
國 立 交 通 大 學
工業工程與管理學系

博 士 論 文

具有學習效果的流程式生產排程之最大完工時間與總

完工時間最小化之研究

Scheduling Problems to Minimize Makespan and Total
Completion Time in Flowshop Environment with

Learning Effects

研 究 生：鐘愉翔

指導教授：唐麗英 教授

洪瑞雲 教授

中華民國 一百 年 十一 月

具有學習效果的流程式生產排程之最大完工時間與總

完工時間最小化之研究

Scheduling Problems to Minimize Makespan and Total
Completion Time in Flowshop Environment with

Learning Effects

研 究 生：鐘愉翔 Student： Yu-Hsiang Chung
指導教授：唐麗英 教授 Advisor： Dr. Lee-Ing Tong
指導教授：洪瑞雲 教授 Advisor： Dr. Ruey-Yun Horng

國 立 交 通 大 學

工 業 工 程 與 管 理 學 系

博 士 論 文

A Dissertation

Submitted to Department of Industrial Engineering and Management

College of Management

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Industrial Engineering and Management

November 2011

Hsinchu, Taiwan, Republic of China

中華民國 一百 年 十一 月

 i

具有學習效果的流程式生產排程之最大完工時間與總完工
時間最小化之研究

研究生：鐘愉翔 指導教授：唐麗英 博士

洪瑞雲 博士

國 立 交 通 大 學
工業工程與管理學系

摘 要

 在傳統的排程問題中，工作件的加工時間皆設定為固定常數，且不會因工作件在機

台上的加工順序而改變，然而當執行加工的人員因重複處理類似工作件而獲得經驗時，

工作件的加工時間會因此縮減，此現象為近年來在排程領域被廣泛討論的「學習效果

(Learning effect)」。學習效果可分類為兩種型式，分別為「依加工順序改變之學習效果

(Position-based learning effect) 」 與 「 依 已 加 工 時 間 改 變 之 學 習 效 果

(Sum-of-processing-time-based learning effect)」，在一個排程問題中，此兩種型式之學習

效果可以單獨考慮或同時考慮，由於依加工順序改變之學習效果模型為理論上的理想學

習模型，因此本論文將探討依加工順序改變之學習效果。再者，目前關於具有學習效果

的排程問題大多針對單機做探討，然而在實際製程上，許多生產環境的排程屬於多機流

程式生產排程，其問題之求解的複雜性亦高於單機生產排程問題。此外，大多數排程問

題之目的是求得最佳的工作件排序使其目標函數最小化，而最常被探討的目標函數為最

大完工時間與總完工時間。因此本論文針對依加工順序改變之學習效果探討兩個多機流

程式生產排程問題，第一個問題設定所有機台有相同的學習效果，其目標為最大完工時

間最小化；第二個問題則是依不同機台有不同的學習效果，其目標為加權整合之總完工

時間與最大完工時間最小化。

本論文對於工作件數少的問題，使用分枝界限演算法求得最佳排序，接著推導凌越

性質與下界值以增進分枝界限演算法的求解效率；對於工作件數多的問題，本論文將利

 ii

用兩個知名的啟發式演算法、模擬退火法與基因演算法來求得近似解。最後，本論文將

針對所有提出的演算法進行電腦模擬，以探討學習效果對於分枝界限演算法的求解效率

與啟發式演算法的精準性之影響。針對本論文探討之問題的電腦模擬結果，我們發現將

傳統環境中求得之最佳排序應用在具有學習效果的環境中，得到的目標函數值將比實際

的最佳目標函數值大，此現象指出學習效果對本論文提出的排程問題有顯著的影響。而

在求最佳排序時，分枝界限演算法求解的效率與學習效果的強度成正比。此外，基因演

算法為本論文提出之求近似解的演算法中最精準的。基於分枝界限演算法求解時間的分

佈變異大且呈右偏，因此本論文建議在求解時先施以分枝界限演算法，若在合理的時間

內無法求得最佳排序，則施以基因演算法求近似排序。最後，若流程式生產環境中的機

台上能指派不同的操作員，則將學習能力強的操作員指派至工作量較大的機台上能得到

較佳的目標函數值。

關鍵字：流程式生產排程、學習效果、最大完工時間、總完工時間

 iii

Scheduling Problems to Minimize Makespan and Total
Completion Time in Flowshop Environment with Learning

Effects

Students: Yu-Hsiang Chung Advisor: Dr. Lee-Ing Tong
Dr. Ruey-Yun Horng

Department of Industrial Engineering and Management,

National Chiao Tung University

ABSTRACT

 In traditional scheduling problems, the processing time for a given job is assumed to be a

fixed constant no matter the scheduling order of the job. However, it is noticeable that the job

processing time declines as workers gain more experience. This phenomenon is called the

“learning effect”. The learning effect is extensively studied in scheduling field recently, and it

can be classified into two types: “the position-based learning” and “the sum-of-processing-

time-based learning”. The two types of learning effect can be considered alone or

simultaneously in a scheduling problem. The position-based learning is studied in this

dissertation because of its model is the pure learning model in theory. In addition, most of the

studies on the learning effect are focused only on single-machine setting. However, numerous

real-world industrial problems belong to flowshop scheduling problems, and dealing with the

flowshop scheduling problems is more complex than dealing with the single-machine

problems. Most scheduling problems aim at determining an optimal sequence to minimize the

objective function. The makespan and total completion time are the objective functions that

are often studied. As a result, this dissertation discusses two flowshop scheduling problems

with position-based learning effect. The learning effects are identical on all machines, and the

purpose is to minimize the makespan in the first problem. The learning effects are distinct for

different machines, and the purpose is to minimize the weighted sum of total completion time

 iv

and makespan in the second problem.

In this dissertation, the branch-and-bound algorithm is proposed to seek the optimal

sequence for the small job-sized problem. Then the dominance properties and lower bounds

are proposed to accelerate the procedure of the branch-and-bound algorithm. For the large

job-sized problem, two well-known heuristic algorithms, simulated annealing and genetic

algorithm are utilized to yield the near-optimal sequence. In the end, the simulated

experiments are examined to assess the performance of the algorithms proposed in this

dissertation. The computational results of the proposed problems reveal that the objective

value calculated from the optimal sequence under the traditional environment is larger than

the optimal objective value in the environment with learning considerations. It implies the

influence of the learning effect is notable for the problems proposed in this dissertation.

Furthermore, the efficiency of the branch-and-bound algorithm ascends as the learning effect

enhances while seeking the optimal sequence. The proposed genetic algorithm has the best

performance among all heuristic and meta-heuristic algorithms in terms of the accuracy. In

addition, due to the large variance and the right skewness for the distribution of the execution

time, the branch-and-bound algorithm is recommended to obtain the optimal sequence in a

reasonable amount of time, or to derive the near-optimal sequence from the proposed genetic

algorithm. Eventually, assigning the operator with stronger learning effect to the machine with

heavier workload might derive smaller objective value while the operators are allocated in the

flowshop environment.

Keywords: Flowshop scheduling; Learning effect; Makespan; Total completion time.

 v

誌 謝

 經歷四年的博士研究階段，愉翔首先要感謝 唐麗英 教授與 洪瑞雲 教授兩位老師

無私的指導駑鈍的我作研究，有了兩位博學多聞的恩師寢囊相授，使本論文的內容更加

嚴謹與充實。愉翔也從兩恩師身上學到了圓融的待人處事方法，對於老師四年中的照顧

與教誨，愉翔將永遠銘記在心。

 愉翔感謝論文口試委員 黎正中 教授、李榮貴 教授與 王春和 教授在本論文審查

及口試其間的辛勞，並給予寶貴的建議及鼓勵，使愉翔能在未來的研究及生涯規劃上注

入新的想法。

 愉翔感謝祖父 鐘坤湖 先生、先祖母 鐘黃金女 居士、父親 鐘健倉 先生、母親 林

嫣嫣 女士及妹妹 鐘樂珊 小姐對我不變的支持與鼓勵，讓我能無後顧之憂的專心作研

究。另外也要感謝一直對愉翔抱持信心的親戚，大家的期許讓我更有努力向上的動力。

 愉翔感謝碩士班的恩師 李文烱 教授與 吳進家 教授，兩位老師激發我對研究的熱

誠，讓我有機會突破自我。最後要感謝 佳煌、元銘、凱斌學長、榮弘學長與一平學長，

有了各位的陪伴與指導，使我四年的求學過程多采多姿。感謝所有幫助過我的人，愉翔

會竭盡所能的努力，不辜負大家對我的期望。

鐘愉翔 謹誌

中華民國 一百 年 十一 月于交通大學

 vi

Contents

Abstract (in Chinese) i

Abstract (in English) iii

Acknowledgements (in Chinese) v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Research motivation 1

1.2 Literature review 3

1.3 Research objectives and methodologies 9

Chapter 2 Algorithms 12

2.1 Branch-and-bound algorithms 12

2.2 Heuristic algorithms 15

2.3 Meta-heuristic algorithms 17

Chapter 3 Makespan minimization for m-machine flowshop scheduling
problem with position-based learning effects 22

3.1 Notations and problem statement 22

3.2 Dominance property 23

3.3 Lower bound 25

3.4 Computational results 28

3.5 Summary 38

 vii

Chapter 4 Bi-criteria minimization for m-machine flowshop scheduling
problem with machine- and position-based learning effects 39

4.1 Notations and problem statement 39

4.2 Dominance property 40

4.3 Lower bound 42

4.4 Computational results 44

4.5 Summary 63

Chapter 5 Concluding remarks 64

5.1. Conclusion 64

5.2 Suggestions for further studies 65

References 66

 viii

List of Tables

Table 3.1. The influence of the learning effect on optimal solution 28

Table 3.2. The performance of the property and the lower bound for the branch-and-bound

algorithm 29

Table 3.3. The performance of branch-and-bound algorithm and heuristic algorithms of

different parameters 31

Table 3.4. The performance of branch-and-bound algorithm of different parameters after

outliers elimination 34

Table 3.5. The relative percentage deviation of heuristic algorithms 36

Table 3.6. One-way ANOVA for RPD of four heuristics 37

Table 3.7. Tukey-test results of four heuristics 38

Table 4.1. The index set of the learning effects 46

Table 4.2. The performance of the branch-and-bound algorithm 49

Table 4.3. The comparison among five learning patterns for the optimal objective value 52

Table 4.4. The performance of the heuristic algorithms (0.25α =) 54

Table 4.5. The performance of the heuristic algorithms (0.50α =) 55

Table 4.6. The performance of the heuristic algorithms (0.75α =) 57

Table 4.7. Two-way ANOVA of the error percentages for all heuristic algorithms 59

Table 4.8. The comparison of the heuristic algorithms for large job-sized problem 62

 ix

List of Figures

Fig 2.1. The flowchart of the proposed branch-and-bound algorithm 14

Fig 2.2. The flowchart of the proposed genetic algorithm 21

Fig 3.1. Box-plot for logarithm scale with learning effect as 70% 32

Fig 3.2. Box-plot for logarithm scale with learning effect as 80% 33

Fig 3.3. Box-plot for logarithm scale with learning effect as 90% 33

Fig 4.1. The number of nodes for branch-and-bound algorithm under different α 47

Fig 4.2. The relative percentage deviation of the learning patterns for the optimal objective

value under different α 48

 1

Chapter 1

Introduction

In manufacturing and service industries, the scheduling problem is an important field of

decision-making. In a narrow sense, the meaning of scheduling is to set the priorities of tasks

for optimizing certain objectives. Due to the arising of global industrialization, many

researchers and practitioners devote to study the scheduling problems, and the meaning of

scheduling is extended to assign limited resources to the tasks for optimizing certain

objectives. The resources of scheduling problems are manpower, raw materials, and facilities

and so on. In fact, an inaccurate scheduling policy may lead to crucial loss of capacity or

goodwill. Since the competition of marketplace grows rapidly, an effective scheduling policy

plays a critical role for making profit for an enterprise.

1.1 Research motivation

In traditional scheduling problems, it is assumed that all the job processing times are

fixed and known (Pinedo [29]; Smith [32]). However, job processing times frequently decline

as workers gather working knowledge and experience. For example, processing similar tasks

continuously improves worker’s skills and helps them perform their jobs efficiently (Biskup

[1]). This phenomenon is known as the “learning effect.” The influence of learning on

productivity for aircraft industry manufacturing was first observed by Wright [44], in which

the processing time of a unit declines by 20% with every redoubling output and this

phenomenon is called as 80% hypothesis. Afterward, the learning effect was affirmed in

numerous industries such as the manufacturing and service industries (Yelle [48]).

The phenomenon of learning in Wright [44] is presented as { }
a

kp pk= ,where { }kp

denotes the actual processing time for each unit when the output requires k units, in which the

 2

actual processing times of all units are identical; p denotes the normal processing time of a

unit which is given before starting the process; and a denotes the learning index which is

equal or less than zero and depended on the learning rate R. For the 80% hypothesis (i.e.

0.8R =), it is shown that {2 } { }0.8k kp p= , and it implies that (2) 0.8a ap k pk= , and then the

learning index a is derived as 2log 0.8 0.322= − . Therefore, the learning index a is set as

2log R when the processing time of a unit decreases by 100(1)%R− with redoubling output.

Subsequently, Biskup [1] applied the concept of Wright [44] and created a famous learning

model by assuming every job is a unit even when the processing times are different among all

jobs. Therefore, the actual processing time is based on the scheduled position of the job in the

model proposed in Biskup [1].

In terms of the occurrence for the learning effect in the production activities, Biskup [2]

stated that an inherent characteristic of the production environments with the learning effect is

a high level of human activities, and these activities are presented as follows,

 All kinds of handicraft,

 Operating and controlling the machines,

 Setting up the machines,

 Maintaining the machine,

 Cleaning the machines,

 Removing the failure of the machines.

Hence, the learning effect occurs when the production activity belongs to the short-term

planning. In addition, the learning effect also takes place if the production environments alter

and some examples are presented as follows,

 Dealing with the jobs that have never been produced before,

 Hiring new employees,

 The procedure of the processes changes,

 3

 Operating the equipments which are replaced or updated.

However, the influence of the learning should decline after a certain period of time because of

the improvement for operator’s skill is limited.

The learning effect has received significant attention in scheduling field recently. In the

literature with regard to the learning effect, most studies focus on single-machine setting. The

discussion of flowshop scheduling problems is rarely seen. Practically, in many

manufacturing and assembly facilities, numbers of operations have to be done on every job

and this production environment is modeled as flowshop. Therefore, in this dissertation, we

intend to study the flowshop scheduling problems with learning effects.

1.2 Literature review

Biskup [1] is a pioneer to introduce a learning model into scheduling problems in which

the actual processing time of a job decreases when the job is late scheduled. He examined the

problems associated with minimizing the deviation from a common due date and the sum of

flow times in a single-machine environment, and demonstrated that the problems are

polynomially solvable. Subsequently, numerous studies have considered this novel and

extended region. Cheng et al. [6] developed a model with learning effect in which actual job

processing time is based on the total normal job processing time and the position of schedule

on a single machine. They then demonstrated that the makespan and total completion time

problems are polynomially solvable, and demonstrated that the problems for minimizing

weighted completion time and maximum lateness are polynomially solvable with certain

agreeable conditions. Janiak and Rudek [16] introduced a multi-ability learning effect into a

makespan single-machine scheduling problem. They established polynomial time algorithms

to optimize the special cases of the problem they proposed. Furthermore, Biskup [2] presented

a detailed review of scheduling problems with learning effect. Particularly, he classified the

 4

existing models into two distinct groups: the position-based learning and the

sum-of-processing-time-based learning. The position-based learning is influenced by the

number of jobs processed. Meanwhile, the sum-of-processing-time-based learning considers

the processing time of the jobs processed to date.

In the position-based learning model, Lee et al. [23] studied a single-machine scheduling

problem with release times under learning consideration. They proposed a branch-and-bound

and a heuristic algorithm to obtain the optimal and near-optimal solution for minimizing the

makespan. Zhu et al. [51] studied two single-machine group scheduling problems. The job

processing time is a function of job position, group position and the amount of resources

assigned to the group. They verified that minimizing the weighted sum of the makespan and

the total resource cost remains polynomial solvable. Furthermore, Wang et al. [39]

investigated a single machine scheduling problem in which the setup time and learning effect

are considered, and the setup times are past-sequence-dependent. They showed that the

problems to minimize the sum of quadratic job completion time, the total waiting time, the

total absolute differences in waiting time, and the sum of earliness penalties subject to no

tardy jobs, are polynomially solvable. Wang et al. [37] studied a single-machine problem with

learning effect and discounted cost. They showed that the shortest processing time first (SPT)

rule is the optimal policy for minimizing the discounted total completion time. They then

illustrated an example to demonstrate that the discounted weighted shortest processing time

first (WDSPT) rule is not the optimal policy for minimizing the discounted total weighted

completion time. In addition, Mosheiov and Sidney [28] developed a learning model in which

the learning effects are different depend on the jobs. They formulated the makespan

scheduling problem with the job-dependent learning effects as an assignment problem and

conducted a Hungarian method to solve the problem. And then Koulamas [18] proved that the

problem proposed by Mosheiov and Sidney [28] can be solved in O(nlogn) times under

certain agreeable condition. Furthermore, Janiak and Rudek [14] proposed a new learning

 5

effect model in which the rigorous constraints of the position-dependent approach are relaxed

by assuming that each job creates a different experience for the processor. They also

described the shape of the learning curve using a k-stepwise function. Hence, the diversified

learning functions can be fitted by a mathematical model. Janiak and Rudek [15] proposed a

new experience-based learning model where the job processing times are described by

“S”-shaped functions and are dependent on the experience of the processor. They

demonstrated that the makespan problem on a single processor is NP-hard or strongly

NP-hard, and then provided a number of polynomially solvable cases. In addition, Huang et al.

[13] investigated two resources constrained single-machine group scheduling problems in

which the learning effect and deteriorating jobs are considered simultaneously. They proposed

polynomial solutions under certain constraints to minimize the makespan and the resource

consumption, respectively. Lee and Lai [20] considered both the effect of learning and

deterioration in a scheduling model. The actual job processing time is a function on the

processing times of scheduled jobs and its position in the schedule. They showed that some

single-machine scheduling problems remain polynomial solvable. Toksari [33] addressed a

single-machine scheduling problem with unequal release times for minimizing the makespan,

in which the learning effect and the deteriorating jobs are concurrently considered. Several

dominance criteria and the lower bounds are established to facilitate the branch-and-bound

algorithm for deriving the optimal solution. Furthermore, Eren and Guner [9] studied a

bi-criteria scheduling problem with a learning effect in an m-identical parallel machine

environment, and the objective function is to minimize the weighted sum of the total

completion time and total tardiness. They constructed a mathematical programming model to

solve the problem. Toksari and Guner [34] considered a parallel machine earliness/tardiness

scheduling problem involving different penalties under the effect of position-based learning

and deterioration, and demonstrated that the optimal sequence is a V-shaped schedule under

certain agreeable conditions.

 6

As for the sum-of-processing-time-based learning model, Koulamas and Kyparisis [17]

pointed out that employees learn more when executing jobs with a longer processing time.

They introduced a sum-of-job-processing-time-based learning effect scheduling model and

demonstrated that the makespan and the total completion time problems for the single

machine and two-machine flowshop with ordered job processing times are polynomially

solvable. Wu et al. [45] studied a total weighted completion time problem on a single machine

with learning effect and ready times. A branch-and-bound algorithm was proposed to derive

the optimal sequence, and the simulated annealing algorithm was implemented to obtain the

near-optimal sequence. Furthermore, Cheng et al. [5] introduced a learning effect model on a

single machine in which the actual job processing time is derived from the sum of the

logarithm of the processing times of jobs already processed, and they show that the makespan

and total completion time problems are polynomially solvable. Cheng et al. [4] proposed a

two-agent scheduling problem with a truncated sum-of-processing-time-based learning effect

on a single machine. A branch-and-bound algorithm was utilized to obtain the optimal

solution for minimizing the total weighted completion time for the jobs of the first agent

subject to no tardy job of the second agent. Wang [38] introduced an exponential

sum-of-actual-processing-time-based learning effect into a single-machine scheduling

problem. The special cases of the total weighted completion time problem and the maximum

lateness problem are proved to be polynomial solvable under an adequate condition.

Additionally, Wang et al. [41] demonstrated that, even with the effects of learning and

deterioration on job processing times, the single-machine makespan problem remains

polynomially solvable. Wang et al. [40] considered the weighted sum of completion times and

the maximum lateness problem with the effect of learning and deterioration on a single

machine where job processing times are defined as functions of their starting times and

sequential positions.

In recent literature, the position-based and the sum-of-processing-time-based learning

 7

have been discussed simultaneously. Yin et al. [49] examined some single-machine and

m-machine flowhop problems with learning considerations where the learning effect is not

only a function of the total normal processing times of jobs already processed, but also of the

scheduled job position. Lee and Wu [22] presented a learning model that simultaneously

combines the position-based learning and sum-of-processing-time-based learning models.

They then demonstrated that the single-machine makespan and the total completion time

problems are polynomially solvable, and provided polynomial-time optimal sequences for

minimizing the makespan and total completion time under certain conditions in a flowshop

environment. Furthermore, Wang and Li [35] studied a single machine scheduling problem

with past-sequence dependent setup times in which the position-based and time-dependent

learning effects are simultaneously considered. They proved that the makespan, total

completion time and total lateness problems can be solved by the smallest processing time

first (SPT) rule. Lai and Lee [19] addressed a general scheduling model in which the

position-based and the sum-of-processing-time-based learning effects are concurrently

considered. They showed that most of the models in the literatures are special cases of the

model they proposed.

The concept of learning effect in a flowshop environment has been relatively neglected.

However, Wu et al. [47] studied the maximum tardiness problem with the position-based

learning effect in a two-machine flowshop environment. They implemented a

branch-and-bound algorithm to obtain the optimal sequence, and a simulated annealing

algorithm to obtain the near-optimal sequence. Li et al. [25] discussed a two-machine

flowshop scheduling problem with a truncated learning effect which considers the position of

the job in a schedule and the control parameter. Then the branch-and-bound and three

simulated annealing algorithms were conducted to seek the optimal and near-optimal

solutions. In addition, Lee and Wu [21] considered a two-machine flowshop problem with

learning effect for minimizing the total completion time. They utilized two lower bounds and

 8

several dominance properties to construct a branch-and-bound algorithm to obtain the optimal

sequence, and established a heuristic algorithm to obtain the near-optimal sequence. Chen et

al. [3] considered a bi-criteria two-machine flowshop scheduling problem with the

position-based learning effect when the goal is to minimize both the total completion time and

the maximum tardiness. They proposed a branch-and-bound algorithm and two heuristic

algorithms to obtain the optimal and near-optimal sequences. Furthermore, Wang and Xia [42]

studied flowshop problems with learning effect. They gave the worst-case bound of the

shortest processing time first (SPT) algorithm for the makespan and the total flow time

problems, then illustrated examples to show that the Johnson’s rule is not optimal for the

makespan problem in a two-machine environment with learning consideration. Eventually,

they demonstrated that two special cases remained polynomially solvable for the makespan

and total completion time problems. Additionally, Wu and Lee [46] investigated a flowshop

problem with learning considerations to minimize the total completion time. They

implemented a branch-and-bound algorithm and heuristic algorithms to seek the optimal and

near-optimal sequences, respectively.

Because of obtaining optimal sequences in scheduling problems within a flowshop

environment is usually complicated, numerous works have focused on identifying efficient

near-optimal sequences. Nawaz et al. [27] considered an m-machine flowshop problem for

minimizing the makespan, and claimed that jobs with larger total normal processing time

should be prioritized over jobs with smaller total normal processing times. They demonstrated

that their proposed algorithm performs particularly well on large job-sized problems.

Afterward, Liu and Ong [26] and Ruiz and Maroto [31] claimed that the algorithm developed

by Nawaz et al. [27] is superior to other existing polynomial algorithms for the m-machine

flowshop makespan problem. Furthermore, Rajendran and Ziegler [30] developed an

algorithm for solving the weighted total completion time minimization problem in an

m-machines flowshop environment. Their algorithm first generates m sequences by assigning

 9

different weights to each machine. The sequence with the minimal total weighted completion

time is then selected as the seed sequence, and an improvement scheme is employed. Woo and

Yim [43] provided an algorithm for minimizing the mean flow time in an m-machine

flowshop environment. Their algorithm selects a job among excluded jobs for insertion into

the current partial sequence. Whenever a new partial schedule is constructed, their algorithm

assesses all the possible sequences by inserting an unscheduled job into one of all slots in the

current sequence at a time. The partial sequence with the least mean flow time is selected. In

addition, Framinan and Leisten [11] considered an m-machine flowshop problem to minimize

the mean flow time. They proposed an efficient constructive heuristic algorithm based on the

concept of the algorithm of Nawaz et al. [27]. They further performed a general pairwise

interchange movement to boost the quality of the partial sequences in all the iterations.

Framinan et al. [10] presented a review and classification for the heuristic algorithms with a

makespan objective. They distinguished a given constructive heuristic algorithm into three

phases, which are index development, solution construction and solution improvement.

Furthermore, Wang et al. [36] proposed a modified global-best harmony search algorithm to

obtain the near-optimal solution for dealing with a makespan scheduling problem in a

blocking permutation flowshop environment. The algorithm they proposed was demonstrated

to outperform certain existing meta-heuristics. Zhang and Li [50] addressed an estimation of

distribution algorithm for a flowshop scheduling problem with the objective of minimizing

the total flowtime. They showed that the proposed algorithm could improve some current best

solutions for Taillard benchmark instances.

1.3 Research objectives and methodologies

Two m-machine flowshop scheduling problems are proposed in this dissertation in which

the models are based on Biskup [1]. The model proposed in Biskup [1] is presented as

 10

,
a

j r jp p r= where ,j rp denotes the actual processing time of job j at rth scheduled position,

jp denotes the normal processing time of job j, and 0a ≤ denotes the learning index. The

decreasing level for the curve of ar descends as r increases, and it conforms to the

phenomenon that the improvement of the worker’s skill is unobvious after the worker is

proficient at the jobs. Therefore, the learning model proposed in Biskup [1] is reasonable and

regarded as a theoretical learning model in many studies. In addition, the production

environment for the model proposed in Biskup [1] could be regarded as the handicraft

because of the learning effect is occurred in whole process when dealing with a job.

Meanwhile, the learning model proposed in Biskup [1] might be considered as the reduced

learning model for the industrial manufacturing.

In this dissertation, the types of learning effect of the two problems belong to

position-based learning. Furthermore, the learning effects are identical on all machines in the

first problem, and are varied on different machines in the second problem. Since the

makespan and the total completion time are the objective functions that are widely used

performance measures in the scheduling literature, the objective in this dissertation of the first

problem is to minimize the makespan, and of the second problem is to minimize the bi-criteria

function which is modeled as the weighted sum of the total completion time and the

makespan.

While the number of the machines is more or equal than three, Garey et al. [12]

demonstrated that the flowshop scheduling problem for minimizing the makespan without the

learning effect is an NP-hard problem. In addition, the total completion time minimization

problem is proved to be an NP-hard problem without considering the learning effect when the

number of the machines is more or equal than two (Lenstra et al. [24]). Therefore, the

makespan and the bi-criteria minimization problems in this dissertation are both NP-hard

problems. Then the branch-and-bound algorithm is a feasible approach for deriving the

 11

optimal sequence. In the literature with respect to the flowshop scheduling problems without

learning effect, Chung et al. [7] studied an m-machine flowshop scheduling problem to

minimize the total completion time. They proposed a brand-and-bound algorithm that

incorporates a dominance property and an innovative lower bound to seek the optimal

sequence. Thereafter, Chung et al. [8] modified the efficient property in Chung et al. [7] to

deal with the flowshop scheduling problem for minimizing the total tardiness. Therefore, in

this dissertation, a branch-and-bound algorithm is conducted to obtain the optimal sequence,

in which the dominance properties are established based on the concept of Chung et al. [7].

Seeking for the optimal sequence of scheduling problems generally requires considerable

computational time and memory for larger job-sized problems. Thus this dissertation also

focuses on assessing the performances of efficiency when applying economical heuristic

algorithms with the learning effect to solve the proposed problem. And then two well-known

heuristic algorithms proposed form Nawaz et al. [27] and Framinan and Leisten [11] are

adapted for obtaining the near-optimal sequence. Additionally, two meta-heuristic algorithms

are also utilized to yield the near-optimal solutions which are simulated annealing and genetic

algorithms. Eventually, the accuracy and the comparison for the priorities among proposed

heuristic and meta-heuristic algorithms are discussed in this dissertation.

 12

Chapter 2

Algorithms

2.1 Branch-and-bound algorithms

In this dissertation, two NP-hard problems are studied. In order to seek the optimal

sequence, we conduct a branch-and-bound algorithm incorporated with a dominance property

and a lower bound. In branch-and-bound algorithm, a given node indicates a sequence with

scheduled jobs, and the nodes can be eliminated by verifying the dominance property or

evaluating the lower bound. The dominance property is utilized to prove that the given node is

dominated by another node. Furthermore, the lower bound is the underestimated value of the

objective function based on the given node. Therefore, when the given node is dominated or

its lower bound is larger than a known objective value, the given node and its offspring are

eliminated in the branching tree. In addition, the branching procedure proposed in this

dissertation adopts the depth-first search, and assigns jobs in a forward manner starting from

the first position. The advantages of the depth-first search are less number of dynamic nodes

and seeking the bottom node rapider to derive the feasible sequence. The detailed procedure

of the proposed branch-and-bound algorithm is described as follows.

Step 1: Generate a near-optimal sequence and solution as the initial incumbent sequence

and solution by implementing the heuristic and meta-heuristic algorithms.

Step 2: Expand the branching tree from node (, , ,)− − −
 to node (1, , ,)− −

, then to

node (1,2, , ,)− −
, and finally to node (, 1, ,1)n n −

.

Step 3: If the current node is a complete sequence, go to Step 6. Otherwise, go to Step 4.

Step 4: Apply the dominance property to identify the current node. If it is a dominated node,

eliminate the node and its offspring in the branching tree, then go to Step 2.

Otherwise, go to Step5.

 13

Step 5: Evaluate the lower bound of the objective value for the current node. If the lower

bound for the current node is larger than the incumbent solution, eliminate the node

and its offspring in the branching tree, then go to Step 2. Otherwise, go to Step 7.

Step 6: If the objective value of the complete sequence is smaller than the incumbent

solution, replace the incumbent sequence and solution with the sequence and

solution of the current node. Otherwise, eliminate it.

Step 7: If there is no more node can be expanded, the final incumbent sequence is set as the

optimal sequence. Otherwise, go to Step 2.

Eventually, a flowchart is drawn in Fig 2.1. to illustrate the detailed procedure of the

proposed branch-and-bound algorithm.

 14

Fig 2.1. The flowchart of the proposed branch-and-bound algorithm

 15

2.2 Heuristic algorithms

While the number of jobs increases, obtaining the optimal solution of an NP-hard

scheduling problem is time-consuming. Therefore, many studies are devoted to develop

efficient heuristic algorithms to derive the near-optimal solution. In addition, the objective

functions in this dissertation consist of the makespan and the total completion time. Therefore,

NEH and FL denote the heuristic algorithms which is respectively adapted from the

heuristic algorithm proposed in Nawaz et al. [27] and Framinan and Leisten [11], by

considering the learning effect and adjusting the objective function. Eventually, the

procedures of NEH and FL are detailed as follows.

NEH algorithm:

Step 1: Set sequence PS and US with empty set.

Step 2: Arranging the jobs in descending order of the total normal processing times (i.e.

,
1

m

i j
i

p
=
∑ for 1, 2, ,j n=

. See subsection 3.1), and schedule the jobs into US.

Step 3: Set 1k = .

Step 4: Select the first job from US into PS, and remove the job from US.

Step 5: If 1k = , go to Step 4. Otherwise, generate k sequence by respectively inserting

the job into each slot of PS.

Step 6: Select the sequence with the least objective value among k candidate sequences

and update the sequence as PS.

Step 7: Set 1k k= + . If k n≤ , go to Step 4. Otherwise, the near-optimal sequence is set as

PS.

 16

FL algorithm:

Step 1: Set sequence PS and US with empty set.

Step 2: Arranging the jobs in ascending order of the total normal processing times, and

schedule the jobs into US.

Step 3: Set 1k = .

Step 4: Select the first job from US into PS, and remove the job from US.

Step 5: If 1k = , go to Step 4. Otherwise, generate k sequence by respectively inserting the

job into each slot of PS.

Step 6: Select the sequence with the least objective value among k candidate sequences

and update the sequence as PS.

Step 7: If 3k < , go to Step 8. Otherwise, generate (1)
2

k k − sequences based on PS by

performing pairwise interchange procedure. Then select the sequence with the least

objective value and set as sequence PS ′ . If PS can be dominated by PS ′ in terms

of the objective value, replace PS with PS’.

Step 8: Set 1k k= + . If k n≤ , go to Step 4. Otherwise, the near-optimal sequence is set as

PS.

 17

2.3 Meta-heuristic algorithms

Pinedo [29] stated that the heuristic algorithms of the constructive type start without a

sequence and gradually construct a sequence by adding one job at a time. They usually can

obtain a solution in a moment. However, the quality of the solutions obtained by the heuristic

algorithms of the constructive type is improvable, especially when the priority of the jobs is

difficult to estimate. The reason is that the solutions space for the heuristic algorithms of the

constructive type is relatively narrow. Therefore, two meta-heuristic algorithms are

implemented to obtain the near-optimal solutions because of their larger solutions spaces,

which are simulated annealing and genetic algorithms. The procedure of seeking the solution

by meta-heuristic algorithms is iteratively trying to improve a candidate solution in terms of a

given measure of quality. The advantages of the meta-heuristic algorithms are few or no

assumptions in searching process, and a larger space of candidate solutions. Eventually, two

meta-heuristic algorithms proposed in this dissertation are detailed below.

Simulated Annealing (SA)

A description of the procedure in proposed simulated annealing is presented as follows.

An incumbent sequence is generated at first, and then a new sequence is created based on the

incumbent one by the neighborhood generation. The incumbent sequence is replaced with the

new sequence when each one of two conditions occurred, that is (1) the objective value of the

new sequence is smaller than that of the incumbent sequence, and (2) the acceptance

probability is larger than a given value. Eventually, the process of proposed simulated

annealing is stopped by the terminating condition, and then the final incumbent sequence is

set as the near-optimal sequence. The elaboration of the simulated annealing proposed in this

dissertation includes:

 18

(1) Incumbent sequence: The incumbent sequence is generated randomly.

(2) Neighborhood generation: Two jobs of incumbent sequence are randomly selected and

exchanged to yield the new sequence.

(3) Acceptance probability: The probability of acceptance is yielded from an exponential

distribution, that is () ()expP accept α= − ×∆ , where α denotes the control parameter

and ∆ denotes the increment of the objective value from the incumbent to the new

sequence. Furthermore, the control parameter is set as
k
β

, where k is the number of

cumulated iterations to date and β is an experimental factor. And then we chose

65000β = after some pretests. If the new sequence is larger than the incumbent one, the

new sequence is accepted when racceptP >)(, where r is a uniform random number

between 0 and 1.

(4) Terminating condition: The seeking process is terminated after 500n iterations because

of the preliminary tests reveal that the objective value is steady after 500n iterations,

where n is the number of jobs.

The advantage of SA is to avoid getting trapped in a local optimum. The value of β is

initially set to a high level so that a neighborhood exchange happens frequently in early

iterations, and the acceptance probability is gradually lowered when the k increases so that it

becomes more difficult to exchange in later iterations unless a better sequence is yielded.

 19

Genetic algorithm (GA)

In this dissertation, a genetic algorithm is utilized to yield the near-optimal solution. The

basic idea of the genetic algorithm is to generate a population with some chromosomes as the

parents, then implement the crossover and mutation operations to produce a new population

as the offspring, and choose the chromosome with the best performance with regard to the

objective value after some generations. The segments of proposed genetic algorithm are listed

as follows.

(1) Encoding: The encoding method is to generate n uniform random numbers from (0, 1) as

the genes in a chromosome, in which the job order is set as the non-decreasing order of

the genes. For example, the chromosome (0.23, 0.78, 0.32, 0.14) denotes a job sequence

of (4, 1, 3, 2) with four jobs.

(2) Population size: The population size indicates the number of the chromosomes in a

generation. For a large population size, it is easier to obtain a better solution, but

time-consuming. The population size N is set as 150 after some preliminary tests.

(3) Fitness value: The fitness values are evaluated to indicate the probabilities of selecting

the chromosomes. Since the problem is to minimize the objective value, the fitness value

of a given chromosome should be a decreasing function of its objective value. Therefore,

the fitness value of the chromosome is calculated as
1

N

k j
j

f f
=
∑ for 1,2, ,k N= , where

the kf denotes the reciprocal of the objective value of the kth chromosome.

(4) Selection: A roulette wheel method is used in which the chromosomes with larger fitness

values have larger areas in the roulette wheel and have higher chances to be selected. The

selection process is executed by spinning the roulette wheel, and only a chromosome is

selected in each spin.

(5) Crossover: Crossover operation is to produce the chromosomes of offspring from the

chromosomes of parents. In this dissertation, two chromosomes in parents are selected to

 20

generate two new chromosomes in offspring by utilizing one-point crossover, in which a

cut point are randomly selected and the parts of these two chromosomes in parents are

exchanged to generate new chromosomes. For example, two chromosomes in parents are

presented as (0.53, 0.26, 0.72, 0.44, 0.69) and (0.91, 0.08, 0.37, 0.29, 0.55), and the new

chromosomes are (0.53, 0.26, 0.37, 0.29, 0.55) and (0.91, 0.08, 0.72, 0.44, 0.69) if the

randomly selected cut point is the second position. Furthermore, the crossover rate is

chosen as 0.85 in this dissertation after some pretests.

(6) Mutation: Mutation operation is used to prevent getting trip in a local optimum. In this

dissertation, the procedure of mutation is to randomly select a gene in a given

chromosome, and replace it with a random uniform number from 0 to 1. The mutation rate

is set as 0.3 in this dissertation to determine whether the chromosome is mutated.

(7) Evolution: In order to maintain the superiority of the chromosomes, a part of

chromosomes with larger fitness values in parents are retained in the next generation.

Meanwhile, the chromosomes with smaller fitness values in the offspring are eliminated

as a consequence. Furthermore, the evolution rate is set as 0.5, which means 50% of the

chromosomes in the parents are retained to the next generation.

(8) Termination: The proposed genetic algorithm is terminated after 50 generations after

some pretests.

Eventually, the flowchart of proposed genetic algorithm is shown in Fig 2.2.

 21

Encode N chromosomes in
parents and evaluate their

fitness values

Select two chromosomes in
parents by roulette wheel

method

Crossover
Retain these two

chromosomes as the
offspring

Produce two chromosomes
as offspring

Mutation

Modify these two
chromosomes in offspring

 Produce
chromosomes
for N/2 times

Evaluate the fitness values
of all chromosomes of the

offspring

Evolution Termination

Decode the chromosome
with the largest fitness value

as the final solution

Set the chromosomes of the
offspring as the parents

Yes

Yes

No

Yes

No

Yes

No

No

Fig 2.2. The flowchart of the proposed genetic algorithm

 22

Chapter 3

Makespan minimization for m-machine flowshop

scheduling problem with position-based learning effects

3.1 Notations and problem statement

The notations used throughout this chapter are summarized as follows.

n : Number of jobs.

m : Number of machines.

N : Set of jobs, i.e., {1,2, , }N n=
.

iM : ith machine, 1, 2, ,i m=
.

,i jp : Normal processing time of job j on iM .

, ,i j rp : Actual processing time of job j on iM if placed at rth position in a sequence.

a : Learning index with 0a < .

S : Subset of N with s scheduled jobs.

U : Subset of N with n s− unscheduled jobs.

σ : A partial sequence of set S .

[]: The symbol which signify the order of jobs in a sequence.

,[] ()i rC σ : Completion time of the job scheduled in the rth position on iM in sequence

σ .

(,)jG u v : Total normal processing time of job j from uM to vM , where u v≤ , i.e.,

,(,)
v

j l j
l u

G u v p
=

=∑ .

,[]i rB : Earliest starting time at rth position on iM .

,[]i rF : Earliest completion time at rth position on iM .

 23

LB : The lower bound for a given node.

The problem formulation of the m-machine flowshop environment with learning effects

is described as follows. Suppose that there are n jobs in set N , to be processed on m

machines. Each job j comprises m operations 1, 2 , ,, , ,j j m jO O O , where ,i jO has to be

processed on Mi for 1, 2, ,i m=
 and 1,2, ,j n=

. Processing of operation jiO ,1+ must

start only after the completion of ,i jO . Furthermore, the flowshop environment considers a

schedule in which the job sequence is identical on all the machines. The actual processing

time , ,i j rp of job j on iM is a function that depends on its position r in the sequence, i.e.,

, , ,
a

i j r i jp p r= ,

where 1, 2,...,i m= , , 1, 2,...,j r n= .

This chapter attempts to identify a sequence for minimizing the makespan. Given n jobs

in Set N, and τ denotes one complete sequence of all permutations. The objective of this

chapter is to derive a sequence τ ∗ such that [] []() ()m n m nC Cτ τ∗ ≤ for any sequence τ .

3.2 Dominance property

The following theorem provides a criterion for discriminating dominance relationships

between two different sequences which are made up of the same job set.

Theorem 3.1: Let 1σ and 2σ denote two partial sequences with s jobs of set S . If

{ },[] 1 ,[] 21
max () () 0i s i si m

C Cσ σ
≤ ≤

− < , then 1σ dominates 2σ .

Proof: Let π denote a partial sequence with n s− jobs of set U, and sequence π is

scheduled immediately behind sequence 1σ and 2σ into the sequence 1 1(,)S σ π= and

 24

2 2(,)S σ π= , respectively. Then for mu ≤≤1 , we have the completion time of the job

scheduled in the nth position on uM in 1S and is

{ },[] 1 ,[1] 1 []1
() max () (,) a

u n v n nv u
C S C S G v u n−≤ ≤

= + ×

1 ,[1] 1 [] 1() (,) a
v n nC S G v u n−= + × for some 1v where 11 v u≤ ≤ .

Similarly, the completion time of the job scheduled in the nth position on uM in 2S is

{ },[] 2 ,[1] 2 []1
() max () (,) a

u n v n nv u
C S C S G v u n−≤ ≤

= + ×

2 ,[1] 2 [] 2() (,) a
v n nC S G v u n−= + × for some 2v where 21 v u≤ ≤ .

Then we have

1,[] 2 ,[1] 2 [] 1() () (,) a
u n v n nC S C S G v u n−≥ + × for 1 2v v≠ .

Therefore, we have

1 1,[] 1 ,[] 2 ,[1] 1 [] 1 ,[1] 2 [] 1() () () (,) () (,)a a
u n u n v n n v n nC S C S C S G v u n C S G v u n− − − ≤ + × − + ×

{ },[1] 1 ,[1] 21
max () ()i n i ni m

C S C S− −≤ ≤
≤ − .

An induction argument is conducted. Then we have

{ },[] 1 ,[] 2 ,[] 1 ,[] 21
() () max () ()u n u n i s i si m

C S C S C S C S
≤ ≤

− ≤ − .

If { },[] 1 ,[] 21
max () () 0i s i si m

C S C S
≤ ≤

− < , then 1S dominates 2S .

The proof is completed.

In order to apply the above theorem in the proposed branch-and-bound algorithm, the

following property requires considering two consecutive jobs, as presented below.

Property 3.1: Let xJ and yJ denote two jobs of set S , and 2sσ − denote a sequence with

2s − jobs excluding xJ and yJ of set S . If { },[] 2 ,[] 21
max (, ,) (, ,) 0i s s x y i s s y xi m

C J J C J Jσ σ− −≤ ≤
− <

, then sequence 2(, ,)s x yJ Jσ − dominates 2(, ,)s y xJ Jσ − .

 25

3.3 Lower bound

For a given node in the branch-and-bound algorithm, the lower bound is designed to

underestimate the objective function by utilizing the information of its unscheduled jobs, and

the lower bound is less than or equal to the objective value of the optimal sequence based on

the node. Consequently, when the lower bound of a given node is larger than the objective

value of a known sequence, the optimal sequence based on the node is dominated by the

known sequence, and the given node and its offspring are not the candidates for the optimal

sequence.

 In this subsection, we propose a lower bound for eliminating nodes in the branching tree,

and the lower bound is evaluated using the concept developed by Chung et al. [7]. The lower

bound for Chung et al. [7] is a machine-based lower bound. The main idea of their lower

bound is assuming that the given machine has unit capacity and the machines behind it have

infinite capacity. Hence, the procedure in Chung et al. [7] for estimating the marginal lower

bound based on the given machine is to compute the earliest starting times for all remaining

positions on the machine at first, and to sum up these starting times, and all the processing

times of the machine, and that behind the machine for unscheduled jobs. Finally, the lower

bound is determined as the maximal marginal lower bound. Instead of the total completion

time, we adapt the procedure in Chung et al. [7] which estimates the earliest starting time with

learning effect, when the objective is to minimize the makespan. The proposed lower bound is

summarized as follows. Let ,()i jp represent the normal processing times on iM , which are

based on non-descending order of all ,i jp from set U for 1, 2,j n s= −
. i.e.,

,(1) ,(2) ,()i i i n sp p p −≤ ≤ ≤ , where 1,2, ,i m=
. (1) (,)G u v denotes the smallest total normal

processing time between uM and vM from set U . Let ,[1]i sE + denote the actual starting

time of 1s + th job on iM . By definition, we have

 26

1,[1] 1,[] ()s sE C σ+ =

and

{ }{ },[1] ,[1] [1] ,[]1 1
max max (, 1) (1) , ()a

i s u s s i su i
E E G u i s C σ+ + +≤ ≤ −

= + − × + , where 2,3,i m=
.

For the first machine, the earliest starting time is the same as the actual starting time of 1s +

th job (i.e. 1,[1] 1,[1]s sB E+ +=). Then

{ }2,[1] 1,[1] 1,[1] 2,[]max (1) , ()a
s s s sE B p s C σ+ + += + × +

{ }1,[1] 1,(1) 2,[]max (1) , ()a
s sB p s C σ+≤ + × + .

Therefore, 2,[1]sB + is evaluated as { }1,[1] 1,(1) 2,[]max (1) , ()a
s sB p s C σ+ + × + . By induction, we

have

{ }{ },[1] ,[1] (1) ,[]1 1
max max (, 1) (1) , ()a

i s u s i su i
B B G u i s C σ+ +≤ ≤ −

= + − × + for 2,3,i m=
.

Since the learning effect is considered, we have ,[] ,[1] ,()
1

()
j

a
i s j i s i l

l
F B p s l+ +

=

= + +∑ . For the first

machine, the earliest starting time of nth job is the earliest completion time of (1)n − th job

(i.e. 1,[] 1,[1]n nB F −=). In the context of Chung et al. [7] for unscheduled jobs, besides (1)s + th

job on the second to the final machine, the procedure of computing the earliest starting time

only considers the earliest completion time on the current machine, and that immediately

ahead of the machine (i.e. { },[] ,[1] 1,[]max ,i s j i s j i s jE F F+ + − − +=). However, it may have the

contradiction that the earliest starting time on the current machine is smaller than that on the

preceding machines for the third and late machine. Therefore, to overcome the contradiction,

we have

{ }
{ }

,[1] 1,[]

,[]

,[1] 1,[] 1,[] 1,(1)

max , , where 2

max , , , where 3,4, ,

i n i n

i n a
i n i n i n i

F F i
B

F F B p n i m

− −

− − − −

 ==
+ × =

.

Then the marginal lower bound is evaluated as ,[] (1) (,) a
i nB G i m n+ × . Eventually, the lower

 27

bound in this chapter is represented as { }{ },[] (1) ,[]1
max max (,) ,a

i n m ni m
B G i m n F

≤ ≤
+ × , and the

detailed procedure for estimating the lower bound is presented as follows.

Step 1: Set 1i = , 1,[1] 1,[] ()s sB C σ+ = , and go to Step 3.

Step 2: Compute { }{ },[1] ,[1] (1) ,[]1 1
max max (, 1) (1) , ()a

i s u s i su i
B B G u i s C σ+ +≤ ≤ −

= + − × +

Step 3: Compute ,[] ,[1] ,()
1

()
j

a
i s j i s i l

l
F B p s l+ +

=

= + +∑ for 1j n s= − − and n s− .

Step 4: If 1i = , set 1,[] 1,[1]n nB F −= and go to Step 6. Otherwise, go to Step 5.

Step 5: If 2i = , set { },[] ,[1] 1,[]max ,i n i n i nB F F− −= . Otherwise, set

{ },[] ,[1] 1,[] 1,[] 1,(1)max , , a
i n i n i n i n iB F F B p n− − − −= + × .

Step 6: If i m< , set 1i i= + and go to Step 2. Otherwise, go to Step 7.

Step 7: Set { }{ },[] (1) ,[]1
max max (,) ,a

i n m ni m
LB B G i m n F

≤ ≤
= + × .

Step 8: The lower bound of the makespan for sequence σ is obtained as LB .

 28

3.4 Computational results

In this section, several computational experiments are conducted to assess the

performance of the branch-and-bound, the heuristic and meta-heuristic algorithms proposed in

this chapter. All the algorithms are coded in Fortran 90 and run on a personal computer with

2.89 GHz AMD Athlon ™ II X4 635 Processor and 3.25GB RAM with Windows XP. The

normal processing time of all operations are randomly generated from a discrete uniform

distribution over 1 to 100. First of all, the influence of the learning effect is examined in Table

3.1, in which the number of jobs is fixed at 10, three different levels of the learning effect are

set as 90%, 80% and 70% (which corresponds to 0.152a = − , 0.322a = − , and

0.515a = − .), and 100 replications are randomly generated of each experimental condition.

Therefore, a total of 600 instances are tested and the mean optimal makespans are recorded in

Table 3.1. Furthermore, the optimal sequence derived from the proposed problem without

learning effect under each instance, is used to calculate the makespan of the proposed problem

and the mean makespans and the mean and maximum error percentages are listed in Table 3.1.

For each instance, the error percentage of is calculated as 100%O O
O

∗

∗

−
× , where O denotes

the value of the makespan calculated by the sequence derived without the learning effect and

O∗ denotes the optimal makespan. As shown in Table 3.1, it reveals that the influence of the

learning effect is notable with regard to the mean error percentages. Additionally, the

influence of the learning effect is higher with the stronger learning effect.

Table 3.1. The influence of the learning effect on optimal solution (10n =)
 Use the optimal sequence which is
 derived without the learning effect
 mean optimal mean Error percentage

m a(%) makespan makespan mean max
3 90% 487.1 563.4 15.799 31.804
 80% 375.1 531.0 42.506 75.273
 70% 285.0 528.5 86.911 144.845

5 90% 580.5 634.5 9.447 26.843
 80% 466.3 583.7 25.705 62.889
 70% 376.8 541.3 44.478 107.165

 29

In order to test the efficiency of the proposed property and the lower bound, a

computational experiment is implemented with fixed job size at 10, two different machine

sizes at 3 and 5, 100 replications, and three levels of the learning effect at 90%, 80% and 70%.

The results are listed in Table 3.2, in which B_P denotes the branch-and-bound algorithm with

only the property, B_L denotes the branch-and-bound algorithm with only the lower bound,

and B_P+L denotes the branch-and-bound algorithm with both the property and the lower

bound. In addition, the mean number of nodes and the mean execution time are recorded.

Meanwhile, the mean execution time for the enumeration method is also recorded. As shown

in Table 3.2, the efficiency of the property and the lower bound in the branch-and-bound

algorithm are significant in terms of the mean execution time by comparison with the

enumeration method. Furthermore, the lower bound is more effective than the property in

terms of the mean number of nodes and the mean execution time, and the phenomenon is

notable when the learning effect is stronger. However, the most efficient performance is

exhibited when B_P+L is implemented in terms of the mean number of nodes and the mean

execution time. Therefore, the branch-and-bound algorithm with both the property and the

lower bound is recommended for the succeeding computational experiment in this chapter.

Table 3.2. The performance of the property and the lower bound for the branch-and-bound algorithm

(10n =)

 Number of mean nodes Mean CPU times

m a(%) B_P B_L B_P+L B_P B_L B_P+L Enumeration

3 90% 257236.9 917.7 450.4 4.234 0.031 0.017 15.504

 80% 183932.9 162.6 129.6 3.083 0.007 0.006 15.421

 70% 111829.0 92.7 78.2 1.949 0.005 0.004 15.379

 5 90% 368537.7 945.1 771.2 10.067 0.067 0.056 25.148

 80% 250310.5 350.0 310.5 6.892 0.027 0.027 25.051

 70% 146816.5 134.3 122.3 4.031 0.012 0.012 24.806

 30

We use four job sizes (12n = , 14, 16 and 18) and two different machine sizes (m＝3 and

5) to yield the optimal solution and test the accuracy of all the proposed heuristic and

meta-heuristic algorithms. Furthermore, to examine the influence of the learning effect, the

three levels of the learning effect are taken to be 90%, 80%, and 70%. Consequently, 24

experimental conditions are examined, and 100 replications are randomly generated for each

condition. A total of 2,400 instances are generated and the results are listed in Table 3.3. The

mean and the standard deviation of the number of nodes and of the execution time for the

proposed branch-and-bound algorithm are recorded. In addition, the mean and standard

deviation of the error percentages for the heuristic and meta-heuristic algorithms are also

recorded. For each instance, the error percentage of the given heuristic algorithm is calculated

as

100%V V
V

∗

∗

−
× ,

where V denotes the value of the makespan generated by the heuristic or meta-heuristic

algorithm and ∗V denotes the optimal makespan obtained by the branch-and-bound

algorithm.

 31

Table 3.3. The performance of branch-and-bound algorithm and heuristic algorithms of different parameters
 Branch-and-bound algorithm Heuristic algorithms
 Number of nodes CPU times Error percentages (%)
 Mean s.d. Q1 Q2 Q3

Number of

outliers

Mean s.d. NEH FL SA GA
n m a(%) Mean s.d. Mean s.d. Mean s.d. Mean s.d.

12 3 90% 56719.8 384694.2 78 288 1083 20 2.20 14.30 0.0134 0.0151 0.0062 0.0101 0.0055 0.0101 0.0061 0.0067
 80% 1192.9 3480.4 86 299 612 15 0.07 0.17 0.0193 0.0139 0.0064 0.0115 0.0094 0.0093 0.0071 0.0077
 70% 521.4 849.3 71 255 550 11 0.03 0.05 0.0359 0.0246 0.0069 0.0089 0.0130 0.0164 0.0103 0.0059
 5 90% 9448.4 34991.5 379 1093 4818 12 0.88 3.17 0.0247 0.0206 0.0146 0.0156 0.0132 0.0137 0.0109 0.0104
 80% 2772.7 9635.3 158 510 1722 12 0.28 0.84 0.0305 0.0202 0.0133 0.0143 0.0162 0.0135 0.0064 0.0095
 70% 583.2 1109.3 64 188 630 11 0.06 0.10 0.0426 0.0308 0.0119 0.0118 0.0212 0.0205 0.0070 0.0079

14 3 90% 167322.1 854106.4 200 1442 5900 14 8.63 44.15 0.0135 0.0116 0.0066 0.0098 0.0055 0.0077 0.0042 0.0065
 80% 19161.7 124696.6 295 988 5848 6 1.08 6.40 0.0241 0.0172 0.0068 0.0079 0.0130 0.0115 0.0063 0.0053
 70% 1720.3 2910.8 131 509 1623 12 0.15 0.23 0.0411 0.0244 0.0080 0.0075 0.0157 0.0163 0.0077 0.0050
 5 90% 301967.5 1838143.9 1583 4289 15460 20 27.97 151.64 0.0253 0.0195 0.0146 0.0129 0.0114 0.0130 0.0099 0.0086
 80% 9213.4 22874.2 622 2016 5053 19 1.26 2.93 0.0336 0.0196 0.0152 0.0144 0.0202 0.0131 0.0081 0.0096
 70% 6369.0 33345.7 486 1370 3463 11 0.87 3.80 0.0513 0.0249 0.0105 0.0122 0.0191 0.0166 0.0045 0.0081

16 3 90% 2111749.8 11723845.2 659 3214 26519 17 125.60 685.23 0.0134 0.0098 0.0060 0.0107 0.0095 0.0065 0.0050 0.0071
 80% 41433.3 148176.9 900 2762 17081 12 3.37 10.54 0.0280 0.0145 0.0080 0.0094 0.0133 0.0097 0.0037 0.0063
 70% 22073.5 74962.3 406 2102 10563 16 2.03 5.76 0.0497 0.0224 0.0073 0.0072 0.0216 0.0149 0.0074 0.0048
 5 90% 1055484.8 4641812.1 6442 14074 94299 15 116.63 462.80 0.0285 0.0170 0.0163 0.0142 0.0175 0.0113 0.0114 0.0095
 80% 123731.8 447437.6 2384 9808 30383 18 19.76 67.89 0.0352 0.0194 0.0137 0.0110 0.0177 0.0129 0.0116 0.0073
 70% 19159.7 72050.8 1136 3873 12001 11 3.19 8.67 0.0531 0.0250 0.0135 0.0121 0.0197 0.0167 0.0055 0.0081

18 3 90% 8470804.1 26263090.6 8173 46669 335005 17 451.12 1358.19 0.0140 0.0090 0.0051 0.0069 0.0077 0.0060 0.0067 0.0046
 80% 593669.8 3611399.3 2219 16609 86473 11 45.95 251.54 0.0207 0.0188 0.0079 0.0081 0.0089 0.0125 0.0046 0.0054
 70% 75422.6 211051.6 1753 11367 48150 13 7.57 18.76 0.0485 0.0235 0.0084 0.0101 0.0202 0.0157 0.0058 0.0067
 5 90% 9241667.3 24428652.2 40402 172912 2336244 19 1089.13 2811.17 0.0253 0.0170 0.0142 0.0133 0.0134 0.0113 0.0137 0.0089
 80% 449812.6 1760902.3 8801 48120 141615 13 64.60 222.66 0.0396 0.0200 0.0152 0.0120 0.0182 0.0133 0.0071 0.0080
 70% 97797.9 339614.2 3177 10124 56667 15 17.12 46.49 0.0524 0.0237 0.0120 0.0107 0.0205 0.0158 0.0090 0.0071

 32

It is observed that the heuristic and meta-heuristic algorithms proposed in this chapter are

quite accurate since all the mean error percentages are less than 0.1%. Furthermore, GA has

the best performance and NEH has the worst performance. From the results of the

branch-and-bound algorithm it reveals that, for the problem proposed in this chapter, it is

easier to obtain the optimal solution in terms of the mean number of nodes when the learning

effect strengthens. However, the standard deviation of the number of nodes exceeds its mean

for all the cases, which implies that there are worst cases with a tremendous number of nodes.

Therefore, the quartile of 25%, 50%, and 75% for the number of nodes is evaluated and

recorded as Q1, Q2, and Q3. The observations show that the distribution for the number of

nodes is right skewed because most of the mean numbers of nodes are relatively large to Q3,

and it implies that most of the instances have fewer nodes. For the same instances, the

box-plot of logarithm scale for the number of nodes with different parameters for the learning

effect as 90%, 80%, and 70% is shown in Fig 3.1, 3.2, and 3.3, respectively. The figures

illustrate that the number of nodes and the execution time grow exponentially with an

increasing number of jobs.

Fig 3.1. Box-plot for logarithm scale with learning effect as 70%

Lo
gi

ri
th

m
 s

ca
le

 fo
r

th
e

nu
m

be
r

of
 n

od
es

n18,m5n18,m3n16,m5n16,m3n14,m5n14,m3n12,m5n12,m3n10,m5n10,m3

16

14

12

10

8

6

4

2

0

Parameters

 33

Fig 3.2. Box-plot for logarithm scale with learning effect as 80%

Lo
ga

ri
th

m
 s

ca
le

 fo
r

th
e

nu
m

be
r

of
 n

od
es

n18,m5n18,m3n16,m5n16,m3n14,m5n14,m3n12,m5n12,m3n10,m5n10,m3

18

16

14

12

10

8

6

4

2

0

Parameters

Fig 3.3. Box-plot for logarithm scale with learning effect as 90%

Lo
gr

ith
m

 s
ca

le
 fo

r
th

e
nu

m
be

r
of

 n
od

es

n18,m5n18,m3n16,m5n16,m3n14,m5n14,m3n12,m5n12,m3n10,m5n10,m3

20

15

10

5

0

Parameters

 34

In order to investigate the influence of outliers, the number of outliers for each

experimental condition is listed in Table 3.3, where the number of nodes for given instance

which exceeds the value of Q3 1.5+ (Q3−Q1) is recorded as the outlier. The outliers are

eliminated and the performance of the branch-and-bound algorithm is shown in Table 3.4.

Table 3.4. The performance of branch-and-bound algorithm
of different parameters after outliers elimination

 Branch and bound algorithm
 Number of nodes CPU times

n m a Mean s.d. Mean s.d.
12 3 90% 355.9 435.2 0.022 0.026
 80% 307.0 298.7 0.021 0.022
 70% 268.7 252.9 0.019 0.018
 5 90% 1912.0 2334.1 0.204 0.237
 80% 761.0 858.6 0.090 0.089
 70% 287.0 317.0 0.036 0.040

14 3 90% 2431.5 3104.2 0.195 0.234
 80% 2605.9 3474.3 0.210 0.272
 70% 801.0 964.7 0.075 0.084
 5 90% 5655.6 6874.0 0.853 0.946
 80% 2009.5 2020.1 0.328 0.307
 70% 1800.1 1840.8 0.317 0.319

16 3 90% 7586.8 10851.7 0.771 1.032
 80% 6814.2 9770.4 0.712 0.981
 70% 3646.5 5035.8 0.426 0.568
 5 90% 33524.6 49524.8 6.176 8.746
 80% 10837.8 12194.7 2.415 2.769
 70% 5519.6 6149.3 1.198 1.251

18 3 90%

115505.8 174775.7 11.263 16.210
 80% 36878.3 51417.1 4.025 5.316
 70% 18440.8 23462.5 2.079 2.605
 5 90% 566117.6 1071722.1 82.906 144.164
 80% 67915.4 82120.5 14.043 16.320
 70% 20391.9 28773.9 4.521 5.776

 35

Table 3.4 illustrates that the means and the standard deviations for the number of nodes

and execution time are all reduced by a wide margin after eliminating the outliers. Eventually,

since the quantity of outliers is less than 20% of all instances for each experimental condition

in this chapter, we recommend to conduct the proposed branch-and-bound algorithm for

obtaining the optimal solution within a reasonable amount of time, or conduct the proposed

heuristic and meta-heuristic algorithms for obtaining near-optimal solutions when the number

of jobs is larger than 18.

To indicate the performance of the proposed heuristic and meta-heuristic algorithms for

large job-sized problems with learning considerations, we use three different job sizes (n= 50,

100 and 150), four different machine sizes (m= 5, 10, 15, and 20) and three learning effects

(90 %, 80%, and 70%) to yield the near-optimal solutions. The mean and the standard

deviation of relative percentage deviation (RPD) are reported for each heuristic algorithm. For

each instance, the RPD is obtained with respect to the best one of all near-optimal solutions

generated by the heuristic and meta-heuristic algorithms. i.e., min

min

V VRPD
V
−

= , where V

denotes the value of the makespan generated by the given heuristic or meta-heuristic

algorithm and minV denotes the minimal one among the values of the makespan generated by

the heuristic and meta-heuristic algorithms. Consequently, 36 experimental conditions are

examined, and 100 replications are randomly generated for each condition. A total of 3,600

instances are generated and the results are listed in Table 3.5.

 36

Table 3.5. The relative percentage deviation of heuristic algorithms
 Relative percentage deviation (RPD)
 NEH FL SA GA

n m a mean s.d. mean s.d. mean s.d. mean s.d.
50 5 90% 0.0479 0.0268 0.0142 0.0074 0.0133 0.0100 0.0009 0.0029

 80% 0.0493 0.0167 0.0379 0.0130 0.0172 0.0117 0.0000 0.0004
 70% 0.0720 0.0254 0.0654 0.0194 0.0195 0.0166 0.0005 0.0023
 10 90% 0.0877 0.0322 0.0179 0.0113 0.0138 0.0109 0.0010 0.0027
 80% 0.0677 0.0279 0.0413 0.0159 0.0151 0.0111 0.0003 0.0015
 70% 0.0787 0.0235 0.0610 0.0250 0.0126 0.0112 0.0010 0.0038
 15 90% 0.0975 0.0243 0.0185 0.0130 0.0161 0.0122 0.0012 0.0034
 80% 0.0694 0.0247 0.0429 0.0188 0.0130 0.0096 0.0006 0.0022
 70% 0.0766 0.0217 0.0584 0.0171 0.0117 0.0112 0.0010 0.0028
 20 90% 0.1013 0.0243 0.0204 0.0145 0.0182 0.0121 0.0006 0.0020
 80% 0.0689 0.0212 0.0432 0.0184 0.0125 0.0112 0.0003 0.0015
 70% 0.0727 0.0203 0.0587 0.0200 0.0079 0.0086 0.0007 0.0020

100 5 90% 0.0350 0.0159 0.0175 0.0052 0.0106 0.0067 0.0004 0.0016
 80% 0.0524 0.0175 0.0437 0.0107 0.0144 0.0091 0.0001 0.0012
 70% 0.0832 0.0234 0.0747 0.0178 0.0184 0.0115 0.0001 0.0012
 10 90% 0.0750 0.0243 0.0165 0.0079 0.0127 0.0082 0.0003 0.0011
 80% 0.0662 0.0204 0.0466 0.0128 0.0158 0.0083 0.0000 0.0003
 70% 0.0932 0.0193 0.0731 0.0197 0.0135 0.0098 0.0003 0.0016
 15 90% 0.0956 0.0266 0.0182 0.0090 0.0122 0.0086 0.0001 0.0008
 80% 0.0734 0.0210 0.0481 0.0166 0.0132 0.0082 0.0002 0.0011
 70% 0.0916 0.0179 0.0665 0.0163 0.0117 0.0091 0.0004 0.0015
 20 90% 0.1036 0.0200 0.0183 0.0097 0.0117 0.0083 0.0003 0.0010
 80% 0.0760 0.0212 0.0501 0.0154 0.0121 0.0077 0.0001 0.0010
 70% 0.0871 0.0201 0.0655 0.0193 0.0068 0.0076 0.0017 0.0046

150 5 90% 0.0291 0.0132 0.0197 0.0052 0.0082 0.0058 0.0005 0.0024
 80% 0.0448 0.0136 0.0477 0.0090 0.0122 0.0084 0.0006 0.0030
 70% 0.0894 0.0252 0.0774 0.0155 0.0164 0.0086 0.0001 0.0005
 10 90% 0.0655 0.0200 0.0180 0.0065 0.0101 0.0065 0.0002 0.0007
 80% 0.0653 0.0175 0.0497 0.0119 0.0121 0.0061 0.0001 0.0009
 70% 0.1006 0.0162 0.0782 0.0175 0.0141 0.0117 0.0002 0.0011
 15 90% 0.0902 0.0208 0.0187 0.0064 0.0098 0.0063 0.0001 0.0010
 80% 0.0721 0.0180 0.0495 0.0147 0.0119 0.0065 0.0001 0.0006
 70% 0.0978 0.0156 0.0698 0.0189 0.0113 0.0082 0.0006 0.0017
 20 90% 0.0992 0.0195 0.0180 0.0068 0.0098 0.0062 0.0002 0.0009
 80% 0.0739 0.0177 0.0515 0.0142 0.0116 0.0067 0.0000 0.0004
 70% 0.0940 0.0175 0.0696 0.0200 0.0101 0.0082 0.0002 0.0007

 37

In Table 3.5, the value of RPD from GA is the minimal one among all heuristic and

meta-heuristic algorithms for every experiment condition. The observation shows that GA is

more accurate than the other three algorithms. However, as all the RPD values are greater

than zero, it implies that there is no any algorithm which completely dominates the others.

From the values of RPD for the heuristic and meta-heuristic algorithms, one-way analysis of

variance (ANOVA) with a significance of 5% is applied to test that the mean values of RPD

are all the same among the heuristic and meta-heuristic algorithms or whether at least one

differs from the others. The results are given in Table 3.6.

Table 3.6. One-way ANOVA for RPD of four heuristics

Source DF SS MS F p-value

Factor 3 0.124511 0.041504 199.66 0.000
Error 140 0.029101 0.000208

Total 143 0.153612

Since the p-value is below the significance level, it implies that the mean values of RPD

are not all identical. Therefore, the efficiency among the heuristic and meta-heuristic

algorithms should be considered. Furthermore, the Tukey test with a significance of 5% is

implemented to compare the values of RPD among the heuristic and meta-heuristic

algorithms. The results of Tukey test are summarized in Table 3.7.

 38

Table 3.7. Tukey-test results of four heuristics

FL subtracted from:

 Lower Center Upper

NEH 0.02331 0.03215 0.04100

SA -0.04009 -0.03124 -0.02240

GA -0.05249 -0.04365 -0.03481

NEH subtracted from:

 Lower Center Upper

SA -0.07224 -0.06340 -0.05455

GA -0.08465 -0.07580 -0.06696

SA subtracted from:

 Lower Center Upper
GA -0.02125 -0.01241 -0.00356

The test results imply that GA is the best among the four algorithms, follows by SA and FL,

and finally NEH. Thus, the proposed genetic algorithm is recommended to obtain the

near-optimal solution for proposed problem in this chapter.

3.5 Summary

This chapter examines an m-machine flowshop problem with position-based learning

effects where the aim is to minimize the makespan. A dominance property and a lower bound

are proposed to conduct a branch-and-bound procedure for optimizing the proposed problem.

In addition, this chapter also introduces the learning effect to two well-known existing

heuristic and two meta-heuristic algorithms for approximating the proposed problem. The

computational results show that the branch-and-bound algorithm can solve problems of up to

18 jobs within a reasonable amount of time, and demonstrate that GA performs best for small

job-sized problems. Meanwhile, for large job-sized problems, GA also has identical

performance. Therefore, we recommend the proposed genetic algorithm to obtain the

near-optimal sequence.

 39

Chapter 4

Bi-criteria minimization for m-machine flowshop

scheduling problem with machine- and position-based

learning effects

4.1 Notations and problem statement

The following notations are applied throughout this chapter.

N : Set of jobs which contains n jobs, i.e., {1,2, , }N n=
.

S : Subset of N with s scheduled jobs.

U : Subset of N with n s− unscheduled jobs.

m : Number of machines.

iM : ith machine, where 1,2, ,i m=
.

jJ : Job j, where 1,2, ,j n=
.

ijp : Normal processing time of jJ on iM .

ijrp : Actual processing time of jJ on iM when jJ is scheduled at position r.

ia : Learning index on iM with 0ia∀ < for 1, 2, ,i m=
.

[]: The symbol which denotes the job order in a sequence.

α : The weight of the objective function with 0 1α≤ ≤ .

LB : The lower bound of the objective value based on the given node.

The description of the problem with machine- and position-based learning effects in an

m-machine flowshop environment is described as follows. Assume that there is a jobs set N

with n jobs to be processed on m machines. Each jJ includes m operations on

 40

corresponding machines which denoted as ,i jO for 1, 2, ,i m=
 and 1,2, ,j n=

. For the

processing procedure, the starting time of ,i jO must be the larger completion time of 1,i jO −

and , 1i jO − . In addition, the sequence of jobs is identical on all the machines. Let ijp denote

the normal processing time of jJ on iM . The actual processing time ijrp of jJ on iM

declines based on its position r in a sequence, i.e.,

ia
ijr ijp p r= ,

where 1, 2,...,i m= , and , 1, 2,...,j r n= .

The aim of this chapter is to seek a sequence for minimizing a weighted sum of the total

completion time and the makespan. For a given sequence θ with n jobs, let [] ()i rC θ

denotes the completion time at the rth position on iM in sequence θ . The objective of this

chapter is to obtain a sequence θ ∗ such that

[] [] [] []
1 1

() (1) () () (1) ()
n n

m j m n m j m n
j j

C C C Cα θ α θ α θ α θ∗ ∗

= =

+ − ≤ + −∑ ∑ for any sequence θ of all

permutations.

4.2 Dominance property

A rule is represented in the following theorem which distinguishing the dominance

between two varied sequences concluding same jobs.

Theorem 4.1: There are two partial sequences of set N, that is 1 1(,)θ σ π= and 2 2(,)θ σ π= ,

in which 1σ and 2σ denotes the partial sequence of set S, and π denote a partial sequence

of set U. If [] { }[] 2 [] 1 [] 1 [] 211
() () (1) 1 max () ()

s

m j m j i s i si mj
C C n s C Cα σ σ α σ σ

≤ ≤
=

 − > − − + − ∑ , then 1θ

dominates 2θ .

 41

Proof:

For 1,2, ,k m=
, we have

1

1

[] 1 ,[1] 1 [] ,[1] 1 []1
() max () () () ()u u

k k
a a

k n i n u n i n u ni k u i u i
C C p n C p nθ θ θ− −≤ ≤

= =

 = + = +

∑ ∑ for 11 i k≤ ≤ .

Similarly,

2

2

[] 2 [1] 2 []() () () u

k
a

k n i n u n
u i

C C p nθ θ−
=

= +∑ for 21 i k≤ ≤ .

Then we have

1 1

1 1

[] 1 [] 2 [1] 1 [] ,[1] 2 []() () () () () ()u u

k k
a a

k n k n i n u n i n u n
u i u i

C C C p n C p nθ θ θ θ− −
= =

− ≤ + − +

∑ ∑

{ }[1] 1 [1] 21
max () ()i n i ni m

C Cθ θ− −≤ ≤
≤ − .

By an induction, for k m= , we have

{ }[] 1 [] 2 ,[] 1 ,[] 21
() () max () ()m s l m s l i s i si m

C C C Cθ θ σ σ+ + ≤ ≤
− ≤ − ..………………………..……….........(4-1)

, where 1 l n s≤ ≤ − .

From equation (4-1), we have

[] 1 [] 1 [] 2 [] 2
1 1

() (1) () () (1) ()
n n

m j m n m j m n
j j

C C C Cα θ α θ α θ α θ
= =

+ − − + −

∑ ∑

[] { }[] 1 [] 2 [] 1 [] 211
() () (1) 1 max () ()

s

m j m j i s i si mj
C C n s C Cα σ σ α σ σ

≤ ≤
=

 ≤ − + − − + − ∑ .…………..(4-2)

From

[] { }[] 2 [] 1 [] 1 [] 211
() () (1) 1 max () ()

s

m j m j i s i si mj
C C n s C Cα σ σ α σ σ

≤ ≤
=

 − > − − + − ∑ ,

the value for the left side of equation (4-2) is negative and it implies 1θ dominates 2θ .

Therefore, we have 1σ dominates 2σ .

In this chapter, the theorem is simplified as the property which requires considering two

adjacent jobs. The property is applied in the proposed branch-and-bound algorithm and

 42

presented below.

Property 4.1: In set S, let σ denote a partial sequence with 2s − jobs, and the remained

jobs are scheduled in the last two positions as 1J and 2J . The two sequences based on σ

are represented as 1 1 2(, ,)S J Jσ= and 2 2 1(, ,)S J Jσ= , and ()
jiJ lC S denotes the

completion time of jJ on iM in lS for , 1, 2j l = and 1,2, ,i m=
. If

[] { }2 1 1 2 2 12 2 1 1 1 21
() () () () (1) 1 max () ()mJ mJ mJ mJ iJ iJi m

C S C S C S C S n s C S C Sα α
≤ ≤

 + − − > − − + − ,

then 1S dominates 2S .

4.3 Lower bound

In addition to dominance property, another procedure to eliminate nodes in branching

tree is calculating the lower bound of the objective value. In this chapter, a lower bound is

established to speed up the procedure of the proposed branch-and-bound algorithm. The lower

bound is descried as follows.

Let θ denote a sequence with s scheduled and n s− unscheduled jobs of set N. For

1 k m≤ ≤ , the completion time of (1)ths + job on kM is as

{ }[1] 1[1] [] [1]() max (), () (1) ka
k s k s k s k sC C C p sθ θ θ+ − + += + +

[] [1]() (1) ka
k s k sC p sθ +≥ + + .

Thus, the completion time of (1)ths + job on mM is presented as

[1] [] [1] [1]
1

() () (1) (1)k i

m
a a

m s k s k s i s
i k

C C p s p sθ θ+ + +
= +

≥ + + + +∑ .

Furthermore, the completion time of (2)ths + job on kM is as

 43

{ }[2] 1[2] [1] [2]() max (), () (2) ka
k s k s k s k sC C C p sθ θ θ+ − + + += + +

[] [1] [2]() (1) (2)k ka a
k s k s k sC p s p sθ + +≥ + + + +

Thus, the completion time of (2)ths + job on mM is as

2

[2] [] [] [2]
1 1

() () () (2)k i

m
a a

m s k s k s v i s
v i k

C C p s v p sθ θ+ + +
= = +

≥ + + + +∑ ∑ .

By an induction, we have the underestimated value of the completion time for ()ths l+ job

on mM based on kM machine as

[] [] []
1 1

() () ()k i

l m
a a

k s k s v i s l
v i k

C p s v p s lθ + +
= = +

+ + + +∑ ∑

The objective function is presented as

1

[] [] [] [] []
1 1 1

() (1) () () () ()
n s n

m j m n m j m j m n
j j j s

C C C C Cα θ α θ α θ α θ θ
−

= = = +

+ − = + +∑ ∑ ∑ .

[] [][] [] []
1 1

() (1) 1 () () 1 () k

s n s
a

m j k s k s l
j l

C n s C n s l s l pα θ α θ α
−

+
= =

≥ + − − + + − − + +∑ ∑

[] []
1 1

() () i

n s m
a

i s l
l i k

I l p s lα
−

+
= = +

 + + +

∑ ∑

, where
 1 ,

()
 0,

l n s
I l

l n s
α− = −

= ≠ −
.

Since []() 1 () kan s l s lα − − + + decreases as l increases, then we have

[] []
1

() (1) ()
n

m j m n
j

C Cα θ α θ
=

+ −∑

[] [][] [] ()
1 1

() (1) 1 () () 1 () k

s n s
a

m j k s k s l
j l

C n s C n s l s l pα θ α θ α
−

+
= =

≥ + − − + + − − + +∑ ∑

[] []
1 1

() () i

n s m
a

i s l
l i k

I l p s lα
−

+
= = +

 + + +

∑ ∑ ……………(4-3)

where ()k s lp + denotes the lth smallest normal processing time on kM of the job in set U.

To minimize the final term of equation (4-3), a Hungarian algorithm is applied and the

 44

matrix for it is formed as follows.

{ 1} { 1} { 1} { 1}
1 1 1 1

{ 2} { 2} { 2} { 2}
1 1 1 1

{ }
1

(1) (2) (1) ()

(1) (2) (1) ()

(1)

i i i i

i i i i

i

m m m m
a a a a

i s i s i s i s
i k i k i k i k

m m m m
a a a a

i s i s i s i s
i k i k i k i k

m
a

i n i
i k

p s p s p n p n

p s p s p n p n

p s p

α α α

α α α

α α

+ + + +
= + = + = + = +

+ + + +
= + = + = + = +

= +

+ + −

+ + −

+

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑

{ } { } { }
1 1 1

(2) (1) ()i i i

m m m
a a a

n i n i n
i k i k i k

s p n p nα
= + = + = +

 + −

∑ ∑ ∑

,

where { }i s lp + is the normal processing time on iM of the jobs in set U for 1 l n s≤ ≤ − .Let

kH denote the optimal value of the proposed Hungarian algorithm. Therefore, the

underestimated value of the objective function for θ based on kM is as

[] [][] [] ()
1 1

() (1) 1 () () 1 () k

s n s
a

m j k s k s l k
j l

C n s C n s l s l p Hα θ α θ α
−

+
= =

+ − − + + − − + + +∑ ∑ .

In order to make the lower bound stricter, the underestimated value based on every machine is

considered and the lower bound is obtained as

[] [][] [] ()11 1
() max (1) 1 () () 1 () k

s n s
a

m j k s k s l kk mj l
LB C n s C n s l s l p Hα θ α θ α

−

+≤ ≤
= =

 = + − − + + − − + + +

∑ ∑

4.4 Computational results

In the procedure of proposed heuristic algorithms, the jobs with larger total processing

time (i.e.
1

m

ij
i

p
=
∑ for 1, 2, ,j n=

) have higher priority to be selected in NEH ,while

smaller in FL . In addition, since the machine- and position-based learning effects are

considered in this chapter, the ratios of the reduction for the actual processing time are varied

on different machines. Therefore, _NEH W and _FL W are adapted from NEH and

FL by utilizing the weighted total processing time (i.e.
1

m

i ij
i

w p
=
∑ for 1, 2, ,j n=

) to

determine the priority of the jobs, in which the machines with weaker learning effect have

 45

larger weight. For example, here are three machine-based learning indices as 1 0.322a = − ,

2 0.152a = − and 3 0.515a = − . Then the weights are set as 1 2w = , 2 3w = and 3 1w = .

Several computational experiments are implemented in this chapter to assess the

performance of the branch-and-bound and the heuristic algorithms. All the algorithms are

coded in Fortran 90 and run on a personal computer with 2.89 GHz AMD Athlon ™ II X4 635

Processor and 3.25GB RAM with Windows XP. The normal processing times of all

operations are generated from a discrete uniform distribution over the integers 1 to 100.

Moreover, in order to discuss the influence on the proposed algorithms for different

assignments of learning effects under the same learning indices set, five learning patterns

denoted as Ran, Inc, Dec, SL and WL are proposed and expressed as follows.

Ran: The learning effects are randomly assigned to the machines.

Inc: The stronger learning effects are assigned to the rear machines.

Dec: The weaker learning effects are assigned to the rear machines

SL: The stronger learning effects are assigned to the machines with the larger value of
1

n

ij
j

p
=
∑

for 1, 2, ,i m=
.

WL: The weaker learning effects are assigned to the machines with the larger value of
1

n

ij
j

p
=
∑

for 1, 2, ,i m=
.

The learning indices set of all computational experiments in this chapter is shown in Table

4.1.

 46

Table 4.1. The index set of the learning effects

 Number of machines

 5 7 10 15

learning indices

-0.152 -0.152 -0.152 -0.152

-0.234 -0.218 -0.188 -0.175

-0.322 -0.269 -0.225 -0.199

-0.415 -0.322 -0.263 -0.222

-0.515 -0.377 -0.302 -0.247

 -0.434 -0.342 -0.271

 -0.515 -0.383 -0.296

 -0.426 -0.322

 -0.469 -0.348

 -0.515 -0.374

 -0.401

 -0.429

 -0.457

 -0.485

 -0.515

The computational experiments consist of three parts. In the first part, the influence of

different α on the branch-and-bound algorithm is evaluated. The number of jobs and

machines is set as 10 and 5, respectively. Then 100 replications are randomly generated.

Consequently, a total of 100 examples are generated to be tested. In addition, 51 different α

are given with values from 0 to 1 with an increment as 0.02, i.e., 0, 0.02, 0.04, , 1α =
. The

five learning patterns and 51 different α are considered in each example and the results are

illustrated in Figs 4.1 and 4.2.

 47

Fig 4.1. The number of nodes for the branch-and-bound algorithm under different α (10n =)

In Fig 4.1, the mean numbers of nodes for all experimental conditions are illustrated. It is

observed that the problem proposed in this chapter is easier to solve as α increases with

respect to the trend of the mean number of nodes. The reason is that the property and the

lower bound are more efficient in the branch-and-bound algorithm with larger α .

Furthermore, Dec is the easiest among five learning patterns for seeking the optimal solution,

and Inc is the worst. In addition, the optimal objective values for five learning patterns are

discussed. Then the relative percentage deviation for five learning patterns is denoted as

ORPD and its mean is illustrated in Fig 4.2. For each example, the ORPD is calculated as

min

min

100%λ λ
λ
−

× ,

where λ denotes the optimal objective value under one of five given learning patterns, and

minλ is the minimum among all λ . It is observed that the optimal objective value under SL

is the lowest among five learning patterns, followed by Inc, Ran and Dec, and finally WL.

Ran

Inc

Dec

SL

WL

0

100

200

300

400

500

600

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

M
ea

n
nu

m
be

r o
f n

od
es

 48

However, there is no determined priority among five learning patterns since all mean ORPD

are larger than zero.

Fig 4.2. The relative percentage deviation of the learning patterns for the optimal objective value under

different α (10n =)

In the second part of the computational experiments, the numbers of jobs are set as 12,

14 and 16, and numbers of machines are set as 5 and 7. Furthermore, three α are given as

0.25, 0.50 and 0.75. Then 100 replications are randomly generated. Hence, a total of 1800

examples are generated to be tested in which the five learning patterns are considered. Then

the results are listed in Tables 4.2 to 4.6.

Ran

Inc

Dec

SL

WL

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

M
ea

n
RP

D

 49

Table 4.2. The performance of the branch-and-bound algorithm
 0.25α = 0.50α = 0.75α =
 Number of nodes Cpu times Number of nodes Cpu times Number of nodes Cpu times

n m Pattern mean max mean max mean max mean max mean max mean max
12 5 Ran 1550.43 9213 1.84 8.34 1145.36 8605 1.55 8.63 901.69 6087 1.36 7.14

 Inc 3992.39 34418 2.66 19.56 2548.42 14103 1.98 10.08 1893.09 10818 1.65 7.86
 Dec 429.49 3109 0.40 2.09 347.98 3010 0.37 1.98 297.70 2682 0.34 1.78
 SL 1561.97 10346 1.01 4.20 1170.21 10062 0.88 4.02 969.24 7022 0.79 3.30
 WL 1045.37 11976 0.86 4.97 755.21 7559 0.73 4.58 612.87 6531 0.66 4.09

 7 Ran 2328.46 19105 1.32 9.09 1624.33 22124 1.08 10.16 1049.45 12119 0.88 5.38
 Inc 6377.07 54718 5.68 25.11 3816.40 25625 4.19 20.97 2713.35 18196 3.45 17.97
 Dec 635.63 6673 0.89 6.38 486.78 5711 0.80 5.70 363.18 3977 0.71 5.39
 SL 1920.45 10152 2.03 8.16 1278.22 6932 1.67 7.67 983.96 7241 1.45 7.92
 WL 1277.90 10061 1.70 10.41 871.76 6145 1.38 7.09 709.46 5993 1.22 7.05

14 5 Ran 8397.72 97712 13.43 99.28 5727.28 56055 10.91 74.48 4845.95 46274 9.82 73.30
 Inc 31883.81 418776 44.54 372.50 17452.31 169405 30.27 216.80 13144.88 97435 25.12 175.41
 Dec 1769.26 12080 3.22 16.92 1374.09 9108 2.94 17.28 1179.42 10186 2.76 17.73
 SL 10382.89 115578 12.64 55.16 6689.93 49969 10.17 44.33 5140.81 28730 8.80 43.48
 WL 3992.79 38389 10.23 84.28 2948.51 28213 8.34 67.02 2563.70 25591 7.50 62.02

 50

 7 Ran 16271.02 142636 32.37 290.52 9917.81 122468 24.74 274.36 7584.29 99124 21.15 244.52
 Inc 74506.94 1980840 102.24 981.52 32558.74 322750 67.46 399.08 20916.03 124587 52.36 355.20
 Dec 3317.76 87609 7.91 148.41 2486.66 74205 6.95 139.94 1767.69 47392 5.95 108.64
 SL 12229.56 86179 23.97 123.91 8137.72 42532 19.40 99.19 6565.91 35383 17.09 89.53
 WL 8076.68 158484 22.38 389.20 5646.80 105127 17.57 280.86 4478.99 76297 15.16 224.95

16 5 Ran 105044.01 2408452 349.62 4578.30 55620.78 600087 246.60 2274.17 39622.63 426218 201.16 1909.00
 Inc 201758.16 2061604 514.57 3209.59 120521.06 1270538 350.70 2457.27 93087.06 1411099 288.07 2618.19
 Dec 7520.64 107243 24.58 200.00 5155.33 41868 21.69 156.70 4148.91 37436 19.70 140.19
 SL 66831.54 626475 233.56 1304.53 43107.35 360252 186.24 931.81 35647.61 289344 166.05 888.14
 WL 31332.85 957031 103.05 1421.47 20896.89 575854 78.99 992.58 16706.67 402084 68.83 781.89

 7 Ran 116674.80 2455027 238.17 3462.94 69780.49 1029782 167.75 2050.94 48757.11 674012 201.16 1909.00
 Inc 740132.88 5188924 2252.10 16791.42 383647.16 4065895 1369.95 13054.45 263149.47 3726265 1034.44 11907.66
 Dec 18756.10 145112 83.65 545.95 13486.31 101862 73.19 504.02 11616.93 89494 67.83 524.33
 SL 105188.86 1447154 185.16 1820.66 62497.38 842215 130.71 864.78 44370.55 531122 108.13 666.53
 WL 55492.39 1245433 287.12 6346.81 36222.31 1007826 218.60 5101.81 29516.95 783194 188.49 4129.69

 51

The mean and maximum number of nodes, and the mean and maximum CPU times (in

seconds) of the branch-and-bound algorithm are reported in Table 4.2. It reveals that the

number of nodes and the execution times increase significantly as the number of jobs or

machines increases since the problem proposed in this chapter is NP-hard. The optimal

solution is easier to be sought for the proposed problem with a larger α in terms of the

number of nodes and CPU times. Furthermore, the problem under Dec is the easiest among

the five learning patterns to be solved, and Inc is the worst. Moreover, the branch-and-bound

algorithm can deal with the problems with up to 16 jobs within a reasonable amount of time.

In order to discuss the priority over five learning patterns for obtaining lower optimal

objective value, the mean and maximum ORPD are recorded for all computational

conditions in Table 4.3. As shown in Table 4.3, it reveals that the optimal objective value

under SL is the lowest among five learning patterns, follows by Inc, Ran and Dec, and finally

WL. It implies that assigning the stronger learning effect to the machine with the heavier

workload might obtain a lower optimal objective value.

 52

Table 4.3. The comparison among five learning patterns for the optimal objective

value
 ORDP
 0.25α = 0.50α = 0.75α =

n m Patten mean max mean max mean max
12 5 Ran 0.089 0.297 0.078 0.275 0.073 0.267
 Inc 0.049 0.292 0.046 0.275 0.044 0.267
 Dec 0.125 0.356 0.109 0.324 0.103 0.310
 SL 0.007 0.046 0.006 0.041 0.005 0.039
 WL 0.161 0.346 0.144 0.316 0.137 0.303

 7 Ran 0.070 0.195 0.063 0.167 0.060 0.163
 Inc 0.025 0.119 0.024 0.105 0.024 0.103
 Dec 0.125 0.237 0.109 0.217 0.103 0.212
 SL 0.007 0.064 0.006 0.057 0.005 0.057
 WL 0.136 0.301 0.121 0.273 0.115 0.264

14 5 Ran 0.099 0.392 0.090 0.346 0.086 0.327
 Inc 0.054 0.200 0.050 0.197 0.048 0.194
 Dec 0.132 0.392 0.117 0.346 0.111 0.327
 SL 0.006 0.067 0.005 0.046 0.005 0.037
 WL 0.171 0.398 0.155 0.351 0.148 0.332

 7 Ran 0.083 0.327 0.075 0.296 0.071 0.288
 Inc 0.022 0.157 0.022 0.136 0.021 0.126
 Dec 0.141 0.330 0.125 0.299 0.119 0.288
 SL 0.006 0.056 0.005 0.039 0.004 0.038
 WL 0.157 0.328 0.141 0.295 0.135 0.282

16 5 Ran 0.095 0.271 0.086 0.247 0.083 0.239
 Inc 0.068 0.301 0.063 0.286 0.061 0.279
 Dec 0.136 0.413 0.122 0.376 0.117 0.365
 SL 0.006 0.060 0.005 0.054 0.005 0.052
 WL 0.180 0.416 0.166 0.379 0.160 0.369

 7 Ran 0.084 0.276 0.075 0.250 0.072 0.242
 Inc 0.031 0.183 0.029 0.167 0.028 0.158
 Dec 0.128 0.411 0.116 0.371 0.111 0.357
 SL 0.008 0.068 0.007 0.061 0.007 0.061
 WL 0.158 0.405 0.143 0.364 0.137 0.349

 53

For the proposed heuristic algorithms, the mean and maximum error percentages under

different α are reported in Tables 4.4 to 4.6. The CPU times are not presented since all

heuristic algorithms for each example are executed within a second. The error percentage of

the given heuristic algorithm is calculated as

* 100%V V
V

∗−
× ,

where V and ∗V respectively denotes the near-optimal objective value yielded by the

heuristic algorithm, and the optimal objective value derived by the branch-and-bound

algorithm. In addition, min{ , _ }NEH NEH W denotes the better one of NEH and

_NEH W for the given example, and min{ , _ }FL FL W as well denotes the better one of

FL and _FL W .

 54

Table 4.4. The performance of the heuristic algorithms (0.25α =)

 Error percentages

 NEH NEH_W min{NEH,NEH_W} FL FL_W min{FL,FLW}

n m Patten mean max mean max mean max mean max mean max mean max

12 5 Ran 0.051 0.132 0.059 0.134 0.045 0.110 0.011 0.067 0.012 0.067 0.008 0.067

 Inc 0.033 0.097 0.037 0.105 0.029 0.097 0.010 0.056 0.012 0.054 0.007 0.045

 Dec 0.062 0.144 0.065 0.201 0.052 0.144 0.010 0.043 0.009 0.060 0.006 0.030

 SL 0.055 0.138 0.057 0.138 0.046 0.126 0.015 0.060 0.017 0.049 0.011 0.049

 WL 0.045 0.134 0.054 0.155 0.039 0.134 0.008 0.066 0.009 0.068 0.006 0.066

 7 Ran 0.046 0.141 0.052 0.150 0.040 0.097 0.015 0.054 0.014 0.058 0.010 0.054

 Inc 0.042 0.102 0.043 0.113 0.035 0.085 0.015 0.064 0.015 0.060 0.011 0.058

 Dec 0.057 0.152 0.056 0.131 0.045 0.102 0.010 0.059 0.011 0.072 0.006 0.037

 SL 0.051 0.140 0.051 0.115 0.041 0.110 0.014 0.049 0.016 0.066 0.011 0.039

 WL 0.048 0.122 0.049 0.112 0.041 0.112 0.011 0.043 0.011 0.041 0.007 0.037

14 5 Ran 0.050 0.110 0.058 0.136 0.045 0.095 0.012 0.044 0.011 0.065 0.008 0.040

 Inc 0.034 0.093 0.039 0.108 0.030 0.093 0.010 0.044 0.011 0.052 0.007 0.035

 Dec 0.069 0.147 0.075 0.146 0.060 0.121 0.011 0.046 0.011 0.056 0.007 0.043

 SL 0.058 0.152 0.063 0.152 0.049 0.120 0.016 0.057 0.019 0.065 0.011 0.037

 WL 0.050 0.139 0.058 0.136 0.045 0.114 0.008 0.041 0.008 0.049 0.005 0.033

 7 Ran 0.051 0.101 0.054 0.178 0.042 0.101 0.014 0.049 0.014 0.084 0.010 0.037
 Inc 0.041 0.101 0.047 0.097 0.035 0.082 0.016 0.056 0.018 0.070 0.012 0.046

 Dec 0.063 0.154 0.065 0.169 0.053 0.132 0.012 0.044 0.012 0.062 0.008 0.037

 SL 0.057 0.140 0.057 0.131 0.049 0.131 0.017 0.063 0.020 0.071 0.013 0.046

 WL 0.047 0.097 0.054 0.116 0.043 0.093 0.010 0.046 0.012 0.094 0.007 0.045

 55

16 5 Ran 0.061 0.182 0.069 0.164 0.054 0.122 0.013 0.069 0.014 0.069 0.010 0.069

 Inc 0.041 0.147 0.043 0.155 0.035 0.079 0.011 0.049 0.011 0.061 0.008 0.044

 Dec 0.079 0.177 0.084 0.169 0.069 0.167 0.011 0.039 0.011 0.045 0.008 0.035

 SL 0.069 0.163 0.074 0.162 0.059 0.129 0.019 0.087 0.021 0.066 0.014 0.049

 WL 0.055 0.177 0.062 0.161 0.049 0.104 0.007 0.029 0.009 0.042 0.005 0.024

 7 Ran 0.058 0.147 0.061 0.133 0.049 0.127 0.014 0.060 0.016 0.061 0.011 0.060

 Inc 0.040 0.109 0.049 0.103 0.037 0.089 0.017 0.069 0.016 0.062 0.012 0.062

 Dec 0.069 0.159 0.068 0.139 0.057 0.134 0.014 0.052 0.014 0.041 0.010 0.041

 SL 0.066 0.181 0.064 0.168 0.054 0.132 0.020 0.068 0.024 0.069 0.015 0.048

 WL 0.055 0.127 0.062 0.150 0.049 0.108 0.012 0.046 0.012 0.061 0.009 0.046

Table 4.5. The performance of the heuristic algorithms (0.50α =)

 Error percentages

 NEH NEH_W min{NEH,NEH_W} FL FL_W min{FL,FLW}

n m Patten mean max mean max mean max mean max mean max mean max

12 5 Ran 0.056 0.153 0.063 0.146 0.049 0.128 0.010 0.065 0.012 0.064 0.008 0.064

 Inc 0.035 0.090 0.041 0.118 0.031 0.090 0.011 0.047 0.011 0.049 0.008 0.043

 Dec 0.066 0.173 0.069 0.167 0.056 0.167 0.009 0.051 0.009 0.049 0.006 0.041

 SL 0.049 0.142 0.054 0.138 0.042 0.138 0.013 0.049 0.014 0.048 0.010 0.048

 WL 0.049 0.145 0.055 0.154 0.043 0.128 0.006 0.033 0.008 0.068 0.004 0.025

 7 Ran 0.050 0.137 0.051 0.153 0.041 0.106 0.015 0.060 0.013 0.063 0.010 0.046

 Inc 0.042 0.106 0.042 0.111 0.035 0.085 0.014 0.053 0.013 0.051 0.010 0.049

 Dec 0.063 0.181 0.057 0.136 0.048 0.118 0.010 0.050 0.010 0.050 0.007 0.050

 SL 0.052 0.137 0.051 0.130 0.042 0.125 0.013 0.051 0.015 0.049 0.010 0.037

 56

 WL 0.050 0.137 0.052 0.134 0.042 0.120 0.012 0.069 0.012 0.074 0.009 0.060

14 5 Ran 0.056 0.124 0.062 0.161 0.048 0.104 0.013 0.056 0.012 0.056 0.008 0.047

 Inc 0.038 0.093 0.043 0.137 0.033 0.086 0.012 0.045 0.011 0.045 0.009 0.045

 Dec 0.079 0.169 0.085 0.186 0.068 0.156 0.011 0.044 0.011 0.064 0.007 0.028

 SL 0.058 0.129 0.066 0.151 0.051 0.122 0.016 0.064 0.019 0.082 0.012 0.055

 WL 0.056 0.139 0.063 0.161 0.048 0.105 0.008 0.044 0.008 0.065 0.005 0.037

 7 Ran 0.051 0.117 0.055 0.115 0.044 0.115 0.012 0.043 0.014 0.054 0.010 0.037

 Inc 0.041 0.116 0.046 0.107 0.036 0.090 0.016 0.063 0.016 0.063 0.012 0.063

 Dec 0.068 0.173 0.067 0.173 0.056 0.161 0.010 0.054 0.012 0.051 0.008 0.043

 SL 0.058 0.138 0.056 0.144 0.047 0.138 0.016 0.049 0.018 0.069 0.013 0.049

 WL 0.051 0.111 0.055 0.116 0.045 0.095 0.011 0.073 0.011 0.067 0.008 0.067

16 5 Ran 0.067 0.203 0.072 0.185 0.058 0.135 0.013 0.063 0.014 0.073 0.010 0.060

 Inc 0.047 0.139 0.047 0.161 0.039 0.093 0.012 0.072 0.013 0.051 0.009 0.051

 Dec 0.088 0.196 0.090 0.167 0.076 0.167 0.013 0.059 0.011 0.068 0.008 0.047

 SL 0.071 0.164 0.075 0.172 0.060 0.131 0.019 0.074 0.021 0.147 0.014 0.047

 WL 0.061 0.196 0.068 0.161 0.054 0.117 0.008 0.038 0.008 0.041 0.005 0.025

 7 Ran 0.061 0.150 0.065 0.148 0.053 0.144 0.014 0.061 0.014 0.048 0.010 0.046

 Inc 0.044 0.095 0.048 0.098 0.038 0.088 0.016 0.057 0.014 0.062 0.011 0.057

 Dec 0.074 0.157 0.072 0.179 0.062 0.157 0.013 0.048 0.013 0.053 0.008 0.038

 SL 0.066 0.146 0.065 0.177 0.055 0.146 0.019 0.059 0.019 0.073 0.013 0.040

 WL 0.061 0.143 0.069 0.151 0.056 0.133 0.012 0.058 0.013 0.052 0.008 0.039

 57

Table 4.6. The performance of the heuristic algorithms (0.75α =)

 Error percentages

 NEH NEH_W min{NEH,NEH_W} FL FL_W min{FL,FLW}

n m Patten mean max mean max mean max mean max mean max mean max

12 5 Ran 0.058 0.159 0.064 0.157 0.050 0.132 0.012 0.064 0.011 0.044 0.008 0.044

 Inc 0.036 0.086 0.039 0.092 0.031 0.081 0.011 0.044 0.011 0.053 0.008 0.035

 Dec 0.069 0.149 0.070 0.170 0.057 0.122 0.009 0.052 0.009 0.044 0.006 0.030

 SL 0.056 0.179 0.057 0.144 0.047 0.144 0.013 0.046 0.016 0.055 0.010 0.041

 WL 0.052 0.146 0.058 0.187 0.045 0.114 0.006 0.050 0.007 0.059 0.005 0.038

 7 Ran 0.050 0.137 0.052 0.133 0.042 0.109 0.013 0.051 0.013 0.046 0.009 0.043

 Inc 0.042 0.104 0.041 0.091 0.034 0.081 0.013 0.064 0.012 0.051 0.010 0.051

 Dec 0.067 0.191 0.057 0.137 0.050 0.129 0.009 0.040 0.009 0.041 0.006 0.037

 SL 0.054 0.143 0.052 0.132 0.042 0.130 0.014 0.060 0.015 0.045 0.010 0.043

 WL 0.053 0.132 0.051 0.145 0.043 0.130 0.011 0.057 0.011 0.047 0.008 0.044

14 5 Ran 0.057 0.131 0.064 0.131 0.050 0.109 0.013 0.054 0.012 0.050 0.008 0.045

 Inc 0.039 0.103 0.043 0.105 0.034 0.083 0.012 0.040 0.013 0.059 0.009 0.040

 Dec 0.081 0.180 0.082 0.199 0.068 0.159 0.011 0.048 0.011 0.053 0.007 0.044

 SL 0.060 0.137 0.066 0.154 0.050 0.127 0.017 0.084 0.018 0.057 0.012 0.043

 WL 0.058 0.146 0.063 0.140 0.049 0.112 0.009 0.061 0.009 0.061 0.006 0.061

 7 Ran 0.051 0.126 0.056 0.152 0.044 0.126 0.013 0.047 0.013 0.050 0.010 0.042
 Inc 0.043 0.120 0.045 0.103 0.036 0.103 0.017 0.060 0.016 0.058 0.013 0.056

 Dec 0.068 0.180 0.068 0.178 0.056 0.167 0.010 0.045 0.011 0.067 0.007 0.045

 SL 0.058 0.126 0.057 0.151 0.047 0.125 0.016 0.053 0.019 0.065 0.012 0.053

 WL 0.053 0.118 0.055 0.119 0.045 0.100 0.011 0.073 0.011 0.047 0.007 0.047

 58

16 5 Ran 0.069 0.222 0.071 0.173 0.059 0.153 0.016 0.091 0.014 0.056 0.010 0.042

 Inc 0.048 0.151 0.048 0.164 0.040 0.094 0.012 0.064 0.013 0.039 0.008 0.035

 Dec 0.089 0.207 0.090 0.179 0.075 0.149 0.011 0.043 0.011 0.068 0.008 0.032

 SL 0.072 0.169 0.074 0.172 0.060 0.144 0.020 0.076 0.022 0.160 0.014 0.076

 WL 0.064 0.207 0.071 0.167 0.056 0.126 0.010 0.076 0.010 0.042 0.006 0.037

 7 Ran 0.063 0.157 0.065 0.155 0.054 0.151 0.014 0.046 0.015 0.055 0.010 0.044

 Inc 0.045 0.097 0.046 0.110 0.038 0.094 0.015 0.054 0.016 0.067 0.011 0.043

 Dec 0.076 0.161 0.075 0.189 0.064 0.161 0.013 0.042 0.013 0.053 0.009 0.035

 SL 0.067 0.159 0.065 0.182 0.056 0.159 0.018 0.074 0.020 0.074 0.014 0.074

 WL 0.063 0.150 0.070 0.161 0.057 0.139 0.014 0.055 0.014 0.054 0.010 0.035

 59

As shown in Tables 4.4 to 4.6, it is observed that all heuristic algorithms proposed in this

chapter are quite accurate since the error percentages are all less than 0.1%. For evaluating the

influence on the performance of the heuristic algorithms, several two-way analysis of variance

(ANOVA) with a significance of 5% of the mean error percentage under each heuristic

algorithm are conducted and the results are reported in Table 4.7.

Table 4.7. Two-way ANOVA of the error percentages for all heuristic algorithms
Heuristic algorithm Source DF SS MS F p-value

NEH α 2 0.0004311 0.0002155 5.08 0.009
 Learning patterns 4 0.0089166 0.0022292 52.50 0.000
 Interaction 8 0.0001122 0.0000140 0.33 0.952
 Error 75 0.0031847 0.0000425
 Total 89 0.0126446

NEH_W α 2 0.0001460 0.0000730 1.21 0.304
 Learning patterns 4 0.0735550 0.0018389 30.46 0.000
 Interaction 8 0.0000621 0.0000078 0.13 0.998
 Error 75 0.0045283 0.0000604
 Total 89 0.0120920

min{NEH,NEH_W} α 2 0.0001948 0.0000974 2.43 0.095
 Learning patterns 4 0.0056230 0.0014058 35.04 0.000
 Interaction 8 0.0000657 0.0000082 0.20 0.989
 Error 75 0.0030085 0.0000401
 Total 89 0.0088921

FL α 2 0.0000008 0.0000004 0.08 0.919
 Learning patterns 4 0.0004772 0.0001193 25.31 0.000
 Interaction 8 0.0000074 0.0000009 0.20 0.991
 Error 75 0.0003535 0.0000047
 Total 89 0.0008389

FL_W α 2 0.0000075 0.0000039 0.90 0.412
 Learning patterns 4 0.0007590 0.0001898 43.70 0.000
 Interaction 8 0.0000071 0.0000009 0.20 0.989
 Error 75 0.0003257 0.0000043
 Total 89 0.0010996

min{FL,FL_W} α 2 0.0000002 0.0000001 0.03 0.970
 Learning patterns 4 0.0003397 0.0000849 33.00 0.000
 Interaction 8 0.0000030 0.0000004 0.14 0.997
 Error 75 0.0001930 0.0000026
 Total 89 0.0005358

 60

As shown in Table 4.7, it is observed that α doesn’t have a significant effect on the accuracy

for all heuristic algorithms except NEH. Then it is shown in Tables 4.4 to 4.6 that the mean

error percentage of NEH descends as α decreases, and the reason is that the NEH is initially

devoted to solving the makespan problem. Furthermore, it reveals that the learning pattern has

a significant effect on the accuracy for all proposed heuristic algorithms. A close observation

of Tables 4.4 to 4.6 shows that Inc is the most accurate under NEH, NEH_W and

min{NEH,NEH_W}, and Dec is the least accurate. Meanwhile, SL is the most accurate under

FL, FL_W and min{FL,FL_W}, and WL is the least. In addition, there is no interaction

between α and the learning patterns for all heuristic algorithms. Moreover, it is shown that

min{NEH,NEH_W} is more accurate than NEH and NEH_W, and min{FL,FL_W} is more

accurate than FL and FL_W. It implies that there is no priority between two methods of index

development utilized in the proposed heuristic algorithms. Eventually, min{FL,FL_W} is the

most accurate among all heuristic algorithms, followed by FL and FL_W, min{NEH,NEH_W},

and finally NEH and NEH_W.

 In the last part of the computational experiments, the examples with large size of jobs are

generated to perform the heuristic algorithms proposed in this chapter. Let α be set as 0.50

since most of the proposed heuristic algorithms are not affected by α for the statistical

analysis in Table 4.7. Additionally, the numbers of jobs are set as 50 and 100, and numbers of

machines are set as 10 and 15. Then 100 replications are randomly generated. A total of 400

examples are generated to be tested in which five learning patterns are considered in each

example. Consequently, the relative percentage deviation for all heuristic algorithms is

denoted as HRPD , and its mean and maximum values are listed in Table 4.8. For each

example, the HRPD is calculated as

min

min

100%µ µ
µ
−

× ,

 61

where µ denotes the near-optimal objective value for given one of all heuristic algorithms,

and minµ is the minimum among all µ . As shown in Table 4.8 that FL and FL_W are both

better than min{NEH,NEH_W} in terms of the HRPD . It implies that the heuristic algorithm

proposed by Framinan and Leisten [11] is more proper than the algorithm proposed by Nawaz

et al. [23] to obtain the near-optimal solution for the problem proposed in this chapter. Finally,

it is observed that min{FL,FL_W} is the most accurate of all proposed heuristic algorithms

because of that the HRDP are all zero. Therefore, min{FL,FL_W} is recommended to yield

the near-optimal schedule for the problem proposed in this chapter.

 62

Table 4.8. The comparison of the heuristic algorithms for large job-sized problem (0.50α =)
 HRPD
 NEH NEH W min{NEH,NEH W} FL FL W min{FL,FLW}

n m Pattern mean max mean max mean max mean max mean max mean max
50 10 Ran 0.072 0.143 0.073 0.133 0.064 0.106 0.004 0.053 0.004 0.030 0.000 0.008
 Inc 0.043 0.078 0.047 0.083 0.039 0.074 0.003 0.035 0.003 0.035 0.000 0.000
 Dec 0.095 0.137 0.075 0.129 0.073 0.128 0.004 0.037 0.003 0.026 0.000 0.000
 SL 0.073 0.135 0.071 0.117 0.064 0.117 0.004 0.027 0.007 0.047 0.000 0.000
 WL 0.070 0.146 0.067 0.119 0.061 0.119 0.004 0.027 0.003 0.024 0.000 0.000

 15 Ran 0.062 0.127 0.060 0.114 0.053 0.108 0.006 0.038 0.003 0.028 0.000 0.000
 Inc 0.037 0.077 0.040 0.072 0.033 0.068 0.005 0.029 0.004 0.035 0.000 0.004
 Dec 0.078 0.135 0.061 0.123 0.059 0.123 0.004 0.021 0.003 0.022 0.000 0.000
 SL 0.065 0.107 0.059 0.107 0.054 0.106 0.005 0.029 0.004 0.024 0.000 0.000
 WL 0.063 0.143 0.060 0.108 0.054 0.108 0.004 0.030 0.002 0.026 0.000 0.000

100 10 Ran 0.080 0.133 0.081 0.136 0.072 0.116 0.004 0.028 0.004 0.034 0.000 0.000
 Inc 0.055 0.090 0.057 0.091 0.052 0.079 0.003 0.023 0.002 0.024 0.000 0.000
 Dec 0.102 0.155 0.079 0.129 0.078 0.129 0.004 0.019 0.002 0.013 0.000 0.000
 SL 0.089 0.133 0.087 0.132 0.082 0.132 0.003 0.018 0.004 0.029 0.000 0.000
 WL 0.075 0.137 0.077 0.130 0.069 0.117 0.004 0.020 0.002 0.024 0.000 0.000

 15 Ran 0.073 0.132 0.068 0.109 0.065 0.103 0.005 0.047 0.002 0.021 0.000 0.000
 Inc 0.048 0.079 0.052 0.083 0.045 0.071 0.004 0.029 0.002 0.018 0.000 0.000
 Dec 0.093 0.135 0.067 0.113 0.067 0.113 0.004 0.021 0.002 0.015 0.000 0.000
 SL 0.073 0.117 0.068 0.105 0.063 0.102 0.004 0.022 0.003 0.022 0.000 0.000
 WL 0.071 0.120 0.068 0.121 0.064 0.105 0.005 0.029 0.002 0.025 0.000 0.000

 63

4.5 Summary

In this chapter, an m-machine flowshop scheduling problem with machine- and

position-based learning effects is studied to minimize the weighted sum of the total

completion time and the makespan. The branch-and-bound algorithm incorporated with a

dominance property and a lower bound is proposed to seek the optimal sequence, and four

heuristic algorithms are established to yield the near-optimal sequences. As shown in the

computational results, the proposed problem can be dealt with up to 16 jobs within a

reasonable amount of time for seeking the optimal sequence. When the learning pattern is set

as Inc, or if α is smaller, the proposed problem is harder to search for the optimal sequence

by implementing the proposed branch-and-bound algorithm. Furthermore, the performances

of all proposed heuristic algorithms are accurate and min{FL,FL_W} is recommended to

obtain the near-optimal sequence. Finally, the issue for allocating the learning effects to the

machines is discussed in this chapter, and it is shown that assigning the stronger learning

effects to the machines with the heavier workload might obtain the better result, and it can be

utilized as an important course for decision making in the scheduling field, such as assigning

the operators to the machines.

 64

Chapter 5

Concluding remarks

5.1. Conclusion

In this dissertation, two m-machine flowshop problems with position-based learning

effect are studied. For each problem, a dominance property and a lower bound are proposed to

conduct a branch-and-bound algorithm for obtaining the optimal sequences. In addition,

because searching the optimal sequence for large job-sized problem is time consuming, this

dissertation introduces learning effect into two well-known existing heuristic and two

meta-heuristic algorithms to obtain the near-optimal sequences. Then the optimal sequence for

small job-sized problems is utilized to assess the accuracy of the proposed heuristic and

meta-heuristic algorithms. The computational experiment shows that

 Assigning the stronger learning effects to the machines with the heavier workload might

obtain the better result.

 The optimal solution for the traditional flowshop scheduling problem is no longer

optimal when the learning effect exists in the production environment.

 The branch-and-bound algorithm can solve problems of up to 18 jobs within a

reasonable amount of time.

 We recommend to conduct the proposed branch-and-bound algorithm for obtaining the

optimal sequence within a reasonable amount of time, or conduct the proposed heuristic

and meta-heuristic algorithms for obtaining near-optimal sequences when the number of

jobs is larger than 18.

 The heuristic and meta-heuristic algorithms proposed in this dissertation are quite

accurate since all the mean error percentages are less than 0.1%.

 GA is recommended to derive the near-optimal sequence when the execution time is not

 65

considered. Otherwise, the min{FL,FL_W} is recommended.

 The efficiency of the branch-and-bound algorithm enhances while the machines have

stronger learning effects or a decreasing trend of learning effects.

 The number of nodes and the execution time grow exponentially with an increasing

number of jobs because of the proposed problems are NP-hard problems.

5.2 Suggestions for further studies

Some possible suggestion could be investigated for further studies and listed as follows.

 The actual processing time of the job in the proposed model could be divided into two

parts, those are the setup time with the learning consideration and the normal processing

time without the learning consideration, in which the setup time is operated by the

worker, and the normal processing time is operated by the machine.

 Other objective functions could be discussed, like minimizing total tardiness, minimizing

the number of tardy jobs, and so on.

 The concept of multiple-agent could be introduced into the proposed scheduling

problems.

 Developing the constructive heuristic algorithms or meta-heuristic algorithms to derive

better near-optimal sequence.

 Searching for more practical learning model.

 The sum-of-processing- time-based learning effect could be studied.

 66

References

[1] Biskup, D., “Single-machine scheduling with learning considerations”, European

Journal of Operational Research, 115, 173-178, 1999.

[2] Biskup, D., “A state-of-the-art review on scheduling with learning effect”, European

Journal of Operational Research, 188, 315-329, 2008.

[3] Chen, P., Wu, C.C., and Lee, W.C., “A bi-criteria two-machine flowshop scheduling

problem with a learning effect”, The Journal of Operational Research Society, 57,

1113-1125, 2006.

[4] Cheng, T.C.E., Cheng, S.R., Wu, W.H., Hsu, P.H., and Wu, C.C., “A two-agent

single-machine scheduling problem with truncated sum-of-processing-times-based

learning consideration”, Computers & Industrial Engineering, 60, 534-541, 2011.

[5] Cheng, T.C.E., Lai, P.J., Wu, C.C., and Lee, W.C., “Single-machine scheduling with

sum-of-logarithm-processing-times-based learning considerations”, Information

Sciences, 179, 3127-3135, 2009.

[6] Cheng, T.C.E., Wu, C.C., and Lee, W.C, “Some scheduling problems with

sum-of-processing-times-based and job-position-based learning effects”, Information

Sciences, 178, 2476-2487, 2008.

[7] Chung, C.S., Flynn, J., and Kirca, Ő., “A branch-and-bound algorithm to minimize the

total flow time for m-machine permutation flowshop problems”, International Journal

of Production Economics, 79, 185-196, 2002.

[8] Chung, C.S., Flynn, J., and Kirca, Ő., “A branch and bound algorithm to minimize the

total tardiness for m-machine permutation flowshop problems”, European Journal of

Operational Research, 174, 1-10, 2006.

[9] Eren, T., and Guner, E., “A bicriteria parallel machine scheduling with a learning

 67

effect”, International Journal of Advanced Manufacturing Technology, 40, 1202-1205,

2009.

[10] Framinan, J.M., Gupta J.N.D., and Leisten, R., “A review and classification of

heuristics for permutation flow-shop scheduling with makespan objective”, Journal of

the Operational Research Society, 55, 1243-1255, 2004.

[11] Framinan, J.M., and Leisten, R., “An efficient constructive heuristic for flowtime

minimization in permutation flow shops”, OMEGA, 31, 311-317, 2003.

[12] Garey, M.R., Johnson, D.S., and Sethi, R., “The complexity of flowshop and jobshop

scheduling”, Mathematics of Operations Research, 1, 117-129, 1976.

[13] Huang, X., Wang, M.Z., and Wang, J.B., “Single-machine scheduling with both

learning effects and deteriorating jobs”, Computers & Industrial Engineering, 60,

750-754, 2011.

[14] Janiak, A., and Rudek, R., “A new approach to the learning effect: Beyond the learning

curve restrictions”, Computers and Operations Research, 35, 3727- 3736, 2008.

[15] Janiak, A., and Rudek, R., “Experience based approach to scheduling problems with the

learning effect”, IEEE Transactions on System, Man, and Cybernetics, Part A: Systems

and Humans, 39, 344-357, 2009.

[16] Janiak, A., and Rudek, R., “A note on a makespan minimization problem with a

multi-ability learning effect”, Omega, 38, 213-217, 2010.

[17] Koulamas, C. and Kyparisis, G.J., “Single-machine and two-machine flowshop

scheduling with general learning function”, European Journal of Operational Research,

178, 402-407, 2007.

[18] Koulamas, C., “A note on single-machine scheduling with job-dependent learning

effects”, European Journal of Operational Research, 207, 1142-1143, 2010.

[19] Lai, P.J., and Lee, W.C., “Single-machine scheduling with general

sum-of-processing-time-based and position-based learning effects”, Omega, 39,

 68

467-471, 2011.

[20] Lee, W.C., and Lai, P.J., “Scheduling problems with general effects of deterioration and

learning”, Information Sciences, 181, 1164-1170, 2011.

[21] Lee, W.C., and Wu, C.C., “Minimizing total completion time in a two-machine

flowshop with a learning effect”, International Journal of Production Economics, 88,

85-93, 2004.

[22] Lee, W.C., and Wu, C.C., “Some single-machine and m-machine flowshop scheduling

problems with learning considerations”. Information Sciences, 179, 3885-3892, 2009.

[23] Lee, W.C., Wu, C.C., and Hsu, P.H., “A single-machine learning effects scheduling

problem with release times”, Omega, 38, 3-11, 2010.

[24] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., “Complexity of machine

scheduling problems”, Annals of Discrete Mathematics, 1, 343-362, 1977.

[25] Li, D.C., Hsu, P.H., Wu, C.C., and Cheng, T.C.E., “Two-machine flowshop scheduling

with truncated learning to minimize the total completion time”, Computers & Industrial

Engineering, In Press, 2011, doi: 10.1016/j.cie.2011.04.021

[26] Liu, S., and Ong, H.L., “A comparative study of algorithms for the flowshop scheduling

problem”, Asia-Pacific Journal of Operational Research, 19, 205-222, 2002.

[27] Nawaz, M., Enscore, E.E., and Ham, I., “A heuristic algorithm for the m-machine, n-job

flow-shop sequencing problem”, OMEGA, 11, 91-95, 1983.

[28] Mosheiov, G., and Sidney J.B., “Scheduling with general job-dependent learning

curves”, European Journal of Operational Research, 147, 665-670, 2003.

[29] Pinedo, M., Scheduling: theory, algorithms, and systems, Second Edition, Prentice-Hall,

Upper Saddle River, New Jersey, 2002.

[30] Rajendran, C., and Ziegler, H., “An efficient heuristic for scheduling in a flowshop to

minimize total weighted flowtime of jobs”, European Journal of Operational Research,

103, 129-138, 1997.

 69

[31] Ruiz, R., and Maroto, C., “A comprehensive review and evaluation of permutation

flowshop heuristics”, European Journal of Operational Research, 165, 479-494, 2005.

[32] Smith, W.E., “Various optimizers for single state production”, Naval Research

Logistics Quarterly, 3, 59-66, 1956.

[33] Toksari, M.D., “A branch and bound algorithm for minimizing makespan on a single

machine with unequal release times under learning effect and deteriorating jobs”,

Computers and Operations Research, 38, 1361- 1365, 2011.

[34] Toksari, M.D., and Guner, E., “Parallel machine earliness/tardiness scheduling problem

under the effects of position based learning and linear/nonlinear deterioration”,

Computers and Operations Research, 36, 2394-2417, 2009.

[35] Wang, J.B., and Li, J.X., “Single machine past-sequence-dependent setup times

scheduling with general position-dependent and time-dependent learning effects”,

Applied Mathematical Modelling, 35, 1388-1395, 2011.

[36] Wang, L., Pan, Q.K., and Tasgetiren, M.F., “A hybrid harmony search algorithm for the

blocking permutation flow shop scheduling problem”, Computers & Industrial

Engineering, 61, 76-83, 2011.

[37] Wang, J.B., Sun, L., and Sun, L., “Single machine scheduling with a learning effect and

discounted costs”, International Journal of Advanced Manufacturing Technology, 49,

1141-1149, 2010.

[38] Wang, J.B., and Wang, J.J., “Single-machine scheduling jobs with exponential learning

functions”, Computers & Industrial Engineering, 60, 755-759, 2011.

[39] Wang, X.R., Wang, J.B., Gao, W.J., and Huang, X., “Scheduling with

past-sequence-dependent setup times and learning effects on single machine”,

International Journal of Advanced Manufacturing Technology, 48, 739-746, 2010.

[40] Wang, L.Y., Wang, J.B., Gao, W.J., Huang, X., and Feng, E.M., “Two single-machine

scheduling problems with the effects of deterioration and learning”, International

 70

Journal of Advanced Manufacturing Technology, 46, 715-720, 2010.

[41] Wang, L.Y., Wang, J.B., Wang, D., Yin, N., Huang, X., and Feng, E.M.,

“Single-machine scheduling with a sum-of-processing-time based learning effect and

deteriorating jobs”, International Journal of Advanced Manufacturing Technology, 45,

336-340, 2009.

[42] Wang, J.B., and Xia, Z.Q., “Flow-shop scheduling with a learning effect”, The Journal

of Operational Research Society, 56, 1325-1330, 2005.

[43] Woo, H.S., and Yim, D.S., “A heuristic algorithm for mean flowtime objective in

flowshop scheduling”, Computers and Operations Research, 25, 175-182, 1998.

[44] Wright, T.P., “Factors affecting the cost of airplanes”, Journal of Aeronautical Sciences,

3, 122-128, 1936.

[45] Wu, C.C., Hsu, P.H., Chen, J.C., Wang, N.S., and Wu, W.H., “Branch-and-bound and

simulated annealing algorithms for a total weighted completion time scheduling with

ready time and learning effect”, International Journal of Advanced Manufacturing

Technology, doi: 10.1007/s00170-010-3022-7, 2010.

[46] Wu, C.C. and Lee, W.C., “A note on the total completion time problem in a permutation

flowshop with a learning effect”, European Journal of Operational Research, 192,

343-347, 2009.

[47] Wu, C.C., Lee, W.C., and Wang, W.C., “A two-machine flowshop maximum tardiness

scheduling problem with a learning effect”, International Journal of Advanced

Manufacturing Technology, 31, 743-750, 2007.

[48] Yelle, L.E., “The learning curve: historical review and comprehensive survey”,

Decision Sciences, 10, 302-328, 1979.

[49] Yin, Y., Xu, D., Sun, K., and Li, H., “Some scheduling problems with general

position-dependent and time-dependent learning effects”, Information Sciences, 179,

2416-2425, 2009.

 71

[50] Zhang Y., and Li, X., “Estimation of distribution algorithm for permutation flow shops

with total flowtime minimization”, Computers & Industrial Engineering, 60, 706-718,

2011.

[51] Zhu, Z., Sun, L., Chu, F., and Liu, M., “Single-machine group scheduling with resource

allocation and learning effect”, Computers & Industrial Engineering, 60, 148-157,

2011.

	Title page_Final
	Defence_Final
	Chapter 1 Introduction
	1.1 Research motivation
	1.2 Literature review
	1.3 Research objectives and methodologies

	Chapter 2 Algorithms
	2.1 Branch-and-bound algorithms
	2.2 Heuristic algorithms
	2.3 Meta-heuristic algorithms

	Chapter 3 Makespan minimization for m-machine flowshop scheduling problem with position-based learning effects
	3.1 Notations and problem statement
	3.2 Dominance property
	3.3 Lower bound
	3.4 Computational results
	3.5 Summary

	Chapter 4 Bi-criteria minimization for m-machine flowshop scheduling problem with machine- and position-based learning effects
	4.1 Notations and problem statement
	4.2 Dominance property
	4.3 Lower bound
	4.4 Computational results
	4.5 Summary

	Chapter 5 Concluding remarks
	5.1. Conclusion
	5.2 Suggestions for further studies

	References
	[1] Biskup, D., “Single-machine scheduling with learning considerations”, European Journal of Operational Research, 115, 173-178, 1999.
	[2] Biskup, D., “A state-of-the-art review on scheduling with learning effect”, European Journal of Operational Research, 188, 315-329, 2008.
	[3] Chen, P., Wu, C.C., and Lee, W.C., “A bi-criteria two-machine flowshop scheduling problem with a learning effect”, The Journal of Operational Research Society, 57, 1113-1125, 2006.
	[4] Cheng, T.C.E., Cheng, S.R., Wu, W.H., Hsu, P.H., and Wu, C.C., “A two-agent single-machine scheduling problem with truncated sum-of-processing-times-based learning consideration”, Computers & Industrial Engineering, 60, 534-541, 2011.
	[5] Cheng, T.C.E., Lai, P.J., Wu, C.C., and Lee, W.C., “Single-machine scheduling with sum-of-logarithm-processing-times-based learning considerations”, Information Sciences, 179, 3127-3135, 2009.
	[6] Cheng, T.C.E., Wu, C.C., and Lee, W.C, “Some scheduling problems with sum-of-processing-times-based and job-position-based learning effects”, Information Sciences, 178, 2476-2487, 2008.
	[7] Chung, C.S., Flynn, J., and Kirca, Ő., “A branch-and-bound algorithm to minimize the total flow time for m-machine permutation flowshop problems”, International Journal of Production Economics, 79, 185-196, 2002.
	[8] Chung, C.S., Flynn, J., and Kirca, Ő., “A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems”, European Journal of Operational Research, 174, 1-10, 2006.
	[9] Eren, T., and Guner, E., “A bicriteria parallel machine scheduling with a learning effect”, International Journal of Advanced Manufacturing Technology, 40, 1202-1205, 2009.
	[10] Framinan, J.M., Gupta J.N.D., and Leisten, R., “A review and classification of heuristics for permutation flow-shop scheduling with makespan objective”, Journal of the Operational Research Society, 55, 1243-1255, 2004.
	[11] Framinan, J.M., and Leisten, R., “An efficient constructive heuristic for flowtime minimization in permutation flow shops”, OMEGA, 31, 311-317, 2003.
	[12] Garey, M.R., Johnson, D.S., and Sethi, R., “The complexity of flowshop and jobshop scheduling”, Mathematics of Operations Research, 1, 117-129, 1976.
	[13] Huang, X., Wang, M.Z., and Wang, J.B., “Single-machine scheduling with both learning effects and deteriorating jobs”, Computers & Industrial Engineering, 60, 750-754, 2011.
	[14] Janiak, A., and Rudek, R., “A new approach to the learning effect: Beyond the learning curve restrictions”, Computers and Operations Research, 35, 3727- 3736, 2008.
	[15] Janiak, A., and Rudek, R., “Experience based approach to scheduling problems with the learning effect”, IEEE Transactions on System, Man, and Cybernetics, Part A: Systems and Humans, 39, 344-357, 2009.
	[16] Janiak, A., and Rudek, R., “A note on a makespan minimization problem with a multi-ability learning effect”, Omega, 38, 213-217, 2010.
	[17] Koulamas, C. and Kyparisis, G.J., “Single-machine and two-machine flowshop scheduling with general learning function”, European Journal of Operational Research, 178, 402-407, 2007.
	[18] Koulamas, C., “A note on single-machine scheduling with job-dependent learning effects”, European Journal of Operational Research, 207, 1142-1143, 2010.
	[19] Lai, P.J., and Lee, W.C., “Single-machine scheduling with general sum-of-processing-time-based and position-based learning effects”, Omega, 39, 467-471, 2011.
	[20] Lee, W.C., and Lai, P.J., “Scheduling problems with general effects of deterioration and learning”, Information Sciences, 181, 1164-1170, 2011.
	[21] Lee, W.C., and Wu, C.C., “Minimizing total completion time in a two-machine flowshop with a learning effect”, International Journal of Production Economics, 88, 85-93, 2004.
	[22] Lee, W.C., and Wu, C.C., “Some single-machine and m-machine flowshop scheduling problems with learning considerations”. Information Sciences, 179, 3885-3892, 2009.
	[23] Lee, W.C., Wu, C.C., and Hsu, P.H., “A single-machine learning effects scheduling problem with release times”, Omega, 38, 3-11, 2010.
	[24] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., “Complexity of machine scheduling problems”, Annals of Discrete Mathematics, 1, 343-362, 1977.
	[25] Li, D.C., Hsu, P.H., Wu, C.C., and Cheng, T.C.E., “Two-machine flowshop scheduling with truncated learning to minimize the total completion time”, Computers & Industrial Engineering, In Press, 2011, doi: 10.1016/j.cie.2011.04.021
	[26] Liu, S., and Ong, H.L., “A comparative study of algorithms for the flowshop scheduling problem”, Asia-Pacific Journal of Operational Research, 19, 205-222, 2002.
	[27] Nawaz, M., Enscore, E.E., and Ham, I., “A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem”, OMEGA, 11, 91-95, 1983.
	[28] Mosheiov, G., and Sidney J.B., “Scheduling with general job-dependent learning curves”, European Journal of Operational Research, 147, 665-670, 2003.
	[29] Pinedo, M., Scheduling: theory, algorithms, and systems, Second Edition, Prentice-Hall, Upper Saddle River, New Jersey, 2002.
	[30] Rajendran, C., and Ziegler, H., “An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs”, European Journal of Operational Research, 103, 129-138, 1997.
	[31] Ruiz, R., and Maroto, C., “A comprehensive review and evaluation of permutation flowshop heuristics”, European Journal of Operational Research, 165, 479-494, 2005.
	[32] Smith, W.E., “Various optimizers for single state production”, Naval Research Logistics Quarterly, 3, 59-66, 1956.
	[33] Toksari, M.D., “A branch and bound algorithm for minimizing makespan on a single machine with unequal release times under learning effect and deteriorating jobs”, Computers and Operations Research, 38, 1361- 1365, 2011.
	[34] Toksari, M.D., and Guner, E., “Parallel machine earliness/tardiness scheduling problem under the effects of position based learning and linear/nonlinear deterioration”, Computers and Operations Research, 36, 2394-2417, 2009.
	[35] Wang, J.B., and Li, J.X., “Single machine past-sequence-dependent setup times scheduling with general position-dependent and time-dependent learning effects”, Applied Mathematical Modelling, 35, 1388-1395, 2011.
	[36] Wang, L., Pan, Q.K., and Tasgetiren, M.F., “A hybrid harmony search algorithm for the blocking permutation flow shop scheduling problem”, Computers & Industrial Engineering, 61, 76-83, 2011.
	[37] Wang, J.B., Sun, L., and Sun, L., “Single machine scheduling with a learning effect and discounted costs”, International Journal of Advanced Manufacturing Technology, 49, 1141-1149, 2010.
	[38] Wang, J.B., and Wang, J.J., “Single-machine scheduling jobs with exponential learning functions”, Computers & Industrial Engineering, 60, 755-759, 2011.
	[39] Wang, X.R., Wang, J.B., Gao, W.J., and Huang, X., “Scheduling with past-sequence-dependent setup times and learning effects on single machine”, International Journal of Advanced Manufacturing Technology, 48, 739-746, 2010.
	[40] Wang, L.Y., Wang, J.B., Gao, W.J., Huang, X., and Feng, E.M., “Two single-machine scheduling problems with the effects of deterioration and learning”, International Journal of Advanced Manufacturing Technology, 46, 715-720, 2010.
	[41] Wang, L.Y., Wang, J.B., Wang, D., Yin, N., Huang, X., and Feng, E.M., “Single-machine scheduling with a sum-of-processing-time based learning effect and deteriorating jobs”, International Journal of Advanced Manufacturing Technology, 45, 336-340, 2009N
	[42] Wang, J.B., and Xia, Z.Q., “Flow-shop scheduling with a learning effect”, The Journal of Operational Research Society, 56, 1325-1330, 2005.
	[43] Woo, H.S., and Yim, D.S., “A heuristic algorithm for mean flowtime objective in flowshop scheduling”, Computers and Operations Research, 25, 175-182, 1998.
	[44] Wright, T.P., “Factors affecting the cost of airplanes”, Journal of Aeronautical Sciences, 3, 122-128, 1936.
	[45] Wu, C.C., Hsu, P.H., Chen, J.C., Wang, N.S., and Wu, W.H., “Branch-and-bound and simulated annealing algorithms for a total weighted completion time scheduling with ready time and learning effect”, International Journal of Advanced Manufacturing TechnN
	[46] Wu, C.C. and Lee, W.C., “A note on the total completion time problem in a permutation flowshop with a learning effect”, European Journal of Operational Research, 192, 343-347, 2009.
	[47] Wu, C.C., Lee, W.C., and Wang, W.C., “A two-machine flowshop maximum tardiness scheduling problem with a learning effect”, International Journal of Advanced Manufacturing Technology, 31, 743-750, 2007.
	[48] Yelle, L.E., “The learning curve: historical review and comprehensive survey”, Decision Sciences, 10, 302-328, 1979.
	[49] Yin, Y., Xu, D., Sun, K., and Li, H., “Some scheduling problems with general position-dependent and time-dependent learning effects”, Information Sciences, 179, 2416-2425, 2009.
	[50] Zhang Y., and Li, X., “Estimation of distribution algorithm for permutation flow shops with total flowtime minimization”, Computers & Industrial Engineering, 60, 706-718, 2011.
	[51] Zhu, Z., Sun, L., Chu, F., and Liu, M., “Single-machine group scheduling with resource allocation and learning effect”, Computers & Industrial Engineering, 60, 148-157, 2011.

