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時間最小化之研究 

 
研究生：鐘愉翔                                  指導教授：唐麗英 博士 

洪瑞雲 博士 

 
國 立 交 通 大 學  
工業工程與管理學系 

 
摘 要 

 

    在傳統的排程問題中，工作件的加工時間皆設定為固定常數，且不會因工作件在機

台上的加工順序而改變，然而當執行加工的人員因重複處理類似工作件而獲得經驗時，

工作件的加工時間會因此縮減，此現象為近年來在排程領域被廣泛討論的「學習效果

(Learning effect)」。學習效果可分類為兩種型式，分別為「依加工順序改變之學習效果

(Position-based learning effect) 」 與 「 依 已 加 工 時 間 改 變 之 學 習 效 果

(Sum-of-processing-time-based learning effect)」，在一個排程問題中，此兩種型式之學習

效果可以單獨考慮或同時考慮，由於依加工順序改變之學習效果模型為理論上的理想學

習模型，因此本論文將探討依加工順序改變之學習效果。再者，目前關於具有學習效果

的排程問題大多針對單機做探討，然而在實際製程上，許多生產環境的排程屬於多機流

程式生產排程，其問題之求解的複雜性亦高於單機生產排程問題。此外，大多數排程問

題之目的是求得最佳的工作件排序使其目標函數最小化，而最常被探討的目標函數為最

大完工時間與總完工時間。因此本論文針對依加工順序改變之學習效果探討兩個多機流

程式生產排程問題，第一個問題設定所有機台有相同的學習效果，其目標為最大完工時

間最小化；第二個問題則是依不同機台有不同的學習效果，其目標為加權整合之總完工

時間與最大完工時間最小化。 

本論文對於工作件數少的問題，使用分枝界限演算法求得最佳排序，接著推導凌越

性質與下界值以增進分枝界限演算法的求解效率；對於工作件數多的問題，本論文將利
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用兩個知名的啟發式演算法、模擬退火法與基因演算法來求得近似解。最後，本論文將

針對所有提出的演算法進行電腦模擬，以探討學習效果對於分枝界限演算法的求解效率

與啟發式演算法的精準性之影響。針對本論文探討之問題的電腦模擬結果，我們發現將

傳統環境中求得之最佳排序應用在具有學習效果的環境中，得到的目標函數值將比實際

的最佳目標函數值大，此現象指出學習效果對本論文提出的排程問題有顯著的影響。而

在求最佳排序時，分枝界限演算法求解的效率與學習效果的強度成正比。此外，基因演

算法為本論文提出之求近似解的演算法中最精準的。基於分枝界限演算法求解時間的分

佈變異大且呈右偏，因此本論文建議在求解時先施以分枝界限演算法，若在合理的時間

內無法求得最佳排序，則施以基因演算法求近似排序。最後，若流程式生產環境中的機

台上能指派不同的操作員，則將學習能力強的操作員指派至工作量較大的機台上能得到

較佳的目標函數值。 

 

 

 

關鍵字：流程式生產排程、學習效果、最大完工時間、總完工時間 
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ABSTRACT 
 

    In traditional scheduling problems, the processing time for a given job is assumed to be a 

fixed constant no matter the scheduling order of the job. However, it is noticeable that the job 

processing time declines as workers gain more experience. This phenomenon is called the 

“learning effect”. The learning effect is extensively studied in scheduling field recently, and it 

can be classified into two types: “the position-based learning” and “the sum-of-processing- 

time-based learning”. The two types of learning effect can be considered alone or 

simultaneously in a scheduling problem. The position-based learning is studied in this 

dissertation because of its model is the pure learning model in theory. In addition, most of the 

studies on the learning effect are focused only on single-machine setting. However, numerous 

real-world industrial problems belong to flowshop scheduling problems, and dealing with the 

flowshop scheduling problems is more complex than dealing with the single-machine 

problems. Most scheduling problems aim at determining an optimal sequence to minimize the 

objective function. The makespan and total completion time are the objective functions that 

are often studied. As a result, this dissertation discusses two flowshop scheduling problems 

with position-based learning effect. The learning effects are identical on all machines, and the 

purpose is to minimize the makespan in the first problem. The learning effects are distinct for 

different machines, and the purpose is to minimize the weighted sum of total completion time 
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and makespan in the second problem. 

In this dissertation, the branch-and-bound algorithm is proposed to seek the optimal 

sequence for the small job-sized problem. Then the dominance properties and lower bounds 

are proposed to accelerate the procedure of the branch-and-bound algorithm. For the large 

job-sized problem, two well-known heuristic algorithms, simulated annealing and genetic 

algorithm are utilized to yield the near-optimal sequence. In the end, the simulated 

experiments are examined to assess the performance of the algorithms proposed in this 

dissertation. The computational results of the proposed problems reveal that the objective 

value calculated from the optimal sequence under the traditional environment is larger than 

the optimal objective value in the environment with learning considerations. It implies the 

influence of the learning effect is notable for the problems proposed in this dissertation. 

Furthermore, the efficiency of the branch-and-bound algorithm ascends as the learning effect 

enhances while seeking the optimal sequence. The proposed genetic algorithm has the best 

performance among all heuristic and meta-heuristic algorithms in terms of the accuracy. In 

addition, due to the large variance and the right skewness for the distribution of the execution 

time, the branch-and-bound algorithm is recommended to obtain the optimal sequence in a 

reasonable amount of time, or to derive the near-optimal sequence from the proposed genetic 

algorithm. Eventually, assigning the operator with stronger learning effect to the machine with 

heavier workload might derive smaller objective value while the operators are allocated in the 

flowshop environment. 

 

 

 

Keywords: Flowshop scheduling; Learning effect; Makespan; Total completion time. 
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Chapter 1 

Introduction     

In manufacturing and service industries, the scheduling problem is an important field of 

decision-making. In a narrow sense, the meaning of scheduling is to set the priorities of tasks 

for optimizing certain objectives. Due to the arising of global industrialization, many 

researchers and practitioners devote to study the scheduling problems, and the meaning of 

scheduling is extended to assign limited resources to the tasks for optimizing certain 

objectives. The resources of scheduling problems are manpower, raw materials, and facilities 

and so on. In fact, an inaccurate scheduling policy may lead to crucial loss of capacity or 

goodwill. Since the competition of marketplace grows rapidly, an effective scheduling policy 

plays a critical role for making profit for an enterprise. 

 

1.1 Research motivation 

In traditional scheduling problems, it is assumed that all the job processing times are 

fixed and known (Pinedo [29]; Smith [32]). However, job processing times frequently decline 

as workers gather working knowledge and experience. For example, processing similar tasks 

continuously improves worker’s skills and helps them perform their jobs efficiently (Biskup 

[1]). This phenomenon is known as the “learning effect.” The influence of learning on 

productivity for aircraft industry manufacturing was first observed by Wright [44], in which 

the processing time of a unit declines by 20% with every redoubling output and this 

phenomenon is called as 80% hypothesis. Afterward, the learning effect was affirmed in 

numerous industries such as the manufacturing and service industries (Yelle [48]). 

The phenomenon of learning in Wright [44] is presented as { }
a

kp pk=  ,where { }kp  

denotes the actual processing time for each unit when the output requires k units, in which the 
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actual processing times of all units are identical; p denotes the normal processing time of a 

unit which is given before starting the process; and a denotes the learning index which is 

equal or less than zero and depended on the learning rate R. For the 80% hypothesis (i.e. 

0.8R = ), it is shown that {2 } { }0.8k kp p= , and it implies that (2 ) 0.8a ap k pk= , and then the 

learning index a is derived as 2log 0.8 0.322= − . Therefore, the learning index a is set as 

2log R  when the processing time of a unit decreases by 100(1 )%R−  with redoubling output. 

Subsequently, Biskup [1] applied the concept of Wright [44] and created a famous learning 

model by assuming every job is a unit even when the processing times are different among all 

jobs. Therefore, the actual processing time is based on the scheduled position of the job in the 

model proposed in Biskup [1]. 

In terms of the occurrence for the learning effect in the production activities, Biskup [2] 

stated that an inherent characteristic of the production environments with the learning effect is 

a high level of human activities, and these activities are presented as follows, 

 All kinds of handicraft, 

 Operating and controlling the machines, 

 Setting up the machines, 

 Maintaining the machine, 

 Cleaning the machines, 

 Removing the failure of the machines. 

Hence, the learning effect occurs when the production activity belongs to the short-term 

planning. In addition, the learning effect also takes place if the production environments alter 

and some examples are presented as follows, 

 Dealing with the jobs that have never been produced before, 

 Hiring new employees, 

 The procedure of the processes changes, 
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 Operating the equipments which are replaced or updated. 

However, the influence of the learning should decline after a certain period of time because of 

the improvement for operator’s skill is limited.  

The learning effect has received significant attention in scheduling field recently. In the 

literature with regard to the learning effect, most studies focus on single-machine setting. The 

discussion of flowshop scheduling problems is rarely seen. Practically, in many 

manufacturing and assembly facilities, numbers of operations have to be done on every job 

and this production environment is modeled as flowshop. Therefore, in this dissertation, we 

intend to study the flowshop scheduling problems with learning effects. 

 

1.2 Literature review 

Biskup [1] is a pioneer to introduce a learning model into scheduling problems in which 

the actual processing time of a job decreases when the job is late scheduled. He examined the 

problems associated with minimizing the deviation from a common due date and the sum of 

flow times in a single-machine environment, and demonstrated that the problems are 

polynomially solvable. Subsequently, numerous studies have considered this novel and 

extended region. Cheng et al. [6] developed a model with learning effect in which actual job 

processing time is based on the total normal job processing time and the position of schedule 

on a single machine. They then demonstrated that the makespan and total completion time 

problems are polynomially solvable, and demonstrated that the problems for minimizing 

weighted completion time and maximum lateness are polynomially solvable with certain 

agreeable conditions. Janiak and Rudek [16] introduced a multi-ability learning effect into a 

makespan single-machine scheduling problem. They established polynomial time algorithms 

to optimize the special cases of the problem they proposed. Furthermore, Biskup [2] presented 

a detailed review of scheduling problems with learning effect. Particularly, he classified the 
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existing models into two distinct groups: the position-based learning and the 

sum-of-processing-time-based learning. The position-based learning is influenced by the 

number of jobs processed. Meanwhile, the sum-of-processing-time-based learning considers 

the processing time of the jobs processed to date.  

In the position-based learning model, Lee et al. [23] studied a single-machine scheduling 

problem with release times under learning consideration. They proposed a branch-and-bound 

and a heuristic algorithm to obtain the optimal and near-optimal solution for minimizing the 

makespan. Zhu et al. [51] studied two single-machine group scheduling problems. The job 

processing time is a function of job position, group position and the amount of resources 

assigned to the group. They verified that minimizing the weighted sum of the makespan and 

the total resource cost remains polynomial solvable. Furthermore, Wang et al. [39] 

investigated a single machine scheduling problem in which the setup time and learning effect 

are considered, and the setup times are past-sequence-dependent. They showed that the 

problems to minimize the sum of quadratic job completion time, the total waiting time, the 

total absolute differences in waiting time, and the sum of earliness penalties subject to no 

tardy jobs, are polynomially solvable. Wang et al. [37] studied a single-machine problem with 

learning effect and discounted cost. They showed that the shortest processing time first (SPT) 

rule is the optimal policy for minimizing the discounted total completion time. They then 

illustrated an example to demonstrate that the discounted weighted shortest processing time 

first (WDSPT) rule is not the optimal policy for minimizing the discounted total weighted 

completion time. In addition, Mosheiov and Sidney [28] developed a learning model in which 

the learning effects are different depend on the jobs. They formulated the makespan 

scheduling problem with the job-dependent learning effects as an assignment problem and 

conducted a Hungarian method to solve the problem. And then Koulamas [18] proved that the 

problem proposed by Mosheiov and Sidney [28] can be solved in O(nlogn) times under 

certain agreeable condition. Furthermore, Janiak and Rudek [14] proposed a new learning 
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effect model in which the rigorous constraints of the position-dependent approach are relaxed 

by assuming that each job creates a different experience for the processor. They also 

described the shape of the learning curve using a k-stepwise function. Hence, the diversified 

learning functions can be fitted by a mathematical model. Janiak and Rudek [15] proposed a 

new experience-based learning model where the job processing times are described by 

“S”-shaped functions and are dependent on the experience of the processor. They 

demonstrated that the makespan problem on a single processor is NP-hard or strongly 

NP-hard, and then provided a number of polynomially solvable cases. In addition, Huang et al. 

[13] investigated two resources constrained single-machine group scheduling problems in 

which the learning effect and deteriorating jobs are considered simultaneously. They proposed 

polynomial solutions under certain constraints to minimize the makespan and the resource 

consumption, respectively. Lee and Lai [20] considered both the effect of learning and 

deterioration in a scheduling model. The actual job processing time is a function on the 

processing times of scheduled jobs and its position in the schedule. They showed that some 

single-machine scheduling problems remain polynomial solvable. Toksari [33] addressed a 

single-machine scheduling problem with unequal release times for minimizing the makespan, 

in which the learning effect and the deteriorating jobs are concurrently considered. Several 

dominance criteria and the lower bounds are established to facilitate the branch-and-bound 

algorithm for deriving the optimal solution. Furthermore, Eren and Guner [9] studied a 

bi-criteria scheduling problem with a learning effect in an m-identical parallel machine 

environment, and the objective function is to minimize the weighted sum of the total 

completion time and total tardiness. They constructed a mathematical programming model to 

solve the problem. Toksari and Guner [34] considered a parallel machine earliness/tardiness 

scheduling problem involving different penalties under the effect of position-based learning 

and deterioration, and demonstrated that the optimal sequence is a V-shaped schedule under 

certain agreeable conditions.  
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As for the sum-of-processing-time-based learning model, Koulamas and Kyparisis [17] 

pointed out that employees learn more when executing jobs with a longer processing time. 

They introduced a sum-of-job-processing-time-based learning effect scheduling model and 

demonstrated that the makespan and the total completion time problems for the single 

machine and two-machine flowshop with ordered job processing times are polynomially 

solvable. Wu et al. [45] studied a total weighted completion time problem on a single machine 

with learning effect and ready times. A branch-and-bound algorithm was proposed to derive 

the optimal sequence, and the simulated annealing algorithm was implemented to obtain the 

near-optimal sequence. Furthermore, Cheng et al. [5] introduced a learning effect model on a 

single machine in which the actual job processing time is derived from the sum of the 

logarithm of the processing times of jobs already processed, and they show that the makespan 

and total completion time problems are polynomially solvable. Cheng et al. [4] proposed a 

two-agent scheduling problem with a truncated sum-of-processing-time-based learning effect 

on a single machine. A branch-and-bound algorithm was utilized to obtain the optimal 

solution for minimizing the total weighted completion time for the jobs of the first agent 

subject to no tardy job of the second agent. Wang [38] introduced an exponential 

sum-of-actual-processing-time-based learning effect into a single-machine scheduling 

problem. The special cases of the total weighted completion time problem and the maximum 

lateness problem are proved to be polynomial solvable under an adequate condition. 

Additionally, Wang et al. [41] demonstrated that, even with the effects of learning and 

deterioration on job processing times, the single-machine makespan problem remains 

polynomially solvable. Wang et al. [40] considered the weighted sum of completion times and 

the maximum lateness problem with the effect of learning and deterioration on a single 

machine where job processing times are defined as functions of their starting times and 

sequential positions. 

In recent literature, the position-based and the sum-of-processing-time-based learning 
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have been discussed simultaneously. Yin et al. [49] examined some single-machine and 

m-machine flowhop problems with learning considerations where the learning effect is not 

only a function of the total normal processing times of jobs already processed, but also of the 

scheduled job position. Lee and Wu [22] presented a learning model that simultaneously 

combines the position-based learning and sum-of-processing-time-based learning models. 

They then demonstrated that the single-machine makespan and the total completion time 

problems are polynomially solvable, and provided polynomial-time optimal sequences for 

minimizing the makespan and total completion time under certain conditions in a flowshop 

environment. Furthermore, Wang and Li [35] studied a single machine scheduling problem 

with past-sequence dependent setup times in which the position-based and time-dependent 

learning effects are simultaneously considered. They proved that the makespan, total 

completion time and total lateness problems can be solved by the smallest processing time 

first (SPT) rule. Lai and Lee [19] addressed a general scheduling model in which the 

position-based and the sum-of-processing-time-based learning effects are concurrently 

considered. They showed that most of the models in the literatures are special cases of the 

model they proposed. 

The concept of learning effect in a flowshop environment has been relatively neglected. 

However, Wu et al. [47] studied the maximum tardiness problem with the position-based 

learning effect in a two-machine flowshop environment. They implemented a 

branch-and-bound algorithm to obtain the optimal sequence, and a simulated annealing 

algorithm to obtain the near-optimal sequence. Li et al. [25] discussed a two-machine 

flowshop scheduling problem with a truncated learning effect which considers the position of 

the job in a schedule and the control parameter. Then the branch-and-bound and three 

simulated annealing algorithms were conducted to seek the optimal and near-optimal 

solutions. In addition, Lee and Wu [21] considered a two-machine flowshop problem with 

learning effect for minimizing the total completion time. They utilized two lower bounds and 
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several dominance properties to construct a branch-and-bound algorithm to obtain the optimal 

sequence, and established a heuristic algorithm to obtain the near-optimal sequence. Chen et 

al. [3] considered a bi-criteria two-machine flowshop scheduling problem with the 

position-based learning effect when the goal is to minimize both the total completion time and 

the maximum tardiness. They proposed a branch-and-bound algorithm and two heuristic 

algorithms to obtain the optimal and near-optimal sequences. Furthermore, Wang and Xia [42] 

studied flowshop problems with learning effect. They gave the worst-case bound of the 

shortest processing time first (SPT) algorithm for the makespan and the total flow time 

problems, then illustrated examples to show that the Johnson’s rule is not optimal for the 

makespan problem in a two-machine environment with learning consideration. Eventually, 

they demonstrated that two special cases remained polynomially solvable for the makespan 

and total completion time problems. Additionally, Wu and Lee [46] investigated a flowshop 

problem with learning considerations to minimize the total completion time. They 

implemented a branch-and-bound algorithm and heuristic algorithms to seek the optimal and 

near-optimal sequences, respectively. 

Because of obtaining optimal sequences in scheduling problems within a flowshop 

environment is usually complicated, numerous works have focused on identifying efficient 

near-optimal sequences. Nawaz et al. [27] considered an m-machine flowshop problem for 

minimizing the makespan, and claimed that jobs with larger total normal processing time 

should be prioritized over jobs with smaller total normal processing times. They demonstrated 

that their proposed algorithm performs particularly well on large job-sized problems. 

Afterward, Liu and Ong [26] and Ruiz and Maroto [31] claimed that the algorithm developed 

by Nawaz et al. [27] is superior to other existing polynomial algorithms for the m-machine 

flowshop makespan problem. Furthermore, Rajendran and Ziegler [30] developed an 

algorithm for solving the weighted total completion time minimization problem in an 

m-machines flowshop environment. Their algorithm first generates m sequences by assigning 
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different weights to each machine. The sequence with the minimal total weighted completion 

time is then selected as the seed sequence, and an improvement scheme is employed. Woo and 

Yim [43] provided an algorithm for minimizing the mean flow time in an m-machine 

flowshop environment. Their algorithm selects a job among excluded jobs for insertion into 

the current partial sequence. Whenever a new partial schedule is constructed, their algorithm 

assesses all the possible sequences by inserting an unscheduled job into one of all slots in the 

current sequence at a time. The partial sequence with the least mean flow time is selected. In 

addition, Framinan and Leisten [11] considered an m-machine flowshop problem to minimize 

the mean flow time. They proposed an efficient constructive heuristic algorithm based on the 

concept of the algorithm of Nawaz et al. [27]. They further performed a general pairwise 

interchange movement to boost the quality of the partial sequences in all the iterations. 

Framinan et al. [10] presented a review and classification for the heuristic algorithms with a 

makespan objective. They distinguished a given constructive heuristic algorithm into three 

phases, which are index development, solution construction and solution improvement. 

Furthermore, Wang et al. [36] proposed a modified global-best harmony search algorithm to 

obtain the near-optimal solution for dealing with a makespan scheduling problem in a 

blocking permutation flowshop environment. The algorithm they proposed was demonstrated 

to outperform certain existing meta-heuristics. Zhang and Li [50] addressed an estimation of 

distribution algorithm for a flowshop scheduling problem with the objective of minimizing 

the total flowtime. They showed that the proposed algorithm could improve some current best 

solutions for Taillard benchmark instances. 

 

1.3 Research objectives and methodologies 

Two m-machine flowshop scheduling problems are proposed in this dissertation in which 

the models are based on Biskup [1]. The model proposed in Biskup [1] is presented as 
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,
a

j r jp p r=  where ,j rp  denotes the actual processing time of job j at rth scheduled position, 

jp  denotes the normal processing time of job j, and 0a ≤  denotes the learning index. The 

decreasing level for the curve of ar  descends as r increases, and it conforms to the 

phenomenon that the improvement of the worker’s skill is unobvious after the worker is 

proficient at the jobs. Therefore, the learning model proposed in Biskup [1] is reasonable and 

regarded as a theoretical learning model in many studies. In addition, the production 

environment for the model proposed in Biskup [1] could be regarded as the handicraft 

because of the learning effect is occurred in whole process when dealing with a job. 

Meanwhile, the learning model proposed in Biskup [1] might be considered as the reduced 

learning model for the industrial manufacturing. 

In this dissertation, the types of learning effect of the two problems belong to 

position-based learning. Furthermore, the learning effects are identical on all machines in the 

first problem, and are varied on different machines in the second problem. Since the 

makespan and the total completion time are the objective functions that are widely used 

performance measures in the scheduling literature, the objective in this dissertation of the first 

problem is to minimize the makespan, and of the second problem is to minimize the bi-criteria 

function which is modeled as the weighted sum of the total completion time and the 

makespan. 

While the number of the machines is more or equal than three, Garey et al. [12] 

demonstrated that the flowshop scheduling problem for minimizing the makespan without the 

learning effect is an NP-hard problem. In addition, the total completion time minimization 

problem is proved to be an NP-hard problem without considering the learning effect when the 

number of the machines is more or equal than two (Lenstra et al. [24]). Therefore, the 

makespan and the bi-criteria minimization problems in this dissertation are both NP-hard 

problems. Then the branch-and-bound algorithm is a feasible approach for deriving the 
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optimal sequence. In the literature with respect to the flowshop scheduling problems without 

learning effect, Chung et al. [7] studied an m-machine flowshop scheduling problem to 

minimize the total completion time. They proposed a brand-and-bound algorithm that 

incorporates a dominance property and an innovative lower bound to seek the optimal 

sequence. Thereafter, Chung et al. [8] modified the efficient property in Chung et al. [7] to 

deal with the flowshop scheduling problem for minimizing the total tardiness. Therefore, in 

this dissertation, a branch-and-bound algorithm is conducted to obtain the optimal sequence, 

in which the dominance properties are established based on the concept of Chung et al. [7]. 

Seeking for the optimal sequence of scheduling problems generally requires considerable 

computational time and memory for larger job-sized problems. Thus this dissertation also 

focuses on assessing the performances of efficiency when applying economical heuristic 

algorithms with the learning effect to solve the proposed problem. And then two well-known 

heuristic algorithms proposed form Nawaz et al. [27] and Framinan and Leisten [11] are 

adapted for obtaining the near-optimal sequence. Additionally, two meta-heuristic algorithms 

are also utilized to yield the near-optimal solutions which are simulated annealing and genetic 

algorithms. Eventually, the accuracy and the comparison for the priorities among proposed 

heuristic and meta-heuristic algorithms are discussed in this dissertation. 
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Chapter 2 

Algorithms 

2.1 Branch-and-bound algorithms 

In this dissertation, two NP-hard problems are studied. In order to seek the optimal 

sequence, we conduct a branch-and-bound algorithm incorporated with a dominance property 

and a lower bound. In branch-and-bound algorithm, a given node indicates a sequence with 

scheduled jobs, and the nodes can be eliminated by verifying the dominance property or 

evaluating the lower bound. The dominance property is utilized to prove that the given node is 

dominated by another node. Furthermore, the lower bound is the underestimated value of the 

objective function based on the given node. Therefore, when the given node is dominated or 

its lower bound is larger than a known objective value, the given node and its offspring are 

eliminated in the branching tree. In addition, the branching procedure proposed in this 

dissertation adopts the depth-first search, and assigns jobs in a forward manner starting from 

the first position. The advantages of the depth-first search are less number of dynamic nodes 

and seeking the bottom node rapider to derive the feasible sequence. The detailed procedure 

of the proposed branch-and-bound algorithm is described as follows. 

Step 1:  Generate a near-optimal sequence and solution as the initial incumbent sequence 

and solution by implementing the heuristic and meta-heuristic algorithms. 

Step 2:  Expand the branching tree from node ( , , , )− − −
 to node (1, , , )− −

, then to 

node (1,2, , , )− −
, and finally to node ( , 1, ,1)n n − 

. 

Step 3:  If the current node is a complete sequence, go to Step 6. Otherwise, go to Step 4. 

Step 4:  Apply the dominance property to identify the current node. If it is a dominated node, 

eliminate the node and its offspring in the branching tree, then go to Step 2. 

Otherwise, go to Step5. 
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Step 5:  Evaluate the lower bound of the objective value for the current node. If the lower 

bound for the current node is larger than the incumbent solution, eliminate the node 

and its offspring in the branching tree, then go to Step 2. Otherwise, go to Step 7. 

Step 6:  If the objective value of the complete sequence is smaller than the incumbent 

solution, replace the incumbent sequence and solution with the sequence and 

solution of the current node. Otherwise, eliminate it. 

Step 7:  If there is no more node can be expanded, the final incumbent sequence is set as the 

optimal sequence. Otherwise, go to Step 2. 

Eventually, a flowchart is drawn in Fig 2.1. to illustrate the detailed procedure of the 

proposed branch-and-bound algorithm. 
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Fig 2.1. The flowchart of the proposed branch-and-bound algorithm 
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2.2 Heuristic algorithms 

While the number of jobs increases, obtaining the optimal solution of an NP-hard 

scheduling problem is time-consuming. Therefore, many studies are devoted to develop 

efficient heuristic algorithms to derive the near-optimal solution. In addition, the objective 

functions in this dissertation consist of the makespan and the total completion time. Therefore, 

NEH  and FL  denote the heuristic algorithms which is respectively adapted from the 

heuristic algorithm proposed in Nawaz et al. [27] and Framinan and Leisten [11], by 

considering the learning effect and adjusting the objective function. Eventually, the 

procedures of NEH  and FL  are detailed as follows. 

 

NEH algorithm: 

Step 1: Set sequence PS and US with empty set. 

Step 2: Arranging the jobs in descending order of the total normal processing times (i.e. 

,
1

m

i j
i

p
=
∑  for 1, 2, ,j n= 

. See subsection 3.1), and schedule the jobs into US. 

Step 3: Set 1k = . 

Step 4: Select the first job from US into PS, and remove the job from US. 

Step 5: If 1k = , go to Step 4. Otherwise, generate k  sequence by respectively inserting 

the job into each slot of PS. 

Step 6: Select the sequence with the least objective value among k  candidate sequences 

and update the sequence as PS. 

Step 7: Set 1k k= + . If k n≤ , go to Step 4. Otherwise, the near-optimal sequence is set as 

PS. 
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FL algorithm: 

Step 1: Set sequence PS and US with empty set. 

Step 2: Arranging the jobs in ascending order of the total normal processing times, and 

schedule the jobs into US. 

Step 3: Set 1k = . 

Step 4: Select the first job from US into PS, and remove the job from US. 

Step 5: If 1k = , go to Step 4. Otherwise, generate k  sequence by respectively inserting the 

job into each slot of PS. 

Step 6: Select the sequence with the least objective value among k  candidate sequences 

and update the sequence as PS. 

Step 7: If 3k < , go to Step 8. Otherwise, generate ( 1)
2

k k −  sequences based on PS by 

performing pairwise interchange procedure. Then select the sequence with the least 

objective value and set as sequence PS ′ . If PS can be dominated by PS ′  in terms 

of the objective value, replace PS with PS’. 

Step 8: Set 1k k= + . If k n≤ , go to Step 4. Otherwise, the near-optimal sequence is set as 

PS. 
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2.3 Meta-heuristic algorithms 

Pinedo [29] stated that the heuristic algorithms of the constructive type start without a 

sequence and gradually construct a sequence by adding one job at a time. They usually can 

obtain a solution in a moment. However, the quality of the solutions obtained by the heuristic 

algorithms of the constructive type is improvable, especially when the priority of the jobs is 

difficult to estimate. The reason is that the solutions space for the heuristic algorithms of the 

constructive type is relatively narrow. Therefore, two meta-heuristic algorithms are 

implemented to obtain the near-optimal solutions because of their larger solutions spaces, 

which are simulated annealing and genetic algorithms. The procedure of seeking the solution 

by meta-heuristic algorithms is iteratively trying to improve a candidate solution in terms of a 

given measure of quality. The advantages of the meta-heuristic algorithms are few or no 

assumptions in searching process, and a larger space of candidate solutions. Eventually, two 

meta-heuristic algorithms proposed in this dissertation are detailed below. 

 

Simulated Annealing (SA) 

A description of the procedure in proposed simulated annealing is presented as follows. 

An incumbent sequence is generated at first, and then a new sequence is created based on the 

incumbent one by the neighborhood generation. The incumbent sequence is replaced with the 

new sequence when each one of two conditions occurred, that is (1) the objective value of the 

new sequence is smaller than that of the incumbent sequence, and (2) the acceptance 

probability is larger than a given value. Eventually, the process of proposed simulated 

annealing is stopped by the terminating condition, and then the final incumbent sequence is 

set as the near-optimal sequence. The elaboration of the simulated annealing proposed in this 

dissertation includes: 
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(1) Incumbent sequence: The incumbent sequence is generated randomly. 

(2) Neighborhood generation: Two jobs of incumbent sequence are randomly selected and 

exchanged to yield the new sequence. 

(3) Acceptance probability: The probability of acceptance is yielded from an exponential 

distribution, that is ( ) ( )expP accept α= − ×∆ , where α  denotes the control parameter 

and ∆  denotes the increment of the objective value from the incumbent to the new 

sequence.  Furthermore, the control parameter is set as 
k
β

, where k is the number of 

cumulated iterations to date and β  is an experimental factor. And then we chose 

65000β =  after some pretests. If the new sequence is larger than the incumbent one, the 

new sequence is accepted when racceptP >)( , where r  is a uniform random number 

between 0 and 1. 

(4) Terminating condition: The seeking process is terminated after 500n iterations because 

of the preliminary tests reveal that the objective value is steady after 500n iterations, 

where n  is the number of jobs. 

The advantage of SA is to avoid getting trapped in a local optimum. The value of β  is 

initially set to a high level so that a neighborhood exchange happens frequently in early 

iterations, and the acceptance probability is gradually lowered when the k increases so that it 

becomes more difficult to exchange in later iterations unless a better sequence is yielded. 

 



 19 

Genetic algorithm (GA) 

In this dissertation, a genetic algorithm is utilized to yield the near-optimal solution. The 

basic idea of the genetic algorithm is to generate a population with some chromosomes as the 

parents, then implement the crossover and mutation operations to produce a new population 

as the offspring, and choose the chromosome with the best performance with regard to the 

objective value after some generations. The segments of proposed genetic algorithm are listed 

as follows. 

(1) Encoding: The encoding method is to generate n uniform random numbers from (0, 1) as 

the genes in a chromosome, in which the job order is set as the non-decreasing order of 

the genes. For example, the chromosome (0.23, 0.78, 0.32, 0.14) denotes a job sequence 

of (4, 1, 3, 2) with four jobs. 

(2) Population size: The population size indicates the number of the chromosomes in a 

generation. For a large population size, it is easier to obtain a better solution, but 

time-consuming. The population size N is set as 150 after some preliminary tests. 

(3) Fitness value: The fitness values are evaluated to indicate the probabilities of selecting 

the chromosomes. Since the problem is to minimize the objective value, the fitness value 

of a given chromosome should be a decreasing function of its objective value. Therefore, 

the fitness value of the chromosome is calculated as 
1

N

k j
j

f f
=
∑  for 1,2, ,k N=  , where 

the kf  denotes the reciprocal of the objective value of the kth chromosome. 

(4) Selection: A roulette wheel method is used in which the chromosomes with larger fitness 

values have larger areas in the roulette wheel and have higher chances to be selected. The 

selection process is executed by spinning the roulette wheel, and only a chromosome is 

selected in each spin. 

(5) Crossover: Crossover operation is to produce the chromosomes of offspring from the 

chromosomes of parents. In this dissertation, two chromosomes in parents are selected to 
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generate two new chromosomes in offspring by utilizing one-point crossover, in which a 

cut point are randomly selected and the parts of these two chromosomes in parents are 

exchanged to generate new chromosomes. For example, two chromosomes in parents are 

presented as (0.53, 0.26, 0.72, 0.44, 0.69) and (0.91, 0.08, 0.37, 0.29, 0.55), and the new 

chromosomes are (0.53, 0.26, 0.37, 0.29, 0.55) and (0.91, 0.08, 0.72, 0.44, 0.69) if the 

randomly selected cut point is the second position. Furthermore, the crossover rate is 

chosen as 0.85 in this dissertation after some pretests. 

(6) Mutation: Mutation operation is used to prevent getting trip in a local optimum. In this 

dissertation, the procedure of mutation is to randomly select a gene in a given 

chromosome, and replace it with a random uniform number from 0 to 1. The mutation rate 

is set as 0.3 in this dissertation to determine whether the chromosome is mutated. 

(7) Evolution: In order to maintain the superiority of the chromosomes, a part of 

chromosomes with larger fitness values in parents are retained in the next generation. 

Meanwhile, the chromosomes with smaller fitness values in the offspring are eliminated 

as a consequence. Furthermore, the evolution rate is set as 0.5, which means 50% of the 

chromosomes in the parents are retained to the next generation. 

(8) Termination: The proposed genetic algorithm is terminated after 50 generations after 

some pretests. 

Eventually, the flowchart of proposed genetic algorithm is shown in Fig 2.2.
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Fig 2.2. The flowchart of the proposed genetic algorithm 
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Chapter 3 

Makespan minimization for m-machine flowshop 

scheduling problem with position-based learning effects 

3.1 Notations and problem statement 

The notations used throughout this chapter are summarized as follows. 

n : Number of jobs. 

m : Number of machines. 

N : Set of jobs, i.e., {1,2, , }N n= 
. 

iM : ith machine, 1, 2, ,i m= 
. 

,i jp : Normal processing time of job j on iM . 

, ,i j rp : Actual processing time of job j on iM  if placed at rth position in a sequence. 

a : Learning index with 0a < . 

S : Subset of N  with s  scheduled jobs. 

U : Subset of N  with n s−  unscheduled jobs. 

σ : A partial sequence of set S . 

[ ]: The symbol which signify the order of jobs in a sequence. 

,[ ] ( )i rC σ : Completion time of the job scheduled in the rth position on iM  in sequence 

σ . 

( , )jG u v : Total normal processing time of job j from uM  to vM , where u v≤ , i.e.,  

,( , )
v

j l j
l u

G u v p
=

=∑ . 

,[ ]i rB : Earliest starting time at rth position on iM . 

,[ ]i rF : Earliest completion time at rth position on iM . 
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LB : The lower bound for a given node. 

 

The problem formulation of the m-machine flowshop environment with learning effects 

is described as follows. Suppose that there are n jobs in set N , to be processed on m 

machines. Each job j comprises m operations 1, 2 , ,, , ,j j m jO O O , where ,i jO  has to be 

processed on Mi for 1, 2, ,i m= 
 and 1,2, ,j n= 

. Processing of operation jiO ,1+  must 

start only after the completion of ,i jO . Furthermore, the flowshop environment considers a 

schedule in which the job sequence is identical on all the machines. The actual processing 

time , ,i j rp  of job j on iM  is a function that depends on its position r in the sequence, i.e.,  

, , ,
a

i j r i jp p r= ,  

where 1, 2,...,i m= , , 1, 2,...,j r n= . 

This chapter attempts to identify a sequence for minimizing the makespan. Given n jobs 

in Set N, and τ  denotes one complete sequence of all permutations. The objective of this 

chapter is to derive a sequence τ ∗  such that [ ] [ ]( ) ( )m n m nC Cτ τ∗ ≤  for any sequence τ . 

 

3.2 Dominance property 

The following theorem provides a criterion for discriminating dominance relationships 

between two different sequences which are made up of the same job set. 

Theorem 3.1: Let 1σ  and 2σ  denote two partial sequences with s jobs of set S . If 

{ },[ ] 1 ,[ ] 21
max ( ) ( ) 0i s i si m

C Cσ σ
≤ ≤

− < , then 1σ  dominates 2σ . 

Proof: Let π  denote a partial sequence with n s−  jobs of set U, and sequence π  is 

scheduled immediately behind sequence 1σ  and 2σ  into the sequence 1 1( , )S σ π=  and 
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2 2( , )S σ π= , respectively. Then for mu ≤≤1 , we have the completion time of the job 

scheduled in the nth position on uM  in 1S  and is 

{ },[ ] 1 ,[ 1] 1 [ ]1
( ) max ( ) ( , ) a

u n v n nv u
C S C S G v u n−≤ ≤

= + ×  

1 ,[ 1] 1 [ ] 1( ) ( , ) a
v n nC S G v u n−= + ×  for some 1v  where 11 v u≤ ≤ . 

Similarly, the completion time of the job scheduled in the nth position on uM  in 2S  is 

{ },[ ] 2 ,[ 1] 2 [ ]1
( ) max ( ) ( , ) a

u n v n nv u
C S C S G v u n−≤ ≤

= + ×  

2 ,[ 1] 2 [ ] 2( ) ( , ) a
v n nC S G v u n−= + ×  for some 2v  where 21 v u≤ ≤ . 

Then we have 

1,[ ] 2 ,[ 1] 2 [ ] 1( ) ( ) ( , ) a
u n v n nC S C S G v u n−≥ + ×  for 1 2v v≠ . 

Therefore, we have 

1 1,[ ] 1 ,[ ] 2 ,[ 1] 1 [ ] 1 ,[ 1] 2 [ ] 1( ) ( ) ( ) ( , ) ( ) ( , )a a
u n u n v n n v n nC S C S C S G v u n C S G v u n− −   − ≤ + × − + ×     

{ },[ 1] 1 ,[ 1] 21
max ( ) ( )i n i ni m

C S C S− −≤ ≤
≤ − . 

An induction argument is conducted. Then we have 

{ },[ ] 1 ,[ ] 2 ,[ ] 1 ,[ ] 21
( ) ( ) max ( ) ( )u n u n i s i si m

C S C S C S C S
≤ ≤

− ≤ − . 

If { },[ ] 1 ,[ ] 21
max ( ) ( ) 0i s i si m

C S C S
≤ ≤

− < , then 1S  dominates 2S . 

The proof is completed. 

In order to apply the above theorem in the proposed branch-and-bound algorithm, the 

following property requires considering two consecutive jobs, as presented below. 

Property 3.1: Let xJ  and yJ  denote two jobs of set S , and 2sσ −  denote a sequence with 

2s −  jobs excluding xJ  and yJ  of set S . If { },[ ] 2 ,[ ] 21
max ( , , ) ( , , ) 0i s s x y i s s y xi m

C J J C J Jσ σ− −≤ ≤
− <  

, then sequence 2( , , )s x yJ Jσ −  dominates 2( , , )s y xJ Jσ − . 
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3.3 Lower bound 

For a given node in the branch-and-bound algorithm, the lower bound is designed to 

underestimate the objective function by utilizing the information of its unscheduled jobs, and 

the lower bound is less than or equal to the objective value of the optimal sequence based on 

the node. Consequently, when the lower bound of a given node is larger than the objective 

value of a known sequence, the optimal sequence based on the node is dominated by the 

known sequence, and the given node and its offspring are not the candidates for the optimal 

sequence. 

 In this subsection, we propose a lower bound for eliminating nodes in the branching tree, 

and the lower bound is evaluated using the concept developed by Chung et al. [7]. The lower 

bound for Chung et al. [7] is a machine-based lower bound. The main idea of their lower 

bound is assuming that the given machine has unit capacity and the machines behind it have 

infinite capacity. Hence, the procedure in Chung et al. [7] for estimating the marginal lower 

bound based on the given machine is to compute the earliest starting times for all remaining 

positions on the machine at first, and to sum up these starting times, and all the processing 

times of the machine, and that behind the machine for unscheduled jobs. Finally, the lower 

bound is determined as the maximal marginal lower bound. Instead of the total completion 

time, we adapt the procedure in Chung et al. [7] which estimates the earliest starting time with 

learning effect, when the objective is to minimize the makespan. The proposed lower bound is 

summarized as follows. Let ,( )i jp  represent the normal processing times on iM , which are 

based on non-descending order of all ,i jp  from set U  for 1, 2,j n s= −
. i.e., 

,(1) ,(2) ,( )i i i n sp p p −≤ ≤ ≤ , where 1,2, ,i m= 
. (1) ( , )G u v  denotes the smallest total normal 

processing time between uM  and vM  from set U . Let ,[ 1]i sE +  denote the actual starting 

time of 1s + th job on iM . By definition, we have 
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1,[ 1] 1,[ ] ( )s sE C σ+ =   

and  

{ }{ },[ 1] ,[ 1] [ 1] ,[ ]1 1
max max ( , 1) ( 1) , ( )a

i s u s s i su i
E E G u i s C σ+ + +≤ ≤ −

= + − × + , where 2,3,i m= 
. 

For the first machine, the earliest starting time is the same as the actual starting time of 1s +

th job (i.e. 1,[ 1] 1,[ 1]s sB E+ += ). Then  

{ }2,[ 1] 1,[ 1] 1,[ 1] 2,[ ]max ( 1) , ( )a
s s s sE B p s C σ+ + += + × +  

{ }1,[ 1] 1,(1) 2,[ ]max ( 1) , ( )a
s sB p s C σ+≤ + × + . 

Therefore, 2,[ 1]sB +  is evaluated as { }1,[ 1] 1,(1) 2,[ ]max ( 1) , ( )a
s sB p s C σ+ + × + . By induction, we 

have 

{ }{ },[ 1] ,[ 1] (1) ,[ ]1 1
max max ( , 1) ( 1) , ( )a

i s u s i su i
B B G u i s C σ+ +≤ ≤ −

= + − × +  for 2,3,i m= 
. 

Since the learning effect is considered, we have ,[ ] ,[ 1] ,( )
1

( )
j

a
i s j i s i l

l
F B p s l+ +

=

= + +∑ . For the first 

machine, the earliest starting time of nth job is the earliest completion time of ( 1)n − th job 

(i.e. 1,[ ] 1,[ 1]n nB F −= ). In the context of Chung et al. [7] for unscheduled jobs, besides ( 1)s + th 

job on the second to the final machine, the procedure of computing the earliest starting time 

only considers the earliest completion time on the current machine, and that immediately 

ahead of the machine (i.e. { },[ ] ,[ 1] 1,[ ]max ,i s j i s j i s jE F F+ + − − += ). However, it may have the 

contradiction that the earliest starting time on the current machine is smaller than that on the 

preceding machines for the third and late machine. Therefore, to overcome the contradiction, 

we have  

{ }
{ }

,[ 1] 1,[ ]

,[ ]

,[ 1] 1,[ ] 1,[ ] 1,(1)

max ,                                          , where 2

max , ,             , where 3,4, ,

i n i n

i n a
i n i n i n i

F F i
B

F F B p n i m

− −

− − − −

 == 
+ × = 

. 

Then the marginal lower bound is evaluated as ,[ ] (1) ( , ) a
i nB G i m n+ × . Eventually, the lower 
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bound in this chapter is represented as { }{ },[ ] (1) ,[ ]1
max max ( , ) ,a

i n m ni m
B G i m n F

≤ ≤
+ × , and the 

detailed procedure for estimating the lower bound is presented as follows. 

Step 1: Set 1i = , 1,[ 1] 1,[ ] ( )s sB C σ+ = , and go to Step 3. 

Step 2: Compute { }{ },[ 1] ,[ 1] (1) ,[ ]1 1
max max ( , 1) ( 1) , ( )a

i s u s i su i
B B G u i s C σ+ +≤ ≤ −

= + − × +  

Step 3: Compute ,[ ] ,[ 1] ,( )
1

( )
j

a
i s j i s i l

l
F B p s l+ +

=

= + +∑  for 1j n s= − −  and n s− . 

Step 4: If 1i = , set 1,[ ] 1,[ 1]n nB F −=  and go to Step 6. Otherwise, go to Step 5. 

Step 5: If 2i = , set { },[ ] ,[ 1] 1,[ ]max ,i n i n i nB F F− −= . Otherwise, set 

{ },[ ] ,[ 1] 1,[ ] 1,[ ] 1,(1)max , , a
i n i n i n i n iB F F B p n− − − −= + × . 

Step 6: If i m< , set 1i i= + and go to Step 2. Otherwise, go to Step 7. 

Step 7: Set { }{ },[ ] (1) ,[ ]1
max max ( , ) ,a

i n m ni m
LB B G i m n F

≤ ≤
= + × . 

Step 8: The lower bound of the makespan for sequence σ  is obtained as LB . 
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3.4 Computational results 

In this section, several computational experiments are conducted to assess the 

performance of the branch-and-bound, the heuristic and meta-heuristic algorithms proposed in 

this chapter. All the algorithms are coded in Fortran 90 and run on a personal computer with 

2.89 GHz AMD Athlon ™ II X4 635 Processor and 3.25GB RAM with Windows XP. The 

normal processing time of all operations are randomly generated from a discrete uniform 

distribution over 1 to 100. First of all, the influence of the learning effect is examined in Table 

3.1, in which the number of jobs is fixed at 10, three different levels of the learning effect are 

set as 90%, 80% and 70% (which corresponds to 0.152a = − , 0.322a = − , and 

0.515a = − .), and 100 replications are randomly generated of each experimental condition. 

Therefore, a total of 600 instances are tested and the mean optimal makespans are recorded in 

Table 3.1. Furthermore, the optimal sequence derived from the proposed problem without 

learning effect under each instance, is used to calculate the makespan of the proposed problem 

and the mean makespans and the mean and maximum error percentages are listed in Table 3.1. 

For each instance, the error percentage of is calculated as 100%O O
O

∗

∗

−
× , where O denotes 

the value of the makespan calculated by the sequence derived without the learning effect and 

O∗  denotes the optimal makespan. As shown in Table 3.1, it reveals that the influence of the 

learning effect is notable with regard to the mean error percentages. Additionally, the 

influence of the learning effect is higher with the stronger learning effect. 

Table 3.1. The influence of the learning effect on optimal solution ( 10n = ) 
   Use the optimal sequence which is 
   derived without the learning effect 
  mean optimal mean Error percentage 

m a(%) makespan makespan mean max 
3 90% 487.1 563.4 15.799 31.804 
 80% 375.1 531.0 42.506 75.273 
 70% 285.0 528.5 86.911 144.845 

5 90% 580.5 634.5 9.447 26.843 
 80% 466.3 583.7 25.705 62.889 
 70% 376.8 541.3 44.478 107.165 
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In order to test the efficiency of the proposed property and the lower bound, a 

computational experiment is implemented with fixed job size at 10, two different machine 

sizes at 3 and 5, 100 replications, and three levels of the learning effect at 90%, 80% and 70%. 

The results are listed in Table 3.2, in which B_P denotes the branch-and-bound algorithm with 

only the property, B_L denotes the branch-and-bound algorithm with only the lower bound, 

and B_P+L denotes the branch-and-bound algorithm with both the property and the lower 

bound. In addition, the mean number of nodes and the mean execution time are recorded. 

Meanwhile, the mean execution time for the enumeration method is also recorded. As shown 

in Table 3.2, the efficiency of the property and the lower bound in the branch-and-bound 

algorithm are significant in terms of the mean execution time by comparison with the 

enumeration method. Furthermore, the lower bound is more effective than the property in 

terms of the mean number of nodes and the mean execution time, and the phenomenon is 

notable when the learning effect is stronger. However, the most efficient performance is 

exhibited when B_P+L is implemented in terms of the mean number of nodes and the mean 

execution time. Therefore, the branch-and-bound algorithm with both the property and the 

lower bound is recommended for the succeeding computational experiment in this chapter. 

Table 3.2.  The performance of the property and the lower bound for the branch-and-bound algorithm 

( 10n = ) 

             Number of mean nodes    Mean CPU times 

m a(%)      B_P    B_L    B_P+L    B_P    B_L    B_P+L  Enumeration 

3 90% 257236.9 917.7 450.4 4.234  0.031  0.017  15.504  

 80% 183932.9 162.6 129.6 3.083  0.007  0.006  15.421  

 70% 111829.0 92.7 78.2 1.949  0.005  0.004  15.379  

         5 90% 368537.7 945.1 771.2 10.067  0.067  0.056  25.148  

 80% 250310.5 350.0 310.5 6.892  0.027  0.027  25.051  

  70% 146816.5 134.3 122.3 4.031  0.012  0.012  24.806  
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We use four job sizes ( 12n = , 14, 16 and 18) and two different machine sizes (m＝3 and 

5) to yield the optimal solution and test the accuracy of all the proposed heuristic and 

meta-heuristic algorithms. Furthermore, to examine the influence of the learning effect, the 

three levels of the learning effect are taken to be 90%, 80%, and 70%. Consequently, 24 

experimental conditions are examined, and 100 replications are randomly generated for each 

condition. A total of 2,400 instances are generated and the results are listed in Table 3.3. The 

mean and the standard deviation of the number of nodes and of the execution time for the 

proposed branch-and-bound algorithm are recorded. In addition, the mean and standard 

deviation of the error percentages for the heuristic and meta-heuristic algorithms are also 

recorded. For each instance, the error percentage of the given heuristic algorithm is calculated 

as  

100%V V
V

∗

∗

−
× , 

where V denotes the value of the makespan generated by the heuristic or meta-heuristic 

algorithm and ∗V  denotes the optimal makespan obtained by the branch-and-bound 

algorithm. 
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Table 3.3. The performance of branch-and-bound algorithm and heuristic algorithms of different parameters 
                          Branch-and-bound algorithm Heuristic algorithms 
        Number of nodes    CPU times  Error percentages (%) 
   Mean s.d. Q1 Q2 Q3 

Number of 

outliers 

 

Mean s.d.   NEH   FL   SA   GA 
n m a(%) Mean s.d. Mean s.d. Mean s.d. Mean s.d. 

12 3 90% 56719.8  384694.2  78  288  1083  20  2.20  14.30  0.0134  0.0151  0.0062  0.0101  0.0055  0.0101  0.0061  0.0067  
  80% 1192.9  3480.4  86  299  612  15  0.07  0.17  0.0193  0.0139  0.0064  0.0115  0.0094  0.0093  0.0071  0.0077  
  70% 521.4  849.3  71  255  550  11  0.03  0.05  0.0359  0.0246  0.0069  0.0089  0.0130  0.0164  0.0103  0.0059  
 5 90% 9448.4  34991.5  379  1093  4818  12  0.88  3.17  0.0247  0.0206  0.0146  0.0156  0.0132  0.0137  0.0109  0.0104  
  80% 2772.7  9635.3  158  510  1722  12  0.28  0.84  0.0305  0.0202  0.0133  0.0143  0.0162  0.0135  0.0064  0.0095  
  70% 583.2  1109.3  64  188  630  11  0.06  0.10  0.0426  0.0308  0.0119  0.0118  0.0212  0.0205  0.0070  0.0079  

14 3 90% 167322.1  854106.4  200  1442  5900  14  8.63  44.15  0.0135  0.0116  0.0066  0.0098  0.0055  0.0077  0.0042  0.0065  
  80% 19161.7  124696.6  295  988  5848  6  1.08  6.40  0.0241  0.0172  0.0068  0.0079  0.0130  0.0115  0.0063  0.0053  
  70% 1720.3  2910.8  131  509  1623  12  0.15  0.23  0.0411  0.0244  0.0080  0.0075  0.0157  0.0163  0.0077  0.0050  
 5 90% 301967.5  1838143.9  1583  4289  15460  20  27.97  151.64  0.0253  0.0195  0.0146  0.0129  0.0114  0.0130  0.0099  0.0086  
  80% 9213.4  22874.2  622  2016  5053  19  1.26  2.93  0.0336  0.0196  0.0152  0.0144  0.0202  0.0131  0.0081  0.0096  
  70% 6369.0  33345.7  486  1370  3463  11  0.87  3.80  0.0513  0.0249  0.0105  0.0122  0.0191  0.0166  0.0045  0.0081  

16 3 90% 2111749.8  11723845.2  659  3214  26519  17  125.60  685.23  0.0134  0.0098  0.0060  0.0107  0.0095  0.0065  0.0050  0.0071  
  80% 41433.3  148176.9  900  2762  17081  12  3.37  10.54  0.0280  0.0145  0.0080  0.0094  0.0133  0.0097  0.0037  0.0063  
  70% 22073.5  74962.3  406  2102  10563  16  2.03  5.76  0.0497  0.0224  0.0073  0.0072  0.0216  0.0149  0.0074  0.0048  
 5 90% 1055484.8  4641812.1  6442  14074  94299  15  116.63  462.80  0.0285  0.0170  0.0163  0.0142  0.0175  0.0113  0.0114  0.0095  
  80% 123731.8  447437.6  2384  9808  30383  18  19.76  67.89  0.0352  0.0194  0.0137  0.0110  0.0177  0.0129  0.0116  0.0073  
  70% 19159.7  72050.8  1136  3873  12001  11  3.19  8.67  0.0531  0.0250  0.0135  0.0121  0.0197  0.0167  0.0055  0.0081  

18 3 90% 8470804.1  26263090.6  8173  46669  335005  17  451.12  1358.19  0.0140  0.0090  0.0051  0.0069  0.0077  0.0060  0.0067  0.0046  
  80% 593669.8  3611399.3  2219  16609  86473  11  45.95  251.54  0.0207  0.0188  0.0079  0.0081  0.0089  0.0125  0.0046  0.0054  
  70% 75422.6  211051.6  1753  11367  48150  13  7.57  18.76  0.0485  0.0235  0.0084  0.0101  0.0202  0.0157  0.0058  0.0067  
 5 90% 9241667.3  24428652.2  40402  172912  2336244  19  1089.13  2811.17  0.0253  0.0170  0.0142  0.0133  0.0134  0.0113  0.0137  0.0089  
  80% 449812.6  1760902.3  8801  48120  141615  13  64.60  222.66  0.0396  0.0200  0.0152  0.0120  0.0182  0.0133  0.0071  0.0080  
  70% 97797.9  339614.2  3177  10124  56667  15  17.12  46.49  0.0524  0.0237  0.0120  0.0107  0.0205  0.0158  0.0090  0.0071  
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It is observed that the heuristic and meta-heuristic algorithms proposed in this chapter are 

quite accurate since all the mean error percentages are less than 0.1%. Furthermore, GA has 

the best performance and NEH has the worst performance. From the results of the 

branch-and-bound algorithm it reveals that, for the problem proposed in this chapter, it is 

easier to obtain the optimal solution in terms of the mean number of nodes when the learning 

effect strengthens. However, the standard deviation of the number of nodes exceeds its mean 

for all the cases, which implies that there are worst cases with a tremendous number of nodes. 

Therefore, the quartile of 25%, 50%, and 75% for the number of nodes is evaluated and 

recorded as Q1, Q2, and Q3. The observations show that the distribution for the number of 

nodes is right skewed because most of the mean numbers of nodes are relatively large to Q3, 

and it implies that most of the instances have fewer nodes. For the same instances, the 

box-plot of logarithm scale for the number of nodes with different parameters for the learning 

effect as 90%, 80%, and 70% is shown in Fig 3.1, 3.2, and 3.3, respectively. The figures 

illustrate that the number of nodes and the execution time grow exponentially with an 

increasing number of jobs. 

Fig 3.1. Box-plot for logarithm scale with learning effect as 70% 
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Fig 3.2. Box-plot for logarithm scale with learning effect as 80% 
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Fig 3.3. Box-plot for logarithm scale with learning effect as 90% 
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In order to investigate the influence of outliers, the number of outliers for each 

experimental condition is listed in Table 3.3, where the number of nodes for given instance 

which exceeds the value of Q3 1.5+ (Q3−Q1) is recorded as the outlier. The outliers are 

eliminated and the performance of the branch-and-bound algorithm is shown in Table 3.4. 

Table 3.4. The performance of branch-and-bound algorithm 
of different parameters after outliers elimination 

          Branch and  bound algorithm 
   Number of nodes     CPU times 

n m a Mean s.d. Mean s.d. 
12 3 90% 355.9  435.2  0.022  0.026  
  80% 307.0  298.7  0.021  0.022  
  70% 268.7  252.9  0.019  0.018  
 5 90% 1912.0  2334.1  0.204  0.237  
  80% 761.0  858.6  0.090  0.089  
  70% 287.0  317.0  0.036  0.040  

14 3 90% 2431.5  3104.2  0.195  0.234  
  80% 2605.9  3474.3  0.210  0.272  
  70% 801.0  964.7  0.075  0.084  
 5 90% 5655.6  6874.0  0.853  0.946  
  80% 2009.5  2020.1  0.328  0.307  
  70% 1800.1  1840.8  0.317  0.319  

16 3 90% 7586.8  10851.7  0.771  1.032  
  80% 6814.2  9770.4  0.712  0.981  
  70% 3646.5  5035.8  0.426  0.568  
 5 90% 33524.6  49524.8  6.176  8.746  
  80% 10837.8  12194.7  2.415  2.769  
  70% 5519.6  6149.3  1.198  1.251  

18 3 90% 

 

115505.8  174775.7  11.263  16.210  
  80% 36878.3  51417.1  4.025  5.316  
  70% 18440.8  23462.5  2.079  2.605  
 5 90% 566117.6  1071722.1  82.906  144.164  
  80% 67915.4  82120.5  14.043  16.320  
  70% 20391.9  28773.9  4.521  5.776  
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Table 3.4 illustrates that the means and the standard deviations for the number of nodes 

and execution time are all reduced by a wide margin after eliminating the outliers. Eventually, 

since the quantity of outliers is less than 20% of all instances for each experimental condition 

in this chapter, we recommend to conduct the proposed branch-and-bound algorithm for 

obtaining the optimal solution within a reasonable amount of time, or conduct the proposed 

heuristic and meta-heuristic algorithms for obtaining near-optimal solutions when the number 

of jobs is larger than 18. 

To indicate the performance of the proposed heuristic and meta-heuristic algorithms for 

large job-sized problems with learning considerations, we use three different job sizes (n= 50, 

100 and 150), four different machine sizes (m= 5, 10, 15, and 20) and three learning effects 

(90 %, 80%, and 70%) to yield the near-optimal solutions. The mean and the standard 

deviation of relative percentage deviation (RPD) are reported for each heuristic algorithm. For 

each instance, the RPD is obtained with respect to the best one of all near-optimal solutions 

generated by the heuristic and meta-heuristic algorithms. i.e., min

min

V VRPD
V
−

= , where V 

denotes the value of the makespan generated by the given heuristic or meta-heuristic 

algorithm and minV  denotes the minimal one among the values of the makespan generated by 

the heuristic and meta-heuristic algorithms. Consequently, 36 experimental conditions are 

examined, and 100 replications are randomly generated for each condition. A total of 3,600 

instances are generated and the results are listed in Table 3.5. 
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Table 3.5. The relative percentage deviation of heuristic algorithms 
   Relative percentage deviation (RPD) 
   NEH FL SA GA 

n m a mean s.d. mean s.d. mean s.d. mean s.d. 
50 5 90% 0.0479 0.0268 0.0142 0.0074 0.0133 0.0100 0.0009 0.0029 

  80% 0.0493 0.0167 0.0379 0.0130 0.0172 0.0117 0.0000 0.0004 
  70% 0.0720 0.0254 0.0654 0.0194 0.0195 0.0166 0.0005 0.0023 
 10 90% 0.0877 0.0322 0.0179 0.0113 0.0138 0.0109 0.0010 0.0027 
  80% 0.0677 0.0279 0.0413 0.0159 0.0151 0.0111 0.0003 0.0015 
  70% 0.0787 0.0235 0.0610 0.0250 0.0126 0.0112 0.0010 0.0038 
 15 90% 0.0975 0.0243 0.0185 0.0130 0.0161 0.0122 0.0012 0.0034 
  80% 0.0694 0.0247 0.0429 0.0188 0.0130 0.0096 0.0006 0.0022 
  70% 0.0766 0.0217 0.0584 0.0171 0.0117 0.0112 0.0010 0.0028 
 20 90% 0.1013 0.0243 0.0204 0.0145 0.0182 0.0121 0.0006 0.0020 
  80% 0.0689 0.0212 0.0432 0.0184 0.0125 0.0112 0.0003 0.0015 
    70% 0.0727 0.0203 0.0587 0.0200 0.0079 0.0086 0.0007 0.0020 

100 5 90% 0.0350 0.0159 0.0175 0.0052 0.0106 0.0067 0.0004 0.0016 
  80% 0.0524 0.0175 0.0437 0.0107 0.0144 0.0091 0.0001 0.0012 
  70% 0.0832 0.0234 0.0747 0.0178 0.0184 0.0115 0.0001 0.0012 
 10 90% 0.0750 0.0243 0.0165 0.0079 0.0127 0.0082 0.0003 0.0011 
  80% 0.0662 0.0204 0.0466 0.0128 0.0158 0.0083 0.0000 0.0003 
  70% 0.0932 0.0193 0.0731 0.0197 0.0135 0.0098 0.0003 0.0016 
 15 90% 0.0956 0.0266 0.0182 0.0090 0.0122 0.0086 0.0001 0.0008 
  80% 0.0734 0.0210 0.0481 0.0166 0.0132 0.0082 0.0002 0.0011 
  70% 0.0916 0.0179 0.0665 0.0163 0.0117 0.0091 0.0004 0.0015 
 20 90% 0.1036 0.0200 0.0183 0.0097 0.0117 0.0083 0.0003 0.0010 
  80% 0.0760 0.0212 0.0501 0.0154 0.0121 0.0077 0.0001 0.0010 
    70% 0.0871 0.0201 0.0655 0.0193 0.0068 0.0076 0.0017 0.0046 

150 5 90% 0.0291 0.0132 0.0197 0.0052 0.0082 0.0058 0.0005 0.0024 
  80% 0.0448 0.0136 0.0477 0.0090 0.0122 0.0084 0.0006 0.0030 
  70% 0.0894 0.0252 0.0774 0.0155 0.0164 0.0086 0.0001 0.0005 
 10 90% 0.0655 0.0200 0.0180 0.0065 0.0101 0.0065 0.0002 0.0007 
  80% 0.0653 0.0175 0.0497 0.0119 0.0121 0.0061 0.0001 0.0009 
  70% 0.1006 0.0162 0.0782 0.0175 0.0141 0.0117 0.0002 0.0011 
 15 90% 0.0902 0.0208 0.0187 0.0064 0.0098 0.0063 0.0001 0.0010 
  80% 0.0721 0.0180 0.0495 0.0147 0.0119 0.0065 0.0001 0.0006 
  70% 0.0978 0.0156 0.0698 0.0189 0.0113 0.0082 0.0006 0.0017 
 20 90% 0.0992 0.0195 0.0180 0.0068 0.0098 0.0062 0.0002 0.0009 
  80% 0.0739 0.0177 0.0515 0.0142 0.0116 0.0067 0.0000 0.0004 
    70% 0.0940 0.0175 0.0696 0.0200 0.0101 0.0082 0.0002 0.0007 
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In Table 3.5, the value of RPD from GA is the minimal one among all heuristic and 

meta-heuristic algorithms for every experiment condition. The observation shows that GA is 

more accurate than the other three algorithms. However, as all the RPD values are greater 

than zero, it implies that there is no any algorithm which completely dominates the others. 

From the values of RPD for the heuristic and meta-heuristic algorithms, one-way analysis of 

variance (ANOVA) with a significance of 5% is applied to test that the mean values of RPD 

are all the same among the heuristic and meta-heuristic algorithms or whether at least one 

differs from the others. The results are given in Table 3.6.  

 

Table 3.6. One-way ANOVA for RPD of four heuristics  

Source DF SS  MS F p-value 

Factor 3 0.124511 0.041504 199.66 0.000 
Error 140 0.029101 0.000208   

Total 143 0.153612    

 

Since the p-value is below the significance level, it implies that the mean values of RPD 

are not all identical. Therefore, the efficiency among the heuristic and meta-heuristic 

algorithms should be considered. Furthermore, the Tukey test with a significance of 5% is 

implemented to compare the values of RPD among the heuristic and meta-heuristic 

algorithms. The results of Tukey test are summarized in Table 3.7.  
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Table 3.7. Tukey-test results of four heuristics 

FL subtracted from:  

 Lower Center Upper 

NEH 0.02331 0.03215 0.04100 

SA -0.04009 -0.03124 -0.02240 

GA -0.05249 -0.04365 -0.03481 

NEH subtracted from: 

 Lower Center Upper 

SA -0.07224 -0.06340 -0.05455 

GA -0.08465 -0.07580 -0.06696 

SA subtracted from: 

 Lower Center Upper 
GA -0.02125 -0.01241 -0.00356 

The test results imply that GA is the best among the four algorithms, follows by SA and FL, 

and finally NEH. Thus, the proposed genetic algorithm is recommended to obtain the 

near-optimal solution for proposed problem in this chapter. 

 

3.5 Summary 

This chapter examines an m-machine flowshop problem with position-based learning 

effects where the aim is to minimize the makespan. A dominance property and a lower bound 

are proposed to conduct a branch-and-bound procedure for optimizing the proposed problem. 

In addition, this chapter also introduces the learning effect to two well-known existing 

heuristic and two meta-heuristic algorithms for approximating the proposed problem. The 

computational results show that the branch-and-bound algorithm can solve problems of up to 

18 jobs within a reasonable amount of time, and demonstrate that GA performs best for small 

job-sized problems. Meanwhile, for large job-sized problems, GA also has identical 

performance. Therefore, we recommend the proposed genetic algorithm to obtain the 

near-optimal sequence. 
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Chapter 4 

Bi-criteria minimization for m-machine flowshop 

scheduling problem with machine- and position-based 

learning effects 

4.1 Notations and problem statement 

The following notations are applied throughout this chapter. 

N : Set of jobs which contains n jobs, i.e., {1,2, , }N n= 
. 

S : Subset of N  with s  scheduled jobs. 

U : Subset of N  with n s−  unscheduled jobs. 

m : Number of machines. 

iM : ith machine, where 1,2, ,i m= 
. 

jJ : Job j, where 1,2, ,j n= 
. 

ijp : Normal processing time of jJ  on iM . 

ijrp : Actual processing time of jJ  on iM  when jJ  is scheduled at position r. 

ia : Learning index on iM  with 0ia∀ <  for 1, 2, ,i m= 
. 

[ ]: The symbol which denotes the job order in a sequence. 

α : The weight of the objective function with 0 1α≤ ≤ . 

LB : The lower bound of the objective value based on the given node. 

 

The description of the problem with machine- and position-based learning effects in an 

m-machine flowshop environment is described as follows. Assume that there is a jobs set N 

with n jobs to be processed on m machines. Each jJ  includes m operations on 
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corresponding machines which denoted as ,i jO  for 1, 2, ,i m= 
 and 1,2, ,j n= 

. For the 

processing procedure, the starting time of ,i jO  must be the larger completion time of 1,i jO −  

and , 1i jO − . In addition, the sequence of jobs is identical on all the machines. Let ijp  denote 

the normal processing time of jJ  on iM . The actual processing time ijrp  of jJ  on iM  

declines based on its position r in a sequence, i.e., 

ia
ijr ijp p r= ,  

where 1, 2,...,i m= , and , 1, 2,...,j r n= . 

The aim of this chapter is to seek a sequence for minimizing a weighted sum of the total 

completion time and the makespan. For a given sequence θ  with n jobs, let [ ] ( )i rC θ  

denotes the completion time at the rth position on iM  in sequence θ . The objective of this 

chapter is to obtain a sequence θ ∗  such that 

[ ] [ ] [ ] [ ]
1 1

( ) (1 ) ( ) ( ) (1 ) ( )
n n

m j m n m j m n
j j

C C C Cα θ α θ α θ α θ∗ ∗

= =

+ − ≤ + −∑ ∑  for any sequence θ  of all 

permutations. 

 

4.2 Dominance property 

A rule is represented in the following theorem which distinguishing the dominance 

between two varied sequences concluding same jobs. 

Theorem 4.1: There are two partial sequences of set N, that is 1 1( , )θ σ π=  and 2 2( , )θ σ π= , 

in which 1σ  and 2σ  denotes the partial sequence of set S, and π  denote a partial sequence 

of set U. If [ ] { }[ ] 2 [ ] 1 [ ] 1 [ ] 211
( ) ( ) ( 1) 1 max ( ) ( )

s

m j m j i s i si mj
C C n s C Cα σ σ α σ σ

≤ ≤
=

 − > − − + − ∑ , then 1θ  

dominates 2θ . 
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Proof: 

For 1,2, ,k m= 
, we have 

1

1

[ ] 1 ,[ 1] 1 [ ] ,[ 1] 1 [ ]1
( ) max ( ) ( ) ( ) ( )u u

k k
a a

k n i n u n i n u ni k u i u i
C C p n C p nθ θ θ− −≤ ≤

= =

 = + = + 
 

∑ ∑  for 11 i k≤ ≤ . 

Similarly, 

2

2

[ ] 2 [ 1] 2 [ ]( ) ( ) ( ) u

k
a

k n i n u n
u i

C C p nθ θ−
=

= +∑  for 21 i k≤ ≤ . 

Then we have 

1 1

1 1

[ ] 1 [ ] 2 [ 1] 1 [ ] ,[ 1] 2 [ ]( ) ( ) ( ) ( ) ( ) ( )u u

k k
a a

k n k n i n u n i n u n
u i u i

C C C p n C p nθ θ θ θ− −
= =

   
− ≤ + − +   

   
∑ ∑  

{ }[ 1] 1 [ 1] 21
max ( ) ( )i n i ni m

C Cθ θ− −≤ ≤
≤ − . 

By an induction, for k m= , we have 

{ }[ ] 1 [ ] 2 ,[ ] 1 ,[ ] 21
( ) ( ) max ( ) ( )m s l m s l i s i si m

C C C Cθ θ σ σ+ + ≤ ≤
− ≤ − ..………………………..……….........(4-1) 

, where 1 l n s≤ ≤ − . 

From equation (4-1), we have 

[ ] 1 [ ] 1 [ ] 2 [ ] 2
1 1

( ) (1 ) ( ) ( ) (1 ) ( )
n n

m j m n m j m n
j j

C C C Cα θ α θ α θ α θ
= =

   
+ − − + −   

   
∑ ∑  

[ ] { }[ ] 1 [ ] 2 [ ] 1 [ ] 211
( ) ( ) ( 1) 1 max ( ) ( )

s

m j m j i s i si mj
C C n s C Cα σ σ α σ σ

≤ ≤
=

 ≤ − + − − + − ∑ .…………..(4-2) 

From  

[ ] { }[ ] 2 [ ] 1 [ ] 1 [ ] 211
( ) ( ) ( 1) 1 max ( ) ( )

s

m j m j i s i si mj
C C n s C Cα σ σ α σ σ

≤ ≤
=

 − > − − + − ∑ , 

the value for the left side of equation (4-2) is negative and it implies 1θ  dominates 2θ . 

Therefore, we have 1σ  dominates 2σ . 

In this chapter, the theorem is simplified as the property which requires considering two 

adjacent jobs. The property is applied in the proposed branch-and-bound algorithm and 
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presented below. 

Property 4.1: In set S, let σ  denote a partial sequence with 2s −  jobs, and the remained 

jobs are scheduled in the last two positions as 1J  and 2J . The two sequences based on σ  

are represented as 1 1 2( , , )S J Jσ=  and 2 2 1( , , )S J Jσ= , and ( )
jiJ lC S  denotes the 

completion time of jJ  on iM  in lS  for , 1, 2j l =  and 1,2, ,i m= 
. If 

[ ] { }2 1 1 2 2 12 2 1 1 1 21
( ) ( ) ( ) ( ) ( 1) 1 max ( ) ( )mJ mJ mJ mJ iJ iJi m

C S C S C S C S n s C S C Sα α
≤ ≤

 + − − > − − + −  , 

then 1S  dominates 2S . 

 

4.3 Lower bound 

In addition to dominance property, another procedure to eliminate nodes in branching 

tree is calculating the lower bound of the objective value. In this chapter, a lower bound is 

established to speed up the procedure of the proposed branch-and-bound algorithm. The lower 

bound is descried as follows. 

Let θ  denote a sequence with s scheduled and n s−  unscheduled jobs of set N. For 

1 k m≤ ≤ , the completion time of ( 1)ths +  job on kM  is as 

{ }[ 1] 1[ 1] [ ] [ 1]( ) max ( ), ( ) ( 1) ka
k s k s k s k sC C C p sθ θ θ+ − + += + +  

[ ] [ 1]( ) ( 1) ka
k s k sC p sθ +≥ + + . 

Thus, the completion time of ( 1)ths +  job on mM  is presented as 

[ 1] [ ] [ 1] [ 1]
1

( ) ( ) ( 1) ( 1)k i

m
a a

m s k s k s i s
i k

C C p s p sθ θ+ + +
= +

≥ + + + +∑ . 

Furthermore, the completion time of ( 2)ths +  job on kM  is as 
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{ }[ 2] 1[ 2] [ 1] [ 2]( ) max ( ), ( ) ( 2) ka
k s k s k s k sC C C p sθ θ θ+ − + + += + +  

[ ] [ 1] [ 2]( ) ( 1) ( 2)k ka a
k s k s k sC p s p sθ + +≥ + + + +  

Thus, the completion time of ( 2)ths +  job on mM  is as 

2

[ 2] [ ] [ ] [ 2]
1 1

( ) ( ) ( ) ( 2)k i

m
a a

m s k s k s v i s
v i k

C C p s v p sθ θ+ + +
= = +

≥ + + + +∑ ∑ . 

By an induction, we have the underestimated value of the completion time for ( )ths l+  job 

on mM  based on kM  machine as 

[ ] [ ] [ ]
1 1

( ) ( ) ( )k i

l m
a a

k s k s v i s l
v i k

C p s v p s lθ + +
= = +

+ + + +∑ ∑  

The objective function is presented as  

1

[ ] [ ] [ ] [ ] [ ]
1 1 1

( ) (1 ) ( ) ( ) ( ) ( )
n s n

m j m n m j m j m n
j j j s

C C C C Cα θ α θ α θ α θ θ
−

= = = +

+ − = + +∑ ∑ ∑ . 

[ ] [ ][ ] [ ] [ ]
1 1

( ) ( 1) 1 ( ) ( ) 1 ( ) k

s n s
a

m j k s k s l
j l

C n s C n s l s l pα θ α θ α
−

+
= =

≥ + − − + + − − + +∑ ∑  

[ ] [ ]
1 1

( ) ( ) i

n s m
a

i s l
l i k

I l p s lα
−

+
= = +

 + + + 
 

∑ ∑  

, where 
 1 ,   

( )
 0,         

l n s
I l

l n s
α− = −

=  ≠ −
. 

Since [ ]( ) 1 ( ) kan s l s lα − − + +  decreases as l increases, then we have 

[ ] [ ]
1

( ) (1 ) ( )
n

m j m n
j

C Cα θ α θ
=

+ −∑  

[ ] [ ][ ] [ ] ( )
1 1

( ) ( 1) 1 ( ) ( ) 1 ( ) k

s n s
a

m j k s k s l
j l

C n s C n s l s l pα θ α θ α
−

+
= =

≥ + − − + + − − + +∑ ∑  

[ ] [ ]
1 1

( ) ( ) i

n s m
a

i s l
l i k

I l p s lα
−

+
= = +

 + + + 
 

∑ ∑ ……………(4-3) 

where ( )k s lp +  denotes the lth smallest normal processing time on kM  of the job in set U. 

To minimize the final term of equation (4-3), a Hungarian algorithm is applied and the 
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matrix for it is formed as follows. 

{ 1} { 1} { 1} { 1}
1 1 1 1

{ 2} { 2} { 2} { 2}
1 1 1 1

{ }
1

( 1) ( 2) ( 1) ( )

( 1) ( 2) ( 1) ( )

( 1)

i i i i

i i i i

i

m m m m
a a a a

i s i s i s i s
i k i k i k i k

m m m m
a a a a

i s i s i s i s
i k i k i k i k

m
a

i n i
i k

p s p s p n p n

p s p s p n p n

p s p

α α α

α α α

α α

+ + + +
= + = + = + = +

+ + + +
= + = + = + = +

= +

+ + −

+ + −

+

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑





    

{ } { } { }
1 1 1

( 2) ( 1) ( )i i i

m m m
a a a

n i n i n
i k i k i k

s p n p nα
= + = + = +

 
 
 
 
 
 
 
 
 + −
  

∑ ∑ ∑

,  

where { }i s lp +  is the normal processing time on iM  of the jobs in set U for 1 l n s≤ ≤ − .Let 

kH  denote the optimal value of the proposed Hungarian algorithm. Therefore, the 

underestimated value of the objective function for θ  based on kM  is as 

[ ] [ ][ ] [ ] ( )
1 1

( ) ( 1) 1 ( ) ( ) 1 ( ) k

s n s
a

m j k s k s l k
j l

C n s C n s l s l p Hα θ α θ α
−

+
= =

+ − − + + − − + + +∑ ∑ . 

In order to make the lower bound stricter, the underestimated value based on every machine is 

considered and the lower bound is obtained as 

[ ] [ ][ ] [ ] ( )11 1
( ) max ( 1) 1 ( ) ( ) 1 ( ) k

s n s
a

m j k s k s l kk mj l
LB C n s C n s l s l p Hα θ α θ α

−

+≤ ≤
= =

 = + − − + + − − + + + 
 

∑ ∑  

 

4.4 Computational results 

In the procedure of proposed heuristic algorithms, the jobs with larger total processing 

time (i.e. 
1

m

ij
i

p
=
∑ for 1, 2, ,j n= 

) have higher priority to be selected in NEH  ,while 

smaller in FL . In addition, since the machine- and position-based learning effects are 

considered in this chapter, the ratios of the reduction for the actual processing time are varied 

on different machines. Therefore, _NEH W  and _FL W  are adapted from NEH  and 

FL by utilizing the weighted total processing time (i.e. 
1

m

i ij
i

w p
=
∑ for 1, 2, ,j n= 

) to 

determine the priority of the jobs, in which the machines with weaker learning effect have 
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larger weight. For example, here are three machine-based learning indices as 1 0.322a = − , 

2 0.152a = −  and 3 0.515a = − . Then the weights are set as 1 2w = , 2 3w =  and 3 1w = . 

Several computational experiments are implemented in this chapter to assess the 

performance of the branch-and-bound and the heuristic algorithms. All the algorithms are 

coded in Fortran 90 and run on a personal computer with 2.89 GHz AMD Athlon ™ II X4 635 

Processor and 3.25GB RAM with Windows XP. The normal processing times of all 

operations are generated from a discrete uniform distribution over the integers 1 to 100. 

Moreover, in order to discuss the influence on the proposed algorithms for different 

assignments of learning effects under the same learning indices set, five learning patterns 

denoted as Ran, Inc, Dec, SL and WL are proposed and expressed as follows. 

Ran: The learning effects are randomly assigned to the machines. 

Inc: The stronger learning effects are assigned to the rear machines. 

Dec: The weaker learning effects are assigned to the rear machines 

SL: The stronger learning effects are assigned to the machines with the larger value of 
1

n

ij
j

p
=
∑  

for 1, 2, ,i m= 
. 

WL: The weaker learning effects are assigned to the machines with the larger value of 
1

n

ij
j

p
=
∑  

for 1, 2, ,i m= 
. 

The learning indices set of all computational experiments in this chapter is shown in Table 

4.1. 
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Table 4.1. The index set of the learning effects 

  Number of machines 

  5 7 10 15 

learning indices 

-0.152 -0.152 -0.152 -0.152 

-0.234 -0.218 -0.188 -0.175 

-0.322 -0.269 -0.225 -0.199 

-0.415 -0.322 -0.263 -0.222 

-0.515 -0.377 -0.302 -0.247 

 -0.434 -0.342 -0.271 

 -0.515 -0.383 -0.296 

  -0.426 -0.322 

  -0.469 -0.348 

  -0.515 -0.374 

   -0.401 

   -0.429 

   -0.457 

   -0.485 

   -0.515 

 

The computational experiments consist of three parts. In the first part, the influence of 

different α  on the branch-and-bound algorithm is evaluated. The number of jobs and 

machines is set as 10 and 5, respectively. Then 100 replications are randomly generated. 

Consequently, a total of 100 examples are generated to be tested. In addition, 51 different α  

are given with values from 0 to 1 with an increment as 0.02, i.e., 0,  0.02,  0.04, ,  1α = 
. The 

five learning patterns and 51 different α  are considered in each example and the results are 

illustrated in Figs 4.1 and 4.2.  
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Fig 4.1. The number of nodes for the branch-and-bound algorithm under different α  ( 10n = ) 

 
 

In Fig 4.1, the mean numbers of nodes for all experimental conditions are illustrated. It is 

observed that the problem proposed in this chapter is easier to solve as α  increases with 

respect to the trend of the mean number of nodes. The reason is that the property and the 

lower bound are more efficient in the branch-and-bound algorithm with larger α . 

Furthermore, Dec is the easiest among five learning patterns for seeking the optimal solution, 

and Inc is the worst. In addition, the optimal objective values for five learning patterns are 

discussed. Then the relative percentage deviation for five learning patterns is denoted as 

ORPD  and its mean is illustrated in Fig 4.2. For each example, the ORPD  is calculated as  

min

min

100%λ λ
λ
−

× , 

where λ  denotes the optimal objective value under one of five given learning patterns, and 

minλ  is the minimum among all λ . It is observed that the optimal objective value under SL 

is the lowest among five learning patterns, followed by Inc, Ran and Dec, and finally WL. 
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However, there is no determined priority among five learning patterns since all mean ORPD  

are larger than zero. 

Fig 4.2. The relative percentage deviation of the learning patterns for the optimal objective value under 

different α  ( 10n = ) 

 

 

In the second part of the computational experiments, the numbers of jobs are set as 12, 

14 and 16, and numbers of machines are set as 5 and 7. Furthermore, three α  are given as 

0.25, 0.50 and 0.75. Then 100 replications are randomly generated. Hence, a total of 1800 

examples are generated to be tested in which the five learning patterns are considered. Then 

the results are listed in Tables 4.2 to 4.6. 
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Table 4.2. The performance of the branch-and-bound algorithm 
       0.25α =      0.50α =      0.75α =  
          Number of nodes      Cpu times        Number of nodes      Cpu times        Number of nodes      Cpu times 

n m Pattern mean max mean max mean max mean max mean max mean max 
12 5 Ran 1550.43  9213  1.84  8.34  1145.36  8605  1.55  8.63  901.69  6087  1.36  7.14  

  Inc 3992.39  34418  2.66  19.56  2548.42  14103  1.98  10.08  1893.09  10818  1.65  7.86  
  Dec 429.49  3109  0.40  2.09  347.98  3010  0.37  1.98  297.70  2682  0.34  1.78  
  SL 1561.97  10346  1.01  4.20  1170.21  10062  0.88  4.02  969.24  7022  0.79  3.30  
  WL 1045.37  11976  0.86  4.97  755.21  7559  0.73  4.58  612.87  6531  0.66  4.09  
                             
 7 Ran 2328.46  19105  1.32  9.09  1624.33  22124  1.08  10.16  1049.45  12119  0.88  5.38  
  Inc 6377.07  54718  5.68  25.11  3816.40  25625  4.19  20.97  2713.35  18196  3.45  17.97  
  Dec 635.63  6673  0.89  6.38  486.78  5711  0.80  5.70  363.18  3977  0.71  5.39  
  SL 1920.45  10152  2.03  8.16  1278.22  6932  1.67  7.67  983.96  7241  1.45  7.92  
  WL 1277.90  10061  1.70  10.41  871.76  6145  1.38  7.09  709.46  5993  1.22  7.05  
                              

14 5 Ran 8397.72  97712  13.43  99.28  5727.28  56055  10.91  74.48  4845.95  46274  9.82  73.30  
  Inc 31883.81  418776  44.54  372.50  17452.31  169405  30.27  216.80  13144.88  97435  25.12  175.41  
  Dec 1769.26  12080  3.22  16.92  1374.09  9108  2.94  17.28  1179.42  10186  2.76  17.73  
  SL 10382.89  115578  12.64  55.16  6689.93  49969  10.17  44.33  5140.81  28730  8.80  43.48  
  WL 3992.79  38389  10.23  84.28  2948.51  28213  8.34  67.02  2563.70  25591  7.50  62.02  
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 7 Ran 16271.02  142636  32.37  290.52  9917.81  122468  24.74  274.36  7584.29  99124  21.15  244.52  
  Inc 74506.94  1980840  102.24  981.52  32558.74  322750  67.46  399.08  20916.03  124587  52.36  355.20  
  Dec 3317.76  87609  7.91  148.41  2486.66  74205  6.95  139.94  1767.69  47392  5.95  108.64  
  SL 12229.56  86179  23.97  123.91  8137.72  42532  19.40  99.19  6565.91  35383  17.09  89.53  
  WL 8076.68  158484  22.38  389.20  5646.80  105127  17.57  280.86  4478.99  76297  15.16  224.95  
                              

16 5 Ran 105044.01  2408452  349.62  4578.30  55620.78  600087  246.60  2274.17  39622.63  426218  201.16  1909.00  
  Inc 201758.16  2061604  514.57  3209.59  120521.06  1270538  350.70  2457.27  93087.06  1411099  288.07  2618.19  
  Dec 7520.64  107243  24.58  200.00  5155.33  41868  21.69  156.70  4148.91  37436  19.70  140.19  
  SL 66831.54  626475  233.56  1304.53  43107.35  360252  186.24  931.81  35647.61  289344  166.05  888.14  
  WL 31332.85  957031  103.05  1421.47  20896.89  575854  78.99  992.58  16706.67  402084  68.83  781.89  
                             
 7 Ran 116674.80  2455027  238.17  3462.94  69780.49  1029782  167.75  2050.94  48757.11  674012  201.16  1909.00  
  Inc 740132.88  5188924  2252.10  16791.42  383647.16  4065895  1369.95  13054.45  263149.47  3726265  1034.44  11907.66  
  Dec 18756.10  145112  83.65  545.95  13486.31  101862  73.19  504.02  11616.93  89494  67.83  524.33  
  SL 105188.86  1447154  185.16  1820.66  62497.38  842215  130.71  864.78  44370.55  531122  108.13  666.53  
  WL 55492.39  1245433  287.12  6346.81  36222.31  1007826  218.60  5101.81  29516.95  783194  188.49  4129.69  
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The mean and maximum number of nodes, and the mean and maximum CPU times (in 

seconds) of the branch-and-bound algorithm are reported in Table 4.2. It reveals that the 

number of nodes and the execution times increase significantly as the number of jobs or 

machines increases since the problem proposed in this chapter is NP-hard. The optimal 

solution is easier to be sought for the proposed problem with a larger α  in terms of the 

number of nodes and CPU times. Furthermore, the problem under Dec is the easiest among 

the five learning patterns to be solved, and Inc is the worst. Moreover, the branch-and-bound 

algorithm can deal with the problems with up to 16 jobs within a reasonable amount of time. 

In order to discuss the priority over five learning patterns for obtaining lower optimal 

objective value, the mean and maximum ORPD  are recorded for all computational 

conditions in Table 4.3. As shown in Table 4.3, it reveals that the optimal objective value 

under SL is the lowest among five learning patterns, follows by Inc, Ran and Dec, and finally 

WL. It implies that assigning the stronger learning effect to the machine with the heavier 

workload might obtain a lower optimal objective value. 
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Table 4.3. The comparison among five learning patterns for the optimal objective 

value  
        ORDP  
       0.25α =      0.50α =      0.75α =  

n m Patten mean max mean max mean max 
12 5 Ran 0.089  0.297  0.078  0.275  0.073  0.267  
  Inc 0.049  0.292  0.046  0.275  0.044  0.267  
  Dec 0.125  0.356  0.109  0.324  0.103  0.310  
  SL 0.007  0.046  0.006  0.041  0.005  0.039  
  WL 0.161  0.346  0.144  0.316  0.137  0.303  
                 
 7 Ran 0.070  0.195  0.063  0.167  0.060  0.163  
  Inc 0.025  0.119  0.024  0.105  0.024  0.103  
  Dec 0.125  0.237  0.109  0.217  0.103  0.212  
  SL 0.007  0.064  0.006  0.057  0.005  0.057  
  WL 0.136  0.301  0.121  0.273  0.115  0.264  
                  

14 5 Ran 0.099  0.392  0.090  0.346  0.086  0.327  
  Inc 0.054  0.200  0.050  0.197  0.048  0.194  
  Dec 0.132  0.392  0.117  0.346  0.111  0.327  
  SL 0.006  0.067  0.005  0.046  0.005  0.037  
  WL 0.171  0.398  0.155  0.351  0.148  0.332  
                 
 7 Ran 0.083  0.327  0.075  0.296  0.071  0.288  
  Inc 0.022  0.157  0.022  0.136  0.021  0.126  
  Dec 0.141  0.330  0.125  0.299  0.119  0.288  
  SL 0.006  0.056  0.005  0.039  0.004  0.038  
  WL 0.157  0.328  0.141  0.295  0.135  0.282  
                  

16 5 Ran 0.095  0.271  0.086  0.247  0.083  0.239  
  Inc 0.068  0.301  0.063  0.286  0.061  0.279  
  Dec 0.136  0.413  0.122  0.376  0.117  0.365  
  SL 0.006  0.060  0.005  0.054  0.005  0.052  
  WL 0.180  0.416  0.166  0.379  0.160  0.369  
                 
 7 Ran 0.084  0.276  0.075  0.250  0.072  0.242  
  Inc 0.031  0.183  0.029  0.167  0.028  0.158  
  Dec 0.128  0.411  0.116  0.371  0.111  0.357  
  SL 0.008  0.068  0.007  0.061  0.007  0.061  
  WL 0.158  0.405  0.143  0.364  0.137  0.349  
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For the proposed heuristic algorithms, the mean and maximum error percentages under 

different α  are reported in Tables 4.4 to 4.6. The CPU times are not presented since all 

heuristic algorithms for each example are executed within a second. The error percentage of 

the given heuristic algorithm is calculated as  

* 100%V V
V

∗−
× , 

where V and ∗V  respectively denotes the near-optimal objective value yielded by the 

heuristic algorithm, and the optimal objective value derived by the branch-and-bound 

algorithm. In addition, min{ , _ }NEH NEH W  denotes the better one of NEH  and 

_NEH W  for the given example, and min{ , _ }FL FL W  as well denotes the better one of 

FL  and _FL W .  
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Table 4.4. The performance of the heuristic algorithms ( 0.25α = ) 

      Error percentages 

      NEH    NEH_W min{NEH,NEH_W}    FL   FL_W min{FL,FLW} 

n m Patten mean max mean max mean max mean max mean max mean max 

12 5 Ran 0.051  0.132  0.059  0.134  0.045 0.110 0.011  0.067  0.012  0.067  0.008 0.067 

  Inc 0.033  0.097  0.037  0.105  0.029 0.097 0.010  0.056  0.012  0.054  0.007 0.045 

  Dec 0.062  0.144  0.065  0.201  0.052 0.144 0.010  0.043  0.009  0.060  0.006 0.030 

  SL 0.055  0.138  0.057  0.138  0.046 0.126 0.015  0.060  0.017  0.049  0.011 0.049 

  WL 0.045  0.134  0.054  0.155  0.039 0.134 0.008  0.066  0.009  0.068  0.006 0.066 

                         
 7 Ran 0.046  0.141  0.052  0.150  0.040 0.097 0.015  0.054  0.014  0.058  0.010 0.054 

  Inc 0.042  0.102  0.043  0.113  0.035 0.085 0.015  0.064  0.015  0.060  0.011 0.058 

  Dec 0.057  0.152  0.056  0.131  0.045 0.102 0.010  0.059  0.011  0.072  0.006 0.037 

  SL 0.051  0.140  0.051  0.115  0.041 0.110 0.014  0.049  0.016  0.066  0.011 0.039 

  WL 0.048  0.122  0.049  0.112  0.041 0.112 0.011  0.043  0.011  0.041  0.007 0.037 

                          
14 5 Ran 0.050  0.110  0.058  0.136  0.045 0.095 0.012  0.044  0.011  0.065  0.008 0.040 

  Inc 0.034  0.093  0.039  0.108  0.030 0.093 0.010  0.044  0.011  0.052  0.007 0.035 

  Dec 0.069  0.147  0.075  0.146  0.060 0.121 0.011  0.046  0.011  0.056  0.007 0.043 

  SL 0.058  0.152  0.063  0.152  0.049 0.120 0.016  0.057  0.019  0.065  0.011 0.037 

  WL 0.050  0.139  0.058  0.136  0.045 0.114 0.008  0.041  0.008  0.049  0.005 0.033 

                         
 7 Ran 0.051  0.101  0.054  0.178  0.042 0.101 0.014  0.049  0.014  0.084  0.010 0.037 
  Inc 0.041  0.101  0.047  0.097  0.035 0.082 0.016  0.056  0.018  0.070  0.012 0.046 

  Dec 0.063  0.154  0.065  0.169  0.053 0.132 0.012  0.044  0.012  0.062  0.008 0.037 

  SL 0.057  0.140  0.057  0.131  0.049 0.131 0.017  0.063  0.020  0.071  0.013 0.046 

  WL 0.047  0.097  0.054  0.116  0.043 0.093 0.010  0.046  0.012  0.094  0.007 0.045 
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16 5 Ran 0.061  0.182  0.069  0.164  0.054 0.122 0.013  0.069  0.014  0.069  0.010 0.069 

  Inc 0.041  0.147  0.043  0.155  0.035 0.079 0.011  0.049  0.011  0.061  0.008 0.044 

  Dec 0.079  0.177  0.084  0.169  0.069 0.167 0.011  0.039  0.011  0.045  0.008 0.035 

  SL 0.069  0.163  0.074  0.162  0.059 0.129 0.019  0.087  0.021  0.066  0.014 0.049 

  WL 0.055  0.177  0.062  0.161  0.049 0.104 0.007  0.029  0.009  0.042  0.005 0.024 

                         
 7 Ran 0.058  0.147  0.061  0.133  0.049 0.127 0.014  0.060  0.016  0.061  0.011 0.060 

  Inc 0.040  0.109  0.049  0.103  0.037 0.089 0.017  0.069  0.016  0.062  0.012 0.062 

  Dec 0.069  0.159  0.068  0.139  0.057 0.134 0.014  0.052  0.014  0.041  0.010 0.041 

  SL 0.066  0.181  0.064  0.168  0.054 0.132 0.020  0.068  0.024  0.069  0.015 0.048 

  WL 0.055  0.127  0.062  0.150  0.049 0.108 0.012  0.046  0.012  0.061  0.009 0.046 

                          
 

Table 4.5. The performance of the heuristic algorithms ( 0.50α = ) 

      Error percentages 

      NEH    NEH_W min{NEH,NEH_W}    FL   FL_W min{FL,FLW} 

n m Patten mean max mean max mean max mean max mean max mean max 

12 5 Ran 0.056  0.153  0.063  0.146  0.049 0.128 0.010  0.065  0.012  0.064  0.008 0.064 

  Inc 0.035  0.090  0.041  0.118  0.031 0.090 0.011  0.047  0.011  0.049  0.008 0.043 

  Dec 0.066  0.173  0.069  0.167  0.056 0.167 0.009  0.051  0.009  0.049  0.006 0.041 

  SL 0.049  0.142  0.054  0.138  0.042 0.138 0.013  0.049  0.014  0.048  0.010 0.048 

  WL 0.049  0.145  0.055  0.154  0.043 0.128 0.006  0.033  0.008  0.068  0.004 0.025 

                         
 7 Ran 0.050  0.137  0.051  0.153  0.041 0.106 0.015  0.060  0.013  0.063  0.010 0.046 

  Inc 0.042  0.106  0.042  0.111  0.035 0.085 0.014  0.053  0.013  0.051  0.010 0.049 

  Dec 0.063  0.181  0.057  0.136  0.048 0.118 0.010  0.050  0.010  0.050  0.007 0.050 

  SL 0.052  0.137  0.051  0.130  0.042 0.125 0.013  0.051  0.015  0.049  0.010 0.037 
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  WL 0.050  0.137  0.052  0.134  0.042 0.120 0.012  0.069  0.012  0.074  0.009 0.060 

                          
14 5 Ran 0.056  0.124  0.062  0.161  0.048 0.104 0.013  0.056  0.012  0.056  0.008 0.047 

  Inc 0.038  0.093  0.043  0.137  0.033 0.086 0.012  0.045  0.011  0.045  0.009 0.045 

  Dec 0.079  0.169  0.085  0.186  0.068 0.156 0.011  0.044  0.011  0.064  0.007 0.028 

  SL 0.058  0.129  0.066  0.151  0.051 0.122 0.016  0.064  0.019  0.082  0.012 0.055 

  WL 0.056  0.139  0.063  0.161  0.048 0.105 0.008  0.044  0.008  0.065  0.005 0.037 

                         
 7 Ran 0.051  0.117  0.055  0.115  0.044 0.115 0.012  0.043  0.014  0.054  0.010 0.037 

  Inc 0.041  0.116  0.046  0.107  0.036 0.090 0.016  0.063  0.016  0.063  0.012 0.063 

  Dec 0.068  0.173  0.067  0.173  0.056 0.161 0.010  0.054  0.012  0.051  0.008 0.043 

  SL 0.058  0.138  0.056  0.144  0.047 0.138 0.016  0.049  0.018  0.069  0.013 0.049 

  WL 0.051  0.111  0.055  0.116  0.045 0.095 0.011  0.073  0.011  0.067  0.008 0.067 

                          
16 5 Ran 0.067  0.203  0.072  0.185  0.058 0.135 0.013  0.063  0.014  0.073  0.010 0.060 

  Inc 0.047  0.139  0.047  0.161  0.039 0.093 0.012  0.072  0.013  0.051  0.009 0.051 

  Dec 0.088  0.196  0.090  0.167  0.076 0.167 0.013  0.059  0.011  0.068  0.008 0.047 

  SL 0.071  0.164  0.075  0.172  0.060 0.131 0.019  0.074  0.021  0.147  0.014 0.047 

  WL 0.061  0.196  0.068  0.161  0.054 0.117 0.008  0.038  0.008  0.041  0.005 0.025 

                         
 7 Ran 0.061  0.150  0.065  0.148  0.053 0.144 0.014  0.061  0.014  0.048  0.010 0.046 

  Inc 0.044  0.095  0.048  0.098  0.038 0.088 0.016  0.057  0.014  0.062  0.011 0.057 

  Dec 0.074  0.157  0.072  0.179  0.062 0.157 0.013  0.048  0.013  0.053  0.008 0.038 

  SL 0.066  0.146  0.065  0.177  0.055 0.146 0.019  0.059  0.019  0.073  0.013 0.040 

  WL 0.061  0.143  0.069  0.151  0.056 0.133 0.012  0.058  0.013  0.052  0.008 0.039 
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Table 4.6. The performance of the heuristic algorithms ( 0.75α = ) 

      Error percentages 

      NEH    NEH_W min{NEH,NEH_W}    FL   FL_W min{FL,FLW} 

n m Patten mean max mean max mean max mean max mean max mean max 

12 5 Ran 0.058  0.159  0.064  0.157  0.050 0.132 0.012  0.064  0.011  0.044  0.008 0.044 

  Inc 0.036  0.086  0.039  0.092  0.031 0.081 0.011  0.044  0.011  0.053  0.008 0.035 

  Dec 0.069  0.149  0.070  0.170  0.057 0.122 0.009  0.052  0.009  0.044  0.006 0.030 

  SL 0.056  0.179  0.057  0.144  0.047 0.144 0.013  0.046  0.016  0.055  0.010 0.041 

  WL 0.052  0.146  0.058  0.187  0.045 0.114 0.006  0.050  0.007  0.059  0.005 0.038 

                         
 7 Ran 0.050  0.137  0.052  0.133  0.042 0.109 0.013  0.051  0.013  0.046  0.009 0.043 

  Inc 0.042  0.104  0.041  0.091  0.034 0.081 0.013  0.064  0.012  0.051  0.010 0.051 

  Dec 0.067  0.191  0.057  0.137  0.050 0.129 0.009  0.040  0.009  0.041  0.006 0.037 

  SL 0.054  0.143  0.052  0.132  0.042 0.130 0.014  0.060  0.015  0.045  0.010 0.043 

  WL 0.053  0.132  0.051  0.145  0.043 0.130 0.011  0.057  0.011  0.047  0.008 0.044 

                          
14 5 Ran 0.057  0.131  0.064  0.131  0.050 0.109 0.013  0.054  0.012  0.050  0.008 0.045 

  Inc 0.039  0.103  0.043  0.105  0.034 0.083 0.012  0.040  0.013  0.059  0.009 0.040 

  Dec 0.081  0.180  0.082  0.199  0.068 0.159 0.011  0.048  0.011  0.053  0.007 0.044 

  SL 0.060  0.137  0.066  0.154  0.050 0.127 0.017  0.084  0.018  0.057  0.012 0.043 

  WL 0.058  0.146  0.063  0.140  0.049 0.112 0.009  0.061  0.009  0.061  0.006 0.061 

                         
 7 Ran 0.051  0.126  0.056  0.152  0.044 0.126 0.013  0.047  0.013  0.050  0.010 0.042 
  Inc 0.043  0.120  0.045  0.103  0.036 0.103 0.017  0.060  0.016  0.058  0.013 0.056 

  Dec 0.068  0.180  0.068  0.178  0.056 0.167 0.010  0.045  0.011  0.067  0.007 0.045 

  SL 0.058  0.126  0.057  0.151  0.047 0.125 0.016  0.053  0.019  0.065  0.012 0.053 

  WL 0.053  0.118  0.055  0.119  0.045 0.100 0.011  0.073  0.011  0.047  0.007 0.047 
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16 5 Ran 0.069  0.222  0.071  0.173  0.059 0.153 0.016  0.091  0.014  0.056  0.010 0.042 

  Inc 0.048  0.151  0.048  0.164  0.040 0.094 0.012  0.064  0.013  0.039  0.008 0.035 

  Dec 0.089  0.207  0.090  0.179  0.075 0.149 0.011  0.043  0.011  0.068  0.008 0.032 

  SL 0.072  0.169  0.074  0.172  0.060 0.144 0.020  0.076  0.022  0.160  0.014 0.076 

  WL 0.064  0.207  0.071  0.167  0.056 0.126 0.010  0.076  0.010  0.042  0.006 0.037 

                         
 7 Ran 0.063  0.157  0.065  0.155  0.054 0.151 0.014  0.046  0.015  0.055  0.010 0.044 

  Inc 0.045  0.097  0.046  0.110  0.038 0.094 0.015  0.054  0.016  0.067  0.011 0.043 

  Dec 0.076  0.161  0.075  0.189  0.064 0.161 0.013  0.042  0.013  0.053  0.009 0.035 

  SL 0.067  0.159  0.065  0.182  0.056 0.159 0.018  0.074  0.020  0.074  0.014 0.074 

  WL 0.063  0.150  0.070  0.161  0.057 0.139 0.014  0.055  0.014  0.054  0.010 0.035 
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As shown in Tables 4.4 to 4.6, it is observed that all heuristic algorithms proposed in this 

chapter are quite accurate since the error percentages are all less than 0.1%. For evaluating the 

influence on the performance of the heuristic algorithms, several two-way analysis of variance 

(ANOVA) with a significance of 5% of the mean error percentage under each heuristic 

algorithm are conducted and the results are reported in Table 4.7. 

Table 4.7. Two-way ANOVA of the error percentages for all heuristic algorithms 
Heuristic algorithm Source DF SS MS F p-value 

NEH α  2 0.0004311  0.0002155  5.08  0.009  
 Learning patterns 4 0.0089166  0.0022292  52.50  0.000  
 Interaction 8 0.0001122  0.0000140  0.33  0.952  
 Error 75 0.0031847  0.0000425    
  Total 89 0.0126446        

NEH_W α  2 0.0001460  0.0000730  1.21  0.304  
 Learning patterns 4 0.0735550  0.0018389  30.46  0.000  
 Interaction 8 0.0000621  0.0000078  0.13  0.998  
 Error 75 0.0045283  0.0000604    
  Total 89 0.0120920        

min{NEH,NEH_W} α  2 0.0001948  0.0000974  2.43  0.095  
 Learning patterns 4 0.0056230  0.0014058  35.04  0.000  
 Interaction 8 0.0000657  0.0000082  0.20  0.989  
 Error 75 0.0030085  0.0000401    
  Total 89 0.0088921        

FL α  2 0.0000008  0.0000004  0.08  0.919  
 Learning patterns 4 0.0004772  0.0001193  25.31  0.000  
 Interaction 8 0.0000074  0.0000009  0.20  0.991  
 Error 75 0.0003535  0.0000047    
  Total 89 0.0008389        

FL_W α  2 0.0000075  0.0000039  0.90  0.412  
 Learning patterns 4 0.0007590  0.0001898  43.70  0.000  
 Interaction 8 0.0000071  0.0000009  0.20  0.989  
 Error 75 0.0003257  0.0000043    
  Total 89 0.0010996        

min{FL,FL_W} α  2 0.0000002  0.0000001  0.03  0.970  
 Learning patterns 4 0.0003397  0.0000849  33.00  0.000  
 Interaction 8 0.0000030  0.0000004  0.14  0.997  
 Error 75 0.0001930  0.0000026    
  Total 89 0.0005358        
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As shown in Table 4.7, it is observed that α  doesn’t have a significant effect on the accuracy 

for all heuristic algorithms except NEH. Then it is shown in Tables 4.4 to 4.6 that the mean 

error percentage of NEH descends as α  decreases, and the reason is that the NEH is initially 

devoted to solving the makespan problem. Furthermore, it reveals that the learning pattern has 

a significant effect on the accuracy for all proposed heuristic algorithms. A close observation 

of Tables 4.4 to 4.6 shows that Inc is the most accurate under NEH, NEH_W and 

min{NEH,NEH_W}, and Dec is the least accurate. Meanwhile, SL is the most accurate under 

FL, FL_W and min{FL,FL_W}, and WL is the least. In addition, there is no interaction 

between α  and the learning patterns for all heuristic algorithms. Moreover, it is shown that 

min{NEH,NEH_W} is more accurate than NEH and NEH_W, and min{FL,FL_W} is more 

accurate than FL and FL_W. It implies that there is no priority between two methods of index 

development utilized in the proposed heuristic algorithms. Eventually, min{FL,FL_W} is the 

most accurate among all heuristic algorithms, followed by FL and FL_W, min{NEH,NEH_W}, 

and finally NEH and NEH_W. 

    In the last part of the computational experiments, the examples with large size of jobs are 

generated to perform the heuristic algorithms proposed in this chapter. Let α  be set as 0.50 

since most of the proposed heuristic algorithms are not affected by α  for the statistical 

analysis in Table 4.7. Additionally, the numbers of jobs are set as 50 and 100, and numbers of 

machines are set as 10 and 15. Then 100 replications are randomly generated. A total of 400 

examples are generated to be tested in which five learning patterns are considered in each 

example. Consequently, the relative percentage deviation for all heuristic algorithms is 

denoted as HRPD , and its mean and maximum values are listed in Table 4.8. For each 

example, the HRPD  is calculated as  

min

min

100%µ µ
µ
−

× , 
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where µ  denotes the near-optimal objective value for given one of all heuristic algorithms, 

and minµ  is the minimum among all µ . As shown in Table 4.8 that FL and FL_W are both 

better than min{NEH,NEH_W} in terms of the HRPD . It implies that the heuristic algorithm 

proposed by Framinan and Leisten [11] is more proper than the algorithm proposed by Nawaz 

et al. [23] to obtain the near-optimal solution for the problem proposed in this chapter. Finally, 

it is observed that min{FL,FL_W} is the most accurate of all proposed heuristic algorithms 

because of that the HRDP  are all zero. Therefore, min{FL,FL_W} is recommended to yield 

the near-optimal schedule for the problem proposed in this chapter. 
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Table 4.8. The comparison of the heuristic algorithms for large job-sized problem ( 0.50α = ) 
   HRPD  
      NEH    NEH W min{NEH,NEH W}   FL   FL W min{FL,FLW} 

n m Pattern mean max mean max mean max mean max mean max mean max 
50 10 Ran 0.072  0.143  0.073  0.133  0.064 0.106 0.004  0.053  0.004  0.030  0.000 0.008 
  Inc 0.043  0.078  0.047  0.083  0.039 0.074 0.003  0.035  0.003  0.035  0.000 0.000 
  Dec 0.095  0.137  0.075  0.129  0.073 0.128 0.004  0.037  0.003  0.026  0.000 0.000 
  SL 0.073  0.135  0.071  0.117  0.064 0.117 0.004  0.027  0.007  0.047  0.000 0.000 
  WL 0.070  0.146  0.067  0.119  0.061 0.119 0.004  0.027  0.003  0.024  0.000 0.000 
                         
 15 Ran 0.062  0.127  0.060  0.114  0.053 0.108 0.006  0.038  0.003  0.028  0.000 0.000 
  Inc 0.037  0.077  0.040  0.072  0.033 0.068 0.005  0.029  0.004  0.035  0.000 0.004 
  Dec 0.078  0.135  0.061  0.123  0.059 0.123 0.004  0.021  0.003  0.022  0.000 0.000 
  SL 0.065  0.107  0.059  0.107  0.054 0.106 0.005  0.029  0.004  0.024  0.000 0.000 
  WL 0.063  0.143  0.060  0.108  0.054 0.108 0.004  0.030  0.002  0.026  0.000 0.000 
                          

100 10 Ran 0.080  0.133  0.081  0.136  0.072 0.116 0.004  0.028  0.004  0.034  0.000 0.000 
  Inc 0.055  0.090  0.057  0.091  0.052 0.079 0.003  0.023  0.002  0.024  0.000 0.000 
  Dec 0.102  0.155  0.079  0.129  0.078 0.129 0.004  0.019  0.002  0.013  0.000 0.000 
  SL 0.089  0.133  0.087  0.132  0.082 0.132 0.003  0.018  0.004  0.029  0.000 0.000 
  WL 0.075  0.137  0.077  0.130  0.069 0.117 0.004  0.020  0.002  0.024  0.000 0.000 
                         
 15 Ran 0.073  0.132  0.068  0.109  0.065 0.103 0.005  0.047  0.002  0.021  0.000 0.000 
  Inc 0.048  0.079  0.052  0.083  0.045 0.071 0.004  0.029  0.002  0.018  0.000 0.000 
  Dec 0.093  0.135  0.067  0.113  0.067 0.113 0.004  0.021  0.002  0.015  0.000 0.000 
  SL 0.073  0.117  0.068  0.105  0.063 0.102 0.004  0.022  0.003  0.022  0.000 0.000 
  WL 0.071  0.120  0.068  0.121  0.064 0.105 0.005  0.029  0.002  0.025  0.000 0.000 
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4.5 Summary 

In this chapter, an m-machine flowshop scheduling problem with machine- and 

position-based learning effects is studied to minimize the weighted sum of the total 

completion time and the makespan. The branch-and-bound algorithm incorporated with a 

dominance property and a lower bound is proposed to seek the optimal sequence, and four 

heuristic algorithms are established to yield the near-optimal sequences. As shown in the 

computational results, the proposed problem can be dealt with up to 16 jobs within a 

reasonable amount of time for seeking the optimal sequence. When the learning pattern is set 

as Inc, or if α  is smaller, the proposed problem is harder to search for the optimal sequence 

by implementing the proposed branch-and-bound algorithm. Furthermore, the performances 

of all proposed heuristic algorithms are accurate and min{FL,FL_W} is recommended to 

obtain the near-optimal sequence. Finally, the issue for allocating the learning effects to the 

machines is discussed in this chapter, and it is shown that assigning the stronger learning 

effects to the machines with the heavier workload might obtain the better result, and it can be 

utilized as an important course for decision making in the scheduling field, such as assigning 

the operators to the machines. 
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Chapter 5 

Concluding remarks 

5.1. Conclusion 

In this dissertation, two m-machine flowshop problems with position-based learning 

effect are studied. For each problem, a dominance property and a lower bound are proposed to 

conduct a branch-and-bound algorithm for obtaining the optimal sequences. In addition, 

because searching the optimal sequence for large job-sized problem is time consuming, this 

dissertation introduces learning effect into two well-known existing heuristic and two 

meta-heuristic algorithms to obtain the near-optimal sequences. Then the optimal sequence for 

small job-sized problems is utilized to assess the accuracy of the proposed heuristic and 

meta-heuristic algorithms. The computational experiment shows that 

 Assigning the stronger learning effects to the machines with the heavier workload might 

obtain the better result. 

 The optimal solution for the traditional flowshop scheduling problem is no longer 

optimal when the learning effect exists in the production environment. 

 The branch-and-bound algorithm can solve problems of up to 18 jobs within a 

reasonable amount of time. 

 We recommend to conduct the proposed branch-and-bound algorithm for obtaining the 

optimal sequence within a reasonable amount of time, or conduct the proposed heuristic 

and meta-heuristic algorithms for obtaining near-optimal sequences when the number of 

jobs is larger than 18. 

 The heuristic and meta-heuristic algorithms proposed in this dissertation are quite 

accurate since all the mean error percentages are less than 0.1%. 

 GA is recommended to derive the near-optimal sequence when the execution time is not 
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considered. Otherwise, the min{FL,FL_W} is recommended. 

 The efficiency of the branch-and-bound algorithm enhances while the machines have 

stronger learning effects or a decreasing trend of learning effects. 

 The number of nodes and the execution time grow exponentially with an increasing 

number of jobs because of the proposed problems are NP-hard problems. 

 

5.2 Suggestions for further studies 

Some possible suggestion could be investigated for further studies and listed as follows. 

 The actual processing time of the job in the proposed model could be divided into two 

parts, those are the setup time with the learning consideration and the normal processing 

time without the learning consideration, in which the setup time is operated by the 

worker, and the normal processing time is operated by the machine. 

 Other objective functions could be discussed, like minimizing total tardiness, minimizing 

the number of tardy jobs, and so on. 

 The concept of multiple-agent could be introduced into the proposed scheduling 

problems. 

 Developing the constructive heuristic algorithms or meta-heuristic algorithms to derive 

better near-optimal sequence. 

 Searching for more practical learning model. 

 The sum-of-processing- time-based learning effect could be studied. 
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