially distributed. There are ¢ channels (servers) that provide the first
essential service as well as the second optional service to arriving customers. Each
channel can serve only one customer and provides only one of essential service or

second optional service at a time.

This chapter is organized as follows: .In Section 2.1, we give some basic
assumptions of the queue under study and give some notations. Section 2.2, the
steady-state equations are obtained and represented in matrix form. In Section 2.3, the
stability condition is derived. An algorithm to find the rate matrix is provided. In
Section 2.4, the stationary probabilities are gained by implementing a recursive
procedure. In Section 2.5, some explicit expressions of important system performance

measures are derived. Finally, numerical results are given in Section 2.6.
2.1 Assumptions and Notations

We assume that arrivals of customers follow a Poisson process with rate 4. A
single server is needed to serve all arriving customers for the FES. The service times
of the FES channel are independent and identically distributed (i.i.d) random variables
obeying an exponential distributions with mean 1/, . As soon as the FES of a

customer is completed, a customer may leave the system with probability 1-6 or
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opt for a SOS provided by the same server with probability 8 (8e€][0,1]), at the
completion of which the customer departs from the system and the next customer, if
any, from the queue is taken up for his FES. The service times of the SOS channel are
another independent and identically distributed (i.i.d) random variables having an
exponential distributions with mean 1/ x,. Furthermore, the same server is assumed
to serve both service channels. Customers who upon entry into the channel facility,
find that all channels are busy have to wait in the queue until a channel becomes
available. It is also assumed that arriving customers form a single waiting line based
on the FCFS (first-come, first-served) discipline. Various stochastic processes
involved in the system are .assumed to be independent of each other. We will represent
this queue as the M/M/c with SOS channel; where the first symbol denotes the
inter-arrival time distribution for customer, the second symbol denotes service time
distributions for both- FRS and SOS channels, and the third symbol denotes number of

channels that providing services.

In this chapter, the following notations and probabilities are used.
A — mean arrival rate
M, — mean service rate of FES channel
M, — mean service rate of SOS channel
6@ — probability that a customer may opt for the SOS
¢ — number of channels (servers)
IT — steady-state probability vector
Q — . infinitesimal generator
I — identity matrix
e — identity column vector (a column vector with-all elements equal to 1)
F — irreducible generator
X — invariant probability
R — rate matrix
L, — expected number of customers in the FES channel
L, — expected number of customers in the SOS channel
E[I] — expected number of idle servers
E[B] — expected number of busy servers
L, — expected number of customers in the system

F — cost function

11



2.2 M/M/c Queue with SOS channel

For an infinite capacity M/M/c queueing system with SOS channel. The state of
the system are described by the pair (i, j), i=0,1,2,... and j=0,1,2,...,c, where i
and j denote the number of customers in the FES and SOS channels, respectively. If
(i+ j) < c, the customers upon to the server will get service immediately. Otherwise
((i+ j)>c), the new arriving customer must wait in the queue until a server becomes

available. In steady-state, we define the following notations:

P ; = probability that there are i customers in the FES channel and there are j

customers in the SOS channel, where i=0,1,2,... and j=0,1,2,...,c.

Referring to the' state-transition-rate diagram shown in Figure 2.1 and using the

birth-and-death process, the steady-state equations governing the queueing system are

@ j=0

AR, o ==k + s F, (2.1
A+iu)Py=AP5+ (i +DA- P,  + 1Py, 1<i<c-1, (2.2)
4+ cu)Eb, = /u::—l,o +c(l-OuF, ,+i,F,, c=<i (23)

(i) 1€j<c-1
(A+ jp)F, ;=G b+ (U= uB ; +(j+ DL, .., 2.4)
A+ip + ju)P; =AP_ j+ G+ DB, +@+DA=O P, ; (2.5)

+(j+1)ﬂzf?,j+1, |
[A+(c— )y + j:uz][;,j = ﬂ’Pi—l,j +(c+1- j)9ﬂ1Pi+1,j—1 +(c—Nd- g)lulpm,j (2.6)
+(j+ l)luZPi,jH’ c—Jj=i

(i) j=c
(l"'cﬂz)Po,c =6uEB, (2.7)
(A+ ci,)F, = /?’Pi—l,c + 9:“1Pi+1,c—1 , 1=, (2.8)

There is no way of solving equations (2.1)-(2.8) in a recursive manner to develop the
explicit expressions for the steady-state probabilities F,;, where i=0,1,2,... and
j=0,1,2...,c. Alternatively, the infinitesimal generator Q describing the M/M/c

queueing system with SOS channel is of the block-tri-diagonal form:
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00) (1) £(2) - - lc—1) l(c) l(c+]) l(c+2) ---

0(2) C, A, B
Q= . .9

t(c-1) C., A, B

(c) C. A B

U(c+1) C A B

Each entry of the matrix C a square matrix of o c+1 listed as follows:

B=I, (2.10)
EIS
(2.12)
where I is the identity matrix of ord

4 - —(A+iw +ju,), 1<i+j<c, 2.13)

MO HA+ =+ ), i+ o> e '
. il-O)u, 1<i+j<c, o

Yo le= -0y, i+j > c '
4 = iGu, 1<i+j<c, 2.15)

Y-, i+ > e '
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Consequently, the steady-state equations (2.1)-(2.8) can be represented in matrix form
using the above matrices. The stationary probability vector of Q is denoted by
symbol II=[P,P,P,...P_,P,P

c—=1° c+l2*

..] where P, =[FP,,P,,...,P ] is a row vector

with dimension c¢+1.

2.3 Matrix-geometric Property

Before handling the steady-state equation system, the stability of the queueing
system should be confirmed. It implies, that the unique solution of the steady-state
equation system ITQ =0 -exists. Next, we would derive the sufficient and necessary

stability condition.
2.3.1. Stability condition

Let
F=C_+A _+B, (2.16)

is an irreducible generator. X =[x,,X,,..., X, ] 1s the invariant probability of F . Then

x satisfies the two conditions

xF=0 and xe=1, 2.17)

where' e 1is a column vector with dimension c¢+1 and all its elements equal to one.
Expand xF =0 implies
O x, = x /L, (2.18a)
—(c=i+DOux_ +[(c—)Gu, +iw,lx, —(+D,x,, =0, 1<i<c-1, (2.18b)
O, x. = X, . (2.18¢c)

Equation (2.18) implies that x; = cOu, / i, x,, and the following recursive equation

i+1 :%xi’ i:L--v,C_L (218d)
I+Du,
Then, we have
i+l
c—1i)6 c \ 6 )
» =ﬁx, {HJ(#j X, i=1.,c—1. (2.18¢)
2 2

Also using the condition x, +x, +...+x, =1, the probability x, is determined as

14



c (¢ Qul T ‘9/11 -
0= A | =(1+—| , (2.18f)
S HIEE

By Theorem 3.1.1 in Neuts [49], the sufficient and necessary stability condition is
xBe <xCe, (2.19)

Substituting B and C, into equation (2.19) and using (2.18f) to get
uc—-L)>A, (2.20a)

which is equivalent to

<1, (2.20b)
H (C L)

where
L, =x +2x,+..Ftcx,

. 2.21
AR\

) Hy %) Hy

denotes the expected number of customers in the SOS channel. Note that € =0 or
U, = (i.e., L,=0), equation (2.21) can be reduced to the stability condition for the
ordinary M/M/c queueing system without SOS channel.

2.3.2. Linear progression algorithm

When .the stability condition is satisfied, the steady-state equation system
MIQ =0 has a unique solution. Our aim is to obtain the steady-state vector Il by
means of the matrix analytic method and normalization. By applying the matrix

geometric method, the steady-state probabilities [P, P.,,,P.,,...] can be obtained as

cHl? T et20 T e300

P :]JCRi‘”, i>c+1, where R 'is the minimal nonnegative solution to the matrix

quadratic equation

R’C, +RA_+B =0. (2.22)

The matrix R is a very important matrix needed in the evaluation of the
performance measures of a QBD process. It is known as the rate matrix of the Markov
chain Q. Developing a closed-form solution for the rate matrix by taking the
nonlinear equation (2.22) is very difficult because the matrix structure of A_, B, and
C, is not consistent. In the following, we will develop some matrix analytic

properties to approximate the rate matrix R.
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Let us decompose the level space into two groups as £(J)={£(0),£(1),...,¢(c)}
and A(K)={l(c+1),l(c+2),...}. The QBD model of this thesis is partially
level-dependent up to a certain level (group /(J)) and thereafter becomes a infinite
level-independent (group /¢(K)). It is well-known that an infinite level-independent
QBD has the matrix-geometric form which can be solved from the matrix quadratic
equation (Latouche and Ramaswami [41]). The level-independent structure in our
thesis can be solved by Cramer’s rule. Thus, we can use the finite level-dependent
algorithm first and then the algorithm of infinite level-independent QBDs to derive the

state probabilities.

It is note from the matrix (9) that starting from level /(c) the matrices C_,
and A_, changeto €, and A_, respectively, which implies that the process holds
an infinite level-independent QBD with group ¢(K). First, we reduce the QBD-Q
into a finite level-dependent QBD- Q as:

TON Ue) fe+1)
0y [A, *B 0 -0 0]
iy |c, A, B -0 0

U= A e g (2.23)
) 000 - A B
fe+) 00 0 - € H]

From Neuts [49], the matrix -H "in (2.23) represents the transitions between the states
belonging to the imaginary level group /(K). The boundary steady-state probability
vector P, basedon /(¢c+1) is given by solving the following equations

c+l

PB+P H=P_, (from QBD-Q") (2.242)
PB+P A +P_,C =P,. (fromQBD-Q) (2.24b)

Solving equations (2.24), we obtain
H=A_+RC,. (2.25)

Substituting (2.25) into equation (2.23), it yields the following system of linear

equation
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A, B 0 |
C, A B
\ 0 C, A, -0 0
AQ =[R.B. B Byl 07 T . =0, (2.26)
0 0 0 A, B
|0 0 0 C. H]

where P, =[F,,F,,P,,..,F,

ic

], i=0,1,2,...,c+1. By the arguments of Latouche and
Ramaswami [41], there exists an infinitesimal generator U of the transient
continuous-time Markov chain that'is restricted to level *4(c+2) before it reaches

l(c+1) from group level /(¢).Itis given by
U=A_+B(-U)"'C,=A_+BG=A_+RC,;=H,

where

R=B-U)', . G=(-U)'C,.

Based on the analysis above, we summarize an algorithm to obtain the approximation

for the rate matrix R . (see Latouche and Ramaswami [41]).

Algorithm: Linear Progression Algorithm

Step 1 ' G=(=A,)"'C,.

Step 2 while [e—Ge|> & (tolerance) do Steps.3-4.
Step3set H=A_+BG.

Step 4 set G =(=H)'C,.

Step 5 Assign R=B(-H) .

2.4 Probability Computation

By solving equation (2.24) recursively, the recursive relationship between

steady-state probability vectors is given as below:
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R,=RC,(-A))" = P4, (2.27a)

P, =PC,[~(¢B+A)]" = P9, (2.27h)

P, = PC,[~(¢B+A,)]" =P, (2.27¢)

P =PC[-(p_B+A_)I"' =Pg, (2.27d)
P=P,CI-@B+A)" =P 4, (2.27¢)

PR[¢_ B+H]=0. (2.271)
where ¢ =C,(-A,)", ¢, =C,[<@B+A)I" /..., ¢=C[~(¢_B+A )", and

9., =C.[-(¢.B+A )] "': Consequently, the levels. P(0<i<c —11) state prolgabilities
of equation (2.27) can be written in terms of F as F=F 1l¢,, F=F1Il¢g, ..,

P =P 1Il¢  iand the rest of the steady-state vector [P,Py,F.,,, ..] can be

c+l? " c+2°

determined recursively using P = PR, for i>c. Once the level probability P. is
P.P,

c+l "

obtained, the steady-state solutions [F,PB,B,..., P, ..] can be determined.

=12

The steady-state probability P can _be solved by (2.27f) and the following

normalization equation

Y Pe=[B+B+..+ B+ B+ RL+ B, +.]e
n=0
1 2 c
=[PIl¢+P g +. . +PIp+P +PR+PR*+.Je (2.28)

Ch k
=P[) Mg +I+RA-T) 'e=1.
k=11=c

Solving equations  (2.27 f) and (2.28) in accordance with Cramer’s rule, we obtain
P.. Next, computing the prior state probabilities [F,, B P, ...,P., ] from (2.27) and
obtaining [P,,,P.,...] bythe formula P =PR™, i>c+l.

c+l?
2.5 System Performance Measures

The system performance measures, such as the expected number of customers in
the FES channel (denoted by L), the expected number of customers in the SOS
channel (denoted by L,), the expected number of customers in the system (denoted
by L ), the expected number of idle servers (denoted by E[I]) and the expected
number of busy servers in the system (denoted by E[B]), can be evaluated from the
steady-state probabilities P, =[P, P, P,,...,P;]. The expressions for L, L,, L,
E[I],and E[B] are given by
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L =Y iPe, (2.29)
i=1

L,=Y Pu, (2.30)
L= Llo+Lz (2.31)
E[l]= CZ_iEvi, (2.32)
E[B] =lc:’0— E[I]. (2.33)

where u=[0,1,2,...,c]" and e=[l...,1]" are column vectors with dimension c+1.
v, is also a column vector with dimension. c¢+1 with the ;" elements is
max(0,c—i— j+1). The summation in (2.29) and (2.30) has an infinite number of
terms and its computation is cumbersome. We provide another explicit formula for L

which simplifies the computational procedure.
L =L+,
Gl c—1
=> iPe+[cP. +(c+DPR+..Je+ Y Pu+[P,+PR+..]u
i=1 i=0

‘.

- (2.34)

c—1
iPe+cP.(I-R)'e+ RRA-R)"e+ > Pu+P(I-R)'u

i=0

g

[
_ =

=) P(ie+u)+P(I-R)"(ce+w)+ PRA-R)’e.

i=

o

For an infinite capacity M/M/c.queueing system with second optional service channel,
the numerical results of 'L are obtained by considering the following three cases

with different values of c.

Case I. #,=15, u,=5, 6=0.05, vary the values of A from 0.5 to 10.
Case 2. A=10, M, =15, 6=0.05, vary the values of 1, from 2.5 to 10.
Case 3. A=10, #,=5, 6=0.05, vary the values of g, from 15 to 25.

Results for L are depicted in Figures 2.2-2.4 for Cases 1-3, respectively. One sees
from Figure 2.1 that L drastically increases as A increases for c¢=1, while L
slightly increases as A increases for ¢ > 2. From Figures 2.3 and 2.4 we can see
that L drastically decreases as g, or 4, increases for c¢=1, while L is not

sensitive to g, or u, for ¢ =>2.
2.6 Numerical Results
In this section, we construct the total expected cost function per customer per unit
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time based on the system performance measures presented in the previous section.
Our main objective is to determine the optimum number of server c, say ¢ , and the
optimal value of the service rate g = (i, 1), say f = (4 ,H,) , simultaneously, so

that the expected cost function is minimized. To do this, we define the following cost

elements:
C, = cost per unit time per customer present in the system,
C, = cost per unit time when one server is busy,
C, = cost per unit time of providing a service rate 4,
C, = cost per unit time of providing a service rate (4, ,
C, = fixed cost for purchase of one server.

Using these cost elements listed above, the expect cost function F(c, 4, 1,) is given
by
F(e,usp4,)=C, L +CE[B]+C,u, + C. i, + C,c. (2.35)

The cost function in (2.35) are assumed to be linear in the mean number of indicated
quantity, and it would have-been a hard task to develop analytic results for the
optimum value (¢, ,4,) because the expected cost function is highly complex and
non-linear in terms of (¢, 4, &,) . In the next section, we firstly use the Quasi-Newton
method to find the optimal value of continuous variable (i,,4,), say (4 4,), and
then use the direct search method to search the optimal value of discrete variable c,
say ¢ 1 For practice, the number of servers is bounded by-a positive integer c, >1.
We want to find the joint optimal value ( & , 4, ) for each given ¢ in the feasible set

{1,2,...,c,}. The cost minimization problem can be illustrated mathematically as

F(c,ﬂ;“,ﬂ;):(ﬂg){F(c,yl,ﬂz)|c}, c =124 4K (2.36)

subject to equation (2:20), the stability condition: For the problem of (2.36), it is
difficult to show the convexity of F(c,4.1,) ™ (4,4,) . We note that the
derivative of the cost function F with respect to (g,,4,) indicates the direction
which the cost function increases. It means that, the optimal value (4 ,4,) can be
found along this opposite direction of the gradient (see Chong and Zak [15]). That is,
for a fixed ¢, the Quasi-Newton method is employed to search (g,4,) until the
minimum value of F(c, 4, 1,) is achieved, say F(c, ul* , ,u;). To demonstrate the
valid and the process of the optimization method, some examples are performed in

Table 2.1 by considering the following cost parameters

C, =$250/customer/unit-time, C, =$180 /server/ unit-time,
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C, =$15/ unit-time, C, =$30/ unit-time, and C, =$60 /server.

Under other given parameters, one can find from Table 2.1 that the minimum expected
cost per unit time of 1682.21 is achieved at (g, , i) =(27.3756, 14.0267) by using 6
iterations, which is ¢=3 based on Case (i) with initial value (g,,x,)=(20, 10).
Based on Case (ii) with ¢=2 and initial value (,,u,)=(20, 20), the minimum
expected cost per unit time of 1737.30 is achieved at (g, , u,) =(28.8310, 18.7206) by

using 6 iterations.

After we obtain the joint optimal value (g, ,4,) of the continuous variable
(1, 10,) , we will use the direct search method to obtain the optimal ¢ such that the
expected cost function F(c, 4 , it,) -attains a minimum, say “F(c , &, i, ) . Therefore,
the cost minimization problem can be illustrated mathematically as
F(c', 1, 15) = Ce{g?%){F(c, 0 15)}. (2.37)
The' procedure to find the optimal solution is described in the following. A
numerical example is shown in Table 2.2 based on (i) (4,6) =(15, 0.5) and (ii)
(4,6) =(20, 0.8). Based on Table 2.2, it is noted that the optimal value
(¢’ 15 1) = (3, 22.86016, 11.64466) and the corresponding minimum cost
F" =1463.830 for Case (i). For Case (ii), (¢, ,ul* , ,u; )= (4, 25.40649, 16.13801) and
F* =1891.530 are optimal. Finally, we perform a sensitivity investigation to the
optimal value (c’,z,,i4,) based on changes in specific values of the system
parameters. The numerical results are shown in-Table 2.3 for various values of 6 and
A. We find that (i) ¢ increases as A or @ increases; and (ii) ,ul* ( ,u;) increases
as A (@) increases. Moreover, the minimum expected cost-increases as A4 or 6

increases.

21



A A A

M mmib V mm&a
Rl-&u
R
A

R(1-8)u 1
Rép

1
1
E.l

m

R-2)(1 -8 p A=D1~ & (R-2)(1- 84

Figure 2.1. Steady-transition-rate diagram for an M/M/c queueing system with second

optional service channel.
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Figure 2.3. The expected number of customers in the system versus /i, .
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The expected number of customers in the system
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Figure 2.4. The expected number of customers in the system versus /, .

Table 2.1. The illustrations of the implementation of Quasi-Newton method

Case (i): (4,6) =(20, 0.5) with ¢=3 and initial value (,,1,)=(20, 10)

Iterations 0] 1 > 3 4 5 6
F(e,pu,1,) 186222 173576 1689.68 1682.43 1682.21 1682.22 1682.21
M 20 227766 25.5320 27.0701 27.3668 27.3756 27.3756
y78 10 11.4360. 12.9115 13.8155 14.0192 14.0267 14.0267
oF
a -32.3746 -12.3033 -3.53768 -0.51339 -0.01504 -0.00001 -3x10~°
1
oF
o -74.8311 -28.6228 -8.49048 -1.33248 -0.04521 -0.00005 -4.7x10”
2
L 2.88890 2.22232 1.83577 1.67455 1.64478 1.64379 1.64379
E[B] 2.000002 1.75253 1.55783 1.46265 1.44412 1.44350 1.44350
. 7.990 7.096 3.354 2.075 1.828 0.803 1.386 0.501 1.317 0.456 1.315 0455 1.315 0.455
Hessian 7000 100 (2008 1] Lown sime] [oson sutt) [oote | Loe o] Losts oo

7.096 38.39 2.075 15.52 0.803 8.026 0.501 5.812 0.456 5.441 0.455 5.429

0.455 5.428
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Case (ii): (1,0) =(15, 0.8) with ¢=2

and initial value (g, 1,) =(20, 20)

Iterations 0 1 2 3 4 5 6
F(e,pu, 1) 1829.50 1760.25 1739.61 1737.33 1737.30 1737.30 1737.30
M 20 23.8016 27.0887 28.6094 28.8273 28.8310 28.8310
y7A 20 19.2062 18.8294 18.7303 18.7207 18.7206 18.7206
oF
- -30.3036 -10.9797 -2.84444 -0.32356 -0.00538 -1.8x10°° 0.
o,
oF
m -6.92424 -3.14200 -1.01269 -0.13222 -0.00232 -9.9x107 —3x107'?
2
L, 2.26602 172458 ' 1.73603 1.66634 '1.65691 1.65674 1.65674
E[B] 1.35000 " 1.25501 1.19104 1.16498 1.16134 1.16128 1.16128
. 8.634 3.172 3.525 1.609 1.936 1.008 1.522 0.829 1.472 0.807 1.471 0.807 1.471 0.807
Hessian {3172 6468} [1509 5696} [1.008 5.239} [()829 5042} [()8()7 5012} [04807 54012} {()48()7 54012}

Table 2.2. The optimal value (,,4,) and the corresponding minimum expected cost

() (1,8)=(15, 0.5)

c Initial Value Coverage Value ( ﬂl* , ﬂ;) Iteration | Cost*
c=1 [30, 25] [44.20521, 24.33688] 7 2022.146
c=2 [20,20] [27.50290, 14.50211] 6 1527.743
c=3 [15, 15] [22.86016, 11.64466] 6 1463.830
c=4 [15, 10] [21.33382, 10.71376] 6 1492.969
c=5 [15,10] [20.88151, 10.44900] 5 1545.927

@) (4,0) =(20,0.8)

c Initial Value Coverage Value (y,,u,) Iteration | Cost*
c=1 [50, 30] [61.14970, 40.31473] 9 2890.717
c=2 [40, 30] [35.80379, 23.29807] 8 2056.578
c=3 [30, 25] [28.23610, 18.09640] 8 1896.310
c=4 [25, 20] [25.40649, 16.13801] 5 1891.530
c=5 [20, 15] [24.38956, 15.44162] 5 1933.145
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Table 2.3. The optimal value (c’,4,4,) and it’s minimum expected value

F(c', 4, ;) for various value of A and 6.

(4,0) (5,0.2) (10,0.2) (20,0.2) (5,0.8) (10,0.8)  (20,0.8)

c 2 2 3 2 3 4
) [13.0953, [19.9021, [26.3424, [13.7175, [18.2622, [25.4065,
#hoth 4.35200] 6.80977]  8.64436] 8.80645] 11.6276] 16.1380]
F(c', 1, 1,) 729.6488 1011.985 1391.119 976.8809 1356.801 1897.530
L, 0.690286 0.983412 | 1.346797 . 0.958229 1.326524 1.864544
E[B] 0.611596. 0.796155 1.221962 0.818713 1.235596 1.778650
(4,0) (10, 0.2)  (10,0.5) = (10,0.8) (20,0.2) "~ (20,0.5) (20,0.8)

c 2 3 3 3 1 4
(1) [19.9021, ~[17.9854, [18.2622, [26.3424, [27.37559, [25.4065,
#oth 6.80977] ..9.09991] = 11.6276]  8.64436] 14.02674] 16.1380]
F(c¢',isi) 1011985 1215.012 1356.801  1391.119 1682.213  1897.530
L, 0.983412 1.173003 1.326524 1.346797 1.643788 . 1.864544
E[B] 0.796155 1.105460  1.235596 1.221962 1.443501 1.778650
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Chapter 3

M/M/c Retrial Queue with Second
Optional Service Channel

In some cases, service stations and clients do not know the information of each
other. Therefore, the customers will not enter the queueing system immediately even if
there are idle servers. This situation arises in many telephony switching systems,
telecommunication networks and computer systems. The retrial queueing systems play
important roles in the analysis of these problems. Consider a Web system, all user
login for the service of internet network browse, some of them will require the
optional file transmission upload / download service. As the Web system is fully

loaded, the user will retry after a random period of time.

In this chapter, we consider the queueing system investigated in chapter 2 with
customer retrial behavior.-An-arriving primary customer finding one or more servers
available (free) obtains the FES service immediately. On the other hand, he joins to
the orbit and tries to get the service later on if all servers are busy and unavailable.
Each customer staying in the orbit makes the repeated attempts in random intervals
and is independently of the other customers. Upon requesting service from the orbit,
customers finds all servers busy always.rejoins the orbit; this manner continues until
he is eventually served. An arbitrary customer in the orbit generates a stream of

repeated requests that is independent of the rest.of customers in the orbit.

This chapter is organized as follows: Basic assumptions and notations of the
queueing model are given in Section 3.1. In Section 3.2, the mathematical model and
the state-transition matrix are provided. In Section 3.3; the stability condition for this
model is derived. A sequence approximation of the rate matrix is performed. Then, the
steady-state solutions are obtained using recursively procedure. Section 3.4 devoted to
develop the implicit expressions of the important system performances. Finally,

Section 3.5 presents the optimization results and some numerical illustrations.

3.1 Assumptions and Notations

An M/M/c retrial queue with second optional service (SOS) is investigated. The
service times of the first essential service (FES) and the second optional service (SOS)
have an exponential distribution with mean 1/, and 1/, , respectively. As soon as

the first essential service of a customer is completed, a customer may leave the system
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with probability (1-6) or may opt for the second optional service with probability &
(0<6<1), at the completion of which the customer departs from the system and the
next customer, if any, from the queue is taken up for his first essential service (see
Figure 3.1). Each channel can serve only one customer at a time and it also provides
only one of essential service or second optional service at a time. Furthermore, each
customer staying in the orbit makes the repeated attempts in random intervals having
length exponentially distributed with parameter ¢, independently of the other

customers.

A state of the system is a.pair (i, j,k), where i and k denote the number of
servers busy in the FES and SOS, respectively. j is the number of customers in the
orbit (sources of repeated demands). The system can be described by a continuous
parameter Markov chain on the state space { (i, j,k); 0<i<c, 0<j, 0<k<c-i}.
From Figure 3.2, the customers which upon the server will get services immediately
as i+k <c (i.e: there are-available servers). The new arriving customer who finds all
¢ servers busy (i+k=c) always rejoins the retrial group. (orbit), this operation

continuous until they are eventually served. In steady-state, we define

}’if‘j = probability that there are iand &k servers busy in the FES and SOS,

respectively, and j customers in orbit, where 0<i+k<c, j=0.

In this,chapter, the following notations and symbols are used.
A — mean arrival rate
M, — mean service rate of FES channel
M, — mean service rate of SOS channel
@ — ;probability that a customer may opt for the SOS
o — mean retrial rate
¢ — number of channels (servers)
II — steady-state probability vector
Q — infinitesimal generator
I — identity matrix
e — identity column vector (a column vector with all elements equal to 1)
F — irreducible generator
X — invariant probability
P. — probability that all servers are busy
R — rate matrix

E[FES]— expected number of customers in the FES channel
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E[SOS] —
E[Orbit] —
o, —
o, —
FR —

expected number of customers in the SOS channel

expected number of idle servers

the overall rate of retrials

the rate of retrials that are successful

the fraction of retrials that are successful

mean busy period
vain retrials

cost function

It is assumed that there exists an upper bound N on the number of customers in

the orbit that are allowed to conduct retrials (see Neuts and Rao [50] and Artalejo and

Pozo [9]). This implies that the probability of a repeated attempt during (#,z+ dt),

given that j customers in the orbit at time 7, is- ¢,di +o(dt) , where o; = min{j,N}o.

Moreover, we assume that the process of primary arrivals, service times and

inter-retrial times are mutually-independent.

3.2 M/M/c Retrial Queue with SOS Channel

For an M/M/c retrial queue with SOS channel, refer to Figure 3.2, the

infinitesimal generator Q of the Markov chain has the form

‘A, B
C, A, B

C, A, B

C, A, B
CN AN

B
C, A, B

(3.1

The entries B, A;(j>0), and C,(j>1) are block-diagonal matrices of order

(c+1D(c+2)/2.Matrices B and C ; can be partitioned as:

b()
b,

and Cj:

c()
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where sub-matrices b, and ¢; are square matrices of order (c+1-i) with

0 ew.

{bi[c+1—i,c+1—i]=/1, q {ci[k,k+1]=0'j=min{j,N}0',1Sk$c—i,
an
ew.

A ; can be partitioned as

0 0
Y’ X
Z'Y X

0

b,

S O O O
S O O O

|o
o
0

The sub-matrices of C, are

0 o 0 O
0 0 0 0 00 0
o o
¢, = ,¢=|0 0 o, ¢,= , ¢,=0
0 0 0 o 0 0
0 0 O
00 0 O
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For A,, the first sup-diagonal sub-matrices are

0O 0 O
0 O
6y 0 0 0
X, = X =16y, 0 |, X, = .
0 26y, 0 ou,
0 26u,
0 0 36y
The diagonal sub-matrices are
-(A+0) A
_ (1-Qu, —(A+u +0) A
0 20-0)y, —(A+2m+0) A ’
3A-0)p  ~(A+3u)
—(A+u,+0) A
Y = (1-9)4 —(A+u+u,+0) A ;
B 9)/11 _(ﬂ' + 2:“1 + :uz)
—(A+2u, +0) A
2=[ # } Y, =—(A+3.).
1-0)u, —(A+u+2u,)

The first sub-diagonal sub-matrices are

4 0 00
2u, 0 0
Z;=0 wu, 0 0|, Z,= ’ Z3=[3ﬂ2 O]'
0 2u, O
0 0 w O

After the derivation of the'mathematical model, the steady-state can be represented in

matrix form.

3.3 Steady-state Results

In this section, we will derive the stability condition and obtain the steady-state
probability vectors by using recursive technique. Let IT=[IIII II,,...] with
L, = (B, Bt B By Bl Py B BB BL, 1=0,1,2,..0 e the unique

solution to IIQ=0 and IMe=1, where e is a column vector with all elements

equal to 1. An efficient algorithm is developed to calculate the stationary probabilities
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by matrix-geometric method.
3.3.1. Stability condition

It is known that the stationary probability exists if and only if
xBe <xC,e, (3.2)

where x:[xg ,xl0 ,...,xo,...,x(‘)'_l,xf—l,xg] is the invariant probability of the matrix

F=C,+A,+B. x satisfies xXF=0 and xe=1 where e is acolumn vector with
dimension (c+1)(c+2)/2 and all elements equal to one. Solving two equations

simultaneously, we have

| c—k
o e N0<itk <. (3.4)
ik NA+No) ™ 16
= el R 45)
Xy = - - . .
Ot i WAt NO) T g0

Substituting B and C, into equation (5) and doing some routine manipulations,

then we have

No(1-P,)> AP, (3.8)

where

c > c c! i
PF:ZX‘CIZ . {Uz i ixg
= o il(c—D)!y'o

¢ -1
ﬂz c c—k c !ﬂzc—k
=[1+—= . : )
( ou, j [;ZO: ik A+No) T 6

denotes the probability that all server are busy (i.e. i+ k =c ). That is, the system will

(3.7)

be stable if the expected successful retrial rate is greater then the expected arrival rate

of “orbit”.
3.3.2. Rate matrix

By matrix-geometric property, it is noted that the vector IT=[II,II,,I1,,I1;,...]
has the following properties

I, =I,R", for k>1. (3.9)

The matrix R, called rate matrix, is the unique non-negative solution with spectral
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radius less than one of the equation

R’B+RA, +C, =0. (3.10)

From Neuts [49] and Latouche and Ramaswami [41], it is known that a approximation
solution of the rate matrix R can be gain by the converge of sequence limR ,

n—oo

where the sequence {R,} is defined by

R,=0,and R, =-BA, -R.C,A,for n>0. (3.11)
The sequence {R,} is monotone so that R can be evaluated from (3.6) by
successive substitutions.
3.3.3. Recursive solver

Under the stability condition, the stationary probability vector Il of Q exists.
In the above section, we deal with the isteady-state equations by representing it in

matrix form. This steady-state probability vector II =[I1,,IT,,II,,I1,,...] is given by

A, +11,C =0, (3.7a)
I_B+ITA +I1,C =0, 1Si<N-1, (3.7b)
I, B+I1,A, +I1,RC, =0, (3.7¢)
I R™B+I1, R A + I, R""C, =0, N+1<i, (3.7d)

D He=1. (3.8)

i=0

After doing some routine manipulations to equation (3.7a)-(3.7¢), we have

1L, = I1,C, (_Ao)_l =114,

(3.9)
I, =T,C[(¢ B+A DI =4, 2<i<N,

and
I1,9,B+I1,A, +I1,RC, =0. (3.10)

Consequently, IT,(0<i< N -1) in equation (3.9) can be written as product form in
terms of II, and the rest steady-state vector [IT,,II,, II,,,,.] can be
determined recursively as II. =TI, R™, for i> N . Once the steady-state probability
IT, is obtained, the steady-state solutions [II,IT,IL,,.. . IT, 11 ,I1,,,..] are
determined. The steady-state probability II, can be solved by equation (3.10) with

the following normalization equation
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D> Me=[I,+I1, +..+0,  +I1, +I1, +I1,, +..]e
i=0

1

2 N
=[I, [T+, IT ¢ +..+T1, T1 ¢, +T1, + T R+TI,R* +.Je. (3.11)

1

1

:HN[ﬁfi ¢ +I-R)'le=1

The symbol I denotes the identity matrix with suitable size. Solving equations (3.10)
and (3.11) in accordance with Cramer’s rule, we obtain II, . Then the prior state
probabilities [IT,,IT,II,, ..., II,5] "are computed from (3.9) recursively and
m,,.I,,,,I1,,,,.] are gained by the formula II, =IT,R™, i>N+1. We

summarize the solution procedure of steady-state probabilities as.below:
Algorithm: Recursive Solver

Step 1. Set ¢y =C,(-A,)"".

Step 2. For i from 2 to N, set-¢,=C,[~(¢-,B+A, DI

k
Step 3. For kifrom 1 to N, set @, = EVQ

N
Step 4. Solving IT,¢yB+IIyAy +IIyRC, =0, Iy[> @, +@-R) 'le=1 and obtain
k=1

the steady-state probability IT, .

Step 5. Construct steady-state probability II, as follows:
(a)if 0<i<Njassign II, =I1,®,,,,

(b) if N+1<i,assign II,,, =ILR.
3.4 System Performance Measures

The system performance measures, such as the expected number of customers in
the FES channel (denoted by E[FES]), the expected number of customers in the SOS
channel (denoted by E[SOS]), and the expected number of customers in orbit (denoted
by E[Orbit]), can be evaluated from the steady-state probabilities IT, =[P(fj,Plf)j,...,
PR, P PP B P ]. The expressions for E[FES], E[SOS], and

E[Orbit] are given by
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oo N-1
E[FES]=) TLv=> TLv+I1,v+II,Rv+IT1, R*v+..

i=0 i=0

N-1
=> @, v+, v+II,Rv+IT, R*v+...
i=0

HN[idDi +I-R)"v,

i=1

oo N-1
E[SOS1=> T1.J =Y I+, J+I1, R+, R*J +...
i=0 i=0
N-1 N
=>1,®, J+0,A-R)T =TT > +T-R)"J,
i=0

i=1

[
s

E[Orbir] =Y ille

" 3

Il
—

Il
4M2

(L
[

(i—DIT,®.e+I ,[NA-R) "'+ RI-R) e

= HN[i(i—l)CDi +NI-R)" +RI-R)Je,

i=2

where

— i

#=c+l #=c #=2 # =c+l #=c

ill,®, e+ NI, e+(N+DIT,Re+(N+2)IT,R%+...

(3.12)

(3.13)

(3.14)

v=[0,L....,c,0,1,...,e—1;...,0,1,0] and J=[0,0....,0,1,1,....1,..,c =L,e—1,c]
= bW —— —_— e

are column vectors with dimension (c+1)(c+2)/2". For an M/M/c retrial queue with
second optional service channel, the numerical results of E[Orbit] are obtained by
considering the following three cases with different values of ¢

Case 1. N=30, A=5; 1,=10, 6=0.5, 6=5,vary x4 from 10 to 20.
Case 2. N=30, A=5, =10, 6=0.5, 6=5, vary p, from 10 to 20.
Case 3. N=30, u#,=20, u,=15, 6=0.5, o=5,vary 4 fromS5 to 10.

Results of E[Orbit] are depicted in Figure 3.3 for Case 1-3, respectively. From

the Figure, one sees that E[Orbit] drastically decreases (increase) as 4, or i, (or
A) increases (decrease) for ¢ =1, while E[Orbit] is not sensitive to g, or g, (or A)

for ¢=>2. Furthermore, there are several general descriptors of retrial queues, some
of which are listed below:

1.

The overall rate of retrials
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N c c—k o0 c_ c—k N oo
o, =>joY > B+ > Noy > B => jolle+ > Nol,R™"e (3.15)
j=1 k=0 i=0 J=N+1 k=0 i=0 Jj=1 J=N+1

N N
=Y joll e+ Noll , RA-R)'e=0[) 1, + NI, RA-R) 'Je
Jj=1 j=1
N-1
=oll,[) j®,, +NI-R)"le.

J=1

. The rate of retrials that are successful

Jj=1 k=0 i=0 Jj=N+1 k=0 i=0

FR="2, (3.17)

. The marginal distribution of the number of busy servers

pli.k)=> P, 0<i+k<c. (3.18)
j=0

. Busy period : The busy period 7 of a retrial queue is defined as' the period that
starts-at the epoch when an arriving customer finds an empty system-(all servers
are idle and no customer in the orbit) and ends at the departure epoch at which the

system is empty again.
The mean busy period

1.1 1 1
ET)=— (D= (—=-D (3.19)
A R, A T1L, @ [1]

where IT1,® [1] denotes the first element of IT,P,.

. Vain retrials : A vain retrial is an unsuccessful retrial when all servers are busy.

The steady-state probability of vain retrial F,

-1,-:;./(:: — Jj=1 i+k=c , . (320)

To understand how system performance measures listed above vary with N, we

also perform a numerical investigation to the measures based on changing the value of
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N. The numerical illustration is graphically presented in Figure 3.4. From Figure 3.4,
it is clear that increasing the retrial rate beyond a certain point does not result in a
commensurate improvement in the system performance, which is according with the
result of Neuts and Rao [50].

3.5 Numerical Results

We construct a total expected cost function per unit time, in which the number of
servers (c) is a discrete decision variable, and the service rates u=(,,M,) are

continuous decision variables. Let us define the following cost elements:

C, = cost per unit time per customer present in orbit,

= cost per unit time when one server is busy in FES channel

cost per unit time of providing an service rate 4, ,

G
G
C

cost per unit time of providing an service rate i,,

w

C, = fixed cost for purchase one server.

Based on the definition of the cost parameters, the total expected cost function per unit
time is given by

F(c. 14, 14,) = C,E[Orbit]+C,E[B] + C, 11, + C,pt, + Cc . (3.21)

The main objective is to determine the optimal number of servers ¢ , and the optimal
value of the service rate 4 =(i ,i,), simultaneously which minimize the cost
function. The analytic study of the optimization behavior of the expected cost function
is an arduous task to undertake since the decision variable appears in.an expression
which is a highly complex and non-linear in terms of (c, 44, i;) . We firstly use direct
search method to find the optimal value of the number of servers, say ¢, when g,
and g, are fixed. Next, we fix ¢ and use the Quasi-Newton method to
search/adjust the optimal value of (4, 44), say (4, ,x,). In practical application, an
upper bound U is imposed on c. We can successively substitute c¢=1,2,..., U into
the cost function. The optimum value ¢ can be determined by satisfying the

following inequality
F(¢" =1, 1) > F(c Vgt 10,) < F(¢ +11 gy, 410,) . (3.22)

To demonstrate that the cost function is really convex in ¢ and the solution gives a
minimum, some numerical examples are performed based on the preceding

formulation. For convenience, the number N =30 is chosen and the following cost
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elements are adopted
C,=%$25/customer/unit time, C,=$120/server/unit time, C,=$15/unit time,

C,=$30/unit time, and C,=$180/server.

Under other parameters are given, we observe from Table 3.1 that the optimal
number of servers ¢ and its corresponding minimum cost increase as 8 or A
increases, and decrease as o increases. After we obtain ¢, Quasi-Newton method
is employed to search (4,,4,) until the minimum value of F (c, M, 1L,) 1s achieved,
say F(c",u ,u,). To find the jointoptimal value. (4 ,4,) fora given ¢, we should
show the convexity of F (c*,,ul,,uz). However, this work is difficult to implement.
Two examples are presented to illustrate the optimization procedure shown in Table
3.2. From Table 3.2, we can see that the minimum expected cost per day of 1003.92 is
achieved at ‘(g , 4,) = (23.4453, 8.02222) by using 5 iterations, whichis ¢ =1 based
on Case (i) with initial value (4, ££,) =(20, 10). Based on Case (i1), ¢ is 4 and the
minimum expected cost-per~day of 1674.11 is achieved at (i ,4,)= (16.8630,
10.7441) is achieved using S iterations.

We now perform a sensitivity investigation to the optimal value (¢, , i)
based on changes in specific values of the system parameters. The numerical results
are shown in Table 3.3 for various values of 4, @,and o Dby considering the initial
value (¢, 4,) of (20, 10). From Table 3.3, we find that (i) ¢’ increases as A or @
increases and is insensitive to the change of o ; and (ii) ,uf ( ,uj) increasesas 6 (A)

increases and decreases as o increases.

exp( )

all [ :
Yo sErvEre »  Retrial queus
Poisson( A busy? Yes
l Mo

FES exp( 4 ) 308 exp( 44) .
| Serwvice completion

v

1-8

Figure 3.1. The general structure of M/M/c retrial queue with second optional service.
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Figure 3.2 (cont.). State-transition-rate diagram for an M/M/3 retrial queue with SOS.
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Figure 3.4. The system performance measures versus the truncated parameter N.
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Table 3.1. The cost function associated with number of servers and values of 1.

(U, 14,,A,6,0) c=1 c=2 c=3 c=4 c=5 c=6
(20, 10, 5, 0.2, 5) 840.75 1003.57 1182.15 1362.01 1542.00 1722.00
(20, 10, 10,0.2,5) | 1026.54 1056.44 122594 1404.29 1584.04 1764.00
(20, 10, 15, 0.2, 5) N/A” 1133.07 1274.45 1447.72 1626.32 1806.05
(20, 10, 20, 0.2, 5) N/A 1277.00 1332.65 1493.81 1669.37 1848.30
(20, 10, 5,0.2,10) | 834.019 1002.95 1182.086 1362.01 1542.00 1722.00

(20, 10, 10, 0.2, 10) | 968.171 1051.67 1225.14 1404.17 1584.02 1764.00
(20, 10, 15, 0.2, 10) N/A 1115.42 1271.07 1446.99 1626.18 1806.03
(20, 10, 20, 0.2, 10) N/A 1222.10 1323.03- 1491.42 1668.78 1848.16
(20, 10, 5, 0.2, 15) . |"831.776  1002.74 1182.07 1362.01 1542.00 1722.00
(20, 10, 10, 0.2,.15) | 948.724 1050.06 1224.87 1404.12 1584.02 1764.00
(20, 10, 15, 0.2, 15) N/A 1109.48 1269.93 . 1446.75 1626.13 1806.02
(20, 10, 20, 0.2, 15) N/A 1203.68 1319.78 1490.61 1668.58 1848.12

(U, A, 6,0) c=1 2 c=3 c=4 c=5 c=6
(20,10, 5,0.8,5) | 930.322 1043.87 1218.86 1398.12 1578.02 1758.00
(20,10, 10, 0.8, 5) N/A 1179.97 1306.96° 1478.47 1656.55 1836.11
(20,10, 15, 0.8, 5) N/A 4365.50 1431.25 1567.86 | 1737.90 1915.07
(20,10, 20, 0.8, 5) N/A N/A 1778.63 1683.62 1827.33 1996.97
(20, 10, 5, 0.8, 10) |907.107 1041.82 1218.53 1398.07 1578.01 1758.00

(20, 10, 10, 0.8, 10) N/A 1158.61 1303.03 1477.52 1656.32 1836.06
(20, 10, 15,0.8, 10) N/A 2668.80° 1411.62 1562.80 1736.40 1914.64
(20, 10, 20,-0.8, 10) N/A N/A 1668.51 1665.55 1821.65 1995.03
(20, 10, 5, 0.8, 15) | 899.369 1041.12 1218.42 1398.06 1578.01 1758.00
(20, 10, 10, 0.8, 15) N/A 1151.44 1301.70 1477.20.. 1656.25 1836.05
(20, 10, 15, 0.8, 15) N/A 2347.02 - 1405.00 '1561.08 1735.88 1914.49
(20, 10, 20, 0.8, 15) N/A N/A 1632.44 1659.44 1819.73 1994.38

“”N/A” denotes system is unstable (i.e., the stable condition does not hold)
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Table 3.2. The illustration of the implementation process of Newton-Quasi method

Case (i): (4,6,0) =(10, 0.2, 5) with initial value (g, x,)=(20,10)

Iterations 0 1 2 3 4 5
F(c*,,ul,,uz) 1026.54 1007.83 1004.06 1003.92 1003.92  1003.92
c 1 1 1 1 1 1
20 22.6527  23.3038  23.4405  23.4453  23.4453
y78 10 7.55324  7.92219 8.01767  8.02221 8.02222
oF
a -8.24475  -4.34979  -0.69766- -0.25822 -0.00004 -4.0x107"°
1
oF
J 9.22640 @ -10.6671 -1.80336 =0.07392 -0.00014 -1.5x10"°
2
E[Orbit] 6.50153 7.06782  6.20192  6.02626 - 6.01906  6.01905
E[BS]* 0.70000....0.70623  0.68157 0.67606 0.67583  0.67583
Hessiatil e it o e Bl 276 sy, [ T o s 1o

Case (ii): (4,0,0) =(20, 0.8, 5) withinitial value (y,,1,)=(20,10)

Iterations 0 1 2 3 4 5
F(c*,,ul,,uz) 1683.62 1675.80 1674.15 167411 1674.11 1674.11
¢ 4 4 4 4 4 4
M 20 15.7834  16.6998 16.8593 16.8630 16.8630
y7A 10 107383  10.7446 10.7442 10.7441 10.7441
oF
- 4.88607 + -3.28908 -0.42979 -0.00954 -0.000005 1.3x10”°
ot
oF
ﬁ -2.97931 -2.06125 -0.25997 -0.00563 -0.000005 1.0x10”
2
E[Orbit] 2.06473  2.64154 2.35613 2.31366 2.31270 2.31269
E[BS] 2.60000 2.75714  2.68674  2.67547 2.67521 2.67521
Hesin [0S [ s LI [ o

“E[BS] « denotes the number of busy servers in the system=E[FES]+E[SOS].
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Table 3.3. The optimal value (c, ,ul* , ,u; ) and the minimum expected cost value for

various value of A, @, and o, while ¢  is obtained at initial value
(44, 1,)=(20,10).

(4,8,0)  (5,0.2,10) (10, 0.2, 10)(20, 0.2, 10) (5, 0.8, 10) (10, 0.8, 10) (20,0.8, 10)
c 1 1 2 1 2 4

[11.8535, [22.0254, [22.7810, [14.7456, [15.1755, [16.2154,

4.26058] 7.71166]  7.77980]  9.53810] 9.76186]  10.3483]

(M 115)

F(c,p, ) 628502  947.158 1200.47 866.965 1129.98 1652.39

E[Orbit] 2.56395  4.79291 3.93227 3.54492  2.88299 1.80663
E[BS] 0.65653 . 0.71337 1.39208 0.75845 1.47847 2.77955

(4,6,0) (10;0.2,15)(10, 0.5, 15)(10, 0.8, 15) (20, 0.2, 15)20, 0.5, 15) (20,0.8, 15)
¢ 1 2 2 2 3 3
.. [21.4641, [13.8213, [14.9257, [22.2164, [18.2749, [19.6974,
(#-112) 7.60174] = 7.19819] 9:61603] 7.65119] 9.41276] 12.6312]

F(c',pii) 925598  1009.21 1118.22 1181.57 1417.74 =~ 1561.528

E[Orbit] 4.32420  2.23082  2.62489 3.52100  2.41688 2.93133
E[BS] 0.72899 141814 1.50193 1.42303 2.15678 2.28207

(4,6,0) +(10,0.2, 5) (10, 0:2, 10)(10, 0.2, 15) (10, 0:8,5)(10,0.8, 10) (10,0.8, 15)
c 1 1 1 2 2 2
[23.4453, [22.0254, [21.4641, [15.8259,  [15.1755, [14.9257,

(fr-15) 8.02222] . 7.71166] 7.60174] 10.1461] = 9.76186]  9.61603]
F(c i) 1003.92 947158 925598  1161.21  1129.98  1118.22

E[Orbit] 2.31269  4.79291 4.32420 3.55994  2.88299 2.62489
E[BS] 2.67521  0.71337 0.72899 1.42036 1.47847 1.50193
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Chapter 4
M/M/c Queue with Modified Bernoulli Vacation Policy

In some transport systems in which a ferry driver or a locomotive driver may take
a vacation after every round of trip. In the restaurant, the waiter may go to the
restroom when there is no guest waiting for taking their order. For a production
system, it may so happen that the process either needs to be stopped for overhauling
and maintenance of the system after usual processing (see Choudhury and Madan

[22]). The overhauling may be represented as a Bernoulli vacation time in our system.

In this chapter,smatrix analytic method is used to analyze an infinite capacity
multi-server queue with modified Bernoulli vacation under a single vacation policy. In
traditional Bernoulli vacation policy, servers may take a vacation at the completion of
service with probability -p-orcontinuous to serve the next customer with probability
1—- p . Forthe modified~Bernoulli vacation policy, the server will keep providing
service to the customer if there are customers still waiting in the queue. At this time,
the vacation behavior will-not-occur, that is;p=0: The modified Bernoulli vacation
policy is more suitable for the real situation. When the servers complete the vacation
period, they stay idly for the next new arrival or serve the customers in the system, if

any. That is, the single vacation policy.

This chapter is organized as follows: Section 4.1 gives some basic assumptions
and notations of the queue. In Section 4.2, the mathematical analyses of the
state-transition matrix are presented. In Section 4.3, the stability condition, the
closed-form expression of rate matrix, and the steady-state probability are derived. In
Section 4.4, the explicit expressions of some important system performance are
obtained. The special case of single server is also discussed. The optimization results

and numerical examples are performed in Section 4.5.
4.1 Assumptions and Notations

An infinite capacity M/M/c queueing system with modified Bernoulli vacation
under a single vacation policy is considered. Conveniently, we represent this
multi-server system with modified Bernoulli vacation as M/M/c/MBSV queueing
system. Customers arrive according to a Poisson process with parameter A. Their
service are provided by c¢ servers, in which the service times are assumed to be

exponentially distributed with mean 1/ . It is assumed that customers arrive at the
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system form a single waiting line and served in the order of their arrivals; that is, the
first-come, first-served discipline. Each server can serve only one customer at a time,
and that the service is independent of the arrival of the customers. At each service
completion instant of a server, the server inspects the system state and decides
whether leave for a vacation or not. If the number of customers in the system is less
than the number of busy/working servers, the server may take a vacation of random
length with probability p or continue to serve the next customer, if any with
proability g (=1- p). The vacation times are exponentially distribution with mean
1/n. If the number of customers in the system is more than the number of busy
servers, the server always keep working/serving for the next customers waiting in the
queue, that is, p = 0: At the end of the vacation, the server remains idle until the first

arriving customer, that is, the single vacation policy.

In this chapter; the following notations and symbols are used.
A — mean arrival rate
M — mean service rate
p — probability that a server may opt for Bernoulli vacation
n — vacation rate
¢ — number of channels (servers)
IT — steady-state probability. vector
Q — infinitesimal generator
I — identity matrix
e — identity column vector (a column vector with all elements equal to 1)
F — irreducible generator
X — invariant probability
R — rate matrix
L, — expected number of customers in the system
L — expected number of customers in the queue
E[V]— expected number of vacation servers
E[I] — expected number of idle servers
E[B] — expected number of busy servers

F — cost function
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4.2 M/M/c Queue with Bernoulli Vacation

For an M/M/c/MBSV queueing system, the state of this queueing system can be
described by the pair (i,n), i=0,1,2,...c, n=0,1,2,..., where i denotes the
number of vacation servers, and n denotes the number of customers in the system.
According to system assumptions, the server keeps busy and serves the next customer
waiting in the queue at a service completion instant if the number of customers in the
system is greater than the number of total working (no vacation) servers, i.e.
(n=2c—i+1) . Otherwise (n<c—i), ;one_server may goes on vacation with
probability p (p>0) or resumes service with probability ¢=1—p at a service

completion instant. In steady-state,; we define

P.(n) =probability that there are n customers in the system when there are i

vacation servers, where i=0,1,2,...,c-and n=0,1,2,...

and I=[I, IT,.. I I ] with II =[F (n),FH),.. P#®)] , n=0,12,..
denotes the steady-state probability vector. The infinitesimal generator Q of the
QBD describing the M/M/c queueing system. with . modified Bernoulli vacation is of

the form
_A() B ]
C A B
C,A,B
Q= . “4.1)
Cc—l Ac—l B
C, A, B
C. A B

The entries B, A; (0<j<c),and C, (1< j<c+1) are matrices of order (c+1).

a;,
na,
2n  a,

J:3

A = ,j=0.1,...,c.

(c-Dna,,

cal a; ..
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The matrix B =AI where 1
(0L j<¢) is also square matrix with dimension (c¢+1)X(c+1) shown above with
diagonal elements a, = —[A+min(j,c+1-k)u+*k-)n], k=1,2,..,c+1. Then

the matrix C; (1< j<c+1) is list below

is the identity matrix of order c+1. A,

(c+D)x(c+1) 2 (c+Dx(c+1)

jqu  jpu ]
JQﬂ.‘]Pﬂ.‘ #= (o1 )
Jal  Jjpu
C = (- Du L j=12,.,c+1.
(J-2)u
#:] iy
Y7

4 0

The steady-state equations system can be represented as MQ=0.

4.3 Steady-state Results

To ensure that the unique solution.of T1Q =0 exists. The stability condition of
this queueing system should be derived. Certainly, obtaining rate matrix is necessary
before employing the matrix geometric method. The convergence property of the rate

matrix is proofed. We also discuss the special case of single server.

4.3.1. Stability condition

Form Neuts [49], the steady-state probability vector exists if and only if
xBe < xC,_, e, 4.2)

where e 1is a column vector with dimension (¢+1) and all elements equal to one.
The vector Xx=[x,,x,...,x.] 1s the invariant probability of the matrix
F=C_, +A _+B. It satisfies two conditions xF=0 and xe=1.

c+l

Substituting B and C_, into equation (4.2) and doing some routine
manipulations, then we have x,=1 and x,=0, i=1,2,...,c. The stability condition

is given as

/1<ch(c—i)xi,u:c,u, 4.3)

i=0
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which agrees with the stability condition of the ordinary M/M/c queueing system.
4.3.2. Rate matrix

It is noted that the vector II=[II,II,,....,IT_,II ,,,...] has the following properties

c+l2*

I, =TI R, for k>1 (4.4)

which is the matrix-geometric property. The matrix R is the unique non-negative

solution with spectral radius less than one of the equation

B+RA,+R°C,,, =0. 4.5)

It is necessary to solve the rate matrix:= Rof (4.5), in order to obtain the steady-state
solution vector M= [IT,II,....IT ,II
A, and C

solution R. is also the lower triangular matrix. (see Latouche and Ramaswami [41])

..]. Based on the structures of matrices, B,

c+Hl o

. Which are represented as the lower triangular matrix, thus the matrix

Doing some arduous—algebraic derivations and arrangement, we develop the

explicit formula for matrix R as follows:

i
Hhi ha
R=" . g (4.6)
rc,I rL‘,Z ...... r( F
e, e o 0 Teite Terledl |
6 -6} =4(c+1-i)Au , A
where r, = : Jfor 1<i<c, r, =5,
’ 2c+1=du : A+cn

i—1
(cH1= P Dk Fsiril

k=j+1

r.= k
Y Ak (e l= A=r,—r Y+ Gy

for 2<i<c+1,i>],

r;=0,for i<j and 6 =A+(c+1-Du+@i-n.

Note that 7, is the corresponding eigen-values of the rate matrix R and the

spectral radius of R, sp(R)is less than one if p=A(cu)™' <1 (stability condition).

Proof. Firstly, the first diagonal element

3 /?,+c,u—\/(/1+clu)2 —dcAu /1+c,u—|/1—clu|
2cu 2cu

=AMcu) ' =p<l.

L1
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For 2<i<c, the diagonal element 7, is got from the quadratic equation
f)=(c+1-ux’-0x+A=0.

It should be noted that there exists exact one real root in (0, 1) because
f(0)=1>0,
F)=(c+1=Du—6_,+A=—(i-1n <O0.

Finally, r

c+l,c+1

=A/(A+cn)<1. Consequently, all diagonal elements (eigen-values)
of rate matrix R are less than 1. Therefore, the spectral radius of rate matrix R,
sp(R)= lmaxl{ri!i} is less than 1. That is, the convergence property is ensured if the

stability condition holds: By using the rate matrix R, we can solve the steady-state

probability more efficiently.

4.3.3. Probability computation

Under the  stability condition, by solving the equation IIQ=0 with the

normalization condition, we obtain

A, +11,C, =0, (4.7a)
I B+I.A +I1,C,, =0, I<i<c—1I, (4.7b)
I B+ A +IIRC,, =0, (4.7¢)
IR “B+IIR“A_+H R"™“C_ =0, c+1<i, (4.7d)

il‘[ie =1. (4.8)

i=0

After doing routine substitutions to (4.7a)-(4.7¢c), we have

I, =T1,C, (_Ao)_l =I1,¢,, (4.9)
I =T1.C[~(¢_ B+A. )] '=Ilp, 2<i<c, '

and

MM ¢B+I A +I1LRC, =0. (4.10)

Consequcl}tly, II, (0<n<c-1) inequation (4.9) can be written in terms of II_ as
I, =I1.11¢, i=0,1,2,...,c—1 where ¢ =C,(-A))" and ¢ =C/[~(4_B+A_)I",

2<i<c. The rest steady-state vectors II_,II can be calculated recursively as

cHloeee
II,=TI.R™, for i2c. Once II, is determined, the steady-state solutions
o =[I1,,I1,,...,IT_,IT

equation (4.10) with the following normalization condition.

..] are obtained. The vector II  is given by solving

c+l2*
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inie
i=0

= [, +T1,+..+T_ +I_+II_, +1I

+...]e

c+2

1 2 c
=1, ¢+, 11¢+..+I T1¢ +I1 +IT R+ITR* +..]e

“TL[Y 11g+I-R)Je=1.
o i=¢

(4.11)

Solving equations (4.10) and (4.11) in accordance with Cramer’s rule, we obtain

I1, . Then the prior state probabilities [I1,,I1,,I1,, ...

c

and [IT_IT ,,II

c+3%°

4.4 System Performance Measures

..] are gained by the formula IT, =TT R, i>c+1.

JII.,]1 are computed from (4.9)

There are several general descriptors (system performance measures) of the

M/M/c/MBSV queueing system, such as the expected number of customers in the

system (denoted by L_), the expected number of customers in the queue (denoted by

L,), the expected number of busy, idle and vacation servers (denoted by E[B], E[/]

and E[V], respectively). The expressions for these system performance measures are

given by
Ly=P>¥
i=1
c=1
o i=1
=11,
L =11

c—1
iMle=Y ille+clle+(c+DII Re+...

i=1
il @, e+cIl (I-R)'e+II R(F-R)’e
[ -1
D i®,+cI-R)"+RI- R)‘z}e.
L =1

0 0 0 0

1 2 c c

c—1
=3 ,®,,u,+I1,(A-R)"u, + T RA-R) e

i=1

:HC

c—1
{Z @, u,+I-R)'a, +RA- R)-ze}.
i=1
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0 0

oo 1 c l
E[V]=)TI, : =H{ZCI>I.+(I—R)“} |- (4.14)
i=0 . i=1 .
C C
c c—1 —
c—1 c—2 c—3 0
E[N=11,| . |+II,| . [|+II,| . |+..+I1_|.
' ' ' ' 4.15
0 0 0 0 ( )

=M. v, +I1 ®,v, +u+I ® v, =11 > P,

i=1
E[B]=c—-E[V]-E[]], (4.16)

where

H#=c+1—i #=i # =c—i+l # =i
—— —— s & =l

u, =[0,...,0,1,2,...,i]' and v, =[e=i,c=i—1,..;1,00,...,0]"

L

are column vector with dimensional (c+1). To understand how system performance
measures (such as L and E[B]) listed above vary with 4, ¢ and 7, we now
perform some numerical investigation to the measures based on changing the value of
system parameters. For computation, we let p =0.5. The numerical results of L_ are

obtained by considering the following three cases with different values of c.
Case'l. u=5.5, n=2.0,vary A from 2.0 to.5.0.
Case 2. A=2.0, 7=2.0,vary u from2.5t05.5.
Case 3. 4=2.0, u=3.0,vary n from 1.0 to 4.0.

Results of L are depicted in Figures 4.1-4.3 for Case 1-3, respectively. Figure 4.1
reveals that (i) L, increases quickly as, A increases for c=1, and (ii) L, slightly
increases as A increases for ¢=>2. We observes from Figure 4.2 that (i) L,
drastically decreases as u increases for c=1, and (ii) L, slightly decreases as u
increases for ¢>2. One sees from Figure 4.3 that L  slightly decreases as 7
increases. We also interest in the effect of different parameters on the expected

number of busy servers ( E[B]). The following three cases are considered:
Case 4. E[B] versus A from2.0to 5.0 when g =5.5and 7=2.0.
Case 5. E[B] versus 4 from2.5t05.5 when A=2.0and 7=2.0.
Case 6. E[B] versus 7 from 1.0 to 4.0 when A=2.0and u=3.0.
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The numerical illustrations of the expected number of busy servers are graphically
presented in Figures 4.4-4.6 for Case 4-6, respectively. We observe from Figures
4.4-4.5 that E[B] increases as A increases or u decreases. Figure 4.6 reports
E[B] is a constant is independent of 77. From the investigation, it is interesting that
E[B] nearly equals to A/ . However, it is very difficult to proof the results. In the

next section, we will provide the proof of single server case (¢ =1).
4.4.1. Special case of single server

As a particular case, the M/M/1/MBSV. queueing system, in which the server
may take a vacation if server is free at service completion instant, steady-state
equations in states (0,0), (0,1), and (1,0) are given by:

AF(0) = quF,(1) +77F(0),

(4.17)
(A+m)F,(0)= puFk,1),

which implies

ALB(0)+ R(0)] = 4P, (1) (4.18)

For the single server case, the sub-matrices are as following:

B=V 0}, A {_(’H”) 2 },and C,1=['u 0}.
0 A ¢ n —(A+n) 100

Substituting B, A_, C,; into B+RA,+R’C,;=0 and solving the quadratic

equation above, we have

0

1 (4.19)

A+n

AN RS

Also, equation (4.20) can be obtained from (4.6). For the case of single server, the
steady-state distribution II, =[F (1), (1)] satisfies II,B+II,A, +II RC,=0 as

following

A
[£(0), R(0)] L)

0}[130(1),13(1)1{_(“” o0 }

A —(A+1m)
i 0 (4.20)
+B,M.EM] #0100
ST A A4 |loo] [oo)
u A+n
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which leads to

ADK P)=A+m)PR1). 4.21)
A+n

Using the normalization condition (4.11) to obtain II,

1 1
(A1), ADII-R)" [J +[F,(0), R(0)] L} =1. (4.22)

Substituting (4.18), (4.19) and (4.21) into (4.22), we get F,(1) and F(1) as follows
AA+m(u=An

P(l)= : 4.23
" (pA” +nA+m )1’ *29
and
2 —_—
A+ (pA~+nA+n)u

After the gaining of II,, the rest steady-state probability vectors IL,,II.,TI,,... can
be obtained recursively with II, =IT R, II,=II,R, ..., and so on. The expected

number of busy servers is

” 0
E[B]—[P(l)P(l)](I—R)_11 =[R(0),————=F 1] 4 .
AN - ( )2 ’ /I(ﬂ+f7) A+1
nu—-1) - n 4.25)
M
Apu U= | pu(pA+ni+n’)
1 = P 1 = 0.
[0()( n)’ "4 Au+m) | n(A+m(u=A2) N
n(u=2)

It is interest that the result of (4.25) for the M/M/1/MBSV queueing system, in which
the server may take a vacation if server is free at service completion instant, is the
same as that of the ordinary M/M/1 queue. Furthermore, the steady-state equation
(4.17) implies that the probability of system empty while the server is not on vacation,

is given by

(p2 +7M+77 i (A A+

As p=0 (g=1) or 7 —>eo, F(O)=1-p, FD)=p(l-p), and pF0)=FD,
which are consistent with the result of the ordinary M/M/1 queue.
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4.5 Numerical Results

In this section, we construct the total expected cost function per unit time based
on the system performance measures for the M/M/c/MBSV queueing system, in which
the number of servers (¢ ) is a discrete decision variable, and the service rate (4 ) and
the vacation rate (77) are continuous decision variables. Our main objective is to find
the optimum number of servers ¢, and the optimum values of service rate and
vacation rate (4 ,7") simultaneously to minimum the cost function. Let us define

the following cost elements:

C, =holding cost per unit time per customer present in the system,
C, = cost per unit time of providing an service rate 4,

C, = cost per unit time when one server is on vacation,

C, = cost per unit time of providing an vacation rate 7,

C, =fixed cost for purchasing one server.

Using the definition of the cost parameters listed above, the total expected cost

function per unit time is given by:

Fe,m)=C,L +C 1 +C,EV]+Cn+C,e, (4.27)

where L, and E[V] are defined previously. The analytic study of the optimization
behavior of the expected cost function would have'beenan arduous task to undertake
since the decision variables appear in an expression which is a highly nonlinear and
complex and non-linear in terms of (¢, u,77 ). We firstly use the Quasi-Newton method
to find the optimal value of continuous variable (i,77), say (& ,7 ), and then use
direct search method to search the optimal value of discrete variable c, say c . For
practice use, the number of servers is bounded by a positive integer ¢, >1. We want
to find the joint optimal value (# ,7" ) for each given ¢ in the feasible set
{1,2,...,¢c, }. The cost minimization problem can be illustrated mathematically as

F(c,u’,n") = w’%&S){F(c, umle}, e=12,...¢,. (4.28)

For a fixed ¢, Quasi-Newton method is employed to search (x,77) until the minimum
value of F(c,u,n) is achieved, say F(c, ,u*,ff). To demonstrate the valid and the
procedure of optimization solution, we perform some examples shown in Table 1 by

considering the following cost parameters as
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C,=$90/customer/unit time, C, =$15 /unit time,

C,=$30/server, C,=$45 /unit time, and C,=$120/server

From Table 4.1, we can see that the minimum expected cost per unit time of 838.457
is achieved at (u',n7°)=(17.5903, 4.30120) by using 6 iterations, which is c=1
based on Case (i) with initial value (u,7)=(15, 2.0). Based on Case (ii), the initial
value (c,u,n)=(3, 10, 2) and the minimum expected cost per unit time of 935.612 is
achieved at (4 ,77°)=(15.2171, 2.74098) by using 6 iterations. After we obtain the
joint optimal value (u',;7°) of the continuous variable (,77), we will use the direct
search method to obtain the optimal c such that the expected cost function
F(c,u’,n") attains a minimum, say F(c ,4 ,77 ). Therefore, the cost minimization
problem can be illustrated mathematically as

F(',p'n)= min (PG )} (4.29)
The procedure to find the-optimal solution is described in'the following. A -numerical
example. is shown in Table-4:2-based on (i) (A4, p)=(15, 0.5) and (ii) (4, p) =(20,
0.8). It is noted that the optimal value (c',u 77 )=(2, 15.284, 3.7983) and the
corresponding minimum cost F = 895.4944 for Case (i). For Case (ii),
(", um)=(2,18.731, 4.8242) and F =1071.252 are optimal.

Finally, we perform a sensitivity investigation to the optimal values (¢ ,u 7).
For various values of 4 and - p, the minimum expected cost F(c ,4 ;7 ) and the
system performance measures. L , and E[V] at the optimum values (¢, u ,7") are
shown in Table 4.3. From the Table, it is seen that (i) ¢ is insensitiveto A or p;
(i) 4 increases as A increases; and (iii) 77 increases as A or p increases.

Moreover, the minimum expected cost increases Fi(¢', £ 31 )as A or increases.
p
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Table 4.1. The illustration of the implement process of Quasi-Newton method

Case (i): (4, p) =(10, 0.5) with initial value (c,u,77)=(1, 15, 2.0)

Iterations 0 1 2 3 4 5 6
F(c,u,m) 987.973 882.065 845.430 838.786 838.458 838.457 838.457
M 15 16.4035 17.3194 17.5741 17.5901 17.5903 17.5903
n 2.0 2.78381 3.59146 4.13419 4.29150 4.30117 4.30120
oF
a -19.9189 16.4035 -1.11143 -0.05537 -0.00008 1.57x10° -8x10™
oF
% -176.914 -2.78381  -21.1504 -4.00835 -0.22011 -0.00075 -8.5x107°
L, 6.05405 4.24438 3.28115 2.89676 2.81312 2.80833 2.80831
. 14.26 -0.114 6.754 -0.086 4.511 -0.069 4.070 -0.062 4.046 -0.06 4.046 -0.06 4.046 -0.06
Hessian [-0.114 225.9} {70,(7)86 83488} {70.069 39.00} [-0.(:62 25.48:| {—0.06 22‘76:| {-0406 22.60} [—0.06 22460}
Case (ii): (A, p) =(20, 0.2) with initial value (¢, &,77) =(3, 10, 2)
Iterations 0 1 2 3 4 5 6
F(c,u,m) 1052.33 971.631 942.421 936.060 935.615 935.612 935.612
M 10 11.5153 13.2741 14.6682 15.1728 15.2168 15.2171
n 2.0 246623 271924 2.75081 @ 2.74176 2.74098 2.74098
oF
a -59.8568  -23.5812 13.2741 -1.69159--0.12620 -0.00083 —4.8x107*
oF
% -77.6947 -24.0490 2.71924 -0.59183 -0.04460 -0.00031 4.16x107
L 4.82721 3.42012 2.65292 2.31515 222369 2.21614 2.21609
ressian 120 IR N L2 () (o
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Table 4.2. The optimal value (4 ,77") and the corresponding minimum expected cost

(i) (A, p)=(15,0.5)

¢ | Initial Value Coverage Value (u',7°) Iteration | Cost*
c=1 [20, 2.0] [24.32507, 5.332980] 7 1052.297
c=2 [15,2.0] [15.28433, 3.798293] 6 895.4944
c=3 [10, 2.0] [12.37270, 3.088068] 6 920.8427
c=4 [10, 2.0] [11.00938, 2.679454] 5 998.4310
c=5 [10, 2.0] [10.26962, 2.428360] 5 1098.187

(i) (4, p)=(20,0.8)

c Initial Value Coverage Value (u',7") Iteration | Cost*
c=1 [25,5.0] [30.75986, 6.423140] 6 1288.713
c=2 [20, 3.0] [18.73113, 4.824175] 6 1071.252
c=3 [15, 2.0] [14.85998; 4.032956] 6 1073.578
c=4 [10, 2.0] [13.05122, 3.560957] 6 1137.429
c=5 [10, 2.0] [12.06278, 3.260737] 6 1232.625

Table 4.3. The optimal value (¢',u ,777) and F forvarious value of A and p.

(4, p) (5,0.2) (10,0.2) (20, 0.2) (5, 0.8) (10,0.8) = (20, 0.8)
c 2 2 2 - ) 2

[7.249477, [11.60659, [19.16225, [7.091449, [11.32231, [18.73113,
1.471333]  2.295007] 3.550663] 2.326386] . 3.368702] 4.824175]

F(c',u',n)

(u.n)

532.099 685.935 932.038 610.522 792.191 1071.252

L 1.154063 1.717796 = 2.565803  1.481779  2.275863  3.436747
E[V] 0.442712  0.465296 0.463387  0.870082  0.864552  0.796331
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Chapter 5

M/M/c Retrial Queue with Bernoulli Vacation Policy

The multi-server retrial queue with a Bernoulli single vacation policy is
considered in this chapter. Servers may take a vacation at the completion of service
with probability p or continuous to serve the next customer with probability 1—p.
Such as the customer service department, the receptionist may take a rest after
completing a service for a customer. For the telephone communication system, the
servers and customers have no. information' for each other. Consequently, the retrial

behavior of customers should be considered.

When the servers complete the vacation period, they stay idly for the next new
arrival or serve the customers in the system, if any. That is, the single vacation policy.
The stability condition is-developed explicitly. For this queueing model, it is rather
difficult ' to. obtain the—close<form of steady-sate probability. Hence, we use
matrix-analytical method. to solve the steady-state solution recursively. Conveniently,
we represent this-multi-server- system withBernoulli® single vacation policy as
M/M/e/BSV retrial queue.

This chapter is organized as follows. Section 5.1 gives some basic assumptions of
the queue under study and notations.. We develop the state-transition matrix, the
stability condition, and the recursive method to obtain the steady-state solution in
Section 5.2. Section 5.3 provides some important system performance measures.
Finally, Section 5.4 presents the numerical results and several examples to illustrate

the optimization procedures.
5.1 Assumptions and Notations

An M/M/c/BSV retrial queue is investigated. Primary customers arriving as a
Poisson process with parameter A. An arriving primary customer finding any
available servers will get service immediately. Otherwise, he joins the orbit and
attempts to enter the system later. There are ¢ channels (servers) that provide service
for the customers. The service times are assumed exponentially distribution with rate
. Each server can serve one and only one customer at a time and the service is
independent of the arrival process. At the service completion instant of as server, it
may take a vacation of random interval with probability p or wait idly in the system

for the next new arrival with probability g (g =1- p). The vacation times follow an
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exponentially distribution with parameter 7. Furthermore, the inter-retrial time of
each customer staying in the orbit is assumed exponentially distributed with parameter
o . Upon requesting service from the orbit, customer who finds all ¢ servers busy
always rejoins the orbit; this manner continues until he is eventually served. It is
assumed that the number of customers in the orbit that are allowed to conduct retrials
have an upper bound N (see Neuts and Rao [50] and Artalejo and Pozo [7]). Moreover,
the process of primary arrivals, service times and inter-retrial times are assumed

mutually independent.

For an M/M/c/BSV retrial queue, the state of the system can be described by the
pair (i, j,k), i=0,1,2.,¢, j=0,1,2,...; k=0,1,2,...,c=~i, where i denotes the
number of busy server,. j is the number of customers in orbit-(sources of repeated
demands) and' k denotes the number of vacation servers. According to system
assumptions, the number of customers in orbit allowed to conduct retrials is restricted
to an appropriate number N (N >¢), so the retrial rate is o, =min{j,N}o,
j =0 and one server will go on vacation with probability. p. (0< p <1) or resumes
service with probability..g=1-p at a service completion instant. The customers
upon the server will get services immediately as i+ k < c¢. The new atriving customer

who find all ¢ servers busy (i+k = ¢) always rejoins the retrial group (orbit).
In steady-state, the steady-state probability is defined as

P,.S =probability that there are i busy servers and._j_customers in orbit and &

vacation servers, where 0<i+k<¢ and j=0,1,2,....

In this chapter, the following notations and probabilities are used.

A — “mean arrival rate

M — mean service rate

p — probability that a server may opt for Bernoulli vacation
n — vacation rate

O — mean retrial rate

¢ — number of channels (servers)
II — steady-state probability vector
Q — infinitesimal generator

I — identity matrix

e — identity column vector (a column vector with all elements equal to 1)

F — irreducible generator
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X — invariant probability
P. — probability that all servers are busy
R — rate matrix
E[B] — expected number of customers in the FES channel
E[V]— expected number of customers in the SOS channel
E[Orbit] — expected number of idle servers
o, — the overall rate of retrials
o, — the rate of retrials that are successful
FR — the fraction,of retrials that are successful
E(T) — mean busy period
F, — vain retrials

F = cost function

5.2 M/M/e¢ Retrial Queue with Bernoulli Vacation

This paper consider a M/M/c retrial queue in which primary customers, arriving
to a Poisson process with parameter 4. An arriving primary customer finding one or
more servers available (free) obtains service immediately. On the other hand, if the
primary-customer who finds all servers busy, he joins the orbit and tries to get the
service later on. There are c-channels (servers) that provide service for the arrivals, in
which the service times are assumed to be exponentially distributed with mean 1/ .
Each server can serve only one customer at a time, and that the service is independent
of the arrival of the customers. At each service completion instant of a server, the
server may take a vacation.of random length with probability p or wait to serve the
next arrival with probability g(1=p). The vacation times follow an exponentially
distributed with a parameter, 7. Furthermore, each customer staying in the orbit
makes the repeated attempts in random “intervals having length exponentially
distributed with parameter ¢, independently of the other customers. Upon requesting
service from the orbit, customer who finds all ¢ servers busy always rejoins the orbit;
this manner continues until he is eventually served. It is assumed that there exists an
upper bound N on the number of customers in the orbit that are allowed to conduct
retrials (see Neuts and Rao (1990) and Artalejo and Pozo (2002)). This implies that
the probability of a repeated attempt during (t,7+dt), given that j customers in the
orbit at time ¢, is dot+0(dt), where o, =min{ j, N}o. Moreover, the process of

primary arrivals, service times and inter-retrial times are assumed mutually
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independent. Conveniently, we represent this multi-server system with Bernoulli
vacation as M/M/c/BSV retrial queue.

5.3 Steady-state Results

The infinitesimal generator Q that describing the M/M/c/BSV retrial queueing
system is

A, B )
C, A B
C, A, B
= 5.1
Q C, A,, B 6.1
C,, Ay B

C, A, B

Let Tl={I,,I,IL,,..] with Sub-vector II, =[P B}, .. P’ . P, B\ P Fy....,

B, BT ER1, i=0,1,2,... be the unique solution to Q=0 and Me=1, where
e is a column vector with all elements equal to 1. The entries B, A j( j=0), and

C,(j21) are block-diagonal matrices of order (¢ +1)(c +2)/2 defined by

-
b()

b,

where sub-matrices

elements

{

b.lc+1-i,c+1-i]=4,

0

bi

and ¢, are (c+l-i)x(c+1-i)

o

and Cj:

ew,
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{ci[k,k+1]:o'j, 1<k<c—i,
and

square matrices with



%0 0
Y) X
1 v1 i
7'Y; X
2 %72 w2
7Y X
A = , j=0,1,2,...,

Zc—l Y;_l Xc—l
7° Y

J

where X' is a (c+1—i)x(c—i) matrix with X'[k+1,k]=kpu, 1<k<c—i, Z' is
a (c—i)x(c+1-i) matrix with Z'[k,k]=in, 1<k<c-i, and Y; is a square
matrix of order (c +1—i) with elements

Yilk.k+1l]=4, 1Sk<c—i,

Yilk+1k)=k(l = pypts 1<k < c =i

Y{[Lil=—A+(i-Lp+0,],

Y[k k]=-[A+(k+Du+in+o,], 2<k<c—i,
Yilc+l—ic+1-il=—[A+in+(c—ipl.

5.3.1. Stability condition

By Theorem 3.1.1 of Neuts [49] that the steady-state probability, vector exists if
and only if

xBe <xC,e, (5.2)

where x is the invariant probability of the matrixx F=C, +A ,+B. x satisfies
0

c

xF =0 and xe=1. First we solve xF =0, where x:[xg,xlo...,x ,...,xg"l,xl‘"l,xg].

We can get following (c+1)(c+2)/2 equations :

For k=0,
—(A+No)x) +qux; +nx, =0, (5.3a)
(A+No)x), —(A+iu+No)x! +(i+)qux,, +nx =0, 1<i<c-1, (5.3b)
(A+No)x), —cux’ =0. (5.3¢)

For 1<k<c—-1,

puxt” —(A+No+kn)x, +quxt +(k+Dnx," =0, (5.4a)
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(A+No)x!, +ipuxt™ —[A+No+({—Du+knlxt,

viguxt + (k4D =0, 28150k,
(c+1=k)pux',l, +(A+ No)xt | —[(c—k)u+knlx', =0. (5.40)
For k=c,
pux™ —cnxg =0. (5.5)

Using a effective Maple software to solve equations (5.3a)-(5.4c), it derive the
following results

c—k

A3 cln
LNk A+NO) T U pe

— 0 <idk <e. (5.6)

Then using the normalization condition xe =1, x; can be determined as

5 {ZZ 8 } - (5.7

S ik A+ No) ™ ' p*

Substituting B and C, into equation (5.2) and doing some routine manipulations,

then we have

No(1-P,)> AP,, (5.8)
where
S Jbs c'n'
P.=>x"= ——"F—x
p Z gmc—i)w’p’ ’
(5.9

c -1
77 ¢ c—k c!nc—k
=|1+— —— ,
( pﬂ] {;;"i!k!(ﬂ+N0)Cﬂ_kﬂ’Pc—k}

which is referred to the probability that all normal working (non-vacation) server are
busy (i.e. i+k=c). That is, the system would be stable if the expected successful

retrial rate is greater then the expected arrival rate of “orbit”.
5.3.2. Rate matrix

By the matrix-geometric property, it is noted that the steady-state probability
vector II=[II,,II,II,,1II,,...] has the following properties

m,, =M,R* for k>1. (5.10)

66



The matrix R is the unique non-negative solution with spectral radius less than one

of the equation

B+RA, +R’C, =0. (5.11)

From Neuts [49] and Latouche and Ramaswami [41], it is known that R is given by

limR , where the sequence { R, } is defined by

n—0c0

R,=0,and R, =—BA; -RC, A}, for n>0. (5.12)

The sequence {R,} is monotone so that R could be evaluated from (5.12) by

successive substitutions.

After the development of rate matrix, the stationary probability vector I exists
under the stability condition.-We-deal with the steady-state equations by using matrix

technique. The steady-state-equations are given:by

MmA,+I,C, =0, (5.13a)
M, B+IA +I,C. =0, ISiSN-1, (5.13b)
M, B+M,A, +1,RC, =0, (5.13¢)
o,R""B+MI,R™A, +II, R*™YC, =0, N+1<i, (5.13d)

il’[iezl. (5.14)

i=0

After doing some routine manipulations to equation (5.13a)-(5.13¢) recursively, we

have
HO 3 chl (_1&0)_1 = 1_[1¢1’ (515)
I, =ILC,[( i—1B+Ai—1)]_1 =ILg, 2<i<N,
and
nm,¢,B+II,A, +1I1,RC, =0. (5.16)

Consequently, 1115 0O<i<N-)) izn equation (5.15) can berritten in terms of
II, as HO:HN}}NQ , lelINlLIVQ s e = HN,LIVQ' and the rest
steady-state vector [II, ,II, Il ,, ..] can be determined recursively as
I, =M, R™, for i>N . Therefore, once the steady-state probability II, is
obtained, the steady-state solutions [II,II,IL,,... 01X, 00, 00, ,..] are
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determined. The steady-state probability II, can be solved by equation (5.16) with

the following normalization equation

> Me=[M,+ +..+1,_ +I, +1

i=0

vt +.]e

1 2

N
=, T g+, T g +..+10, IT ¢ +10,, +I,R+I,R*+..]e (5.17)

1

=HN[§II(I ¢ +I-R)'le=1.

1

where I denotes the identity' matrix with suitable size. Solving equations (5.16) and
(5.17) in accordance with Cramer’s rule, Il can be obtained. Then, the prior state
probabilities  [IL,, I, IL,, .., I, ;] are computed from (5.15) and
[M,,,,0,,,, T, ..] are gained by the formula II,=TL,R™, i>N+1. The

solution procedure of steady-state probabilities is summarized as below:

N+33*

Algorithm: Recursive Solver

Step 1/Set ¢ =C,(-A,)™".

Step 2. For i from 2 to N, set ¢ =C.[-(¢_B+A_)I".
Step 3. For k from 1 to N, set ®, = llfw

N
Step 4. Solving 1, ¢, B+ I A, +H ,RC, =0, T, [Y ® +I-R)'le=1 and
k=1

obtain steady-state probability IIL, .
Step 5. Construct steady-state probability II, as follows:

(a) if 0<i< N, assign II, =11, ®

i+1°

(b) if N <i,assign Il =TILR:
5.4 System Performance Measures

There are several system descriptors (system performance measures) of the
M/M/c/BSV retrial queue, such as the expected number of busy servers (denoted by
E[B]), the expected number of vacation servers (denoted by E[V]), and the expected
number of customers in orbit (denoted by E[Orbit]) can be evaluated from the
steady-state probabilities. The explicit expressions for E[B], E[V], and E[Orbit]
are given by
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) N-1
E[B]=Y M ,v=> T v+, v+ ,Rv+I,R*v+...
j=0 j=0
N-1
=> M@ v+I,v+I Rv+I ,R*v+... (5.18)

j=0

HN[ﬁ:q)jHI—R)"]V.

J=1

oo N-1
E[V]=Y Mu=> M u+u+I,Ru+I,Ru+..

j=0 j=0

N-1
=>0,® u+M,(I-R)'u (5.19)
Jj=0

HN[i(I)j +(I-R)™u.

j=

DM

E[Orbit] =y jILe

= o
Moy,

I, @ e+NHye+(N+DIL Re+(N+2)M,R%+...

~.
T

N (5.20)
=Z(j—1)HN(I)je+HN[N(I—R)‘1+R(I—R)‘2]e
j=2
N
=I1,[> (j-D®,+ NI-R)"'+RI-R) e,
=2
where
v=[0,1,...,¢,0,1,....,¢—1,...,0,1,0] and w=][0,0,...,0,11,....1,....c=1,¢—1,c]
#=c+l #=c #=2 #=c+l #=c #=2

are column vectors with. dimension (c+1)(c+2)/2. For an M/M/c/BSV retrial queue,
the numerical results of E[Orbit] are obtained by considering the following four
cases with different values of ¢

Case 1. N=30, A=5, =10, p=0.5, =5, vary u from 10 to 15.

Case 2. N=30, A=5, u=10, p=0.5, o0=10,vary n from 10 to 15.

Case 3. N=30, u=15, n=15, p=0.5, o=10,vary A from 5 to 10.

Case4. N=30, A=5, u=15, n=15, p=0.5,vary o from 10to 15.

Results of E[Orbit] are depicted in Figures 5.1-5.4 for Case 1-4, respectively. One
sees from Figure 5.1 and Figure 5.2 that E[Orbit] drastically decreases as i or 7
increases for c¢=1, while E[Orbit] is not sensitive to x4 or n for c>2. It
reveals from Figure 5.3 that E[Orbit] increases violently as A increases for ¢ =1

while E[Orbit] slightly increases as A increases for ¢>2. Figure 5.4 reports that
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E[Orbit] decreases as o increases for ¢ =1, while E[Orbit] is not sensitive to
o for c¢=>2. There are several general descriptors of retrial queues, some of which

are listed below:

1. The overall rate of retrials

>~
>~

C  C— C  C—

]

zﬁjoﬂje+ i Noll, R e

Il
.Mz

o, P+ Z No
/=1 k=0 i=0 j=N+ k=0 i=0 j=1 j=N+1
N N
=Y joll e+ Noll,RI-R)'e=0[)_ I, + NI[,RA-R) e (5.21)
j=1 J=1
N-—
=oll [Z j®, +NI-R) Je.
=
2. The rate of retrials that are successful
* N G Calr oo ¢ c—k-1
= Z B+ ) No) 3 B (5.22)
j=1 k=0 i=0 J=N+1 k=0 i=0

3. The fraction of retrials-that-are successful

AR=22 (5.23)
o-l
4. The marginal distribution of the number of busy servers
P, 0<i+k<c. (5.24)

i,] 2
j=0
5. Busy period : The busy period T of a retrial queue is defined as.the period that
starts at the epoch when an arriving customer finds an empty system (all servers
are idle and no customer in.the orbit) and ends at.the departure epoch at which the

system is empty again.

The mean busy period

11
ET)=—(—-1)= -1 2
) A R, /1(11 V@] ) (5.25)

where II,®,[1] denotes the first element of II,®,.

6. Vain retrials : A vain retrial is an unsuccessful retrial when all servers are busy.

The steady-state probability of vain retrial F,
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PV — ::l i+k=c — Jj=l i+k= ) (5.26)
2

To understand how system performance measures listed above vary with N, we also
perform a numerical investigation to the measures based on changing the value of N

from 5 to 25, which is based on A=5, u=15, p=0.5, 0=10 and 7=10. The
numerical illustration is graphically presented in Figures 5.5-5.8. From Figures 5.5-5.8,
it is clear that increasing the retrial rate beyond a certain point does not result in a
commensurate improvement in the system performance, which is according with the
result of Neuts and Rao [50].

5.5 Numerical Results

In this section, we construct the total expected cost function per unit.time based
on the system performance-measures for the M/M/c/BSV retrial queue, in which the
number of servers (¢ ) is a discrete decision variable, and the service rate (4 ) and the
vacation rate (77) are continuous decision variables. Let us define the following cost

elements:

C, =holding cost per unit time per customer present in orbit,
C, = cost per unit time of providing a service rate /4,

C, = cost per unit time when one server is‘on vacation,

C, = cost per unit time of providing a vacation rate 7,

C, =fixed cost for purchasing one server.

Based on the definition of the cost parameters; the total expected cost function per unit

time can be expressed as:

F(c,it,1) = C,E[Orbit)+ C i+ C,E[V1+ Cn +C, e, (5.27)

where L and E[V] are defined previously. The main objective is to find the
optimal number of servers ¢, and the optimal values of service rate and vacation rate
(#,n") simultaneously which minimize the cost function F(c, #,77). The analytical
study of the optimization behavior of the expected cost function would have been an
arduous task to undertake since the decision variables appear in an expression which

is a highly nonlinear and complex and non-linear in terms of (c,u,77). Next, we
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firstly use the Quasi-Newton method to find the optimal value of continuous variable
(u.m),say (& ,n),and then use direct search method to search the optimal value of
discrete variable c, say ¢ . For practice situation of purchase budget, the number of
servers is bounded by a positive integer ¢, =21. We want to find the joint optimal
value (4 ,n ) for each given ¢ in the feasible set {1,2,...,c, }. The cost
minimization problem can be illustrated mathematically as

F(C,,u*,ff) _ (ﬂ,q)rarnlglsl.n(SB){F(C’ﬂ’n)|C} , c=12,..,¢,. (5.28)
For the problem of (5.28), we should show the convexity of F(c,u,n7) in (u,7).
However, this work is difficult to implement. It is noted that the derivative of the cost
function F with respect to (4,7) indicates the direction which cost function
increases. It means that, the optimal value (4 ,7") can be found along this opposite
direction of the gradient. (see Chong and Zak [14]). That is, for a fixed c,
Quasi-Newton method is-employed to search (z,7) until the approximate minimum
value of - F(c, i1,17) is achieved, say F(c,u ,n7 ). To demonstrate the validness and
the optimization solution, we perform some computation and analysis on the examples

shown in Table 5.1 by considering the following cost parameters as
C,=$25/customer/unit time, C, =$45 /unit time,

C,=$120/server/unit time, C,=$90 /unit time, and C , =$120/server.

From Table 5.1, it can be seen that the minimum expected cost per unit time of
1474.377 is achieved at (1,1 )=(11.54626, 6.305710) by using 6 iterations, which
is based on Case (i) with initial value (c,u,n7)=(1,15, 5). Based on Case (ii) with
initial value (c,4,n)=(2,-10, 10), the minimum expected cost per unit time of
1968.692 is achieved at - (1,77 ) =(12.53093; 8.696281) by using 6 iterations.

After obtaining the joint optimal value (x ,77°) of the continuous variable
(u,m), we would use direct search method to obtain the optimal ¢ such that the
expected cost function F(c,u’,n") attains a minimum, say F(c',u ,n"). Therefore,

the cost minimization problem can be illustrated mathematically as

F(' i’y = min {F(e.p' .} (5.29)

The procedure to find the optimal solution is described in the following. A numerical
example is shown in Table 5.2 based on (i) (4,p,0)=(10, 0.8, 15) and (ii)
(4, p,o)=(15, 0.5, 20).
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Algorithm: Direct Search Method
Step 1. Set F" =M which M is a sufficiently large number.

Step 2. For each i from 1 to ¢,, set a initial trial solution (x,7) and use Quasi-
Newton method to find the optimal value (x,7°) and the cost function

F(c, 1'.17).

Step 3. If the Quasi-Newton method diverges, try another initial trial solution and back
to step 1.

Step 4. If F(c, ' ,n)<F ,set F =F(c, g, ). and S'=(c, u', 7).

It is noted that the optimal value (¢ s ;1 )=(4; 5.999552, 5.046493) and the
corresponding minimum cost F' = 1708.284 for Case (i). For Case (ii),
(", 1, n")=(4, 8099802, 5.265980) and F" =1819.241 are optimal. Finally, we
perform a sensitivity investigation. on the optimal values (c',u ,77 )« For various
values of A and p, the-minimum expected cost F(c,u ,n7°) and the system
performance measures L, and E[V] ‘at the optimum values (c’,/ ,; ) are shown
in Table 5.3. From Table 5.3, it can be seen that (i) ¢  is insensitive to A or p; (ii)
4 increases as A increases; and (iii) 7 increases as A or p increases.

. . . 3 s .
Moreover, the minimum expected cost increases F(c , i ,n7 )as A or p increases.
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Figure 5.1. The expected number of customers in orbit versus K«
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Table 5.1. The illustration of the implement process of Quasi-Newton method

Case (i): (4, p,o) =(5, 0.5, 10) with initial value (c,u,n)=(1, 15, 5)

Iterations 0 1 2 3 4 5 6
F(e,u,m) 1544.435 1517.015 1482.721 1474.921 1474.380 1474.377 1474.377
y 15 10.74763 11.11560 11.41594 11.53441 11.54617 11.54626
n 5 5932174 6.131345 6.263916 6.303111 6.305700 6.305710
oF
a 15.31879 -78.2392 -25.8695 -5.64068 -0.43039 -0.00300 -7.8x10°®
oF
% -73.2424  -133.720 -43.6031 -9.22994 -0.66640 -0.00424 -1.5x107

E[Orbit] 7.177405 10.75622 8.070767 6.782341 6.418249 6.388411 6.388210
E[V] 0.500000 - 0.421422 0.407740 0.399111 0.396630 0.396467 0.396466

Case (ii): (A, p,o)=(10,0.8, 15) with initial value" (c, &, 1) =(2, 10, 10)

Iterations 0 1 2 3 4 5 6
F(e,i;m) 2037910 1988.860 1971.630 1968.793 1968.692 1968.692 1968.692
H 10 11.05421 11.93856 12.42039 12.52661 12.53093 12.53093
n 10 9.256253 8:869115 8.722289 8.697166 8.696282 8.696281
oF
a -08.0608 -41.9620 -13.3913 -2.29042 -0.09060 ' -0.00016 —7.7x107°
oF
% -35.0235 22.3227 -9.22534 =1.86890  -0.08050 -0.00014 1.6x10°

E[Orbit] 9.276428  7.785777 6.717369 6.192268 6.074761 6.069724 6.069715
E[V] 0.799990 0.862781 0.902006 0.917190 0.919840 0.919933 0.919933

Table 5.2. The optimal value (& ,77°) and the corresponding minimum expected cost

Case (i) (4, p,0) =(10,0.8, 15)

Initial Value  Coverage Value (4 ,n°)  Iteration  Cost*

c
1 [25, 15] [25.13488, 16.43305] 6 3118.635
2 [10, 10] [12.53093, 8.696281] 6 1968.692
3 [10, 5] [8.214208, 6.210196] 6 1725.728
4 [5. 5] [5.999552, 5.046493] 7 1708.284
5 [5, 5] [4.652035, 4.414643] 7 1779.094
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Case (ii) (4, p,o) =(15, 0.5, 20)

Initial Value  Coverage Value (4 ',n°)  Iteration  Cost*

D B W N =0

[30, 20] [33.17698, 17.35916] 6 3601.021
[15, 10] [16.60255, 9.183037] 5 2210.467
[10, 5] [10.97471, 6.530226] 10 1882.075
[6, 6] [8.099802, 5.265980] 8 1819.241
[5. 5] [6.347280, 4.561196] 7 1861.652

Table 5.3. The optimal value (¢, , ) and the minimum expected cost for various
value of A and p.

(A, p,0)

(5, 0.2, 10)(10,0.2, 10)(20, 0.2, 10) (5, 0:8, 10) (10,0.8, 10) (20, 0.8, 10)

F

C
(w.n)

F(c i, m)
E[Orbit]
E[V]

2 3 4 4 4 5
[4.965695, [6.427349, [9.416220, [2.997995, [6.062298, [9.609657,
2.123714] 2.781059] 3.9745611 2.998664] 5.075460]. 7.689420]

901.7296. -1245.806 1727.201 = 1325.523 =~ 1716.873 = 2386.602

2.825372 3.199280 4.199710 -« 1.626472 3.125312 4.497047
0.470873  0.719505 1.006400 . 1.333927  1.576212 - 2.080781

(5,0.2,10) (5,0.5, 10) (5,0.8,10) (10, 0.2, 15)10, 0.5, 15) (10, 0.8, 15)

(4, p,0)

c

0738/

F(c 1, m)

E[Orbit]
E[V]

2 3 4 3 3 4
[4.965695,  [3.774111, [2.997995, [6.347744, [7.295827, [5.999552,
2.123714] 2.689427] 2.998664] 2.767427] 4.645567] 5.046493]

901.7296  1116.483  1325.523  1237.045 1511.634 1708.284

2.825372  2.122060 . 1.626472 .3.024207 ~ 3.662626  2.955528
0.470873" 0.929566  1.333927 0.722693 1.076295  1.585259

(A, p,0)

(10, 0.2, 5) (10, 0.2, 10)(10, 0.2, 15) (10, 0.8, 5)(10, 0.8, 10) (10,0.8, 15)

F

C
(w.n)

F(c i1, m)
E[Orbit]
E[V]

2 3 3 4 4 4
[10.00245, [6.427349, [6.347744, [6.232824, [6.062298, [5.999552,
3.820378] 2.781059] 2.767427] 5.154912] 5.075460] 5.046493]

1361.503 1245.806 1237.045 1739.966 1716.873 1708.284

5.789514 3.199280 3.024207 3.572681 3.125312  2.955528
0.5235084 0.719505 0.722693 1.551918 1.576212  1.585259
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Chapter 6

Conclusions and Future Research

In this thesis, we considered M/M/c and M/M/c retrial queues with SOS channel,
M/M/c/MBSV queue, and M/M/c/BSV retrial queueing system. For those four
queueing systems, it is rather difficult to obtain the steady-state probability explicitly.
Thus we employed the matrix-geometric method and recursively matrix-analytical
approaches to deal with the probability distributions. The sufficient and necessary
conditions for the stability of the queueing systems were derived. The closed-form or
approximation procedure of the rate matrix was provided. Various system
performances of..those four queues were also developed.. Using the system
performances and cost elements, the cost functions were constructed to determine the
optimal parameters setting of the queueing system such that the cost is minimized.
Sensitivity analysis was conducted to investigate the effect of changes in the system
parameters on/'the optimal values. In this chapter, we make conclusions and provide

possible extensions of the present work for the further research.
6.1 Conclusions

In Chapter 2, we investigated the optimal infinite capacity M/M/c queue arisen
from some practical situations, where arrivals may need-an-additional optional service
(second ‘optional channel by the server). The matrix-geometric method was employed
to deal with the complex steady-state equation system. The stability condition was
also developed: Some. important system performance measures were derived. A
sensitivity analysis was.performed to discuss how the system performances can be
affected by the input parameters in the investigated queueing service model.
Furthermore, we also provided numerical results among the optimal number of
channels, the optimal service rates, and minimal cost for the M/M/c queue with SOS

channel.

In Chapter 3, the queue studied in Chapter 2 was extended into the multi-server
retrial queue with SOS channel. The sufficient and necessary conditions for the
stability of the system were discussed. A sequence approximation method was
implemented to derive the rate matrix. An efficient algorithm was provided to obtain
the stationary probability vectors recursively. The explicit formulae for the system
performances were given. A cost model was constructed to calculate the optimal

values of the number of servers and the two service rates. A sensitivity analysis of the
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joint optimal values with respect to specific values of system parameters was
performed.

In Chapter 4, an infinite capacity M/M/c system with modified Bernoulli single
vacation policy (M/M/c/MBSV) was studied used the matrix-geometric method. The
necessary and sufficient condition for the stability of the system was deduced. More
important, the explicitly closed-form solution of stable condition and the rate matrix
of the queue model were obtained. The convergence property of rate matrix was also
proofed. We have not only obtained exactly the steady-state probability and the system
performance measures using matrix analytical approach but also find the optimal
number of servers, the optimal service rate and vacation rate based on the cost
function we constructed. Finally, this study is not difficultly extended to the case that
server takes multiple vacations when an empty queue is found upon a service

completion.

In Chapter 5, we analyzed-an M/M/c retrial queue with Bernoulli single vacation
policy (M/M/c/BSV retrial queue). The explicit expression of the stability condition
was developed. The stationary probability vectors and some system performance were
obtained in matrix forms. A cost model was constructed to investigate the optimal
control of the queueing system we discussed. Two efficient methods were employed to
deal with the optimization problem heuristically. A sensitivity analysis of the joint
optimal values with respect to specific values of system parameters was performed.
Based on _the' analysis, the mathematical model formulates of M/M/c/BSV retrial

queue and M/M/e retrial queue with SOS channel are consistent.

6.2 Future Research

We have used the matrix-geometric method to analyze the optimal M/M/c queue
with SOS channel and M/M/c retrial queue with SOS channel. The optimization of
M/M/c/MBSV queueing system and M/M/c/BSV retrial queue were also investigated.

In the future, we may study the following topics:

1. Incorporating the feedback behavior of the customers into the M/M/c queue
with SOS channel and M/M/c retrial queue with SOS channel.

2. Incorporating the balking and reneging behaviors of the impatient customers
into the M/M/c queue with SOS channel and M/M/c retrial queue with SOS

channel.
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. Incorporating the unreliable property of servers (server breakdown) into the
M/M/c/MBSV queue.

4. Optimization of the M/M/c retrial queue with J additional options.

Optimization of the PH/M/c and MAP/M/c queueing system with SOS

channel.
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