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摘摘摘摘 要要要要 

本論文主要為多個服務者排隊系統含有第二次可選擇服務、服務者選擇休假以

及考量顧客重試行為等條件之分析研究。多服務者排隊模式在實務上較單一服務者

模式更有彈性及適用性，以往多服務者排隊系統之數學分析技巧相對較為複雜且困

難，而相關文獻也較少。所有抵達系統的顧客都必須接受服務者所提供的第一必要

服務，當顧客接受完第一必要服務後，部分的顧客會選擇繼續接受第二種附加服

務。所謂服務者選擇休假是指每位服務者在每服務完一位顧客後都有一定的機率會

進行(僅)一次的休假，並於休假結束之後回到系統之中繼續提供服務或等待新顧客

的到來，即單一次休假策略。當系統中的服務者都處於忙碌時，新到達的顧客將進

入循環區(orbit)等待，於一段時間後再嘗試著進入系統之中接受服務，此循環將持

續進行直到該顧客接受完服務並離開系統為止，此稱為顧客之重試行為。因循環區

之中大多數顧客的嘗試都是失敗的重試行為，並不會造成系統狀態的變化，於是我

們假設循環區中允許重試的顧客人數有一最大上限值 N，同時可以簡化數學模式分

析上的困難度。我們一共研究了 M/M/c 排隊系統含有第二次可選擇服務(及顧客重

試行為)以及 M/M/c 排隊系統含有服務者選擇休假(及顧客重試行為)等四個排隊模

式。 

對於這四個排隊系統，我們利用矩陣幾何法 (matrix-geometric method) 以及遞

迴技巧 (recursive technique) 來推論其系統達穩態之條件及穩態機率解。除此之

外，要推論出這四個排隊系統確切的比率矩陣 (closed-form of rate matrix) 是相當困

難的，然而在使用矩陣幾何法時，比率矩陣為最重要之元件。在本篇論文裡，我們

將利用一單調收斂之數列去求得比率矩陣之近似解，然後利用推導出來的結果去求

取穩態機率的近似解。之後建構成本函數來找尋在不同條件設定下的最佳的服務者

個數、平均服務率、平均休假率等系統參數，經由直接搜尋法 (direct search method) 
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及彷牛頓法 (Quasi-Newton method)  我們可以得到近似最佳解以使得成本函數最

小。由於排隊系統進行敏感度研究，可以提供系統分析者了解輸入參數對系統影

響，因此，我們也將對近似解與最低成本進行敏感度分析，藉此分析來了解系統參

數的變動後，對於近似解與最低成本之影響，最後，我們有提供數值結果並討論之。 

關鍵字關鍵字關鍵字關鍵字：：：：選擇休假方策，直接搜尋法，第一必要服務，矩陣幾何法，彷牛頓法，比

率矩陣，重試，第二次可選擇服務。 
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Analysis of Multi-server Queues with Second 

Optional Service and Bernoulli Vacation 

 Student: Chia-Huang Wu        Advisor: Dr. W. L. Pearn 

Department of Industrial Engineering and Management, 

College of Management, National Chiao Tung University 

Abstract 

In this dissertation, the optimization investigated multi-server queueing systems 

with the second optional service (SOS) channel, Bernoulli vacation policy, and customer 

retrial behaviors are investigated. Multi-server vacation models are more flexible and 

applicable in practice than single server models. For the multiple server queueing models, 

the mathematical analyses are complicated and difficult; hence there are only a limited 

number of studies.  

All arriving customers need the first essential service (FES) provided by the servers. 

As soon as the FES of a customer is completed, a customer may leave the system or opt 

for the SOS. Bernoulli vacation policy means that the server may take one and only one 

vacation of random length with certain probability at each service completion. As the 

completion of vacation, the server stays idly for the next new arriving customer or serves 

the customers waiting in the queue, if any. That is, the single vacation policy. If the 

customer finding all servers busy always joins the orbit and tries to enter the system for 

service later. This manner continues until the customer is eventually served then leave the 

system. This is so-called the customer retrial behaviors. Because most of retrial behaviors 

of the customers in the orbit are failed without the change of states, we assume that the 

number of customers who can generate retrial requests is restricted (truncated) to an 

upper bound value N. This setting makes the mathematical model easier to be analyzed. 

We investigate four queueing models include the M/M/c (retrial) queue with SOS 

channel, the M/M/c (retrial) queue with modified Bernoulli single vacation policy, and 

the M/M/c retrial queue with Bernoulli single vacation policy. For those four queueing 

systems, we develop the stability conditions and steady-state probability solutions by the 

matrix-geometric method and recursive technique. Furthermore, it is rather difficult to 

derive the closed-form solution of the rate matrix for those four queueing systems. The 

rate matrix is the most important component for implementing the matrix-geometric 
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method to analyze the infinite capacity queueing system. Here, we employ a monotone 

and convergent sequence to approximate the rate matrix, and obtain the approximation 

solution of the steady-state probability. The expected cost functions are established to 

determine the optimal value of the number of servers, mean service rate, mean vacation 

rate and other system parameters. By implementing the direct search method and 

Quasi-Newton method, we can find the optimal solution heuristically so that the cost 

function is minimized. Because of sensitivity investigation on the queueing system with 

critical input parameters may provide some information for the system analyst. A 

sensitivity analysis is performed to discuss how the system performances and the optimal 

solutions are affected by the input parameters in the investigated queueing models. For 

illustration purpose, numerical results are also presented. 

Keywords: Bernoulli vacation policy, direct search method, first essential service, 

matrix-geometric method, Quasi-Newton method, rate matrix, retrial, second optional 

service. 
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Chapter 1 

Introduction 

Queueing system represents an example of a much broader class of interesting 

dynamic systems. Waiting in line is an exhausting activity in our life. How much time 

is spent in one’s daily activities waiting in some form of a queue: for breakfast; 

stopped at a traffic light; slowed down on the highways and freeways; delayed at the 

entrance to one’s parking facility; queued for access to an elevator; standing in line for 

the morning coffee; holding the telephone as it rings, and so on. The list is endless, 

and too often also are the queues. Therefore, queueing theory is a practical subject and 

plays an important role in scientific disciplines. In Section 1.1, we describe the 

background of the queueing theory. Section 1.2 is devoted to introduce theoretical 

analysis techniques. In Section 1.3, we relate our problem to earlier works in the 

literature. Section 1.4 shows the description of the queueing models in this thesis. At 

the end of this chapter, the scope of the thesis is presented in Section 1.5. 

1.1 Background 

Erlang in 1909, published “The Theory of Probabilities and Telephone 

Conversations” who was also responsible for the notion of stationary equilibrium. 

Erlang introduced so-called balance-of-state equations for the first consideration of the 

optimization of a queueing system. Many valuable applications of the queueing theory 

such as traffic flow, scheduling, and facility design are well documented in the 

literatures. Queueing theory originated as a very practical subject that has largely 

arisen since the close of World War II. The development of the practice of queueing 

theory must not be restricted by a lack of closed-form solutions, and problem solvers 

must be able to put the developed theory to good use. 

A queueing system can be described as customers arriving for service, waiting 

for service if it is not immediate, and if having waited for service, leaving the system 

after being served. Queueing theory was developed to provide models to predict the 

behavior of systems that attempt to provide service for randomly arising demands. 

Mathematically, queueing theory deals with the consequence of two basic types of 

random processes, called arrival processes and service time processes, as they interact 

under various assumptions concerning the structure of the waiting system. For a 

queueing processes, six characteristics provide an adequate description : (1) arrival 

pattern of customers, (2) service pattern of servers, (3)queue discipline, (4) system 
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capacity, (5) number of service channels, and (6) number of service stages. 

The process of arrivals is stochastic, so it is necessary to know the customer 

arrival process (batch or bulk arrivals) and the reaction of a customer upon entering 

the system (balking, reneged, or retrial). More importantly, a probability distribution is 

needed to describe the sequence of customer service times. The service process may 

depend on the number of customers waiting for service which is so-called 

state-dependent service. In general, customers arrive and depart at irregular intervals; 

hence queue length will assume no definitive pattern unless arrivals and service are 

deterministic. Thus it follows that a probability distribution for queue lengths will be 

the result of two separate processes - arrivals and services. 

The most common discipline that can be observed in everyday life is first come, 

first served (FCFS). Another discipline as last come, first served (LCFS) is applicable 

to many inventory systems. Other priority disciplines as preemptive and 

non-preemptive case can also be implemented in various situations. Usually, system 

capacity is assumed infinite. A customer is forced to balk if the system capacity is 

limited and full. Number of service channels means the number of servers in the 

system. A multi-channel queueing system may have a single queue or allows a queue 

for each channel (multiple queues). In a multi-stage queueing system, a customer may 

requests several stages of services (optional service) or has feedback behavior. 

1.2 Literature Review 

Recently, there have been more studies to multi-server queueing models are 

investigated because queues with multiple servers are more flexible and applicable in 

practice than single server models. There are numerous literatures that deal with the 

system characterization and optimization problem on the queues with second optional 

service channel, vacation policy, or customer retrial behavior. Queueing models with 

server vacations are effective tools for performance analysis of manufacturing systems, 

local area networks, and data communication systems. Excellent surveys on the single 

server vacation models have been reported by Doshi [29], Takagi [54] and Ke et al. 

[36]. The variations and extensions of these vacation models were developed by 

several researchers such as Lee et al. [42, 43], Choudhury [15, 16], Ke and Chu [34] 

and many others. 

1. queues with SOS channel 

A pioneering work in the queue with SOS channel was proposed by Madhi [48] 
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who first introduced the concept of a second optional service. It is assumed that all 

customers need the first essential service but a part of them may requests the second 

optional service at the first essential service completion. Madan [47] studied an M/G/1 

queue with a second optional service using the supplementary variable technique, in 

which he considered a general service time distribution for the FES service and an 

exponential service time distribution for the SOS. Madan [47] also cited some 

important applications of this model in many real-life situations. Later, the above 

model with general service time distribution was discussed by Al-Jararha and Madan 

[2]. Choudhury and Madan [22] and Choudhury and Paul [23] studied the queue size 

distribution at a random epoch as well as at a departure epoch for an M[x]/G/1 

queueing system with a SOS channel and different considerations under N-policy. The 

reliability measures were examined by Wang [59] for the ordinary M/G/1 queue with 

channel breakdowns and SOS. Ke [32] investigated a batch arrival M[x]/G/1 queueing 

system with J optional services. Choudhury and Tadj [24] generalized this type of 

model by introducing the concept of a server breakdown and a delay-repair-period. 

More studied results can be surveyed in Choudhury and Tadj [25], Choudhury et al. 

[26], Choudhury and Deka [19], Ke et al. [35], Wang and Li [60], Wang et al. [61], 

Wu et al. [63], and Yang et al. [64]. 

2. queues with Bernoulli vacation policy  

The M/M/c queue with servers’ vacations was introduced by Levy and Yechiali 

[44]. Keilson and Servi [37] firstly investigated an oscillating random walk models for 

GI/G/1 vacation system with Bernoulli schedules. Bernoulli vacation means that when 

the service of a customer is completed, the server may leave for a vacation of random 

interval with probability p  or to serve the next customer with probability 1 p−  

(Choudhury and Madan [21, 22]). A numbers of papers (Tadj et al. [53], Madan et al. 

[46], Choudhury [17, 18]) have appeared in queueing literature in which the server 

provides to each heterogeneous service with Bernoulli schedule vacation (BSV). 

Sherman and Kharoufeh [51] developed the optimal Bernoulli routing in an unreliable 

M/G/1 retrial queue. They showed that the system exhibits a dual stability structure 

and characterized the optimal Bernoulli routing policy.  

3. retrial queues  

Review of retrial queue literature could be found in Yang and Templetion [65], 

Falin and Templeton [30] and Artalejo [4]. Retrial queueing system is characterized by 

the feature that the arriving customers who on encountering the busy server will join a 

retrial queue called orbit when all servers are busy and unavailable. An arbitrary 
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customer in the orbit generates a stream of repeated requests that is independent of the 

rest of customers in the orbit. This situation arises in telephone switching systems, 

telecommunication networks and computer systems. A number of applications of 

retrial queues in science and engineering can be found in Kulkarni and Liang [39] 

Many interesting studies have been devoted to an approximate approach to the 

stationary probabilities for system states (Artalejo and Choudhury [6], Bright and 

Taylor [12], Stepanov [52], Breuer et al. [11] and Chakravarthy and Dudin [13]). 

Gomez-Corral [31] gave a detailed bibliographical guide to the analysis of retrial 

queues through matrix analytic techniques. Amador and Artalejo [3] refer to a busy 

period and present a detailed computational analysis of four new performance 

measures: the successful retrials, the blocked retrials, the successful primary arrivals, 

and the blocked primary arrivals. Kim et al. [38] studied the BMAP/PH/N retrial 

queueing system operating in Markovian random environment. The main performance 

measures of the system were derived and some numerical example illustrations were 

presented. Then, the finite source MAP/PH/N retrial G-queue operating in a random 

environment was investigated by Wu et al. [62]. Formulae for important performance 

measures are derived. These results can model the Ethernet system appropriately.  

The monotonicity properties of an unreliable M/G.1 retrial queue was 

investigated by Taleb and Aissani [55] by using the general theory of stochastic 

ordering. An analysis of the energetic version of retrial M[x]/G/1 queue with vacation 

under quite general assumptions about parametric distributions was provided by 

Aissani [1]. The computation and optimization problem of a multi-server retrial queue 

with geometric loss and feedback was investigated by Lin and Ke [45]. For an M/M/c 

retrial queue with PH distribution of retrial time, Yang and Dug [66] presented an 

approximation which have some different features from the previous literature and can 

be useful for more complicated queueing system.  

It is worth noting that the truncation models seem to be the most convenient 

method for obtaining reliable numerical solutions for the M/M/c retrial queue. Neuts 

and Rao [50] and Artalejo and Pozo [7] proposed several models in this direction and 

provided efficient approximate solutions to the stationary distribution of the M/M/c 

retrial queue. Artalejo et al. [8-10] presented an algorithmic analysis of the maximum 

number of customers in orbit (and in the system) during a busy period. Artalejo [5] 

presented a bibliography on retrial queues made during the past decade 2000-2009. 

Tien and Ram [58] provided an efficient method to compute the rate matrix for retrial 

queues with large number of servers using characteristic matrix polynomial technique. 

Furthermore, Tien [56, 57] also presented new and efficient computation algorithms 
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for the multi-server retrial queues with various conditions. 

Recently, the queueing retrial models with SOS channel or and various vacation 

policies are discussed. Choudhury [17, 18] investigated the M/G/1 and M[x]/G/1 queue 

with two phases of heterogeneous service and Bernoulli vacation schedule which 

operate under various retrial policies. Choudhury and Deka [19] dealt with the 

steady-state behavior of M[x]/G/1 retrial queue with second optional service, unreliable 

srever and Bernoulli admission mechanism. Furthermore, Ke and Chang [33] derived 

the mathematical model of M[x]/(G1,G2)/1 retrial queue under Bernoulli vacation 

schedules with general repeated attempts and starting failures. Later, Langaris and 

Dimitriou [40] investigated a single-server queueing with n -phases of service and 

( 1n − ) types of retrial customers. Any conditions mentioned earlier can be considered 

to be assumptions of a queueing system. Choudhury et al. [27] investigated an 

M[x]/G/1 queue with two phase service and Bernoulli vacation schedule under multiple 

vacation policy. Lately, Dimitriou and Langaris [28] discussed a repairable queueing 

model with two-phase service, start-up times and retrial customers. 

Existing works with optional service or Bernoulli vacation policy, including 

those above, mainly focused on single-server queue. Therefore, in this thesis, we deal 

with four queueing models with various considerations. The first two are M/M/c 

queue with second optional service channel and M/M/c queue with SOS channel and 

customer retrial behavior. Then, an M/M/c queue with modified Bernoulli single 

vacation (BSV) policy is considered. Finally, an M/M/c/BSV retrial queue is 

investigated.  

1.3 Theoretical Analysis Technique 

In this section, we introduce two theoretical analysis techniques: matrix- 

geometric method and Quasi-Newton method. Furthermore, some methods 

implemented in calculations and computations are also presented in detail.  

1.3.1. Matrix-geometric method 

Neuts [49] introduced the matrix-geometric method which establish a transition 

matrix whose entries become matrices. For a quasi-birth-death (QBD) process, the 

infinitesimal generator matrix Q  can be rewritten in a block-matrix form with 

tri-diagonal structure. After formulating the Q  values for a specific problem, the 

steady-state solution can be determined analytically via the equation =ΠQ 0  where 

Π  denotes the steady-state probability vector. The QBD process describes a 
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generalization of the birth-death process. As with the birth-death process movements 

between it moves skip free up and down. For an infinite capacity queueing system, a 

matrix R , called rate matrix, is an important component as deriving the steady-state 

probabilities recursively. The rate matrix is the nonnegative solution of a matrix- 

quadratic equation in the following 

2 ,c cR C + RA + B = 0  

where matrices 
cC , 

cA  and B  are sub-matrices of the infinitesimal generator Q  

of the queueing system. In this dissertation, we will use the property as follow to get 

steady-state solution 

1i i+ =Π Π R , 0i ≥ . 

As a result, the developing of rate matrix is a significant object in the investigation of 

a queue with infinite capacity. The rate matrix R  can be obtained explicitly in 

close-form by using recursive technique via computer software. When the solution of 

R  becomes more complex and difficult to be obtained, Neuts [49] provided some 

algorithms such as linear progression algorithm and sequence convergence algorithm 

to approximate the rate matrix R . 

1.3.2. Quasi-Newton method 

Constantly, the analytic study of the optimization problem will be an arduous 

task because of the high complexity. Therefore, some heuristic algorithms to obtain 

the approximate solution are included. In this dissertation, the Quasi-Newton method 

is employed to find the heuristic solution of the optimization problem with continuous 

decision variables. It is noted that the derivative of the object function with respect to 

input parameters indicates the direction which the object function increases. That is, 

the better (optimal) solution can be found along the opposite direction of the gradient. 

(see Chong and Zak [14]). The procedures of Quasi-Newton method are described as 

below: 

Algorithm : Quasi-Newton Method 

Step 1 Set a initial trial solution (0)x  for object function F , and compute (0)( )F∇ x
r

. 

Step 2 While the norm of gradient 
( )

( )
i

F ε∇ >x
r

 (tolerance) do Steps 3-4. 

Step 3 Compute the cost Hessian matrix at point ( )i
x  denoted by ( )( )i

xH . 

Step 4 Find the new trial solution ( 1) ( ) ( ) 1 ( )[ ( )] ( )i i i i
F

+ −= − ∇x x H x x
r

. 

Step 5 Compute ( 1)( )iF +
∇ x
r

 and back to Step 2. 
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Comparison with gradient methods, Quasi-Newton method use the second 

derivative (Hessian) and it has order of convergence at least 2 (see Chone and Zak 

[14]). That is, for quadratic function, Quasi-Newton method converges in one step. 

However, it may not have descent property even though it may diverge if the initial 

trial solution does not start close the optimal solution sufficiently. Moreover, the 

heuristic solution found by the Quasi-Newton method may be local optimal solution 

rather than global optimal solution. 

1.4 Problem Statement 

In this dissertation, we investigate the optimal problem of an M/M/c (retrial) 

queue with second optional service (SOS) channel or Bernoulli single vacation policy. 

In day to day life, one encounters numerous examples of queueing models where all 

arriving customers need an essential service but only some require an additional 

optional service. For example, a manufacturing industrial system for a pump that 

manufactures different kinds of pumps which require shafts of various dimensions is 

considered. The arrival of shafts from the turning center to the computer numerical 

control (CNC) copy turning center follows a random process, which the center owns 

multiple CNC machines. The mechanics set up the template in these CNC machines to 

perform the copy turning process shafts (i.e., the first essential service). The good 

quality shafts items are kept in the storage and are sold. Some of the processed (served) 

shafts are defective and need to be rework (re-served) to meet the required 

specification (i.e., the second optional service). Furthermore, in reality, the customers 

do not always waiting in the queue but retry to enter the system later when the system 

is full-loading. This is so-called the customer retrial behavior. In addition, the server 

may take a vacation at each service completion. For example, consider a production 

process with a number of machines. It may so happen that the production process 

either needs to be temporarily stopped for overhauling and maintenance of the system 

after each service completion or continue the service for the next unit/customer in the 

queue. Hence, the servers may take a vacation with certain probability which is called 

Bernoulli vacation policy. 

We assume that arrivals of customers follow a Poisson process with rate λ . 

There are c  servers provide service to all arriving customers for FES. Service times 

of FRS channel are independent and identically distributed (i.i.d.) random variables 

obeying a exponential distribution function with service rate 1µ . As soon as FES of a 

customer is completed, a customer may leave the system with probability 1 θ−  or 
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may opt for SOS with probability θ  ( 0 1θ≤ ≤ ), at the completion of which the 

customer departs from the system and the next customer, if any, from the queue is 

taken up for his FES. Service times of SOS channel are i.i.d. random variables having 

a exponential distribution with service rate 2µ . When an arriving customer finding all 

servers are busy will joins the orbit and make repeated attempts in random intervals 

having length exponentially distribution with retrial rate σ . This manner continues 

until the customer is eventually served. We assume that there exists an upper bound 

N  on the number of customers in the orbit that are allowed to conduct retrials (Neuts 

and Rao [50], Artalejo and Pozo [7]). The server may take a vacation of random length 

with probability p  or continue to serve the next customer, if any with probability 

q ( 1q p= − ). The vacation times are also exponentially distributed. 

It is also assumed that arriving customers form a single waiting line based on the 

FCFS (first-come, first-served) discipline. One server can serve one only and only one 

customer at a time. The service process, the arrival process and the vacation process 

are eventually independent. A customer who arrives and finds the server busy or on 

vacation must wait in the queue until a server is available. At the vacation completion, 

the server backs to server the customers waiting in the queue or stays idly in the 

system. That is, single vacation policy. 

1.5 Scope of Dissertation 

The main purposes of this dissertation are to analyze: (i) the M/M/c (retrial) 

queue with second optional service channel; and (ii) the M/M/c (retrial) queue with 

Bernoulli single vacation policy. This dissertation is organized by six chapters as 

follows: 

Chapter 1 is an introduction, which introduces the background of the queueing 

theory. Some earlier studies and literatures on the multi-server queue with retrial 

behaviors and vacation policy are included. Several techniques and methods relevant 

to this study are presented. 

In Chapter 2, we study the optimization of the M/M/c queue with second optional 

service channel. The matrix-geometric method is employed to derive the steady-state 

probability vector. One algorithm to obtain the approximate rate matrix is provided. 

The exact and explicit expressions of some important system performances are given 

by using the matrix-analytical method. Next, the expected cost function per unit time 

is constructed by the system performances. We determine the optimal number of 
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servers and the optimal service rates to minimize the expected cost per unit time. In 

addition, a sensitivity analysis is also investigated. Finally, some numerical results are 

provided to illustrate the optimization procedures. 

In Chapter 3, we more consider the retrial behavior of the customer then extend 

the queueing system investigated in Chapter 2 into an M/M/c retrial queue with SOS 

channel. The arriving customer joins the orbit and retries to enter the system for 

service later. The entries of state-transition matrix are listed explicitly. An algorithm is 

provided to solve the steady-state equation system recursively. The expresses of the 

system performance are given. The effect of the system parameters on the system 

performances is studied. Some numerical examples and graphs are presented. 

In Chapter 4, we consider an M/M/c queue with a modified Bernoulli single 

vacation policy. Under Bernoulli vacation policy, the server may take a vacation at the 

service completion of a customer with a certain probability. Particularly, we modify 

the tradition Bernoulli vacation that the vacation may occur only when the server is 

idle after service completion. At the vacation completion, the server serves the 

customers waiting in the queue or stays idle in the system, that is, single vacation 

policy. The closed-form expression of the rate matrix is derived explicitly. Some 

results about the special case of single server are provided. For this queueing system, 

the optimal number of servers, the optimal service rate and the optimal vacation rate 

are investigated numerically. 

In Chapter 5, the customer retrial behavior is included in the model considered in 

Chapter 4. Similarly, the stability condition, the rate matrix, and the steady-state 

probability are derived by using matrix-analytical technique. The system performance 

expressions are also presented. The optimal number of servers, the optimal vacation 

rate, and the optimal service rate are determined to minimize the expected cost per 

unit time. 

Chapter 6 presents some conclusions based on results of the investigation, and 

recommendations for the future investigations. 
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Chapter 2 

M/M/c Queueing System with Second 

Optional Service Channel 

In day to day life, second optional services are very commonly observed in some 

queueing system (see Madan [47]). For example, all customers come to shops which 

sell coffee beans will buy coffee beans or grains but only some of them want to utilize 

a grinding facility service. All ships arriving at a port may need unloading service on 

arrival but only some of them may require re-loading service soon after the unloading. 

All cars arriving at a gas station need gas refueling but only some of them require a 

car wash services after the refueling.  

In this chapter, we study the optimization of the multi-server queueing system 

with SOS. All arriving customers arrive to demand the FES. After the completion of 

the FES, a customer may leave the system with probability (1 θ− ) or may instantly go 

for a SOS with probability θ  ( [0,1]θ ∈ ). The customers arrive according to a 

Poisson process. Service times of the FES and SOS channels are assumed to be 

exponentially distributed. There are c  channels (servers) that provide the first 

essential service as well as the second optional service to arriving customers. Each 

channel can serve only one customer and provides only one of essential service or 

second optional service at a time. 

This chapter is organized as follows: In Section 2.1, we give some basic 

assumptions of the queue under study and give some notations. Section 2.2, the 

steady-state equations are obtained and represented in matrix form. In Section 2.3, the 

stability condition is derived. An algorithm to find the rate matrix is provided. In 

Section 2.4, the stationary probabilities are gained by implementing a recursive 

procedure. In Section 2.5, some explicit expressions of important system performance 

measures are derived. Finally, numerical results are given in Section 2.6. 

2.1 Assumptions and Notations 

We assume that arrivals of customers follow a Poisson process with rate λ . A 

single server is needed to serve all arriving customers for the FES. The service times 

of the FES channel are independent and identically distributed (i.i.d) random variables 

obeying an exponential distributions with mean 11/ µ . As soon as the FES of a 

customer is completed, a customer may leave the system with probability 1 θ−  or 
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opt for a SOS provided by the same server with probability θ  ( [0,1]θ ∈ ), at the 

completion of which the customer departs from the system and the next customer, if 

any, from the queue is taken up for his FES. The service times of the SOS channel are 

another independent and identically distributed (i.i.d) random variables having an 

exponential distributions with mean 21/ µ . Furthermore, the same server is assumed 

to serve both service channels. Customers who upon entry into the channel facility, 

find that all channels are busy have to wait in the queue until a channel becomes 

available. It is also assumed that arriving customers form a single waiting line based 

on the FCFS (first-come, first-served) discipline. Various stochastic processes 

involved in the system are assumed to be independent of each other. We will represent 

this queue as the M/M/c with SOS channel, where the first symbol denotes the 

inter-arrival time distribution for customer, the second symbol denotes service time 

distributions for both FRS and SOS channels, and the third symbol denotes number of 

channels that providing services. 

In this chapter, the following notations and probabilities are used. 

λ－ mean arrival rate 

1µ － mean service rate of FES channel 

2µ － mean service rate of SOS channel 

θ－ probability that a customer may opt for the SOS 

c－ number of channels (servers) 

Π－ steady-state probability vector 

Q－ infinitesimal generator 

I－ identity matrix 

e－ identity column vector (a column vector with all elements equal to 1) 

F－ irreducible generator 

x－ invariant probability 

R－ rate matrix 

1L － expected number of customers in the FES channel 

2L － expected number of customers in the SOS channel 

[ ]E I － expected number of idle servers 

[ ]E B － expected number of busy servers 

sL － expected number of customers in the system 

F－ cost function 
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2.2 M/M/c Queue with SOS channel 

For an infinite capacity M/M/c queueing system with SOS channel. The state of 

the system are described by the pair ( , )i j , 0,1,2,...i =  and 0,1,2,...,j c= , where i  

and j  denote the number of customers in the FES and SOS channels, respectively. If 

( )i j c+ ≤ , the customers upon to the server will get service immediately. Otherwise 

( ( )i j c+ > ), the new arriving customer must wait in the queue until a server becomes 

available. In steady-state, we define the following notations: 

,i jP ≡  probability that there are i  customers in the FES channel and there are j  

customers in the SOS channel, where 0,1, 2,...i =  and 0,1,2,...,j c= . 

Referring to the state-transition-rate diagram shown in Figure 2.1 and using the 

birth-and-death process, the steady-state equations governing the queueing system are 

(i) 0j =  

0,0 1 1,0 2 0,1

1 ,0 1,0 1 1,0 2 ,1

1 ,0 1,0 1 1,0 2 ,1

(1 ) ,

( ) ( 1)(1 ) ,   1 1,

( ) (1 ) ,    .

i i i i

i i i i

P P P

i P P i P P i c

c P P c P P c i

λ θ µ µ

λ µ λ θ µ µ

λ µ λ θ µ µ

− +

− +

= − +

+ = + + − + ≤ ≤ −

+ = + − + ≤

      

(2.1)

(2.2)

(2.3)

 

(ii) 1 1j c≤ ≤ −  

2 0, 1 1, 1 1 1, 2 0, 1

1 2 , 1, 1 1, 1 1 1,

2 , 1

1 2 , 1, 1 1, 1 1 1,

( ) (1 ) ( 1) ,

( ) ( 1) ( 1)(1 )

( 1) ,   1 1,

[ ( ) ] ( 1 ) ( )(1 )

j j j j

i j i j i j i j

i j

i j i j i j i j

j P P P j P

i j P P i P i P

j P i c j

c j j P P c j P c j P

λ µ θµ θ µ µ

λ µ µ λ θµ θ µ

µ

λ µ µ λ θµ θ µ

− +

− + − +

+

− + − +

+ = + − + +

+ + = + + + + −

+ + ≤ ≤ − −

+ − + = − −

=

+ + − +

2 , 1( 1) ,   .i jj P c j iµ ++ + − ≤=

  

(2.4)

(2.5)

(2.

()

6)

()

 

(iii) j c=  

         
2 0, 1 1, 1

2 , 1, 1 1, 1

( ) ,

( ) ,  1 .

c c

i c i c i c

c P P

c P P P i

λ µ θµ

λ µ λ θµ

−

− + −

+ =

+ = + ≤
                    

(2.7)

(2.8)
 

There is no way of solving equations (2.1)-(2.8) in a recursive manner to develop the 

explicit expressions for the steady-state probabilities ,i jP , where 0,1,2,...i =  and 

0,1,2...,j c= . Alternatively, the infinitesimal generator Q  describing the M/M/c 

queueing system with SOS channel is of the block-tri-diagonal form: 
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0

1 1

2 2

(0)  (1)  (2)  ( 1) ( ) ( 1) ( 2) 

         (0)

              (1)

                       (2)

                             

                              ( 1)

( )

( 1)

c c c c

c

c

c

− + +

=

−

+

A B

C A B

C A B

Q

l l l L Ll l l l L

l

l

l

O O OM

l

l

l

M

-1 -1                        

                                                                    

                                                                               

          

c c

c c

c c

C A B

C A B

C A B

                                                                       

 
 
 
 
 
 
 
 
 
 
 
  O O O

.  (2.9) 

Each entry of the matrix Q  is a square matrix of order 1c +  listed as follows: 

                           λ=B I ,                            (2.10) 

                

,0

2 ,1

2 ,2

2 ,

     

        2     

                       

                           c    

i

i

i i

i c

a

a

a

a

µ

µ

µ

 
 
 
 =
 
 
 
 

A

O O

, 0, , ,i c= K         (2.11) 

               

,0 ,0

,1 ,1

,2 ,2

, 1 , -1

    

             

                     

                           

                                    

                                             0

i i

i i

i i

i

i c i c

c d

c d

c d

c d−

 



=



 

C
O O










, 1, , ,i c= K      (2.12) 

where I  is the identity matrix of order 1c + , and 

               
1 2

,

1 2

( ),   1 ,

[ ( ) ],     .
i j

i j i j c
a

c j j i j c

λ µ µ

λ µ µ

− + + ≤ + ≤
= 

− + − + + >
             (2.13) 

               
1

,

1

(1 ) ,  1 ,

( )(1 ) ,    .
i j

i i j c
c

c j i j c

θ µ

θ µ

− ≤ + ≤
= 

− − + >
                   (2.14) 

               
1

,

1

,  1 ,

( ) ,    .
i j

i i j c
d

c j i j c

θµ

θµ

≤ + ≤
= 

− + >
                       (2.15) 
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Consequently, the steady-state equations (2.1)-(2.8) can be represented in matrix form 

using the above matrices. The stationary probability vector of Q  is denoted by 

symbol 0 1 2 1 1[ , , ,..., , , ,...]c c cP P P P P P− +=Π  where ,0 ,1 ,[ , ,..., ]i i i i cP P P P=  is a row vector 

with dimension 1c + . 

2.3 Matrix-geometric Property 

Before handling the steady-state equation system, the stability of the queueing 

system should be confirmed. It implies that the unique solution of the steady-state 

equation system =ΠQ 0  exists. Next, we would derive the sufficient and necessary 

stability condition. 

2.3.1. Stability condition 

Let  

                    c c= + +F C A B ,                         (2.16) 

is an irreducible generator. 0 1[ , ,..., ]cx x x=x  is the invariant probability of F . Then 

x  satisfies the two conditions 

=xF 0  and 1=xe ,                       (2.17) 

where e  is a column vector with dimension 1c +  and all its elements equal to one. 

Expand =xF 0  implies 

1 0 1 2c x xθµ µ= ,            (2.18a) 

1 1 1 2 2 1( 1) [( ) ] ( 1) 0i i ic i x c i i x i xθµ θµ µ µ− +− − + + − + − + = , 1 1i c≤ ≤ − , (2.18b) 

1 1 2c cx c xθµ µ− = .           (2.18c) 

Equation (2.18) implies that 1 1 2 0/x c xθµ µ= , and the following recursive equation 

1
1

2

( )
,  1,..., 1.

( 1)
i i

c i
x x i c

i

θµ

µ
+

−
= = −

+
     (2.18d) 

Then, we have 

1

1 1
1 0

2 2

( )
,  1,..., 1.

1( 1)

i

i i

cc i
x x x i c

ii

θµ θµ

µ µ

+

+

  −
= = = −  

++   
  (2.18e) 

Also using the condition 0 1 ... 1cx x x+ + + = , the probability 0x  is determined as 
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1

1 1
0

0 2 2

1 ,

i c
c

i

c
x

i

θµ θµ

µ µ

− −

=

     
 = = +    
      
∑      (2.18f) 

By Theorem 3.1.1 in Neuts [49], the sufficient and necessary stability condition is 

< cxBe xC e ,        (2.19) 

Substituting B  and 
cC  into equation (2.19) and using (2.18f) to get 

                       1 2( )c Lµ λ− > ,                          (2.20a) 

which is equivalent to 

1 2

1
( )c L

λ

µ
<

−
,                         (2.20b) 

where 

2 1 2

1 1 1 1
0 0

1 1 2 2 2 2

2 ...

1 ,

R

i c
c c

i

i i

L x x cx

c c c
ix i x x

i

θµ θµ θµ θµ

µ µ µ µ

−

= =

= + + +

    
= = = = +    

    
∑ ∑

   (2.21) 

denotes the expected number of customers in the SOS channel. Note that 0θ =  or 

2µ → ∞  (i.e., 2L =0), equation (2.21) can be reduced to the stability condition for the 

ordinary M/M/c queueing system without SOS channel. 

2.3.2. Linear progression algorithm 

When the stability condition is satisfied, the steady-state equation system 

=ΠQ 0  has a unique solution. Our aim is to obtain the steady-state vector Π  by 

means of the matrix analytic method and normalization. By applying the matrix 

geometric method, the steady-state probabilities 1 2 3[ , , ,...]c c cP P P+ + +  can be obtained as 
i c

i cP P −= R , 1i c≥ + , where R  is the minimal nonnegative solution to the matrix 

quadratic equation 

                  2 .c cR C + RA + B = 0                         (2.22) 

The matrix R  is a very important matrix needed in the evaluation of the 

performance measures of a QBD process. It is known as the rate matrix of the Markov 

chain Q . Developing a closed-form solution for the rate matrix by taking the 

nonlinear equation (2.22) is very difficult because the matrix structure of cA , B , and 

cC  is not consistent. In the following, we will develop some matrix analytic 

properties to approximate the rate matrix R . 
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 Let us decompose the level space into two groups as ( ) { (0), (1), , ( )}J c=l l l K l  

and ( ) { ( 1), ( 2), }.K c c= + +l l l K  The QBD model of this thesis is partially 

level-dependent up to a certain level (group ( )Jl ) and thereafter becomes a infinite 

level-independent (group ( )Kl ). It is well-known that an infinite level-independent 

QBD has the matrix-geometric form which can be solved from the matrix quadratic 

equation (Latouche and Ramaswami [41]). The level-independent structure in our 

thesis can be solved by Cramer’s rule. Thus, we can use the finite level-dependent 

algorithm first and then the algorithm of infinite level-independent QBDs to derive the 

state probabilities. 

It is note from the matrix (9) that starting from level ( )cl  the matrices 1c−C  

and 1c−A  change to cC  and cA , respectively, which implies that the process holds 

an infinite level-independent QBD with group ( )Kl . First, we reduce the QBD- Q  

into a finite level-dependent QBD- *Q  as : 

         

0

1 1

*

2 2

  (0) (1)   ( ) ( 1)

           0      0         0(0)

               0         0(1)

 0              0         0(2)

                              

( )  0     0      

( 1)

c c

c

c

+

=

+

A B

C A B

Q C A

l l L L l l

Ll

Ll

Ll

M M M M O M M

l

l

0              

 0     0      0              

c

c

 
 
 
 
 
 
 
 
  

A B

C H

L

L

.            (2.23) 

From Neuts [49], the matrix H  in (2.23) represents the transitions between the states 

belonging to the imaginary level group ( )Kl . The boundary steady-state probability 

vector 1cP +  based on ( 1)c +l  is given by solving the following equations 

             1 1c c cP P P+ ++ =B H ,      (from QBD- *
Q )       (2.24a) 

               1 2 1.c c c c c cP P P P+ + ++ + =B A C   (from QBD-Q )       (2.24b) 

Solving equations (2.24), we obtain 

                         c c= +H A RC .                           (2.25) 

Substituting (2.25) into equation (2.23), it yields the following system of linear 

equation 



 

 17 

      

0

1 1

2 2*

0 1 2 1

           0      0         0

               0         0

 0              0         0
[ , , ,..., ]

                              

 0     0      0              

 0     0   

+=

L

L

L

M M M O M M

L

c

c

P P P P

A B

C A B

C A
ΛQ

A B

   0              

 
 
 
 

= 
 
 
 
  L

c

0

C H

,     (2.26) 

where ,0 ,1 ,2 ,[ , , ,..., ]i i i i i cP P P P P= , 0,1,2,..., 1i c= + . By the arguments of Latouche and 

Ramaswami [41], there exists an infinitesimal generator U  of the transient 

continuous-time Markov chain that is restricted to level ( 2)c +l  before it reaches 

( 1)c +l  from group level ( )l c . It is given by 

1( ) ,c c c c c

−= + − = + = + =U A B U C A BG A RC H     

where  

1( )−= −R B U , 1( ) c

−= −G U C .      

Based on the analysis above, we summarize an algorithm to obtain the approximation 

for the rate matrix R . (see Latouche and Ramaswami [41]). 

Algorithm: Linear Progression Algorithm 

Step 1 1( )c c

−= −G A C . 

Step 2 while δ− ≥e Ge  (tolerance) do Steps 3-4. 

Step 3 set c= +H A BG . 

Step 4 set 1( ) c

−= −G H C . 

Step 5 Assign 1( )−= −R B H . 

2.4 Probability Computation 

By solving equation (2.24) recursively, the recursive relationship between 

steady-state probability vectors is given as below: 
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1

0 1 1 0 1 1

1

1 2 2 1 1 2 2

1

2 3 3 2 2 3 3

1

1 1 1

1

1 1 1

1

( ) ,

[ ( )] ,

[ ( )] ,

[ ( )] ,

[ ( )] ,

[ ] .

c c c c c c c

c c c c c c c

c c

P P P

P P P

P P P

P P P

P P P

P

φ

φ φ

φ φ

φ φ

φ φ

φ

−

−

−

−
− − −

−

+ + +

+

= − =

= − + =

= − + =

= − + =

= − + =

+= =

C A

C B A

C B A

C B A

C B A

R B H 0

M              

(2.27 )

(2.27 )

(2.27 )

(2.27 )

(2.27 )

(2.27 )

a

b

c

d

e

f

 

where 1

1 1 0( )φ −= −C A , 1

2 2 1 1[ ( )]φ φ −= − +C B A , …, 1

1 1[ ( )]i i i iφ φ −
− −= − +C B A , and 

1

1 [ ( )]c c c cφ φ −
+ = − +C B A . Consequently, the levels iP ( 0 1i c≤ ≤ − ) state probabilities 

of equation (2.27) can be written in terms of cP  as 
1

0 c i
i c

P P φ
=

= Π , 
2

1 c i
i c

P P φ
=

= Π , …, 

1

c

c c i
i c

P P φ−
=

= Π , and the rest of the steady-state vector 1 2[ , , ,  ...]c c cP P P+ +  can be 

determined recursively using i c

i cP P
−= R , for i c≥ . Once the level probability cP  is 

obtained, the steady-state solutions 0 1 2 1 1[ , , ,..., , , ,...]c c cP P P P P P− +  can be determined. 

The steady-state probability cP  can be solved by (2.27 )f  and the following 

normalization equation 

     

0 1 1 1 2

0

1 2
2

1

1

[ ... ...]

[ ... ...]

[ ( ) ] 1.

n c c c c

n

c

c i c i c i c c c
i c i c i c

c k

c i
i c

k

P P P P P P P

P P P P P P

P

φ φ φ

φ

∞

− + +
=

= = =

−

=
=

= + + + + + + +

= Π + Π + + Π + + + +

= Π + + − =

∑

∑

e e

R R e

I R I T e

      (2.28) 

Solving equations (2.27 )f  and (2.28) in accordance with Cramer’s rule, we obtain 

cP . Next, computing the prior state probabilities 0 1 2 1[ , , ,  ..., ]cP P P P −  from (2.27) and 

obtaining 1 2[ , ,...]c cP P+ +  by the formula i c

i cP P
−= R , 1i c≥ + .  

2.5 System Performance Measures 

The system performance measures, such as the expected number of customers in 

the FES channel (denoted by 1L ), the expected number of customers in the SOS 

channel (denoted by 2L ), the expected number of customers in the system (denoted 

by sL ), the expected number of idle servers (denoted by E[I]) and the expected 

number of busy servers in the system (denoted by E[B]), can be evaluated from the 

steady-state probabilities ,0 ,1 ,2 ,[ , , ,..., ]i i i i i RP P P P P= . The expressions for 1L , 2L , sL , 

[ ]E I , and [ ]E B  are given by 
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                          1
1

,i

i

L iP
∞

=

=∑ e                             (2.29) 

                          2
0

,i

i

L P
∞

=

=∑ u                             (2.30) 

                          1 2 ,sL L L= +                             (2.31) 

                         
1

0

[ ] ,
c

i i

i

E I P
−

=

=∑ v                            (2.32) 

                        [ ] [ ].E B c E I= −                           (2.33) 

where T[0,1,2,..., ]c=u  and T[1,...,1]=e  are column vectors with dimension 1c + . 

iv  is also a column vector with dimension 1c +  with the th
j  elements is 

max(0, 1)c i j− − + . The summation in (2.29) and (2.30) has an infinite number of 

terms and its computation is cumbersome. We provide another explicit formula for sL  

which simplifies the computational procedure. 

1 2

1 1

1 0

1 1
1 2 1

1 0

1
1 2

1

[ ( 1) ...] [ ...]

( ) ( ) ( )

( ) ( ) ( ) ( ) .

− −

= =

− −
− − −

= =

−
− −

=

= +

= + + + + + + + +

= + − + − + + −

= + + − + + −

∑ ∑

∑ ∑

∑

s

c c

i c c i c c

i i

c c

i c R i c

i i

c

i c c

i

L L L

iP cP c P P P P

iP cP P P P

P i P c P

e R e u R u

e I R e R I R e u I R u

e u I R e u R I R e

   (2.34) 

For an infinite capacity M/M/c queueing system with second optional service channel, 

the numerical results of sL  are obtained by considering the following three cases 

with different values of c . 

Case 1. 1µ = 15, 2µ = 5, θ = 0.05, vary the values of λ  from 0.5 to 10. 

Case 2. λ = 10, 1µ = 15, θ = 0.05, vary the values of 2µ  from 2.5 to 10. 

Case 3. λ = 10, 2µ = 5, θ = 0.05, vary the values of 1µ  from 15 to 25. 

Results for sL  are depicted in Figures 2.2-2.4 for Cases 1-3, respectively. One sees 

from Figure 2.1 that sL  drastically increases as λ  increases for 1c = , while sL  

slightly increases as λ  increases for 2c ≥ . From Figures 2.3 and 2.4 we can see 

that sL  drastically decreases as 1µ  or 2µ  increases for 1c = , while sL  is not 

sensitive to 1µ  or 2µ  for 2c ≥ . 

2.6 Numerical Results 

In this section, we construct the total expected cost function per customer per unit 
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time based on the system performance measures presented in the previous section. 

Our main objective is to determine the optimum number of server c , say *
c , and the 

optimal value of the service rate 1 2( , )µ µ µ= , say * * *

1 2( , )µ µ µ= , simultaneously, so 

that the expected cost function is minimized. To do this, we define the following cost 

elements: 

1

2 1

3

 cost per unit time per customer present in the system,

 cost per unit time when one server is busy,

 cost per unit time of providing a service rate ,

 cost per unit time of providing a ser

hC

C

C

C

µ

≡

≡

≡

≡ 2

4

vice rate ,

 fixed cost for purchase of one server.C

µ

≡

 

Using these cost elements listed above, the expect cost function 1 2( , , )F c µ µ  is given 

by 

         1 2 1 2 1 3 2 4( , , ) [ ] .h sF c C L C E B C C C cµ µ µ µ= + + + +              (2.35) 

The cost function in (2.35) are assumed to be linear in the mean number of indicated 

quantity, and it would have been a hard task to develop analytic results for the 

optimum value * * *

1 2( , , )c µ µ  because the expected cost function is highly complex and 

non-linear in terms of 1 2( , , )c µ µ . In the next section, we firstly use the Quasi-Newton 

method to find the optimal value of continuous variable 1 2( , )µ µ , say * *

1 2( , )µ µ , and 

then use the direct search method to search the optimal value of discrete variable c , 

say *
c . For practice, the number of servers is bounded by a positive integer 1Uc ≥ . 

We want to find the joint optimal value ( *

1µ , *

2µ ) for each given c  in the feasible set 

{1,2,…, Uc }. The cost minimization problem can be illustrated mathematically as 

{ }
1 2

* *

1 2 1 2
( , )

( , , ) min ( , , )F c F c c
µ µ

µ µ µ µ= , 1, 2,..., ,Uc c=    (2.36) 

subject to equation (2.20), the stability condition. For the problem of (2.36), it is 

difficult to show the convexity of 1 2( , , )F c µ µ  in 1 2( , )µ µ .We note that the 

derivative of the cost function F  with respect to 1 2( , )µ µ  indicates the direction 

which the cost function increases. It means that, the optimal value * *

1 2( , )µ µ  can be 

found along this opposite direction of the gradient (see Chong and Zak [15]). That is, 

for a fixed c, the Quasi-Newton method is employed to search 1 2( , )µ µ  until the 

minimum value of 1 2( , , )F c µ µ  is achieved, say * *

1 2( , , )F c µ µ . To demonstrate the 

valid and the process of the optimization method, some examples are performed in 

Table 2.1 by considering the following cost parameters 

$250hC = /customer/unit-time, 1 $180C = /server/ unit-time, 
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2 $15C = / unit-time, 3C $30= / unit-time, and 4 $60C = /server. 

Under other given parameters, one can find from Table 2.1 that the minimum expected 

cost per unit time of 1682.21 is achieved at * *

1 2( , )µ µ = (27.3756, 14.0267) by using 6 

iterations, which is 3c =  based on Case (i) with initial value 1 2( , )µ µ = (20, 10). 

Based on Case (ii) with 2c =  and initial value 1 2( , )µ µ =(20, 20), the minimum 

expected cost per unit time of 1737.30 is achieved at * *

1 2( , )µ µ = (28.8310, 18.7206) by 

using 6 iterations. 

After we obtain the joint optimal value * *

1 2( , )µ µ  of the continuous variable 

1 2( , )µ µ , we will use the direct search method to obtain the optimal c such that the 

expected cost function * *

1 2( , , )F c µ µ  attains a minimum, say * * *

1 2( , , )F c µ µ . Therefore, 

the cost minimization problem can be illustrated mathematically as 

{ }* * * * *

1 2 1 2
{1,2,..., }

( , , ) min ( , , ) .
Uc c

F c F cµ µ µ µ
∈

=      (2.37) 

The procedure to find the optimal solution is described in the following. A 

numerical example is shown in Table 2.2 based on (i) ( , )λ θ = (15, 0.5) and (ii) 

( , )λ θ = (20, 0.8). Based on Table 2.2, it is noted that the optimal value 
* * *

1 2( , , )c µ µ = (3, 22.86016, 11.64466) and the corresponding minimum cost 
*F = 1463.830 for Case (i). For Case (ii), * * *

1 2( , , )c µ µ =  (4, 25.40649, 16.13801) and 
*F = 1891.530 are optimal. Finally, we perform a sensitivity investigation to the 

optimal value * * *

1 2( , , )c µ µ  based on changes in specific values of the system 

parameters. The numerical results are shown in Table 2.3 for various values of θ  and 

λ . We find that (i) *
c  increases as λ  or θ  increases; and (ii) *

1µ  ( *

2µ ) increases 

as λ  (θ ) increases. Moreover, the minimum expected cost increases as λ  or θ  

increases. 
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Figure 2.1. Steady-transition-rate diagram for an M/M/c queueing system with second 

optional service channel. 
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Figure 2.2. The expected number of customers in the system versus λ . 

 

 

 

 

Figure 2.3. The expected number of customers in the system versus 2µ . 
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Figure 2.4. The expected number of customers in the system versus 1µ . 

 

 

 

 

Table 2.1. The illustrations of the implementation of Quasi-Newton method 

Case (i): ( , )λ θ = (20, 0.5) with 3c =  and initial value 1 2( , )µ µ =(20, 10) 

Iterations 0 1 2 3 4 5 6 

1 2( , , )F c µ µ  1862.22 1735.76 1689.68 1682.43 1682.21 1682.22 1682.21 

1µ  20 22.7766 25.5320 27.0701 27.3668 27.3756 27.3756 

2µ  10 11.4360 12.9115 13.8155 14.0192 14.0267 14.0267 

1

F

µ

∂

∂
 -32.3746 -12.3033 -3.53768 -0.51339 -0.01504 -0.00001 93 10−− ×  

2

F

µ

∂

∂
 -74.8311 -28.6228 -8.49048 -1.33248 -0.04521 -0.00005 94.7 10−− ×  

sL  2.88890 2.22232 1.83577 1.67455 1.64478 1.64379 1.64379 

[ ]E B  2.000002 1.75253 1.55783 1.46265 1.44412 1.44350 1.44350 

Hessian 
7.990  7.096

7.096  38.39

 
 
 

 3.354  2.075

2.075  15.52

 
 
 

 1.828  0.803

0.803  8.026

 
 
 

 1.386  0.501

0.501  5.812

 
 
 

 1.317  0.456

0.456  5.441

 
 
 

 1.315  0.455

0.455  5.429

 
 
 

 1.315  0.455

0.455  5.428

 
 
 
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Case (ii): ( , )λ θ = (15, 0.8) with 2c =  and initial value 1 2( , )µ µ =(20, 20) 

Iterations 0 1 2 3 4 5 6 

1 2( , , )F c µ µ  1829.50 1760.25 1739.61 1737.33 1737.30 1737.30 1737.30 

1µ  20 23.8016 27.0887 28.6094 28.8273 28.8310 28.8310 

2µ  20 19.2062 18.8294 18.7303 18.7207 18.7206 18.7206 

1

F

µ

∂

∂
 -30.3036 -10.9797 -2.84444 -0.32356 -0.00538 61.8 10−− ×  0. 

2

F

µ

∂

∂
 -6.92424 -3.14200 -1.01269 -0.13222 -0.00232 79.9 10−− ×  ( 10)3 10 −− ×  

sL  2.26602 1.72458 1.73603 1.66634 1.65691 1.65674 1.65674 

[ ]E B  1.35000 1.25501 1.19104 1.16498 1.16134 1.16128 1.16128 

Hessian 
8.634  3.172

3.172  6.468

 
 
 

 3.525  1.609

1.609  5.696

 
 
 

 1.936  1.008

1.008  5.239

 
 
 

 1.522  0.829

0.829  5.042

 
 
 

 1.472  0.807

0.807  5.012

 
 
 

 1.471  0.807

0.807  5.012

 
 
 

 1.471  0.807

0.807  5.012

 
 
 

 

 

 

Table 2.2. The optimal value 1 2( , )µ µ  and the corresponding minimum expected cost  

(i) ( , )λ θ = (15, 0.5) 

c Initial Value Coverage Value * *

1 2( , )µ µ  Iteration Cost* 

1c =  [30, 25] [44.20521, 24.33688] 7 2022.146 

2c =  [20, 20] [27.50290, 14.50211] 6 1527.743 

3c =  [15, 15] [22.86016, 11.64466] 6 1463.830 

4c =  [15, 10] [21.33382, 10.71376] 6 1492.969 

5c =  [15, 10] [20.88151, 10.44900] 5 1545.927 

 

(ii) ( , )λ θ = (20, 0.8) 

c Initial Value Coverage Value * *

1 2( , )µ µ  Iteration Cost* 

1c =  [50, 30] [61.14970, 40.31473] 9 2890.717 

2c =  [40, 30] [35.80379, 23.29807] 8 2056.578 

3c =  [30, 25] [28.23610, 18.09640] 8 1896.310 

4c =  [25, 20] [25.40649, 16.13801] 5 1891.530 

5c =  [20, 15] [24.38956, 15.44162] 5 1933.145 
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Table 2.3. The optimal value * * *

1 2( , , )c µ µ  and it’s minimum expected value 

* * *

1 2( , , )F c µ µ  for various value of λ  and θ . 

( , )λ θ  (5, 0.2) (10, 0.2) (20, 0.2) (5, 0.8) (10, 0.8) (20,0.8) 
*

c  2 2 3 2 3 4 

* *

1 2( , )µ µ  
[13.0953, 

4.35200] 

[19.9021, 

6.80977] 

[26.3424, 

8.64436] 

[13.7175, 

8.80645] 

[18.2622, 

11.6276] 

[25.4065, 

16.1380] 

* * *

1 2( , , )F c µ µ  729.6488 1011.985 1391.119 976.8809 1356.801 1897.530 

sL  0.690286 0.983412 1.346797 0.958229 1.326524 1.864544 

[ ]E B  0.611596 0.796155 1.221962 0.818713 1.235596 1.778650 

 

 

( , )λ θ  (10, 0.2) (10, 0.5) (10, 0.8) (20, 0.2) (20, 0.5) (20, 0.8) 
*

c  2 3 3 3 3 4 

* *

1 2( , )µ µ  
[19.9021, 

6.80977] 

[17.9854, 

9.09991] 

[18.2622, 

11.6276] 

[26.3424, 

8.64436] 

[27.37559, 

14.02674] 

[25.4065, 

16.1380] 

* * *

1 2( , , )F c µ µ  1011.985 1215.012 1356.801 1391.119 1682.213 1897.530 

sL  0.983412 1.173003 1.326524 1.346797 1.643788 1.864544 

[ ]E B  0.796155 1.105460 1.235596 1.221962 1.443501 1.778650 
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Chapter 3 

M/M/c Retrial Queue with Second  

Optional Service Channel 

In some cases, service stations and clients do not know the information of each 

other. Therefore, the customers will not enter the queueing system immediately even if 

there are idle servers. This situation arises in many telephony switching systems, 

telecommunication networks and computer systems. The retrial queueing systems play 

important roles in the analysis of these problems. Consider a Web system, all user 

login for the service of internet network browse, some of them will require the 

optional file transmission upload / download service. As the Web system is fully 

loaded, the user will retry after a random period of time.  

In this chapter, we consider the queueing system investigated in chapter 2 with 

customer retrial behavior. An arriving primary customer finding one or more servers 

available (free) obtains the FES service immediately. On the other hand, he joins to 

the orbit and tries to get the service later on if all servers are busy and unavailable. 

Each customer staying in the orbit makes the repeated attempts in random intervals 

and is independently of the other customers. Upon requesting service from the orbit, 

customers finds all servers busy always rejoins the orbit; this manner continues until 

he is eventually served. An arbitrary customer in the orbit generates a stream of 

repeated requests that is independent of the rest of customers in the orbit. 

This chapter is organized as follows: Basic assumptions and notations of the 

queueing model are given in Section 3.1. In Section 3.2, the mathematical model and 

the state-transition matrix are provided. In Section 3.3, the stability condition for this 

model is derived. A sequence approximation of the rate matrix is performed. Then, the 

steady-state solutions are obtained using recursively procedure. Section 3.4 devoted to 

develop the implicit expressions of the important system performances. Finally, 

Section 3.5 presents the optimization results and some numerical illustrations. 

3.1 Assumptions and Notations 

An M/M/c retrial queue with second optional service (SOS) is investigated. The 

service times of the first essential service (FES) and the second optional service (SOS) 

have an exponential distribution with mean 11/ µ  and 21/ µ , respectively. As soon as 

the first essential service of a customer is completed, a customer may leave the system 
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with probability (1-θ ) or may opt for the second optional service with probability θ  

( 10 ≤≤ θ ), at the completion of which the customer departs from the system and the 

next customer, if any, from the queue is taken up for his first essential service (see 

Figure 3.1). Each channel can serve only one customer at a time and it also provides 

only one of essential service or second optional service at a time. Furthermore, each 

customer staying in the orbit makes the repeated attempts in random intervals having 

length exponentially distributed with parameter σ , independently of the other 

customers. 

A state of the system is a pair ( , , )i j k , where i  and k  denote the number of 

servers busy in the FES and SOS, respectively. j  is the number of customers in the 

orbit (sources of repeated demands). The system can be described by a continuous 

parameter Markov chain on the state space { ( , , )i j k ; 0 i c≤ ≤ , 0 j≤ , 0 k c i≤ ≤ − }. 

From Figure 3.2, the customers which upon the server will get services immediately 

as i k c+ <  (i.e. there are available servers). The new arriving customer who finds all 

c  servers busy ( i k c+ ≥ ) always rejoins the retrial group (orbit), this operation 

continuous until they are eventually served. In steady-state, we define 

,

k

i jP ≡ probability that there are i and k  servers busy in the FES and SOS, 

respectively, and j  customers in orbit, where 0 i k c≤ + ≤ , 0j ≥ . 

In this chapter, the following notations and symbols are used. 

λ－ mean arrival rate 

1µ － mean service rate of FES channel 

2µ － mean service rate of SOS channel 

θ－ probability that a customer may opt for the SOS 

σ － mean retrial rate 

c－ number of channels (servers) 

Π－ steady-state probability vector 

Q－ infinitesimal generator 

I－ identity matrix 

e－ identity column vector (a column vector with all elements equal to 1) 

F－ irreducible generator 

x－ invariant probability 

FP － probability that all servers are busy 

R－ rate matrix 

[ ]E FES － expected number of customers in the FES channel 
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[ ]E SOS － expected number of customers in the SOS channel 

[ ]E Orbit － expected number of idle servers 

*

1σ － the overall rate of retrials 

*

2σ － the rate of retrials that are successful 

FR－ the fraction of retrials that are successful 

( )E T － mean busy period 

VP － vain retrials 

F－ cost function 

It is assumed that there exists an upper bound N on the number of customers in 

the orbit that are allowed to conduct retrials (see Neuts and Rao [50] and Artalejo and 

Pozo [9]). This implies that the probability of a repeated attempt during ( dttt +, ), 

given that j customers in the orbit at time t, is )(dtodtj +σ , where σσ },min{ Njj = . 

Moreover, we assume that the process of primary arrivals, service times and 

inter-retrial times are mutually independent. 

3.2 M/M/c Retrial Queue with SOS Channel 

For an M/M/c retrial queue with SOS channel, refer to Figure 3.2, the 

infinitesimal generator Q  of the Markov chain has the form 

0

1 1

2 2

1

  

     

           

                

                                   

                                             

                                                    

N N

N N

N N

−

=

A B

C A B

C A B

Q
C A B

C A B

C A

O O O

 

                                                           

 
 
 
 
 
 
 
 
 
 
 
  

B

O O O

.   (3.1) 

The entries B , ( 0)j j >A , and ( 1)j j >C  are block-diagonal matrices of order 

( 1)( 2) / 2c c+ + . Matrices B  and jC  can be partitioned as: 

0

1

1

      

          

               

                      

c

c

−

 
 
 
 =
 
 
 
 

b

b

B

b

b

O  and 

0

1

1

      

          

               

                     

j

c

c

−

 
 
 
 =
 
 
 
 

c

c

C

c

c

O , 1, 2,...,j =  
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where sub-matrices 
ib  and 

ic  are square matrices of order ( 1 )c i+ −  with 

[ 1 , 1 ] ,

0                             . .

i c i c i

e w

λ+ − + − =



b
 and 

[ , 1] min{ , } ,  1 ,

0                                                . .

i jk k j N k c i

e w

σ σ+ = = ≤ ≤ −



c
 

jA  can be partitioned as 

0 0

1 1 1

2 2 2

1 1 1

 

  

       

            

                  

                        

                                 

j

j

j

j

c c c

j

c c

j

− − −

 
 
 
 
 
 =  
 
 
 
 
  

Y X

Z Y X

Z Y X

A

Z Y X

Z Y

O O O

O O O

, 0,1,2,...,j =  

where iX  is a ( 1 ) ( )c i c i+ − × −  matrix with 1[ 1, ] ,  1i k k k k c iθµ+ = ≤ ≤ −X , iZ  is 

a ( ) ( 1 )c i c i− × + −  matrix with 2[ , ] ,  1i k k i k c iµ= ≤ ≤ −Z , and i

jY  is a square 

matrix of order ( 1 )c i+ −  with elements 

1

2

1 2

2 1

[ , 1] ,  1 ,

[ 1, ] (1 ) ,  1 ,

[1,1] [ ( 1) ],

[ , ] [ ( 1) ],  2 ,

[ 1 , 1 ] [ ( ) ].

i

j

i

j

i

j j

i

j j

i

j

k k k c i

k k k k c i

i

k k k i k c i

c i c i i c i

λ

θ µ

λ µ σ

λ µ µ σ

λ µ µ

 + = ≤ ≤ −


+ = − ≤ ≤ −


= − + − +


= − + + + + ≤ ≤ −


+ − + − = − + + −

Y

Y

Y

Y

Y

 

For instance, for c=3, the sub-matrices of B  are 

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 λ

 
 
 =
 
 
 

b , 1

0 0 0

0 0 0

0 0 λ

 
 =  
  

b , 2

0 0

0 λ

 
=  
 

b , 3 λ=b . 

The sub-matrices of 1C  are 

0

0 0 0

0 0 0

0 0 0

0 0 0 0

σ

σ

σ

 
 
 =
 
 
 

c , 1

0 0

0 0

0 0 0

σ

σ

 
 =  
  

c , 2

0

0 0

σ 
=  
 

c , 3 0=c . 
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For 1A , the first sup-diagonal sub-matrices are 

1

0

1

1

00 0

00

00 2

30 0

θµ

θµ

θµ

 
 
 =
 
 
 

X , 1 1

1

0 0

0

0 2

θµ

θµ

 
 =  
  

X , 2

1

0

θµ

 
=  
 

X . 

The diagonal sub-matrices are 

1 1

0

1 1

1 1

( )

(1 ) ( )

2(1 ) ( 2 )

3(1 ) ( 3 )

λ σ λ

θ µ λ µ σ λ

θ µ λ µ σ λ

θ µ λ µ

− + 
 − − + + =
 − − + +
 

− − + 

Y , 

2

1 1 1 2

1 1 2

( )

(1 ) ( )

2(1 ) ( 2 )

λ µ σ λ

θ µ λ µ µ σ λ

θ µ λ µ µ

− + + 
 = − − + + + 
 − − + + 

Y , 

2

2

1 1 2

( 2 )

(1 ) ( 2 )

λ µ σ λ

θ µ λ µ µ

− + + 
=  − − + + 

Y , 3 2( 3 ).λ µ= − +Y  

The first sub-diagonal sub-matrices are 

2

1 2

2

0 0 0

0 0 0

0 00

µ

µ

µ

 
 

=  
  

Z , 
2

2

2

2 0 0

2 00

µ

µ

 
=  
 

Z , [ ]3 23 0µ=Z . 

After the derivation of the mathematical model, the steady-state can be represented in 

matrix form. 

3.3 Steady-state Results 

In this section, we will derive the stability condition and obtain the steady-state 

probability vectors by using recursive technique. Let 0 1 2[ , , ,...]= Π Π ΠΠ  with 
0 0 0 1 1 1 0 1 1

0, 1, , 0, 1, 1, 0, 0, 1, 0,[ , ,..., , , ,..., , ,..., , , ]c c c

i i i c i i i c i i i i iP P P P P P P P P P− −
−Π = , 0,1, 2,...i =  be the unique 

solution to =ΠQ 0  and 1=Πe , where e  is a column vector with all elements 

equal to 1. An efficient algorithm is developed to calculate the stationary probabilities 
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by matrix-geometric method.  

3.3.1. Stability condition 

It is known that the stationary probability exists if and only if 

NxBe < xC e ,       (3.2) 

where 0 0 0 1 1

0 1 0 1 0[ , ,..., ,..., , , ]− −= c c c

cx x x x x xx  is the invariant probability of the matrix 

N N= + +F C A B . x  satisfies =xF 0  and 1xe =  where e  is a column vector with 

dimension ( 1)( 2) / 2c c+ +  and all elements equal to one. Solving two equations 

simultaneously, we have 

2
0

1

!
,  0

! !( )

µ

λ σ µ θ

−

− − −
= ≤ + ≤

+

c k
k c

i c i k i c k

c
x x i k c

i k N
.   (3.4) 

1

2
0

0 0 1

!
.

! !( )

c kc c k
c

c i k i c k
k i

c
x

i k N

µ

λ σ µ θ

−
−−

− − −
= =

 
=  

+ 
∑∑     (3.5) 

Substituting B  and 
NC  into equation (5) and doing some routine manipulations, 

then we have 

(1 )F FN P Pσ λ− > ,       (3.8) 

where 

2
0

0 0 1

1

2 2

0 01 1

!

!( )!

!
1 .

! !( )

ic c
c i c

F i i i
i i

c
c kc c k

c i k i c k
k i

c
P x x

i c i

c

i k N

µ

µ θ

µ µ

θµ λ σ µ θ

−

= =

−
−−

− − −
= =

= =
−

   
= +   

+   

∑ ∑

∑∑
   (3.7) 

denotes the probability that all server are busy (i.e. i k c+ = ). That is, the system will 

be stable if the expected successful retrial rate is greater then the expected arrival rate 

of “orbit”. 

3.3.2. Rate matrix 

By matrix-geometric property, it is noted that the vector 0 1 2 3[ , , , ,...]= Π Π Π ΠΠ   

has the following properties  

k

N k N+Π = Π R , for 1k ≥ .      (3.9) 

The matrix R , called rate matrix, is the unique non-negative solution with spectral 
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radius less than one of the equation 

2

N N+ + =R B RA C 0 .      (3.10) 

From Neuts [49] and Latouche and Ramaswami [41], it is known that a approximation 

solution of the rate matrix R  can be gain by the converge of sequence lim n
n→∞

R , 

where the sequence { }nR  is defined by 

0 =R 0 , and 1 2 1

1n N n N N

− −
+ = − −R BA R C A , for 0n ≥ .   (3.11) 

The sequence { }nR  is monotone so that R  can be evaluated from (3.6) by 

successive substitutions. 

3.3.3. Recursive solver 

 Under the stability condition, the stationary probability vector Π  of Q  exists. 

In the above section, we deal with the steady-state equations by representing it in 

matrix form. This steady-state probability vector 0 1 2 3[ , , , ,...]= Π Π Π ΠΠ  is given by 

0 0 1 1Π + Π =A C 0 ,            (3.7a) 

1 1 1i i i i i− + +Π + Π + Π =B A C 0 , 1 1i N≤ ≤ − ,       (3.7b) 

1N N N N N−Π + Π + Π =B A RC 0 ,         (3.7c) 

1 1i N i N i N

N N N N N

− − − + −Π + Π + Π =R B R A R C 0 , 1N i+ ≤ ,    (3.7d) 

0

1i

i

∞

=

Π =∑ e .             (3.8) 

After doing some routine manipulations to equation (3.7a)-(3.7c), we have 

1

0 1 1 0 1 1

1

1 1 1

( ) ,

[ ( )] ,  2 ,i i i i i i i i N

φ

φ φ

−

−
− − −

Π = Π − = Π

Π = Π − + = Π ≤ ≤

C A

C B A
    (3.9) 

and 

N N N N N NφΠ + Π + Π =B A RC 0 .     (3.10) 

Consequently, iΠ ( 0 1i N≤ ≤ − ) in equation (3.9) can be written as product form in 

terms of NΠ  and the rest steady-state vector + +Π Π Π1 2[ , , ,  ...]
N N N

 can be 

determined recursively as i N

i N

−Π = Π R , for i N≥ . Once the steady-state probability 

NΠ  is obtained, the steady-state solutions − +Π Π Π Π Π Π0 1 2 1 1[ , , , ..., , , , ...]
N N N

 are 

determined. The steady-state probability NΠ  can be solved by equation (3.10) with 

the following normalization equation 
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0 1 1 1 2

0

1 2
2

1

1

[ ... ...]

[ ... ...]

[ ( ) ] 1

i N N N N

i

N

N i N i N i N N N
i N i N i N

N k

N i
i N

k

φ φ φ

φ

∞

− + +
=

= = =

−

=
=

Π = Π + Π + + Π + Π + Π + Π +

= Π Π + Π Π + + Π Π + Π + Π + Π +

= Π Π + − =

∑

∑

e e

R R e

I R e

. (3.11) 

The symbol I  denotes the identity matrix with suitable size. Solving equations (3.10) 

and (3.11) in accordance with Cramer’s rule, we obtain NΠ . Then the prior state 

probabilities 0 1 2 1[ , , ,  ..., ]N −Π Π Π Π  are computed from (3.9) recursively and 

1 2 3[ , , ,...]N N N+ + +Π Π Π  are gained by the formula i N

i N

−Π = Π R , 1i N≥ + . We 

summarize the solution procedure of steady-state probabilities as below: 

Algorithm: Recursive Solver 

Step 1. Set 1
1 1 0( )φ −= −C A . 

Step 2. For i from 2 to N, set 1
1 1[ ( )]i i i iφ φ −

− −= − +C B A . 

Step 3. For k from 1 to N, set 
k

k i
i N

φ
=

Φ = Π . 

Step 4. Solving φΠ + Π + Π =N N N N N NB A RC 0 , 1

1

[ ( ) ] 1
N

N k

k

−

=

Π Φ + − =∑ I R e  and obtain 

the steady-state probability NΠ . 

Step 5. Construct steady-state probability iΠ  as follows: 

(a) if 0 i N≤ ≤ , assign 1i N i+Π = Π Φ , 

(b) if 1N i+ ≤ , assign 1i i R+Π = Π . 

3.4 System Performance Measures 

 The system performance measures, such as the expected number of customers in 

the FES channel (denoted by E[FES]), the expected number of customers in the SOS 

channel (denoted by E[SOS]), and the expected number of customers in orbit (denoted 

by E[Orbit]), can be evaluated from the steady-state probabilities 0 0

0, 1,[ , ,...,j j jP PΠ =  
0 1 1 1 1 1

, 0, 1, 1, 0, 1, 0,, , ,..., ,..., , , ]c c c

c j j j c j j j jP P P P P P P− −
− . The expressions for E[FES], E[SOS], and 

E[Orbit] are given by 
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1
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N i N N N

i
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N i
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E FES
∞ −

= =

−

+
=

−

=

= Π = Π + Π + Π + Π +
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1
1 1

1

0 1
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i i N N N

i i
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N i N N i

i i

E SOS
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+
= =
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J J J RJ R J
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( 1) [ ( ) ( ) ]

[ ( 1) ( ) ( ) ] ,
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i

N

N i N N N

i

N

N i N

i

N

N i

i

E Orbit i

i N N N

i N

i N

∞

=

−

+
=

− −

=

− −

=

= Π

= Π Φ + Π + + Π + + Π +

= − Π Φ + Π − + −

= Π − Φ + − + −

∑

∑

∑

∑

e

e e Re R e

e I R R I R e

I R R I R e

    (3.14) 

where  

{
#  2#  1 #  

[0,1,..., ,0,1,..., 1,..., 0,1 ,0]

c c

c c
== + =

= −v 14243 14243  and 

#  1 #  = #  = 2

[0,0,...,0,1,1,...,1,..., 1, 1, ]

c c

c c c

= +

= − −J 14243 123 14243  

are column vectors with dimension ( 1)( 2) / 2c c+ + . For an M/M/c retrial queue with 

second optional service channel, the numerical results of E[Orbit] are obtained by 

considering the following three cases with different values of c 

Case 1. N =30, λ = 5, 2µ = 10, θ = 0.5, 5σ = , vary 1µ  from 10 to 20. 

Case 2. N =30, λ = 5, 1µ = 10, θ = 0.5, 5σ = , vary 2µ  from 10 to 20. 

Case 3. N =30, 1µ = 20, 2µ = 15, θ = 0.5, 5σ = , vary λ  from 5 to 10. 

Results of E[Orbit] are depicted in Figure 3.3 for Case 1-3, respectively. From 

the Figure, one sees that E[Orbit] drastically decreases (increase) as 1µ  or 2µ  (or 

λ ) increases (decrease) for c =1, while E[Orbit] is not sensitive to 1µ  or 2µ  (or λ ) 

for 2c ≥ . Furthermore, there are several general descriptors of retrial queues, some 

of which are listed below: 

1. The overall rate of retrials 
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*

1 , ,

1 0 0 1 0 0 1 1

N c c k c c k N
k k j N

i j i j j N

j k i j N k i j j N

j P N P j Nσ σ σ σ σ
− ∞ − ∞

−

= = = = + = = = = +

= + = Π + Π∑ ∑∑ ∑ ∑∑ ∑ ∑e R e  (3.15) 

1 1

1 1

1
1

1
1

( ) [ ( ) ]

[ ( ) ] .

N N

j N j N

j j

N

N j

j

j N j N

j N

σ σ σ

σ

− −

= =

−
−

+
=

= Π + Π − = Π + Π −

= Π Φ + −

∑ ∑

∑

e R I R e R I R e

I R e

 

2. The rate of retrials that are successful 

1 1
*

2 , ,

1 0 0 1 0 0

.
N c c k c c k

k k

i j i j

j k i j N k i

j P N Pσ σ σ
− − ∞ − −

= = = = + = =

= +∑ ∑ ∑ ∑ ∑ ∑        (3.16) 

3. The fraction of retrials that are successful 

*

2

*

1

.
σ

σ
=FR               (3.17) 

4. The marginal distribution of the number of busy servers 

,

0

( , ) k

i j

j

p i k P
∞

=

=∑ , 0 i k c≤ + ≤ .          (3.18) 

5. Busy period : The busy period T of a retrial queue is defined as the period that 

starts at the epoch when an arriving customer finds an empty system (all servers 

are idle and no customer in the orbit) and ends at the departure epoch at which the 

system is empty again. 

The mean busy period 

0

0,0 1

1 1 1 1
( ) ( 1) ( 1)

[1]N

E T
Pλ λ

= − = −
Π Φ

    (3.19) 

where 1[1]NΠ Φ  denotes the first element of 1NΠ Φ . 

6. Vain retrials : A vain retrial is an unsuccessful retrial when all servers are busy.  

The steady-state probability of vain retrial VP  

, ,

1 1

0
,

1 0 0

1

k k

i j i j

j i k c j i k c

V c c k
k

i j

j k i

P P

P

P

∞ ∞

= + = = + =

∞ −

= = =

= =
− Π

∑ ∑ ∑ ∑

∑∑∑
e

.          (3.20) 

To understand how system performance measures listed above vary with N, we 

also perform a numerical investigation to the measures based on changing the value of 
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N. The numerical illustration is graphically presented in Figure 3.4. From Figure 3.4, 

it is clear that increasing the retrial rate beyond a certain point does not result in a 

commensurate improvement in the system performance, which is according with the 

result of Neuts and Rao [50]. 

3.5 Numerical Results 

 We construct a total expected cost function per unit time, in which the number of 

servers ( c ) is a discrete decision variable, and the service rates 1 2( , )µ µ µ=  are 

continuous decision variables. Let us define the following cost elements: 

1

2 1

3

 cost per unit time per customer present in orbit,

 cost per unit time when one server is busy in  channel

 cost per unit time of providing an service rate ,

 cost per unit time of provi

hC

C FES

C

C

µ

≡

≡

≡

≡ 2

4

ding an service rate ,

 fixed cost for purchase one server.C

µ

≡

 

Based on the definition of the cost parameters, the total expected cost function per unit 

time is given by 

1 2 1 2 1 3 2 4( , , ) [ ] [ ]hF c C E Orbit C E B C C C cµ µ µ µ= + + + + .  (3.21) 

The main objective is to determine the optimal number of servers *
c , and the optimal 

value of the service rate * * *

1 2( , )µ µ µ= , simultaneously which minimize the cost 

function. The analytic study of the optimization behavior of the expected cost function 

is an arduous task to undertake since the decision variable appears in an expression 

which is a highly complex and non-linear in terms of 1 2( , , )c µ µ . We firstly use direct 

search method to find the optimal value of the number of servers, say *
c , when 1µ  

and 2µ  are fixed. Next, we fix *
c  and use the Quasi-Newton method to 

search/adjust the optimal value of 1 2( , )µ µ , say * *

1 2( , )µ µ . In practical application, an 

upper bound U is imposed on c. We can successively substitute 1,2,...c = , U  into 

the cost function. The optimum value *
c  can be determined by satisfying the 

following inequality 

* * *

1 2 1 2 1 2( 1| , ) ( | , ) ( 1| , )F c F c F cµ µ µ µ µ µ− > < + .  (3.22) 

To demonstrate that the cost function is really convex in c  and the solution gives a 

minimum, some numerical examples are performed based on the preceding 

formulation. For convenience, the number N =30 is chosen and the following cost 
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elements are adopted 

hC =$25/customer/unit time, 1C =$120/server/unit time, 2C =$15/unit time, 

3C =$30/unit time, and 4C =$180/server. 

Under other parameters are given, we observe from Table 3.1 that the optimal 

number of servers *
c  and its corresponding minimum cost increase as θ  or λ  

increases, and decrease as σ  increases. After we obtain *
c , Quasi-Newton method 

is employed to search 1 2( , )µ µ  until the minimum value of *

1 2( , , )F c µ µ  is achieved, 

say * * *

1 2( , , )F c µ µ . To find the joint optimal value * *

1 2( , )µ µ  for a given *
c , we should 

show the convexity of *

1 2( , , )F c µ µ . However, this work is difficult to implement. 

Two examples are presented to illustrate the optimization procedure shown in Table 

3.2. From Table 3.2, we can see that the minimum expected cost per day of 1003.92 is 

achieved at =),( *

2

*

1 µµ (23.4453, 8.02222) by using 5 iterations, which is *
c =1 based 

on Case (i) with initial value =),( 21 µµ (20, 10). Based on Case (ii), *
c  is 4 and the 

minimum expected cost per day of 1674.11 is achieved at =),( *

2

*

1 µµ (16.8630, 

10.7441) is achieved using 5 iterations. 

We now perform a sensitivity investigation to the optimal value * * *

1 2( , , )c µ µ  

based on changes in specific values of the system parameters. The numerical results 

are shown in Table 3.3 for various values of λ , θ , and σ  by considering the initial 

value ),( 21 µµ  of (20, 10). From Table 3.3, we find that (i) *
c  increases as λ  or θ  

increases and is insensitive to the change of σ ; and (ii) *

1µ  ( *

2µ ) increases as θ  ( λ ) 

increases and decreases as σ  increases. 

 

 

Figure 3.1. The general structure of M/M/c retrial queue with second optional service. 
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Figure 3.2. State-transition-rate diagram for an M/M/3 retrial queue with SOS. 

 

 

Figure 3.2 (cont.). State-transition-rate diagram for an M/M/3 retrial queue with SOS. 
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Figure 3.3. The expected number of customers in orbit versus λ , 1µ  and 2µ  

 

 

 

Figure 3.4. The system performance measures versus the truncated parameter N. 
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Table 3.1. The cost function associated with number of servers and values of λ . 

1 2( , , , , )µ µ λ θ σ  c=1 c=2 c=3 c=4 c=5 c=6 

(20, 10, 5, 0.2, 5) 840.75 1003.57 1182.15 1362.01 1542.00 1722.00 

(20, 10, 10, 0.2, 5) 1026.54 1056.44 1225.94 1404.29 1584.04 1764.00 

(20, 10, 15, 0.2, 5) N/A* 
1133.07 1274.45 1447.72 1626.32 1806.05 

(20, 10, 20, 0.2, 5) N/A 1277.00 1332.65 1493.81 1669.37 1848.30 

(20, 10, 5, 0.2, 10) 834.019 1002.95 1182.086 1362.01 1542.00 1722.00 

(20, 10, 10, 0.2, 10) 968.171 1051.67 1225.14 1404.17 1584.02 1764.00 

(20, 10, 15, 0.2, 10) N/A 1115.42 1271.07 1446.99 1626.18 1806.03 

(20, 10, 20, 0.2, 10) N/A 1222.10 1323.03 1491.42 1668.78 1848.16 

(20, 10, 5, 0.2, 15) 831.776 1002.74 1182.07 1362.01 1542.00 1722.00 

(20, 10, 10, 0.2, 15) 948.724 1050.06 1224.87 1404.12 1584.02 1764.00 

(20, 10, 15, 0.2, 15) N/A 1109.48 1269.93 1446.75 1626.13 1806.02 

(20, 10, 20, 0.2, 15) N/A 1203.68 1319.78 1490.61 1668.58 1848.12 

 

1 2( , , , , )µ µ λ θ σ  c=1 c=2 c=3 c=4 c=5 c=6 

(20, 10, 5, 0.8, 5) 930.322 1043.87 1218.86 1398.12 1578.02 1758.00 

(20, 10, 10, 0.8, 5) N/A 1179.97 1306.96 1478.47 1656.55 1836.11 

(20, 10, 15, 0.8, 5) N/A 4365.50 1431.25 1567.86 1737.90 1915.07 

(20, 10, 20, 0.8, 5) N/A N/A 1778.63 1683.62 1827.33 1996.97 

(20, 10, 5, 0.8, 10) 907.107 1041.82 1218.53 1398.07 1578.01 1758.00 

(20, 10, 10, 0.8, 10) N/A 1158.61 1303.03 1477.52 1656.32 1836.06 

(20, 10, 15, 0.8, 10) N/A 2668.80 1411.62 1562.80 1736.40 1914.64 

(20, 10, 20, 0.8, 10) N/A N/A 1668.51 1665.55 1821.65 1995.03 

(20, 10, 5, 0.8, 15) 899.369 1041.12 1218.42 1398.06 1578.01 1758.00 

(20, 10, 10, 0.8, 15) N/A 1151.44 1301.70 1477.20 1656.25 1836.05 

(20, 10, 15, 0.8, 15) N/A 2347.02 1405.00 1561.08 1735.88 1914.49 

(20, 10, 20, 0.8, 15) N/A N/A 1632.44 1659.44 1819.73 1994.38 

* ”N/A” denotes system is unstable (i.e., the stable condition does not hold) 
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Table 3.2. The illustration of the implementation process of Newton-Quasi method 

Case (i): ),,( σθλ = (10, 0.2, 5) with initial value )10,20(),( 21 =µµ  

Iterations 0 1 2 3 4 5 

*

1 2( , , )F c µ µ  1026.54 1007.83 1004.06 1003.92 1003.92 1003.92 

*
c  1 1 1 1 1 1 

1µ  20 22.6527 23.3038 23.4405 23.4453 23.4453 

2µ  10 7.55324 7.92219 8.01767 8.02221 8.02222 

1

F

µ

∂

∂
 -8.24475 -4.34979 -0.69766 -0.25822 -0.00004 104.0 10−− ×  

2

F

µ

∂

∂
 9.22640 -10.6671 -1.80336 -0.07392 -0.00014 91.5 10−− ×  

E[Orbit] 6.50153 7.06782 6.20192 6.02626 6.01906 6.01905 

E[BS]* 0.70000 0.70623 0.68157 0.67606 0.67583 0.67583 

Hessian 
5.8322 2.9535

2.9535 6.9730

 
 
 

 4.0699 4.6075

4.6075 20.781

 
 
 

 2.9736 3.0487

3.0487 14.521

 
 
 

 2.7867 2.7845

2.7845 13.382

 
 
 

 2.7796 2.7738

2.7738 13.334

 
 
 

 2.7805 2.7742

2.7742 13.334

 
 
 

 

 

 

Case (ii): ),,( σθλ = (20, 0.8, 5) with initial value )10,20(),( 21 =µµ  

*”
E[BS] “ denotes the number of busy servers in the system ≡E[FES]+E[SOS]. 

Iterations 0 1 2 3 4 5 

*

1 2( , , )F c µ µ  1683.62 1675.80 1674.15 1674.11 1674.11 1674.11 

*
c  4 4 4 4 4 4 

1µ  20 15.7834 16.6998 16.8593 16.8630 16.8630 

2µ  10 10.7383 10.7446 10.7442 10.7441 10.7441 

1

F

µ

∂

∂
 4.88607 -3.28908 -0.42979 -0.00954 -0.000005 91.3 10−×  

2

F

µ

∂

∂
 -2.97931 -2.06125 -0.25997 -0.00563 -0.000005 91.0 10−×  

E[Orbit] 2.06473 2.64154 2.35613 2.31366 2.31270 2.31269 

E[BS] 2.60000 2.75714 2.68674 2.67547 2.67521 2.67521 

Hessian 
1.3534 1.1115

1.1115 10.383

 
 
 

 3.5744 2.1813

2.1813 9.9203

 
 
 

 2.6986 1.6548

1.6548 8.9978

 
 
 

 2.5796 1.5845

1.5845 8.8708

 
 
 

 2.5761 1.5820

1.5820 8.8674

 
 
 

 2.5770 1.5823

1.5823 8.8671

 
 
 
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Table 3.3. The optimal value * * *

1 2( , , )c µ µ  and the minimum expected cost value for 

various value of λ , θ , and σ , while *
c  is obtained at initial value 

( 1µ , 2µ ) = (20,10). 

( , , )λ θ σ  (5, 0.2, 10) (10, 0.2, 10) (20, 0.2, 10) (5, 0.8, 10) (10, 0.8, 10) (20,0.8, 10) 
*

c  1 1 2 1 2 4 

),( *

2

*

1 µµ  
[11.8535, 

4.26058] 

[22.0254, 

7.71166] 

[22.7810, 

7.77980] 

[14.7456, 

9.53810] 

[15.1755, 

9.76186] 

[16.2154, 

10.3483] 

*

1 2( , , )F c µ µ  628.502 947.158 1200.47 866.965 1129.98 1652.39 

E[Orbit] 2.56395 4.79291 3.93227 3.54492 2.88299 1.80663 

E[BS] 0.65653 0.71337 1.39208 0.75845 1.47847 2.77955 

 

( , , )λ θ σ  (10, 0.2, 15)(10, 0.5, 15) (10, 0.8, 15) (20, 0.2, 15)(20, 0.5, 15) (20,0.8, 15) 
*

c  1 2 2 2 3 3 

),( *

2

*

1 µµ  
[21.4641, 

7.60174] 

[13.8213, 

7.19819] 

[14.9257, 

9.61603] 

[22.2164, 

7.65119] 

[18.2749, 

9.41276] 

[19.6974, 

12.6312] 

*

1 2( , , )F c µ µ  925.598 1009.21 1118.22 1181.57 1417.74 1561.528 

E[Orbit] 4.32420 2.23082 2.62489 3.52100 2.41688 2.93133 

E[BS] 0.72899 1.41814 1.50193 1.42303 2.15678 2.28207 

 

( , , )λ θ σ  (10, 0.2, 5) (10, 0.2, 10) (10, 0.2, 15) (10, 0.8, 5)  (10, 0.8, 10) (10,0.8, 15) 

*
c  1 1 1 2 2 2 

),( *

2

*

1 µµ  
[23.4453, 

8.02222] 

[22.0254, 

7.71166] 

[21.4641, 

7.60174] 

[15.8259, 

10.1461] 

[15.1755, 

9.76186] 

[14.9257, 

9.61603] 

*

1 2( , , )F c µ µ  1003.92 947.158 925.598 1161.21 1129.98 1118.22 

E[Orbit] 2.31269 4.79291 4.32420 3.55994 2.88299 2.62489 

E[BS] 2.67521 0.71337 0.72899 1.42036 1.47847 1.50193 
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Chapter 4 

M/M/c Queue with Modified Bernoulli Vacation Policy 

In some transport systems in which a ferry driver or a locomotive driver may take 

a vacation after every round of trip. In the restaurant, the waiter may go to the 

restroom when there is no guest waiting for taking their order. For a production 

system, it may so happen that the process either needs to be stopped for overhauling 

and maintenance of the system after usual processing (see Choudhury and Madan 

[22]). The overhauling may be represented as a Bernoulli vacation time in our system. 

In this chapter, matrix analytic method is used to analyze an infinite capacity 

multi-server queue with modified Bernoulli vacation under a single vacation policy. In 

traditional Bernoulli vacation policy, servers may take a vacation at the completion of 

service with probability p  or continuous to serve the next customer with probability 

1 p− . For the modified Bernoulli vacation policy, the server will keep providing 

service to the customer if there are customers still waiting in the queue. At this time, 

the vacation behavior will not occur, that is, 0p = . The modified Bernoulli vacation 

policy is more suitable for the real situation. When the servers complete the vacation 

period, they stay idly for the next new arrival or serve the customers in the system, if 

any. That is, the single vacation policy. 

This chapter is organized as follows: Section 4.1 gives some basic assumptions 

and notations of the queue. In Section 4.2, the mathematical analyses of the 

state-transition matrix are presented. In Section 4.3, the stability condition, the 

closed-form expression of rate matrix, and the steady-state probability are derived. In 

Section 4.4, the explicit expressions of some important system performance are 

obtained. The special case of single server is also discussed. The optimization results 

and numerical examples are performed in Section 4.5. 

4.1 Assumptions and Notations 

An infinite capacity M/M/c queueing system with modified Bernoulli vacation 

under a single vacation policy is considered. Conveniently, we represent this 

multi-server system with modified Bernoulli vacation as M/M/c/MBSV queueing 

system. Customers arrive according to a Poisson process with parameter λ . Their 

service are provided by c  servers, in which the service times are assumed to be 

exponentially distributed with mean 1/ µ . It is assumed that customers arrive at the 
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system form a single waiting line and served in the order of their arrivals; that is, the 

first-come, first-served discipline. Each server can serve only one customer at a time, 

and that the service is independent of the arrival of the customers. At each service 

completion instant of a server, the server inspects the system state and decides 

whether leave for a vacation or not. If the number of customers in the system is less 

than the number of busy/working servers, the server may take a vacation of random 

length with probability p  or continue to serve the next customer, if any with 

proability q  ( 1 p= − ). The vacation times are exponentially distribution with mean 

1/η . If the number of customers in the system is more than the number of busy 

servers, the server always keep working/serving for the next customers waiting in the 

queue, that is, 0p = . At the end of the vacation, the server remains idle until the first 

arriving customer, that is, the single vacation policy. 

In this chapter, the following notations and symbols are used. 

λ－ mean arrival rate 

µ－ mean service rate 

p－ probability that a server may opt for Bernoulli vacation 

η－ vacation rate 

c－ number of channels (servers) 

Π－ steady-state probability vector 

Q－ infinitesimal generator 

I－ identity matrix 

e－ identity column vector (a column vector with all elements equal to 1) 

F－ irreducible generator 

x－ invariant probability 

R－ rate matrix 

sL － expected number of customers in the system 

qL － expected number of customers in the queue 

[ ]E V － expected number of vacation servers 

[ ]E I － expected number of idle servers 

[ ]E B － expected number of busy servers 

F－ cost function 
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4.2 M/M/c Queue with Bernoulli Vacation 

For an M/M/c/MBSV queueing system, the state of this queueing system can be 

described by the pair ( , )i n , 0,1,2,...,i c= , 0,1,2,...n = , where i  denotes the 

number of vacation servers, and n  denotes the number of customers in the system. 

According to system assumptions, the server keeps busy and serves the next customer 

waiting in the queue at a service completion instant if the number of customers in the 

system is greater than the number of total working (no vacation) servers, i.e. 

( 1)n c i≥ − + . Otherwise ( )n c i≤ − , one server may goes on vacation with 

probability p  ( 0p > ) or resumes service with probability 1q p= −  at a service 

completion instant. In steady-state, we define 

( )iP n ≡ probability that there are n  customers in the system when there are i  

vacation servers, where 0,1,2,...,i c=  and 0,1,2,...n =  

and 0 1 1[ , ,..., , ,...]c c+= Π Π Π ΠΠ  with 0 1[ ( ), ( ),..., ( )]n cP n P n P nΠ = , 0,1,2,...n =  

denotes the steady-state probability vector. The infinitesimal generator Q  of the 

QBD describing the M/M/c queueing system with modified Bernoulli vacation is of 

the form 

0

1 1

2 2

1 1

1

 

  

       

           

                 

                       

                                    

                                         

                    

c c

c c

c c

− −

+

=
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C A B
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 
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 
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 
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 
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 
 
 
 O O O

.     (4.1) 

The entries B , jA (0 )j c≤ ≤ , and jC (1 1)j c≤ ≤ +  are matrices of order ( 1)c + . 

,1

,2

,3

,

, 1

   

      2      

                  , 0,1,...,

                        

                        ( 1)  

                                            

j

j

j

j

j c

j c

a

a

a

j

c a

c a

η

η

η

η +

 
 
 
 
 
 = =
 
 
 −
 
  

A O O

O O
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The matrix ( 1) ( 1)c cλ + × +=B I , where ( 1) ( 1)c c+ × +I  is the identity matrix of order c+1. 
jA  

(0 )j c≤ ≤  is also square matrix with dimension ( 1) ( 1)c c+ × +  shown above with 

diagonal elements , [ min( , 1 ) ( 1) ]j ka j c k kλ µ η= − + + − + − , 1,2,..., 1k c= + . Then 

the matrix 
jC  (1 1)j c≤ ≤ +  is list below 

    

              
# ( 1 )

                      

                              

        ( -1)

                  ( - 2)

           #                           

            

j

jq jp

jq jp
c j

jq jp

j

j

j

µ µ

µ µ

µ µ

µ

µ





= + −



=

=

C

O O

O

,  1, 2,.., 1

                     

                                      0

j c

µ

 
 
 
 
 
 
  = +   

 
 
 
  

. 

The steady-state equations system can be represented as =ΠQ 0 . 

4.3 Steady-state Results 

To ensure that the unique solution of =ΠQ 0  exists. The stability condition of 

this queueing system should be derived. Certainly, obtaining rate matrix is necessary 

before employing the matrix geometric method. The convergence property of the rate 

matrix is proofed. We also discuss the special case of single server. 

4.3.1. Stability condition  

Form Neuts [49], the steady-state probability vector exists if and only if 

1c+<xBe xC e ,        (4.2) 

where e  is a column vector with dimension ( 1)c +  and all elements equal to one. 

The vector 0 1[ , ,..., ]cx x x=x  is the invariant probability of the matrix 

1c c+= + +F C A B . It satisfies two conditions xF = 0  and xe = 1 . 

Substituting B  and 1c+C  into equation (4.2) and doing some routine 

manipulations, then we have 0 1x =  and 0ix = , 1,2,...,i c= . The stability condition 

is given as 

0

( ) ,
c

i

i

c i x cλ µ µ
=

< − =∑       (4.3) 
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which agrees with the stability condition of the ordinary M/M/c queueing system. 

4.3.2. Rate matrix 

It is noted that the vector 0 1 1[ , ,..., , ,...]c c+= Π Π Π ΠΠ  has the following properties 

k

c k c+Π = Π R , for 1k ≥        (4.4) 

which is the matrix-geometric property. The matrix R  is the unique non-negative 

solution with spectral radius less than one of the equation 

2

1c c++ + =B RA R C 0 .       (4.5) 

It is necessary to solve the rate matrix R  of (4.5), in order to obtain the steady-state 

solution vector 0 1 1[ , ,..., , ,...]c c+= Π Π Π ΠΠ . Based on the structures of matrices, B , 

cA  and 1c+C  which are represented as the lower triangular matrix, thus the matrix 

solution R  is also the lower triangular matrix. (see Latouche and Ramaswami [41]) 

Doing some arduous algebraic derivations and arrangement, we develop the 

explicit formula for matrix R  as follows: 

1,1

2,1 2,2

,1 ,2 ,

1,1 1,2 1, 1, 1

 

     

          
,

                

         

      

c c c c

c c c c c c

r

r r

r r r

r r r r+ + + + +

 
 
 
 
 =
 
 
 
  

R
M M O

M M O

L L

L L

        (4.6) 

where 
2

,

4( 1 )

2( 1 )

i i

i i

c i
r

c i

θ θ λµ

µ

− − + −
=

+ −
, for 1 i c≤ ≤ , 1, 1c cr

c

λ

λ η
+ + =

+
, 

   

1

, , , 1

1

,

, ,

( 1 )

( 1 )(1 ) ( 1)

i

i k k j i j

k j

i j

i i j j

c j r r jr

r
c j r r j

µ η

λ µ η

−

+
= +

+ − +

=
+ + − − − + −

∑
, for 2 1,  i c i j≤ ≤ + > , 

   , 0i jr = , for i j<  and ( 1 ) ( 1)i c i iθ λ µ η= + + − + − . 

Note that ,i ir  is the corresponding eigen-values of the rate matrix R  and the 

spectral radius of R , sp( R ) is less than one if 1( ) 1cρ λ µ −= <  (stability condition). 

Proof. Firstly, the first diagonal element 

2
1

1,1

( ) 4
( ) 1

2 2

c cc c c
r c

c c

λ µ λ µλ µ λ µ λµ
λ µ ρ

µ µ
−+ − −+ − + −

= = = = < .  
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For 2 i c≤ ≤ , the diagonal element ,i ir  is got from the quadratic equation 

2( ) ( 1 ) 0if x c i x xµ θ λ= + − − + = .        

It should be noted that there exists exact one real root in (0, 1) because 

1

(0) 0,

(1) ( 1 ) ( 1) 0.i

f

f c i i

λ

µ θ λ η−

= >

= + − − + = − − <
      

Finally, 1, 1 / ( ) 1λ λ η+ + = + <c cr c . Consequently, all diagonal elements (eigen-values) 

of rate matrix R  are less than 1. Therefore, the spectral radius of rate matrix R , 

sp( R ) ,
1 1
max{ }i i

i c
r

≤ ≤ +
=  is less than 1. That is, the convergence property is ensured if the 

stability condition holds. By using the rate matrix R , we can solve the steady-state 

probability more efficiently. 

4.3.3. Probability computation 

Under the stability condition, by solving the equation =ΠQ 0  with the 

normalization condition, we obtain 

0 0 1 1Π + Π =A C 0 ,            (4.7a) 

1 1 1i i i i i− + +Π + Π + Π =B A C 0 , 1 1i c≤ ≤ − ,       (4.7b) 

1 1c c c c c− +Π + Π + Π =B A RC 0 ,         (4.7c) 

1 1

1

i c i c i c

c c c c c

− − − + −
+Π + Π + Π =R B R A R C 0 , 1c i+ ≤ ,     (4.7d) 

0

1i

i

∞

=

Π =∑ e .             (4.8) 

After doing routine substitutions to (4.7a)-(4.7c), we have 

1

0 1 1 0 1 1

1

1 1 1

( ) ,

[ ( )] ,  2 ,i i i i i i i i c

φ

φ φ

−

−
− − −

Π = Π − = Π

Π = Π − + = Π ≤ ≤

C A

C B A
    (4.9) 

and 

1c c c c c cφ +Π + Π + Π =B A RC 0 .       (4.10) 

Consequently, iΠ  (0 1)n c≤ ≤ −  in equation (4.9) can be written in terms of cΠ  as 
1i

i c i
i c

φ
+

=
Π = Π Π , 0,1,2,..., 1i c= −  where 1

1 1 0( )φ −= −C A  and 1

1 1[ ( )]i i i iφ φ −
− −= − +C B A , 

2 i c≤ ≤ . The rest steady-state vectors 1, ,...c c+Π Π  can be calculated recursively as 
i c

i c

−Π = Π R , for i c≥ . Once cΠ  is determined, the steady-state solutions 

0 1 1[ , ,..., , ,...]c c+= Π Π Π ΠΠ  are obtained. The vector cΠ  is given by solving 

equation (4.10) with the following normalization condition. 
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0 1 1 1 2

0

1 2
2

1

1

[ ... ...]

[ ... ...]

[ ( ) ] 1.

i c c c c

i

c

c i c i c i c c c
i c i c i c

c n

c i
i c

n

φ φ φ

φ

∞

− + +
=

= = =

−

=
=

Π = Π + Π + + Π + Π + Π + Π +

= Π Π + Π Π + + Π Π + Π + Π + Π +

= Π Π + − =

∑

∑

e e

R R e

I R e

  (4.11) 

Solving equations (4.10) and (4.11) in accordance with Cramer’s rule, we obtain 

cΠ . Then the prior state probabilities 0 1 2 1[ , , ,  ..., ]c−Π Π Π Π  are computed from (4.9) 

and 1 2 3[ , , ,...]c c c+ + +Π Π Π  are gained by the formula i c

i c

−Π = Π R , 1i c≥ + . 

4.4 System Performance Measures 

There are several general descriptors (system performance measures) of the 

M/M/c/MBSV queueing system, such as the expected number of customers in the 

system (denoted by sL ), the expected number of customers in the queue (denoted by 

qL ), the expected number of busy, idle and vacation servers (denoted by [ ]E B , [ ]E I  

and [ ]E V , respectively). The expressions for these system performance measures are 

given by 

1

1 1

1
1 2

1

1

1
1 2

1

1

( 1) ...

( ) ( )

( ) ( ) .

c

s i i c c

i i

c

c i c c

i

c

c i

i

L i i c c

i c

i c

∞ −

= =

−
− −

+
=

−
− −

+
=

= Π = Π + Π + + Π +

= Π Φ + Π − + Π −

 
= Π Φ + − + − 

 

∑ ∑

∑

∑

e e e Re

e I R e R I R e

I R R I R e

      (4.12) 

1 2

1
1 2

1

1

1
1 2

1

1

0 0 0 0

...
0 1 1 1

1 2

( ) ( )

( ) ( ) .

q c c

c

c i i c c c

i

c

c i i c

i

L
c c

c c

−
− −

+
=

−
− −

+
=

        
        
        = Π + Π + + Π + Π + +
        − −
         

        

= Π Φ + Π − + Π −

 
= Π Φ + − + − 

 

∑

∑

R e

u I R u R I R e

u I R u R I R e

M M M M
L

   (4.13) 



 

 51 

1

0 1

0 0

1 1
[ ] ( ) .

c

i c i

i i

E V

c c

∞
−

= =

   
   

    = Π = Π Φ + −     
   
   

∑ ∑ I R
M M

           (4.14) 

0 1 2 1

1 1 2 2

1

1 2 1

1 2 3 0
[ ] ...

0 0 0 0

... .

c

c

c c c c c c i i

i

c c c

c c c
E I −

=

− −       
       − − −       = Π + Π + Π + + Π
       
       
       

= Π Φ + Π Φ + + Π Φ = Π Φ∑v v v v

M M M M
      (4.15) 

[ ] [ ] [ ],E B c E V E I= − −             (4.16) 

where  

} ## 1

T[0,...,0 ,1,2,..., ]

ic i

i i

== + −

=u
678

 and 
}#  1 #   

T[ , 1,...,1,00,...,0]

c i i

i c i c i

= − + =

= − − −v
644474448

 

are column vector with dimensional ( 1)c + . To understand how system performance 

measures (such as 
sL  and [ ]E B ) listed above vary with λ , µ  and η , we now 

perform some numerical investigation to the measures based on changing the value of 

system parameters. For computation, we let p =0.5. The numerical results of 
sL  are 

obtained by considering the following three cases with different values of c . 

Case 1. µ = 5.5, η =2.0, vary λ  from 2.0 to 5.0. 

Case 2. λ = 2.0, η =2.0, vary µ  from 2.5 to 5.5. 

Case 3. λ = 2.0, µ =3.0, vary η  from 1.0 to 4.0. 

Results of sL  are depicted in Figures 4.1-4.3 for Case 1-3, respectively. Figure 4.1 

reveals that (i) sL  increases quickly as λ  increases for c =1, and (ii) sL  slightly 

increases as λ  increases for 2c ≥ . We observes from Figure 4.2 that (i) sL  

drastically decreases as µ  increases for c =1, and (ii) sL  slightly decreases as µ  

increases for 2c ≥ . One sees from Figure 4.3 that sL  slightly decreases as η  

increases. We also interest in the effect of different parameters on the expected 

number of busy servers ( [ ]E B ). The following three cases are considered:  

 Case 4. [ ]E B  versus λ  from 2.0 to 5.0 when µ =5.5 and η =2.0. 

 Case 5. [ ]E B  versus µ  from 2.5 to 5.5 when λ =2.0 and η =2.0. 

 Case 6. [ ]E B  versus η  from 1.0 to 4.0 when λ =2.0 and µ =3.0. 
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The numerical illustrations of the expected number of busy servers are graphically 

presented in Figures 4.4-4.6 for Case 4-6, respectively. We observe from Figures 

4.4-4.5 that [ ]E B  increases as λ  increases or µ  decreases. Figure 4.6 reports 

[ ]E B  is a constant is independent of η . From the investigation, it is interesting that 

E[B] nearly equals to /λ µ . However, it is very difficult to proof the results. In the 

next section, we will provide the proof of single server case ( 1c = ). 

4.4.1. Special case of single server 

As a particular case, the M/M/1/MBSV queueing system, in which the server 

may take a vacation if server is free at service completion instant, steady-state 

equations in states (0,0), (0,1), and (1,0) are given by:  

0 0 1

1 0

(0) (1) (0),

( ) (0) (1),               

P q P P

P p P

λ µ η

λ η µ

= +

+ =
     (4.17) 

which implies  

     0 1 0[ (0) (0)] (1)P P Pλ µ+ = .      (4.18) 

For the single server case, the sub-matrices are as following: 

0

0

λ

λ

 
=  
 

B , 
( ) 0

( )
c

λ µ

η λ η

− + 
=  − + 

A , and 1

0

0 0
c

µ
+

 
=  
 

C . 

Substituting B , cA , 1c+C  into 2

1c c++ + =B RA R C 0  and solving the quadratic 

equation above, we have 

      0

  

λ

µ

λ λ

µ λ η

 
 
 =
 
 + 

R .       (4.19) 

Also, equation (4.20) can be obtained from (4.6). For the case of single server, the 

steady-state distribution 1 0 1[ (1), (1)]P PΠ =  satisfies 0 1 1 1 2Π + Π + Π =B A RC 0  as 

following 

 

0 1 0 1

0 1

  0 ( )           0
[ (0), (0)] [ (1), (1)]

0                ( )

      0
  0 0  0

                                                   [ (1), (1)]
0   0

  

P P P P

P P

λ λ µ

λ η λ η

λ

µµ

λ λ

µ λ η

− +   
+   − +   

 
   
 + = 
   
 + 

,
0  0

 
 
 

 (4.20) 
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which leads to 

0 1(1) ( ) (1)
p

P P
λ µ

λ η
λ η

= +
+

.      (4.21) 

Using the normalization condition (4.11) to obtain 1Π  

1

0 1 0 1

1 1
[ (1), (1)]( ) [ (0), (0)] 1

1 1
P P P P

−    
− + =   

   
I R .   (4.22) 

Substituting (4.18), (4.19) and (4.21) into (4.22), we get 0 (1)P  and 1(1)P  as follows 

0 2 2 2

( )( )
(1)

( )
P

p

λ λ η µ λ η

λ ηλ η µ

+ −
=

+ +
,      (4.23) 

and 

2

1 2 2

( )
(1)

( )( )

p
P

p

λ η µ λ

λ η λ ηλ η µ

−
=

+ + +
.     (4.24) 

After the gaining of 1Π , the rest steady-state probability vectors 2 3 4, , ,...Π Π Π  can 

be obtained recursively with 2 1Π = Π R , 3 2Π = Π R , …, and so on. The expected 

number of busy servers is 

1

0 1 0 02

2 2

0 0 02

           0
1 1

[ ] [ (1), (1)]( ) [ (1), (1)]
( )0 0( )

  
( )

( )
[ (1), (1)] (1) .

( )( ) ( )( )

( )

p
E B P P P P

p p
P P P

µ

µ λλ µ

λ µ η λ ηλ η

η µ λ η

µ

µ λλ µ µ λ ηλ η
ρ

λ µ ηλ η η λ η µ λ

η µ λ

−

 
 −   
 = − =   + ++     
 − 

 
 − + + = = =

++ + − 
 − 

I R

 (4.25) 

It is interest that the result of (4.25) for the M/M/1/MBSV queueing system, in which 

the server may take a vacation if server is free at service completion instant, is the 

same as that of the ordinary M/M/1 queue. Furthermore, the steady-state equation 

(4.17) implies that the probability of system empty while the server is not on vacation, 

is given by  

 0 2 2

( )( )
(0)

( )

q
P

p

λ η µ λ η

λ ηλ η µ

+ −
=

+ +
, and 1 2 2

( )
(0)

( )

p
P

p

µ λ η

λ ηλ η µ

−
=

+ +
.   (4.26) 

As 0p =  ( 1q = ) or η → ∞ , 0 (0) 1P ρ= − , 0 (1) (1 )P ρ ρ= − , and 0 0(0) (1)P Pρ = , 

which are consistent with the result of the ordinary M/M/1 queue. 
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4.5 Numerical Results 

In this section, we construct the total expected cost function per unit time based 

on the system performance measures for the M/M/c/MBSV queueing system, in which 

the number of servers ( c ) is a discrete decision variable, and the service rate ( µ ) and 

the vacation rate (η ) are continuous decision variables. Our main objective is to find 

the optimum number of servers *
c , and the optimum values of service rate and 

vacation rate * *( , )µ η  simultaneously to minimum the cost function. Let us define 

the following cost elements: 

holding cost per unit time per customer present in the system,

cost per unit time of providing an service rate ,

cost per unit time when one server is on vacation,

cost per unit time of prov

h

s

v

r

C

C

C

C

µ

≡

≡

≡

≡ iding an vacation rate ,

fixed cost for purchasing one server.
p

C

η

≡

 

Using the definition of the cost parameters listed above, the total expected cost 

function per unit time is given by: 

 ( , , ) [ ] ,h s s v r pF c C L C C E V C C cµ η µ η= + + + +    (4.27) 

where 
sL  and [ ]E V  are defined previously. The analytic study of the optimization 

behavior of the expected cost function would have been an arduous task to undertake 

since the decision variables appear in an expression which is a highly nonlinear and 

complex and non-linear in terms of ( , ,c µ η ). We firstly use the Quasi-Newton method 

to find the optimal value of continuous variable ( , )µ η , say * *( , )µ η , and then use 

direct search method to search the optimal value of discrete variable c , say *
c . For 

practice use, the number of servers is bounded by a positive integer 1Uc ≥ . We want 

to find the joint optimal value ( *µ , *η ) for each given c  in the feasible set 

{1,2,…, Uc }. The cost minimization problem can be illustrated mathematically as 

{ }* *

( , ) s.t.(4.3)
( , , ) min ( , , )F c F c c

µ η
µ η µ η= , 1,2,..., .Uc c=      (4.28) 

For a fixed c, Quasi-Newton method is employed to search ( , )µ η  until the minimum 

value of ( , , )F c µ η  is achieved, say * *( , , )F c µ η . To demonstrate the valid and the 

procedure of optimization solution, we perform some examples shown in Table 1 by 

considering the following cost parameters as 
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hC =$90/customer/unit time, 
sC =$15 /unit time, 

vC =$30/server, 
rC =$45 /unit time, and 

pC =$120/server 

From Table 4.1, we can see that the minimum expected cost per unit time of 838.457 

is achieved at * *( , )µ η = (17.5903, 4.30120) by using 6 iterations, which is c =1 

based on Case (i) with initial value ( , )µ η = (15, 2.0). Based on Case (ii), the initial 

value ( , , )c µ η =(3, 10, 2) and the minimum expected cost per unit time of 935.612 is 

achieved at * *( , )µ η = (15.2171, 2.74098) by using 6 iterations. After we obtain the 

joint optimal value * *( , )µ η  of the continuous variable ( , )µ η , we will use the direct 

search method to obtain the optimal c such that the expected cost function 
* *( , , )F c µ η  attains a minimum, say * * *( , , )F c µ η . Therefore, the cost minimization 

problem can be illustrated mathematically as 

{ }* * * * *

{1,2,..., }
( , , ) min ( , , ) .

Uc c
F c F cµ η µ η

∈
=      (4.29) 

The procedure to find the optimal solution is described in the following. A numerical 

example is shown in Table 4.2 based on (i) ( , )pλ = (15, 0.5) and (ii) ( , )pλ = (20, 

0.8). It is noted that the optimal value * * *( , , )c µ η = (2, 15.284, 3.7983) and the 

corresponding minimum cost *
F = 895.4944 for Case (i). For Case (ii), 

* * *( , , )c µ η = (2, 18.731, 4.8242) and *F = 1071.252 are optimal. 

Finally, we perform a sensitivity investigation to the optimal values * * *( , , )c µ η . 

For various values of λ  and p , the minimum expected cost * * *( , , )F c µ η  and the 

system performance measures sL , and [ ]E V  at the optimum values * * *( , , )c µ η  are 

shown in Table 4.3. From the Table, it is seen that (i) *
c  is insensitive to λ  or p ; 

(ii) *µ  increases as λ  increases; and (iii) *η  increases as λ  or p  increases. 

Moreover, the minimum expected cost increases * * *( , , )F c µ η as λ  or p  increases. 
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Figure 4.1. The effect of λ  on the expected number of customers in the system. 

 

 

Figure 4.2. The effect of µ  on the expected number of customers in the system. 
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Figure 4.3. The effect of η  on the expected number of customers in the system. 

 

 

Figure 4.4. The expected number of busy servers versus λ . 
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Figure 4.5. The expected number of busy servers versus µ . 

 

 

Figure 4.6. The expected number of busy servers versus η . 
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Table 4.1. The illustration of the implement process of Quasi-Newton method 

Case (i): ( , )pλ = (10, 0.5) with initial value ( , , )c µ η =(1, 15, 2.0) 

Iterations 0 1 2 3 4 5 6 

( , , )F c µ η  987.973 882.065 845.430 838.786 838.458 838.457 838.457 

µ  15 16.4035 17.3194 17.5741 17.5901 17.5903 17.5903 

η  2.0 2.78381 3.59146 4.13419 4.29150 4.30117 4.30120 

F

µ

∂

∂
 -19.9189 16.4035 -1.11143 -0.05537 -0.00008 81.57 10−×  118 10−− ×  

F

η

∂

∂
 -176.914 2.78381 -21.1504 -4.00835 -0.22011 -0.00075 98.5 10−− ×  

sL  6.05405 4.24438 3.28115 2.89676 2.81312 2.80833 2.80831 

Hessian 
  14.26  -0.114

-0.114    225.9

 
 
 

  6.754  -0.086

-0.086   83.88

 
 
 

  4.511  -0.069

-0.069   39.00

 
 
 

 4.070  -0.062

-0.062  25.48

 
 
 

 4.046  -0.06

-0.06  22.76

 
 
 

 4.046  -0.06

-0.06  22.60

 
 
 

 4.046  -0.06

-0.06  22.60

 
 
 

 

 

Case (ii): ( , )pλ = (20, 0.2) with initial value ( , , )c µ η =(3, 10, 2) 

Iterations 0 1 2 3 4 5 6 

( , , )F c µ η  1052.33 971.631 942.421 936.060 935.615 935.612 935.612 

µ  10 11.5153 13.2741 14.6682 15.1728 15.2168 15.2171 

η  2.0 2.46623 2.71924 2.75081 2.74176 2.74098 2.74098 

F

µ

∂

∂
 -59.8568 -23.5812 13.2741 -1.69159 -0.12620 -0.00083 84.8 10−− ×  

F

η

∂

∂
 -77.6947 -24.0490 2.71924 -0.59183 -0.04460 -0.00031 94.16 10−×  

sL  4.82721 3.42012 2.65292 2.31515 2.22369 2.21614 2.21609 

Hessian 
36.25  10.56

10.56  132.3

 
 
 

 12.73  4.723

4.723  62.22

 
 
 

 5.547  2.580

2.580  41.83

 
 
 

 3.386  1.861

1.861  38.37

 
 
 

 2.900  1.686

1.686  38.22

 
 
 

 2.862  1.671

1.671  38.21

 
 
 

 2.862  1.671

1.671  38.21

 
 
 
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Table 4.2. The optimal value * *( , )µ η  and the corresponding minimum expected cost 

(i) ( , )pλ = (15, 0.5) 

c Initial Value Coverage Value * *( , )µ η  Iteration Cost* 

c=1 [20, 2.0] [24.32507, 5.332980] 7 1052.297 

c=2 [15, 2.0] [15.28433, 3.798293] 6 895.4944 

c=3 [10, 2.0] [12.37270, 3.088068] 6 920.8427 

c=4 [10, 2.0] [11.00938, 2.679454] 5 998.4310 

c=5 [10, 2.0] [10.26962, 2.428360] 5 1098.187 

 

(ii) ( , )pλ = (20, 0.8) 

c Initial Value Coverage Value * *( , )µ η  Iteration Cost* 

c=1 [25, 5.0] [30.75986, 6.423140] 6 1288.713 

c=2 [20, 3.0] [18.73113, 4.824175] 6 1071.252 

c=3 [15, 2.0] [14.85998, 4.032956] 6 1073.578 

c=4 [10, 2.0] [13.05122, 3.560957] 6 1137.429 

c=5 [10, 2.0] [12.06278, 3.260737] 6 1232.625 

 

Table 4.3. The optimal value * * *( , , )c µ η  and *F  for various value of λ  and p . 

( , )pλ  (5, 0.2) (10,0.2) (20, 0.2) (5, 0.8) (10, 0.8) (20, 0.8) 
*

c  2 2 2 2 2 2 

* *( , )µ η  
[7.249477, 

1.471333] 

[11.60659, 

2.295007] 

[19.16225, 

3.550663] 

[7.091449, 

2.326386] 

[11.32231, 

3.368702] 

[18.73113, 

4.824175] 
* * *( , ,  )F c µ η

 
532.099 685.935 932.038 610.522 792.191 1071.252 

sL  1.154063 1.717796 2.565803 1.481779 2.275863 3.436747 

[ ]E V  0.442712 0.465296 0.463387 0.870082 0.864552 0.796331 
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Chapter 5 

M/M/c Retrial Queue with Bernoulli Vacation Policy 

The multi-server retrial queue with a Bernoulli single vacation policy is 

considered in this chapter. Servers may take a vacation at the completion of service 

with probability p  or continuous to serve the next customer with probability 1 p− . 

Such as the customer service department, the receptionist may take a rest after 

completing a service for a customer. For the telephone communication system, the 

servers and customers have no information for each other. Consequently, the retrial 

behavior of customers should be considered. 

When the servers complete the vacation period, they stay idly for the next new 

arrival or serve the customers in the system, if any. That is, the single vacation policy. 

The stability condition is developed explicitly. For this queueing model, it is rather 

difficult to obtain the close-form of steady-sate probability. Hence, we use 

matrix-analytical method to solve the steady-state solution recursively. Conveniently, 

we represent this multi-server system with Bernoulli single vacation policy as 

M/M/c/BSV retrial queue. 

This chapter is organized as follows. Section 5.1 gives some basic assumptions of 

the queue under study and notations. We develop the state-transition matrix, the 

stability condition, and the recursive method to obtain the steady-state solution in 

Section 5.2. Section 5.3 provides some important system performance measures. 

Finally, Section 5.4 presents the numerical results and several examples to illustrate 

the optimization procedures. 

5.1 Assumptions and Notations 

An M/M/c/BSV retrial queue is investigated. Primary customers arriving as a 

Poisson process with parameter λ . An arriving primary customer finding any 

available servers will get service immediately. Otherwise, he joins the orbit and 

attempts to enter the system later. There are c  channels (servers) that provide service 

for the customers. The service times are assumed exponentially distribution with rate 

µ . Each server can serve one and only one customer at a time and the service is 

independent of the arrival process. At the service completion instant of as server, it 

may take a vacation of random interval with probability p  or wait idly in the system 

for the next new arrival with probability q  ( 1q p= − ). The vacation times follow an 
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exponentially distribution with parameter η . Furthermore, the inter-retrial time of 

each customer staying in the orbit is assumed exponentially distributed with parameter 

σ . Upon requesting service from the orbit, customer who finds all c servers busy 

always rejoins the orbit; this manner continues until he is eventually served. It is 

assumed that the number of customers in the orbit that are allowed to conduct retrials 

have an upper bound N (see Neuts and Rao [50] and Artalejo and Pozo [7]). Moreover, 

the process of primary arrivals, service times and inter-retrial times are assumed 

mutually independent. 

For an M/M/c/BSV retrial queue, the state of the system can be described by the 

pair ( , , )i j k , 0,1, 2,...,i c= , 0,1,2,...j = , 0,1,2,...,k c i= − , where i  denotes the 

number of busy server, j  is the number of customers in orbit (sources of repeated 

demands) and k  denotes the number of vacation servers. According to system 

assumptions, the number of customers in orbit allowed to conduct retrials is restricted 

to an appropriate number N   ( N c> ), so the retrial rate is min{ , }j j Nσ σ= , 

0j ≥  and one server will go on vacation with probability p  ( 0 1p≤ ≤ ) or resumes 

service with probability 1q p= −  at a service completion instant. The customers 

upon the server will get services immediately as i k c+ < . The new arriving customer 

who find all c servers busy ( i k c+ ≥ ) always rejoins the retrial group (orbit). 

In steady-state, the steady-state probability is defined as 

,

k

i jP ≡ probability that there are i  busy servers and j  customers in orbit and k  

vacation servers, where 0 i k c≤ + ≤  and 0,1,2,...j = . 

In this chapter, the following notations and probabilities are used. 

λ－ mean arrival rate 

µ－ mean service rate 

p－ probability that a server may opt for Bernoulli vacation 

η－ vacation rate 

σ － mean retrial rate 

c－ number of channels (servers) 

Π－ steady-state probability vector 

Q－ infinitesimal generator 

I－ identity matrix 

e－ identity column vector (a column vector with all elements equal to 1) 

F－ irreducible generator 
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x－ invariant probability 

FP － probability that all servers are busy 

R－ rate matrix 

[ ]E B － expected number of customers in the FES channel 

[ ]E V － expected number of customers in the SOS channel 

[ ]E Orbit － expected number of idle servers 

*

1σ － the overall rate of retrials 

*

2σ － the rate of retrials that are successful 

FR－ the fraction of retrials that are successful 

( )E T － mean busy period 

VP － vain retrials 

F－ cost function 

5.2 M/M/c Retrial Queue with Bernoulli Vacation 

This paper consider a M/M/c retrial queue in which primary customers arriving 

to a Poisson process with parameter λ . An arriving primary customer finding one or 

more servers available (free) obtains service immediately. On the other hand, if the 

primary customer who finds all servers busy, he joins the orbit and tries to get the 

service later on. There are c channels (servers) that provide service for the arrivals, in 

which the service times are assumed to be exponentially distributed with mean 1/ µ . 

Each server can serve only one customer at a time, and that the service is independent 

of the arrival of the customers. At each service completion instant of a server, the 

server may take a vacation of random length with probability p or wait to serve the 

next arrival with probability (1 )q p− . The vacation times follow an exponentially 

distributed with a parameter η . Furthermore, each customer staying in the orbit 

makes the repeated attempts in random intervals having length exponentially 

distributed with parameter σ , independently of the other customers. Upon requesting 

service from the orbit, customer who finds all c servers busy always rejoins the orbit; 

this manner continues until he is eventually served. It is assumed that there exists an 

upper bound N on the number of customers in the orbit that are allowed to conduct 

retrials (see Neuts and Rao (1990) and Artalejo and Pozo (2002)). This implies that 

the probability of a repeated attempt during ( , )t t dt+ , given that j customers in the 

orbit at time t, is ( )jdt o dtσ + , where min{ , }j j Nσ σ= . Moreover, the process of 

primary arrivals, service times and inter-retrial times are assumed mutually 
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independent. Conveniently, we represent this multi-server system with Bernoulli 

vacation as M/M/c/BSV retrial queue. 

5.3 Steady-state Results 

The infinitesimal generator Q  that describing the M/M/c/BSV retrial queueing 

system is  

0

1 1

2 2
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1

                       

                                        
N N

N N

−

−

=
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Let 0 1 2[ , , ,...]=Π Π Π Π  with sub-vector 0 0 0 1 1 1 0

0, 1, , 0, 1, 1, 0,[ , ,..., , , ,..., , ,...,i i i c i i i c i iP P P P P P P−=Π  
1

0, ,c

iP − 1

1, 0,, ]c c

i iP P− , 0,1,2,...i =  be the unique solution to =ΠQ 0  and 1=Πe , where 

e  is a column vector with all elements equal to 1. The entries B , ( 0)j j ≥A , and 

( 1)j j ≥C  are block-diagonal matrices of order  ( 1)( 2) / 2c c+ +  defined by 

0
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c

c

O , 1, 2,...,j =  

where sub-matrices ib  and ic  are ( 1 ) ( 1 )c i c i+ − × + −  square matrices with 

elements 

[ 1 , 1 ] ,

0                             . ,

i c i c i

e w

λ+ − + − =



b
  and  

[ , 1] ,  1 ,

0                              . ,

i jk k k c i

e w

σ+ = ≤ ≤ −



c
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where iX  is a ( 1 ) ( )c i c i+ − × −  matrix with [ 1, ] ,  1i k k kp k c iµ+ = ≤ ≤ −X , iZ  is 

a ( ) ( 1 )c i c i− × + −  matrix with [ , ] ,  1i k k i k c iη= ≤ ≤ −Z , and i

jY  is a square 

matrix of order ( 1 )c i+ −  with elements 

[ , 1] ,  1 ,

[ 1, ] (1 ) ,  1 ,

[1,1] [ ( 1) ],

[ , ] [ ( 1) ],  2 ,

[ 1 , 1 ] [ ( ) ].

i

j
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j
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j j
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k k k c i
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c i c i i c i
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5.3.1. Stability condition 

By Theorem 3.1.1 of Neuts [49] that the steady-state probability vector exists if 

and only if 

N<xBe xC e ,       (5.2) 

where x  is the invariant probability of the matrix N N= + +F C A B . x  satisfies 

=xF 0  and 1=xe . First we solve =xF 0 , where 0 0 0 1 1

0 1 0 1 0[ , ..., ,..., , , ]c c c

cx x x x x x
− −=x . 

We can get following ( 1)( 2) / 2c c+ +  equations : 

For 0k = , 

0 0 1

0 1 0( ) 0N x q x xλ σ µ η− + + + = ,         (5.3a) 

0 0 0 1

1 1( ) ( ) ( 1) 0,  1 1i i i iN x i N x i q x x i cλ σ λ µ σ µ η− ++ − + + + + + = ≤ ≤ − ,  (5.3b) 

0 0

1( ) 0c cN x c xλ σ µ−+ − = .          (5.3c) 

For 1 1k c≤ ≤ − , 

1 1

1 0 1 0( ) ( 1) 0,k k k k
p x N k x q x k xµ λ σ η µ η− +− + + + + + =      (5.4a) 
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1

2 1

1

1

( ) [ ( 1) ]

                                                     ( 1) 0,  2 ,

k k k

i i i

k k

i i

N x ip x N i k x

iq x k x i c k

λ σ µ λ σ µ η

µ η

−

− −

+
−

+ + − + + − +

+ + + = ≤ ≤ −
     (5.4b) 

1

1 1( 1 ) ( ) [( ) ] 0k k k

c k c k c kc k p x N x c k k xµ λ σ µ η−
+ − − − −+ − + + − − + = .   (5.4c) 

For k c= , 

1

1 0 0c cp x c xµ η− − = .            (5.5) 

Using a effective Maple software to solve equations (5.3a)-(5.4c), it derive the 

following results 

0

!
,  0

! !( )

c k
k c

i c i k i c k

c
x x i k c

i k N p

η

λ σ µ

−

− − −
= ≤ + ≤

+
.   (5.6) 

Then using the normalization condition 1=xe , 0

cx  can be determined as 

1

0

0 0

!
.

! !( )

c kc c k
c

c i k i c k
k i

c
x

i k N p

η

λ σ µ

−−−

− − −
= =

 
=  

+ 
∑∑     (5.7) 

Substituting B  and NC  into equation (5.2) and doing some routine manipulations, 

then we have 

(1 )F FN P Pσ λ− > ,       (5.8) 

where 

0

0 0

1

0 0

!

!( )!

!
1 ,

! !( )

ic c
c i c

F i i i
i i

c c kc c k

c i k i c k
k i

c
P x x

i c i p

c

p i k N p

η

µ

η η

µ λ σ µ

−

= =

−−−

− − −
= =

= =
−

  
= +   

+   

∑ ∑

∑∑
   (5.9) 

which is referred to the probability that all normal working (non-vacation) server are 

busy (i.e. i k c+ = ). That is, the system would be stable if the expected successful 

retrial rate is greater then the expected arrival rate of “orbit”. 

5.3.2. Rate matrix 

By the matrix-geometric property, it is noted that the steady-state probability 

vector 0 1 2 3[ , , , ,...]=Π Π Π Π Π  has the following properties  

k

N k N+ =Π Π R , for 1k ≥ .      (5.10) 
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The matrix R  is the unique non-negative solution with spectral radius less than one 

of the equation 

2

N N+ + =B RA R C 0 .       (5.11) 

From Neuts [49] and Latouche and Ramaswami [41], it is known that R  is given by 

lim n
n→∞

R , where the sequence {
nR } is defined by 

0 =R 0 , and 1 2 1

1n N n N N

− −
+ = − −R BA R C A , for 0n ≥ .  (5.12) 

The sequence { nR } is monotone so that R  could be evaluated from (5.12) by 

successive substitutions. 

After the development of rate matrix, the stationary probability vector Π  exists 

under the stability condition. We deal with the steady-state equations by using matrix 

technique. The steady-state equations are given by 

0 0 1 1+ =Π A Π C 0 ,            (5.13a) 

1 1 1i i i i i− + ++ + =Π B Π A Π C 0 , 1 1i N≤ ≤ − ,       (5.13b) 

1N N N N N− + + =Π B Π A Π RC 0 ,         (5.13c) 

1 1i N i N i N

N N N N N

− − − + −+ + =Π R B Π R A Π R C 0 , 1N i+ ≤ ,    (5.13d) 

0

1i

i

∞

=

=∑Π e .             (5.14) 

After doing some routine manipulations to equation (5.13a)-(5.13c) recursively, we 

have 

1

0 1 1 0 1 1

1

1 1 1

( ) ,

[ ( )] ,  2 ,i i i i i i i i N

φ

φ φ

−

−
− − −

= − =

= − + = ≤ ≤

Π Π C A Π

Π Π C B A Π

   (5.15) 

and 

N N N N N Nφ + + =Π B Π A Π RC 0 .      (5.16) 

Consequently, iΠ (0 1)i N≤ ≤ −  in equation (5.15) can be written in terms of 

NΠ  as 
1

0 N i
i N

φ
=

= ΠΠ Π , 
2

1 N i
i N

φ
=

= ΠΠ Π , …, 1N − =Π

N

N i
i N

φ
=
ΠΠ  and the rest 

steady-state vector 1 2[ , , ,  ...]N N N+ +Π Π Π  can be determined recursively as 
i N

i N

−=Π Π R , for i N≥ . Therefore, once the steady-state probability NΠ  is 

obtained, the steady-state solutions 0 1 2 1 1[ , , ,..., , , ,...]N N N− +Π Π Π Π Π Π  are 
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determined. The steady-state probability 
NΠ  can be solved by equation (5.16) with 

the following normalization equation 

0 1 1 1 2

0

1 2
2

1

1

[ ... ...]

[ ... ...]

[ ( ) ] 1.

i N N N N

i

N

N i N i N i N N N
i N i N i N

N k

N i
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=
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= Π + Π + + Π + + + +

= Π + − =

∑

∑

Π e Π Π Π Π Π Π e

Π Π Π Π Π R Π R e

Π I R e

 (5.17) 

where I  denotes the identity matrix with suitable size. Solving equations (5.16) and 

(5.17) in accordance with Cramer’s rule, NΠ  can be obtained. Then, the prior state 

probabilities 0 1 2 1[ , , ,  ..., ]N −Π Π Π Π  are computed from (5.15) and 

1 2 3[ , , ,...]N N N+ + +Π Π Π  are gained by the formula i N

i N

−=Π Π R , 1i N≥ + . The 

solution procedure of steady-state probabilities is summarized as below: 

Algorithm: Recursive Solver 

Step 1. Set 1

1 1 0( )φ −= −C A . 

Step 2. For i from 2 to N, set 1

1 1[ ( )]i i i iφ φ −
− −= − +C B A . 

Step 3. For k from 1 to N, set 
k

k i
i N

φ
=

= ΠΦ . 

Step 4. Solving N N N N N Nφ + + =Π B Π A Π RC 0 , 1

1

[ ( ) ] 1
N

N k

k

−

=

+ − =∑Π Φ I R e  and 

obtain steady-state probability NΠ . 

Step 5. Construct steady-state probability iΠ  as follows: 

(a) if 0 i N≤ ≤ , assign 1i N i+=Π Π Φ , 

(b) if N i≤ , assign 1i i+ =Π Π R . 

5.4 System Performance Measures 

There are several system descriptors (system performance measures) of the 

M/M/c/BSV retrial queue, such as the expected number of busy servers (denoted by 

[ ]E B ), the expected number of vacation servers (denoted by [ ]E V ), and the expected 

number of customers in orbit (denoted by [ ]E Orbit ) can be evaluated from the 

steady-state probabilities. The explicit expressions for [ ]E B , [ ]E V , and [ ]E Orbit  

are given by 
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where  

{
#  2#   1 #   

[0,1,..., ,0,1,..., 1,..., 0,1 ,0]

c c

c c
== + =

= −v 14243 14243  and 

#  1 #  = #  = 2

[0,0,...,0 ,1,1,...,1,..., 1, 1, ]

c c

c c c

= +

= − −u 14243 123 14243  

are column vectors with dimension ( 1)( 2) / 2c c+ + . For an M/M/c/BSV retrial queue, 

the numerical results of [ ]E Orbit  are obtained by considering the following four 

cases with different values of c 

Case 1. N =30, λ = 5, η = 10, p = 0.5, σ = 5, vary µ  from 10 to 15. 

Case 2. N =30, λ = 5, µ = 10, p = 0.5, σ = 10, vary η  from 10 to 15. 

Case 3. N =30, µ = 15, η = 15, p = 0.5, σ = 10, vary λ  from 5 to 10. 

Case 4. N =30, λ =5, µ = 15, η = 15, p = 0.5, vary σ  from 10 to 15. 

Results of [ ]E Orbit  are depicted in Figures 5.1-5.4 for Case 1-4, respectively. One 

sees from Figure 5.1 and Figure 5.2 that [ ]E Orbit  drastically decreases as µ  or η  

increases for 1c = , while [ ]E Orbit  is not sensitive to µ  or η  for 2c ≥ . It 

reveals from Figure 5.3 that [ ]E Orbit  increases violently as λ  increases for 1c =  

while [ ]E Orbit  slightly increases as λ  increases for 2c ≥ . Figure 5.4 reports that 
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[ ]E Orbit  decreases as σ  increases for 1c = , while [ ]E Orbit  is not sensitive to 

σ  for 2c ≥ . There are several general descriptors of retrial queues, some of which 

are listed below: 

1. The overall rate of retrials 

*

1 , ,

1 0 0 1 0 0 1 1
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 (5.21) 

2. The rate of retrials that are successful 

1 1
*

2 , ,

1 0 0 1 0 0

.
N c c k c c k

k k

i j i j

j k i j N k i

j P N Pσ σ σ
− − ∞ − −

= = = = + = =

= +∑ ∑ ∑ ∑ ∑ ∑        (5.22) 

3. The fraction of retrials that are successful 

*

2

*

1

.FR
σ

σ
=                  (5.23) 

4. The marginal distribution of the number of busy servers 

,

0

k

i j

j

P
∞

=

∑ , 0 i k c≤ + ≤ .           (5.24) 

5. Busy period : The busy period T  of a retrial queue is defined as the period that 

starts at the epoch when an arriving customer finds an empty system (all servers 

are idle and no customer in the orbit) and ends at the departure epoch at which the 

system is empty again. 

The mean busy period 

0

0,0 1

1 1 1 1
( ) ( 1) ( 1),

[1]N

E T
Pλ λ

= − = −
Π Φ

       (5.25) 

where 1[1]NΠ Φ  denotes the first element of 1NΠ Φ . 

6. Vain retrials : A vain retrial is an unsuccessful retrial when all servers are busy. 

The steady-state probability of vain retrial VP  
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To understand how system performance measures listed above vary with N , we also 

perform a numerical investigation to the measures based on changing the value of N  

from 5 to 25, which is based on 5λ = , 15µ = , 0.5p = , 10σ =  and 10η = . The 

numerical illustration is graphically presented in Figures 5.5-5.8. From Figures 5.5-5.8, 

it is clear that increasing the retrial rate beyond a certain point does not result in a 

commensurate improvement in the system performance, which is according with the 

result of Neuts and Rao [50]. 

5.5 Numerical Results 

In this section, we construct the total expected cost function per unit time based 

on the system performance measures for the M/M/c/BSV retrial queue, in which the 

number of servers (c ) is a discrete decision variable, and the service rate ( µ ) and the 

vacation rate (η ) are continuous decision variables. Let us define the following cost 

elements: 

holding cost per unit time per customer present in orbit,

cost per unit time of providing a service rate ,

cost per unit time when one server is on vacation,

cost per unit time of providing 

h

s

v

r

C

C

C

C

µ

≡

≡

≡

≡ a vacation rate ,

fixed cost for purchasing one server.
p

C

η

≡

 

Based on the definition of the cost parameters, the total expected cost function per unit 

time can be expressed as: 

 ( , , ) [ ] [ ] ,h s v r pF c C E Orbit C C E V C C cµ η µ η= + + + +     (5.27) 

where sL  and [ ]E V  are defined previously. The main objective is to find the 

optimal number of servers *
c , and the optimal values of service rate and vacation rate 

* *( , )µ η  simultaneously which minimize the cost function ( , , )F c µ η . The analytical 

study of the optimization behavior of the expected cost function would have been an 

arduous task to undertake since the decision variables appear in an expression which 

is a highly nonlinear and complex and non-linear in terms of ( , , )c µ η . Next, we 
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firstly use the Quasi-Newton method to find the optimal value of continuous variable 

( , )µ η , say * *( , )µ η , and then use direct search method to search the optimal value of 

discrete variable c , say *
c . For practice situation of purchase budget, the number of 

servers is bounded by a positive integer 1Uc ≥ . We want to find the joint optimal 

value ( *µ , *η ) for each given c  in the feasible set {1,2,…,
Uc }. The cost 

minimization problem can be illustrated mathematically as 

{ }* *

( , ) and s.t.(5.8)
( , , ) min ( , , )F c F c c

µ η
µ η µ η= , 1,2,..., .Uc c=      (5.28) 

For the problem of (5.28), we should show the convexity of ( , , )F c µ η  in ( , )µ η . 

However, this work is difficult to implement. It is noted that the derivative of the cost 

function F  with respect to ( , )µ η  indicates the direction which cost function 

increases. It means that, the optimal value * *( , )µ η  can be found along this opposite 

direction of the gradient. (see Chong and Zak [14]). That is, for a fixed c , 

Quasi-Newton method is employed to search ( , )µ η  until the approximate minimum 

value of ( , , )F c µ η  is achieved, say * *( , , )F c µ η . To demonstrate the validness and 

the optimization solution, we perform some computation and analysis on the examples 

shown in Table 5.1 by considering the following cost parameters as 

hC =$25/customer/unit time, sC =$45 /unit time, 

vC =$120/server/unit time, rC =$90 /unit time, and pC =$120/server. 

From Table 5.1, it can be seen that the minimum expected cost per unit time of 

1474.377 is achieved at * *( , )µ η = (11.54626, 6.305710) by using 6 iterations, which 

is based on Case (i) with initial value ( , , )c µ η =(1,15, 5). Based on Case (ii) with 

initial value ( , , )c µ η = (2, 10, 10), the minimum expected cost per unit time of 

1968.692 is achieved at * *( , )µ η = (12.53093, 8.696281) by using 6 iterations. 

After obtaining the joint optimal value * *( , )µ η  of the continuous variable 

( , )µ η , we would use direct search method to obtain the optimal c such that the 

expected cost function * *( , , )F c µ η  attains a minimum, say * * *( , , )F c µ η . Therefore, 

the cost minimization problem can be illustrated mathematically as 

{ }* * * * *

1
( , , ) min ( , , ) .

Uc c
F c F cµ η µ η

≤ ≤
=      (5.29) 

The procedure to find the optimal solution is described in the following. A numerical 

example is shown in Table 5.2 based on (i) ( , , )pλ σ = (10, 0.8, 15) and (ii) 

( , , )pλ σ = (15, 0.5, 20). 
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Algorithm: Direct Search Method 

Step 1. Set *F M=  which M  is a sufficiently large number. 

Step 2. For each i from 1 to 
Uc , set a initial trial solution ( , )µ η  and use Quasi- 

Newton method to find the optimal value * *( , )µ η  and the cost function  
* *( ,  , )F c µ η . 

Step 3. If the Quasi-Newton method diverges, try another initial trial solution and back 

to step 1. 

Step 4. If * * *( ,  , )F c Fµ η < , set * * *( ,  ,  )F F c µ η=  and * * *=( ,  ,  )S c µ η . 

It is noted that the optimal value * * *( , , )c µ η = (4, 5.999552, 5.046493) and the 

corresponding minimum cost *F = 1708.284 for Case (i). For Case (ii), 
* * *( , , )c µ η = (4, 8.099802, 5.265980) and *F = 1819.241 are optimal. Finally, we 

perform a sensitivity investigation on the optimal values * * *( , , )c µ η . For various 

values of λ  and p , the minimum expected cost * * *( , , )F c µ η  and the system 

performance measures sL , and [ ]E V  at the optimum values * * *( , , )c µ η  are shown 

in Table 5.3. From Table 5.3, it can be seen that (i) *
c  is insensitive to λ  or p ; (ii) 

*µ  increases as λ  increases; and (iii) *η  increases as λ  or p  increases. 

Moreover, the minimum expected cost increases * * *( , , )F c µ η as λ  or p  increases. 
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Figure 5.1. The expected number of customers in orbit versus µ  

 

 

Figure 5.2. The expected number of customers in orbit versus η  
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Figure 5.3. The expected number of customers in orbit versus λ  

 

 

Figure 5.4. The expected number of customers in orbit versus σ  
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Figure 5.5. The expected number of customers in orbit versus N. 

 

 

Figure 5.6. The fraction of successful retrials versus N 
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Figure 5.7. The mean busy period versus N. 

 

 

Figure 5.8. The steady-state probability of vain retrial VP  versus N. 
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Table 5.1. The illustration of the implement process of Quasi-Newton method 

Case (i): ( , , )pλ σ = (5, 0.5, 10) with initial value ( , , )c µ η = (1, 15, 5) 

Iterations 0 1 2 3 4 5 6 

( , , )F c µ η  1544.435 1517.015 1482.721 1474.921 1474.380 1474.377 1474.377 

µ  15 10.74763 11.11560 11.41594 11.53441 11.54617 11.54626 

η  5 5.932174 6.131345 6.263916 6.303111 6.305700 6.305710 

F

µ

∂

∂
 15.31879 -78.2392 -25.8695 -5.64068 -0.43039 -0.00300 87.8 10−− ×  

F

η

∂

∂
 -73.2424 -133.720 -43.6031 -9.22994 -0.66640 -0.00424 71.5 10−− ×  

E[Orbit] 7.177405 10.75622 8.070767 6.782341 6.418249 6.388411 6.388210 

E[V] 0.500000 0.421422 0.407740 0.399111 0.396630 0.396467 0.396466 

 

Case (ii): ( , , )pλ σ = (10, 0.8, 15) with initial value ( , , )c µ η =(2, 10, 10) 

Iterations 0 1 2 3 4 5 6 

( , , )F c µ η  2037.910 1988.860 1971.630 1968.793 1968.692 1968.692 1968.692 

µ  10 11.05421 11.93856 12.42039 12.52661 12.53093 12.53093 

η  10 9.256253 8.869115 8.722289 8.697166 8.696282 8.696281 

F

µ

∂

∂
 -98.0608 -41.9620 -13.3913 -2.29042 -0.09060 -0.00016 97.7 10−− ×  

F

η

∂

∂
 -35.0235 -22.3227 -9.22534 -1.86890 -0.08050 -0.00014 91.6 10−×  

E[Orbit] 9.276428 7.785777 6.717369 6.192268 6.074761 6.069724 6.069715 

E[V] 0.799990 0.862781 0.902006 0.917190 0.919840 0.919933 0.919933 

 

Table 5.2. The optimal value * *( , )µ η  and the corresponding minimum expected cost 

Case (i) ( , , )pλ σ = (10, 0.8, 15) 

c Initial Value Coverage Value * *( , )µ η  Iteration Cost* 

1 [25, 15] [25.13488, 16.43305] 6 3118.635 

2 [10, 10] [12.53093, 8.696281] 6 1968.692 

3 [10, 5] [8.214208, 6.210196] 6 1725.728 

4 [5, 5] [5.999552, 5.046493] 7 1708.284 

5 [5, 5] [4.652035, 4.414643] 7 1779.094 
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 Case (ii) ( , , )pλ σ = (15, 0.5, 20) 

c Initial Value Coverage Value * *( , )µ η  Iteration Cost* 

1 [30, 20] [33.17698, 17.35916] 6 3601.021 

2 [15, 10] [16.60255, 9.183037] 5 2210.467 

3 [10, 5] [10.97471, 6.530226] 10 1882.075 

4 [6, 6] [8.099802, 5.265980] 8 1819.241 

5 [5, 5] [6.347280, 4.561196] 7 1861.652 

 

Table 5.3. The optimal value * * *( , , )c µ η  and the minimum expected cost for various 

value of λ  and p . 

( , , )pλ σ  (5, 0.2, 10) (10, 0.2, 10) (20, 0.2, 10) (5, 0.8, 10) (10, 0.8, 10) (20, 0.8, 10) 
*

c  2 3 4 4 4 5 

* *( , )µ η  
[4.965695, 

2.123714] 

[6.427349, 

2.781059] 

[9.416220, 

3.974561] 

[2.997995, 

2.998664] 

[6.062298, 

5.075460] 

[9.609657, 

7.689420] 

* * *( , ,  )F c µ η  901.7296 1245.806 1727.201 1325.523 1716.873 2386.602 

E[Orbit] 2.825372 3.199280 4.199710 1.626472 3.125312 4.497047 

E[V] 0.470873 0.719505 1.006400 1.333927 1.576212 2.080781 

 

( , , )pλ σ  (5, 0.2, 10) (5, 0.5, 10) (5, 0.8, 10) (10, 0.2, 15)(10, 0.5, 15) (10, 0.8, 15) 
*

c  2 3 4 3 3 4 

* *( , )µ η  
[4.965695, 

2.123714] 

[3.774111, 

2.689427] 

[2.997995, 

2.998664] 

[6.347744,

2.767427] 

[7.295827, 

4.645567] 

[5.999552, 

5.046493] 

* * *( , ,  )F c µ η  901.7296 1116.483 1325.523 1237.045 1511.634 1708.284 

E[Orbit] 2.825372 2.122060 1.626472 3.024207 3.662626 2.955528 

E[V] 0.470873 0.929566 1.333927 0.722693 1.076295 1.585259 

 

( , , )pλ σ  (10, 0.2, 5) (10, 0.2, 10) (10, 0.2, 15) (10, 0.8, 5) (10, 0.8, 10) (10,0.8, 15) 

*
c  2 3 3 4 4 4 

* *( , )µ η  
[10.00245, 

3.820378] 

[6.427349, 

2.781059] 

[6.347744,

2.767427] 

[6.232824,

5.154912] 

[6.062298, 

5.075460] 

[5.999552, 

5.046493] 

* * *( , ,  )F c µ η  1361.503 1245.806 1237.045 1739.966 1716.873 1708.284 

E[Orbit] 5.789514 3.199280 3.024207 3.572681 3.125312 2.955528 

E[V] 0.5235084 0.719505 0.722693 1.551918 1.576212 1.585259 
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Chapter 6  

Conclusions and Future Research 

In this thesis, we considered M/M/c and M/M/c retrial queues with SOS channel, 

M/M/c/MBSV queue, and M/M/c/BSV retrial queueing system. For those four 

queueing systems, it is rather difficult to obtain the steady-state probability explicitly. 

Thus we employed the matrix-geometric method and recursively matrix-analytical 

approaches to deal with the probability distributions. The sufficient and necessary 

conditions for the stability of the queueing systems were derived. The closed-form or 

approximation procedure of the rate matrix was provided. Various system 

performances of those four queues were also developed. Using the system 

performances and cost elements, the cost functions were constructed to determine the 

optimal parameters setting of the queueing system such that the cost is minimized. 

Sensitivity analysis was conducted to investigate the effect of changes in the system 

parameters on the optimal values. In this chapter, we make conclusions and provide 

possible extensions of the present work for the further research. 

6.1 Conclusions 

In Chapter 2, we investigated the optimal infinite capacity M/M/c queue arisen 

from some practical situations, where arrivals may need an additional optional service 

(second optional channel by the server). The matrix-geometric method was employed 

to deal with the complex steady-state equation system. The stability condition was 

also developed. Some important system performance measures were derived. A 

sensitivity analysis was performed to discuss how the system performances can be 

affected by the input parameters in the investigated queueing service model. 

Furthermore, we also provided numerical results among the optimal number of 

channels, the optimal service rates, and minimal cost for the M/M/c queue with SOS 

channel. 

In Chapter 3, the queue studied in Chapter 2 was extended into the multi-server 

retrial queue with SOS channel. The sufficient and necessary conditions for the 

stability of the system were discussed. A sequence approximation method was 

implemented to derive the rate matrix. An efficient algorithm was provided to obtain 

the stationary probability vectors recursively. The explicit formulae for the system 

performances were given. A cost model was constructed to calculate the optimal 

values of the number of servers and the two service rates. A sensitivity analysis of the 
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joint optimal values with respect to specific values of system parameters was 

performed. 

In Chapter 4, an infinite capacity M/M/c system with modified Bernoulli single 

vacation policy (M/M/c/MBSV) was studied used the matrix-geometric method. The 

necessary and sufficient condition for the stability of the system was deduced. More 

important, the explicitly closed-form solution of stable condition and the rate matrix 

of the queue model were obtained. The convergence property of rate matrix was also 

proofed. We have not only obtained exactly the steady-state probability and the system 

performance measures using matrix analytical approach but also find the optimal 

number of servers, the optimal service rate and vacation rate based on the cost 

function we constructed. Finally, this study is not difficultly extended to the case that 

server takes multiple vacations when an empty queue is found upon a service 

completion. 

In Chapter 5, we analyzed an M/M/c retrial queue with Bernoulli single vacation 

policy (M/M/c/BSV retrial queue). The explicit expression of the stability condition 

was developed. The stationary probability vectors and some system performance were 

obtained in matrix forms. A cost model was constructed to investigate the optimal 

control of the queueing system we discussed. Two efficient methods were employed to 

deal with the optimization problem heuristically. A sensitivity analysis of the joint 

optimal values with respect to specific values of system parameters was performed. 

Based on the analysis, the mathematical model formulates of M/M/c/BSV retrial 

queue and M/M/c retrial queue with SOS channel are consistent. 

6.2 Future Research  

We have used the matrix-geometric method to analyze the optimal M/M/c queue 

with SOS channel and M/M/c retrial queue with SOS channel. The optimization of 

M/M/c/MBSV queueing system and M/M/c/BSV retrial queue were also investigated. 

In the future, we may study the following topics: 

1. Incorporating the feedback behavior of the customers into the M/M/c queue 

with SOS channel and M/M/c retrial queue with SOS channel. 

2. Incorporating the balking and reneging behaviors of the impatient customers 

into the M/M/c queue with SOS channel and M/M/c retrial queue with SOS 

channel. 
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3. Incorporating the unreliable property of servers (server breakdown) into the 

M/M/c/MBSV queue. 

4. Optimization of the M/M/c retrial queue with J additional options. 

5. Optimization of the PH/M/c and MAP/M/c queueing system with SOS 

channel. 
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