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風險值衡量：實現變幅的應用 

 

研究生：陳昱如                              指導教授：周雨田 博士 

 

 

國立交通大學經營管理研究所碩士班 

中文摘要中文摘要中文摘要中文摘要    

 

本篇論文將實現變幅（realized range）概念應用在風險值模型中，利用Martens and 

van Dijk (2007) 所提出的修正誤差方法，並使用MEM（Multiplicative Error Model）來預

測下一期的波動性，得到實現變幅基礎下的風險值模型。此外，本研究也利用常態分配

假設下的變異數-共變異數法（variance-covariance method），以及厚尾性質的極值理論 

（extreme value theory）兩種不同假設的風險值模型來一起做比較。在實證上，以標準

普爾500（S&P 500）指數與那斯達克（Nasdaq）指數的高頻率資料作為研究對象，進行

實現變幅、報酬與變幅基礎下的風險值模型在風險值的預測能力比較。實證結果顯示，

以實現變幅為基礎下的風險值模型表現優於其他的風險值模型。 
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ABSTRACT 

 

This paper investigates the concept of realized range into the Value-at-Risk estimation. We 

follow the bias-correction method of Martens and van Dijk (2007) and use MEM model

（Multiplicative Error Model）to forecast volatility and VaR estimation. In addition, we apply 

two different VaR methods to make the comparison: Variance-covariance method and 

Extreme value theory. In empirical research, we use the intra-day data of S&P 500 and 

Nasdaq Index to compare the forecast ability of VaR with realized range, daily return and 

daily range data. The comparing result shows that realized-range-based VaR model performs 

better than other models.  
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ⅠⅠⅠⅠ. Introduction 

In recent ten years, a number of economies have been highly volatile financial markets, 

for example, the ‘dot-com’ bubble in 2000 and the subprime mortgage crisis during 2007. 

What happens to a country may affect the whole financial markets. That causes the increasing 

of price fluctuation and instability. Most investors care about their expected investment 

returns and the risk they bear. The financial institutions emphasize not only on the profit, but 

also on their ability to suffer large losses. Therefore, risk management becomes a popular and 

important issue for investors, financial institutions and regulators. How to establish a proper 

system to control the risk is one of the most important goals of academic research and the 

regulators. A major concern for regulators and owners of financial institutions has had two 

dimensions: the adequacy of minimum capital requirements as designed by the Basle 

Committee and the adoption of the Value-at-Risk (called VaR) method calculating market 

risks. That’s the reason why the VaR method turns into a main risk management technique to 

avoid the potential damage from bank runs and systematic risks. 

VaR is a summary measure of downside risks expressed in percentage. VaR measures 

market risks by determining how much the value of a portfolio could fall with a given small 

probability as a result of changes in market prices over a fixed number of days. By Jorion’s 

(2007) definition, ”VaR is the maximum loss over a target horizon such that there is a low, 

pre-specified probability that the actual loss will be larger.” The Basle Committee establishes 

a standard rule of measuring VaR to supervise their members. VaR is simple to explain and is 

used by financial institutions extensively. 

The development of VaR methods to evaluate and forecast the risk of unpredicted loss 

has moved rapidly. These methods are organized in two main classes: parametric prediction of 

conditional volatilities such as J. P. Morgan RiskMetrics method, and non–parametric 
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prediction of unconditional volatilities like historical simulation method. There is no absolute 

answer that which VaR model is the best one. Moreover, some research has shown that 

financial returns tend to have fat-tailed distribution rather than normal distribution. Traditional 

VaR methods evaluate risks by normal distribution and that may cause undervaluation of true 

risks. As a result, the method of estimating tail index has been suggested to capture the true 

distribution of extreme low returns. Combining tail index with VaR models, the VaR-x model 

is conducted to measure the downside risks using tail index. In this paper, VaR-normal and 

VaR-x models are measured and compared by various conditional volatilities forecast. The 

details are discussed in the next section. 

Much research has been devoted to forecasting and measuring volatility of asset returns. 

Volatility is an important factor in risk management. How to measure ex-post volatility for 

accurate volatility forecasts is a popular issue in financial research. Recently, there is much 

research about the use of high-frequency data for measuring volatility, called realized variance, 

the sum of squared intra-day returns. In theory, the realized volatility is more robust than the 

volatility measured by the squared daily return. In addition, Parkinson (1980) showed that the 

daily high-low range is five times more efficient than the squared daily return. In according to 

previous research, the use of the realized range, the sum of high-low ranges for intra-day 

intervals, is derived. Moreover, Martens and van Dijk (2007) suggested a bias-correction 

procedure, scaling the realized range with the average level of the daily range, to eliminate the 

effects of microstructure frictions. This scaling method can remove both upward biases 

caused by bid-ask bounce and downward biases as a result of infrequent trading. The realized 

range significantly improves over realized volatility, especially for the popular sampling 

frequencies of 5-min and 30-min. Although much work has been done to date, more studies 

need to be conducted to apply the advantage of realized range to other financial issue, like risk 

management. 
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The purpose of this study is to ascertain the excellence of measuring VaR by the scaled 

realized range as compared with VaR measured by the daily return and daily range. 

Meanwhile, we consider the fat-tailed character of financial returns and compare VaR models 

using normal distribution with student-t distribution. Empirical analysis of the S&P500 and 

the Nasdaq index confirm the advantage of the realized range. This topic is identified as being 

important to financial risk manager in providing them a more robust method to measure VaR 

and control the risk. 

The reminder of this paper is organized as follows. Chapter 2 describes the reviewing of 

previous research. Chapter 3 introduces the design and method of the realized range and the 

competing models. In addition, two VaR models and the comparison methods are discussed in 

this part. Chapter 4 presents the empirical results for the S&P500 and the Nasdaq index. 

Finally, chapter 5 makes a conclusion. 

 



 4

ⅡⅡⅡⅡ. Previous Research 

2.1. Volatility Models 

Volatility plays an important role in financial research. Traditional econometric models 

assume that the variance is constant in sample period. In the late 19th century, it has been well 

established that volatility is both time-varying and predictable. A model named 

Autoregressive Conditional Heteroscedasticity (called ARCH) is introduced by Engle (1982). 

These are serially uncorrelated processes with non-constant conditional variance. This model 

obtained the empirical support by US financial market. Bollerslev (1986) revised ARCH 

model by adding past conditional variances in the current conditional variance equation and 

proposed Generalized Autoregressive Conditional Heteroscedasticity (called GARCH) model. 

GARCH model makes a proper explanation about volatility cluster and has been applied in 

many financial markets. An overview of the ARCH-type models and a thorough survey of 

empirical research using financial data are introduced, see Bollerslev, Chou, and Kroner 

(1992). The advantage of ARCH family is its flexible model of the dynamics of volatilities 

and its ease of estimation.    

In recent ten years, much research has been devoted to using high-frequency data to 

measure volatility. The sum of squared intra-day returns, named realized volatility, is 

illustrated by Andersen et al. (2001) and it has become a popular issue for estimating volatility. 

Realized variance is considered an unbiased and highly efficient estimator. Barndorff-Nielsen 

and Shephard (2002) presented that when the length of the intra-day intervals are close to zero, 

realized variance converges to the true integrated variance. However, in practical, there are 

some market microstructure effects such as bid-ask bounce distorting the accuracy of realized 

variance. Returns at very high frequencies contaminated by these noises become biased and 

inconsistent, see Hansen and Lunde (2006). Therefore, it is popular to construct realized 
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variance at a moderate frequency, where the negative effect of noise is small enough to be 

ignored, but that doesn’t lead to loss much of information. Much research has found the 

proper sampling frequency to strike a balance between the increasing accuracy of high 

frequencies and the market microstructure noises. Popular frequencies in empirical research 

are the 5-min and 30-min intervals, see Andersen et al. (2003). Furthermore, Lanne (2006) 

conducted Multiplicative Error Model (called MEM model) and the realized variance to 

forecast the realized volatility. In this paper, we use the MEM model to predict the realized 

range volatility on day t+1. 

There is an alternative way to measure volatility using the difference between the 

maximum and minimum prices during a certain period. It has been known for a long time in 

statistics that range is an unbiased proxy of the volatility. Parkinson (1980) argued the 

superiority of using range as a volatility estimator as compared with return. The daily range, 

scaled properly, is an unbiased estimator of volatility and is five times more efficient than the 

squared daily return. Combining with the range and the time-varying property, Chou (2005) 

proposed the range-based volatility model: the Conditional Autoregressive Range model 

(called CARR model). By modeling the dynamics properly, daily range performs better than 

return-based proxy in forecasting volatility. This model belongs to the family of MEM model 

and is easy to estimate. For empirical result, CARR model can produce more robust volatility 

forecast than GARCH model.  

Considering the use of intra-day data and high-low range, a new method of estimating 

volatility has been developed. Several researchers have studied the application of realized 

range, the sum of high-low ranges for intra-day frequencies. Christensen and Podolskij (2007) 

first derived the theoretical characters of the realized range. According to Parkinson (1980), 

the realized range is five times more efficient than the realized variance with the same 

sampling frequencies in theory. However, as same as realize variance, the realized range is 
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damaged by the effects of market microstructure noise. This paper also presented the solution 

to the downward bias. Corrado and Truong (2007) showed that the intraday high-low range 

often provides more significant additional information than the GARCH model. Martens and 

van Dijk (2007) suggested a bias-correction procedure to the effects of microstructure 

frictions for both downward and upward biases by scaling the realized range with the average 

level of the daily range. In addition, from the simulation experiment and empirical research, 

realized range significantly dominates over realized variance for the popular frequencies of 

5-min and 30-min. 

2.2. VaR models 

VaR models have been developed since the middle of 1990s. Because of the Basle 

Committee’s (1995,1996) internal model approach, the number of VaR methods for such 

calculations has continued to rise. Popular VaR methods can be classified to four groups: 

historical simulation method, Monte Carlo simulation method, variance-covariance method 

and extreme value theory. Jorion (2000) gave a good overview of Value-at-Risk and 

introduced these four groups more detailed. Moreover, Engle and Manganelli (2004) proposed 

a new concept, conditional value at risk by quantile regression (called CAViaR), to solve the 

VaR’s statistical problem. CAViaR model focuses on the behavior of quantile instead of the 

distribution of returns and uses regression quantile estimation to get the parameters of 

dynamic autoregressive process. CAViaR is a new method in risk management issue. 

According to Jorion (2000), historical simulation method is one of the nonparametric 

methods. It assumes that the variation of future prices can be forecasted by actual past prices. 

VaR is obtained by sorting returns and picking the given confidence interval. The advantage 

of this method is that it’s easy to measure and it doesn’t need to make an assumption on return 

distribution. This is an improvement over the normal distribution because historical 

information contains fat tails. Its main disadvantage is that it may produce serious bias in 
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small sample. In addition, if the market structure is different from the past, it may decrease the 

accuracy. 

According to Jorion (2000), Monte Carlo simulation method belongs to parametric 

method. The movements in risk factors are generated from some prespecified distribution and 

financial returns can be simulated by this process. Then the returns are sorted to get the VaR. 

This method is the most flexible and can be used on all financial goods and all risks, including 

non-linear risks. The main drawback is its enormous computational cost. The users are 

required to make assumptions on the stochastic process and understand the relationship 

between risk factors and returns. Therefore, this method is subject to model risk.  

The RiskMetrics VaR specification is developed by J.P. Morgan (1994) and is used into 

practice widely. RiskMetrics VaR model belongs to variance-covariance method and bases 

assumptions on normality of returns, independence of all observed data and a linear relation 

between asset prices and market variables. The RiskMetrics method is one of GARCH models 

and it uses exponentially weighted moving average (called EWMA) to forecast variance. 

EWMA model assumes that recent price volatility has larger impact on forecast of variance, 

so the weighted factor is given bigger. EWMA method is the core part of RiskMetrics VaR 

model. Last, as for extreme value theory, we’ll discuss this method in next section. 

Some literature has been devoted to applying univariate time series model to VaR 

estimations. A comparison of VaR specification using ARCH type models and realized 

volatility is conducted by Giot and Laurent (2004). Hartz, Mittnik, and Paolella (2006) 

developed a bias-correction method and used bootstrap to forecast precisely VaR estimates 

with normal-GARCH model.  

How to evaluate various VaR models is also a popular issue. Many researchers have 

mentioned different points of view and proposed various criteria to compare, see Kupiec 
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(1995), Hendricks (1996), Christoffersen (1998), Lopez (1999), Neftci (2000), Christoffersen, 

Hahn, and Inoue (2001), Berkowitz and O’brien (2002). Moreover, Engel and Gizycki (1999) 

classified three dimensions of evaluating VaR models. In this paper, we follow the classified 

method to compare different VaR models. 

2.3. Extreme Value Theory  

Numerous articles have investigated the true distribution of financial returns so far. They 

proposed that the financial returns have the property of extreme value process and fat tails 

instead of normal distribution. Parkinson (1980) recognized that extreme value contains more 

useful information than traditional return-based data. Moreover, many researchers have 

conducted the extreme value behavior of stock market. Jansen and de Vries (1991) applied 

extreme theory in tail behavior of stock returns instead of considering whole distribution, and 

investigated the fatness of distribution tails. Longin (1996) showed that the behavior of 

extreme returns is useful to understand the whole price movements including booms and 

crashes. The distribution of extreme values is precisely known.    

According to Longin (1996), the tail index is helpful to choose a proper model of returns, 

like normal distribution, student-t distribution, or ARCH process, etc. As the shape of the 

distributional tail is varied, different value of tail index is obtained. The fatter the 

distributional tail is, the larger the value of tail index is. In addition, the inverse of tail index 

estimation is defined as shape parameter, like the degree of freedom in student-t distribution. 

Some research has shown that Hill’s estimator is a better method to estimate the value of tail 

index, see Longin (1996), Kearns and Pagan (1997). Hill (1975) proposed a simple approach 

to measure the behavior of a distributional heavy tail. This approach only requires 

understanding the form of tails instead of the whole distribution.  

However, McNeil and Frey (2000) illustrated that Hill’s estimator would encounter two 
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problems. One is that Hill’s estimator would result in some biases in small samples; the other 

is that it is difficult to decide proper number of observations to measure the tail index. This 

means that either long period or high-frequency data is required. In small samples, the 

overestimation of tail thickness is likely to occur. Because of this shortcoming, Huisman, 

Koedijk, Kool and Palm (2001) proposed a revised Hill’s estimator to obtain tail index. In this 

method, the tail index is calculated by weighted average of some Hill estimates, which differ 

in the number of tail observations included. In practical, this research showed that the tail 

index is obtained reliably even in small samples. Moreover, Huisman et al. (1998) suggested 

the using of tail index with small samples to estimate risks.        

Following the fat-tailed character of financial returns, much research has demonstrated 

that measuring VaR with assumption of normal distribution would underestimate the true risks. 

Duffie and Pan (1997) reported that under the fat-tailed character of market factors’ 

probability, the variance-covariance method creates some problems about underestimation of 

risks. Danielsson and de Vries (2000) compared RiskMetrics model which assumes normal 

distribution with extreme value model, and found that the latter model forecasts more accurate 

risks at high confidence level, like 99%. Thus it can be seen that financial returns contain 

additional downside risks. Combining fat-tailed character with VaR model, Huisman et al. 

(1998) presented such a measure, VaR-x, to evaluate financial risks under the assumption of 

student-t distributed returns. First, estimate the value of tail index by using revised Hill’s 

estimator. Then get the inverse of tail index, the degree of freedom of student-t distribution, 

and measure the value of risks. The accuracy of VaR-x estimates is proofed by the empirical 

research on US stocks and bonds. The VaR model with extreme value theory has become 

more and more popular.        

Except for the fat-tailed issue, the heteroscedastic property of financial returns is 

concerned. Some literature has been conducted with the heteroscedasticity and heavy-tailed 
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character of financial data. Pownall and Koedijk (1999) focused on the risks of financial crisis, 

the periods with additional downside risk to investors, and showed the advantage of using 

conditional VaR-x method to capture the nature of downside risk in financial tsunami. 

Moreover, unlike the using of original data in Pownall and Koedijk (1999), McNeil and Frey 

(2000) proposed the concept of using the residuals of GARCH model to measure the value of 

tail index. This procedure is better than methods which ignore the fat-tailed property or the 

stochastic nature of the volatility. In this paper, we integrate the conditional VaR-x model in 

Pownall and Koedijk (1999) with the concept of residuals of conditional volatility model in 

McNeil and Frey (2000) to measure the value of risks.  
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ⅢⅢⅢⅢ. Model 

All models in this paper are discussed in this chapter. The first part describes all 

conditional volatility models. The second part introduces the extreme value theory and the 

estimation of tail index. The third part presents the measure of VaR. The final comparison 

results are shown in the last section. 

3.1. Conditional Volatility Models 

Two methods are used to measure Value-at-Risk commonly. One is non-parametric 

method, the other is parametric method. Historical simulation method is a popular procedure 

of non-parametric model. Past returns are used to forecast future returns instead of making 

assumptions on the distribution of returns. Parametric method includes variance-covariance 

method and extreme value method. In this research, we compare five conditional 

variance-covariance and conditional extreme value models. As a result, the conditional 

volatility models are discussed first as follows. 

3.1.1. Realized range 

Let Pt be the security price at time t. To measure one-day realized range, the sum of 

high-low ranges for intra-day intervals, we normalize the daily interval to unity. Then for the 

ith interval of lengthθ on day t, for i = 1,2,…I with I = 1/θ, we define the high price Ht,i = 

maximum price from (t-1+(i-1)θ) to (t-1+iθ) and the low price Lt,i = minimum price 

between (t-1+(i-1)θ) and (t-1+iθ). An estimator of the so-called realized range is 

2
, ,

1

(ln ln )
I

t t i t i
i

RR H Lθ

=

= −∑ ,  (1) 

the sum of high-low ranges for intra-day intervals. The realized range has two advantages 

over the previous return or daily range procedures on volatility estimation. First, the realized 
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range observes all data information, like open, close, high and low prices .Second, the 

high-low range is more efficient than the squared return in any (intra-day) intervals, see 

Parkinson (1980). However, the realized range is affected more seriously by microstructure 

noise. That makes the realized range become a biased estimator, like upward bias because of 

bid-ask bounce and downward bias in presence of infrequent trading. Martens and van Dijk 

(2007) proposed a bias-correcting method to eliminate the effects of microstructure noise by 

scaling the realized range with the ratio of the average level of the daily range and the average 

level of the realized range over the q previous trading days. Therefore, the scaled realized 

range is defined as below: 

11
,

11

q

tl
S t tq

tl

RR
RR RR

RR

θ θ
θ

−=

−=

 
 =
 
 

∑
∑

,   (2) 

where ( )2
ln lnt t tRR H L= − , which means the squared daily range. The idea is derived as the 

daily range is a good estimator of volatility and not influenced by microstructure noise. 

Moreover, the average level of the daily squared range and the realized range vary over time. 

In this paper, the previous q=66 trading days are used to compute the scaled realized range, 

following Martens and van Dijk (2007).  

Next, the econometric model for the forecast of the realized range is introduced. Lanne 

(2006) developed multiplicative error model (called MEM) with time-varying parameters to 

forecast the realized volatility. The realized volatility, tRRV, with MEM( p, q ) model is 

evolved as follows, 

 t t tRRV τ ε= ,  t = 1, 2, …, T,   (3) 

where the conditional mean equation  

1 1

q p
R RR

t i t i j t j
i j

RRVτ ω α β τ− −
= =

= + +∑ ∑ ,   (4) 
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and tε  is a stochastic positive-valued error term with 1( ) 1t tE ε π − =  with 

{ }1 0t t jRRV jπ − −= ≥ . Rω , R
iα  and R

jβ  are the estimated coefficients and are all positive 

to ensure positivity of tτ . The parameters Rω , R
iα  and R

jβ  represent the uncertainty in 

realized volatility, the short-term impact effect, and the long-term effect of shocks to the 

realized volatility, respectively. For the stationary process, the sum of the impact parameters is 

restricted smaller than 1 , 
1 1

1
q p

R R
i j

i j

α β
= =

+ <∑ ∑ . This model is similar to the CARR model 

applied to the daily range data, see Chou (2005).  

In the previous literature, various distributional assumptions on the error term in MEM 

model have been conducted. By Engle (2002), the constant quasi-maximum likelihood 

estimator is obtained under the assumptions on the error term to be exponentially distributed. 

Instead of assuming exponentially distributed, Lanne (2006) developed a mixture MEM 

model to forecast the realized volatility. This mixture model includes an error term following 

a mixture of gamma distributions. In this paper, we use MEM(1,1) model and follow Engle’s 

assumption, the error term with exponentially distributed, to predict the realized range. We 

define the realized range volatility as the square root of the scaled realized range ,S tRRθ . Let 

tRRV be the realized range volatility, and the MEM(1,1) model is shown as follows, 

t t tRRV τ ε= ,  t = 1, 2, …, T,                                      (5) 

1 1 1 1
R RR

t t tRRVτ ω α β τ− −= + +  . (6) 

The parameters (Rω , R
iα  and R

jβ ) are in the same meaning as discussed before and the 

realized volatility here stands for the realized range volatility ( ,S tRRθ ). The sum of impact 

parameters, 1 1
R Rα β+ , represents the persistence of the square root of the scaled realized 



 14

range shocks. Also, in order to assure the stationary condition, the restriction, 1 1
R Rα β+ <1, is 

imposed. In empirical study, the 5-min and 30-min interval sample length (called RR_5m and 

RR_30m model, respectively) are observed in this paper.1 

3.1.2. EWMA model 

RiskMetrics approach was established by J.P. Morgan to measure the risk. It is a special 

case of a normal Integrated GARCH (1,1) model where the variance 2ξ  are forecasted by 

EWMA model and the sum of the coefficients are set to be 1. In this specification, EWMA 

model is defined as: 

 2 2 2
1 1(1 )t t tξ λ ε λξ− −= − +  ,   (7)  

where λ  is the decay factor. Based on the difference between daily data and weekly data, λ  

is suggested to be a prespecified value of 0.94 and 0.97 respectively. Because of the 

comparison of the 1-day VaR in this paper, λ  is equal to 0.94. Therefore, the EWMA model 

does not require estimation unknown parameters in the volatility equation. Although it is not a 

flexible model, it is easy to measure and often gives acceptable forecast value for the 

short-term volatility. Nowadays, the RiskMetrics model is used widely in practical. 

3.1.3. GARCH model 

When a series of asset returns are known to be heteroscedastic, it is better to use the 

conditional model to forecast volatility. The generalized autoregressive conditionally 

                                                 
1 Notice that in empirical research, the data with the first order moment is conducted when using the MEM 

model to evaluate volatility. As a result, the forecast value ( tτ ) need to be adjusted. The adjusted forecast value 

of the realized range volatility is ,t adj tadjτ τ= × , with adj
σ
τ

=
ɵ

. σ  is defined as the unconditional 

standard errors of returns and τɵ  is the sample mean of the realized range volatility forecast. We use the 

adjusted series 1, ,( ,..., )adj t adjτ τ  to be the proxy of the conditional volatility to measure Value-at-Risk. 
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heteroscedastic (called GARCH) model developed by Bollerslev (1986) allows the 

conditional variance to be dependent on previous value of the squared errors and previous 

own lags, so the conditional variance equation in GARCH( p, q ) is now 

t t tX µ ε= +     2
1 (0, )t t tNε σ−Ι ∼  ,  (8) 

2 2 2

1 1

p q
G GG

t i t i j t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑  ,  (9) 

where tX  means the daily return on day t , tµ  is known as the conditional mean and 2tσ  

is the conditional variance. For GARCH( p, q ) model, all coefficients would be required to be 

non-negative. The unconditional variance of tµ  can be defined under 
1 1

1
q p

G G
i j

i j

α β
= =

+ <∑ ∑ , 

and this is a stationary process. The parameters (Gω , G
iα  and G

jβ ) characterize the 

uncertainty in conditional variance, the short-term impact effect, and the long-term effect of 

shocks to the conditional variance, respectively. These parameters are estimated by maximum 

likelihood method. GARCH model is more flexible than the Riskmetrics model. From the 

precious literature, GARCH(1,1) model can capture the property of the returns and make an 

accurate estimation. Therefore, GARCH(1,1) is used in this paper to forecast the conditional 

variance, and measure the Value-at-Risk. 

3.1.4. CARR model 

Instead of the returns, the Conditional Autoregressive Range Model (called CARR model) 

is a dynamic model for the high-low range of asset prices within fixed time intervals, see 

Chou (2005). This model is similar to the GARCH models by using the square root of the 

range without a constant term in the mean equation, and it belongs to the family of MEM 

models, used to evaluate the realized range above. The CARR( p, q ) model is specified as  

t t tR ϕ ε=  ,  (10)  
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1 1

q p
C CC

t i t i j t j
i j

Rϕ ω α β ϕ− −
= =

= + +∑ ∑  ,                               (11) 

1 (1, )t t tfε ζ−Ι ∼                                                  (12) 

where tR  is defined as the daily high-low range and tϕ  is the conditional mean of the range. 

The restrictions of the parameters (Cω , C
iα  and C

jβ ) are the same as the MEM model 

discussed on the realized range. These parameters can be obtained by the Quasi-Maximum 

Likelihood Estimation (called QMLE) method. Cω , C
iα  and C

jβ  stand for the uncertainty 

in range, the short-term impact effect, and the long-term effect of shocks to the range, 

respectively. From Chou (2005), CARR(1,1) model is sufficient to explain the volatility. As a 

result, we estimate the range with CARR(1,1) model in the empirical study. 

3.2. Estimating tail index  

The most important thing in VaR is to estimate the probable biggest loss on the worst 

situation. As a result, the tail distribution of financial returns is considered the most significant 

issue. Much research has illustrated the fat-tailed character of financial return distribution. 

The extreme value (called EV) theory is mainly discussed on the property of tail distribution, 

instead of the whole distribution of returns. Longin (1996) presented that the thickness of tail 

is measured as the value of tail index. In this paper, we use the revised Hill’s estimator to 

evaluate the tail index.  

As mentioned before, users don’t need to make assumption of financial returns to 

measure risks. Instead, true risks are determined by observing the extreme value. The 

thickness of tail is reflected by the estimation of tail index, γ . The fatter the tail is, the larger 

the tail index value becomes. Therefore, it is important to estimate accurately the value of tail 

index for understanding the tail distribution of financial returns.  
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Hill’s estimator is a popular method to measure the tail index, proposed by Hill (1975). It 

is easy to use for describing the tail behavior, given the values of the extreme order statistics. 

Suppose that a sample of n independent observations is drawn from a population with 

fat-tailed distribution. Let ( )ix  be the ith-order statistics of the absolute value of observations 

such that ( ) ( 1)i ix x −≥  for i = 2,…, n. We choose to contain k observations from the left tail to 

estimate. The Hill’s estimator for γ  is as follows,      

1

1
( ) ln( ( 1)) ln( ( ))

k

j

k X n j X n k
k

γ
=

= − + − −∑  .          (13) 

Huisman, Koedijk, Kool and Palm (2001) pointed out that ( )kγ  is a maximum likelihood 

estimator for a conditional Pareto distribution. The difficulty of using Hill’s estimator is the 

proper choice of k. Dacorogna, Muller, Pictet and de Vries (1995) proposed an asymptotic 

approximated distribution function of the bias in the Hill’s estimator:     

( ) 1 (1 )F x ax bxα β− −= − +  ,                   (14) 

where α  and β  are positive and a and b are real numbers. Hall (1990) showed that under 

the given k, the asymptotic expected value and variance of the Hill’s estimator are as follows,  

1
( ( ))

( )

b k
E k a

n

β
β α
αβγ

α α α β
−  ≈ −  +  

 ,    (15) 

2

1
( ( ))Var k

k
γ

α
≈  .        (16) 

From equation (15) and (16), a small k is preferred for the unbiasedness but a large k is better 

from an efficiency viewpoint. It shows the trade-off relationship between accuracy and 

efficiency. Meanwhile, an important discovery from the equation (15) is that for any k 

exceeding 0, the estimator always encounters the problem of bias. Dacorogna, Muller, Pictet 

and de Vries (1995) used a simulation method and concluded that there is no significant influence 
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of the estimation of α  even with large bias in the assumption of value of β .   

According to the analysis above, Huisman, Koedijk, Kool and Palm (2001) proposed a 

method of revising the Hill’s estimator to solve the problem of choosing the value of k. They 

imposed the restriction α β=  on Hill’s estimator to make the asymptotic bias linear in k. 

The equation (13) is transferred as   

0 1( ) ( ), 1,...,k k k kγ β β ε κ= + + =  ,            (17) 

where 0β  and 1β  are the parameters and ( )kε  is the error term in the regression. Instead 

of selecting optimal k to measure the tail index, Hill’s estimates of ( )kγ  for k from 1 to κ  

are computed. This procedure resolves the problem of trade-off relation between bias and 

variance by using different values of k to obtain the estimate of tail index. Evaluation of 

equation (17) on k approaching 0 makes an unbiased estimate of ( )kγ  equal to the intercept 

0β . As a result, the unbiased estimate of tail index, �0β , is obtained by using weighted 

squares least (WLS) method. From the simulation result in Huisman, Koedijk, Kool and Palm 

(2001), the choice of value κ  has no influence on the estimation of tail index. The using of 

/ 2nκ =  is suggested to get a precise estimate.  

As discussed before, the inaccurate VaR may be obtained if the heteroscedastic property 

of financial returns is ignored. In our research, we follow the concept of McNeil and Frey 

(2000) that using the standard residual series which fit i.i.d. character to estimate the tail index. 

The process of producing i.i.d. standard residual series is described as follows. Assume that 

the dynamics of X are given by 

t t t tX Zµ σ= +  ,                   (18) 

where tX  is the return on day t, tµ  is the conditional mean, 2
tσ  is the conditional 

variance, and the innovations tZ  are a i.i.d. white noise process with zero mean and unit 



 19

variance. We use autoregressive moving average with one lag period (called ARMA(1,1) ) to 

estimate conditional mean. As for the conditional variance, we use five different conditional 

volatility models (EWMA, GARCH, CARR, RR_30m and RR_5m ) to estimate. These 

models are set detailed below. 

ARMA(1,1)-EWMA(λ＝0.94) model is shown as 

2
1 1 1 1 1

2 2 2
1 1

(0, )

(1 )

t t t t t t t

t t t

X X I Nµ φ θ ε ε ε ξ

ξ λ ε λξ
− − −

− −

= + + +

= − +

∼
 .        (19) 

Standard residual series of ARMA(1,1)-EWMA model are obtained as follows,   

�

ɵ

�

ɵ

1 1
1

1

( ,... ) ( ,..., )E E t n t n t t
t n t

t n t

X X
z z

µ µ
ξ ξ

− + − +
− +

− +

− −=  .          (20) 

ARMA(1,1)-GARCH(1,1) model is defined as 

2
1 1 1 1 1

2 2 2
1 1 1 1

(0, )t t t t t t t

G G G
t t t

X X I Nµ φ θ ε ε ε σ

σ ω α ε β σ
− − −

− −

= + + +

= + +

∼
 .   (21) 

Standard residual series of ARMA(1,1)-GARCH(1,1) model are as follows, 

�

�

�

�

1 1
1

1

( ,... ) ( ,..., )G G t n t n t t
t n t

t n t

X X
z z

µ µ
σ σ

− + − +
− +

− +

− −=  .   (22) 

ARMA(1,1)-CARR(1,1) model is presented below, 

conditional mean equation: 2
1 1 1 1 1 (0, )t t t t t t tX X I Nµ φ θ ε ε ε σ− − −= + + + ∼  ,  (23) 

conditional volatility equation: 
1

1 1 1 1

(1, )t t t t t t

C C C
t t t

R f

R

ϕ ε ε ζ

ϕ ω α β ϕ
−

− −

= Ι

= + +

∼
 .     (24) 

Standard residual series of ARMA(1,1)-CARR(1,1) model are shown as follows, 

�

ɵ

�

ɵ

1 1
1

1

( ,... ) ( ,..., )C C t n t n t t
t n t

t n t

X X
z z

µ µ
ϕ ϕ

− + − +
− +

− +

− −=  .   (25) 

ARMA(1,1)-RR_30m(1,1) model is displayed as 
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conditional mean equation:  2
1 1 1 1 1 (0, )t t t t t t tX X I Nµ φ θ ε ε ε σ− − −= + + + ∼ ,  (26) 

conditional volatility equation: 
30

1

30 3030 30 30
1 1 1 1

_ 30 (1, )

_ 30

R
t t t t t t

R RR R R
t t t

RRV m f

RRV m

τ ε ε ρ

τ ω α β τ
−

− −

= Ι

= + +

∼
.   (27) 

Standard residual series of ARMA(1,1)- RR_30m(1,1) model are as follows, 

�

�

�

�

30 30 1 1
1 3030

1

( ,... ) ( ,..., )R R t n t n t t
t n t RR

tt n

X X
z z

µ µ
ττ

− + − +
− +

− +

− −=  .      (28) 

Last, ARMA(1,1)-RR_5m(1,1) model is shown below, 

conditional mean equation:  2
1 1 1 1 1 (0, )t t t t t t tX X I Nµ φ θ ε ε ε σ− − −= + + + ∼ ,  (29) 

conditional volatility equation:  
5

1

5 55 5 5
1 1 1 1

_ 5 (1, )

_ 5

R
t t t t t t

R RR R R
t t t

RRV m f

RRV m

τ ε ε π

τ ω α β τ
−

− −

= Ι

= + +

∼
.  (30) 

Standard residual series of ARMA(1,1)- RR_5m(1,1) model are as follows, 

�

�

�

�

5 5 1 1
1

5 5
1

( ,... ) ( ,..., )R R t n t n t t
t n t

R R
t n t

X X
z z

µ µ
τ τ

− + − +
− +

− +

− −=  .   (31) 

All parameters are defined before in the section 3.1. Five standard residual series are obtained 

by using different conditional volatility models. Then we use the left tail of these standard 

residual series to estimate the tail index, instead of using the original financial returns. 

3.3. Evaluating Value-at-Risk  

After discussing the conditional volatility models, we now focus on the application of 

these volatility models to VaR model. VaR model is the most commonly used technique in 

risk management to obtain possible losses in financial markets. Within a given confidence 

interval, VaR measures the market risks by estimating the worst expected loss over a period. 

Let Pt be the asset price for the time t, and the expected return at time t is shown as 

1ln lnt t tX P P−= − . Given the initial investment 0V  and a chosen time horizon, the expected 
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value of the investment is: 

0 (1 )t tV V X= × + .                             (32) 

We are interested to get the lowest investment value at time t+1 at a particular confidence 

interval (100(c)%), so the rate of return 1tX ∗
+  resulting in this lowest investment value 1tV ∗

+  : 

1 0 1(1 )t tV V X∗ ∗
+ += × + .                            (33) 

Assuming that the average return is defined as µ , the estimate for the VaR relative to the 

mean is developed as: 

0 1 0(1 ) (1 )tVaR V X V µ∗
+= × + − × + .            (34) 

To simplify, it turns to: 

0 1( )tVaR V X µ∗
+= − .                       (35) 

The crux of being able to obtain the accurate VaR is in being able to estimate the expected 

rate of return 1tX ∗
+ . Under a particular confidence interval (100(c)%), 1tX ∗

+  on day t is 

shown :  

1 1( ) 1t t tprob X X c∗
+ +≤ Ι = −  ,                (36) 

where It represents the information set on day t. The cumulative distribution function of 1tX ∗
+  

on day t shown by ( )F •  is written as: 

1( ) 1tF X c∗
+ = − .                             (37) 

As a result, 1tX ∗
+  can be presented with the inverse function below: 

1
1 (1 )tX F c∗ −

+ = − .                      (38) 

VaR estimation requires knowing the distribution of the returns. However, the true distribution 

of financial returns is always unknown. That’s the reason that the returns are assumed to a 

particular distribution before measuring VaR. In this paper, we make assumptions that the 
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distribution of ( )F •  is normal or student-t distributed, respectively. Two evaluating methods 

of VaR, variance-covariance with normal distribution and extreme value theory with student-t 

distribution, are discussed below. 

3.3.1. Variance-covariance method 

J.P. Morgan first proposed a variance-covariance method, called RiskMetrics, to measure 

the VaR. There are three important assumptions in this method. First, the distribution of 

financial returns is assumed to be normal. Second, every observation is considered to be 

independent. Last, the variation of market factors and the price variation are assumed to be 

linear. Given the average of the return (µ ) and the variance (2σ ), the estimation of the 

sample mean and variance is �µ  and �
2

σ , respectively. 1tX ∗
+  can be rewritten as 

� �
1tX N σ µ∗ ∗

+ = +  ,                 (39) 

where N∗  is the critical value in normal distribution under a given confidence level. With 

substituting 1tX ∗
+  in equation (35), the relative VaR is �

0V N σ∗ . By using the conditional 

model, the estimation of volatility is time-varying. Therefore, the relative VaR forecast of day 

t+1 on day t is shown as follows, 

�
11 0 ttVaR V Nσ∗

++ = .                      (40) 

The value of 0V  is assumed to be 1 in this paper. We use five different methods to forecast 

volatility ( � 1tσ + ) : EWMA, GARCH, CARR, RR_30m and RR_5m models.  

3.3.2. Extreme value theory ( VaR-x model ) 

Instead of assuming the distribution to be normal, Huisman et al. (1998) presented VaR-x 

model which assumed to be student-t distribution. The degree of freedom must be determined 

first before estimating *N . To evaluate VaR-x, we estimate the tail index by revised Hill’s 
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estimator first. Then the student-t distribution and the degree of freedom are obtained by 

inversing the tail index. The following is the detailed steps for evaluating VaR-x. First, the tail 

index �0β  is estimated by the revised Hill’s estimator for the left tail of standard residual 

series. Second, the conditional mean 1tµ +  and the conditional standard error 1tσ +  are 

forecasted by five conditional volatility models. Third, let the estimation of degree of freedom 

ɵν  in student-t distribution equals the inverse of tail index �0β . That means ɵ
�

0

1ν
β

= . Next, 

find the critical number S* in the standard student-t distribution with ɵν  degrees of freedom. 

Because of 
ɵ

ɵ

* (0, )
2

S t
ν

ν −
∼ , this value S* needs to be transferred to the real cutoff return 

�* *
1tX S µ+ = Φ + , where Φ  is a scale factor given by 

�

ɵ

ɵ 2

σ

ν
ν

Φ =

−

. In the last step, with 

substituting 1tX ∗
+  in equation (35), the VaR-x is 0V S∗Φ .      

3.4. Comparison of Value-at-Risk models  

The Basel Committee on Banking Supervision enforced a regulation that the financial 

institutions need to use backtesting to evaluate the accuracy of internal models. Backtesting is 

a statistical testing framework that checking whether the actual trading losses are in 

accordance with the VaR. Each exceedence is called a failure. The closer the number of 

failures and the theoretical value are, the better the model is.  

Except the number of failures, some comparing criteria were developed in the previous 

research. These criteria are classified into three dimensions.   

3.4.1. Conservatism 

The variation in the size of risk estimates obtained by different models is to evaluate if 

any model tends to produce high-level risk estimates relative to other models. We characterize 
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those models which make high-risk estimates relatively as conservative ones.   

3.4.1.1.  Mean Relative Bias (called MRB) 

The mean relative bias (MRB) method, proposed by Hendricks (1996), captures the 

degree to which models produce risk estimates of similar average level. Given T days and N 

VaR models, the MRB of model i is measured as:  

,

1

1 T
i t t

i
t t

VaR VaR
MRB

T VaR=

−
= ∑             (41) 

where ,
1

1 N

t i t
i

VaR VaR
N =

= ∑ .The bigger MRBi is, the more conservative the modeli is. 

3.4.1.2.  Root Mean Squared Relative Bias (called RMSRB) 

This criterion evaluates the extent to which model risk estimates tend to vary around the 

average risk measure of all models for a given day, presented by Hendricks (1996). The 

RMSRB of model i is computed as follows, 

2

,

1

1 T
i t t

i
t t

VaR VaR
RMSRB

T VaR=

 −
=   

 
∑             (42) 

where ,
1

1 N

t i t
i

VaR VaR
N =

= ∑ , T stands for the number of days and N is the number of VaR 

models. The bigger RMSRBi is, the bigger the divergence of modeli compared to others is. 

3.4.2. Accuracy 

Accuracy takes account of whether the VaR estimates are large enough to cover the true 

underlying risks. The number of failures and the size of those losses are concerned in this 

dimension. Under the Banking Supervision’s regulations, the failure rate should be equal to or 

smaller than the significant level of VaR models. Different types of criterion on accuracy are 

developed below. 
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3.4.2.1.  The Binary Loss Functions (called BLF) 

The number of failures rather than the size of these failures are concerned in this method. 

This is a binomial function from the general loss function to measure the number of failures, 

developed by Lopez (1999). That is,  

, 1 ,

, 1
, 1 ,

1

0
i t i t

i t
i t i t

if P VaR
L

if P VaR
+

+
+

∆ <=  ∆ ≥
              (43) 

This dummy variable means that when actual excess surpass VaR estimates, it is defined as an 

outlier or failure. The average binary loss function of model i is obtained with measuring total 

number of outlier divided by T, where T stands for the number of sample days. The average 

binary loss function is as same as the failure rate. When the failure rate is close to the 

expected rate, it can be seen as a better model. 

3.4.2.2.  Mean Excess 

In this criterion, the size of those failures is used to measure. Mean excess, proposed by 

Neftci (2000), is obtained by computing the average of exceedence which actual losses 

surpass VaR estimates. The equation is defined as: 

, 1 , , 1 ,( )i i t i t i t i tmean excess of model E P VaR P VaR+ += ∆ − ∆ < .    (44) 

The smaller mean excess is, the smaller the unexpected losses are.  

3.4.2.3.  LR test of unconditional coverage (called LRuc) 

Kupiec (1995) developed a likelihood-ratio test that can test whether the sample estimate 

is statistically consistent with the given confidence level of these models. If a bank’s daily 

VaR and returns can be assumed to be independent, the number of failures represents a 

sequence of independent Bernoulli trials. To evaluate the accuracy of VaR models, we 

conduct a test of the null hypothesis that the probability of failure on each trial (�c

L

T
α = ) is as 
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same as the model’s specified probability (cα ). The Likelihood Ratio test statistic is shown 

below: 

� �

2
1,

ln (1 )
2

ln (1 ) c

T L L
c c

uc LT L
c c

LR α

α α
χ

α α

−

−

 −
 = ⋅
 − 

∼ ,                (45) 

where T stands for the number of days and L is the total number of failures. If the null 

hypothesis is not rejected, it means that there is not significant difference between failure rate 

and the theoretical rate. 

3.4.2.4.  LR test of independence (called LRind) 

If a model can capture the conditional distribution and time-varying character of returns, 

the failures will occur independently and unpredictably in samples. Christoffersen (1998) 

presented LRind  test to evaluate the independence of failures and the accuracy of these VaR 

models. The null hypothesis and the test statistic are defined as: 
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where ijn  means the total days for the state j of the difference between actual returns and 

VaR estimates this period and the state i of that last period. cα  stands for the significant 

level in VaR models. If the null hypothesis is not rejected, the independence of failures and 

the accuracy of VaR models are proven. 

3.4.2.5.  LR test of conditional coverage (called LRcc) 
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According to Christoffersen’s (1998) definition, LRcc is the combination with the 

unconditional coverage LR test and the independence LR test. The test statistic is: 

2
2, ccc uc indLR LR LR αχ= + ∼  .                        (47) 

When the null hypothesis is not rejected, it means that the VaR model can evaluate the 

number of failures precisely and capture the character of time-varying. 

3.4.2.6.  Multiple to Obtain Coverage (called MOC) 

If the failure rate is not equal to the significant level, it is meant that there is a bias for the 

VaR estimates. To obtain the magnitude of bias, Hendricks (1996) developed the MOC 

method to appraise the accuracy of VaR models. It is presented as follows,   
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where T is the number of days and MOCi means the multiple to obtain coverage of model i. 

As the MOC is greater than 1, the VaR estimates are undervalued; as the MOC is smaller than 

1, the VaR estimates are overvalued. The closer between MOC and 1 are, the more accurate 

VaR model is.  

3.4.3. Efficiency 

The efficiency of VaR models means the magnitude of the required minimum capital 

under the specified accuracy which VaR estimates can cover actual losses. A more efficient 

VaR model provides more precise resource allocation signals to traders and financial 

institutions. Two criteria used in this paper are discussed below. 

3.4.3.1.  Mean Relative Scaled Bias (called MRSB) 

This method suggested by Hendricks (1996) combines mean relative bias (MRB) and 
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multiple to obtain coverage (MOC). The MRSB of a VaR model is aimed to determine which 

approach scaled by MOC produces the smallest average risk. The equation of MRSB of model 

i is set as: 
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where T stands for the number of days and N is the number of VaR models. The most efficient 

model is the one who has the smallest MRSB. 

3.4.3.2.  Error Efficiency 

The VaR estimates must measure the largest losses effectively. However, if the VaR 

estimates are overvalued excessively, VaR will become meaningless. We define error 

efficiency as measuring the relative distance of actual returns and VaR estimates, including 

profits and losses. It is shown as follows,  
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where T stands for the number of days. Error efficiency considers both the accuracy of 

unpredicted losses and the cost of predicted losses. The smaller the error efficiency is, the 

closer between actual returns and all VaR estimates are. In other words, this model can not 

only make precise estimates but also have more efficiency.  
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IV. Results 

4.1. Data 

In this section, we examine daily and intra-day S&P 500 and Nasdaq Index from 

1997/1/2 to 2003/12/31. As for S&P 500 Index, 400 prices of 1-min for one day are contained 

in the database before 2002/10/31; 390 prices of 1-min per day are obtained after 2002/11/1. 

As for Nasdaq Index, 390 observations of 1-min price are included in our sample period. We 

acquire daily returns, 5-min ranges, 30-min ranges and daily ranges from original 1-min 

prices. The data employed in our empirical study comprise 140,294 prices per 5 minutes and 

24,361 prices per 30 minutes for S&P 500 Index. For Nasdaq Index, we conduct 137,358 

prices per 5 minutes and 22,893 prices per 30 minutes. Daily data reach a total of 1761 

observations for both price indices. These data are retrieved from the TickWrite database2. 

4.2. Descriptive Statistics 

Figure 1 shows the graphs for close prices, daily returns, daily ranges, realized range 

volatility with bias-correction procedure for 30-min range and 5-min range (called RRV_30m 

and RRV_5m, respectively) of S&P 500 and Nasdaq Index over the sample period from 

January 2, 1997 to December 31, 2003. The data of return and range on S&P500 and Nasdaq 

Index are defined as follows, 

1100 ln( ) ln( ) ,

100 ln( ) ln( )

close close
t t t

high low
t t t

return P P

range P P

− = × − 

 = × − 

 

It is often reported as a percentage (%) by multiplying the above calculation by 100. The 

descriptive statistics for the daily returns, ranges, RRV_30m and RRV_5m of S&P 500 and 

                                                 
2 We thank Professor Huimin Chung in Graduate Institute of Finance at National Chiao Tung University for 
providing the database.  
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Nasdaq Index are presented in Table 1. It shows the univariate statistics for the time series 

data over the sample period 1997-2003. The average of return for Nasdaq is larger than S&P 

500 and Nasdaq Index shows more volatile than S&P 500. The standard deviations of 

range-based variables on both indices are smaller than the daily return. In addition, the 

standard deviations of RRV_5m are the smallest ones. This may imply that the intra-range 

data can capture the character of volatility better than daily returns and daily ranges. As for 

the statistic analysis of normality, all variables for S&P 500 and Nasdaq Index exhibit highly 

significant skewness and kurtosis, especially for the range-based ones. Moreover, the 

normality test, Jarque-Bera test, shows that the hypotheses of normal distribution for these 

variables are rejected. These four variables are not normal-distributed.  

From the Ljung-Box Q statistics and Q2 statistics in Table 1, daily returns and the 

squared daily return of these two indices are significant series autocorrelation. The p-value are 

all smaller than 0.1. The return-based data may be in the existence of ARMA effect and 

GARCH effect which stands for volatility-clustered situation. On the other part, the Q 

statistics of range-based data are all significant. It means that those range-based variables are 

correlated with their own lag value and not independent. The daily range and realized range 

volatility may have the character of CARR effect and MEM effect, respectively. In order to 

estimate accurate tail index, original financial returns are standardized first by ARMA(1,1) 

and conditional volatility process for obtaining standard residual series3.  

Table 2 shows the estimation of parameters in ARMA(1,1)-GARCH(1,1), CARR(1,1), 

RR_30m(1,1), RR_5m(1,1) models for the standardizing process. Comparing the sum of 

coefficients (α＋β), the sequence from big to small ones for S&P 500 Index is GARCH, 

CARR, RR_30 and RR_5m. For Nasdaq, the order is GARCH, CARR, RR_5m and RR_30m. 

The bigger the sum is, the stronger the volatility persistence effect is. On the other hand, if the 

                                                 
3 Much research have demonstrated that ARMA(1,1) is sufficient to capture the property of autocorrelation of 
financial data. 
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sum of coefficients is small, the effect of mean reverting is large. As a result, GARCH models 

for two indices have the strongest effect of volatility persistence. This property is also shown 

on the biggest standard deviation in daily return. In addition, the coefficient α means the 

sensitivity to shocks of the short run. RR_5m models of two indices have the largestα value 

and are the most sensitive models to the short-run fluctuation. 

The descriptive statistics for standard residual item of daily return in different models of 

S&P 500 and Nasdaq Index are presented in Table 3. The Q statistics of residual items 

become insignificant compared to the original daily returns. It means that ARMA(1,1) model 

can capture the character of first-order autocorrelation of financial returns. The Q2 statistics 

are also insignificant, so the squared residual items are not in existence of autocorrelation. 

ARMA(1,1)-EWMA with λ=0.94, ARMA(1,1)-GARCH(1,1),  ARMA(1,1)-CARR(1,1), 

ARMA(1,1)-RR_30m(1,1) and ARMA(1,1)-RR_5m(1,1) are sufficient to catch the property 

of heteroscedasticity and volatility-clustered. Moreover, the Jarque-Bera value for normality 

test of residual items is smaller than the daily returns. However, the hypothesis of normal 

distribution is still rejected, except for ARMA(1,1)-RR_30m(1,1) and 

ARMA(1,1)-RR_5m(1,1) models of Nasdaq Index. 

4.3. Empirical Analysis 

4.3.1. Tail index 

From precious analysis, the daily returns of S&P 500 and Nasdaq Index are fat-tailed 

distributed. The thickness of tail distributed can be measured by the tail index. In this section, 

we use the revised Hill’s estimator to estimate the tail index and capture the tail shape of these 

two indices.  

Our purpose in this research is to find a precise method to evaluate downside risks. As a 
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result, the left tail of observations is used to estimate tail index and measure the VaR. We use 

rolling sample method (Brooks, 2002) with 250 days to estimate the tail index and VaR of day 

t+1. Table 4 shows that the returns of both S&P 500 and Nasdaq Index for the whole sample 

period (1997~2003) are in existence of fat-tail property. The estimates of  β0  are bigger 

than 0 and between 0.1033 to 0.3036. According to Koedijk, Schafgans, and de Vries (1990), 

the distribution of these returns is fatter than normal distribution and belongs to student-t 

distribution. In addition, the estimated tail index of RR_30m and RR_5m are the smallest two 

among other models. This may imply that more problems of heteroscedasticity and 

volatility-clustered situation can be solved by using realized range method to standardize.   

4.3.2. Comparison of VaR models 

From precious discussion, the downside risks can be captured by tail index. In this 

section, the result of using variance-covariance and extreme value theory to measure VaR is 

presented. The average of estimated VaR for all sample period and individual years are listed 

in Table 5. Moreover, we use backtesting method to compare the ability of forecasting VaR in 

different models. For detailed analysis, many criteria of comparing VaR are applied and 

classified to three different dimensions. We focus on the result if it is better to evaluate VaR 

using realized range models and the comparison of VaR-normal with VaR-x models. In this 

research, we use rolling sample method and the length of each rolling sample is 250 days. 

VaR estimate of the next day is based on the precious 250 prices. By this approach, 1512 

volatility and VaR estimates are obtained. Figure 2 and 3 show daily returns and VaR-normal 

estimates of these conditional volatility models for S&P 500 and Nasdaq Index, respectively. 

Figure 4 and 5 present daily returns and VaR-x estimates of these conditional volatility 

models for S&P 500 and Nasdaq Index, respectively. The biases of return-based models are 

obvious in evaluating VaR-x. The detailed analysis of comparing variance-covariance method 

by normal distribution with extreme value theory of VaR-x model is discussed below. 
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The models included in our research are described as follows. The first part is the models 

assumed to be normal distribution of financial returns in different conditional volatility 

process: EWMA-normal, GARCH-normal, CARR-normal, RR_30m-normal, and 

RR_5m-normal models. The second part is the models combining VaR-x and extreme value 

theory in different conditional volatility process: EWMA-VaR-x, GARCH-VaR-x, 

CARR-VaR-x, RR_30m-VaR-x, and RR_5m-VaR-x models. We use the same order of models 

in each rolling sample. Table 6 presents the number of failures in these ten conditional VaR 

models. In 95% confidence level for S&P 500, the failure number of EWMA-normal model 

and RR_30m-VaR-x model (77 and 75, respectively) are the most closest to the theoretical 

number (76). The third and fourth better ones are GARCH-normal and RR_5m-VaR-x models 

in sequence. As for Nasdaq Index, GARCH-normal model is the best one. The second best 

models are EWMA-normal, RR_5m-normal and CARR-VaR-x models. We conclude that it is 

better to evaluate risks under normal-distributed assumption in 95% confidence level. In 

97.5% confidence level for S&P 500, RR_30m-VaR-x model performs the best. 

RR_30m-normal, RR_5m-VaR-x and GARCH-VaR-x models are the next. For Nasdaq Index, 

EWMA-normal is the best one. The second and third better ones are GARCH-normal and 

GARCH-VaR-x models in sequence. In 99% confidence level for S&P 500, the closest one is 

CARR-VaR-x model. The next are GARCH-normal, CARR-normal, RR_5m-normal and 

RR_30m-VaR-x models. As for Nasdaq Index, the five normal ones and GARCH-VaR-x 

model perform nearly. As a whole, the normal-distributed models and the extreme value ones 

perform about the same in 97.5% and 99% level. In addition, RR_30m-VaR-x is the most 

precise model in different confidence level for S&P 500. EWMA-normal and RR_5m-VaR-x 

are the second better. For Nasdaq Index, EWMA-normal and GARCH-normal are the best. 

RR_5m-normal and GARCH-VaR-x are the second ones. In empirical research of the failure 

number, realized range model performs better for S&P 500 than Nasdaq Index. In detail, 

realized range models with extreme value theory are more proper for S&P 500 and those with 
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normal distribution are more suitable for Nasdaq Index.    

Except for the number of failures, there are other testing dimensions to evaluate VaR 

models. When computing equation of some criteria, like MRB in equation (41), RMSRB in 

equation (42), LRuc in equation (45), MRSB in equation (49) and error efficiency in equation 

(50), the number of sample days T is 1512 and the number of VaR models N equals to 10. The 

backtesting results of VaR models are listed in Table 7 to 12. Considering the conservatism of 

VaR models of S&P500 in 95% level in Table 7, the average of all models’ mean relative bias 

(MRB) are from -0.0657 to 0.0537. EWMA-VaR-x, GARCH-VaR-x, CARR-normal, and 

RR_5m-normal models are more conservative because of its large MRB in sequence. 

According to root mean squared relative bias, CARR-normal, RR_5m-normal, 

RR_30m-normal model, RR_5m-VaR-x and GARCH-normal are the least divergent method. 

The range-based models with normal distribution perform more conservative than others in 

95% confident interval.  

In the accuracy analysis of VaR models, the comparing result of the binary loss functions 

(BLF) is as same as the number of failures discussed above. RR_30m-VaR-x, EWMA-normal, 

GARCH-normal and RR_5m-VaR-x are the most accurate in sequence. When discussing the 

mean excess, RR_5m-VaR-x, GARCH-normal, EWMA-VaR-x and RR_30m-normal model 

are the smallest ones in sequence in 95% percentile. In regard to the LR test of unconditional 

coverage, independence, and conditional coverage, all models’ assumption are not rejected. In 

other words, all VaR models pass the statistic test. According to MOC criterion, the result is 

that EWMA-normal and RR_30m-VaR-x models are the best ones. GARCH-normal and 

RR_5m-VaR-x are the third and fourth models in 95% percentile. As a whole for accuracy test, 

GARCH-normal, RR_5m-VaR-x, RR_30m-VaR-x and EWMA-normal models perform well 

on accuracy test in sequence. 

 For the efficiency of VaR models, the best two efficient models are RR_30m-VaR-x and 
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RR_5m-VaR-x models. The next two are RR_5m-normal and RR_30m-normal models. The 

realized range model performs efficient among others. To summarize, the whole performance 

of realized range models with normal distritubion is close to EWMA-normal and 

GARCH-normal. However, realized range with VaR-x models dominate over others. 

RR_5m-VaR-x model is the best one. 

As for Nasdaq in Table 8, the average of all models’ mean relative bias (MRB) are from 

-0.0989 to 0.0288. RR_5m-normal, CARR-normal and RR_30m-normal models are the most 

conservative ones according to large MRB. For root mean squared relative bias, 

RR_5m-normal, RR_30m-normal and CARR-VaR-x models are the least divergent method. 

The range-based models with normal distribution perform more conservative than others. In 

the accuracy analysis of VaR models, GARCH-normal, EWMA-normal, RR_5m-normal and 

CARR-VaR-x can produce more accurate value according to BLF. As to mean excess, the four 

realized range models perform well. As same as S&P500, all LR tests are passed. In regard to 

MOC, EWMA-normal, GARCH-normal, RR_5m-VaR-x and RR_30m-VaR-x models are 

closest to 1. Realized-range-based VaR-x models and return-based normal models perform 

about the same in accuracy. As for efficiency test, CARR-VaR-x and RR_30m-VaR-x models 

are the most efficient ones. To conclude the result of Table 8, CARR-VaR-x, RR_5m-normal, 

EWMA-normal and RR_30m-VaR-x are the top four models for Nasdaq Index in 95% 

percentile.  

Considering the conservatism of VaR models of S&P500 in 97.5% level in Table 9, 

GARCH-VaR-x and EWMA-VaR-x models produce largest number in MRB. As for RMSRB, 

the value of CARR-normal, RR_5m-VaR-x, RR_5m-normal and RR_30m-normal are the 

smallest in sequence. Considering the accuracy, RR_30m-VaR-x is the most precise model. 

RR_30-normal, RR_5m-VaR-x and GARCH-VaR-x models perform well, too. For the 

efficiency test, CARR-normal, RR_5m-normal and RR_30m-normal models have the smallest 



 36

value of MRSB and error efficiency. As a whole, realized range models perform much better 

than return-based and CARR models. RR_30m-normal and RR_5m-VaR-x models are the 

best two on estimating VaR of S&P 500 in 97.5% confidence interval. 

As for Nasdaq Index in 97.5% level in Table 10, CARR-VaR-x model is the most 

conservative one. In regard to accuracy, EWMA-normal, GARCH-normal, RR_30m-normal 

and GARCH-VaR-x models perform much better than others. For efficiency, CARR-normal, 

RR_30m-normal and RR_5m-normal models are more efficient. To summarize the result in 

Table 10, EWMA-normal and RR_30m-normal are the best models. CARR-normal and 

RR_5m-normal models are the next best ones.  

Table 11 shows the result of S&P 500 in 99% level. For conservatism test, 

EWMA-VaR-x and GARCH-VaR-x models are the most conservative and divergent ones. As 

to accuracy, RR_5m-normal is the most precise model. Other range-based models also 

perform well. According to efficiency, GARCH-normal, EWMA-normal, RR_30m-normal 

and RR_5m-normal models produce smaller value of MRSB and error efficiency. 

RR_5m-normal and RR_30m-normal model are the most proper ones to evaluate the risks of 

S&P 500 in 99% confident interval. In addition, models with normal distribution perform 

better than the VaR-x models. 

Last, the result of Nasdaq in 99% level is presented in Table 12. As for conservatism test, 

EWMA-VaR-x and GARCH-VaR-x models are the most conservative and divergent ones. For 

accuracy test, RR_5m-normal and RR_30m-normal models produce more precise estimates. 

According to efficiency test, EWMA-normal, CARR-normal and RR_30m-normal models 

perform well. As a whole, the performance of RR_30-normal, RR_5m-normal and 

CARR-normal is much better than others. Moreover, normal-distributed models are better 

than extreme value theory.  
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Various criteria are used to show different importance of VaR dimensions. Meanwhile, 

accuracy is more popular and important among these three dimensions. Users of VaR models 

often focus on the difference between failure rate and theoretical rate first. Moreover, 

financial institutions always don’t want to be conservative because they have to spend more 

costs to reach the restriction of required minimum capital. In practical, conservatism and 

efficiency seem to be paid less attention. To conclude, realized range models can produce 

better evaluation of financial risks. In 95% confident interval, realized range models with 

normal distribution perform as well as other normal models. In regard to VaR-x models, 

range-based ones are better than return-base method. As the increasing of percentile, realized 

range models dominate over return-based models and CARR model. Moreover, in 99% 

confident level, RR_30m-normal and RR_5m-normal models are sufficient to capture the 

downside risks. It may imply that realized range models with normal distribution can evaluate 

VaR much better than VaR-x models in high confident level.     
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V. Conclusion 

Considering the additional downside risks is a major part in measuring VaR. Much 

research has proposed the property of heteroscedasticity and volatility-clustered in financial 

returns. As a result, finding a proper method that is able to capture the character of financial 

data is significant. In addition, the realized range is presented to be a proxy of variance in 

recent years. In this paper, we do empirical research on S&P 500 and Nasdaq Index and 

compare different conditional VaR models. We use the most popular frequency, 30-min and 

5-min range, to measure the realized range. In practical research, realized range models 

improve its performance compared with others as the confident level increases. It indicates 

that intra-day range data contain more information than daily return and daily range. 

Moreover, we find a surprising result that realized range models with normal distribution 

perform better than the VaR-x models in high confident interval. The possible reason may be 

that intra-day range is more sensitive to outliers. This discovery may imply that even though 

the financial returns are existence of fat-tailed property, it can still be captured by 

normal-distributed realized range model.  

Our contribution in this paper is applying realized range method forecasted by MEM 

model to VaR model. The new method of measuring risks is proved precise by three 

dimensions of comparing criteria in empirical study. Comparing VaR-normal with VaR-x 

model, normal-distributed realized range models can produce much better estimates than the 

other in higher percentile. However, a detailed analysis of this question is left for future 

research. In addition, the restriction of this paper is that the result is data-oriented. To obtain a 

more reliable result, Monte Carlo method is an alternative for measuring VaR. With 

simulating repeated process, the distribution function and the required cutoff values can be 

estimated. This method can be conducted in future research.  
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Table 1:  

Descriptive Statistics for Daily Returns, Daily Ranges, Realized Range Volatility for 30-min 

range and 5-min range (called RRV_30m and RRV_5m, respectively) of S&P 500 and Nasdaq 

Index, 1997/01/02-2003/12/31 

2
, ,

1

(ln ln )
I

t t i t i
i

RR H Lθ

=

= −∑  

11
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11

q

tl
S t tq

tl
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RR

θ θ
θ

−=

−=

 
 =
 
 

∑
∑

 

,S tRRV RRθ=  

where ,S tRRθ  is the scaled realized range (after bias-correction) and RRV is the realized range volatility. 

RRV_30m and RRV_5m stand for the 30-min and 5-min frequency of data used to measure RRV. Panel A and B 

report the descriptive statistics of S&P 500 and Nasdaq Index, respectively. The four variables are in daily 

percentage units. Std. Dev. denotes standard deviation. Jarque-Bera is the test of normality. Q(12) and Q2(12) are 

the Ljung-Box statistic for auto-correlation test with 12 lags. Numbers in parentheses are p-values. 

  Panel A - S&P 500 

  RETURN  RANGE RRV_30m RRV_5m 

 Mean(%) 0.0233  1.6285  1.7075  1.7246  

 Median(%) 0.0355  1.4593  1.5447  1.5699  

 Maximum(%) 5.3080  8.4792  8.7396  13.5441  

 Minimum(%) -7.1127  0.2800  0.3787  0.3499  

 Std. Dev. (%) 1.3010  0.8604  0.7566  0.7497  

 Skewness -0.0675  2.1811  2.2542  3.6054  

 Kurtosis 5.0744  12.1611  12.6527  41.8617  

 Jarque-Bera 316.8883  7554.1897  8016.0329  110332.2280  

  (0.0000) (0.0000) (0.0000) (0.0000) 

Auto-Correlation Test    

Q(12) 21.7515  2187.5000  4681.5000  4940.3000  

 (0.0400) (0.0000) (0.0000) (0.0000) 

Q2(12) 272.2200     

  (0.0000)       
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Table 1:   

(continued) 

 

  Panel B - Nasdaq 

  RETURN RANGE RRV_30m RRV_5m 

 Mean(%) 0.0332  3.0416  3.1548  3.1748  

 Median(%) 0.1424  2.6787  2.8001  2.8226  

 Maximum(%) 17.2434  19.2172  17.6370  14.5331  

 Minimum(%) -10.4345  0.5445  0.6695  0.5732  

 Std. Dev. (%) 2.5544  1.6586  1.5263  1.5230  

 Skewness 0.1486  2.1306  2.0078  1.7255  

 Kurtosis 5.3436  12.7884  11.7380  8.2205  

 Jarque-Bera 409.2518  8362.6136  6531.2672  2765.9193  

  (0.0000) (0.0000) (0.0000) (0.0000) 

Auto-Correlation Test    

Q(12) 27.6100  4194.9000  6646.7000  7664.3000  

 (0.0060) (0.0000) (0.0000) (0.0000) 

Q2(12) 534.2000     

  (0.0000)       
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Table 2:  

Estimation of Conditional Models for the Standardizing Process 

2
1 1 1 1 1 (0, )t t t t t t tX X I Nµ φ θ ε ε ε σ− − −= + + + ∼  

2 2 2
1 1 1 1

G G G
t t tσ ω α ε β σ− −= + +  

1 (1, )t t t t t tR fϕ ε ε ζ−= Ι ∼       

1 1 1 1
C C C

t t tRϕ ω α β ϕ− −= + +  
30

1_ 30 (1, )R
t t t t t tRRV m fτ ε ε ρ−= Ι ∼  

30 3030 30 30
1 1 1 1_ 30R RR R R

t t tRRV mτ ω α β τ− −= + +  
5

1_ 5 (1, )R
t t t t t tRRV m fτ ε ε π−= Ι ∼      

5 55 5 5
1 1 1 1_ 5R RR R R

t t tRRV mτ ω α β τ− −= + +  

where Xt is the daily return, Rt is the daily range, RRV_30mt and RRV_5mt are the realized range volatility for 

30-min and 5-min frequency, respectively. Panel A, B, C and D report the estimation of parameters in 

ARMA(1,1)-GARCH(1,1), CARR(1,1), RR_30m(1,1) and RR_5m(1,1) models. EWMA model is not required 

to estimate unknown parameters, so it is not shown below. Numbers in parentheses are p-values. 

Panel A ARMA(1,1)-GARCH(1,1) 

  S&P 500 Nasdaq 

µ 0.0614  0.1220  

 (0.0301) (0.0022) 

ψ1 -0.9076  0.7381  

 (0.0000) (0.0000) 

θ1 0.8858  -0.7843  

 (0.0000) (0.0000) 

ω
G 0.0615  0.0649  

 (0.0000) (0.0020) 

α1
G 0.0925  0.0765  

 (0.0000) (0.0000) 

β1
G 0.8726  0.9142  

  (0.0000) (0.0000) 
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Table 2:   

(continued) 

 

Panel B CARR(1,1) 

  S&P 500 Nasdaq 

ω
C 0.0571  0.0799  

 (0.0001) (0.0003) 

α1
C 0.1695  0.2145  

 (0.0000) (0.0000) 

β1
C 0.7952  0.7590  

  (0.0000) (0.0000) 

Panel C RR_30m(1,1) 

  S&P 500 Nasdaq 

ω
R30 0.0662  0.1261  

 (0.0000) (0.0000) 

α1
R30 0.3098  0.4091  

 (0.0000) (0.0000) 

β1
R30 0.6516  0.5513  

  (0.0000) (0.0000) 

Panel D RR_5m(1,1) 

  S&P 500 Nasdaq 

ω
R5 0.0793  0.1217  

 (0.0000) (0.0000) 

α1
R5 0.3898  0.4342  

 (0.0000) (0.0000) 

β1
R5 0.5645  0.5279  

  (0.0000) (0.0000) 
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Table 3: 

Descriptive Statistics for Standard Residual Item of Daily Returns in different models of S&P 

500 and Nasdaq Index, 1997/01/02-2003/12/31  

ARMA(1,1)-EWMA : 
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where � tµ , ɵ tξ , � tσ , ɵ tϕ , 
�30R

tτ  and 
�5R

tτ  are estimated by those models above, Xt is the daily return, and zt 

is the standard residual item. The decay factor λ in EWMA model is set to be 0.94. Panel A and B report the 

descriptive statistics of S&P 500 and Nasdaq Index, respectively. Std. Dev. denotes standard deviation. 

Jarque-Bera is the test of normality. Q(12) and Q2(12) are the Ljung-Box statistic for auto-correlation test with 

12 lags. Numbers in parentheses are p-values. 

    Panel A - S&P 500 

  
ARMA 

-EWMA 

ARMA 

-GARCH 

ARMA 

-CARR 

ARMA 

-RR_30m 

ARMA 

-RR_5m 

 Mean -0.0478  -0.0440  -0.0440  -0.0452  -0.0448  

 Std. Dev.  1.0384  0.9990  0.9579  0.9647  0.9660  

 Skewness -0.4081  -0.3192  -0.2498  -0.1957  -0.1822  

 Kurtosis 4.9656  4.3351  3.7251  3.5380  3.5420  

 Jarque-Bera 331.9879  160.5067  56.8348  31.2622  30.1309  

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Auto-Correlation Test     

Q(12) 14.3890  14.6150  15.1220  13.9750  14.8030  

 (0.2770) (0.2630) (0.2350) (0.3020) (0.2520) 

Q2(12) 12.0960  10.2340  10.6650  12.4420  11.2760  

  (0.4380) (0.5950) (0.5580) (0.4110) (0.5050) 
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Table 3: 

(continued) 

 

  Panel B - Nasdaq 

  
ARMA 

-EWMA 

ARMA 

-GARCH 

ARMA 

-CARR 

ARMA 

-RR_30m 

ARMA 

-RR_5m 

 Mean -0.0399  -0.0424  -0.0396  -0.0329  -0.0312  

 Std. Dev.  1.0268  0.9995  0.9305  0.9393  0.9425  

 Skewness -0.1734  -0.1507  -0.1401  -0.1066  -0.0939  

 Kurtosis 3.8944  3.4617  3.0817  2.9131  2.9365  

 Jarque-Bera 67.4501  22.2819  6.2434  3.7458  2.7750  

  (0.0000) (0.0000)  (0.0441)  (0.1537)  (0.2497) 

Auto-Correlation Test     

Q(12) 7.4781  8.0460  9.0003  8.9905  8.9606  

 (0.8240) (0.7820) (0.7030) (0.7040) (0.7060) 

Q2(12) 19.1900  13.6340  13.7970  15.2810  15.0560  

  (0.0840) (0.3250) (0.3140) (0.2260) (0.2380) 

 

 



 48

Table 4: 

Estimation of Tail Index for S&P 500 and Nasdaq Index, 1997/01/02-2003/12/31 

1

1
( ) ln( ( 1)) ln( ( ))

k

j

k X n j X n k
k

γ
=

= − + − −∑  

0 1( ) ( ), 1,...,k k k kγ β β ε κ= + + =  

β0  is the estimation of tail index by using the standard residual series in ARMA(1,1)-EWMA, 

ARMA(1,1)-GARCH(1,1), ARMA(1,1)-CARR(1,1), ARMA(1,1)-RR_30m(1,1) and ARMA(1,1)-RR_5m(1,1) 

models. ν is the inverse value of β0 and the degree of freedom in student-t distribution. The estimates below are 

using data from 1997/01/02 to 2003/12/31. 

S&P 500  

 EWMA GARCH CARR RR_30m RR_5m 

β0 0.3036  0.2653  0.2447  0.2293  0.2412  

ν 3.2935  3.7690  4.0858  4.3608  4.1467  

      

Nasdaq 

 EWMA GARCH CARR RR_30m RR_5m 

β0 0.2006  0.1346  0.1322  0.1033  0.1196  

ν 4.9855  7.4280  7.5623  9.6794  8.3618  

 

 



 49

Table 5: 

The Average of Estimated VaR of S&P 500 and Nasdaq Index 

 

The average VaR of total sample period and individual year are presented. In this table, the absolute value of 

VaR (positive-valued) is shown below. Panel A and B report the average VaR of S&P 500 and Nasdaq Index, 

respectively. 

 

Panel A – S&P 500 

 average VaR - 95% 

  Total 1998 1999 2000 2001 2002 2003 

EWMA-normal 2.0905 1.9646 1.8962 2.1636 2.2363 2.5226 1.7634 

GARCH-normal 2.1351 2.1024 1.9989 2.1069 2.2489 2.4872 1.8684 

CARR-normal 2.1826 2.1381 2.0285 2.2014 2.2485 2.6122 1.8683 

RR_30m-normal 2.1777 2.1336 2.0119 2.2137 2.2320 2.6316 1.8451 

RR_5m-normal 2.1780 2.1476 2.0138 2.2209 2.2305 2.6278 1.8286 

EWMA-VaR-x 2.2182 3.1776 1.8431 1.9984 2.0805 2.4403 1.7558 

GARCH-VaR-x 2.1909 3.0158 1.9537 1.8840 2.0048 2.4182 1.8559 

CARR-VaR-x 2.0149 1.3708 1.9346 2.1504 2.1828 2.5977 1.8633 

RR_30m-VaR-x 2.0960 1.8351 1.9947 2.1638 2.1498 2.5997 1.8369 

RR_5m-VaR-x 2.1031 1.9823 1.9846 2.1808 2.1706 2.4941 1.8088 

 
 

 
      

 average VaR - 97.5% 

  Total 1998 1999 2000 2001 2002 2003 

EWMA-normal 2.4908 2.3408 2.2593 2.5780 2.6645 3.0056 2.1011 

GARCH-normal 2.5439 2.5050 2.3816 2.5104 2.6796 2.9635 2.2262 

CARR-normal 2.6005 2.5475 2.4170 2.6229 2.6791 3.1124 2.2261 

RR_30m-normal 2.5948 2.5422 2.3971 2.6376 2.6594 3.1355 2.1984 

RR_5m-normal 2.5951 2.5589 2.3994 2.6462 2.6576 3.1310 2.1788 

EWMA-VaR-x 3.2501 5.8983 2.4002 2.9918 2.8126 3.2095 2.1494 

GARCH-VaR-x 3.1016 5.5330 2.4804 2.4269 2.7766 3.0959 2.2625 

CARR-VaR-x 2.6099 2.0150 2.4718 2.7376 2.9160 3.2757 2.2554 

RR_30m-VaR-x 2.6854 2.5607 2.4509 2.7529 2.7529 3.3566 2.2410 

RR_5m-VaR-x 2.6955 2.7657 2.4622 2.7588 2.7456 3.2488 2.1917 
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Table 5: 

(continued) 

 

 average VaR - 99% 

  Total 1998 1999 2000 2001 2002 2003 

EWMA-normal 2.9559 2.7779 2.6812 3.0593 3.1621 3.5669 2.4934 

GARCH-normal 3.0190 2.9728 2.8264 2.9792 3.1799 3.5169 2.6419 

CARR-normal 3.0861 3.0232 2.8683 3.1127 3.1794 3.6936 2.6418 

RR_30m-normal 3.0793 3.0169 2.8448 3.1301 3.1559 3.7210 2.6089 

RR_5m-normal 3.0797 3.0367 2.8474 3.1404 3.1538 3.7156 2.5857 

EWMA-VaR-x 5.5669 13.6267 3.2605 5.3126 4.0252 4.3979 2.6578 

GARCH-VaR-x 5.0499 12.6356 3.2346 3.2503 4.2254 4.0765 2.7737 

CARR-VaR-x 3.5504 3.3920 3.2485 3.5835 4.1283 4.2215 2.7398 

RR_30m-VaR-x 3.5595 3.8553 3.0383 3.5898 3.6320 4.4837 2.7556 

RR_5m-VaR-x 3.5750 4.1645 3.0956 3.5681 3.5516 4.3933 2.6694 

 

 

Panel B – Nasdaq 

 average VaR - 95% 

  Total 1998 1999 2000 2001 2002 2003 

EWMA-normal 4.1276 3.1161 3.4272 5.4083 5.8034 4.3808 2.6682 

GARCH-normal 4.1884 3.0189 3.5761 5.3938 5.9496 4.3211 2.9125 

CARR-normal 4.2096 3.0749 3.6114 5.5295 5.8093 4.4097 2.8615 

RR_30m-normal 4.2185 3.1635 3.6191 5.5623 5.7974 4.3618 2.8448 

RR_5m-normal 4.2294 3.2158 3.6016 5.6160 5.7992 4.3554 2.8252 

EWMA-VaR-x 3.7958 2.8313 2.3963 5.2670 5.6273 4.0353 2.6580 

GARCH-VaR-x 4.0191 2.7196 3.0801 5.3334 5.9062 4.2183 2.9023 

CARR-VaR-x 4.0994 2.9378 3.2937 5.4785 5.7579 4.3254 2.8432 

RR_30m-VaR-x 4.1542 2.9677 3.5619 5.5165 5.7708 4.3259 2.8221 

RR_5m-VaR-x 4.1464 2.9231 3.5019 5.5864 5.7815 4.3225 2.8038 
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Table 5: 

(continued) 

 

  average VaR - 97.5% 

  Total 1998 1999 2000 2001 2002 2003 

EWMA-normal 4.9179 3.7128 4.0835 6.4439 6.9147 5.2197 3.1792 

GARCH-normal 4.9904 3.5970 4.2609 6.4267 7.0889 5.1485 3.4702 

CARR-normal 5.0157 3.6638 4.3030 6.5884 6.9217 5.2541 3.4095 

RR_30m-normal 5.0263 3.7692 4.3122 6.6274 6.9076 5.1970 3.3895 

RR_5m-normal 5.0393 3.8316 4.2913 6.6914 6.9097 5.1894 3.3662 

EWMA-VaR-x 5.1142 4.6938 3.3161 6.7204 7.1913 5.5914 3.2105 

GARCH-VaR-x 5.3332 4.1710 4.2156 6.7848 7.5117 5.8608 3.5040 

CARR-VaR-x 5.1457 3.8193 4.4451 6.6984 7.0589 5.4268 3.4721 

RR_30m-VaR-x 5.1429 3.8587 4.5336 6.7599 7.0045 5.2908 3.4545 

RR_5m-VaR-x 5.1518 3.8940 4.5788 6.7872 6.9599 5.3008 3.4341 

 

 

 

       

  average VaR - 99% 

  Total 1998 1999 2000 2001 2002 2003 

EWMA-normal 5.8363 4.4061 4.8460 7.6472 8.2059 6.1944 3.7728 

GARCH-normal 5.9223 4.2687 5.0566 7.6268 8.4127 6.1099 4.1182 

CARR-normal 5.9523 4.3479 5.1065 7.8187 8.2142 6.2352 4.0461 

RR_30m-normal 5.9649 4.4731 5.1174 7.8650 8.1975 6.1675 4.0225 

RR_5m-normal 5.9803 4.5471 5.0926 7.9409 8.2000 6.1585 3.9948 

EWMA-VaR-x 7.5105 9.4854 4.9418 8.8004 9.5675 8.3928 3.8845 

GARCH-VaR-x 7.5927 7.5551 6.1836 8.8458 9.9513 8.8219 4.2363 

CARR-VaR-x 6.6150 5.1668 6.3858 8.2500 8.7261 6.9443 4.2676 

RR_30m-VaR-x 6.4604 5.2217 5.9262 8.3500 8.5320 6.5182 4.2617 

RR_5m-VaR-x 6.5199 5.4578 6.2460 8.2798 8.3806 6.5584 4.2390 
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Table 6: 

The Number of Failures of Conditional VaR models under 95%, 97.5% and 99% Confidence 

Interval for S&P 500 and Nasdaq Index, 1997/01/02-2003/12/31 

 

  95% level 97.5% level 99% level 

  S&P 500 Nasdaq S&P 500 Nasdaq S&P 500 Nasdaq 

Theoretical 

Number 
76  76  38  38  15  15  

Variance-Covariance Method 

EWMA-normal 77 73 48 38 20 12 

GARCH-normal 79 75 43 39 21 18 

CARR-normal 64 65 33 28 20 12 

RR_30m-normal 63 68 36 29 22 12 

RR_5m-normal 59 73 34 29 20 12 

Extreme Value Theory 

EWMA-VaR-x 85 142 30 79 6 44 

GARCH-VaR-x 83 97 40 36 9 12 

CARR-VaR-x 97 73 44 26 14 7 

RR_30m-VaR-x 75 71 37 25 10 8 

RR_5m-VaR-x 72 81 36 27 7 7 
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Table 7: Results of VaR models for S&P 500 in 95% Confident Interval, 

1997/01/02-2003/12/31  

 

  VaR-normal  VaR-x 

 GARCH EWMA CARR RR_30m RR_5m  GARCH EWMA CARR RR_30m RR_5m 

Theoretical 

Exceptions 
76 76 76 76 76  76 76 76 76 76 

Actual 

Exceptions 
79 77 64 63 59  83 85 97 75 72 

                       

Conservatism            

MRB 0.0036 -0.0213 0.0182 0.0109 0.0115  0.0385 0.0537 -0.0657 -0.0276 -0.0219 

RMSRB 0.1162 0.1347 0.0647 0.0860 0.0965  0.2823 0.3125 0.2184 0.1221 0.1102 

                       

Accuracy            

BLF (%) 5.2283 5.0960 4.2356 4.1694 3.9047  5.4931 5.6254 6.4196 4.9636 4.7651 

mean excess 0.6467 0.6960 0.6811 0.6572 0.6845  0.7698 0.6494 0.6912 0.6826 0.6426 

LRuc 1.9995 1.9999 1.9926 1.9912 1.9836  1.9977 1.9963 1.9837 2.0000 1.9994 

LRind 1.9988 2.0000 1.9992 1.9946 1.9960  1.9879 1.9575 1.9705 1.9999 1.9974 

LRcc 3.9983 3.9999 3.9918 3.9858 3.9796  3.9856 3.9538 3.9542 3.9999 3.9967 

MOC 1.0100 1.0007 0.9588 0.9627 0.9569  1.0226 1.0392 1.1190 0.9975 0.9869 

                       

Efficiency            

MRSB 0.0087 -0.0254 -0.0284 -0.0313 -0.0366  0.0568 0.0897 0.0403 -0.0346 -0.0392 

Error Efficiency 0.5915 0.5826 0.5878 0.5844 0.5840  0.6150 0.6013 0.6115 0.5796 0.5761 
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Table 8: Results of VaR models for Nasdaq in 95% Confident Interval, 

1997/01/02-2003/12/31  

 

  VaR-normal  VaR-x 

 GARCH EWMA CARR RR_30m RR_5m  GARCH EWMA CARR RR_30m RR_5m 

Theoretical 

Exceptions 
76 76 76 76 76  76 76 76 76 76 

Actual 

Exceptions 
75 73 65 68 73  97 142 73 71 81 

                       

Conservatism            

MRB 0.0256 0.0107 0.0281 0.0274 0.0288  -0.0305 -0.0989 -0.0029 0.0087 0.0030 

RMSRB 0.1432 0.1327 0.0956 0.1040 0.1082  0.1765 0.3890 0.0984 0.1152 0.1345 

                       

Accuracy            

BLF (%) 4.9636 4.8312 4.3018 4.5003 4.8312  6.4196 9.3977 4.8312 4.6989 5.3607 

mean excess 1.1356 1.0446 0.9863 0.8905 0.8402  1.0881 1.1492 0.9706 0.9160 0.8460 

LRuc 2.0000 1.9997 1.9940 1.9970 1.9997  1.9837 1.9002 1.9997 1.9990 1.9987 

LRind 1.9994 1.9997 1.9999 1.9984 1.9997  1.9965 1.9620 1.9997 1.9976 1.9980 

LRcc 3.9994 3.9994 3.9939 3.9954 3.9994  3.9802 3.8623 3.9994 3.9966 3.9967 

MOC 0.9913 0.9918 0.9601 0.9772 0.9876  1.1072 1.3727 0.9785 0.9894 1.0097 

                       

Efficiency            

MRSB -0.0146 -0.0288 -0.0427 -0.0262 -0.0145  0.0383 0.1910 -0.0538 -0.0317 -0.0171 

Error Efficiency 0.5750 0.5654 0.5627 0.5610 0.5628  0.5674 0.7851 0.5547 0.5573 0.5614 
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Table 9: Results of VaR models for S&P 500 in 97.5% Confident Interval, 

1997/01/02-2003/12/31  

 

  VaR-normal  VaR-x 

 GARCH EWMA CARR RR_30m RR_5m  GARCH EWMA CARR RR_30m RR_5m 

Theoretical 

Exceptions 
38 38 38 38 38  38 38 38 38 38 

Actual 

Exceptions 
43 48 33 36 34  40 30 44 37 36 

                       

Conservatism            

MRB -0.0524 -0.0747 -0.0391 -0.0460 -0.0455  0.1340 0.1853 -0.0349 -0.0152 -0.0114 

RMSRB 0.1498 0.1702 0.1066 0.1212 0.1271  0.4340 0.4970 0.2217 0.1318 0.1175 

                       

Accuracy            

BLF (%) 2.8458 3.1767 2.1840 2.3825 2.2502  2.6473 1.9854 2.9120 2.4487 2.3825 

mean excess 0.6678 0.6628 0.7648 0.6734 0.7032  0.7694 0.5923 0.7738 0.6677 0.5800 

LRuc 1.9964 1.9878 1.9959 1.9995 1.9975  1.9993 1.9881 1.9950 1.9999 1.9995 

LRind 1.9998 1.9990 1.9994 1.9999 1.9996  2.0000 1.9852 1.9797 1.9999 1.9999 

LRcc 3.9961 3.9867 3.9953 3.9994 3.9971  3.9993 3.9733 3.9747 3.9998 3.9994 

MOC 1.0289 1.0538 0.9648 0.9798 0.9751  1.0075 0.9486 1.0454 0.9944 0.9523 

                       

Efficiency            

MRSB -0.0194 -0.0192 -0.0675 -0.0597 -0.0637  0.1503 0.1323 0.0145 -0.0148 -0.0529 

Error Efficiency 0.6321 0.6244 0.6346 0.6335 0.6334  0.6681 0.6697 0.6475 0.6429 0.6436 
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Table 10: Results of VaR models for Nasdaq in 97.5% Confident Interval, 

1997/01/02-2003/12/31  

 

  VaR-normal  VaR-x 

 GARCH EWMA CARR RR_30m RR_5m  GARCH EWMA CARR RR_30m RR_5m 

Theoretical 

Exceptions 
38 38 38 38 38  38 38 38 38 38 

Actual 

Exceptions 
39 38 28 29 29  36 79 26 25 27 

                       

Conservatism            

MRB -0.0127 -0.0275 -0.0104 -0.0111 -0.0098  0.0440 -0.0202 0.0172 0.0139 0.0166 

RMSRB 0.1440 0.1340 0.0958 0.1040 0.1073  0.2110 0.4659 0.1071 0.1232 0.1492 

                       

Accuracy            

BLF (%) 2.5811 2.5149 1.8531 1.9193 1.9193  2.3825 5.2283 1.7207 1.6545 1.7869 

mean excess 1.0566 0.9108 1.0571 0.8904 0.8787  1.0286 1.1042 1.0251 0.9651 0.9449 

LRuc 1.9998 2.0000 1.9798 1.9843 1.9843  1.9995 1.8923 1.9684 1.9613 1.9745 

LRind 2.0000 1.9948 1.9974 1.9979 1.9979  1.9897 1.9004 1.9960 1.9951 1.9967 

LRcc 3.9998 3.9948 3.9772 3.9822 3.9822  3.9892 3.7927 3.9644 3.9564 3.9712 

MOC 1.0174 1.0000 0.9509 0.9538 0.9366  0.9885 1.7597 0.9314 0.9306 0.9218 

                       

Efficiency            

MRSB -0.0289 -0.0610 -0.0894 -0.0871 -0.1024  -0.0077 0.6369 -0.0829 -0.0860 -0.0915 

Error Efficiency 0.6186 0.6100 0.6140 0.6131 0.6139  0.6302 0.7288 0.6227 0.6207 0.6229 
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Table 11: Results of VaR models for S&P 500 in 99% Confident Interval, 

1997/01/02-2003/12/31  

 

  VaR-normal  VaR-x 

 GARCH EWMA CARR RR_30m RR_5m  GARCH EWMA CARR RR_30m RR_5m 

Theoretical 

Exceptions 
15 15 15 15 15  15 15 15 15 15 

Actual 

Exceptions 
21 20 20 22 20  9 6 14 10 7 

                       

Conservatism            

MRB -0.1306 -0.1499 -0.1194 -0.1259 -0.1255  0.2719 0.3912 0.0038 -0.0079 -0.0078 

RMSRB 0.2344 0.2459 0.2050 0.2126 0.2143  0.6821 0.8156 0.2542 0.1694 0.1522 

                       

Accuracy            

BLF (%) 1.3898 1.3236 1.3236 1.4560 1.3236  0.5956 0.3971 0.9265 0.6618 0.4633 

mean excess 0.7495 0.9248 0.7074 0.5354 0.5824  1.1615 0.8957 1.0965 0.6575 0.6153 

LRuc 1.9815 1.9865 1.9865 1.9761 1.9865  1.9484 1.8318 1.9989 1.9676 1.8840 

LRind 1.9901 1.9950 1.9950 1.9943 1.9950  1.9980 1.9988 1.9027 1.9978 1.9985 

LRcc 3.9716 3.9814 3.9814 3.9704 3.9814  3.9464 3.8306 3.9016 3.9654 3.8826 

MOC 1.0364 1.0409 1.0349 1.0318 1.0343  0.8884 0.8205 0.9849 0.9341 0.9590 

                       

Efficiency            

MRSB -0.0687 -0.0856 -0.0581 -0.0679 -0.0652  0.1833 0.1969 0.0217 -0.0413 -0.0152 

Error Efficiency 0.6773 0.6706 0.6836 0.6825 0.6825  0.7373 0.7530 0.7118 0.7171 0.7186 
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Table 12: Results of VaR models for Nasdaq in 99% Confident Interval, 

1997/01/02-2003/12/31  

 

  VaR-normal  VaR-x 

 GARCH EWMA CARR RR_30m RR_5m  GARCH EWMA CARR RR_30m RR_5m 

Theoretical 

Exceptions 
15 15 15 15 15  15 15 15 15 15 

Actual 

Exceptions 
18 12 12 12 12  12 44 7 8 7 

                       

Conservatism            

MRB -0.0688 -0.0833 -0.0669 -0.0677 -0.0665  0.1616 0.1027 0.0418 0.0152 0.0320 

RMSRB 0.1745 0.1674 0.1359 0.1421 0.1441  0.3386 0.6233 0.1459 0.1440 0.1859 

                       

Accuracy            

BLF (%) 1.1913 0.7942 0.7942 0.7942 0.7942  0.7942 2.9120 0.4633 0.5295 0.4633 

mean excess 1.1381 1.3632 0.9610 0.7978 0.7692  0.9455 1.2216 1.0074 0.5326 1.0661 

LRuc 1.9946 1.9901 1.9901 1.9901 1.9901  1.9901 1.8305 1.8840 1.9215 1.8840 

LRind 1.9838 1.9973 1.9973 1.9973 1.9973  1.9973 1.7788 1.9985 1.9983 1.9985 

LRcc 3.9785 3.9874 3.9874 3.9874 3.9874  3.9874 3.6093 3.8826 3.9198 3.8826 

MOC 1.0643 0.9797 0.9804 0.9778 0.9509  0.9286 2.3250 0.9093 0.9137 0.9011 

                       

Efficiency            

MRSB -0.0942 -0.1813 -0.1630 -0.1656 -0.1877  -0.0278 1.2487 -0.1328 -0.1500 -0.1462 

Error Efficiency 0.6670 0.6607 0.6671 0.6673 0.6676  0.7174 0.7296 0.6990 0.6922 0.6948 
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 Panel A : Close Prices 
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Panel B : Daily Returns 
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Panel C : Daily Ranges 
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Panel D : RRV_30m  
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Panel E : RRV_5m 
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Figure 1: S&P 500 and Nasdaq Index Daily Closing Prices, Returns, Ranges, RRV_30m and 

RRV_5m, 1997/01/02-2003/12/31 
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        95% VaR-normal                     97.5% VaR-normal 
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Figure 2: Daily Returns and VaR-normal Estimates for S&P 500 with GARCH, EWMA, 

CARR model, RR_30m and RR_5m models under 95%, 97.5%, and 99% Confidence Interval 



 62

         95% VaR-normal                     97.5% VaR-normal 
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99% VaR-normal 
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Figure 3: Daily Returns and VaR-normal Estimates for Nasdaq Index with GARCH, EWMA, 

CARR model, RR_30m and RR_5m models under 95%, 97.5%, and 99% Confidence Interval 
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         95% VaR-x                          97.5% VaR-x 
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99% VaR-x 
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Figure 4: Daily Returns and VaR-x Estimates for S&P 500 Index with GARCH, EWMA, 

CARR model, RR_30m and RR_5m models under 95%, 97.5%, and 99% Confidence Interval 
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           95% VaR-x                          97.5% VaR-x 
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99% VaR-x 
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Figure 5: Daily Returns and VaR-x Estimates for Nasdaq Index with GARCH, EWMA, 

CARR model, RR_30m and RR_5m models under 95%, 97.5%, and 99% Confidence Interval 

 


