b2
| 4-
K
=
Ju
W

|
e
-
ﬁ?
%
o)
I
%

LR S S A N £ R SR)

BN NS)

Scheduling Problems to Minimize Makespan and Total
Completion Time in Flowshop Environment with
Learning Effects

a8 ;E 4 %_’I ‘J xw

R R K

L3RV RF AN AR B RIPFFER

.
e

AR A A)
Scheduling Problems to Minimize Makespan and Total

Completion Time in Flowshop Environment with
Learning Effects

L R 1 Student : Yu-Hsiang Chung
hERR D ERE K Advisor : Dr. Lee-Ing Tong
EIE ORI Dr. Ruey-Yun Horng

A Dissertation
Submitted to Department of Industrial Engineering and Management
College of Management
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Industrial Engineering and Management
November 2011

Hsinchu, Taiwan, Republic of China

Al P AR Rt EEY > I TR g IR YR TS F e kPR ¢ Fl1 vt Btk
St 1ER @ i R F M Al A | FEAF AR UL (Tt e B @Sk
1 iFE e 1 PR G FI RGBT % 5 TR RGP EAABARR Lt mn T F Y ok
(Learning effect) ;o & ¥ »c% 7 A28 5 A Ay 285 Tiksc1 g R ez B 2n%k
(Position-based learning effect) | ¥ I f& ¢ <40 pF B o B 2 & ¥ o %
(Sum-of-processing-time-based learning effect) ;- t~ B AR ZE? > A B2 F Y
AT UEBPT R Y g B ik I ERRZ F Y xR S B e g
VAR Pl AR AR R LR R R Y ok o L PRI E G B ok
SOPEAR R AR AN HE B RUE o R AR R AR o F S 2 ABRB RS R
ARV A AR HRP 32 RfFcvfefd 3 H 480 A RARRNRE o p b > & F B ARR
2 pend REAEPIITERHAERE P EE | L f R FRIFET P ol s &
SRIFFERR AT o Flpt AR SR IER R F Y ok Fits B 5B
FeN A AR F- BREXTTTIR TR S PRI A AR

a

él}

Fdc] v % - R 3R K'KZFE'%PJZFE‘E%’%??%:%’—?—! i A E 2
AR R i N = 1 AT L
A HI L FR O R AR URE I RERGREAE > RFEE AR

BT R e R U E R Rk S (E R g S PR AT A]

A R LA N R RV RS A TR kA RE TR 1S A H
F 4Ty R B F R T D R IR E Y Rk A R UR X 2 R Rk
PR SRR 2 2 B S A L RO T R R R R A P
BHEE? REL A GEA LY L3 FY kg > TP FadcE bt R
P P RS EE S PR RN E Y R H AR RN SRERENE FEFORE A
EREERAEPE AR UFE 2 LR B E Y oank g R p ot o pob s A uE
B i A RN fOTwEanE i 0 B o AN AR R LR 2 REER A
FREAIERELG FIPLAGBYERAREFALGS AR UFE 2 AL BT

F\ ‘}/E’/; 1\%5, i#k}:\” ’ E] %3’ ui"q/ﬁ—n/f 1\‘%”/#&}?1{’ ° ﬁ’sfb ’ ?/nuﬁi'\"‘; }ii%i’y% F’.ﬁﬁ&

~

‘;__ Eb#ﬂ/"\% H—:‘mifﬁlfﬁ %—?33 “b 4 53‘?7'71}'&]?5#};]/__]_ 1 /F‘aﬁ;{’\ mﬁ&‘;_j y;‘; LE’E'J

LR S

B4 AR 2 A PAR ~ F Y ork B = 1P

o3
e
A
[}
oS
Bl

Scheduling Problems to Minimize Makespan and Total
Completion Time in Flowshop Environment with Learning
Effects

Students: Yu-Hsiang Chung Advisor: Dr. Lee-Ing Tong
Dr. Ruey-Yun Horng

Department of Industrial Engineering and Management,
National Chiao Tung University

ABSTRACT

In traditional scheduling problems, the processing time for a given job is assumed to be a
fixed constant no matter the scheduling order of the job. However, it is noticeable that the job
processing time declines as workers-gain more experience. This phenomenon is called the
“learning effect”. The learning effect is extensively studied in scheduling field recently, and it
can be classified into two types: “the position-based learning” and “the sum-of-processing-
time-based learning”. The two types of learning ~effect can be considered alone or
simultaneously in a scheduling problem.” The position-based learning is studied in this
dissertation because of its model is the pure learning model in theory. In addition, most of the
studies on the learning effect are focused only on single-machine setting. However, numerous
real-world industrial problems belong to flowshop scheduling problems, and dealing with the
flowshop scheduling problems is more complex than dealing with the single-machine
problems. Most scheduling problems aim at determining an optimal sequence to minimize the
objective function. The makespan and total completion time are the objective functions that
are often studied. As a result, this dissertation discusses two flowshop scheduling problems
with position-based learning effect. The learning effects are identical on all machines, and the
purpose is to minimize the makespan in the first problem. The learning effects are distinct for

different machines, and the purpose is to minimize the weighted sum of total completion time

and makespan in the second problem.

In this dissertation, the branch-and-bound algorithm is proposed to seek the optimal
sequence for the small job-sized problem. Then the dominance properties and lower bounds
are proposed to accelerate the procedure of the branch-and-bound algorithm. For the large
job-sized problem, two well-known heuristic algorithms, simulated annealing and genetic
algorithm are utilized to yield the near-optimal sequence. In the end, the simulated
experiments are examined to assess the performance of the algorithms proposed in this
dissertation. The computational results of the proposed problems reveal that the objective
value calculated from the optimal sequence under the traditional environment is larger than
the optimal objective value in the environment with learning considerations. It implies the
influence of the learning effect is.notable for the problems proposed in this dissertation.
Furthermore, the efficiency of.the branch-and-bound algorithm ascends as the learning effect
enhances while seeking the optimal sequence. The proposed genetic algorithm has the best
performance among all heuristic and meta-heuristic algorithms in terms of the accuracy. In
addition, due to the large variance and the right skewness for the distribution of the execution
time, the branch-and-bound algorithm' isirecommended to obtain the optimal sequence in a
reasonable amount of time, or to derive the near-optimal sequence from the proposed genetic
algorithm. Eventually, assigning the operator with stronger learning effect to the machine with
heavier workload might derive smaller objective value while the operators are allocated in the

flowshop environment.

Keywords: Flowshop scheduling; Learning effect; Makespan; Total completion time.

SR E o 1Ty

LR ARREH B RE RRE ERI KRS ZEF

Efadp RSN EFY 510 2B S RAOIFREAR R AR P F {4
B A o s A R LV B30 Fgen@® A RF ko fi ke &0 R
SRS EEEE P

MmE MR T RL R WP R T oRRE 150 kRLAHBYF R
AR XS PR AERE W RGN AR R 2 2 RRE YA
~ FTenfE i o

Mg B ¢ ¥ P Ad N iR B 4

WEAE & L2 bRk 4

2 A
~ J ﬁ.y_b

L BN, & sk g L4 A 4E
_‘—_3-;3/ o) e 1—1\.71 %m ;}f]—}iﬁt@—, 'E;\. ;;Ef @F 'Em%m k=2
T oVt BRB- EH }gﬁﬁﬂﬁ#_f?émmﬁuq&-)

ﬁmﬁpg#gﬁ;&g\»ﬁ R S G S A
M 20 S PR L ST TG S ot LA RO A
FoEAGHE RAD SRR

s AR ok
-]— ’i’i\mf?
B

Ho A ENRE B S K 5L o PTG FTE A L
Bgsrivahy 4 > 3 3§«

IR o

’ ‘I |] EST

Contents

Abstract (in Chinese)
Abstract (in English)
Acknowledgements (in Chinese)
List of Tables

List of Figures

Chapter 1 Introduction
1.1 Research motivation
1.2 Literature review

1.3 Research objectives and methodologies

Chapter 2 Algorithms
2.1 Branch-and-bound algorithms
2.2 Heuristic algorithms

2.3 Meta-heuristic algorithms

viii

o wWw = P

12
12
15
17

Chapter 3 Makespan minimization for m-machine flowshop scheduling

problem with position-based learning effects
3.1 Notations and problem statement
3.2 Dominance property
3.3 Lower bound
3.4 Computational results

3.5 Summary

Vi

22
22
23
25
28
38

Chapter 4 Bi-criteria minimization for m-machine flowshop scheduling

problem with machine- and position-based learning effects 39
4.1 Notations and problem statement 39
4.2 Dominance property 40
4.3 Lower bound 42
4.4 Computational results 44
4.5 Summary 63

Chapter 5 Concluding remarks 64
5.1. Conclusion 64
5.2 Suggestions for further studies 65

References 66

vii

Table 3.1.

List of Tables

The influence of the learning effect on optimal solution

28

Table 3.2. The performance of the property and the lower bound for the branch-and-bound

algorithm

29

Table 3.3. The performance of branch-and-bound algorithm and heuristic algorithms of

different parameters

31

Table 3.4. The performance of branch-and-bound algorithm of different parameters after

outliers elimination

Table 3.5.

Table 3.6.

Table 3.7.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

Table 4.8.

The relative percentage deviation of heuristic algorithms

One-way ANOVA for.RPD of four heuristics

Tukey-test results of four-heuristics

The index set of.the learning effects

The performance 'of the branch-and-bound algorithm

The comparison among five learning. patterns for the optimal objective value
The performance of the heuristic algorithms (a =0.25)

The performance of the heuristic algorithms (« =0.50)

The performance of the heuristic algorithms (a =0.75)

Two-way ANOVA of the error percentages for all heuristic algorithms

The comparison of the heuristic algorithms for large job-sized problem

viii

34

36

37

38

46

49

52

54

55

57

59

62

List of Figures

Fig 2.1. The flowchart of the proposed branch-and-bound algorithm 14
Fig 2.2. The flowchart of the proposed genetic algorithm 21
Fig 3.1. Box-plot for logarithm scale with learning effect as 70% 32
Fig 3.2. Box-plot for logarithm scale with learning effect as 80% 33
Fig 3.3. Box-plot for logarithm scale with learning effect as 90% 33
Fig 4.1. The number of nodes for branch-and-bound algorithm under different « 47

Fig 4.2. The relative percentage deviation of the learning patterns for the optimal objective

value under different « 48

Chapter 1

Introduction

In manufacturing and service industries, the scheduling problem is an important field of
decision-making. In a narrow sense, the meaning of scheduling is to set the priorities of tasks
for optimizing certain objectives. Due to the arising of global industrialization, many
researchers and practitioners devote to study the scheduling problems, and the meaning of
scheduling is extended to assign limited resources to the tasks for optimizing certain
objectives. The resources of scheduling problems are manpower, raw materials, and facilities
and so on. In fact, an inaccurate scheduling policy may lead to crucial loss of capacity or
goodwill. Since the competition of marketplace grows rapidly, an effective scheduling policy

plays a critical role for making profit for an enterprise:

1.1 Research motivation

In traditional scheduling problems, it is assumed that all the job processing times are
fixed and known (Pinedo [29]; Smith [32]). However, job processing times frequently decline
as workers gather working knowledge and experience. For example, processing similar tasks
continuously improves worker’s skills and helps them perform their jobs efficiently (Biskup
[1]). This phenomenon is known as the “learning effect.” The influence of learning on
productivity for aircraft industry manufacturing was first observed by Wright [44], in which
the processing time of a unit declines by 20% with every redoubling output and this
phenomenon is called as 80% hypothesis. Afterward, the learning effect was affirmed in

numerous industries such as the manufacturing and service industries (Yelle [48]).

The phenomenon of learning in Wright [44] is presented as p,, = pk® ,where pg,

denotes the actual processing time for each unit when the output requires k units, in which the

actual processing times of all units are identical; p denotes the normal processing time of a
unit which is given before starting the process; and a denotes the learning index which is

equal or less than zero and depended on the learning rate R. For the 80% hypothesis (i.e.

R=0.8), it is shown that p,, =0.8p,,, and it implies that p(2k)* =0.8pk®, and then the
learning index a is derived as log,0.8=-0.322. Therefore, the learning index a is set as

log, R when the processing time of a unit decreases by 100(1-R)% with redoubling output.

Subsequently, Biskup [1] applied the concept of Wright [44] and created a famous learning
model by assuming every job is a unit even when the processing times are different among all
jobs. Therefore, the actual processing time is based on the scheduled position of the job in the
model proposed in Biskup [1].

In terms of the occurrence for the learning effect in the production activities, Biskup [2]
stated that an inherent characteristic of the production environments with the learning effect is
a high level of human activities, and these-activities are presented as follows,

e Allkinds of handicratft,

e Operating and controlling the machines,

e Setting up the machines,

e Maintaining the machine,

e Cleaning the machines,

e Removing the failure of the machines.

Hence, the learning effect occurs when the production activity belongs to the short-term
planning. In addition, the learning effect also takes place if the production environments alter
and some examples are presented as follows,

e Dealing with the jobs that have never been produced before,

e Hiring new employees,

e The procedure of the processes changes,

e Operating the equipments which are replaced or updated.
However, the influence of the learning should decline after a certain period of time because of
the improvement for operator’s skill is limited.

The learning effect has received significant attention in scheduling field recently. In the
literature with regard to the learning effect, most studies focus on single-machine setting. The
discussion of flowshop scheduling problems is rarely seen. Practically, in many
manufacturing and assembly facilities, numbers of operations have to be done on every job
and this production environment is modeled as flowshop. Therefore, in this dissertation, we

intend to study the flowshop scheduling problems with learning effects.

1.2 Literature review

Biskup [1] is a pioneer to introduce a-learning.model into scheduling problems in which
the actual processing time of a job decreases when the job-is late scheduled. He examined the
problems associated with minimizing the deviation from.a common due date and the sum of
flow times in a single-machine environment,~and- demonstrated that the problems are
polynomially solvable. Subsequently, numerous studies have considered this novel and
extended region. Cheng et al. [6] developed a model with learning effect in which actual job
processing time is based on the total normal job processing time and the position of schedule
on a single machine. They then demonstrated that the makespan and total completion time
problems are polynomially solvable, and demonstrated that the problems for minimizing
weighted completion time and maximum lateness are polynomially solvable with certain
agreeable conditions. Janiak and Rudek [16] introduced a multi-ability learning effect into a
makespan single-machine scheduling problem. They established polynomial time algorithms
to optimize the special cases of the problem they proposed. Furthermore, Biskup [2] presented

a detailed review of scheduling problems with learning effect. Particularly, he classified the

existing models into two distinct groups: the position-based learning and the
sum-of-processing-time-based learning. The position-based learning is influenced by the
number of jobs processed. Meanwhile, the sum-of-processing-time-based learning considers
the processing time of the jobs processed to date.

In the position-based learning model, Lee et al. [23] studied a single-machine scheduling
problem with release times under learning consideration. They proposed a branch-and-bound
and a heuristic algorithm to obtain the optimal and near-optimal solution for minimizing the
makespan. Zhu et al. [51] studied two single-machine group scheduling problems. The job
processing time is a function of job position, group position and the amount of resources
assigned to the group. They verified that minimizing the weighted sum of the makespan and
the total resource cost remains -polynomial solvable. Furthermore, Wang et al. [39]
investigated a single machine scheduling problem in'which the setup time and learning effect
are considered, and the setup ‘times are past-sequence-dependent. They showed that the
problems to minimize the sum of quadratic job completion time, the total waiting time, the
total absolute differences in waiting time, and the 'sum of earliness penalties subject to no
tardy jobs, are polynomially solvable. Wang et al. [37] studied a single-machine problem with
learning effect and discounted cost. They showed that the shortest processing time first (SPT)
rule is the optimal policy for minimizing the discounted total completion time. They then
illustrated an example to demonstrate that the discounted weighted shortest processing time
first (WDSPT) rule is not the optimal policy for minimizing the discounted total weighted
completion time. In addition, Mosheiov and Sidney [28] developed a learning model in which
the learning effects are different depend on the jobs. They formulated the makespan
scheduling problem with the job-dependent learning effects as an assignment problem and
conducted a Hungarian method to solve the problem. And then Koulamas [18] proved that the
problem proposed by Mosheiov and Sidney [28] can be solved in O(nlogn) times under

certain agreeable condition. Furthermore, Janiak and Rudek [14] proposed a new learning

effect model in which the rigorous constraints of the position-dependent approach are relaxed
by assuming that each job creates a different experience for the processor. They also
described the shape of the learning curve using a k-stepwise function. Hence, the diversified
learning functions can be fitted by a mathematical model. Janiak and Rudek [15] proposed a
new experience-based learning model where the job processing times are described by
“S”-shaped functions and are dependent on the experience of the processor. They
demonstrated that the makespan problem on a single processor is NP-hard or strongly
NP-hard, and then provided a number of polynomially solvable cases. In addition, Huang et al.
[13] investigated two resources constrained single-machine group scheduling problems in
which the learning effect and deteriorating jobs are considered simultaneously. They proposed
polynomial solutions under certain. constraints to-minimize the makespan and the resource
consumption, respectively. Lee and Lai [20] considered both the effect of learning and
deterioration in a scheduling model. The actual job processing time is a function on the
processing times of scheduled jobs-and its position in the schedule. They showed that some
single-machine scheduling problems remain polynomial solvable. Toksari [33] addressed a
single-machine scheduling problem with unequal release times for minimizing the makespan,
in which the learning effect and the deteriorating jobs are concurrently considered. Several
dominance criteria and the lower bounds are established to facilitate the branch-and-bound
algorithm for deriving the optimal solution. Furthermore, Eren and Guner [9] studied a
bi-criteria scheduling problem with a learning effect in an m-identical parallel machine
environment, and the objective function is to minimize the weighted sum of the total
completion time and total tardiness. They constructed a mathematical programming model to
solve the problem. Toksari and Guner [34] considered a parallel machine earliness/tardiness
scheduling problem involving different penalties under the effect of position-based learning
and deterioration, and demonstrated that the optimal sequence is a V-shaped schedule under

certain agreeable conditions.

As for the sum-of-processing-time-based learning model, Koulamas and Kyparisis [17]
pointed out that employees learn more when executing jobs with a longer processing time.
They introduced a sum-of-job-processing-time-based learning effect scheduling model and
demonstrated that the makespan and the total completion time problems for the single
machine and two-machine flowshop with ordered job processing times are polynomially
solvable. Wu et al. [45] studied a total weighted completion time problem on a single machine
with learning effect and ready times. A branch-and-bound algorithm was proposed to derive
the optimal sequence, and the simulated annealing algorithm was implemented to obtain the
near-optimal sequence. Furthermore, Cheng et al. [5] introduced a learning effect model on a
single machine in which the actual job processing time is derived from the sum of the
logarithm of the processing times of jobs-already processed, and they show that the makespan
and total completion time problems-are polynomially solvable. Cheng et al. [4] proposed a
two-agent scheduling problem with a truncated sum-of-processing-time-based learning effect
on a single machine. A branch-and-bound algorithm was utilized to obtain the optimal
solution for minimizing the total weighted completion time for the jobs of the first agent
subject to no tardy job of the second agent. Wang [38] introduced an exponential
sum-of-actual-processing-time-based learning effect into a single-machine scheduling
problem. The special cases of the total weighted completion time problem and the maximum
lateness problem are proved to be polynomial solvable under an adequate condition.
Additionally, Wang et al. [41] demonstrated that, even with the effects of learning and
deterioration on job processing times, the single-machine makespan problem remains
polynomially solvable. Wang et al. [40] considered the weighted sum of completion times and
the maximum lateness problem with the effect of learning and deterioration on a single
machine where job processing times are defined as functions of their starting times and
sequential positions.

In recent literature, the position-based and the sum-of-processing-time-based learning

have been discussed simultaneously. Yin et al. [49] examined some single-machine and
m-machine flowhop problems with learning considerations where the learning effect is not
only a function of the total normal processing times of jobs already processed, but also of the
scheduled job position. Lee and Wu [22] presented a learning model that simultaneously
combines the position-based learning and sum-of-processing-time-based learning models.
They then demonstrated that the single-machine makespan and the total completion time
problems are polynomially solvable, and provided polynomial-time optimal sequences for
minimizing the makespan and total completion time under certain conditions in a flowshop
environment. Furthermore, Wang and Li [35] studied a single machine scheduling problem
with past-sequence dependent setup times in which the position-based and time-dependent
learning effects are simultaneously considered.. They proved that the makespan, total
completion time and total lateness problems can be solved by the smallest processing time
first (SPT) rule. Lai and Lee "[19] addressed a general scheduling model in which the
position-based and the sum-of-processing-time-based learning effects are concurrently
considered. They showed that'most of the models-in the literatures are special cases of the
model they proposed.

The concept of learning effect in a flowshop environment has been relatively neglected.
However, Wu et al. [47] studied the maximum tardiness problem with the position-based
learning effect in a two-machine flowshop environment. They implemented a
branch-and-bound algorithm to obtain the optimal sequence, and a simulated annealing
algorithm to obtain the near-optimal sequence. Li et al. [25] discussed a two-machine
flowshop scheduling problem with a truncated learning effect which considers the position of
the job in a schedule and the control parameter. Then the branch-and-bound and three
simulated annealing algorithms were conducted to seek the optimal and near-optimal
solutions. In addition, Lee and Wu [21] considered a two-machine flowshop problem with

learning effect for minimizing the total completion time. They utilized two lower bounds and

several dominance properties to construct a branch-and-bound algorithm to obtain the optimal
sequence, and established a heuristic algorithm to obtain the near-optimal sequence. Chen et
al. [3] considered a bi-criteria two-machine flowshop scheduling problem with the
position-based learning effect when the goal is to minimize both the total completion time and
the maximum tardiness. They proposed a branch-and-bound algorithm and two heuristic
algorithms to obtain the optimal and near-optimal sequences. Furthermore, Wang and Xia [42]
studied flowshop problems with learning effect. They gave the worst-case bound of the
shortest processing time first (SPT) algorithm for the makespan and the total flow time
problems, then illustrated examples to show that the Johnson’s rule is not optimal for the
makespan problem in a two-machine environment with learning consideration. Eventually,
they demonstrated that two special.cases remained polynomially solvable for the makespan
and total completion time problems. Additionally, Wu and Lee [46] investigated a flowshop
problem with learning considerations to minimize the total completion time. They
implemented a branch-and-bound algorithm and heuristic algorithms to seek the optimal and
near-optimal sequences, respectively.

Because of obtaining optimal sequences "in scheduling problems within a flowshop
environment is usually complicated, numerous works have focused on identifying efficient
near-optimal sequences. Nawaz et al. [27] considered an m-machine flowshop problem for
minimizing the makespan, and claimed that jobs with larger total normal processing time
should be prioritized over jobs with smaller total normal processing times. They demonstrated
that their proposed algorithm performs particularly well on large job-sized problems.
Afterward, Liu and Ong [26] and Ruiz and Maroto [31] claimed that the algorithm developed
by Nawaz et al. [27] is superior to other existing polynomial algorithms for the m-machine
flowshop makespan problem. Furthermore, Rajendran and Ziegler [30] developed an
algorithm for solving the weighted total completion time minimization problem in an

m-machines flowshop environment. Their algorithm first generates m sequences by assigning

different weights to each machine. The sequence with the minimal total weighted completion
time is then selected as the seed sequence, and an improvement scheme is employed. Woo and
Yim [43] provided an algorithm for minimizing the mean flow time in an m-machine
flowshop environment. Their algorithm selects a job among excluded jobs for insertion into
the current partial sequence. Whenever a new partial schedule is constructed, their algorithm
assesses all the possible sequences by inserting an unscheduled job into one of all slots in the
current sequence at a time. The partial sequence with the least mean flow time is selected. In
addition, Framinan and Leisten [11] considered an m-machine flowshop problem to minimize
the mean flow time. They proposed an efficient constructive heuristic algorithm based on the
concept of the algorithm of Nawaz et al. [27]. They further performed a general pairwise
interchange movement to boost the quality of the partial sequences in all the iterations.
Framinan et al. [10] presented. a review and classification for the heuristic algorithms with a
makespan objective. They distinguished a given constructive heuristic algorithm into three
phases, which are index development,-solution construction and solution improvement.
Furthermore, Wang et al. [36] proposed a modified global-best harmony search algorithm to
obtain the near-optimal solution for® dealing with a makespan scheduling problem in a
blocking permutation flowshop environment. The algorithm they proposed was demonstrated
to outperform certain existing meta-heuristics. Zhang and Li [50] addressed an estimation of
distribution algorithm for a flowshop scheduling problem with the objective of minimizing
the total flowtime. They showed that the proposed algorithm could improve some current best

solutions for Taillard benchmark instances.

1.3 Research objectives and methodologies

Two m-machine flowshop scheduling problems are proposed in this dissertation in which

the models are based on Biskup [1]. The model proposed in Biskup [1] is presented as

p,, = p;r* where p; denotes the actual processing time of job j at rth scheduled position,

p, denotes the normal processing time of job j, and a<0 denotes the learning index. The

decreasing level for the curve of r® descends as r increases, and it conforms to the
phenomenon that the improvement of the worker’s skill is unobvious after the worker is
proficient at the jobs. Therefore, the learning model proposed in Biskup [1] is reasonable and
regarded as a theoretical learning model in many studies. In addition, the production
environment for the model proposed in Biskup [1] could be regarded as the handicraft
because of the learning effect is occurred in whole process when dealing with a job.
Meanwhile, the learning model proposed in Biskup [1] might be considered as the reduced
learning model for the industrial manufacturing.

In this dissertation, the_ types of learning effect of the two problems belong to
position-based learning. Furthermore,-the learning effects are identical on all machines in the
first problem, and are varied on different machines in the second problem. Since the
makespan and the total completion time are the objective functions that are widely used
performance measures in the scheduling literature, the objective in this dissertation of the first
problem is to minimize the makespan, and of the second problem is to minimize the bi-criteria
function which is modeled as the weighted sum of the total completion time and the
makespan.

While the number of the machines is more or equal than three, Garey et al. [12]
demonstrated that the flowshop scheduling problem for minimizing the makespan without the
learning effect is an NP-hard problem. In addition, the total completion time minimization
problem is proved to be an NP-hard problem without considering the learning effect when the
number of the machines is more or equal than two (Lenstra et al. [24]). Therefore, the
makespan and the bi-criteria minimization problems in this dissertation are both NP-hard

problems. Then the branch-and-bound algorithm is a feasible approach for deriving the

10

optimal sequence. In the literature with respect to the flowshop scheduling problems without
learning effect, Chung et al. [7] studied an m-machine flowshop scheduling problem to
minimize the total completion time. They proposed a brand-and-bound algorithm that
incorporates a dominance property and an innovative lower bound to seek the optimal
sequence. Thereafter, Chung et al. [8] modified the efficient property in Chung et al. [7] to
deal with the flowshop scheduling problem for minimizing the total tardiness. Therefore, in
this dissertation, a branch-and-bound algorithm is conducted to obtain the optimal sequence,
in which the dominance properties are established based on the concept of Chung et al. [7].
Seeking for the optimal sequence of scheduling problems generally requires considerable
computational time and memory for larger job-sized problems. Thus this dissertation also
focuses on assessing the performances-of efficiency when applying economical heuristic
algorithms with the learning effect to solve the proposed problem. And then two well-known
heuristic algorithms proposed form Nawaz et al. [27] and Framinan and Leisten [11] are
adapted for obtaining the near-optimal sequence. Additionally, two meta-heuristic algorithms
are also utilized to yield the near-optimal solutions which are simulated annealing and genetic
algorithms. Eventually, the accuracy and the ‘comparison for the priorities among proposed

heuristic and meta-heuristic algorithms are discussed in this dissertation.

11

Chapter 2

Algorithms

2.1 Branch-and-bound algorithms

In this dissertation, two NP-hard problems are studied. In order to seek the optimal
sequence, we conduct a branch-and-bound algorithm incorporated with a dominance property
and a lower bound. In branch-and-bound algorithm, a given node indicates a sequence with
scheduled jobs, and the nodes can be eliminated by verifying the dominance property or
evaluating the lower bound. The dominance property is utilized to prove that the given node is
dominated by another node. Furthermaore; the lower bound is the underestimated value of the
objective function based on the‘given node. Therefore, when the given node is dominated or
its lower bound is larger than a known objective value, the given node and its offspring are
eliminated in the branching tree. In addition, the branching procedure proposed in this
dissertation adopts the depth-first search, and-assigns jobs in a forward manner starting from
the first position. The advantages of the depth-first search are less number of dynamic nodes
and seeking the bottom node rapider to derive the feasible sequence. The detailed procedure

of the proposed branch-and-bound algorithm is described as follows.

Step 1: Generate a near-optimal sequence and solution as the initial incumbent sequence
and solution by implementing the heuristic and meta-heuristic algorithms.

Step 2: Expand the branching tree from node (-,—,---,—) to node (1,-,---,—), then to
node (1,2,—,---,—), and finally to node (n,n-1,---,1).

Step 3: Ifthe current node is a complete sequence, go to Step 6. Otherwise, go to Step 4.

Step 4: Apply the dominance property to identify the current node. If it is a dominated node,
eliminate the node and its offspring in the branching tree, then go to Step 2.

Otherwise, go to Step5.

12

Step 5: Evaluate the lower bound of the objective value for the current node. If the lower
bound for the current node is larger than the incumbent solution, eliminate the node
and its offspring in the branching tree, then go to Step 2. Otherwise, go to Step 7.

Step 6: If the objective value of the complete sequence is smaller than the incumbent
solution, replace the incumbent sequence and solution with the sequence and
solution of the current node. Otherwise, eliminate it.

Step 7: If there is no more node can be expanded, the final incumbent sequence is set as the
optimal sequence. Otherwise, go to Step 2.

Eventually, a flowchart is drawn in Fig 2.1. to illustrate the detailed procedure of the

proposed branch-and-bound algorithm.

13

Implement heuristic and
meta-heuristic algorithms
to get an incumbent
sequence and solution,

Y

Expand a new
node.

Is the node a
complete sequence?

Yes

Is the solution for the
complete sequence smaller
an incumbent solution?

Yes

Replace the incumbent
sequence and solution
with the sequence and No

solution of the node.

b

s the node can be
dominated by venfying
the property?

No

'

Compute the
lower bound.

the lower bound large
than the incumbent
solution ?

be expanded? / X

Yes

h 4

Eliminate the node
and its offspring.

A

Yes

&%

No
h 4

Output the sequence
and solution,

Fig 2.1. The flowchart of the proposed branch-and-bound algorithm

14

2.2 Heuristic algorithms

While the number of jobs increases, obtaining the optimal solution of an NP-hard
scheduling problem is time-consuming. Therefore, many studies are devoted to develop
efficient heuristic algorithms to derive the near-optimal solution. In addition, the objective
functions in this dissertation consist of the makespan and the total completion time. Therefore,
NEH and FL denote the heuristic algorithms which is respectively adapted from the
heuristic algorithm proposed in Nawaz et al. [27] and Framinan and Leisten [11], by
considering the learning effect and adjusting the objective function. Eventually, the

procedures of NEH and FL are detailed as follows.

NEH algorithm:
Step 1: Set sequence PS and US with empty set.

Step 2: Arranging the jobs in"descending order of the total normal processing times (i.e.

Z p.; for j=1,2,...,n. Seesubsection 3.1), and schedule the jobs into US.
i=1

Step 3: Set k =1.

Step 4: Select the first job from US into PS, and remove the job from US.

Step 5: If k=1, go to Step 4. Otherwise, generate k sequence by respectively inserting
the job into each slot of PS.

Step 6: Select the sequence with the least objective value among k candidate sequences
and update the sequence as PS.

Step 7: Set k=k+1. If k<n, go to Step 4. Otherwise, the near-optimal sequence is set as

PS.

15

FL algorithm:

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Set sequence PS and US with empty set.

Arranging the jobs in ascending order of the total normal processing times, and

schedule the jobs into US.

Set k=1.

Select the first job from US into PS, and remove the job from US.

If k=1, go to Step 4. Otherwise, generate k sequence by respectively inserting the
job into each slot of PS.

Select the sequence with the least objective value among k candidate sequences

and update the sequence as PS.

If k<3, go to Step 8. Otherwise; generate sequences based on PS by

k(k —1)
2

performing pairwise. interchange procedure. Then select the sequence with the least
objective value and set as sequence PS". If PS can be dominated by PS’ in terms
of the objective value, replace PS with PS’.

Set k=k+1. If k<n, go to'Step 4. Otherwise, the near-optimal sequence is set as

PS.

16

2.3 Meta-heuristic algorithms

Pinedo [29] stated that the heuristic algorithms of the constructive type start without a
sequence and gradually construct a sequence by adding one job at a time. They usually can
obtain a solution in a moment. However, the quality of the solutions obtained by the heuristic
algorithms of the constructive type is improvable, especially when the priority of the jobs is
difficult to estimate. The reason is that the solutions space for the heuristic algorithms of the
constructive type is relatively narrow. Therefore, two meta-heuristic algorithms are
implemented to obtain the near-optimal solutions because of their larger solutions spaces,
which are simulated annealing and genetic algorithms. The procedure of seeking the solution
by meta-heuristic algorithms is iteratively trying to improve a candidate solution in terms of a
given measure of quality. The advantages of the meta-heuristic algorithms are few or no
assumptions in searching process, and a larger space of candidate solutions. Eventually, two

meta-heuristic algorithms proposed in this‘dissertation are detailed below.

Simulated Annealing (SA)

A description of the procedure in proposed simulated annealing is presented as follows.
An incumbent sequence is generated at first, and then a new sequence is created based on the
incumbent one by the neighborhood generation. The incumbent sequence is replaced with the
new sequence when each one of two conditions occurred, that is (1) the objective value of the
new sequence is smaller than that of the incumbent sequence, and (2) the acceptance
probability is larger than a given value. Eventually, the process of proposed simulated
annealing is stopped by the terminating condition, and then the final incumbent sequence is
set as the near-optimal sequence. The elaboration of the simulated annealing proposed in this

dissertation includes:

17

(1) Incumbent sequence: The incumbent sequence is generated randomly.

(2) Neighborhood generation: Two jobs of incumbent sequence are randomly selected and
exchanged to yield the new sequence.

(3) Acceptance probability: The probability of acceptance is yielded from an exponential
distribution, that is P(accept)=exp(—axA), where « denotes the control parameter
and A denotes the increment of the objective value from the incumbent to the new
sequence. Furthermore, the control parameter is set as 5 where Kk is the number of

cumulated iterations to date and A is an experimental factor. And then we chose

B =65000 after some pretests. If the new sequence is larger than the incumbent one, the

new sequence is accepted whenP(accept)>r, where I is a uniform random number

between 0 and 1.

(4) Terminating condition:*The seeking process is terminated after 500n iterations because
of the preliminary tests reveal that the objective value is steady after 500n iterations,

where n is the number of jobs.

The advantage of SA is to avoid getting trapped in a local optimum. The value of g is
initially set to a high level so that a neighborhood exchange happens frequently in early
iterations, and the acceptance probability is gradually lowered when the k increases so that it

becomes more difficult to exchange in later iterations unless a better sequence is yielded.

18

Genetic algorithm (GA)

In this dissertation, a genetic algorithm is utilized to yield the near-optimal solution. The
basic idea of the genetic algorithm is to generate a population with some chromosomes as the
parents, then implement the crossover and mutation operations to produce a new population
as the offspring, and choose the chromosome with the best performance with regard to the
objective value after some generations. The segments of proposed genetic algorithm are listed
as follows.

(1) Encoding: The encoding method is to generate n uniform random numbers from (0, 1) as
the genes in a chromosome, in which the job order is set as the non-decreasing order of
the genes. For example, the chromosome (0.23, 0.78, 0.32, 0.14) denotes a job sequence
of (4, 1, 3, 2) with four jobs.

(2) Population size: The population size indicates the number of the chromosomes in a
generation. For a large population size, it IS easier to obtain a better solution, but
time-consuming. The population size N is set as 150 after some preliminary tests.

(3) Fitness value: The fitness‘values are evaluated to indicate the probabilities of selecting
the chromosomes. Since the problem iis to'minimize the objective value, the fitness value
of a given chromosome should be a decreasing function of its objective value. Therefore,

N
the fitness value of the chromosome is calculated as fk/z f, for k=12,...,N, where
j=1

the f, denotes the reciprocal of the objective value of the kth chromosome.

(4) Selection: A roulette wheel method is used in which the chromosomes with larger fitness
values have larger areas in the roulette wheel and have higher chances to be selected. The
selection process is executed by spinning the roulette wheel, and only a chromosome is
selected in each spin.

(5) Crossover: Crossover operation is to produce the chromosomes of offspring from the

chromosomes of parents. In this dissertation, two chromosomes in parents are selected to

19

generate two new chromosomes in offspring by utilizing one-point crossover, in which a
cut point are randomly selected and the parts of these two chromosomes in parents are
exchanged to generate new chromosomes. For example, two chromosomes in parents are
presented as (0.53, 0.26, 0.72, 0.44, 0.69) and (0.91, 0.08, 0.37, 0.29, 0.55), and the new
chromosomes are (0.53, 0.26, 0.37, 0.29, 0.55) and (0.91, 0.08, 0.72, 0.44, 0.69) if the
randomly selected cut point is the second position. Furthermore, the crossover rate is
chosen as 0.85 in this dissertation after some pretests.

(6) Mutation: Mutation operation is used to prevent getting trip in a local optimum. In this
dissertation, the procedure of mutation is to randomly select a gene in a given
chromosome, and replace it with a random uniform number from 0 to 1. The mutation rate
is set as 0.3 in this dissertation to determine whether the chromosome is mutated.

(7) Evolution: In order to.maintain, the superiority of the chromosomes, a part of
chromosomes with larger fitness values in parents are retained in the next generation.
Meanwhile, the chromosomes with smaller fitness values in the offspring are eliminated
as a consequence. Furthermore, the evolution rate is set as 0.5, which means 50% of the
chromosomes in the parents are retained to the next generation.

(8) Termination: The proposed genetic algorithm is terminated after 50 generations after
some pretests.

Eventually, the flowchart of proposed genetic algorithm is shown in Fig 2.2.

20

Retain these two
chromosomes as the
offspring

[«—No

Encode N chromosomes in
parents and evaluate their
fitness values

l

Select two chromosomes in
parents by roulette wheel
method

Yes

v

Produce two chromosomes
as offspring

Yes

v

Modify these two
chromosomes in offspring

Produce
chromosomes
for N/2 times

Fig22. T

Yes

v

Evaluate the fitness values
of all chromosomes of the
offspring

Evolution

21

Set the chromosomes of the
offspring as the parents

f

No

Termination

Yes

[’

Decode the chromosome
with the largest fitness value
as the final solution

he flowchart of the proposed genetic algorithm

Chapter 3
Makespan minimization for m-machine flowshop
scheduling problem with position-based learning effects

3.1 Notations and problem statement

The notations used throughout this chapter are summarized as follows.
n : Number of jobs.
m : Number of machines.

N : Set of jobs, i.e., N={1,2,...,n}.

M;: ith machine, i=1,2,...,m.
p;.; - Normal processing time of job jon.M;.
P, ;. - Actual processing time of job j on"M; if placed at rth position in a sequence.

a: Learning index with"a< 0.
S: Subset of N with s scheduled jobs.
U: Subset of N with n—s unscheduled jobs.

o : A partial sequence of set S .

[1: The symbol which signify the order of jobs in a sequence.
Ci((c) : Completion time of the job scheduled in the rth position on M; in sequence

O.

G, (u,v): Total normal processing time of job j from M, to M,, where u<v, ie,

G, (u,v) :|Z b
=u
B, - Earliest starting time at rth position on M.
F. - Earliest completion time at rth position on M;.

22

LB : The lower bound for a given node.

The problem formulation of the m-machine flowshop environment with learning effects

is described as follows. Suppose that there are n jobs in set N, to be processed on m

machines. Each job j comprises m operations O, ;,0, ;,...,O, ;, where O,; has to be
processed on M; for i=1,2,...m and j=1,2,...,n. Processing of operation O,,; must

start only after the completion of O, ;. Furthermore, the flowshop environment considers a

schedule in which the job sequence is identical on all the machines. The actual processing

time p;;, ofjobjon M, isa function that depends on its position r in the sequence, i.e.,

Pijr= pi,jra’
where i=1,2,...m, j,r=42,..,n.

This chapter attempts to.identify a sequence for minimizing the makespan. Given n jobs

in Set N, and 7 denotes one complete sequence of all permutations. The objective of this

chapter is to derive a sequence 7" suchthat C_ (z")<C, () foranysequence z.

3.2 Dominance property

The following theorem provides a criterion for discriminating dominance relationships

between two different sequences which are made up of the same job set.

Theorem 3.1: Let o, and o, denote two partial sequences with s jobs of set S . If

_ -C. then minat .
mg% {Cl,[s] (O-l) Cl,[s] (0-2)} < O ’ € (o] dO ates O,
Proof: Let =~ denote a partial sequence with n—s jobs of set U, and sequence = is

scheduled immediately behind sequence o, and o, into the sequence S, =(o;,7) and

23

S, =(o,,7), respectively. Then for 1<u<m, we have the completion time of the job
scheduled in the nth positionon M, in S andis
Cy(S,) = max {Cfnny(81) + Gy (v, u) xn*}
=C, n.1(8,) + Gy (v, u)xn? forsome v, where 1<v, <u.
Similarly, the completion time of the job scheduled in the nth positionon M, in S, is

C (S,) = EQ&X {Cv,[n—l] (S,)+ Gy (v,u)x na}

=C,, 1n.01(S,) + Gy (v,,u) xn?® for some v, where 1<v, <u.
Then we have
Com(S2) 2 C, 1 55(Sy) + Gy (v, u) x 0 for v, #V,.
Therefore, we have
Con(8) = Cugar(S,) <[C, g (1) + Gy (s X1 | [€, 1y(S,) + Gy (v,) x1° |

< max{Cy 31(S,) — Ci oy (S -

1<i<m

An induction argument is conducted. Then we have
Con(S1) = Cugn(82) S Max{C, 1(S,) ~C, 4 (S,)} -
It max{C,,)(S,)~C,(,y(S,)} <0, then S, dominates S,.

The proof is completed.
In order to apply the above theorem in the proposed branch-and-bound algorithm, the

following property requires considering two consecutive jobs, as presented below.

Property 3.1: Let J, and J denotetwo jobs ofset S,and o, , denote a sequence with

s—2 jobsexcluding J, and J, ofset S.If max{C (0, ,.J,,d,)~Ciry(0. ;. d,.3,)} <0

1<i<m

, then sequence (o, ,,J,,J,) dominates (o ,,J,,J,)-

24

3.3 Lower bound

For a given node in the branch-and-bound algorithm, the lower bound is designed to
underestimate the objective function by utilizing the information of its unscheduled jobs, and
the lower bound is less than or equal to the objective value of the optimal sequence based on
the node. Consequently, when the lower bound of a given node is larger than the objective
value of a known sequence, the optimal sequence based on the node is dominated by the
known sequence, and the given node and its offspring are not the candidates for the optimal
sequence.

In this subsection, we propose a lower bound for eliminating nodes in the branching tree,
and the lower bound is evaluated using the concept developed by Chung et al. [7]. The lower
bound for Chung et al. [7] is amachine-based-lower bound. The main idea of their lower
bound is assuming that the given machine-has unit.capacity and the machines behind it have
infinite capacity. Hence, the-procedure in Chung et al. [7] for estimating the marginal lower
bound based on the given machine'is to compute the earliest starting times for all remaining
positions on the machine at first; and.to sum up-these starting times, and all the processing
times of the machine, and that behind the machine for unscheduled jobs. Finally, the lower
bound is determined as the maximal marginal lower bound. Instead of the total completion
time, we adapt the procedure in Chung et al. [7] which estimates the earliest starting time with

learning effect, when the objective is to minimize the makespan. The proposed lower bound is

summarized as follows. Let p, ;, represent the normal processing times on M;, which are
based on non-descending order of all p;;, from set U for j=12,..n-s . ie,
Py S P S < Pins) Where i=12,...,m. G, (u,v) denotes the smallest total normal
processing time between M, and M, from set U. Let E; ., denote the actual starting

time of s+1th jobon M,. By definition, we have

25

El,[s+1] = Cl,[s] (o)

and

Eygeo = MaX | MaX (B, .y + Goug (Ui =D x (541"}, €,y (o), Where i=2,3,...m.

1<u<i-1

For the first machine, the earliest starting time is the same as the actual starting time of s+1

th job (i.e. B1,[5+1] = El,[s+1])- Then

E, (s, = Max { B ooy t Pupsiyy X (s+1)°, Cors (‘7)}
< max { B, sy + Pry X (S +1)%, Cos (U)} :

Therefore, B,,,; is evaluated as max{Bl’[5+1]+ P x (S +1)a,C2'[5](a)}. By induction, we
have

Bisy = max{ max {Bu,[s+l] +Gy (U, i=Dx (s +1)a} ’Ci,[s](o')} for i=23,..m.

I<u<i-1

Since the learning effect is considered, we have F

i[s+i] T

j

B sy +|Z P (s+1)* . For the first
=1

machine, the earliest starting time of nth job-is the earliest completion time of (n-1)th job

(ie. By, =Fq)- Inthe context of Chung etal. [7] for unscheduled jobs, besides (s+1)th

job on the second to the final machine, the procedure of computing the earliest starting time

only considers the earliest completion time on the current machine, and that immediately

ahead of the machine (i.e. E =max{Fi’[sﬂ._l],Fi_ly[sﬂ.]}). However, it may have the

i[5+
contradiction that the earliest starting time on the current machine is smaller than that on the
preceding machines for the third and late machine. Therefore, to overcome the contradiction,
we have

. max { S Fifl‘[n]} wherei=2

i =

a H)
max{Fi’[H], iy Biapy + Pigg XN } , Wherei=3,4,...,m

Then the marginal lower bound is evaluated as B, +G,(i,m)=xn®. Eventually, the lower

26

bound in this chapter is represented as max{max{Biv[n]+G(1)(i,m)><na} F

i)
1<i<m m.[n]

detailed procedure for estimating the lower bound is presented as follows.

Step 1: Set i=1, B, =C, (o), and go to Step 3.

I<u<i-1

Step 2: Compute B, = max{ max {B, ;. + Gy (U, i 1) x (s +1)*},C;yy (o-)}

Step 3: Compute F

i[s+j] —

j
Bi,[s+1]+|2 P (s+1)* for j=n—s-1 and n-s.
=1

Step 4: If i=1,set B, =F, andgo to Step 6. Otherwise, go to Step 5.

Step 5: If 1=2, set B.’[n]=max{Fi’[n_1],Fi_ly[n]}.Otherwise, set

a
B; () = Max { Firnap Fioagngr Bioagm Piosy XN } :

i,[n]
Step 6: If i<m,set i=i+1and goto Step 2. Otherwise, go to Step 7.

Step 7: Set LB=max{max{Bi][n]+G(1)(i,m)><n"“} F }

1<ism 7 min]

Step 8: The lower bound of the makespan for sequence ‘o is obtained as LB.

27

}, and the

3.4 Computational results

In this section, several computational experiments are conducted to assess the
performance of the branch-and-bound, the heuristic and meta-heuristic algorithms proposed in
this chapter. All the algorithms are coded in Fortran 90 and run on a personal computer with
2.89 GHz AMD Athlon ™ Il X4 635 Processor and 3.25GB RAM with Windows XP. The
normal processing time of all operations are randomly generated from a discrete uniform
distribution over 1 to 100. First of all, the influence of the learning effect is examined in Table
3.1, in which the number of jobs is fixed at 10, three different levels of the learning effect are
set as 90%, 80% and 70% (which corresponds to a=-0.152, a=-0.322, and
a=-0.515.), and 100 replications.are randomly generated of each experimental condition.
Therefore, a total of 600 instances are tested and the mean optimal makespans are recorded in
Table 3.1. Furthermore, the optimal sequence derived from the proposed problem without
learning effect under each instance, is used to calculate the'makespan of the proposed problem

and the mean makespans and the mean and maximum error percentages are listed in Table 3.1.

%

. . 0-0
For each instance, the error percentage of is calculated as o x100%, where O denotes

the value of the makespan calculated by the sequence derived without the learning effect and
O* denotes the optimal makespan. As shown in Table 3.1, it reveals that the influence of the
learning effect is notable with regard to the mean error percentages. Additionally, the
influence of the learning effect is higher with the stronger learning effect.

Table 3.1. The influence of the learning effect on optimal solution (n=10)
Use the optimal seauence which is
derived without the learning effect

mean optimal mean Error percentage

a(%) makespan makespan mean max
3 90% 487.1 563.4 15.799 31.804

80% 375.1 531.0 42.506 75.273

0% . 2850 9285 . ..¢ 86.911 _________ 144.845 .

5 90% 580.5 634.5 9.447 26.843

80% 466.3 583.7 25.705 62.889

70% 376.8 541.3 44.478 107.165

In order to test the efficiency of the proposed property and the lower bound, a
computational experiment is implemented with fixed job size at 10, two different machine
sizes at 3 and 5, 100 replications, and three levels of the learning effect at 90%, 80% and 70%.
The results are listed in Table 3.2, in which B_P denotes the branch-and-bound algorithm with
only the property, B_L denotes the branch-and-bound algorithm with only the lower bound,
and B_P+L denotes the branch-and-bound algorithm with both the property and the lower
bound. In addition, the mean number of nodes and the mean execution time are recorded.
Meanwhile, the mean execution time for the enumeration method is also recorded. As shown
in Table 3.2, the efficiency of the property and the lower bound in the branch-and-bound
algorithm are significant in terms of the mean execution time by comparison with the
enumeration method. Furthermore,.the lower bound is more effective than the property in
terms of the mean number of nodes and the mean execution time, and the phenomenon is
notable when the learning effect Is stronger. However, the most efficient performance is
exhibited when B_P+L is implemented in"terms of the mean number of nodes and the mean
execution time. Therefore, the branch-and-bound algorithm with both the property and the

lower bound is recommended for the succeeding computational experiment in this chapter.

Table 3.2. The performance of the property and the lower bound for the branch-and-bound algorithm

(n=10)
Number of mean nodes Mean CPU times
m a(%) B P B L B P+L B P B L B P+L Enumeration
3 90% 257236.9 917.7 450.4 4.234 0.031 0.017 15.504
80% 183932.9 162.6 129.6 3.083 0.007 0.006 15.421
70% 111829.0 92.7 78.2 1.949 0.005 0.004 15.379
5 90% 368537.7 945.1 771.2 10.067 0.067 0.056 25.148
80% 250310.5 350.0 310.5 6.892 0.027 0.027 25.051
70% 146816.5 134.3 122.3 4.031 0.012 0.012 24.806

29

We use four job sizes (n =12, 14, 16 and 18) and two different machine sizes (m=3 and
5) to yield the optimal solution and test the accuracy of all the proposed heuristic and
meta-heuristic algorithms. Furthermore, to examine the influence of the learning effect, the
three levels of the learning effect are taken to be 90%, 80%, and 70%. Consequently, 24
experimental conditions are examined, and 100 replications are randomly generated for each
condition. A total of 2,400 instances are generated and the results are listed in Table 3.3. The
mean and the standard deviation of the number of nodes and of the execution time for the
proposed branch-and-bound algorithm are recorded. In addition, the mean and standard
deviation of the error percentages for the heuristic and meta-heuristic algorithms are also
recorded. For each instance, the error percentage of the given heuristic algorithm is calculated

as

V-V’

*

x100%,,

where V denotes the value of the makespan generated by the heuristic or meta-heuristic
algorithm and V* denotes “the. ‘optimal makespan obtained by the branch-and-bound

algorithm.

30

Table 3.3. The performance of branch-and-bound algorithm and heuristic algorithms of different parameters

Branch-and-bound algorithm

Heuristic algorithms

Number of nodes CPU times Error percentages (%)
Mean s.d. Q1 Q2 Number of Mean s.d. NEH FL SA GA

n m a(%) outliers Mean s.d. Mean s.d. Mean s.d. Mean s.d.
12 3 90% 56719.8 384694.2 78 288 1083 20 2.20 14.30 0.0134 0.0151 0.0062 0.0101 0.0055 0.0101 0.0061 0.0067
80% 1192.9 3480.4 86 299 612 15 0.07 0.17 0.0193 0.0139 0.0064 0.0115 0.0094 0.0093 0.0071 0.0077

_________ 0% 5214 8493 71 255 550 11 003 005 00359 0.0246 0.0069 0.0089 0.0130 0.0164 0.0103 0.0059
5 90% 9448.4 34991.5 379 1093 4818 12 0.88 3.17 0.0247 0.0206 0.0146 0.0156 0.0132 0.0137 0.0109 0.0104
80% 2772.7 9635.3 158 510 1722 12 0.28 0.84 0.0305 0.0202 0.0133 0.0143 0.0162 0.0135 0.0064 0.0095

70% 583.2 1109.3 64 188 630 .~ 11 0:06 0.10 0.0426 0.0308 0.0119 0.0118 0.0212 0.0205 0.0070 0.0079

14 3 90% 167322.1 854106.4 200 1442 59000 14 8.63 44.15 0.0135 0.0116 0.0066 0.0098 0.0055 0.0077 0.0042 0.0065
80% 19161.7 124696.6 295 988 5848 6 1.08 6:40 0.0241 0.0172 0.0068 0.0079 0.0130 0.0115 0.0063 0.0053

_________ 70% 17203 29108 131 509 1628 12 045 023 00411 0.0244 0.0080 0.0075 0.0157 0.0163 0.0077 0.0050
5 90% 301967.5 1838143.9 1583 4289 15460 20 27.97 151.64 0.0253 0.0195 0.0146 0.0129 0.0114 0.0130 0.0099 0.0086
80% 92134 22874.2 622 2016 5053 + 19 1.26 293 0.0336 0.0196 0.0152 0.0144 0.0202 0.0131 0.0081 0.0096

70% 6369.0 33345.7 486 1370 3463 | 11 0.87 3.80 0.0513 0.0249 0.0105 0.0122 0.0191 0.0166 0.0045 0.0081

16 3 90% 2111749.8 11723845.2 659 3214 26519 . 17 125.60.~ 685.23 0.0134 0.0098 0.0060 0.0107 0.0095 0.0065 0.0050 0.0071
80% 41433.3 148176.9 900 2762 17081 < 12 3.37 10.54 0.0280 0.0145 0.0080 0.0094 0.0133 0.0097 0.0037 0.0063

_________ 70% 220735 749623 406 2102 10563 16 203 576 00497 0.0224 0.0073 0.072 00216 0.0149 0.0074 0.0048
5 90% 1055484.8 4641812.1 6442 14074 94299 15 116.63 462.80 0.0285 0.0170 0.0163 0.0142 0.0175 0.0113 0.0114 0.0095
80% 123731.8 447437.6 2384 9808 30383 18 19.76 67.89 0.0352 0.0194 0.0137 0.0110 0.0177 0.0129 0.0116 0.0073

70% 19159.7 72050.8 1136 3873 12001 11 3.19 8.67 0.0531 0.0250 0.0135 0.0121 0.0197 0.0167 0.0055 0.0081

18 3 90% 8470804.1 26263090.6 8173 46669 335005 17 451,12 1358.19 0.0140 0.0090 0.0051 0.0069 0.0077 0.0060 0.0067 0.0046
80% 593669.8 3611399.3 2219 16609 86473 11 4595 251.54 0.0207 0.0188 0.0079 0.0081 0.0089 0.0125 0.0046 0.0054

_________ 70% 754226 2110516 1753 11367 48150 13 757 1876 00485 0.0235 0.0084 0.0101 00202 0.0157 0.0058 0.0067
5 90% 9241667.3 24428652.2 40402 172912 2336244 19 1089.13 2811.17 0.0253 0.0170 0.0142 0.0133 0.0134 0.0113 0.0137 0.0089
80% 449812.6 1760902.3 8801 48120 141615 13 64.60 222.66 0.0396 0.0200 0.0152 0.0120 0.0182 0.0133 0.0071 0.0080

70% 97797.9 339614.2 3177 10124 56667 15 17.12 46.49 0.0524 0.0237 0.0120 0.0107 0.0205 0.0158 0.0090 0.0071

31

It is observed that the heuristic and meta-heuristic algorithms proposed in this chapter are
quite accurate since all the mean error percentages are less than 0.1%. Furthermore, GA has
the best performance and NEH has the worst performance. From the results of the
branch-and-bound algorithm it reveals that, for the problem proposed in this chapter, it is
easier to obtain the optimal solution in terms of the mean number of nodes when the learning
effect strengthens. However, the standard deviation of the number of nodes exceeds its mean
for all the cases, which implies that there are worst cases with a tremendous number of nodes.
Therefore, the quartile of 25%, 50%, and 75% for the number of nodes is evaluated and
recorded as Q1, Q2, and Q3. The observations show that the distribution for the number of
nodes is right skewed because most of the mean numbers of nodes are relatively large to Q3,
and it implies that most of the instances have fewer nodes. For the same instances, the
box-plot of logarithm scale for the number of nodes with different parameters for the learning
effect as 90%, 80%, and 70% is shown in Fig 3.1, 3.2, and 3.3, respectively. The figures
illustrate that the number of nodes and the execution time grow exponentially with an
increasing number of jobs.

Fig 3.1. Box-plot for logarithm scale with learning effect as 70%

16

144

12+

10+

Logirithm scale for the number of nodes
[oe]

n10m3 nl0O,m5 nl12m3 ni12m5 nl4,m3 nl4m5 nl6m3 nl6,m5 ni8m3 ni8m5

Parameters

32

Fig 3.2. Box-plot for logarithm scale with learning effect as 80%

Logarithm scale for the number of nodes

18-
161
14+

. 5
- .
4 H H H

Logrithm scale for the number of nodes

2_
O_ T T T T T T T T T T
n10m3 nl0,m5 nl12m3 ni12m5 nl4,m3 nl4m5 nl6m3 nl6,m5 ni8m3 ni8m5
Parameters
Fig 3.3. Box-plot for-logarithm scale with learning effect as 90%
20
15+

|
L

n10m3 nl0O,m5 nl12m3 ni12m5 nl4,m3 nl4m5 nl6m3 nl6,m5 ni8m3 ni8m5

Parameters

33

In order to investigate the influence of outliers, the number of outliers for each
experimental condition is listed in Table 3.3, where the number of nodes for given instance
which exceeds the value of Q3+1.5(Q3—-Q1) is recorded as the outlier. The outliers are

eliminated and the performance of the branch-and-bound algorithm is shown in Table 3.4.

Table 3.4. The performance of branch-and-bound algorithm
of different parameters after outliers elimination

Branch and bound algorithm

Number of nodes CPU times
n m a Mean s.d. Mean s.d.
12 3 90% 355.9 435.2 0.022 0.026
80% 307.0 298.7 0.021 0.022
L T0% 2687 2529 0019 0018
5 90% 1912.0 2334.1 0.204 0.237
80% 761.0 858.6 0.090 0.089
70% 287.0 317.0 0.036 0.040
14 3 90% 2431.5 3104.2 0.195 0.234
80% 2605.9 3474.3. 0.210 0.272
A%, 8010 - ¢ 9647 - 0075 _ 0.084
5 90% 5655.6 6874.0 ~ 0.853 0.946
80% 2009.5 2020.1 ~ 0.328 0.307
70% 1800.1 18408 0.317 0.319
16 3 90% 7586.8 10851.7 0.771 1.032
80% 6814.2 9770.4 0.712 0.981
L T% 3646.5 5035.8 0426 0568
5 90% 33524.6 49524.8 6.176 8.746
80% 10837.8 12194.7 2.415 2.769
70% 5519.6 6149.3 1.198 1.251
18 3 90% 115505.8 1747757 11.263 16.210
80% 36878.3 51417.1 4.025 5.316
. T0% 184408 234625 2079 2.605
5 90% 566117.6 1071722.1 82.906 144.164
80% 67915.4 82120.5 14.043 16.320
70% 20391.9 28773.9 4.521 5.776

34

Table 3.4 illustrates that the means and the standard deviations for the number of nodes
and execution time are all reduced by a wide margin after eliminating the outliers. Eventually,
since the quantity of outliers is less than 20% of all instances for each experimental condition
in this chapter, we recommend to conduct the proposed branch-and-bound algorithm for
obtaining the optimal solution within a reasonable amount of time, or conduct the proposed
heuristic and meta-heuristic algorithms for obtaining near-optimal solutions when the number

of jobs is larger than 18.

To indicate the performance of the proposed heuristic and meta-heuristic algorithms for
large job-sized problems with learning considerations, we use three different job sizes (n= 50,
100 and 150), four different machine sizes (m= 5, 10, 15, and 20) and three learning effects
(90 %, 80%, and 70%) to yield: the near-optimal .solutions. The mean and the standard
deviation of relative percentage deviation (RPD) are reported for each heuristic algorithm. For

each instance, the RPD is obtained with respect to the best one of all near-optimal solutions

V-V

min

generated by the heuristic and meta-heuristic algorithms. i.e., RPD = , Where V

min
denotes the value of the makespan generated by the given heuristic or meta-heuristic

algorithmand V

min

denotes the minimal one among the values of the makespan generated by

the heuristic and meta-heuristic algorithms. Consequently, 36 experimental conditions are
examined, and 100 replications are randomly generated for each condition. A total of 3,600

instances are generated and the results are listed in Table 3.5.

35

Table 3.5. The relative percentage deviation of heuristic algorithms

Relative percentage deviation (RPD)
NEH FL SA GA
n m a mean s.d. mean s.d. mean s.d. mean s.d.

50 5 90% 0.0479 0.0268 0.0142 0.0074 0.0133 0.0100 0.0009 0.0029
80% 0.0493 0.0167 0.0379 0.0130 0.0172 0.0117 0.0000 0.0004

100 5 90% 0.0350 0.0159 0.0175 0.0052 0.0106 0.0067 0.0004 0.0016

150 5 90% 0.0291 0.0132 0.0197 0.0052 0.0082 0.0058 0.0005 0.0024

36

In Table 3.5, the value of RPD from GA is the minimal one among all heuristic and
meta-heuristic algorithms for every experiment condition. The observation shows that GA is
more accurate than the other three algorithms. However, as all the RPD values are greater
than zero, it implies that there is no any algorithm which completely dominates the others.
From the values of RPD for the heuristic and meta-heuristic algorithms, one-way analysis of
variance (ANOVA) with a significance of 5% is applied to test that the mean values of RPD
are all the same among the heuristic and meta-heuristic algorithms or whether at least one

differs from the others. The results are given in Table 3.6.

Table 3.6. One-way ANOVA for RPD of four heuristics
Source DF SS MS F p-value
Factor 3.70.124511--.0.041504 199.66 0.000
Error 140 0.029101_0.000208

Total 143 1 -0.153612

Since the p-value is below the significance level, it implies that the mean values of RPD
are not all identical. Therefore, the efficiency-among the heuristic and meta-heuristic
algorithms should be considered. Furthermore, the Tukey test with a significance of 5% is
implemented to compare the values of RPD among the heuristic and meta-heuristic

algorithms. The results of Tukey test are summarized in Table 3.7.

37

Table 3.7. Tukey-test results of four heuristics

FL subtracted from:

Lower Center Upper
NEH 0.02331 0.03215 0.04100
SA -0.04009 -0.03124 -0.02240
GA -0.05249 -0.04365 -0.03481

NEH subtracted from:

Lower Center Upper
SA -0.07224 -0.06340 -0.05455
GA -0.08465 -0.07580 -0.06696

SA subtracted from:

Lower Center Upper
GA -0.02125 -0.01241 -0.00356

The test results imply that GA is the best among the four algorithms, follows by SA and FL,
and finally NEH. Thus, the proposed genetic “algorithm is recommended to obtain the

near-optimal solution for proposed problem inthis chapter.

3.5 Summary

This chapter examines an m-machine flowshop problem with position-based learning
effects where the aim is to minimize the makespan. A dominance property and a lower bound
are proposed to conduct a branch-and-bound procedure for optimizing the proposed problem.
In addition, this chapter also introduces the learning effect to two well-known existing
heuristic and two meta-heuristic algorithms for approximating the proposed problem. The
computational results show that the branch-and-bound algorithm can solve problems of up to
18 jobs within a reasonable amount of time, and demonstrate that GA performs best for small
job-sized problems. Meanwhile, for large job-sized problems, GA also has identical
performance. Therefore, we recommend the proposed genetic algorithm to obtain the

near-optimal sequence.

38

Chapter 4
Bi-criteria minimization for m-machine flowshop
scheduling problem with machine- and position-based
learning effects

4.1 Notations and problem statement

The following notations are applied throughout this chapter.
N : Set of jobs which contains n jobs, i.e., N ={L12,...,n}.
S: Subset of N with s scheduled jobs.

U: Subsetof N with n—s unscheduled jobs.

m: Number of machines.

M;: ith machine, where«i=1,2,...,m.

J;:Jobj, where j=1,2,...,n:

p; - Normal processing time of J,..on M-

P, - Actual processing time of J; on M; when J, isscheduled at positionr.

a,: Learning index on M, with Va <0 for i=12,...,m.

[1: The symbol which denotes the job order in a sequence.
a : The weight of the objective function with 0 <a <1.

LB : The lower bound of the objective value based on the given node.

The description of the problem with machine- and position-based learning effects in an

m-machine flowshop environment is described as follows. Assume that there is a jobs set N

with n jobs to be processed on m machines. Each J; includes m operations on

39

corresponding machines which denoted as O,; for i=12,...,m and j=1,2,...,n. For the
processing procedure, the starting time of O, ; must be the larger completion time of O, ,
and O, ;. In addition, the sequence of jobs is identical on all the machines. Let p; denote
the normal processing time of J;, on M,. The actual processing time p, of J, on M,
declines based on its position r in a sequence, i.e.,

Pur = Pyr™,
where i=1,2,...m,and j,r=12,..,n.

The aim of this chapter is to seek a sequence for minimizing a weighted sum of the total

completion time and the makespan. For a given sequence & with n jobs, let C, ,(0)

denotes the completion time-at the rth position.on M, 'in'sequence &. The objective of this

chapter is to obtain a sequence " ;such that
aZCm[j](H*)+(1—a)Cm[n](6?*)saZCm[”(e)Jr(l—a)Cm[n](H) for any sequence & of all
=1 j=1

permutations.

4.2 Dominance property

A rule is represented in the following theorem which distinguishing the dominance

between two varied sequences concluding same jobs.

Theorem 4.1: There are two partial sequences of set N, thatis 6, =(o,,7) and 6, =(o,,7),

inwhich o, and o, denotes the partial sequence of set S, and = denote a partial sequence

of set U. If ai[cm[1(6,) = Crpy (o) | > [a(n—s-1) +1] E%{Ci[sl(al)—Ci[S](az)}, then ¢,
=

dominates o, .

40

Proof:

For k=1,2,...,m, we have

K K
Ck[n] 0,)= rlggi({Ci,[nl] 0,)+ Z punau } = Ci1,[n—1] (6,)+ Z punau for 1<i, <k.

=iy

Similarly,

k
Ck[n] (02) = Ciz[n—l] (02) + Z puna“ fOI’ 1S i2 < k .

u=i,

Then we have

k k
Ck[n] (91) - Ck[n] (92) < Cil[n—l] (91) + Z pu[n] (n)au :| - |:Ci1,[n1] (02) + Z pu[n] (n)au

<max {C,,_y (6) =Cipr 1y (@)} -

1<i<m

By an induction, for k =m, we have
Cogs)(6) = Crgsry(6,) < max i€ CUSCAED, - O 1

,Where 1<1<n-s.

From equation (4-1), we have
azcm[j] (‘91) +(1- a)Cm[n] (‘91)} - |:azcm[j] (92) +(1- a)Cm[n] (‘92)}
j=1 =1

< aj[cm[1(0) = Copyy () | +[a(n—s ~1) +1]max {Cy (0,) ~ Cy ()
From

aZS:I:Cm[J'] (02) N Cm[j] (o-l)} > [a(n -s-1) +1] Egg?n({Ci[s] (0_1) - Ci[s] (0_2)} 1

the value for the left side of equation (4-2) is negative and it implies & dominates 6,.

Therefore, we have o, dominates o,.

In this chapter, the theorem is simplified as the property which requires considering two

adjacent jobs. The property is applied in the proposed branch-and-bound algorithm and

41

presented below.

Property 4.1: In set S, let o denote a partial sequence with s—2 jobs, and the remained

jobs are scheduled in the last two positions as J, and J,. The two sequences based on o
are represented as S, =(oc,J,J,) and S,=(0,J,,J;), and Cy,(S,) denotes the
completiontime of J; on M, in § for jI=12 and i=12,...m.If

6| Cp, (S,)+Crpy (S2) = Cr, (8) = Cr, (8)) | > [@(n =5 1) +1]max {C,,, (5,) - C,, (S,)} »

then S, dominates S, .

4.3 Lower bound

In addition to dominance property, another procedure to eliminate nodes in branching
tree is calculating the lower bound of the objective value. In this chapter, a lower bound is
established to speed up the procedure of the proposed branch-and-bound algorithm. The lower
bound is descried as follows.
Let @ denote a sequence with s scheduled and n—s unscheduled jobs of set N. For
1<k <£m, the completion time of (s+1)th jobon M, isas
Crrery (0) = Max{C,_re.11(6), Cyq (O} + Pygeugy (S +D*

> Cy1(0) + Pyperyy (S+D*.

Thus, the completion time of (s+1)th jobon M, is presented as
Core(0) 2 Coi () + Pegoy (5 +D* + Y Proy(5+1)*

i=k+1

Furthermore, the completion time of (s+2)th jobon M, isas

42

Chgsrz7(€) = max {Ck—1[5+2] (0), Cypsuy (9)} + Pepsiz (S + 2)%
2 Ck[s] (9) + pk[s+1] (s _'_:I')ak + pk[5+2] (S + 2)3k

Thus, the completion time of (s+2)th jobon M, isas

2 m
Cm[s+2] (0) 2 Ck[s] (9) + Z pk[s+v] (S +V)ak + Z pi[s+2] (S + 2)ai '
v=l

i=k+1

By an induction, we have the underestimated value of the completion time for (s+I)th job

on M, based on M, machine as

| m
Cirs(0) + Z Pursiv (S +V)* + Z Pipsvip (S + 1)*
v=1

i=k+1

The objective function is presented as

n S n-1
az; Coiy(0) +(1=2)C\) (0) = aZ; Corn (@@ Criy (0)+C oy (6) -
i= j=

J=s+1

> aicmm(e) +[a(n-s-1)+1]C, () +nf‘[a(n =s—D)+1](s+)™ pyuny

+§{[a+ 1015 pi[s+.](s+l)a}

1=1 i=k+1

l-a, =n-s
, Where an{

0, l#n-s
Since [a(n—s—1)+1](s+1)* decreases as | increases, then we have
azcm[j](0)+(1_a)cm[n] 9)

j=1

> aicmm(e) +[a(n-s-1)+1]C,,(0) + nZ_i[oc(n —s—D)+1](s+ D)™ peny

+§{[a+l(l)] i pis+|al} v (4-3)

1=1 i=k+1

where p,,,, denotes the Ith smallest normal processing time on M, of the job in set U.
To minimize the final term of equation (4-3), a Hungarian algorithm is applied and the

43

matrix for it is formed as follows.

a Z pi{s+1}(s+:]-)ai a Z pi{s+1}(s+2)ai o Z pi{s+1}(n_1)ai Z pi{s+l}(n)ai

i=k+1 i=k+1 i=k+1 i=k+1
sz pi{erz}(S"HI-)ai az pi{s+2}(s"‘2)ai az pi{s+2}(n_:|-)ai z pi{s+2}(n)ali

i=k+1 i=k+1 i=k+1 i=k+1 ’

a Z pi{n}(S +1)* a Z pi{n}(s +2)% -« Z pi{n}(n ~1)® Z pi{n}(n)ai

i=k+1 i=k+1 i=k+1 i=k+1

where p,.,, is the normal processing time on M, of the jobs in set U for 1<I<n-s.Let
H, denote the optimal value of the proposed Hungarian algorithm. Therefore, the
underestimated value of the objective function for 6 based on M, isas

aicm[n(@) +[a(n-s-1) +1]Ck[s](9)+ni[0‘(n_s_|)+1] (s+1)™ Pygsuny + Hy -

In order to make the lower bound stricter, the underestimated value based on every machine is

considered and the lower bound is obtained as

LB = aicmm(e) + max{[a(n—s—1)+1]Ck[s](6?)+ni[a(n—s—l) +1](s+1)* Py + Hk}

1<k<m

4.4 Computational results

In the procedure of proposed heuristic algorithms, the jobs with larger total processing
time (i.e. Zpij for j=1,2,...,n) have higher priority to be selected in NEH ,while
i=1

smaller in FL. In addition, since the machine- and position-based learning effects are
considered in this chapter, the ratios of the reduction for the actual processing time are varied

on different machines. Therefore, NEH W and FL_W are adapted from NEH and

FL by utilizing the weighted total processing time (i.e. Zwi p; for j=12,...,n) to
i=1

determine the priority of the jobs, in which the machines with weaker learning effect have

44

larger weight. For example, here are three machine-based learning indices as a, =—-0.322,

a, =-0.152 and a, =-0.515. Then the weights are setas w, =2, w, =3 and w,=1.

Several computational experiments are implemented in this chapter to assess the
performance of the branch-and-bound and the heuristic algorithms. All the algorithms are
coded in Fortran 90 and run on a personal computer with 2.89 GHz AMD Athlon ™ 11 X4 635
Processor and 3.25GB RAM with Windows XP. The normal processing times of all
operations are generated from a discrete uniform distribution over the integers 1 to 100.
Moreover, in order to discuss the influence on the proposed algorithms for different
assignments of learning effects under the same learning indices set, five learning patterns

denoted as Ran, Inc, Dec, SL and WL are proposed and expressed as follows.
Ran: The learning effects are randomly-assigned to the machines.
Inc: The stronger learning effects are assigned to the rear machines.

Dec: The weaker learning effects are assigned to the rear. machines

SL: The stronger learning effects are ‘assigned to the machines with the larger value of Z Py
j=1

for i=12,...,m.
A A n
WL: The weaker learning effects are assigned to the machines with the larger value of Z Py
j=1

for i=12,...,m.

The learning indices set of all computational experiments in this chapter is shown in Table

4.1.

45

Table 4.1. The index set of the learning effects

Number of machines

5 7 10 15
-0.152 -0.152 -0.152 -0.152
-0.234 -0.218 -0.188 -0.175
-0.322 -0.269 -0.225 -0.199
-0.415 -0.322 -0.263 -0.222
-0.515 -0.377 -0.302 -0.247

-0.434 -0.342 -0.271

-0.515 -0.383 -0.296

learning indices -0.426 -0.322
-0.469 -0.348

-0.515 -0.374

-0.401

-0.429

-0.457

-0.485

-0.515

The computational experiments.consist of three parts. In the first part, the influence of
different « on the branch-and-bound algorithm is evaluated. The number of jobs and
machines is set as 10 and 5, respectively. Then 100 replications are randomly generated.
Consequently, a total of 100 examples are generated to be tested. In addition, 51 different «
are given with values from 0 to 1 with an increment as 0.02, i.e., « =0, 0.02, 0.04,..., 1. The
five learning patterns and 51 different « are considered in each example and the results are

illustrated in Figs 4.1 and 4.2.

46

Fig 4.1. The number of nodes for the branch-and-bound algorithm under different ¢ (n=10)

600

500

400 r

300 -

Mean number of nodes

200 -

100 r

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

In Fig 4.1, the mean numbers of nodes for all experimental conditions are illustrated. It is
observed that the problem proposed in this chapter is easier to solve as « increases with
respect to the trend of the mean number of nodes: The reason is that the property and the
lower bound are more efficient in ‘the branch-and-bound algorithm with larger « .
Furthermore, Dec is the easiest among five learning patterns for seeking the optimal solution,
and Inc is the worst. In addition, the optimal objective values for five learning patterns are

discussed. Then the relative percentage deviation for five learning patterns is denoted as

RPD, and its mean is illustrated in Fig 4.2. For each example, the RPD, is calculated as

Mxm%,
A

‘min

where A denotes the optimal objective value under one of five given learning patterns, and

A

min

is the minimum among all A. It is observed that the optimal objective value under SL

is the lowest among five learning patterns, followed by Inc, Ran and Dec, and finally WL.

47

However, there is no determined priority among five learning patterns since all mean RPD,

are larger than zero.

Fig 4.2. The relative percentage deviation of the learning patterns for the optimal objective value under
different @ (n=10)

025 r
.
A
.
\ +
kY
020 r N
-~
~
~
AN S .
N Toe
015 ~ R
g " \\\ . T - = o WL
-~
= e—
8 — T ———
= T — — Dec
010 r
___ R_an
005 r
Inc
0.00 ' '
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
a

In the second part of the computational experiments, the numbers of jobs are set as 12,
14 and 16, and numbers of machines are set as 5 and 7. Furthermore, three « are given as
0.25, 0.50 and 0.75. Then 100 replications are randomly generated. Hence, a total of 1800
examples are generated to be tested in which the five learning patterns are considered. Then

the results are listed in Tables 4.2 to 4.6.

48

Table 4.2. The performance of the branch-and-bound algorithm

a =0.25 a =0.50 a=0.75
Number of nodes Cpu times Number of nodes Cpu times Number of nodes Cpu times
m Pattern mean max mean max mean max mean max mean max mean max
5 Ran 1550.43 9213 1.84 8.34 1145.36 8605 1.55 8.63 901.69 6087 1.36 7.14
Inc 3992.39 34418 2.66 19.56 2548.42 14103 1.98 10.08 1893.09 10818 1.65 7.86
Dec 429.49 3109 0.40 2.09 347.98 3010 0.37 1.98 297.70 2682 0.34 1.78
SL 1561.97 10346 1.01 4.20 1170:21 10062 0.88 4.02 969.24 7022 0.79 3.30
WL 1045.37 11976 0.86 4.97 755.21 7559 0.73 4.58 612.87 6531 0.66 4.09
7 Ran 2328.46 19105 1.32 9.09 1624.33 22124 1.08 10.16 1049.45 12119 0.88 5.38
Inc 6377.07 54718 5.68 25.11 3816.40 25625 4.19 20.97 2713.35 18196 3.45 17.97
Dec 635.63 6673 0.89 6.38 486.78 5711 0.80 5.70 363.18 3977 0.71 5.39
SL 1920.45 10152 2.03 8.16 1278.22 6932 1.67 7.67 983.96 7241 1.45 7.92
WL 1277.90 10061 1.70 10.41 871.76 6145 1.38 7.09 709.46 5993 1.22 7.05
5 Ran 8397.72 97712 13.43 99.28 5727.28 56055 10.91 74.48 4845.95 46274 9.82 73.30
Inc 31883.81 418776 44.54 372.50 17452.31 169405 30.27 216.80 13144.88 97435 25.12 175.41
Dec 1769.26 12080 3.22 16.92 1374.09 9108 2.94 17.28 1179.42 10186 2.76 17.73
SL 10382.89 115578 12.64 55.16 6689.93 49969 10.17 44.33 5140.81 28730 8.80 43.48
WL 3992.79 38389 10.23 84.28 2948.51 28213 8.34 67.02 2563.70 25591 7.50 62.02

49

7 Ran 16271.02 142636 32.37 290.52 9917.81 122468 24.74 274.36 7584.29 99124 21.15 244.52

Inc 74506.94 1980840 102.24 981.52 32558.74 322750 67.46 399.08 20916.03 124587 52.36 355.20
Dec 3317.76 87609 7.91 148.41 2486.66 74205 6.95 139.94 1767.69 47392 5.95 108.64
SL 12229.56 86179 23.97 123.91 8137.72 42532 19.40 99.19 6565.91 35383 17.09 89.53
WL 8076.68 158484 22.38 389.20 5646.80 105127 17.57 280.86 4478.99 76297 15.16 224.95
5 Ran 105044.01 2408452 349.62 4578.30 55620.78 600087 246.60 2274.17 39622.63 426218 201.16 1909.00
Inc 201758.16 2061604 514.57 3209.59 120521.06 1270538 350.70 2457.27 93087.06 1411099 288.07 2618.19
Dec 7520.64 107243 24.58 200.00 5155.33 41868 21.69 156.70 4148.91 37436 19.70 140.19
SL 66831.54 626475 233.56 1304.53 43107.35 360252 186.24 931.81 35647.61 289344 166.05 888.14
WL 31332.85 957031 103.05 1421.47 20896.89 575854 78.99 992.58 16706.67 402084 68.83 781.89

7 Ran 116674.80 2455027 238.17 3462.94 69780.49 1029782 167.75 2050.94 48757.11 674012 201.16 1909.00

Inc 740132.88 5188924 2252.10 1679142 383647.16 4065895 | 1369.95 13054.45 263149.47 3726265 1034.44 11907.66
Dec 18756.10 145112 83.65 545.95 13486:31 101862 73.19 504.02 11616.93 89494 67.83 524.33
SL 105188.86 1447154 185.16 1820.66 62497.38 842215 130.71 864.78 44370.55 531122 108.13 666.53
WL 55492.39 1245433 287.12 6346.81 36222.31 1007826 218.60 5101.81 29516.95 783194 188.49 4129.69

50

The mean and maximum number of nodes, and the mean and maximum CPU times (in
seconds) of the branch-and-bound algorithm are reported in Table 4.2. It reveals that the
number of nodes and the execution times increase significantly as the number of jobs or
machines increases since the problem proposed in this chapter is NP-hard. The optimal
solution is easier to be sought for the proposed problem with a larger « in terms of the
number of nodes and CPU times. Furthermore, the problem under Dec is the easiest among
the five learning patterns to be solved, and Inc is the worst. Moreover, the branch-and-bound

algorithm can deal with the problems with up to 16 jobs within a reasonable amount of time.
In order to discuss the priority over five learning patterns for obtaining lower optimal
objective value, the mean and maximum RPD, are recorded for all computational

conditions in Table 4.3. As shown in Table 4.3, it reveals that the optimal objective value
under SL is the lowest among.five learning patterns, follows by Inc, Ran and Dec, and finally
WL. It implies that assigning the stronger learning ‘effect to the machine with the heavier

workload might obtain a lower optimal objective value.

51

Table 4.3. The comparison among five learning patterns for the optimal objective

value
RDP,
a =0.25 a =0.50 a=0.75

n m Patten mean max mean max mean max
12 5 Ran 0.089 0.297 0.078 0.275 0.073 0.267
Inc 0.049 0.292 0.046 0.275 0.044 0.267

Dec 0.125 0.356 0.109 0.324 0.103 0.310

SL 0.007 0.046 0.006 0.041 0.005 0.039

WL 0.161 0.346 0.144 0.316 0.137 0.303

7 Ran 0.070 0.195 0.063 0.167 0.060 0.163

Inc 0.025 0.119 0.024 0.105 0.024 0.103

Dec 0.125 0.237 0.109 0.217 0.103 0.212

SL 0.007 0.064 0.006 0.057 0.005 0.057

WL 0.136 0.301 0.121 0.273 0.115 0.264

14 5 Ran 0.099 0:392 0.090 0.346 0.086 0.327
Inc 0.054 0.200 0.050 0.197 0.048 0.194

Dec 0.132 0.392 0.117 0.346 0.111 0.327

SL 0.006 0.067 0.005 0.046 0.005 0.037

WL 0.171 0.398 0.155 0.351 0.148 0.332

7 Ran 0.083 0.327 0.075 0.296 0.071 0.288

Inc 0.022 0.157 0.022 0.136 0.021 0.126

Dec 0.1412 0.330 0.125 0.299 0.119 0.288

SL 0.006 0.056 0.005 0.039 0.004 0.038

WL 0.157 0.328 0.141 0.295 0.135 0.282

16 5 Ran 0.095 0.271 0.086 0.247 0.083 0.239
Inc 0.068 0.301 0.063 0.286 0.061 0.279

Dec 0.136 0.413 0.122 0.376 0.117 0.365

SL 0.006 0.060 0.005 0.054 0.005 0.052

WL 0.180 0.416 0.166 0.379 0.160 0.369

7 Ran 0.084 0.276 0.075 0.250 0.072 0.242

Inc 0.031 0.183 0.029 0.167 0.028 0.158

Dec 0.128 0.411 0.116 0.371 0.111 0.357

SL 0.008 0.068 0.007 0.061 0.007 0.061

WL 0.158 0.405 0.143 0.364 0.137 0.349

52

For the proposed heuristic algorithms, the mean and maximum error percentages under
different « are reported in Tables 4.4 to 4.6. The CPU times are not presented since all
heuristic algorithms for each example are executed within a second. The error percentage of

the given heuristic algorithm is calculated as

v ‘Y x100%
Y,

where V and V~* respectively denotes the near-optimal objective value yielded by the
heuristic algorithm, and the optimal objective value derived by the branch-and-bound
algorithm. In addition, min{NEH,NEH _W} denotes the better one of NEH and
NEH _W for the given example, and min{FL,FL _W} as well denotes the better one of

FL and FL_W.

53

Table 4.4. The performance of the heuristic algorithms (¢« = 0.25)

Error percentages
NEH NEH W min{NEH,NEH_W} FL FL W min{FL,FLW}

Patten mean max mean max mean max mean max mean max mean max

3

5 Ran 0.051 0.132 0.059 0.134 0.045 0.110 0.011 0.067 0.012 0.067 0.008 0.067
Inc 0.083 0.097 0.037 0.105 0.029 0.097 0.010 0.056 0.012 0.054 0.007 0.045
Dec 0.062 0.144 0.065 0.201 0.052 0.144 0.010 0.043 0.009 0.060 0.006 0.030
SL 0.055 0.138 0.057 0.138 0.046 0.126 0.015 0.060 0.017 0.049 0.011 0.049
WL 0.045 0.134 0.054 0.155.+0.039 0.134 0.008 0.066 0.009 0.068 0.006 0.066

5 Ran 0.050 0.110 0.058 0.136 0.045 0.095 0.012 0.044 0.011 0.065 0.008 0.040
Inc 0.034 0.093 0.039 0.108 0.030 0.093 0.010 0.044 0.011 0.052 0.007 0.035
Dec 0.069 0.147 0.075 0.146 0.060 0.121 0.011 0.046 0.011 0.056 0.007 0.043

54

16 5 Ran 0.061 0.182 0.069 0.164 0.054 0.122 0.013 0.069 0.014 0.069 0.010 0.069
Inc 0.041 0.147 0.043 0.155 0.035 0.079 0.011 0.049 0.011 0.061 0.008 0.044
Dec 0.079 0.177 0.084 0.169 0.069 0.167 0.011 0.039 0.011 0.045 0.008 0.035

Table 4.5. The performance of the heuristic algorithms (¢ = 0.50)

Error percentages
NEH NEH_W " min{NEH,NEH_W} FL FL W min{FL,FLW}

n m Patten mean max mean max — mean max mean max mean max mean max

12 5 Ran 0.056 0.153 0.063 0.146 0.049 0.128 0.010 0.065 0.012 0.064 0.008 0.064
Inc 0.085 0.090 0.041 0.118 0.031 0.090 0.011 0.047 0.011 0.049 0.008 0.043
Dec 0.066 0.173 0.069 0.167 0.056 0.167 0.009 0.051 0.009 0.049 0.006 0.041
SL 0.049 0.142 0.054 0.138 0.042 0.138 0.013 0.049 0.014 0.048 0.010 0.048
WL 0.049 0.145 0.055 0.154 0.043 0.128 0.006 0.033 0.008 0.068 0.004 0.025

55

WL 0.050 0.137 0.052 0.134 0.042 0.120 0.012 0.069 0.012 0.074 0.009 0.060

5 Ran 0.056 0.124 0.062 0.161 0.048 0.104 0.013 0.056 0.012 0.056 0.008 0.047
Inc 0.038 0.093 0.043 0.137 0.033 0.086 0.012 0.045 0.011 0.045 0.009 0.045
Dec 0.079 0.169 0.085 0.186 0.068 0.156 0.011 0.044 0.011 0.064 0.007 0.028

5 Ran 0.067 0.203 0.072 _0.185 0.058 0.135 0.013 0.063 0.014 0.073 0.010 0.060
Inc 0.047 0.139 0.047 .0.161 . 0.039 0.093 0.012 0.072 0.013 0.051 0.009 0.051
Dec 0.088 0.196 0.090 0:167 .. 0.076 0.167 0.013 0.059 0.011 0.068 0.008 0.047

56

Table 4.6. The performance of the heuristic algorithms (¢ = 0.75)

Error percentages
NEH NEH W min{NEH,NEH_W} FL FL W min{FL,FLW}

m Patten mean max mean max mean max mean max mean max mean max

5 Ran 0.058 0.159 0.064 0.157 0.050 0.132 0.012 0.064 0.011 0.044 0.008 0.044
Inc 0.036 0.086 0.039 0.092 0.031 0.081 0.011 0.044 0.011 0.053 0.008 0.035
Dec 0.069 0.149 0.070 0.170 0.057 0.122 0.009 0.052 0.009 0.044 0.006 0.030
SL 0.056 0.179 0.057 0.144 0.047 0.144 0.013 0.046 0.016 0.055 0.010 0.041
WL 0.052 0.146 0.058 0.187_0.045 0.114 0.006 0.050 0.007 0.059 0.005 0.038

5 Ran 0.057 0.131 0.064 0.131 0.050 0.109 0.013 0.054 0.012 0.050 0.008 0.045
Inc 0.039 0.103 0.043 0.105 0.034 0.083 0.012 0.040 0.013 0.059 0.009 0.040
Dec 0.081 0.180 0.082 0.199 0.068 0.159 0.011 0.048 0.011 0.053 0.007 0.044

57

5 Ran 0.069 0.222 0.071 0.173 0.059 0.153 0.016 0.091 0.014 0.056 0.010 0.042
Inc 0.048 0.151 0.048 0.164 0.040 0.094 0.012 0.064 0.013 0.039 0.008 0.035
Dec 0.089 0.207 0.090 0.179 0.075 0.149 0.011 0.043 0.011 0.068 0.008 0.032

58

As shown in Tables 4.4 to 4.6, it is observed that all heuristic algorithms proposed in this
chapter are quite accurate since the error percentages are all less than 0.1%. For evaluating the
influence on the performance of the heuristic algorithms, several two-way analysis of variance
(ANOVA) with a significance of 5% of the mean error percentage under each heuristic
algorithm are conducted and the results are reported in Table 4.7.

Table 4.7. Two-way ANOVA of the error percentages for all heuristic algorithms

Heuristic algorithm Source DF SS MS F p-value
NEH a 2 0.0004311 0.0002155 5.08 0.009
Learning patterns 4 0.0089166 0.0022292 52.50 0.000
Interaction 8 0.0001122 0.0000140 0.33 0.952
Error 75 0.0031847 0.0000425
Total 89 0.0126446
NEH_W a 2 0.0001460 0.0000730 1.21 0.304
Learning patterns 4 0.0735550 0.0018389 30.46 0.000
Interaction 8 0.0000621 0.0000078 0.13 0.998
Error 75 0:0045283 0.0000604
Total 89 0:0120920
min{NEH,NEH_W} « 2 0.0001948 0.0000974 2.43 0.095
Learning patterns 4 0.0056230 0.0014058 35.04 0.000
Interaction 8 0.0000657 0.0000082 0.20 0.989
Error 75 0.0030085 0.0000401
Total 89 0.0088921
FL a 2 0.0000008 0.0000004 0.08 0.919
Learning patterns 4 0.0004772 0.0001193 25.31 0.000
Interaction 8 0.0000074 0.0000009 0.20 0.991
Error 75 0.0003535 0.0000047
Total 89 0.0008389
FL W a 2 0.0000075 0.0000039 0.90 0.412
Learning patterns 4 0.0007590 0.0001898 43.70 0.000
Interaction 8 0.0000071 0.0000009 0.20 0.989
Error 75 0.0003257 0.0000043
Total 89 0.0010996
min{FLLFL W} « 2 0.0000002 0.0000001 0.03 0.970
Learning patterns 4 0.0003397 0.0000849 33.00 0.000
Interaction 8 0.0000030 0.0000004 0.14 0.997
Error 75 0.0001930 0.0000026
Total 89 0.0005358

59

As shown in Table 4.7, it is observed that « doesn’t have a significant effect on the accuracy
for all heuristic algorithms except NEH. Then it is shown in Tables 4.4 to 4.6 that the mean
error percentage of NEH descends as « decreases, and the reason is that the NEH is initially
devoted to solving the makespan problem. Furthermore, it reveals that the learning pattern has
a significant effect on the accuracy for all proposed heuristic algorithms. A close observation
of Tables 4.4 to 4.6 shows that Inc is the most accurate under NEH, NEH_W and
min{NEH,NEH_W}, and Dec is the least accurate. Meanwhile, SL is the most accurate under
FL, FL_W and min{FL,FL_W}, and WL is the least. In addition, there is no interaction
between « and the learning patterns for all heuristic algorithms. Moreover, it is shown that
min{NEH,NEH_W?} is more accurate than NEH and NEH_W, and min{FL,FL_W} is more
accurate than FL and FL_W. It implies that there is no priority between two methods of index
development utilized in the proposed-heuristic algorithms. Eventually, min{FL,FL_W} is the
most accurate among all heuristic algorithms, followed by FL and FL_W, min{NEH,NEH_W},

and finally NEH and NEH_W.

In the last part of the computational experiments, the examples with large size of jobs are
generated to perform the heuristic algorithms proposed in this chapter. Let « be set as 0.50
since most of the proposed heuristic algorithms are not affected by « for the statistical
analysis in Table 4.7. Additionally, the numbers of jobs are set as 50 and 100, and numbers of
machines are set as 10 and 15. Then 100 replications are randomly generated. A total of 400
examples are generated to be tested in which five learning patterns are considered in each

example. Consequently, the relative percentage deviation for all heuristic algorithms is

denoted as RPD,,;, and its mean and maximum values are listed in Table 4.8. For each

example, the RPD,, is calculated as

A7 Hrin 4 100% |
/umin

60

where , denotes the near-optimal objective value for given one of all heuristic algorithms,

and ,;, 1s the minimum among all .. As shown in Table 4.8 that FL and FL_W are both

better than min{NEH,NEH_W} in terms of the RPD,,. It implies that the heuristic algorithm

proposed by Framinan and Leisten [11] is more proper than the algorithm proposed by Nawaz
et al. [23] to obtain the near-optimal solution for the problem proposed in this chapter. Finally,

it is observed that min{FL,FL_W?} is the most accurate of all proposed heuristic algorithms

because of that the RDP, are all zero. Therefore, min{FL,FL_W} is recommended to yield

the near-optimal schedule for the problem proposed in this chapter.

61

Table 4.8. The comparison of the heuristic algorithms for large job-sized problem (& =0.50)

RPD,,
NEH NEH W min{NEH,NEH W} FL FL W min{FL,FLW}
n m Pattern mean maXx mean maXx mean maXx mean maXx mean maXx mean maX
50 10 Ran 0072 0143 0073 0.133 0.064 0.106 0.004 0.053 0.004 0030 0.000 0.008
Inc 0.043 0.078 0047 0.083 0.039 0.074 0.003 0.035 0003 0035 0.000 0.000
Dec 0.095 0137 0075 0.129 0.073 0.128 0.004 0.037 0003 0026 0.000 0.000
sL 0073 0135 0071 0.117 0.064 0.117 0.004 0.027 0.007 0.047 0.000 0.000
WL 0070 0146 0067 0.119 0.061 0.119 0.004 0.027 0003 0024 0.000 0.000
15 Ran 0062 0127 0060 0.114 .0.053 0.108 0.006 0.038 0.003 0028 0.000 0.000
Inc 0.037 0077 0040 0.072+ 0.033 0.068 0.005 0.029 0.004 0035 0.000 0.004
Dec 0078 0135 0061 0.123 0.059 0.123 0,004 0021 0003 0022 0.000 0.000
sL 0.065 0107 0.059 0.107 . 0.054 0,106 0.005 0.029 0.004 0024 0.000 0.000
WL 0.063 0143 0060 0.108 0.054 0.108 0,004 0.030 0002 0026 0.000 0.000
100 10 Ran 0.080 0133 0081 0.136 . 0072 0.116 0.004 0.028 0004 0034 0.000 0.000
Inc 0.055 0.090 0.057 0.091 0.052 0.079 0003 0.023 0002 0024 0.000 0.000
Dec 002 0155 0079 0.129 .0.078 0.129 0.004 0019 0002 0013 0.000 0.000
sL 0.089 0133 0087 0.132 0.082 0.132 0.003 0.018 0004 0029 0.000 0.000
WL 0075 0137 0077 0.130 0.069 0.117 0.004 0.020 0002 0024 0.000 0.000
15 Ran 0073 0132 0068 0.109 0.065 0.103 0.005 0.047 0.002 0021 0.000 0.000
Inc 0.048 0079 0052 0.083 0.045 0.071 0.004 0.029 0002 0018 0.000 0.000
Dec 0.093 0135 0067 0.113 0.067 0.113 0.004 0021 0002 0015 0.000 0.000
sL 0073 0117 0068 0.105 0.063 0.102 0.004 0.022 0003 0022 0.000 0.000
WL 0071 0120 0068 0121 0.064 0.105 0.005 0.029 0002 0025 0.000 0.000

62

4.5 Summary

In this chapter, an m-machine flowshop scheduling problem with machine- and
position-based learning effects is studied to minimize the weighted sum of the total
completion time and the makespan. The branch-and-bound algorithm incorporated with a
dominance property and a lower bound is proposed to seek the optimal sequence, and four
heuristic algorithms are established to yield the near-optimal sequences. As shown in the
computational results, the proposed problem can be dealt with up to 16 jobs within a
reasonable amount of time for seeking the optimal sequence. When the learning pattern is set
as Inc, or if « is smaller, the proposed problem is harder to search for the optimal sequence
by implementing the proposed branch-and-bound -algorithm. Furthermore, the performances
of all proposed heuristic algorithms-are accurate and-min{FL,FL_W} is recommended to
obtain the near-optimal sequence. Finally, the issue for allocating the learning effects to the
machines is discussed in this chapter, and it is shown that assigning the stronger learning
effects to the machines with the heavier workload might obtain the better result, and it can be
utilized as an important course for decision making in the scheduling field, such as assigning

the operators to the machines.

63

Chapter 5

Concluding remarks

5.1. Conclusion

In this dissertation, two m-machine flowshop problems with position-based learning

effect are studied. For each problem, a dominance property and a lower bound are proposed to

conduct a branch-and-bound algorithm for obtaining the optimal sequences. In addition,

because searching the optimal sequence for large job-sized problem is time consuming, this

dissertation introduces learning effect into two well-known existing heuristic and two

meta-heuristic algorithms to obtain the near-optimal sequences. Then the optimal sequence for

small job-sized problems is utilized to assess the accuracy of the proposed heuristic and

meta-heuristic algorithms. The computational-experiment shows that

Assigning the strongerlearning effects to the machines with the heavier workload might
obtain the better result.

The optimal solution for the' traditional flowshop scheduling problem is no longer
optimal when the learning effect exists in the production environment.

The branch-and-bound algorithm can solve problems of up to 18 jobs within a
reasonable amount of time.

We recommend to conduct the proposed branch-and-bound algorithm for obtaining the
optimal sequence within a reasonable amount of time, or conduct the proposed heuristic
and meta-heuristic algorithms for obtaining near-optimal sequences when the number of
jobs is larger than 18.

The heuristic and meta-heuristic algorithms proposed in this dissertation are quite
accurate since all the mean error percentages are less than 0.1%.

GA is recommended to derive the near-optimal sequence when the execution time is not

64

considered. Otherwise, the min{FL,FL_W?} is recommended.

The efficiency of the branch-and-bound algorithm enhances while the machines have
stronger learning effects or a decreasing trend of learning effects.

The number of nodes and the execution time grow exponentially with an increasing

number of jobs because of the proposed problems are NP-hard problems.

5.2 Suggestions for further studies

Some possible suggestion could be investigated for further studies and listed as follows.

The actual processing time of the job in the proposed model could be divided into two
parts, those are the setup time with the learning consideration and the normal processing
time without the learning consideration, in which the setup time is operated by the
worker, and the normal processing time s operated by the machine.

Other objective functions could bediscussed, like minimizing total tardiness, minimizing
the number of tardy jobs, and so on.

The concept of multiple-agent “could: be "introduced into the proposed scheduling
problems.

Developing the constructive heuristic algorithms or meta-heuristic algorithms to derive
better near-optimal sequence.

Searching for more practical learning model.

The sum-of-processing- time-based learning effect could be studied.

65

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

References

Biskup, D., “Single-machine scheduling with learning considerations”, European

Journal of Operational Research, 115, 173-178, 1999.

Biskup, D., “A state-of-the-art review on scheduling with learning effect”, European

Journal of Operational Research, 188, 315-329, 2008.

Chen, P, Wu, C.C., and Lee, W.C., “A bi-criteria two-machine flowshop scheduling

problem with a learning effect”, The Journal of Operational Research Society, 57,

1113-1125, 2006.
Cheng, T.C.E., Cheng, S.R., Wu; W.H., Hsu, P.H., and Wu, C.C., “A two-agent
single-machine scheduling ‘problem with “truncated sum-of-processing-times-based

learning consideration”, Computers & Industrial Engineering, 60, 534-541, 2011.

Cheng, T.C.E., Lai, PJ., Wu, C.C;; and Lee, W.C:, “Single-machine scheduling with
sum-of-logarithm-processing-times-based - learning considerations”, Information
Sciences, 179, 3127-3135, 20009.

Cheng, T.C.EE., Wu, C.C.,, and Lee, W.C, “Some scheduling problems with
sum-of-processing-times-based and job-position-based learning effects”, Information
Sciences, 178, 2476-2487, 2008.

Chung, C.S., Flynn, J., and Kirca, O., “A branch-and-bound algorithm to minimize the

total flow time for m-machine permutation flowshop problems”, International Journal

of Production Economics, 79, 185-196, 2002.

Chung, C.S., Flynn, J., and Kirca, O., “A branch and bound algorithm to minimize the

total tardiness for m-machine permutation flowshop problems”, European Journal of

Operational Research, 174, 1-10, 2006.

Eren, T., and Guner, E., “A bicriteria parallel machine scheduling with a learning

66

effect”, International Journal of Advanced Manufacturing Technology, 40, 1202-1205,

2009.
[10] Framinan, J.M., Gupta J.N.D., and Leisten, R., “A review and classification of
heuristics for permutation flow-shop scheduling with makespan objective”, Journal of

the Operational Research Society, 55, 1243-1255, 2004.

[11] Framinan, J.M., and Leisten, R., “An efficient constructive heuristic for flowtime
minimization in permutation flow shops”, OMEGA, 31, 311-317, 2003.
[12] Garey, M.R., Johnson, D.S., and Sethi, R., “The complexity of flowshop and jobshop

scheduling”, Mathematics of Operations Research, 1, 117-129, 1976.

[13] Huang, X., Wang, M.Z., and Wang, J.B., “Single-machine scheduling with both

learning effects and deteriorating: jobs”, Computers & Industrial Engineering, 60,

750-754, 2011.
[14] Janiak, A., and Rudek, R.,*“A new approach to the learning effect: Beyond the learning

curve restrictions”, Computers and Operations Research, 35, 3727- 3736, 2008.

[15] Janiak, A., and Rudek, R:, “Experience based.approach to scheduling problems with the

learning effect”, IEEE Transactions on System, Man, and Cybernetics, Part A: Systems

and Humans, 39, 344-357, 2009.
[16] Janiak, A., and Rudek, R., “A note on a makespan minimization problem with a
multi-ability learning effect”, Omega, 38, 213-217, 2010.

[17] Koulamas, C. and Kyparisis, G.J., “Single-machine and two-machine flowshop

scheduling with general learning function”, European Journal of Operational Research,
178, 402-407, 2007.
[18] Koulamas, C., “A note on single-machine scheduling with job-dependent learning

effects”, European Journal of Operational Research, 207, 1142-1143, 2010.

[19] Lai, PJ.,, and Lee, W.C., “Single-machine scheduling with general

sum-of-processing-time-based and position-based learning effects”, Omega, 39,

67

467-471, 2011.
[20] Lee, W.C., and Lai, P.J., “Scheduling problems with general effects of deterioration and

learning”, Information Sciences, 181, 1164-1170, 2011.

[21] Lee, W.C., and Wu, C.C., “Minimizing total completion time in a two-machine

flowshop with a learning effect”, International Journal of Production Economics, 88,

85-93, 2004.
[22] Lee, W.C., and Wu, C.C., “Some single-machine and m-machine flowshop scheduling

problems with learning considerations”. Information Sciences, 179, 3885-3892, 2009.

[23] Lee, W.C., Wu, C.C., and Hsu, P.H., “A single-machine learning effects scheduling
problem with release times”, Omega, 38, 3-11, 2010.
[24] Lenstra, J.K., Rinnooy Kan," A.H.G., ‘and Brucker, P., “Complexity of machine

scheduling problems”, Annals of Discrete Mathematics, 1, 343-362, 1977.

[25] Li, D.C., Hsu, P.H., Wu, C.C., and Cheng, T.C.E., “Two-machine flowshop scheduling

with truncated learning to minimize the total completion time”, Computers & Industrial

Engineering, In Press, 2011, dot: 10.1016/j.c1e.2011.04.021
[26] Liu, S., and Ong, H.L., “A comparative study of algorithms for the flowshop scheduling

problem”, Asia-Pacific Journal of Operational Research, 19, 205-222, 2002.

[27] Nawaz, M., Enscore, E.E., and Ham, 1., “A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem”, OMEGA, 11, 91-95, 1983.
[28] Mosheiov, G., and Sidney J.B., “Scheduling with general job-dependent learning

curves”, European Journal of Operational Research, 147, 665-670, 2003.

[29] Pinedo, M., Scheduling: theory, algorithms, and systems, Second Edition, Prentice-Hall,

Upper Saddle River, New Jersey, 2002.
[30] Rajendran, C., and Ziegler, H., “An efficient heuristic for scheduling in a flowshop to

minimize total weighted flowtime of jobs”, European Journal of Operational Research,

103, 129-138, 1997.

68

[31] Ruiz, R., and Maroto, C., “A comprehensive review and evaluation of permutation

flowshop heuristics”, European Journal of Operational Research, 165, 479-494, 2005.

[32] Smith, W.E., “Various optimizers for single state production”, Naval Research

Logistics Quarterly, 3, 59-66, 1956.

[33] Toksari, M.D., “A branch and bound algorithm for minimizing makespan on a single
machine with unequal release times under learning effect and deteriorating jobs”,

Computers and Operations Research, 38, 1361- 1365, 2011.

[34] Toksari, M.D., and Guner, E., “Parallel machine earliness/tardiness scheduling problem
under the effects of position based learning and linear/nonlinear deterioration”,

Computers and Operations Research, 36, 2394-2417, 20009.

[35] Wang, J.B., and Li, J.X., <‘Single machine past-sequence-dependent setup times
scheduling with general position-dependent “and time-dependent learning effects”,

Applied Mathematical Modelling, 35, 1388-1395, 2011.

[36] Wang, L., Pan, Q.K., and Tasgetiren, M.F., “A hybrid harmony search algorithm for the

blocking permutation flow. shop scheduling. problem”, Computers & Industrial

Engineering, 61, 76-83, 2011.
[37] Wang, J.B., Sun, L., and Sun, L., “Single machine scheduling with a learning effect and

discounted costs”, International Journal of Advanced Manufacturing Technology, 49,

1141-1149, 2010.
[38] Wang, J.B., and Wang, J.J., “Single-machine scheduling jobs with exponential learning

functions”, Computers & Industrial Engineering, 60, 755-759, 2011.

[39] Wang, X.R., Wang, JB., Gao, W.J. and Huang, X. “Scheduling with
past-sequence-dependent setup times and learning effects on single machine”,

International Journal of Advanced Manufacturing Technoloqy, 48, 739-746, 2010.

[40] Wang, L.Y., Wang, J.B., Gao, W.J., Huang, X., and Feng, E.M., “Two single-machine

scheduling problems with the effects of deterioration and learning”, International

69

Journal of Advanced Manufacturing Technology, 46, 715-720, 2010.

[41] Wang, L.Y., Wang, J.B., Wang, D., Yin, N., Huang, X., and Feng, E.M.,
“Single-machine scheduling with a sum-of-processing-time based learning effect and

deteriorating jobs”, International Journal of Advanced Manufacturing Technology, 45,

336-340, 20009.
[42] Wang, J.B., and Xia, Z.Q., “Flow-shop scheduling with a learning effect”, The Journal

of Operational Research Society, 56, 1325-1330, 2005.

[43] Woo, H.S., and Yim, D.S., “A heuristic algorithm for mean flowtime objective in

flowshop scheduling”, Computers and Operations Research, 25, 175-182, 1998.

[44] Wright, T.P., “Factors affecting the cost of airplanes”, Journal of Aeronautical Sciences,

3, 122-128, 1936.
[45] Wu, C.C., Hsu, P.H., Chen, J.C.,-Wang, N.S., and Wu, W.H., “Branch-and-bound and
simulated annealing algorithms for a total weighted completion time scheduling with

ready time and learning effect”, -International Journal of Advanced Manufacturing

Technology, doi: 10.1007/s00170-010-3022-7, 2010.
[46] Wu, C.C. and Lee, W.C., “A note on the total completion time problem in a permutation

flowshop with a learning effect”, European Journal of Operational Research, 192,

343-347, 20009.
[47] Wu, C.C., Lee, W.C., and Wang, W.C., “A two-machine flowshop maximum tardiness

scheduling problem with a learning effect”, International Journal of Advanced

Manufacturing Technology, 31, 743-750, 2007.

[48] Yelle, L.E., “The learning curve: historical review and comprehensive survey”,

Decision Sciences, 10, 302-328, 1979.

[49] Yin, Y., Xu, D., Sun, K., and Li, H., “Some scheduling problems with general

position-dependent and time-dependent learning effects”, Information Sciences, 179,

2416-2425, 20009.

70

[50] Zhang Y., and Li, X., “Estimation of distribution algorithm for permutation flow shops

with total flowtime minimization”, Computers & Industrial Engineering, 60, 706-718,

2011.
[51] Zhu, Z., Sun, L., Chu, F., and Liu, M., “Single-machine group scheduling with resource

allocation and learning effect”, Computers & Industrial Engineering, 60, 148-157,

2011.

71

	Title page_Final
	Defence_Final
	Chapter 1 Introduction
	1.1 Research motivation
	1.2 Literature review
	1.3 Research objectives and methodologies

	Chapter 2 Algorithms
	2.1 Branch-and-bound algorithms
	2.2 Heuristic algorithms
	2.3 Meta-heuristic algorithms

	Chapter 3 Makespan minimization for m-machine flowshop scheduling problem with position-based learning effects
	3.1 Notations and problem statement
	3.2 Dominance property
	3.3 Lower bound
	3.4 Computational results
	3.5 Summary

	Chapter 4 Bi-criteria minimization for m-machine flowshop scheduling problem with machine- and position-based learning effects
	4.1 Notations and problem statement
	4.2 Dominance property
	4.3 Lower bound
	4.4 Computational results
	4.5 Summary

	Chapter 5 Concluding remarks
	5.1. Conclusion
	5.2 Suggestions for further studies

	References
	[1] Biskup, D., “Single-machine scheduling with learning considerations”, European Journal of Operational Research, 115, 173-178, 1999.
	[2] Biskup, D., “A state-of-the-art review on scheduling with learning effect”, European Journal of Operational Research, 188, 315-329, 2008.
	[3] Chen, P., Wu, C.C., and Lee, W.C., “A bi-criteria two-machine flowshop scheduling problem with a learning effect”, The Journal of Operational Research Society, 57, 1113-1125, 2006.
	[4] Cheng, T.C.E., Cheng, S.R., Wu, W.H., Hsu, P.H., and Wu, C.C., “A two-agent single-machine scheduling problem with truncated sum-of-processing-times-based learning consideration”, Computers & Industrial Engineering, 60, 534-541, 2011.
	[5] Cheng, T.C.E., Lai, P.J., Wu, C.C., and Lee, W.C., “Single-machine scheduling with sum-of-logarithm-processing-times-based learning considerations”, Information Sciences, 179, 3127-3135, 2009.
	[6] Cheng, T.C.E., Wu, C.C., and Lee, W.C, “Some scheduling problems with sum-of-processing-times-based and job-position-based learning effects”, Information Sciences, 178, 2476-2487, 2008.
	[7] Chung, C.S., Flynn, J., and Kirca, Ő., “A branch-and-bound algorithm to minimize the total flow time for m-machine permutation flowshop problems”, International Journal of Production Economics, 79, 185-196, 2002.
	[8] Chung, C.S., Flynn, J., and Kirca, Ő., “A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems”, European Journal of Operational Research, 174, 1-10, 2006.
	[9] Eren, T., and Guner, E., “A bicriteria parallel machine scheduling with a learning effect”, International Journal of Advanced Manufacturing Technology, 40, 1202-1205, 2009.
	[10] Framinan, J.M., Gupta J.N.D., and Leisten, R., “A review and classification of heuristics for permutation flow-shop scheduling with makespan objective”, Journal of the Operational Research Society, 55, 1243-1255, 2004.
	[11] Framinan, J.M., and Leisten, R., “An efficient constructive heuristic for flowtime minimization in permutation flow shops”, OMEGA, 31, 311-317, 2003.
	[12] Garey, M.R., Johnson, D.S., and Sethi, R., “The complexity of flowshop and jobshop scheduling”, Mathematics of Operations Research, 1, 117-129, 1976.
	[13] Huang, X., Wang, M.Z., and Wang, J.B., “Single-machine scheduling with both learning effects and deteriorating jobs”, Computers & Industrial Engineering, 60, 750-754, 2011.
	[14] Janiak, A., and Rudek, R., “A new approach to the learning effect: Beyond the learning curve restrictions”, Computers and Operations Research, 35, 3727- 3736, 2008.
	[15] Janiak, A., and Rudek, R., “Experience based approach to scheduling problems with the learning effect”, IEEE Transactions on System, Man, and Cybernetics, Part A: Systems and Humans, 39, 344-357, 2009.
	[16] Janiak, A., and Rudek, R., “A note on a makespan minimization problem with a multi-ability learning effect”, Omega, 38, 213-217, 2010.
	[17] Koulamas, C. and Kyparisis, G.J., “Single-machine and two-machine flowshop scheduling with general learning function”, European Journal of Operational Research, 178, 402-407, 2007.
	[18] Koulamas, C., “A note on single-machine scheduling with job-dependent learning effects”, European Journal of Operational Research, 207, 1142-1143, 2010.
	[19] Lai, P.J., and Lee, W.C., “Single-machine scheduling with general sum-of-processing-time-based and position-based learning effects”, Omega, 39, 467-471, 2011.
	[20] Lee, W.C., and Lai, P.J., “Scheduling problems with general effects of deterioration and learning”, Information Sciences, 181, 1164-1170, 2011.
	[21] Lee, W.C., and Wu, C.C., “Minimizing total completion time in a two-machine flowshop with a learning effect”, International Journal of Production Economics, 88, 85-93, 2004.
	[22] Lee, W.C., and Wu, C.C., “Some single-machine and m-machine flowshop scheduling problems with learning considerations”. Information Sciences, 179, 3885-3892, 2009.
	[23] Lee, W.C., Wu, C.C., and Hsu, P.H., “A single-machine learning effects scheduling problem with release times”, Omega, 38, 3-11, 2010.
	[24] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., “Complexity of machine scheduling problems”, Annals of Discrete Mathematics, 1, 343-362, 1977.
	[25] Li, D.C., Hsu, P.H., Wu, C.C., and Cheng, T.C.E., “Two-machine flowshop scheduling with truncated learning to minimize the total completion time”, Computers & Industrial Engineering, In Press, 2011, doi: 10.1016/j.cie.2011.04.021
	[26] Liu, S., and Ong, H.L., “A comparative study of algorithms for the flowshop scheduling problem”, Asia-Pacific Journal of Operational Research, 19, 205-222, 2002.
	[27] Nawaz, M., Enscore, E.E., and Ham, I., “A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem”, OMEGA, 11, 91-95, 1983.
	[28] Mosheiov, G., and Sidney J.B., “Scheduling with general job-dependent learning curves”, European Journal of Operational Research, 147, 665-670, 2003.
	[29] Pinedo, M., Scheduling: theory, algorithms, and systems, Second Edition, Prentice-Hall, Upper Saddle River, New Jersey, 2002.
	[30] Rajendran, C., and Ziegler, H., “An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs”, European Journal of Operational Research, 103, 129-138, 1997.
	[31] Ruiz, R., and Maroto, C., “A comprehensive review and evaluation of permutation flowshop heuristics”, European Journal of Operational Research, 165, 479-494, 2005.
	[32] Smith, W.E., “Various optimizers for single state production”, Naval Research Logistics Quarterly, 3, 59-66, 1956.
	[33] Toksari, M.D., “A branch and bound algorithm for minimizing makespan on a single machine with unequal release times under learning effect and deteriorating jobs”, Computers and Operations Research, 38, 1361- 1365, 2011.
	[34] Toksari, M.D., and Guner, E., “Parallel machine earliness/tardiness scheduling problem under the effects of position based learning and linear/nonlinear deterioration”, Computers and Operations Research, 36, 2394-2417, 2009.
	[35] Wang, J.B., and Li, J.X., “Single machine past-sequence-dependent setup times scheduling with general position-dependent and time-dependent learning effects”, Applied Mathematical Modelling, 35, 1388-1395, 2011.
	[36] Wang, L., Pan, Q.K., and Tasgetiren, M.F., “A hybrid harmony search algorithm for the blocking permutation flow shop scheduling problem”, Computers & Industrial Engineering, 61, 76-83, 2011.
	[37] Wang, J.B., Sun, L., and Sun, L., “Single machine scheduling with a learning effect and discounted costs”, International Journal of Advanced Manufacturing Technology, 49, 1141-1149, 2010.
	[38] Wang, J.B., and Wang, J.J., “Single-machine scheduling jobs with exponential learning functions”, Computers & Industrial Engineering, 60, 755-759, 2011.
	[39] Wang, X.R., Wang, J.B., Gao, W.J., and Huang, X., “Scheduling with past-sequence-dependent setup times and learning effects on single machine”, International Journal of Advanced Manufacturing Technology, 48, 739-746, 2010.
	[40] Wang, L.Y., Wang, J.B., Gao, W.J., Huang, X., and Feng, E.M., “Two single-machine scheduling problems with the effects of deterioration and learning”, International Journal of Advanced Manufacturing Technology, 46, 715-720, 2010.
	[41] Wang, L.Y., Wang, J.B., Wang, D., Yin, N., Huang, X., and Feng, E.M., “Single-machine scheduling with a sum-of-processing-time based learning effect and deteriorating jobs”, International Journal of Advanced Manufacturing Technology, 45, 336-340, 2009N
	[42] Wang, J.B., and Xia, Z.Q., “Flow-shop scheduling with a learning effect”, The Journal of Operational Research Society, 56, 1325-1330, 2005.
	[43] Woo, H.S., and Yim, D.S., “A heuristic algorithm for mean flowtime objective in flowshop scheduling”, Computers and Operations Research, 25, 175-182, 1998.
	[44] Wright, T.P., “Factors affecting the cost of airplanes”, Journal of Aeronautical Sciences, 3, 122-128, 1936.
	[45] Wu, C.C., Hsu, P.H., Chen, J.C., Wang, N.S., and Wu, W.H., “Branch-and-bound and simulated annealing algorithms for a total weighted completion time scheduling with ready time and learning effect”, International Journal of Advanced Manufacturing TechnN
	[46] Wu, C.C. and Lee, W.C., “A note on the total completion time problem in a permutation flowshop with a learning effect”, European Journal of Operational Research, 192, 343-347, 2009.
	[47] Wu, C.C., Lee, W.C., and Wang, W.C., “A two-machine flowshop maximum tardiness scheduling problem with a learning effect”, International Journal of Advanced Manufacturing Technology, 31, 743-750, 2007.
	[48] Yelle, L.E., “The learning curve: historical review and comprehensive survey”, Decision Sciences, 10, 302-328, 1979.
	[49] Yin, Y., Xu, D., Sun, K., and Li, H., “Some scheduling problems with general position-dependent and time-dependent learning effects”, Information Sciences, 179, 2416-2425, 2009.
	[50] Zhang Y., and Li, X., “Estimation of distribution algorithm for permutation flow shops with total flowtime minimization”, Computers & Industrial Engineering, 60, 706-718, 2011.
	[51] Zhu, Z., Sun, L., Chu, F., and Liu, M., “Single-machine group scheduling with resource allocation and learning effect”, Computers & Industrial Engineering, 60, 148-157, 2011.

