
國立交通大學

資訊管理研究所

碩 士 論 文

二階段供應鏈之協同排程

 Coordinated Scheduling in a Two-stage Supply Chain

研 究 生：謝欣穎

指導教授：林妙聰 博士

中華民國九十八年六月

二階段供應鏈之協同排程

Coordinated Scheduling in a Two-stage Supply Chain

研 究 生：謝欣穎 Student: Hsin-Ying Hsieh

指導教授：林妙聰 Advisor: Bertrand M.T. Lin

國立交通大學

資訊管理研究所

碩士論文

A Thesis

Submitted to the Institute of Information Management

College of Management

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Business Administration

in

Information Management

June 2009

Hsinchu, Taiwan, the Republic of China

中華民國九十八年六月

i

Title of Thesis: Coordinated Scheduling in a Two-stage Supply Chain

Name of Institute: Institute of Information Management

Student Name: Hsin-Ying Hsieh Advisor Name: Professor Bertrand M.T. Lin

Abstract

In this thesis, we investigate a scheduling problem in concurrent open shops

incorporating coordination among all participants. Weights are assigned to not only

orders (jobs) but also product items (operations) to reflect the fact that any operations,

parts or items need to be included in the formation of objective functions and the fact

that the positions of buyers and sellers may not be equal in real-world application,

such as buyers' market or sellers' market. Two integer programming formulations,

based on positional variables and sequencing variables, of the studied problem are

presented first. We then propose a three-phase algorithm, which comprises of a WSPT

heuristic, the NEH algorithm and the variable neighborhood search, to produce

approximate solutions to the computationally intractable problem. Finally, we will

analyze the performance of the three-phase algorithm through the computational

results.

Keywords : Concurrent open shops, total weighted completion time, coordination,

supply chain, NEH algorithm; WSPT heuristic; variable neighborhood search.

ii

摘要

在這篇論文中，我們將探討 Concurrent open shops 中協同合作的可能，並且

不單只是考慮最小化完工時間總合，更加入權重的概念，做為最小化的目標式。

因為不單單只是完工時間會對成本造成影響，應該要加入權重來詮釋 operations

或 orders 之間的相對重要性，以及反映現實市場中，可能存在買方市場或賣方

市場這種買賣雙方地位不平等的情況。我們分別依據位置變數及相對位置變數提

出兩個整數規劃模式來闡述這個題目。接著，我們提出一個由 WSPT 演算法、

NEH 演算法與 variable neighborhood search 所構成的三階段近似解演算法，可以

在短時間內為此計算複雜度極高的最佳化問題求得不錯的近似解。最後，我們進

行實驗模擬並根據實驗結果，從多面向分析此三階段演算法的求解效益與效率。

關鍵字：Concurrent open shops、總加權完工時間、協同合作、供應鏈、NEH 演

算法、WSPT 啟發式演算法、variable neighborhood search

iii

Table of Contents

Abstract .. i

摘要 .. ii

Table of Contents... iii

List of Figures ... iv

List of Tables... iv

Chapter 1 Introduction .. 1

Chapter 2 Problem Statements ... 7

2.1 Definition and Related Work ... 7

2.2 Integer Programs ... 13

Chapter 3 Multi-Phase Approximation Algorithm ... 17

3.1 Multi-Phase Algorithm Construct ... 17

3.2 VNS-Based Algorithm .. 19

3.2.1 Initial solution .. 21

3.2.2 Neighborhood structure ... 21

3.2.3 Shaking .. 22

3.2.4 Local search ... 23

3.3 NEH-Based Algorithm .. 24

Chapter 4 Computational Experiments .. 27

4.1 Experiment Settings .. 27

4.2 Computational results and analysis ... 30

4.2.1 Solution Quality ... 30

4.2.2 Analysis of run time performance .. 32

Chapter 5 Concluding Remarks ... 50

Bibliography ... 52

iv

List of Figures

Figure 1: The automobile production model ... 3

Figure 2: Construct of multi-phase algorithm ... 18

Figure 3: Pseudo-codes of variable neighborhood search (VNS).................................... 20

Figure 4: Pseudo-codes of Shaking.. 22

Figure 5: Pseudo-codes of the NEH algorithm.. 25

Figure 6: Experiment settings.. 29

Figure 7: Performance of heuristics in different settings .. 35

Figure 8: Correlations between  value and performance of dispatching rules 41

Figure 9: Correlations between  value and performance of NEH with different initial

solutions .. 43

Figure 10: Correlations between  value and performance of NEH+VNS with different

initial solutions ... 45

Figure 11: Correlations between  value and performance of VNS with different initial

solutions ... 47

Figure 12: Correlations between data size and running time .. 49

List of Tables

Table 1: Weights and processing times of the operations .. 9

Table 2: Optimal (WSPT) sequences of operations on the machines 10

Table 3: Sequence of operations on all machines using the vendee’s WSPT rule 11

Table 4: Optimal production schedule for the whole production system......................... 12

Table 5: Solution values and improvement ratios.. 33

Table 6: Elapsed running time ... 34

Chapter 1

Introduction

The purpose of scheduling is to execute tasks by making use of the limited resources

adequately in order to attain performance measures in an optimal way. In other words,

scheduling is a decision-making process of allocating limited resources to tasks or activ-

ities along the time horizon and accomplish the optimization of specified objective(s).

The resources may be capital, time, production lines, labor, etc. A task may be the

production of components, the delivery of merchandize or services. The objective could

be the minimization of the costs, the maximization of the profit, the minimization of

completion times, etc. Effective and efficient scheduling can avoid unnecessary waste

of resources, and thus enhance the efficiency of the projected operations.

In this thesis, we will investigate an operations scheduling problem that is further

extended to the context of supply chain management. In the recent two decades, there

has been a dramatic proliferation of research concerning supply chain management.

Integration and coordination amongst the participants in the same supply chain or

integration across different supply chains are especially noticed. Those topics focus on

1

information sharing of productions, inventories and sales projections in order to en-

hance the efficiency and reduce the production cost of each participants in the supply

chain. Each individual participant seeks to sketch an efficient but independent pro-

duction plan achieving the lowest cost within his/her organization. While most of the

literature on supply chain management treats only individual perspective, we intend

to introduce the notion of a comprehensive perspective. There are sellers and buyers,

no matter what kind of supply and demand relationship it is. Buyers always want to

purchase economically, while sellers always expect to gain from bargains as much as

possible. With this curb, individual optimization is limited, and one can only achieve

the optimization for himself/herself at the cost of the benefit of others in the context

of industrial networks. Optimization of every individual is hard to carry out, since no

one is willing to be the victim. Therefore, we discuss the possibility of mutual bene-

fits and provide a practical solution to promote the concept of working cooperatively,

instead of being rivals that could reduce the system-wide benefit of every participant

in the supply chain. While someone might lose when enriching the profit of the entire

system, they can get damages from the margin, and then, the remainder margin will

be divided up among the participants in the supply chain system. In this thesis, the

subject we studied is the production model including one buyer and several manufac-

turers. To elaborate on the idea clearly, we provide an automobile production model

as an example.

Suppose there is an automobile company which sells customized cars. Figure 1

shows the model of this production system. The three components which can be cus-

tomized are engine, wheel, and panel. The automobile company receive five orders

2

Figure 1: The automobile production model.

from five different customers at the same time, and then it place five orders to the en-

gine manufacturer, the wheel manufacturer, and the panel manufacturer, respectively,

according to the specific requests of each customer (5 orders and 3 manufacturers).

The components with different specifications would cause the differences in processing

times, selling prices, and even the profits that the automobile company or the three

manufacturers might earn. For the three manufacturers, they intend to plan an efficient

schedule which is most advantageous for them to produce the product items. However,

the automobile company has to wait until all of the three components ordered by the

same customer are finished before they can fulfill this order. We assume that there is

3

a fixed standard operation time for the delivery between manufacturers and automo-

bile company, and a standard procedure for the assembly. Furthermore, the delivery

and assembly are never changed even if different schedule policies are applied; besides,

they will not make any difference on the final result. For this reason, we will ignore

the processing times and expenses on delivery and assembly; in other words, a car is

finished as long as all of its three parts are produced and available.

On the automobile company side, they expect the three components of the same car

are finished at the same time, or the company has to hold the finished component(s)

until all of them are finished. It may cause some costs, such as that for inventory.

Besides, the orders may have different priorities, the relatively important orders are

supposed to be finished before those with relatively low importance. The reason for the

priority differences might be that a VIP customer has a higher priority than regular

customers, or the customer requests a specific delivery time, and many others. Though

it is very unlikely to charge a penalty for a delayed delivery, customer satisfaction will

probably dwindle. The intangible cost like this may substantially hurt the image of

enterprises. Therefore, the automobile company will prioritize the components during

production planning.

It is clear that the standpoints are quite different between the car company and

the three manufacturers. The car company is going to get into trouble, if production

schedule is arranged in the light of manufacturers’ preferences. For one thing, the

partially fulfilled orders with finished components need to be disposed, for another,

the car company has to deal with the customers who are impatient after waiting for

4

a long time. For these reasons, it is too inefficient for the automobile company to

accept this scheduling policy. On the contrary, if the schedule follows the company’s

prioritization, the profit of some, or even all of the manufactures will be sacrificed.

The conflicts between buyers and sellers are quite commonplace in a supply chain. In

this thesis, we are considering if there is a way to reconcile buyers and sellers, and lead

them to make decisions by the consensus that the production schedule will benefit all of

them. More specifically, the destination of this studied problem is the minimization of

system-wide cost for the automobile production. To discuss the model with one buyer

and several sellers generally, the term “vendee” is used to describe the buyer which

is the automobile company in this example. Also, the term “manufacturer” is used

to describe the roles who produce components, that is the engine manufacturer, the

wheel manufacturer, and the panel manufacturer in this example. Besides, we defined

a single component production process as an operation in the rest of this thesis. The

model of the supply and demand relationship mentioned above is exactly equal to the

PD||∑i wiCi +
∑

k

∑
i wikCik problem in scheduling domain.

The rest of this thesis is organized as follows. In Chapter 2, we will define the studied

problem in formal mathematical statements. Two integer programming formulations,

based upon positional variables and sequencing variables, will be proposed. As will

be explained in Chapter 2, the studied problem is strongly NP-hard, indicating that

it is very unlikely to design an efficient solution algorithm. In Chapter 3, we will

propose a three-phase heuristic to tackle this computationally hard problem. The three-

phase heuristic consists of two dispatching rules, an NEH-based algorithm and a VNS

algorithm. The computational experiments and analysis on the proposed algorithms

5

will be presented in Chapter 4. In Chapter 5, we present the concluding remarks and

suggest potential topics for further research.

6

Chapter 2

Problem Statements

In the problem setting, if we consider only the optimization of the vendee’s per-

spective, then the problem reduces to the so-called concurrent open shop scheduling,

or order scheduling. We start this chapter with the introduction of order scheduling,

followed by two integer programming (IP) formulations. Then, an example will be

given to illustrate the problem definition. Related work will be also reviewed.

2.1 Definition and Related Work

Ahmadi and Bagchi (1990) could be the first work on concurrent open shop schedul-

ing. Lee et al. (1993) and Potts et al. (1995) investigated two-stage assembly flowshops,

which is a generalization of concurrent open shop scheduling by including a second-

stage assembly machine. The term “concurrent open shops with job overlaps” was

coined by Wagneur and Sriskandarajah (1993). Wang and Cheng (2003) studied the

same setting from another view point, called order scheduling. An order is a demand

7

of a certain commodity including several items. There is no relation between items, so

they can be produced in an arbitrary order on their dedicated machines. Simultaneous

processing is allowed in concurrent open shops. An order is completed only if all of

its items are finished. In the automobile example, an automobile consists of several

components, such as engine, panel, and wheels, which are called items. Items would

be produced on their dedicated production lines, and an automobile can be assembled

until all of its components are manufactured and available, i.e. an order is complete.

We define the problem with formal statements. There are n orders O = {O1, O2, . . . , On}

to process, and each order Oi is composed of m operations Oki, 1 ≤ k ≤ m, to be pro-

cessed on m independent dedicated machines M1, M2, . . . , Mm. Let Oki stand for the

kth operation of order Oi which can be processed on only machine Mk. Operations of

the same order are independent with no precedence constraints among them; in other

words, they can be processed in an arbitrary order, and are allowed to be processed

on their dedicated machines simultaneously. Each machine can process only one oper-

ation at a time and no preemption is allowed. For this production model, the unique

characteristic different from open shop is that the operations of the same order can be

processed simultaneously.

The notations used throughout this thesis are introduced as follows. Cki denotes

the completion time of operation Oki on machine Mk, and each Oki has a weight wki.

The completion time of order Oi is defined as Ci = max1≤k≤m{Cki}, since each order is

completed when all of its operations are finished. Each order Oi is also associated with

a weight wi to reflect the relative importance of this order. Let pki be the processing

time of operation Oki. The binary decision variable Ukil is equal to 1 if operation Oki

8

is scheduled at position l on machine Mk, and 0 otherwise. Another binary variable

ykij is set to be 1 if the completion of operation Okj does not succeed operation Oki

on machine k, and 0 otherwise. In this study, we consider not only the total sum of

the weighted completion times of mn operations on all m machines, but also the sum

of the weighted completion times of n orders. In the studied problem, the objective

function is defined as the minimization of the sum of the weighted completion times of

mn operations and the weighted completion time of n orders.

An instance with 5 orders and 3 manufacturers is given in Table 1 to illustrate the

problem setting.

Table 1: Weights and processing times of the operations.

Order O1 O2 O3 O4 O5

wi 14 12 20 16 21

p1i 69 62 80 35 25

w1i 9 1 6 5 9

p2i 36 16 92 8 72

w2i 5 1 7 1 2

p3i 37 30 22 50 65

w3i 1 10 7 10 10

Due to the selfishness of each manufacturer/machine, he/she will arrange the op-

erations based upon his/her own optimal policy, which can be achieved using the well-

9

known WSPT (weighted shortest processing time first) rule. The optimal schedules

on the machines are given in Table 2.

Table 2: Optimal (WSPT) sequences of operations on the machines.

M1 O15 O14 O11 O13 O12

M2 O21 O24 O23 O22 O25

M3 O32 O33 O34 O35 O31

Under this scheduling strategy, the WSPT rule produces the minimum weighted

sum of the completion times of mn operations, i.e.
∑

k

∑
i wikCik =8,545. Subject to

the three sequences, the weighted sum of the completion times of n orders is rather

high
∑

i wiCi =16,828. The system-wide cost is thus
∑

i wiCi+
∑

k

∑
i wikCik = 25,373.

In contrast to the scheduling policy which only takes the manufacturer’s prefer-

ence into account, the decision of the vendee is rather hard to optimize. If only

∑
i wiCi is considered, implying the absolute dominance of the vendee in the system

that he/she determines the production schedules over all machines, then the problem

becomes the so-called order scheduling or concurrent open shop scheduling, denoted

by PD||∑i wiCi, where PD dictates the characteristic of parallel dedicated machines.

It has been shown in the literature that it suffices to consider only the scenarios where

all machines have the same processing sequence and that the concurrent open shop

scheduling of minimizing the weighted sum of completion times remains strongly NP-

hard even if there are only two machines and all orders are equally weighted (Roemer,

10

2006). Therefore, it is very unlikely to design an efficient algorithm for solving the

vendee’s problem. Intuition suggests that the vendee can apply a simple greedy dis-

patching rule to decrease his/her cost, although the optimal solution for the vendee

(
∑

i wiCi) is not guaranteed. According to this dispatching rule, the orders are sched-

uled in non-increasing order of wi/ max1≤k≤m{pki}, namely, the sequence of each ma-

chine is the same as others. The schedule is shown in Table 3.

Table 3: Sequence of operations on all machines using the vendee’s WSPT rule.

M1 O14 O15 O13 O12 O11

M2 O24 O25 O23 O22 O21

M3 O34 O35 O33 O32 O31

As we expected, the sum of the weighted completion times of the n orders is re-

duced by 3,786, while the sum of the weighted completion times of mn operations

∑
k

∑
i wikCik =11,166, showing an increase of 2,621. In this manner, the system-wide

cost
∑

i wiCi +
∑

k

∑
i wikCik reduces to 24,208.

This is merely a case that considers only the vendee rather than the manufacturers

when planning a schedule gets a better result. Judging from the above, we can find

that there seems to be a contradiction between the profits of the vendee and the m

manufacturers, that is, the decrease in the vendee’s expense would cause the increase

in the total cost of the m manufacturers, and vice versa. Is it possible to transfer the

relationship between the two from opposing position to complementary, in order to

11

enhance the profit for each side? There is still room for improvement, if all individuals

in this supply chain can actually act in concert and devise a multi-lateral policy of the

production schedule. The ideal production schedule is shown in Table 4.

Table 4: Optimal production schedule for the whole production system.

M1 O15 O14 O13 O11 O12

M2 O24 O23 O25 O21 O22

M3 O34 O32 O33 O35 O31

Under this schedule, the system-wide cost (
∑

i wiCi +
∑

k

∑
i wikCik) declines more

to 23,480, which consists of the sum of the weighted completion times of n orders

(
∑

i wiCi=13,759) and the sum of the weighted completion times of mn operations

(
∑

k

∑
i wikCik = 9, 721). Neither the vendee nor the manufacturers get the best

outcome they have looked for, but this is the optimal solution for the whole supply

chain. The intrinsic nature of the ideal schedule is to reach for a consensus that the

vendee or some of the manufacturers needs to make concessions in order to enhance the

benefit of the supply chain. Since the PD||∑i wiCi problem is strongly NP-hard, the

PD||∑i wiCi +
∑

k

∑
i wikCik problem of interest in this thesis is also hard to solve.

Hence, how many concessions should be made by each one of them is the crux in this

thesis. However, design of schemes to compensate the members for the loss at this

optimal system-wide production schedule is not addressed in this thesis.

12

A number of studies have been conducted using the total completion times or

weighted total completion times of orders as a research topic. For example, in Cheng

et al. (1997), the objective function depends on the delivery times of batches. Cus-

tomer order scheduling (Leung et al. 2007, Lin and Kononov 2007, Wang and Cheng

2007) and concurrent open shop scheduling (Roemer 2006) are three examples focused

the aggregation concept in the order scheduling area. The majority of research in order

scheduling has focused on the aggregation concept. There has been far less research on

the concept of disaggregation which means each item in an order has its own identity,

thus the completion time of items is always ignored. Especially, Chen and Hall (2007)

concerned about both aggregation and disaggregation. However, the relative impor-

tance between items or orders is not considered in their study. Up to this point, there

could be no research studying this issue. Therefore, we will focus on the order schedul-

ing in concurrent open shop to consider both of the aggregation and disaggregation

concept with weighted total completion times in this thesis.

2.2 Integer Programs

To further describe the problem setting, we propose two integer programming for-

mulations, based upon positional variables and sequencing variables, respectively. The

models provide potential use in the pursuit of either exact solutions or approximate

solutions. We first introduce the model (IP-Pos) described in positional variables.

Recall that binary decision variable ukil is equal to 1 if operation Oki is scheduled at

position l on machine Mk; and 0, otherwise. To facilitate the presentation, we introduce

13

auxiliary binary variables ykij to indicate whether operation Oki precedes operation Okj

on machine Mk or not.

(IP-Pos) Minimize
∑

i wiCi +
∑

k

∑
i wikCik

subject to

Cki =
∑

j pkjykij ∀k, i (1)

(ykij −
l∑

l′=1

ukjl′)ukil = 0 ∀k, i, l (2)

∑

l

ukil = 1 ∀k, i (3)

∑

i

ukil = 1 ∀k, l (4)

Ci − Cki ≥ 0 ∀k, i (5)

ykij ∈ {0, 1} ∀k, i, j (6)

ukil ∈ {0, 1} ∀k, i, l (7)

1 ≤ k ≤ m k : machine index

1 ≤ i ≤ n i : order index

1 ≤ l ≤ n l : position index

Constraints (1) ensure that the completion time of operation Oki is the sum of the

processing time of all the operations that have been sequenced not after operation Oki

on machine Mk. Constraints (2) give auxiliary equations to clarify the relative positions

of the operations on their dedicated machines. Constraints (3) and (4) guarantee that

each operation can be processed exactly once, and each machine can only process one

14

operation at any time. Constraints (5) state that an order is completed only if all of its

operations are finished on their dedicated machines. Constraints (6) and (7) confine

the variables to be binary. Variables k, i, and l are machine index, order index, and

positional index, respectively. In the proposed model, O(mn2) variables and O(mn)

constraints are involved.

Note that the (IP-Pos) model is not linear due to the quadratic terms in constraints

(2). In the second model, we instead use the sequencing model to circumvent the

difficulty in dealing with non-linear constraints. In model (IP-Seq), binary variables

ykij are now the decision variables rather than auxiliary.

(IP-Seq) Minimize
∑

i wiCi +
∑

k

∑
i wikCik

subject to

Cki = pki +
∑

j pkjykij ∀k, i (8)

Cki − Ckj − pki + (1 − ykij)M ≥ 0 ∀k, i, ∀j > i (9)

Ckj − Cki − pkj + (1 − ykji)M ≥ 0 ∀k, i, ∀j > i (10)

ykij + ykji = 1 ∀k, i, ∀j �= i (11)

Ci − Cki ≥ 0 ∀k, i (12)

ykij ∈ {0, 1} ∀k, i, ∀j �= i (13)

1 ≤ k ≤ m k : machine index

1 ≤ i ≤ n i : order index

1 ≤ j ≤ n j : order index

15

Constraints (8) relate that the completion time of operation Oki consists of its pro-

cessing time and the sum of the processing times of all its preceding operations on

machine Mk. Constraints (9) and (10) specify that only one job can be processed at

a time, i.e., operation Oki is sequenced either before operation Okj or after operation

Okj. Constraints (11) dictate that both operations Oki and Okj have to be sequenced,

i.e. either ykij = 1 or ykji = 1. Constraints (12) state that an order is completed only

if all of its operations are finished. Binary constraints are given in (13). Variable k is

machine index, and variable i and j are both order indexes. Similarly, O(mn2) binary

variables are used and O(mn) constraints are defined. One feature of this model is

due to the linearity. Nevertheless, the use of big-M in constraints (9) and (10) may

diminish the efficiency of linear models.

16

Chapter 3

Multi-Phase Approximation

Algorithm

In this chapter, we present a multi-phase algorithm for solving the coordinated

scheduling problem. The construct of the algorithm will be presented first and followed

by the elaboration of the two WSPT-based heuristics, a VNS-based algorithm and an

NEH-based algorithm.

3.1 Multi-Phase Algorithm Construct

The proposed algorithm consists of three phases so as to minimize the system-

wide cost. Phase one of the algorithm seeks to derive initial solutions by two different

WSPT-based heuristics. The first heuristic generates two initial schedules according to

the WSPT rule, and the WSPTmax rule. In phase two, we use the two initial solutions

to start a VNS-based algorithm and an NEH-based algorithm, respectively. In phase

17

three, we take the solution produced by the NEH-based algorithm as an initial solution

and invoke the VNS-based algorithm. Including the initial solutions, there are eight

different solutions we will obtain through the above three phases. The multi-phase

algorithm construct is depicted in Figure 2.

Figure 2: Construct of multi-phase algorithm.

18

3.2 VNS-Based Algorithm

The variable neighborhood search (VNS) algorithm was proposed by Mladenovic

and Hansen (1997). It systematically changes the neighborhood within a possibly ran-

domized local search, and yields a simple and effective meta-heuristic for combinatorial

optimization problems. Pseudo-codes of the VNS is given in Figure 3. In the proce-

dure, Nz (z = 1, . . . , zmax) denotes a finite set of pre-selected neighborhood structures,

and Nz(s) of solution s is the set of solutions in the zth neighborhood of s. To apply

the VNS algorithm to an optimization problem, four components have to be specified:

1. A mechanism for generating an initial solution;

2. A well-defined neighborhood structure Nz that decides to which the Shaking

mechanism is applied;

3. A procedure called Shaking that disturbs the incumbent solution sequence ac-

cording to the zth neighborhood structure; and

4. A procedure LocalSearch that moves from solution s′ to a local optimum s′′.

The VNS differs from other local search heuristics in neighborhood structures. Most

local search heuristics use only one fixed neighborhood structure, i.e., zmax = 1. More-

over, the solution-shaking mechanism which corresponds to disturbance in the search

space is applied to permit possible escape from local optimum.

19

—————————————————–

PROCEDURE Variable Neighborhood Search

Begin

Generate initial solution s;

Select the set of neighborhood structures Nz, 1 ≤ z ≤ zmax;

Determine the stopping criteria;

Set z := 1;

Repeat

s′ := Shaking(s, z);

s′′ := LocalSearch(s′);

If s′′ � s then s := s′′; z := 1;

else z := z + 1;

Until z = zmax or stopping criterion met

end

—————————————————–

Figure 3: Pseudo-codes of variable neighborhood search (VNS).

To apply the VNS to the studied problem, we need to (1) define the neighborhood

structure Nz; (2) establish the Shaking and LocalSearch mechanisms; and (3)

generate an initial solution. We will discuss the details in the following. The last

but not the least, the stopping criteria is set to be a specified maximum number of

iterations which is set to be four in our experiments.

20

3.2.1 Initial solution

We use two dispatching rules to construct two possibly different initial solutions.

The first one is the WSPT rule that arranges the operations in non-increasing order

of wki/pki on the corresponding dedicated machine. Individual machines may have

distinct sequences in the WSPT arrangement. Another heuristic is due to a simple

greed dispatching rule WSPTmax which sorts the orders in non-increasing order of

wi/ max1≤k≤m{pki}. All dedicated machines follow a common processing sequence.

3.2.2 Neighborhood structure

The solution space is denoted by S , and function ρ(s, s′) gives the distance between

solutions s and s′. Here, the distance means the number of manipulatable operations,

like forward/backward insertion and swap, applied to one solution so as to reach the

other one. If the difference between schedule s and schedule s′ can be categorized in the

zth structure, then ρ(s, s′) = z. The neighborhood structure characterized by solution

s ∈ S and positive integer z ≥ 1 is given as

Nz(s) = {s′|ρ(s, s′) = z}.

When implementing the neighborhood structures, we use the reverse function to gener-

ate the schedule s′. In this heuristic, we set the zmax = 3, which means there are three

kinds of neighborhood structures. The structures will be defined in the first place. If a

schedule s can be transformed into another schedule s′ through a single insertion-move,

then ρ(s, s′) = 1. That means s′ will be derived from s with an insertion-move if z = 1,

i.e. s′ = insertion-move(s); so that neighborhood structure z = 1 is constructed.

21

Similarly, when z = 2 and z = 3, 2-opt and swap-move will be applied respectively to

transform s into s′, i.e.,s′ = 2-opt(s), if z = 2; s′ = swap-move(s), if z = 3. All of the

three structures are constructed. Details of these operations will be described in the

next section.

3.2.3 Shaking

The shaking procedure will manipulate the neighborhood structure we defined ear-

lier. It will perturb sequence s according to the neighborhood structure z. The shaking

procedure is shown in Figure 4. The operations or moves are defined as follows.

—————————————————–

PROCEDURE Shaking

Begin

If z = 1 then s′ := insertion-move(s);

If z = 2 then s′ := 2-opt(s);

If z = 3 then s′ := swap-move(s);

end

—————————————————–

Figure 4: Pseudo-codes of Shaking.

Insertion-move

Let πk = (πk,1, πk,2, . . . , πk,n) denote a sequence on machine Mk. Let (i, j) be a

pair of positions from the sequence. A new permutation π′
k is obtained by remov-

22

ing job πk,i at position i and inserting it at position j. If i < j we obtain π′
k =

(πk,1, . . . , πk,i−1, πk,i+1, . . . , πk,j, πk,i, πk,j+1, . . . , πk,n) and if i > j we get π′
k = (πk,1, . . . , πk,j−1, πk,i, πk,j, . . .

We arbitrarily choose a pair of positions from sequence s to perform the insertion-move

procedure on each machine and repeat this process x times for N1, where 1 ≤ x ≤ 10.

2-OPT

Let (i, j) be a pair of positions. From sequence π, the new permutation π′
k is obtained by

reversing the subsequence (πk,i, πk,i+1, . . . , πk,j−1, πkj) of π into (πk,j, πk,j−1, . . . , πk,i+1, πk,i)

so that we get π′
k = (πk,1, . . . , πk,j, πk,j−1, πk,j−2, . . . , πk,i+2, πk,i+1, πk,i, . . . , πk,n). We ar-

bitrarily choose a pair of positions in sequence s to perform the 2-OPT move on each

machine and repeat this process x times for N2, where 1 ≤ x ≤ 10.

Swap-move

A sequence (πk,1, . . . , πk,i, πk,i+1, . . . , πk,n) can be transformed to (πk,1, . . . , πk,i+1, πk,i, . . .

, πk,n) through a swap-move of two consecutive positions. In this heuristic, we apply n/2

swap-moves to all consecutive odd-even positions in πk = (πk,1, πk,2, πk,3, πk,4, . . . , πk,n−3

, πk,n−2, πk,n−1, πk,n) and obtain π′
k = (πk,2, πk,1, πk,4, πk,3, . . . , πk,n−2, πk,n−3, πk,n, πk,n−1).

3.2.4 Local search

Interchange-move is applied to our local search procedure. In an interchange-move,

we select two positions that are not necessarily consecutive, and then swap their posi-

tions. The neighborhood size of a given solution is thus n(n − 1)/2, i.e. the number

of possible moves for a sequence is O(n2). From among the O(n2) neighbors, we select

the best one for improvement. If the best neighbor has an objective value larger than

the current one, then it is discarded and no move is made. In the studied problem

23

with m machines, we perform local search on one sequence of a machine at a time. We

identify the machine with the largest weighted total completion times (
∑n

i=1 wkiCki),

called bottleneck machine, to perform the local search, the sequence on other else ma-

chines remain unchanged. Next, we find the bottleneck machine from the remaining

m − 1 untouched machines to perform the local search. The process is repeated until

the local search has been performed on all machines. Each machine performs the local

search once and only once, so that the overall running time of this heuristic is O(mn2).

3.3 NEH-Based Algorithm

The NEH algorithm was proposed by Nawaz, Enscore and Ham(1983) for flowshop

scheduling to minimize the makespan, i.e. the maximum complexion time. It has been

widely applied to flowshop scheduling with different objective functions and impres-

sive performances have been reported. The success due to not only the simplicity but

also the effective arrangement of jobs. The concept of this algorithm is to generate a

sequence by successively arranging a relatively optimal position for each job, so that

a local optimal sequence can be generated. The pseudo-codes of the NEH algorithm

are given in Figure 5. The insertion move, which we have introduced in the previous

section, is used to locate the best position when a job is considered for insertion into

the current partial sequence.

24

—————————————————–

PROCEDURE NEH

Generate initial solution s0;

s′ := s0; s′′ := s0;

For i := 1; i ≤ n − 1; i + + do

Begin

BestPosition := i;

For j := i + 1; j ≤ n; j + + do

Begin

s′ := Insertion-move(s′, i, j);

If s′ � s′′ then

Begin

s′′ := s′;

BestPosition := j;

s′ := Recover(s′, i, j);

end

else s′ := Recover(s′, i, j);

s′ := Insertion-move(s′, i, BestPosition);

s′′ := s′;

end

end

—————————————————–

Figure 5: Pseudo-codes of the NEH algorithm.

25

Take a single sequence positioning for example. Let J1, J2, J3, J4, J5, J6, J7 be the

initial sequence, in which job J1 is at first position, job J2 is at second position and so

forth. For J1 there is only one position possible, so we have (J1, ‖ J2, J3, J4, J5, J6, J7),

where ‖ is a flag indicating the job being considered. For J2, there are two possible

positions to choose from, before or after J1, if J2 executes after J1, then the objective

value would become smaller and J2 is going to be positioned right after J1, and vice

versa. The sequence will therefore be (J1, J2, ‖ J3, J4, J5, J6, J7). Similarly, that for J3

there are three positions, before both J1 and J2, between J1 and J2, or after both J1

and J2. If the optimal position, which would achieve the objective value smallest, for J3

is before both J1 and J2, then the sequence will be selected (J3, J1, J2, ‖ J4, J5, J6, J7).

According to the above sequence positioning, one can fine a local optimal order for

the sequence on a specific machine. The NEH algorithm applied to a single machine

requires O(n2) running time. To apply the NEH algorithm to the problem with m

machines, we also follow the bottleneck-machine-first rule which is related to the notion

previously mentioned. As the process will be repeated for m machines, the overall

running time of the NEH-based heuristic for improving an initial solution is O(mn2).

26

Chapter 4

Computational Experiments

In this chapter, we conduct computational experiments to study the performance

of the proposed algorithms. We will first introduce the platform and parameters set-

ting of the experiments, and then present the analysis of the numerical results of the

experiments.

4.1 Experiment Settings

We designed a series of computational experiments. The algorithms were imple-

mented in C++ and tested on a personal computer with a Pentium D 2.8 GHz CPU

and 1GB memory running under Microsoft Windows XP.

For certain values of n and m, we computed the heuristic solutions for test instances,

which were randomly generated as follows:

• The number of orders n is in {50, 100}.

• The number of machines/manufacturers m is in {3, 5, 7}.

27

• The processing times pki were independently drawn from a uniform integer dis-

tribution over the interval [1, 100].

• The weights wki associated with each operation of various products were selected

from the interval [1, 10].

• The weight of order Oi is defined by constant α ∈ {1, 0.5, 1/m} such that wi =

α × ∑m
k=1 wki.

According to the parameters n, m, and α, there are 18 combinations to be examined

in the whole setting. For each combination of parameter values of n, m, and α, we

deploy the proposed three-phase heuristic to solve 10 test instances. A chart of the

experiment setting is depicted in Figure 6.

28

Figure 6: Experiment settings.

One instance is solved by first two dispatching rules respectively, WSPT and

WSPTmax, and we get the first two outcomes, W and Wmax. Second, We use solution

W and solution Wmax as the initial sequences to invoke the NEH-based algorithm and

the VNS algorithm, respectively. Another four outcomes, W N , W V , Wmax N , and

Wmax V follow. Finally, solution W N and solution Wmax N are used as the initial se-

quences for the VNS algorithm. The solutions are denoted by W N V and Wmax N V .

We analyze all the outcomes obtained from this experiment setting in the next section.

29

4.2 Computational results and analysis

The computational results shown in Tables 5 and 6 are the average values over

the 10 instances for each combination of the number of orders (n), the number of

machines (m) and the value of α. Table 5 summarizes the results concerning solution

quality and Table 6 shows the running times of the proposed algorithms. Note that

the running times required by the two dispatching rules are negligible and not shown

in the tables. In the following, we plot figures of numerical values extracted from the

tables along different aspects of observations.

4.2.1 Solution Quality

Figure 7 shows the performances of the heuristics in each setting. In all scenarios,

the NEH-based algorithm can improve the solutions produced by the two dispatching

rules, yet the VNS algorithm produces a relatively smaller objective value than those

produced by the NEH-based approach. The VNS algorithm consistently provides better

solutions than the NEH-based algorithm, no matter what initial solution was used.

There are almost no differences between the objective values generated by VNS and

those by NEH+VNS, even the initial solutions are different. From those figures, we

can find that the performance of the dispatching rules highly depends on the α value.

To explain the phenomenon better, Figures 8 illustrates the relationship between

dispatching rules and α values with different combinations of m and n. The WSPTmax

rule produces better schedules when α = 1, while the WSPT rule performs better

when α = 1/m. Furthermore, no evident difference exists between the solution quality

30

yielded by these two rules when α = 0.5. This phenomenon makes sense. If the weight

of vendee is relatively higher than the manufacturers, planning a schedule according

to the vendee’s preference could have a better system-wide solution. On the contrary,

if the weight of the vendee is nearly the same with the weight of anyone of the manu-

facturers, planning a production schedule abiding by all the manufacturers’ preference

would probably gain a better system-wide solution. Especially, when the number of

machines increases, the difference between the outcomes from these two rules becomes

more clear. Note that the data size, which includes the number of machines and the

number of orders, does not have significant influence on the performances of the two

dispatching rules.

The role and performance of the NEH-based heuristic are of special interests. Initial

solutions and the α values appear to exhibit a certain kind of correlation. But the effect

of α values on the NEH-based algorithm is not as strong as on the dispatching rules.

Performing the NEH-based algorithm with an initial solution generated by the WSPT

rule gains a better outcome if α = 1; whereas, the WSPTmax rule would obtain a better

initial solution if α = 1/m. Similarly, there is no significant difference between these

objective values of NEH-based solutions with different initial solutions when α = 0.5.

The results are demonstrated in Figure 9. Different initial solutions and α values

do not seem to significantly influence the performance of VNS. Specifically, the VNS

algorithm with different initial solutions produce objective values which are nearly

equal to one another for all values of α. The observations are revealed from the chart

shown in Figure 10. Consequently, there is no difference between the outcomes with

the two dispatching rules even both NEH and VNS are invoked, as shown in Figure

31

11.

4.2.2 Analysis of run time performance

From Table 6, we found that the running time is not affected by the α values

and the initial solutions. Accordingly, we inspect the running time performance of the

heuristics from the aspect of data size only. The running time results shown in Table

6 are the average values over the three α values and two dispatching rules for each

combination of m and n. Note that the running time of a specific instance may vary

from time to time due to the intrinsic randomness of the VNS algorithm.

In general, as observed from Figure 12, data size has a slight effect on the running

time of the NEH-based algorithm, but it substantially affects the running time of the

VNS-based algorithm. All of the test instances could be solved in a few seconds by the

NEH-based algorithm (e.g., the average running time is 1.432 seconds when n = 100

and m = 7). The running time of VNS is positively related to the data size, such

as that shown in Figure 12. The running time is 0.603 seconds when n = 50 and

m = 3, while it takes 57.489 seconds on average to solve the instances with n = 100

and m = 7. The running time of the hybrid NEH+VNS algorithm is almost equal to

that the VNS-based algorithm because the running time of the NEH-based algorithm

is relatively small in comparison with that required by the VNS-based algorithm.

From the above analysis on solution quality and running time, we come to the con-

clusion that if we want to reach a scheduling plan in a short time, the WSPT and

WSPTmax rules can be considered. For better quality, the NEH-based algorithm can

be deployed using the initial solutions given by the two dispatching rules. If more de-

32

cision time is allowed, the VNS approach is recommended for relatively good schedules.

Table 5: Solution values and improvement ratios.

(a) n = 50, initial solutions generated by WSPT.

(b) n = 50, initial solutions generated by WSPTmax.

33

(c) n = 100, initial solutions generated by WSPT.

(d) n = 100, initial solutions generated by WSPTmax.

Table 6: Elapsed running time.

34

Figure 7: Performance of heuristics in different settings.

(a)

(b)

(c)

35

(d)

(e)

(f)

36

(g)

(h)

(i)

37

(j)

(k)

(l)

38

(m)

(n)

(o)

39

(p)

(q)

(r)

40

Figure 8: Correlations between α value and performance of dispatching rules.

(a)

(b)

(c)

41

(d)

(e)

(f)

42

Figure 9: Correlations between α and performance of NEH with different initial

solutions.

(a)

(b)

(c)

43

(d)

(e)

(f)

44

Figure 10: Correlations between α value and performance of NEH+VNS with

different initial solutions.

(a)

(b)

(c)

45

(d)

(e)

(f)

46

Figure 11: Correlations between α and performance of VNS with different initial

solutions.

(a)

(b)

(c)

47

(d)

(e)

(f)

48

Figure 12: Correlations between data size and running time

(a)

(b)

49

Chapter 5

Concluding Remarks

In this thesis, we discussed a scheduling problem in concurrent open shops incor-

porating coordination among all participants. Weights are assigned to not only orders

(jobs) but also product items (operations) to reflect the fact that any operations, parts

or items need to be included in the formation of objective functions and the fact that

the positions of buyers and sellers may not be equal in real-world applications, such as

buyers’ market or sellers’ market.

We first gave two integer programming formulations, based on positional variables

and sequencing variables, of the studied problem. While the problem is computation-

ally intractable, we proposed a three-phase algorithm to produce approximate solutions.

Our algorithm comprises of a WSPT heuristic, an NEH-based algorithm and the vari-

able neighborhood search algorithm. From computational experiments, we found that

the VNS-based algorithm achieves a satisfactory performance in all test instances; how-

ever, the required running time grows significantly when the data size increases. The

average running time of the largest instance, with n=100 and m=7, is around 60 sec-

50

onds. It is much longer in comparison to the time of less than one second elapsed when

solving the instances with small-size instances with n = 50 and m = 3.

From the view point of production model, we assumed an order is finished as long

as all of its operations are finished. The problem can be extended by presuming that

the vendee needs to spend processing time pi to assemble all the operations in an order

before the order can be delivered. In this case, the processing sequence on the vendee’s

machine should be considered as well. Such a production model is very likely to occur

in the real world and worthy of further research.

From the participants’ view point of interests, we only considered the conflict inter-

ests between vendee and manufacturers in the study. Solution to the conflict between

vendee and manufacturers is the focal point in this thesis. Additionally, the conflict

of interests may exist between manufacturers in a real-world context. For this reason,

coordination becomes more complicated since the interests of individuals in the pro-

duction system are included. This is an interesting setting that we can discuss further

in the future.

Optimization of individuals is not necessarily practical in the real world because

no one can be self-content and other factors such as partners should be taken into

consideration. Therefore, to plan an optimal schedule we have to explore the potential

synergy of coordination among individuals. Coming up with a win-win strategy to cre-

ate maximum profits is the trend in the field of optimization. Coordinated scheduling

indeed permits considerable room for further studies.

51

Bibliography

[1] R.H. Ahmadi and U. Bagchi (1990). Scheduling of multi-job customer orders in

multi-machine environments, ORSA/TIMS, Philadelphia.

[2] I. Averbakh (2009). On-line integrated productionVdistribution scheduling prob-

lems with capacitated deliveries, European Journal of Operational Research,

doi:10.1016/j.ejor.2008.12.030.

[3] Z.-L. Chen and N.G. Hall (2007). Supply chain scheduling: Conflict and coopera-

tion in assembly system, Operations Research , 55(6): 1072-1089.

[4] T.C.E. Cheng, M.Y. Kovalyov and B.M.T. Lin (1997). Single machine shedul-

ing to minimize the batch delivery and job earliness penalty, SIAM Journal on

Optimization, 7(2): 547-559.

[5] N.G. Hall and Z. Liu (2008). Cooperative and noncooperative games for capacity

planning and scheduling, Tutorials in Operations Research, 108-130.

[6] P. Hansen and N. Mladenovic (2001). Variable neighborhood search: Principles

and applications, Omega, 130(3): 449-467.

[7] C.Y. Lee, T.C.E. Cheng and B.M.T. Lin (1993). Minimizing the makespan in

three-machine assembly type flow shop problem, Management Science, 39(5): 616–

625.

[8] J.Y.T. Leung, H. Li and M. Pinedo (2005a). Order scheduling in an environment

with dedicated resources in parallel, Journal of Scheduling, 8(5): 355–386.

52

[9] J.Y.T. Leung, H. Li and M. Pinedo (2006). Scheduling multiple product types with

due date related objectives, European Journal of Operational Research, 168(2):

370–389.

[10] J.Y.T. Leung, H. Li and M. Pinedo (2007). Scheduling orders for multiple product

types to minimize total weighted completion time, Discrete Applied Mathematics,

155(8): 945–970.

[11] J.Y.T. Leung, H. Li, M. Pinedo and S. Sriskandarajah (2005b). Open shops with

jobs overlap - Revisited, European Journal of Operational Research, 163(2): 569–

571.

[12] B.M.T. Lin and A.V. Kononov (2007). Customer order scheduling to minimize the

number of late jobs, European Journal of Perational Research , 183(2): 944-948.

[13] U.V. Manoj, Jatinder N.D Gupta, Sushil K. Gupta (2008). Supply chain schedul-

ing: Just-in-time environment, Ann Oper Res, 161: 53-86.

[14] N. Mladenovi and P. Hansen (1997). Variable neighborhood search, Computers &

Operations Research, 24(11): 1097-1100.

[15] M. Nawaz, E.E. Emscore, Jr. and I. Ham (1983). A heuristic algorithm for the

m-machine, n-job flow-shop sequencing problem, Omega, 11(10): 91-95.

[16] C.N. Potts and M.Y. Kovalyov (2000). Scheduling with batching: A review, Eu-

ropean Journal of Operational Research, 120(2): 228–249.

53

[17] T.A. Roemer (2006). A note on th complexity of the concurrent open shop prob-

lem, Journal of Scheduling , 9(4): 389-396.

[18] T. Sawik (2008). Monolithic versus hierarchical approach to integrated schedul-

ing in a supply chain, International Journal of Production Research, DOI:

10.1080/00207540802193181.

[19] G. Wang and T.C.E. Cheng (2007). Customer order scheduling to minimize total

weighted completion time, Omega , 35(5): 623-626.

54

