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PRODUCTION PLANNING & CONTROL, 1998, VOL. 9, NO. 1, 36 ± 46

The TOC-based algorithm for solving product mix
problems

TIEN-CHUN HSU and SHU-HSING CHUNG

Keywords theory of constraints ( TOC) , product mix prob-
lems, dual-simplex method with bounded variables

Abstract. The ® ve steps of the theory of constraints ( TOC)
emphasize exploiting constraints in order to increase the
throughput of a system. The product mix decision is one appli-
cation of the TOC ® ve steps. However, these steps were con-
sidered to be implicit or incomplete, the criticism being that
they result in deriving an infeasible solution when a plant has
multiple resource constraints. This paper follows the essence of
these ® ve steps and presents an explicit algorithm to address the
problem. When testing its e� ectiveness by using a dual-simplex
method with bounded variables, this algorithm gives the same
result in each iteration.

1. Introduction

The theory of constraints ( TOC, Goldratt 1990) is an
e� ective approach to production planning and control.
TOC is based on a di� erent concept from other approaches

such as J IT and MRP. One key idea of TOC is that the
system’s constraints ( capacity constraint resources, or
CCRs) determine the system’ s throughput and should
be the focus of management attention. Constraints are
de® ned as the most limited resources in a system. To
increase the throughput of a system, TOC has developed
® ve general steps related to the constraints, as follows:

( 1) identify the constraint;
( 2) decide how to exploit the constraint;
( 3) subordinate everything else to the above decision;
( 4) elevate the constraint;
( 5) if in the previous steps, a constraint has been bro-

ken, go back to step 1. Do not let inertia become
the constraint.

The product mix decision problem is one important
application of the TOC ® ve steps. I t decides the product
type and the corresponding quantity to produce a given
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market potential. The objective of this decision is to max-
imize throughput. Throughput in TOC terminology is
de® ned as the rate at which the system generates
money through sales ( Goldratt 1990) .

The product mix decision problem solved using TOC
can be formulated as an LP model ( Ronen and Starr
1990, Patterson 1992) . The content of the TOC ® ve
steps and a comparison between TOC and LP were
investigated by Luebbe and Finch ( 1992) . In their
description, only steps 1 and 2 of the above TOC ® ve
general steps are applied to derive the product mix solu-
tion. Other TOC steps focused on taking managerial
actions based on the generated solution of steps 1 and
2. There is no iteration supplied for the solution, unless
the constraint has been broken when using step 4. As for
the comparison between TOC and LP, they concluded
that LP was not as speci® c as TOC. One reason was that
TOC could tell what the contribution per constraint time
( `$/constraint-t ime’ ) was for every product. The shadow
prices in LP had the same meaning as `$/constraint-time’ ,
however, the shadow prices were derived from a few
tightened LP constraints. In this respect, TOC outper-
forms LP. Unfortunately, Plenert ( 1993) found that TOC
could not come up with the optimal solution in a multiple
constrained resources situation. He used two examples to
demonstrate this.

From the above papers, it appears that even though the
TOC approach is more useful for management than the
LP approach, the approach seems either incomplete or
implicit when solving the product mix decision problem.
This paper addresses the problem.

2. TOC approach

The example of Figure 1 ( modi® ed from Plenert 1993)
attempts to show again how the TOC approach was
considered to be incomplete for solving the product mix
problem in a multiple-constraint case. Four product
types, R , S , T and U are produced in seven di� erent
resources, A ± G , each of which has 2400 min capacity
available. The load on each resource for producing one
unit of product R , S , T and U can be collected to gen-
erate the load calculation formula as shown in Table 1.
The LP model is then formulated accordingly.

maximize 80R + 60S + 50t + 30U (1)

subject to

20R + 10S + 10T + 5U % 2400 ( for resource A ) (2)

5R + 10S + 5T + 15U % 2400 ( for resource B ) (3)

10R + 5S + 10T + 10U % 2400 ( for resource C ) (4)

0R + 30S + 15T + 5U % 2400 ( for resource D ) (5)

5R + 5S + 20T + 5U % 2400 ( for resource E ) (6)

5R + 5S + 5T + 15U % 2400 ( for resource F ) (7)

20R + 5S + 10T + 0U % 2400 ( for resource G ) (8)

R % 70 (9)

S % 60 (10)

T % 50 (11)

U % 150 (12)

The following is the procedure of solving this problem
using TOC.

S tep 1. I dentif y the system ’ s constraint( s)
The overload of each resource is computed, based
on the market potential ( Table 2) . This reveals
that resource B is the capacity constraint resource
( CCR) ( it is the most overloaded) .

S tep 2. D ecide how to exploit the system ’ s constraint( s)
We calculate the $/constraint-minute for products
R , S , T and U to be 16, 6, 10 and 2, respectively
( Table 3) . Thus, according to the values of $/con-
straint-minute, the order for manufacturing pref-
erence is R , T , S and ® nally U . This results in the
product mix solution 70R , 60S , 50T and 80U .
The procedure is stopped and this solution is
also the ® nal solution using the TOC approach,
according to the description in previous papers.
More detail of the TOC procedure can be found
in Plenert ( 1993) .

However, the above solution is infeasible. I f we go
further to calculate the load for each resource according
to this solution, a capacity overload situation still exists
( as shown in Table 4) . That is, resources A and D are still
overloaded. Comparat ively, the solution derived by using
a simplex method is, R = 50.67, S = 38.17, T = 50, and
U = 101. The throughput is 11 873.3.

T O C - b ased solution of product mix prob l ems 37

Table 1. Load calculation formula for each resource.

Load for a unit product

Resource R S T U Load calculation formula

A 20 10 10 5 20R + 10S + 10T + 5U

B 5 10 5 15 5R + 10S + 5T + 15U

C 10 5 10 10 10R + 5S + 10T + 10U

D 0 30 15 5 0R + 30S + 15T + 5U

E 5 5 20 5 5R + 5S + 20T + 5U

F 5 5 5 15 5R + 5S + 5T + 15U

G 20 5 10 0 20R + 5S + 10T + 0U
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38 T ien- Chun H su and Shu- H sing Chung

Figure 1. Data for product mix example problem.

Table 2. Capacity overloads for 70R , 60S , 50T and 150U .

De® ciencies ( min)

Resource
Load calculation

formula

Load for
R = 70, S = 60

T = 50, U = 150

Capacity
limit
( min)

TOC
approach

TOC-based
algorithm

A 20R + 10S + 10T + 5U 3250 2400 - 850 - 850
B 5R + 10S + 5T + 15U 3450 2400 - 1050 - 1050
C 10R + 5S + 10T + 10U 3000 2400 - 600 - 600
D 0R + 30S + 15T + 5U 3300 2400 - 900 - 900
E 5R + 5S + 20T + 5U 2400 2400 0 skipped
F 5R + 5S + 5T + 15U 3150 2400 - 750 skipped
G 20R + 5S + 10T + 0U 2380 2400 20 skipped
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The remaining sections are organized as follows. The
next section describes the basic work for exploiting all
CCR( s) . This includes the categories of non-CCR( s) ,
the assumption of real value domain, and the way of
fully utilizing all CCR( s) . Section 4 presents the algo-
rithm. The above example will be solved again in the
following section for further illustration. Finally,
Section 6 draws conclusions.

3. Basic work for exploiting all CCR(s)

3.1. Categ oriz ing non- CCR ( s)

A resource is an internal constraint if and only if the
output of the resource is less than the market demand
( Fogarty et al. 1991) . A production system may face the
single-constraint situation, in which only one resource is
overloaded according to the market potential. In this
situation, the CCR does not alter no matter what the
product mix decision is. On the other hand, if a plant
faces a multiple constraints situation, the CCR( s) may
change as the product mix decision is changed. When
solving the product mix problem, a single-constraint case
is much easier to handle than a multiple-constraint case.

In the multiple-constraints case, non-CCRs can be
divided into three groupsÐ ® rst-level non-CCR( s) , sec-
ond-level non-CCR( s) and the third-level non-CCR( s) .

First, second and third are named according to the order
of ® nding them. Figure 2 shows the relationship.

A non-CCR( s) is said to be a ® rst-level non-CCR( s)
when this resource is dominated by any other resource
without considering what the product mix solution is. `A
is dominated by B’ is de® ned as: for every product type
the unit processing time required for B is always larger
than that for A under the same level of capacity limit.
Since this resource does not have the chance to have more
load than any other resource, it is always non-CCR,
unless the routeing of a product is changed.

The second-level non-CCR( s) is derived when we ® nd
that its load calculated according to the market potential
is lower than its capacity limit. This kind of non-CCR is
also always ® xed. One additional reason to change the
resource type is the change of market potential.

When the ® nal product mix solution is derived, a
resource which is found to be underloaded is called a
third-level non-CCR. In this situation, di� erent product
mix solutions ( product type and its corresponding quan-
tity) yield di� erent third-level non-CCR( s) .

When solving the product mix problem for one plan-
ning period, the ® rst and second-level non-CCR( s) are
® xed and easily identi® ed. They can be neglected to
simplify the problem. Identi® cation of the third-level
non-CCR( s) becomes our focus for solving the product
mix problem.

3.2. T he real- valued product mix solution

One assumption needed for this problem is that the
solution of product mix decision is real-valued: this
assumption we considered to be reasonable. The expla-
nation is as follows: the product mix solution can be
viewed as the production plan or target in a planning
horizon. The remaining work in this planning horizon
can be planned and implemented in the next horizon.
Nevertheless, many factors will make the actual result
deviate from the product mix plan. Factors include inter-

T O C - b ased solution of product mix prob l ems 39

Table 3. Computing the pro® t contribution per constraint B

minute.

Product

Parameter R S T U

Selling price ( $) 90 80 70 60
Raw material cost ( $) 10 20 20 30
Contribution ( $) 80 60 50 30
Constraint time ( resource B ) 5 10 5 15
$/constraint-minute 16 6 10 2

Table 4. Capacity overloads for 70R , 60S , 50T and 80U .

De® ciencies ( min)

Resource
Load calculation

formula

Load for
R = 70, S = 60

T = 50, U = 80

Capacity
limit
( min)

TOC
approach

TOC-based
algorithm

A 20R + 10S + 10T + 5U 2900 2400 - 500 - 500
B 5R + 10S + 5T + 15U 2400 2400 0 0
C 10R + 5S + 10T + 10U 2300 2400 100 100
D 0R + 30S + 15T + 5U 2950 2400 - 550 - 550
E 5R + 5S + 20T + 5U 2050 2400 350 skipped
F 5R + 5S + 5T + 15U 2100 2400 300 skipped
G 20R + 5S + 10T + 0U 2380 2400 20 skipped
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actions between process plans, ine� cient scheduling,
absence of materials, breakdown of resources, tool failure,
and so forth. The next new plan for a time horizon will be
made at the end of every scheduling period by using the
rolling schedule concept. I t seems unnecessary to limit
the product mix solution to be integer.

3.3. I dentif y ing and fully utiliz ing all CCR ( s)

The TOC approach is based on the CCR to give prod-
ucts an order of manufacturing preference. It was con-
sidered that it derived only the ® rst CCR and made other
constraint resources untreated in a multiple-constraints
situation. The iterative process included in the TOC
® ve steps was applied only when the constraints were
broken ( in step 4) . However, the iteration process is
still necessary for exploiting the constraints ( in step 2) .

Thus, one thing that should be explicit in the TOC
approach is clari® cation of the iteration process. For each
iteration, we have to identify the new CCR. The way to
identify the next CCR is to choose the resource with the
most capacity overload calculated according to the cur-
rent product mix solution ( conforming to the concept of
TOC) .

Once a new CCR is identi® ed, we have to decrease the
quantity of the product type with the lowest priority to

eliminate the overload. The priority order is derived
according to the `$/constraint-time’ value for each prod-
uct ( still conforming to the concept of TOC) . However,
there is a key problem: How do we give the values of the
`S’ ( contribution) and the `constraint-time’ in each itera-
tion? The analysis is depicted below. For convenience,
the following notations are de® ned.

n the iteration number,
CCR n the nth constraint identi ® ed by the nth iteration,
P n the quantity-adjustable product type identi ® ed in

the nth iteration for balancing the load of CCR n

First, the formulat ion of the product mix decision pro-
blem is given as follows.

maximize z = å
n

j= 1

c jx j (13)

subject to

å
n

j= 1

ai j x j % b i i = 1,2, . . . ,m (14)

0 % x j % uj j = 1, 2, . . . ,n (15)

where cj is given as the contribution of product type j ; ai j

denotes the time unit required for resource i to produce a
type j product; x j ( bounded by the amount uj ) is the

40 T ien- Chun H su and Shu- H sing Chung

Figure 2. Relationship among non-CCR( s) and CCR( s) .
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decision variable which represents the quantity of the
product type j ; b i represents the capacity limit of re-
source i.

Suppose that resource r is the ® rst CCR, and there
exists the next CCRÐ resource s. The following fact is
observed to update the new values of the contribution
margin `$’ and the `constraint time’ for a product type.

F act 1. Suppose that in the ® rst iteration, resource r

has been the CCR and product u has been the chosen
product ( it had the least value of `$/resource-r -time’
among all products) . Thus, the quantity of product u

has been cut down to be equal to its upper capacity
bound. In the second iteration, resources s are recognized
as the second CCR. For any product denoted product j , if
it is chosen to be cut down in quantity, then, cutting
down one unit of product j will reduce

( 1) the load of resource s by (a sj - asu * arj /a ru) ;
( 2) the contribution of the objective equation by

( c j - cu * a rj /a ru) .

( An explanat ion is given in the Appendix.)

From the fact, the `$/constraint-time’ for any product
j is

c j - cu * a rj /aru( ) / asj - asu * arj /a ru( )
There arises another key problem. Once the quantity

P n is changed in the nth iteration, all previous CCR( s)
will lose the balance between load and capacity limit.
Thus, to return all CCR equations to be `equality ’ equa-
tions again in the current ( nth) iteration, the quantities of
the chosen products ( which are derived in previous itera-
tions) must be adjusted. That is, if the load of CCR i ( i < n)
becomes over ( under) its capacity limit, then it should be
decreased ( increased) by reducing ( increasing) the quan-
tity of product P i .

On the basis of the preceding description and concept,
the explicit TOC algorithm is developed.

4. The TOC-based algorithm for product mix
determination

Two lemmas, discussed in Section 3.1 are utilized to
reduce the complexity of the given problem.

L emma 1. Dominance rule. In a product mix decision
problem, the capacity constraint for two di� erent types of
resources i and k can be expressed as:

ai1x1 + ai2x2 + ´´´+ a inxn % b0 (16)

ak1x1 + ak2x2 + ´´´+ aknxn % b0 (17)

Here x1, x2, . . . , xn are the decision variables representing
the quantities of products 1,2, . . . ,n. ai1 is the time
required to produce product 1 using resource i, while
ak1 is the time required to produce product 1 using
resource k . I f ai1 % ak1, ai2 % ak2, . . . , a in % akn, then
resource i which is dominated by resource k , is a non-
CCR. Here, we classify it as the ® rst-level non-CCR.

L emma 2. In a product mix decision problem, if we
substitute the market potential values of x1, x2, . . . , xn

into the resource constraint expressed as equation ( 16)
or ( 17) , and the inequality still holds, then this resource
is also a non-CCR in the planning period. I t is classi® ed
as a second-level non-CCR in this paper.

The ® rst-level and second-level non-CCR( s) never
become CCR( s) for a given market potential. When
deciding the product mix, they can be neglected ® rst.
Hence, the TOC-based algorithm is as follows.

Preparat ion step. Delete the ® rst-level and the second-
level non-CCR( s) using Lemmas 1 and 2. The
current product mix solution is the market
potential of each product type. Set n = 1, and
no previous CCR i and P i exist ( i < n) .

S tep 1. Identify the system’s constraint.
Calculate the load of each resource based on the
current product mix solution. Then compare the
load of each resource with its capacity limit. The
resource with the highest overload amount is
identi® ed as the CCR n. I f no CCR exists, then
stop, and the current solution is the ® nal solu-
tion.

S tep 2. Decide how to exploit the system’s constraint.
S tep 2a. Treat the CCR n resource constraint as an equal-

ity equation. Delete previous P i ( i < n) terms
from this equation by manipulating the row
operations between CCR n and CCR i ( i < n) equa-
tion.

S tep 2b. Also make the objective equation to be the new
one without the previous P n- 1 term. It also can
be done by substituting the value of P n- 1, which
is derived from the CCR n- 1 equality equation,
into the previous objective equation.

S tep 2c. Calculate the `$/constraint-time’ for all product
types that have positive coe� cients in CCR n

equality equation, according to the new objec-
tive equation ( step 2b) and the new CCR n equal-
ity equation ( step 2a) .

S tep 2d. Choose the P n which has the smallest `$/con-
straint-time’ value for CCR n. Reduce the quan-
tity of P n until the load of the CCR n just equals its
capacity limit.

S tep 2e. Starting from CCR n- 1 through CCR 1, adjust the
quantity of previous P i ( i < n) to make the load

T O C - b ased solution of product mix prob l ems 41
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of CCR i ( which is changed after performing step
2d) equal to its capacity limit again. Then, the
new product mix is derived. Let n = n + 1 and
go to step 1.

5. Example and veri® cation

To provide a better understanding of the algorithm,
the example discussed in Section 2 is used.

In the preparat ion step, we determine the ® rst and the
second-level non-CCR( s) by using Lemmas 1 and 2, and
then ignore them. We observe that the time required on
resource F for every product is less than that on resource
B . That is, 5 % 5, 5 % 10, 5 % 5 and 15 % 15. Thus,
resource F is dominated by resource B . Also, resource G

is dominated by resource A , since 20 % 20, 5 % 10,
10 % 10 and 0 £ 5. Resources F and G are ® rst-level
non-CCRs. We then substitute the market potential
quantities into the left constraints of the LP model. The
results show that the inequality condition still holds for
resource E ( i.e. 5 *70 + 5 *60 + 20 *50 + 5 *150
% 2400) . According to Lemma 2, resource E is a sec-
ond-level non-CCR.

After deleting the LP constraints of resources F , G and
E , the LP formulation becomes:

maximize Z = 80R + 60S + 50T + 30U (1)

subject to

20R + 10S + 10T + 5U % 2400 ( for resource A ) (2)

5R + 10S + 5T + 15U % 2400 ( for resource B ) (3)

10R + 5S + 10T + 10U % 2400 ( for resource C ) (4)

0R + 30S + 15T + 5U % 2400 ( for resource D ) (5)

R % 70 (9)

S % 60 (10)

T % 50 (11)

U % 150 (12)

The current product mix solution now is the market
potentialÐ R = 70, S = 60, T = 50 and U = 150. The
® rst iteration ( n = 1) begins.

I teration 1

S tep 1. Identify the system’s constraint
The product mix R = 70, S = 60, T = 50 and
U = 150 is substituted into each resource con-
straint. This reveals that resources A, B, C and D
are overloaded, as shown in Table 2. Among

them, resource B is identi ® ed as CCR1, since it
has the most overload.

S tep 2. Decide how to exploit the system’s constraint.
S tep 2a. Treat the resource B constraint `5R + 10S +

5T + 15U % 2400’ as `5R + 10S + 5T + 15U =
2400’. Since no previous CCR i and P i exist, no
manipulation is needed.

S tep 2b. Set `Z = 80R + 60S + 50T + 30U ’ as the cur-
rent objective equation. Since no previous P i

exists, no adjustment is applied.
S tep 2c. Calculate the `$/constraint-time’ for all prod-

ucts. The result is the same as with the TOC
approach ( shown in Table 3) .

S tep 2d. Identify the product type U as P 1, since it has
the smallest $/constraint-time.
U then is cut from 150 units to 80 units to make
the load of CCR 1 ( resource B ) meet its capacity
limitÐ 2400 min.

S tep 2e. The current product mix solution is 70R , 60S ,
50T and 80U . This is also the solution given
by the TOC approach. Now, we proceed to
the second iteration.

Iteration 2

S tep 1. Identify the system’s constraint.
When substituting 70R , 60S , 50T and 80U into
the resource constraints of the LP model, the
resource overloads are shown in Table 4.
Resource D is identi® ed as CCR2.

S tep 2. Decide how to exploit the system’s constraint.
S tep 2a. Treat the resource D constraint 0R + 30S +

15T + 5U % 2400 as 0R + 30S + 15T + 5U =
2400. The equation has to exclude the U term
( the previous chosen product) . By manipulating
the row operations between the following equa-
tions, we delete the U term from the CCR2

equation:

(CCR1 equation) 5R + 10S + 5T + 15U = 2400
(18)

(CCR2 equation) 0R + 30S + 15T + 5U = 2400
(19)

The updated CCR2 equality equation is:

(- 5 /3)R + (80 /3)S + (40 /3)T = 1600 (20)

S tep 2b. The original objective equation is Z = 80R +
60S + 50T + 30U . The equation also has to
exclude the U term. By substituting the value
of U (U = 160 - (1 /3)R - (2 /3)S - (1 /3)T
which is derived in the ® rst iteration) into the
objective equation. The updated objective equa-
tion becomes:

42 T ien- Chun H su and Shu- H sing Chung
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Z = 4800 + 70R + 40S + 40T (21)

S tep 2c. Calculate the `$/constraint-time’ for products R ,
S and T , based on the above updated objective
equation ( 21) and the equality equation ( 20) .
Table 5 shows the results.

S tep 2d. Product S is chosen as P 2. S then has to be
reduced to 315/8, in order that the CCR 2 equal-
ity equation ( 20) holds.

S tep 2e. Since the quantity of product type S is changed,
the quantity of product U has to be changed
again. That is, the equality equation 5R + 10S +
5T + 15U = 2400 has to be kept. Thus, U

becomes 375/4.

Currently , the product mix solution is R = 70,
S = 315 /8, T = 50 and U = 375 /4. Set n = 3 and con-
tinue the third iteration.

Iteration 3

S tep 1. Identify the system’s constraint.
Table 6 shows the capacity overload/de® ciency
situation based on the above product mix solu-
tion. Now, resource A is the only one with over-
loaded capacity in this iteration, and thus is
CCR 3.

S tep 2. Decide how to exploit the system’s contraint.
S tep 2a. Treat 20R + 10S + 10T + 5U % 2400 ( for re-

source A ) as CCR3 equality equation:

20R + 10S + 10T + 5U = 2400 (22)

Then, this equation, after excluding U and S

terms, becomes: (75 /4)R + 5T = 1200. This is

derived by row operat ion between the following
equations:

( CCR1 equation) 5R + 10S + 5T + 15U = 2400

(18)

(CCR2 equation) (- 5 /3R ) + (80 /3)S + (40 /3)T

= 1600 (20)

(CCR3 equation) 20R + 10S + 10T + 5U = 2400
(22)

S tep 2b. CCR 2 LP equation cannot be rewritten as
S = 60 + (1 /16)R - (1 /2)T to represent the
value of S . By substituting the S value into the
previous objective equation Z = 4800 + 70R +
40S + 40T ( 21) , the current objective equation
becomes Z = 7200 + (145 /2)R + 20T .

S tep 2c. Calculate $/constraint-time for the remaining
product types. Table 7 shows the results.

S tep 2d. Since 3.87 is smaller than 4, P 3 is product type
R . R is the chosen product which has to be
reduced. It becomes 50.67 ( 152/3) to force
CCR 3 be an equality equationÐ (75 /4)R +
5T = 1200.

S tep 2e. First, the quantity of product type S has to be
adjusted to balance the CCR 2 equality equa-
tionÐ (5 /3)R + (80 /3)S + (40 /3)T = 1600.
Hence, S becomes 229/6 (38.17) . Second, adjust
the quantity of product U to keep the CCR 1

equality equationÐ 20R + 10S + 10T + 5U =
2400. U becomes 101. Thus, the new product
mix solution is R = 50.67, S = 38.17, T = 50
and U = 101.
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Table 5. The pro® t contribution per constraint D minute.

Product

Parameter R S T

Contribution ( $) 70 40 40
Constraint time ( resource D) ± 80/3 40/3
$/constraint-minute ± 3/2 3

Table 6. Capacity overload for 70R , ( 315/8) S , 50T and ( 375/4) U .

Resource
Load calculation

formula

Load for
R = 70, S = 315 /8,
T = 50, U = 375 /4

Capacity
limit
( min)

De® ciencies
( min)

A 20R + 10S + 10T + 5U 2762.5 2400 - 725 /2
B 5R + 10S + 5T + 15U 2400 2400 0
C 10R + 5S + 10T + 10U 2334.375 2400 525/8
D 0R + 30S + 15T + 5U 2400 2400 0

Table 7. The pro® t contribution per constraint A minute.

Product

Parameter R T

Contribution ( $) 145/2 20
Constraint time ( resource A) 75/4 5
$/constraint-minute 3.87 4
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The fourth iteration now begins. However, there is no
CCR 4 found in step 1 ( see Table 8) . This means that the
current product mix solution is the ® nal solution. We
summarize the execution process of this algorithm in
Table 9.

The dual-simplex method with bounded variables is
very similar to our algorithm. Therefore, we use this
method to test the e� ectiveness of our algorithm using
the same example. The results, shown in Table 10
where R Â = 70 - R , S Â = 60 - S , T Â = 50 - T and
U Â = 150 - U , are equal to those derived using our algo-
rithm. The algorithm and the dual-simplex method give
the same product mix solution in iteration 1, 2 and 3 and
the same ® nal throughput.

Observing the contents of Table 9 and Table 10, it is
veri® ed that the design idea of the TOC approach is
correct. However, the TOC approach is implicit and
was considered to act as the ® rst iteration of the presented
algorithm.

6. Conclusions

The TOC method has been applied to the product mix
problem in two areas. In one area it is used as input for
scheduling ( Schragenheim 1991) , and is called drum±
bu� er± rope scheduling ( DBR) . Other areas include

master production planning and marketing ( Goldratt
1990) . However, the TOC approach to this problem is
so implicit that it was considered to be an incomplete
approach. That is, it derives infeasible solutions when
the plant is in a multiple constraint situation.

In this paper, we make the TOC approach explicit.
This includes successive iterations for deriving all
CCR( s) , a method to update the value of `$/constraint-
time’ , and quantity adjustment for previously chosen
products. The presented algorithm derives the same
result at each iteration as the dual-simplex method with
bounded variables.

Some models, such as the market prices determination
model ( Eden and Ronen 1990) and the strategic master
production scheduling ( SMPS) model ( Ronen and
Rozen 1992) , have been developed only for the single-
constraint situation. However, because the situation of
multiple constraint in a plant may appear in practice,
the behaviour of these models may be distorted. To
make a more accurate decision, there are two aspects
that should be studied in future research:

( 1) Modify current models to ® t the situation of mul-
tiple constraints.

( 2) Transfer the multiple-constraint situation to the
single-constraint situation, and prevent it return-
ing to the original status. The original model can
then be applied.
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Table 8. Capacity overload for 50.67R , 38.17S , 50T and 101U .

Resource
Load calculation

formula

Load for
R = 50.67, S = 38.17,

T = 50, U = 101

Capacity
limit
( min)

De® ciencies
( min)

A 20R + 10S + 10T + 5U 2400 2400 0
B 5R + 10S + 5T + 15U 2400 2400 0
C 10R + 5S + 10T + 10U 2207.55 2400 192.45
D 0R + 30S + 15T + 5U 2400 2400 0

Table 9. Summary of results.

n O R * C CR n Objective equation CC R n constraint $/constraint-time P n Product mix (R , S ,T ,U ) Z

1 A ,B ,C ,D B Z = 80R + 60S

+ 50T + 30U

5R + 10S + 5T

+ 15U = 2400
80 /5, 60 /10,50 /5, 30 /15 U 70,60,50,80 14 100

2 A ,D D Z = 4800 + 70R

+ 40S + 40T

(- 5 /3)R + (80 /3)S
+ (40 /3)T = 1600

± , 120 /80,120 /40, ± S 70, 315 /8, 50,375 /4 13 275

3 A A Z = 7200
+ (145 /2)R

+ 20T

(75 /4)R + 5T

= 1200
290 /75, ± 20 /5, ± R 50.67,38.17, 50,101 11 873.3

*O R : Overload resource.
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Appendix: Explanation of Fact 1

For the ® rst CCR ( resource r ) , based on the current
product mix solution, the LP constraint of resource r

must be an `equality ’ equation. That is,

a r1x1 + ar2x2 + . . . + a ruxu + . . . + arnxn = b r (A1)

T O C - b ased solution of product mix prob l ems 45

Table 10. Solution tableau using the dual-simplex method with bounded variables.

1* BV* Z R Â S Â T Â U Â S 1 S 2 S 3 S 4 S 5 S 6 S 7 RH*

0 Z 1 80 60 50 30 0 0 0 0 0 0 0 16 200
S 1 0 - 20 - 10 - 10 - 5 1 0 0 0 0 0 0 - 850
S 2 0 - 5 - 10 - 5 - 15 0 1 0 0 0 0 0 - 1 050
S 3 0 - 10 - 5 - 10 - 10 0 0 1 0 0 0 0 - 600
S 4 0 0 - 30 - 15 - 5 0 0 0 1 0 0 0 - 900
S 5 0 - 5 - 5 - 20 - 5 0 0 0 0 1 0 0 0
S 6 0 - 5 - 5 - 5 - 15 0 0 0 0 0 1 0 - 750
S 7 0 - 20 - 5 - 10 0 0 0 0 0 0 0 1 20

1 Z 1 70 40 40 0 0 2 0 0 0 0 0 14 100
S 1 0 - 55/3 - 20/3 - 25/3 0 1 - 1/3 0 0 0 0 0 - 500
U Â 0 1 /3 2 /3 1 /3 1 0 - 1/15 0 0 0 0 0 70
S 3 0 - 20/3 5 /3 - 20/3 0 0 - 2/3 1 0 0 0 0 100
S 4 0 5/3 - 80/3 - 40/3 0 0 - 1/3 0 1 0 0 0 - 550
S 5 0 - 10/3 - 5/3 - 55/3 0 0 - 1/3 0 0 1 0 0 350
S 6 0 0 5 0 0 0 - 1 0 0 0 1 0 300
S 7 0 - 20 - 5 - 10 0 0 0 0 0 0 0 1 20

2 Z 1 145/2 0 20 0 0 3/2 0 3/2 0 0 0 13 275
S 1 0 - 75/4 0 - 5 0 1 - 1/4 0 - 1/4 0 0 0 - 725/2
U Â 0 3/8 0 0 1 0 - 3/40 0 1/40 0 0 0 225/4
S 3 0 - 105/16 0 - 15/2 0 0 - 11/16 1 1/16 0 0 0 525 /8
S Â 0 - 1/16 1 1/2 0 0 1/80 0 - 3/80 0 0 0 165 /8
S 5 0 - 55/16 0 - 35/2 0 0 - 5/16 0 - 1/16 1 0 0 3 075/8
S 6 0 1/16 0 - 5/2 0 0 - 17/16 0 3/16 0 1 0 1575 /8
S 7 0 - 325/16 0 - 15/2 0 0 1/16 0 - 3/16 0 0 1 985/8

3 Z 1 0 0 2/3 0 58/13 8/15 0 8/15 0 0 0 11 873.3
R Â 0 1 0 4/15 0 - 4/75 1/75 0 1/75 0 0 0 58/3
U Â 0 0 0 - 1/10 1 1/50 - 2/25 0 1/50 0 0 0 49
S 3 0 0 0 - 11/2 0 - 7/20 - 3/5 1 3/20 0 0 0 385 /2
S Â 0 0 1 31/60 0 - 1/300 13/600 0 - 11/300 0 0 0 131/6
S 5 0 0 0 - 199/12 0 - 11/60 - 4/15 0 - 1/60 1 0 0 2 705/6
S 6 0 0 0 - 151/60 0 1/300 - 319/300 0 14/75 0 1 0 587/3
S 7 0 0 0 - 25/12 0 - 13/12 1/3 0 1/12 0 0 1 3 095/6

I*: iteration, BV*: basic variable, RH*: right-hand side.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

5:
21

 2
8 

A
pr

il 
20

14
 



To make the resource r fully utilized and the above equa-
tion hold when x j reduces by one unit, xu needs to
increase by arj a /ru unit( s) .

For the second CCR ( resource s) , its current load
is denoted by the left-hand side of its constraint
as1x1 + as2x2 + ´´´+ asuxu + ´´´+ a snxn. Since x j reduces
by one unit and xu dependently increases by arj /aru

unit( s) , this causes the load of resource s be reduced by
asj - asu * arj /aru.

The substitution is also applied to the objective
function ( c1x1 + c2x2 + ´´´+ cuxu + ´´´+ cnx n) . When x j

reduces by one unit, xu dependently increases by arj /aru

unit( s) . This causes the objective value ( contribution) to
be reduced by c j - cu * arj /aru

The above result can also be derived by the following
row operations using the Gaussian elimination method.
The new objective equation without the xu term is

z Â = ( c1 - ar1 * cu /aru) * x1 + ( c2 - ar2 * cu /aru) * x2 + ´´´
+ ( cu - aru * cu /a ru) * x u + ´´´+ ( cn - a rn * cu /aru)

* xn (A2)

That is done in the same way as the previous objective
equation - ( cu /aru) *equality equation of resource r .

Similarly, by row operation the new resource s LP
constraint without the x u term is its original constraint
- asu /aru *resource r equality equation. I t becomes

(as1 - ar1 * asu /a ru) * x1 + (as2 - ar2 * a su /aru) * x2 + ´´´
+ ( asu - aru * asu /a ru) * x u + ´´´
+ (a sn - arn * asu /aru) * xn % b s - b r * asu /a ru (A3)

Thus, `$/constraint-time’ for any product type j is
( c j - cu * arj /aru) /(asj - asu * arj /aru) .
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