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Estimating Value at Risk with Realized Range

Student: Yu-Ju Chen AdvisorDr. Ray Yeu-tien Chou

Institute of Business and Management
National Chiao Tung University

ABSTRACT

This paper investigates the concept of realizegeanto the Value-at-Risk estimation. We
follow the bias-correction method of Martens anch \ijk (2007) and use MEM model
( Multiplicative Error Model) to forecast volatility and VaR estimation. In adlalit, we apply
two different VaR methods t0 make the. comparisoariance-covariance method and
Extreme value theory. In empirical research,'we thee intra-day data of S&P 500 and
Nasdaqg Index to compare the forecast ability of ek realized range, daily return and
daily range data. The comparing result shows thalized-range-based VaR model performs

better than other models.

Keywords: Realized range, Intra-day data, Value at Risk, Extreme value theory, Range,
Volatility
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I . Introduction

In recent ten years, a number of economies have highly volatile financial markets,
for example, the ‘dot-com’ bubble in 2000 and thd@ime mortgage crisis during 2007.
What happens to a country may affect the wholenfired markets. That causes the increasing
of price fluctuation and instability. Most invessocare about their expected investment
returns and the risk they bear. The financial ingons emphasize not only on the profit, but
also on their ability to suffer large losses. There, risk management becomes a popular and
important issue for investors, financial institutsoand regulators. How to establish a proper
system to control the risk is one of the most ingatr goals of academic research and the
regulators. A major concern for regulators and awrad financial institutions has had two
dimensions: the adequacy of minimum ‘eapital requéets as designed by the Basle
Committee and the adoption :of the Value-at-RisKlédaVaR) method calculating market
risks. That’s the reason why the VaR method tunbs & main risk management technique to

avoid the potential damage from bank runs and-saie risks.

VaR is a summary measure of downside risks expless@ercentage. VaR measures
market risks by determining how much the value gbefolio could fall with a given small
probability as a result of changes in market priocesr a fixed number of days. By Jorion’s
(2007) definition, "VaR is the maximum loss ovetamget horizon such that there is a low,
pre-specified probability that the actual loss Wi larger.” The Basle Committee establishes
a standard rule of measuring VaR to supervise thembers. VaR is simple to explain and is

used by financial institutions extensively.

The development of VaR methods to evaluate anccéstethe risk of unpredicted loss
has moved rapidly. These methods are organizasldmtain classes: parametric prediction of

conditional volatilities such as J. P. Morgan RiskNts method, and non—parametric



prediction of unconditional volatilities like higtoal simulation method. There is no absolute
answer that which VaR model is the best one. Ma@eosome research has shown that
financial returns tend to have fat-tailed distribotrather than normal distribution. Traditional
VaR methods evaluate risks by normal distributiod that may cause undervaluation of true
risks. As a result, the method of estimating tadex has been suggested to capture the true
distribution of extreme low returns. Combining taitlex with VaR models, the VaR-x model

is conducted to measure the downside risks usihgntex. In this paper, VaR-normal and
VaR-x models are measured and compared by varionditmonal volatilities forecast. The

details are discussed in the next section.

Much research has been devoted to forecasting &adumng volatility of asset returns.
Volatility is an important factor in risk_ managemehiow to measure ex-post volatility for
accurate volatility forecasts is ,a popularsissudinancial research. Recently, there is much
research about the use of high-frequency data é&asoring volatility, called realized variance,
the sum of squared intra-day returns. In-theomy,rdalized volatility is more robust than the
volatility measured by the squared daily returnadidition, Parkinson (1980) showed that the
daily high-low range is five times more efficiehan the squared daily return. In according to
previous research, the use of the realized rargestim of high-low ranges for intra-day
intervals, is derived. Moreover, Martens and vaigk 2007) suggested a bias-correction
procedure, scaling the realized range with theapetevel of the daily range, to eliminate the
effects of microstructure frictions. This scalingetimod can remove both upward biases
caused by bid-ask bounce and downward biasesemsitt of infrequent trading. The realized
range significantly improves over realized volafjliespecially for the popular sampling
frequencies of 5-min and 30-min. Although much wbds been done to date, more studies
need to be conducted to apply the advantage ateellange to other financial issue, like risk

management.



The purpose of this study is to ascertain the éxwwed of measuring VaR by the scaled
realized range as compared with VaR measured bydthly return and daily range.
Meanwhile, we consider the fat-tailed charactefirdncial returns and compare VaR models
using normal distribution with student-t distribarii Empirical analysis of the S&P500 and
the Nasdaqg index confirm the advantage of thezedlrange. This topic is identified as being
important to financial risk manager in providingeth a more robust method to measure VaR

and control the risk.

The reminder of this paper is organized as follo@isapter 2 describes the reviewing of
previous research. Chapter 3 introduces the designmethod of the realized range and the
competing models. In addition, two VaR models dr@ldomparison methods are discussed in
this part. Chapter 4 presents the empirical redoltshe S&P500 and the Nasdaq index.

Finally, chapter 5 makes a conclusion.



II. Previous Research

2.1. Volatility Models

\olatility plays an important role in financial mgrch. Traditional econometric models
assume that the variance is constant in samplegdri the late 19 century, it has been well
established that volatility is both time-varying danpredictable. A model named
Autoregressive Conditional Heteroscedasticity GthiARCH) is introduced by Engle (1982).
These are serially uncorrelated processes withcoostant conditional variance. This model
obtained the empirical support by US financial nearkBollerslev (1986) revised ARCH
model by adding past conditional variances in theent conditional variance equation and
proposed Generalized Autoregressive Conditiona¢kdstedasticity (called GARCH) model.
GARCH model makes a proper.explanation about \itlatiluster and has been applied in
many financial markets. An overview of the ARCH-¢ymodels and a thorough survey of
empirical research using financial data_are intoedi) see Bollerslev, Chou, and Kroner
(1992). The advantage of ARCH:family is-its-flexakbihodel of the dynamics of volatilities

and its ease of estimation.

In recent ten years, much research has been detwtading high-frequency data to
measure volatility. The sum of squared intra-daturres, named realized volatility, is
illustrated by Andersen et al. (2001) and it hasolbge a popular issue for estimating volatility.
Realized variance is considered an unbiased ardyhafficient estimator. Barndorff-Nielsen
and Shephard (2002) presented that when the lehdfie intra-day intervals are close to zero,
realized variance converges to the true integratechnce. However, in practical, there are
some market microstructure effects such as bidsaskce distorting the accuracy of realized
variance. Returns at very high frequencies contatathby these noises become biased and

inconsistent, see Hansen and Lunde (2006). Thexrefors popular to construct realized



variance at a moderate frequency, where the negafiect of noise is small enough to be
ignored, but that doesn't lead to loss much of nmiation. Much research has found the
proper sampling frequency to strike a balance betwthe increasing accuracy of high
frequencies and the market microstructure noisepuldr frequencies in empirical research
are the 5-min and 30-min intervals, see Anderseal.ef2003). Furthermore, Lanne (2006)
conducted Multiplicative Error Model (called MEM miel) and the realized variance to
forecast the realized volatility. In this paper, uwse the MEM model to predict the realized

range volatility ordayt+1.

There is an alternative way to measure volatiliging the difference between the
maximum and minimum prices during a certain peribthas been known for a long time in
statistics that range is an unbiased proxy of tbktiity. Parkinson (1980) argued the
superiority of using range as a‘volatility-estintais compared with return. The daily range,
scaled properly, is an unbiased estimator ‘of Mdlaind is five times more efficient than the
squared daily return. Combining with the-range-traltime-varying property, Chou (2005)
proposed the range-based volatility'madel: the @mwal Autoregressive Range model
(called CARR model). By modeling the dynamics prbpelaily range performs better than
return-based proxy in forecasting volatility. Tindel belongs to the family of MEM model
and is easy to estimate. For empirical result, CAR®RIel can produce more robust volatility

forecast than GARCH model.

Considering the use of intra-day data and high+#ange, a new method of estimating
volatility has been developed. Several researchave studied the application of realized
range, the sum of high-low ranges for intra-dagiencies. Christensen and Podolskij (2007)
first derived the theoretical characters of thdized range. According to Parkinson (1980),
the realized range is five times more efficientnthie realized variance with the same

sampling frequencies in theory. However, as sameeasze variance, the realized range is



damaged by the effects of market microstructureandrhis paper also presented the solution
to the downward bias. Corrado and Truong (2007)slothat the intraday high-low range
often provides more significant additional informoatthan the GARCH model. Martens and
van Dijk (2007) suggested a bias-correction prooedio the effects of microstructure
frictions for both downward and upward biases kgliag the realized range with the average
level of the daily range. In addition, from the siation experiment and empirical research,
realized range significantly dominates over reaizariance for the popular frequencies of

5-min and 30-min.

2.2. VaR models

VaR models have been developed since the middl#960s. Because of the Basle
Committee’s (1995,1996) internal.model approacle, timmber of VaR methods for such
calculations has continued to=rise. Popular:VaRhowt can be classified to four groups:
historical simulation method,=Monte Carlo simulatimethod, variance-covariance method
and extreme value theory. Jarion  (2000) gave a goweerview of Value-at-Risk and
introduced these four groups more detailed. Moredwsegle and Manganelli (2004) proposed
a new concept, conditional value at risk by quantdgression (called CAViaR), to solve the
VaR’s statistical problem. CAViaR model focusestha behavior of quantile instead of the
distribution of returns and uses regression quanggtimation to get the parameters of

dynamic autoregressive process. CAViaR is a nevhaoakin risk management issue.

According to Jorion (2000), historical simulatioretinod is one of the nonparametric
methods. It assumes that the variation of futureegrcan be forecasted by actual past prices.
VaR is obtained by sorting returns and picking gheen confidence interval. The advantage
of this method is that it's easy to measure amibésn’t need to make an assumption on return
distribution. This is an improvement over the nornahstribution because historical

information contains fat tails. Its main disadva#as that it may produce serious bias in



small sample. In addition, if the market structisrdifferent from the past, it may decrease the

accuracy.

According to Jorion (2000), Monte Carlo simulatiomethod belongs to parametric
method. The movements in risk factors are geneffabed some prespecified distribution and
financial returns can be simulated by this proc&een the returns are sorted to get the VaR.
This method is the most flexible and can be usedlldimancial goods and all risks, including
non-linear risks. The main drawback is its enormoosputational cost. The users are
required to make assumptions on the stochasticepso@and understand the relationship

between risk factors and returns. Therefore, thethod is subject to model risk.

The RiskMetrics VaR specification is developed . Morgan (1994) and is used into
practice widely. RiskMetrics VaR_model belongs w@rignce-covariance method and bases
assumptions on normality of returns, independericdl @mbserved data and a linear relation
between asset prices and market variables. ThéVRisics method is one of GARCH models
and it uses exponentially weighted moving averaggdldd EWMA) to forecast variance.
EWMA model assumes that recent price volatility kearger impact on forecast of variance,
so the weighted factor is given bigger. EWMA methedhe core part of RiskMetrics VaR

model. Last, as for extreme value theory, we’lcdss this method in next section.

Some literature has been devoted to applying uiaiteartime series model to VaR
estimations. A comparison of VaR specification gsilRCH type models and realized
volatility is conducted by Giot and Laurent (2004jartz, Mittnik, and Paolella (2006)
developed a bias-correction method and used baptstr forecast precisely VaR estimates

with normal-GARCH model.

How to evaluate various VaR models is also a popislsue. Many researchers have

mentioned different points of view and proposediowgs criteria to compare, see Kupiec



(1995), Hendricks (1996), Christoffersen (1998)pép (1999), Neftci (2000), Christoffersen,
Hahn, and Inoue (2001), Berkowitz and O’brien (2002oreover, Engel and Gizycki (1999)
classified three dimensions of evaluating VaR medkl this paper, we follow the classified

method to compare different VaR models.

2.3. Extreme Value Theory

Numerous articles have investigated the true tistion of financial returns so far. They
proposed that the financial returns have the ptygpafr extreme value process and fat tails
instead of normal distribution. Parkinson (198@ogmnized that extreme value contains more
useful information than traditional return-basedadaMoreover, many researchers have
conducted the extreme value behavior of stock niadensen and de Vries (1991) applied
extreme theory in tail behavior of stock returnstéad of considering whole distribution, and
investigated the fatness of distribution -tails. gon (1996) showed that the behavior of
extreme returns is useful to-understand the whalee pmovements including booms and

crashes. The distribution of extreme values isipefg known.

According to Longin (1996), the tail index is helpfo choose a proper model of returns,
like normal distribution, student-t distributionf ARCH process, etc. As the shape of the
distributional tail is varied, different value ofil index is obtained. The fatter the
distributional tail is, the larger the value ofl tmidex is. In addition, the inverse of tail index
estimation is defined as shape parameter, likeldggee of freedom in student-t distribution.
Some research has shown that Hill's estimatorlistéer method to estimate the value of tail
index, see Longin (1996), Kearns and Pagan (199i1)(1975) proposed a simple approach
to measure the behavior of a distributional heamy. tThis approach only requires

understanding the form of tails instead of the \ehatiktribution.

However, McNeil and Frey (2000) illustrated thatlBliestimator would encounter two



problems. One is that Hill's estimator would resalsome biases in small samples; the other
is that it is difficult to decide proper number abservations to measure the tail index. This
means that either long period or high-frequencyadat required. In small samples, the
overestimation of tail thickness is likely to occBecause of this shortcoming, Huisman,
Koedijk, Kool and Palm (2001) proposed a reviseligstimator to obtain tail index. In this
method, the tail index is calculated by weightedrage of some Hill estimates, which differ
in the number of tail observations included. Ingtical, this research showed that the tail
index is obtained reliably even in small samplesrédver, Huisman et al. (1998) suggested

the using of tail index with small samples to estienrisks.

Following the fat-tailed character of financialuets, much research has demonstrated
that measuring VaR with assumption of normal disiion would underestimate the true risks.
Duffie and Pan (1997) reported thatpunder ‘the dd¢d character of market factors’
probability, the variance-covariance method createse problems about underestimation of
risks. Danielsson and de Vries (2000) .compared Metkics model which assumes normal
distribution with extreme value model, and foundittthe latter model forecasts more accurate
risks at high confidence level, like 99%. Thus aincbe seen that financial returns contain
additional downside risks. Combining fat-tailed &wer with VaR model, Huisman et al.
(1998) presented such a measure, VaR-x, to evaluatecial risks under the assumption of
student-t distributed returns. First, estimate vakie of tail index by using revised Hill’s
estimator. Then get the inverse of tail index, degree of freedom of student-t distribution,
and measure the value of risks. The accuracy of¥aRtimates is proofed by the empirical
research on US stocks and bonds. The VaR model exitteme value theory has become

more and more popular.

Except for the fat-tailed issue, the heteroscedagtoperty of financial returns is

concerned. Some literature has been conductedthéthheteroscedasticity and heavy-tailed



character of financial data. Pownall and Koedij&@9Q) focused on the risks of financial crisis,
the periods with additional downside risk to inwest and showed the advantage of using
conditional VaR-x method to capture the nature ofviside risk in financial tsunami.
Moreover, unlike the using of original data in P@aNrand Koedijk (1999), McNeil and Frey
(2000) proposed the concept of using the residefaARCH model to measure the value of
tail index. This procedure is better than methodisctvignore the fat-tailed property or the
stochastic nature of the volatility. In this papee integrate the conditional VaR-x model in
Pownall and Koedijk (1999) with the concept of desils of conditional volatility model in

McNeil and Frey (2000) to measure the value ofsisk
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. Model

All models in this paper are discussed in this tlapThe first part describes all
conditional volatility models. The second part aatuces the extreme value theory and the
estimation of tail index. The third part presertie measure of VaR. The final comparison

results are shown in the last section.

3.1. Conditional Volatility Models

Two methods are used to measure Value-at-Risk cartym@®ne is non-parametric
method, the other is parametric method. Historstadulation method is a popular procedure
of non-parametric model. Past returns are use@recést future returns instead of making
assumptions on the distribution of returns.:Parametethod includes variance-covariance
method and extreme value= method! :In :this: reseaveh, compare five conditional
variance-covariance and conditional extreme valusdets. As a result, the conditional

volatility models are discussed first as follows:

3.1.1. Realized range

Let P; be the security price at tinte To measure one-day realized range, the sum of
high-low ranges for intra-day intervals, we normelthe daily interval to unity. Then for the
ith interval of lengthy on dayt, fori = 1,2,..1 with | = 1/, we define the high pricd;; =
maximum price from(t-1+(i-1) #) to (t-1+i #) and the low pricel;; = minimum price

betweent-1+(i-1) #) and(t-1+i #). An estimator of the so-called realized range is
|
RR=) (In H, =In ;)%, (1)
i=1

the sum of high-low ranges for intra-day intervalbe realized range has two advantages

over the previous return or daily range procedoresolatility estimation. First, the realized

11



range observes all data information, like opense&lohigh and low prices .Second, the
high-low range is more efficient than the squaretumn in any (intra-day) intervals, see
Parkinson (1980). However, the realized range fiscedd more seriously by microstructure
noise. That makes the realized range become adbéestenator, like upward bias because of
bid-ask bounce and downward bias in presence cégnent trading. Martens and van Dijk
(2007) proposed a bias-correcting method to elitaitlae effects of microstructure noise by
scaling the realized range with the ratio of therage level of the daily range and the average
level of the realized range over theprevious trading days. Therefore, the scaled zedli

range is defined as below:

> R&J
R, = == — | RR, 2
[leRFfl

where RR =(In H —In L,)°, which meansthe squared daily range. The iddariged as the

daily range is a good estimator of volatility andt nnfluenced by microstructure noise.
Moreover, the average level of the daily squaredjeaand the realized range vary over time.
In this paper, the previous=66 trading days are used to compute the scalezedalange,

following Martens and van Dijk (2007).

Next, the econometric model for the forecast of idedized range is introduced. Lanne
(2006) developed multiplicative error model (calldEM) with time-varying parameters to

forecast the realized volatility. The realized viity, RRY, with MEM( p, q) model is

evolved as follows,
RRV=r¢, t=1,2,...,T (3)

where the conditional mean equation

T, :aJR+iaiRRR\(_i +Zpﬂqu_j , (4)
i=1 j=1

12



and ¢ is a stochastic positive-valued error term WittE(gt|7z;_l)=1 with
7, ={RRY, j20}. &f, a" and B are the estimated coefficients and are all pasitiv

to ensure positivity ofr,. The parametersJ®, aiR and ,BI.R represent the uncertainty in

realized volatility, the short-term impact effeeind the long-term effect of shocks to the

realized volatility, respectively. For the statioparocess, the sum of the impact parameters is
q p

restricted smaller than 1 ZcriR+z,8jR<l. This model is similar to the CARR model
i=1 j=1

applied to the daily range data, see Chou (2005).

In the previous literature, various distributiomaisumptions on the error term in MEM
model have been conducted. By Engle (2002), thestaaoh quasi-maximum likelihood
estimator is obtained under the assumptions omittoe term to be exponentially distributed.
Instead of assuming exponentially distributed, ‘lear{B006) developed a mixture MEM
model to forecast the realized volatility. This maise-model includes an error term following
a mixture of gamma distributions..In this paper;wge MEM(1,1) model and follow Engle’s

assumption, the error term with exponentially distted, to predict the realized range. We
define the realized range volatility as the squaog of the scaled realized ranﬁ. Let

RRYV be the realized range volatility, and the MEM(Irigdel is shown as follows,

RRY=r¢g, t=1,2,...,T (5)
r, = +a,"RRY  + BT, . (6)

The parametersdf®, a'iR and ,BjR) are in the same meaning as discussed beforehand t
realized volatility here stands for the realizedga volatility (JRF{t ). The sum of impact

parameters,alR+ﬂ1R, represents the persistence of the square rotheofcaled realized

13



range shocks. Also, in order to assure the statjorandition, the restrictiong,” + 5,°<1, is

imposed. In empirical study, the 5-min and 30-nmiteival sample length (called RR_5m and

RR_30m model, respectively) are observed in thiepa

3.1.2. EWMA model

RiskMetrics approach was established by J.P. Motganeasure the risk. It is a special
case of a normal Integrated GARCH (1,1) model whbeevarianceé® are forecasted by
EWMA model and the sum of the coefficients areteebe 1. In this specification, EWMA

model is defined as:
E=(1-N)&2 + A&, (7)

where A is the decay factor. Based onthe difference betvaaily data and weekly data,

is suggested to be a prespecified value of 0.94 @Bd respectively. Because of the
comparison of the 1-day VaR in this papér,is equal to 0.94. Therefore, the EWMA model
does not require estimation unknown parametensdarvolatility equation. Although it is not a
flexible model, it is easy to measure and oftenegi\acceptable forecast value for the

short-term volatility. Nowadays, the RiskMetrics debis used widely in practical.

3.1.3. GARCH model

When a series of asset returns are known to bedsetdastic, it is better to use the

conditional model to forecast volatility. The gemlered autoregressive conditionally

! Notice that in empirical research, the data with first order moment is conducted when using tHevM
model to evaluate volatility. As a result, the foast value {;) need to be adjusted. The adjusted forecast value

Q|

of the realized range volatility i, ., =adjx7,, with adj==. o is defined as the unconditional

,adj

~ol

standard errors of returns arfd is the sample mean of the realized range volatilirecast. We use the
adjusted series(Tl'adj Y ) to be the proxy of the conditional volatility tceasure Value-at-Risk.
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heteroscedastic (called GARCH) model developed hyleBlev (1986) allows the
conditional variance to be dependent on previougevaf the squared errors and previous

own lags, so the conditional variance equation ARGH(p, q) is now

xt::ut+£t £t||t—l~N(O’0-tz) ’ (8)

P q
_ G G
gl =P +) a’e +> B (9)
j=1

i=1
where X, means the daily return on day 4 is known as the conditional mean awaxf

is the conditional variance. For GARCP(q) model, all coefficients would be required to be

q p
non-negative. The unconditional variance gf can be defined undeEaiG +Z,BjG <1,
i=1 j=1

and this is a stationary process., The: parametess, (aiG and ,BjG) characterize the
uncertainty in conditional variance, the short-tampact effect, and the long-term effect of
shocks to the conditional variance, respectivehese parameters are estimated by maximum
likelihood method. GARCH model is more flexible ththe Riskmetrics model. From the
precious literature, GARCH(1,1) model can captime property of the returns and make an
accurate estimation. Therefore, GARCH(1,1) is usettis paper to forecast the conditional

variance, and measure the Value-at-Risk.

3.1.4. CARR model

Instead of the returns, the Conditional AutoregkesRange Model (called CARR model)
is a dynamic model for the high-low range of agm@tes within fixed time intervals, see
Chou (2005). This model is similar to the GARCH ralsdby using the square root of the
range without a constant term in the mean equatad, it belongs to the family of MEM

models, used to evaluate the realized range abteCARR(p, q) model is specified as

R=¢¢& . (10)
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b =cf +Ya R, +Y B )
g~ f@4) 2j1

where R is defined as the daily high-low range agid is the conditional mean of the range.
The restrictions of the parametera, a,° and B,°) are the same as the MEM model
discussed on the realized range. These parameterbec obtained by the Quasi-Maximum
Likelihood Estimation (called QMLE) methodw", a'iC and ,BI.C stand for the uncertainty

in range, the short-term impact effect, and thegiterm effect of shocks to the range,
respectively. From Chou (2005), CARR(1,1) modeufficient to explain the volatility. As a

result, we estimate the range with CARR(1,1) maad¢he empirical study.

3.2. Estimating tail index

The most important thing in VaR-is to estimate finebable biggest loss on the worst
situation. As a result, the tail distribution afidincial returns is considered the most significant
iIssue. Much research has illustrated the fat-tadearacter of financial return distribution.
The extreme value (called EV) theory is mainly dssed on the property of tail distribution,
instead of the whole distribution of returns. Lam@i996) presented that the thickness of tail
is measured as the value of tail index. In thisepawe use the revised Hill's estimator to

evaluate the tail index.

As mentioned before, users don’t need to make gstsomn of financial returns to

measure risks. Instead, true risks are determinedlserving the extreme value. The

thickness of talil is reflected by the estimatiortaif index, y. The fatter the tail is, the larger

the tail index value becomes. Therefore, it is ingoat to estimate accurately the value of tail

index for understanding the tail distribution afdncial returns.
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Hill's estimator is a popular method to measuret#ilindex, proposed by Hill (1975). It
is easy to use for describing the tail behavioregithe values of the extreme order statistics.

Suppose that a sample aof independent observations is drawn from a populatigth

fat-tailed distribution. Letx;, be theith-order statistics of the absolute value of obsgons

such thatx;, = x;_,, fori=2,..., n We choose to contaiobservations from the left tail to

estimate. The Hill's estimator foy is as follows,
1 .
y(k)=EZ|n(X(n- j+1))=In(X(n=K) . (13)
j=1

Huisman, Koedijk, Kool and Palm (2001) pointed that y(k) is a maximum likelihood
estimator for a conditional Pareto distribution.eTthfficulty of using Hill’s estimator is the
proper choice ok. Dacorogna, Muller, 'Pictet- and de Vries (199%pposed an asymptotic

approximated distribution function of the biasie Hill's estimator:
F(x)=1-ax“ (1+ bx?) , (14)

where a and [ are positive ana andh are real numbers. Hall (1990) showed that under

the givenk, the asymptotic expected value and variance oHilts estimator are as follows,

B
1 g LK)
B == — (nj | (15)
1
Var(y(k)):ka2 . (16)

From equation (15) and (16), a smalk preferred for the unbiasedness but a larngebetter
from an efficiency viewpoint. It shows the tradé-oélationship between accuracy and
efficiency. Meanwhile, an important discovery fraime equation (15) is that for ary
exceeding 0, the estimator always encounters thielgm of biasDacorogna, Muller, Pictet

and de Vries (1995) used a simulation method andluded that there is no significanfluence
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of the estimation ofa even with large bias in the assumption of value/f

According to the analysis above, Huisman, Koedfjapl and Palm (2001) proposed a
method of revising the Hill's estimator to solves throblem of choosing the value lofThey

imposed the restrictiorr = 4 on Hill's estimator to make the asymptotic biasehlr ink.

The equation (13) is transferred as
v(k)=B,+Bk+e(k), k=1,..x , (17)

where £, and g, are the parameters ang(k) is the error term in the regression. Instead
of selecting optimak to measure the tail index, Hill's estimates pfk) for k from1to «
are computed. This procedure resolves the probletnade-off relation between bias and

variance by using different values kfto obtain the estimate of tail index. Evaluatidn o

equation (17) ok approaching 0. makes an unbiased estimatg(&) equal to the intercept

B,. As a result, the unbiased estimate -of tail ind@;, is obtained by using weighted

squares least (WLS) method. From the simulationlrés Huisman, Koedijk, Kool and Palm
(2001), the choice of valu& has no‘influence on the estimation of tail indéke using of

kK =n/2 is suggested to get a precise estimate.

As discussed before, the inaccurate VaR may bengutaf the heteroscedastic property
of financial returns is ignored. In our researcle, follow the concept of McNeil and Frey
(2000) that using the standard residual seriesiwfitic.i.d. character to estimate the tail index.
The process of producing i.i.d. standard resideaks is described as follows. Assume that

the dynamics oK are given by
X =th+07Z (18)

where X, is the return on day, g is the conditional meang,® is the conditional

variance, and the innovationg, are a i.i.d. white noise process with zero meash @mit
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variance. We use autoregressive moving averageomghlag period (called ARMA(1,1) ) to
estimate conditional mean. As for the conditionaliance, we use five different conditional
volatility models (EWMA, GARCH, CARR, RR_30m and RBRn ) to estimate. These

models are set detailed below.

ARMA(1,1)-EWMA( 4 =0.94) model is shown as

Xt :/J+ﬂxt—1+€1‘9t—1+£t gt‘ It—1~ N(O@(tz)

(19)
E=(1-N)&’, + A&,
Standard residual series of ARMA(1,1)-EWMA moded abtained as follows,
(2500 Z0)= (Xt-”il_”t‘”” ,...,X‘f/”’t ). (20)
5t—n+1 gt
ARMA(1,1)-GARCH(1,1) model is defined as
Xe=H+@X  +O0& +& & ‘ |y~ N(O’atz) (21)
of = +ajel, + fio,
Standard residual series of ARMA(1,1)-GARCH(1,1)dmloare as follows,
(2 .. )= (Xt—n:-\l_/jt—ml’.u,xt::ut) _ (22)
Ot-n+1 Ot
ARMA(1,1)-CARR(1,1) model is presented below,
conditional mean equationX, = y+@X,_, + G _, + & gt‘ l._,~ N(0,07) , (23)
=@¢& &ll,~ (@
conditional volatility equation:R ¢tct ;| o (E <) . (24)
¢t =w +al R—l+ﬂl ¢t—l
Standard residual series of ARMA(1,1)-CARR(1,1) mlcate shown as follows,
(Z¢C-n+1,---ZC): (Xt—nil_:ut—ml ,m,xt_:ut ) . (25)

¢t—n+1 ¢t

ARMA(1,1)-RR_30m(1,1) model is displayed as
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conditional mean equation: X, = u+@X,_, +6¢,_,+& gt‘ l._,~ N(0,07), (26)

RRV_30 m= TtRSO‘gt & |It—1 - f(luot)

conditional volatility equation: ra0 R30. " (27)
170 =™+ "RRV_30m, + 8,1y
Standard residual series of ARMA(1,1)- RR_30m(inbyel are as follows,
R30 R30Y — Xt—n+1_:zlt—n+1 Xt_/Ajt
R e O (28)
Z-t—n+l Tt
Last, ARMA(1,1)-RR_5m(1,1) model is shown below,
conditional mean equation: X, = g+ @X,_, +G&,_, & gt‘ l._,~ N(0,07), (29)
RRV_5m=r"¢ ¢~ f({,
conditional volatility equation: . Rts ' t| i (Rf) . (30)
17° =w®+a, RRV_5m,+ 5,717
Standard residual series of ARMA(1,1)- RR _5m(1,bdel are as follows,
(25,,...7%) = (Cuona_ e W X My (31)

R5

R5
Tt -n+l Tt

All parameters are defined before in‘the sectidn Bive standard residual series are obtained
by using different conditional volatility models. &M we use the left tail of these standard

residual series to estimate the tail index, instd#fagsing the original financial returns.

3.3. Evaluating Value-at-Risk

After discussing the conditional volatility modeilse now focus on the application of
these volatility models to VaR model. VaR modethe most commonly used technique in
risk management to obtain possible losses in fiahmoarkets. Within a given confidence
interval, VaR measures the market risks by estmgatthe worst expected loss over a period.
Let P; be the asset price for the timeand the expected return at tihes shown as

X, =InR-In R. Given the initial investmenV¥, and a chosen time horizon, the expected
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value of the investment is:
Vi =Vp X1+ X). (32)
We are interested to get the lowest investmentevalutimet+1 at a particular confidence

interval (100(c)%), so the rate of retun,’, resulting in this lowest investment val0g;, :

Vir =Vox (14 X)) (33)
Assuming that the average return is defined/asthe estimate for the VaR relative to the

mean is developed as:

VaR= \x(1+ X,) = \x (1+41). (34)
To simplify, it turns to:

VaR= Vi( X, - ). (35)
The crux of being able to obtain the accurate \&khibeing able to estimate the expected
rate of return X,,. Under a-particular-confidence interval (100(c)%,,, on dayt is
shown :

prob( X, < X,[l) =1-¢ , (36)

O

where { represents the information set on da¥he cumulative distribution function oK,

on dayt shown by F() is written as:

F(X.,)=1-c. (37)
As aresult, X, can be presented with the inverse function below:

X, =F*1-c). (38)

VaR estimation requires knowing the distributiortlo# returns. However, the true distribution
of financial returns is always unknown. That's tie@ason that the returns are assumed to a

particular distribution before measuring VaR. listpaper, we make assumptions that the
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distribution of F(¢) is normal or student-t distributed, respectivélyo evaluating methods
of VaR, variance-covariance with normal distribatiand extreme value theory with student-t

distribution, are discussed below.

3.3.1. Variance-covariance method

J.P. Morgan first proposed a variance-covariancinoak called RiskMetrics, to measure
the VaR. There are three important assumptionshim method. First, the distribution of
financial returns is assumed to be normal. Secendry observation is considered to be
independent. Last, the variation of market factomd the price variation are assumed to be
linear. Given the average of the returp)(and the varianced®), the estimation of the

. o ~2 . .
sample mean and variance j8 and o , respectively. X}, can be rewritten as

XL =No+u (39)
where N” is the critical value in normal distribution undergiven confidence level. With
O

substituting X,,; in equation (35),.the relative' VaR }\%Nma. By using the conditional

model, the estimation of volatility is time-varyingherefore, the relative VaR forecast of day

t+1 on dayt is shown as follows,
VaR,, = \| NG. (40)
The value ofV, is assumed to be 1 in this paper. We use fiverifft methods to forecast

volatility () : EWMA, GARCH, CARR, RR_30m and RR_5m models.

3.3.2. Extreme value theory ( VaR-x model)

Instead of assuming the distribution to be noriHaisman et al. (1998) presented VaR-x
model which assumed to be student-t distributidre @egree of freedom must be determined

first before estimatingN”™. To evaluate VaR-x, we estimate the tail indexréyised Hill's
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estimator first. Then the student-t distributiordaihe degree of freedom are obtained by

inversing the tail index. The following is the détd steps for evaluating VaR-x. First, the tail

index ﬁo is estimated by the revised Hill's estimator foe tleft tail of standard residual

series. Second, the conditional mean, and the conditional standard errer,, are
forecasted by five conditional volatility modelghifd, let the estimation of degree of freedom

A o . . ~ ~ 1
v in student-t distribution equals the inverse of tedex ;. That meansv =—. Next,
0

find the critical numbes' in the standard student-t distribution with degrees of freedom.

A

* V . X
Because ofS ~ t(O,A—Z), this valueS needs to be transferred to the real cutoff return
V_

X', =S®+u, where ® is a scale factor given b}sz. In the last step, with

substituting X,., in equation (35), the VaR-x i¥;S®.

3.4. Comparison of Value-at-Risk-models

The Basel Committee on Banking Supervision enfor@aeégulation that the financial
institutions need to use backtesting to evaluateatituracy of internal models. Backtesting is
a statistical testing framework that checking wketlthe actual trading losses are in
accordance with the VaR. Each exceedence is callémilure. The closer the number of

failures and the theoretical value are, the béittemodel is.

Except the number of failures, some comparing riaiterere developed in the previous
research. These criteria are classified into thieensions.
3.4.1. Conservatism

The variation in the size of risk estimates obtdibg different models is to evaluate if

any model tends to produce high-level risk estimatdative to other models. We characterize
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those models which make high-risk estimates reditias conservative ones.

3.4.1.1. Mean Relative Bias (called MRB)

The mean relative biasdViRB) method, proposed by Hendricks (1996), captures th
degree to which models produce risk estimatesroilai average level. Givehn days andN

VaR models, th&1RB of modeli is measured as:

VaR, - VaR
MRB _?EW (41)

N
where VaR %z VaR .The biggeMRB is, the more conservative the mad!
i=1

3.4.1.2. Root Mean Squared Relative Bias (callRIiERB)

This criterion evaluates the extent:to-which> mods{ estimates tend to vary around the
average risk measure of all:madels for a given gagsented by Hendricks (1996). The

RMSRBof modeli is computed-as follows,

RMSRB= \/li(wj (42)

T4 VaR

N
where VaR :%Z VaR , T stands for the number of days aNdis the number of VaR

i=1

models. The biggdRMSRBIs, the bigger the divergence of mqamimpared to others is.

3.4.2. Accuracy

Accuracy takes account of whether the VaR estimatedarge enough to cover the true
underlying risks. The number of failures and thee sof those losses are concerned in this
dimension. Under the Banking Supervision’s regalai the failure rate should be equal to or
smaller than the significant level of VaR modelsfddent types of criterion on accuracy are

developed below.
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3.4.2.1. The Binary Loss Functions (called BLF)

The number of failures rather than the size ofd@éifagdures are concerned in this method.
This is a binomial function from the general logadtion to measure the number of failures,

developed by Lopez (1999). That is,

I—i,t+1 -

{1 f AR, <VaR, .

0 if AP, 2VaR,

it+l =
This dummy variable means that when actual excepassi VaR estimates, it is defined as an
outlier or failure. The average binary loss functidmnmodeli is obtained with measuring total
number of outlier divided by, whereT stands for the number of sample days. The average
binary loss function is as same as the failure. rdleen the failure rate is close to the

expected rate, it can be seen as a better.model.

3.4.2.2. Mean Excess

In this criterion, the size of these failures i€dido measure. Mean excess, proposed by
Neftci (2000), is obtained by computing ‘the averajeexceedence which actual losses

surpass VaR estimates. The equation is defined as:
mean excess of model (E, P~ VAR & V& (44)

The smaller mean excess is, the smaller the unteghbasses are.

3.4.2.3. LR test of unconditional coverage (call&].)

Kupiec (1995) developed a likelihood-ratio test tten test whether the sample estimate
is statistically consistent with the given confiderlevel of these models. If a bank’s daily
VaR and returns can be assumed to be independentumber of failures represents a

sequence of independent Bernoulli trials. To evaluhe accuracy of VaR models, we

conduct a test of the null hypothesis that the @bdty of failure on each trialo/t\c :$) Is as
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same as the model's specified probability, . The Likelihood Ratio test statistic is shown
below:
n[@-a)"a,"]
203 -
In[(l—ac)“aC ]

LR = ~ Xia, (45)

where T stands for the number of days ahds the total number of failures. If the null
hypothesis is not rejected, it means that themoissignificant difference between failure rate

and the theoretical rate.

3.4.2.4. LR test of independence (callegd)R

If a model can capture the conditional distributaord time-varying character of returns,
the failures will occur independently and unprealidy in samples. Christoffersen (1998)
presented.R,y test to evaluate the independence of failures hadatcuracy of these VaR
models. The null hypothesis and.the test staigtadefined as:

Hy:m,=m,=1m

|n[(1_ 7)™ 715, (1= 7711)%”1:11} 2

L =24 -
I:ind In [(1_ n—)(”oo+ o) n( Mo+ Ny :I leac
L YR
Nty ’ 46
Tl ot L "
- My
ZZi -
bongEny
= Ny, + 1Ny

n00 + n01+ nlO+ nll

where n; means the total days for the statef the difference between actual returns and

VaR estimates this period and the statd that last period.a, stands for the significant
level in VaR models. If the null hypothesis is mefected, the independence of failures and

the accuracy of VaR models are proven.

3.4.2.5. LR test of conditional coverage (callé&d).
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According to Christoffersen’s (1998) definition,R.c is the combination with the

unconditional coverage LR test and the independeRctest. The test statistic is:
LR. = LRe* LR~ Xza, - (47)

When the null hypothesis is not rejected, it metrat the VaR model can evaluate the

number of failures precisely and capture the charaxf time-varying.

3.4.2.6. Multiple to Obtain Coverage (called MOC)

If the failure rate is not equal to the significéaxel, it is meant that there is a bias for the
VaR estimates. To obtain the magnitude of bias, ddeks (1996) developed th®IOC
method to appraise the accuracy of VaR models.gtesented as follows,

T {1 if AP, <MOG VaR 48)

F =Ta, ,where F= .
' ¢ z 0 ifAR,,.=MOG LVaR

t=1

whereT is the number of days aMdOGC means the multiple to obtain coverage of madel
As theMOC is greater than 1, the VaR estimates.are undesgtahs théVlOC is smaller than
1, the VaR estimates are overvalued. The closerdestiOC and 1 are, the more accurate

VaR model is.

3.4.3. Efficiency

The efficiency of VaR models means the magnitudéhefrequired minimum capital
under the specified accuracy which VaR estimatesceaer actual losses. A more efficient
VaR model provides more precise resource allocasmmals to traders and financial

institutions. Two criteria used in this paper aigcdssed below.

3.4.3.1. Mean Relative Scaled Bias (called MRSB)

This method suggested by Hendricks (1996) combineanntelative biasMRB) and
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multiple to obtain coveragdMOC). TheMRSBof a VaR model is aimed to determine which
approach scaled BYMOC produces the smallest average risk. The equafitRSB of model

i is set as:

T, MOC VaR, - MOQIV
MRS|3=12 Vak - MOGVak
TS MOCVaR (49)

N

MOCVaR = —
N5

MOGOVaR

whereT stands for the number of days awds the number of VaR models. The most efficient

model is the one who has the smald&SB

3.4.3.2. Error Efficiency

The VaR estimates must measure_the largest lostagiveely. However, if the VaR
estimates are overvalued excessively;-VaR will bexomeaningless. We define error
efficiency as measuring the relative distance afi@creturns and VaR estimates, including

profits and losses. It is shown as follows,

AR}~ VaR, |
VaR ’

Nt

(50)

;
error efficiency of modek %z|
t=1

where T stands for the number of days. Error efficiencysiders both the accuracy of
unpredicted losses and the cost of predicted loSd&s smaller the error efficiency is, the
closer between actual returns and all VaR estimatesIn other words, this model can not

only make precise estimates but also have moraezity.
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V. Results

4.1. Data

In this section, we examine daily and intra-day S&B0 and Nasdaq Index from
1997/1/2 to 2003/12/31. As for S&P 500 Index, 40@gs of 1-min for one day are contained
in the database before 2002/10/31; 390 pricesmfrilper day are obtained after 2002/11/1.
As for Nasdaq Index, 390 observations of 1-mingace included in our sample period. We
acquire daily returns, 5-min ranges, 30-min ranged daily ranges from original 1-min
prices. The data employed in our empirical studynpose 140,294 prices per 5 minutes and
24,361 prices per 30 minutes for S&P 500 Index. Nasdaq Index, we conduct 137,358
prices per 5 minutes and 22,893 prices, per 30 m#uDaily data reach a total of 1761

observations for both price indices. These datagrieved from the TickWrite datab&se

4.2. Descriptive Statistics

Figure 1 shows the graphs for:clase ‘prices, datuyrns, daily ranges, realized range
volatility with bias-correction procedure for 304miange and 5-min range (called RRV_30m
and RRV_5m, respectively) of S&P 500 and Nasdagxindver the sample period from
January 2, 1997 to December 31, 2003. The datatofir and range on S&P500 and Nasdaq

Index are defined as follows,

return =100><[ In(F*°*¢)— In(E’i'fse)] ,
range = 100><[ In(P"")— In( " )}

It is often reported as a percentage (%) by muyitigl the above calculation by 100. The

descriptive statistics for the daily returns, ra)ge@RV_30m and RRV_5m of S&P 500 and

2 We thank Professor Huimin Chung in Graduate Initif Finance at National Chiao Tung University fo
providing the database.
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Nasdaq Index are presented in Table 1. It showsutinariate statistics for the time series
data over the sample period 1997-2003. The aveshgeturn for Nasdagq is larger than S&P

500 and Nasdag Index shows more volatile than S&PB. The standard deviations of

range-based variables on both indices are smdilem the daily return. In addition, the

standard deviations of RRV_5m are the smallest.ofleis may imply that the intra-range

data can capture the character of volatility bett@n daily returns and daily ranges. As for
the statistic analysis of normality, all variabfes S&P 500 and Nasdaq Index exhibit highly
significant skewness and kurtosis, especially foe trange-based ones. Moreover, the
normality test, Jarque-Bera test, shows that thmoteses of normal distribution for these
variables are rejected. These four variables aramwonal-distributed.

From the Ljung-Box Q statistics and® @tatistics in Table 1, daily returns and the
squared daily return of these twotindices are Sigarit series autocorrelation. The p-value are
all smaller than 0.1. The return-based data maynbine existence of ARMA effect and
GARCH effect which stands- for ywvelatility-clusteresituation. On the other part, the Q
statistics of range-based data are all significmheans that those range-based variables are
correlated with their own lag value and not indefent. The daily range and realized range
volatility may have the character of CARR effecddiEM effect, respectively. In order to
estimate accurate tail index, original financialuras are standardized first by ARMA(1,1)

and conditional volatility process for obtainingustlard residual seriés

Table 2 shows the estimation of parameters in ARMB(GARCH(1,1), CARR(1,1),
RR_30m(1,1), RR_5m(1,1) models for the standardizanocess. Comparing the sum of
coefficients (@ + ), the sequence from big to small ones for S&P bfex is GARCH,
CARR, RR_30 and RR_5m. For Nasdaq, the order is GARCARR, RR_5m and RR_30m.

The bigger the sum is, the stronger the volatpiysistence effect is. On the other hand, if the

® Much research have demonstrated that ARMA(1,Bufficient to capture the property of autocorreatbf
financial data.
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sum of coefficients is small, the effect of meaveréing is large. As a result, GARCH models
for two indices have the strongest effect of vétgtpersistence. This property is also shown
on the biggest standard deviation in daily retumaddition, the coefficientoa means the
sensitivity to shocks of the short run. RR_5m msad#ltwo indices have the largestvalue

and are the most sensitive models to the shorflmatuation.

The descriptive statistics for standard residwehiof daily return in different models of
S&P 500 and Nasdaq Index are presented in TablEh8. Q statistics of residual items
become insignificant compared to the original dadturns. It means that ARMA(1,1) model
can capture the character of first-order autocati@h of financial returns. The %Gtatistics
are also insignificant, so the squared residuahst@re not in existence of autocorrelation.
ARMA(1,1)-EWMA with 2=0.94, ARMA(1,1)-GARCH(1,1), ARMA(1,1)-CARR(1,1),
ARMA(1,1)-RR_30m(1,1) and ARMA(L;1)-RR_5m(1,1) asefficient to catch the property
of heteroscedasticity and volatility-clustered. Eaver, the Jarque-Bera value for normality
test of residual items is smaller. than the dailymes. However, the hypothesis of normal
distribution is  still rejected, except for ARMA();RR_30m(1,1) and

ARMA(1,1)-RR_5m(1,1) models of Nasdag Index.

4.3. Empirical Analysis

4.3.1. Tail index

From precious analysis, the daily returns of S&P &0d Nasdaqg Index are fat-tailed
distributed. The thickness of tail distributed ¢emeasured by the tail index. In this section,
we use the revised Hill's estimator to estimatet#tieindex and capture the tail shape of these

two indices.

Our purpose in this research is to find a precis¢hod to evaluate downside risks. As a
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result, the left tail of observations is used tbneate tail index and measure the VaR. We use
rolling sample method (Brooks, 2002) with 250 daysstimate the tail index and VaR of day
t+1. Table 4 shows that the returns of both S&P 500 ldasdaq Index for the whole sample
period (1997~2003) are in existence of fat-tailgendy. The estimates off, are bigger
than 0 and between 0.1033 to 0.3036. Accordingdedik, Schafgans, and de Vries (1990),
the distribution of these returns is fatter thamnmal distribution and belongs to student-t
distribution. In addition, the estimated tail indexRR_30m and RR_5m are the smallest two
among other models. This may imply that more pnoisleof heteroscedasticity and

volatility-clustered situation can be solved byngsrealized range method to standardize.

4.3.2. Comparison of VaR models

From precious discussion,.the downside.risks carcdmured by tail index. In this
section, the result of using variance-covarianag extreme value theory to measure VaR is
presented. The average of estimated VaR for alpkaperiod and individual years are listed
in Table 5. Moreover, we use backtesting methocbtapare the ability of forecasting VaR in
different models. For detailed analysis, many oateof comparing VaR are applied and
classified to three different dimensions. We foousthe result if it is better to evaluate VaR
using realized range models and the comparisona®-8ormal with VaR-x models. In this
research, we use rolling sample method and theHeoigeach rolling sample is 250 days.
VaR estimate of the next day is based on the puscib0 prices. By this approach, 1512
volatility and VaR estimates are obtained. Figur@nd 3 show daily returns and VaR-normal
estimates of these conditional volatility models $&P 500 and Nasdaq Index, respectively.
Figure 4 and 5 present daily returns and VaR-xmegis of these conditional volatility
models for S&P 500 and Nasdag Index, respectividlg biases of return-based models are
obvious in evaluating VaR-x. The detailed analggisomparing variance-covariance method

by normal distribution with extreme value theoryMalR-x model is discussed below.
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The models included in our research are describddllaws. The first part is the models
assumed to be normal distribution of financial mesuin different conditional volatility
process: EWMA-normal, GARCH-normal, CARR-normal, R®m-normal, and
RR_5m-normal models. The second part is the madeisbining VaR-x and extreme value
theory in different conditional volatility processEWMA-VaR-x, GARCH-VaR-x,
CARR-VaR-x, RR_30m-VaR-x, and RR_5m-VaR-x modele ¥8e the same order of models
in each rolling sample. Table 6 presents the nurobéailures in these ten conditional VaR
models. In 95% confidence level for S&P 500, th&ufa number of EWMA-normal model
and RR_30m-VaR-x model (77 and 75, respectivelg)the most closest to the theoretical
number (76). The third and fourth better ones a#drRGH-normal and RR_5m-VaR-x models
in sequence. As for Nasdaqg Index, GARCH-normal rmaléhe best one. The second best
models are EWMA-normal, RR_5m-normal‘and CARR-VaRwodels. We conclude that it is
better to evaluate risks under normal-distributeduaption in 95% confidence level. In
97.5% confidence level for S&P~-500, RR-30m-VaR-x delo performs the best.
RR_30m-normal, RR_5m-VaR-x‘and GARCH-VaR-x modetsthe next. For Nasdaq Index,
EWMA-normal is the best one. The second and thetleb ones are GARCH-normal and
GARCH-VaR-x models in sequence. In 99% confidemsell for S&P 500, the closest one is
CARR-VaR-x model. The next are GARCH-normal, CAR&mal, RR_5m-normal and
RR_30m-VaR-x models. As for Nasdaq Index, the finaemal ones and GARCH-VaR-x
model perform nearly. As a whole, the normal-dmtted models and the extreme value ones
perform about the same in 97.5% and 99% level.dditmn, RR_30m-VaR-x is the most
precise model in different confidence level for SBH#0. EWMA-normal and RR_5m-VaR-x
are the second better. For Nasdaq Index, EWMA-nbemd GARCH-normal are the best.
RR_5m-normal and GARCH-VaR-x are the second omesnipirical research of the failure
number, realized range model performs better foP &0 than Nasdaqg Index. In detall,

realized range models with extreme value theoryrayee proper for S&P 500 and those with
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normal distribution are more suitable for Nasdadgeh

Except for the number of failures, there are oftesting dimensions to evaluate VaR
models. When computing equation of some criteriee MRB in equation (41)RMSRBIn
equation (42)LR, in equation (45)MRSBIn equation (49) and error efficiency in equation
(50), the number of sample dayss 1512 and the number of VaR modidigquals to 10. The
backtesting results of VaR models are listed inddbto 12. Considering the conservatism of
VaR models of S&P500 in 95% level in Table 7, therage of all models’ mean relative bias
(MRB) are from -0.0657 to 0.0537. EWMA-VaR-x, GARSHR-x, CARR-normal, and
RR_5m-normal models are more conservative becafisis darge MRB in sequence.
According to root mean squared relative bias, CARRmal, RR_5m-normal,
RR_30m-normal model, RR_5m-VaR-x.and GARCH-normal the least divergent method.
The range-based models with, normal:distributiorfgger more conservative than others in

95% confident interval.

In the accuracy analysis of"VaR 'models, the comgasult of the binary loss functions
(BLF) is as same as the number of failures disclabeve. RR_30m-VaR-x, EWMA-normal,
GARCH-normal and RR_5m-VaR-x are the most accuratequence. When discussing the
mean excess, RR_5m-VaR-x, GARCH-normal, EWMA-VaRnd RR_30m-normal model
are the smallest ones in sequence in 95% percelntitegard to the LR test of unconditional
coverage, independence, and conditional coverdigapdels’ assumption are not rejected. In
other words, all VaR models pass the statistic #estording to MOC criterion, the result is
that EWMA-normal and RR_30m-VaR-x models are thethkmes. GARCH-normal and
RR_5m-VaR-x are the third and fourth models in 9%centile. As a whole for accuracy test,
GARCH-normal, RR_5m-VaR-x, RR_30m-VaR-x and EWMAsmal models perform well

on accuracy test in sequence.

For the efficiency of VaR models, the best twaceght models are RR_30m-VaR-x and
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RR_5m-VaR-x models. The next two are RR_5m-normal BR_30m-normal models. The
realized range model performs efficient among @h& summarize, the whole performance
of realized range models with normal distritubios close to EWMA-normal and
GARCH-normal. However, realized range with VaR-x daels dominate over others.

RR_5m-VaR-x model is the best one.

As for Nasdaq in Table 8, the average of all mddeésan relative bias (MRB) are from
-0.0989 to 0.0288. RR_5m-normal, CARR-normal and B#n-normal models are the most
conservative ones according to large MRB. For rooéan squared relative bias,
RR_5m-normal, RR_30m-normal and CARR-VaR-x modetsthe least divergent method.
The range-based models with normal distributiorfgger more conservative than others. In
the accuracy analysis of VaR models, GARCH-noras)MA-normal, RR_5m-normal and
CARR-VaR-x can produce more accurate valueaccgrirBLF. As to mean excess, the four
realized range models perform well. As same as $RP&Ill LR tests are passed. In regard to
MOC, EWMA-normal, GARCH-normal,-RR 5m-VaR-x and R®m-VaR-x models are
closest to 1. Realized-range-based VaR-x modelsranun-based normal models perform
about the same in accuracy. As for efficiency t€&tRR-VaR-x and RR_30m-VaR-x models
are the most efficient ones. To conclude the resduliable 8, CARR-VaR-x, RR_5m-normal,
EWMA-normal and RR_30m-VaR-x are the top four med&r Nasdag Index in 95%

percentile.

Considering the conservatism of VaR models of S&P50 97.5% level in Table 9,
GARCH-VaR-x and EWMA-VaR-x models produce largesier in MRB. As for RMSRB,
the value of CARR-normal, RR_5m-VaR-x, RR_5m-normall RR_30m-normal are the
smallest in sequence. Considering the accuracy,3BR-VaR-x is the most precise model.
RR_30-normal, RR_5m-VaR-x and GARCH-VaR-x modelsfgen well, too. For the

efficiency test, CARR-normal, RR_5m-normal and RBn3normal models have the smallest
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value of MRSB and error efficiency. As a whole,limd range models perform much better
than return-based and CARR models. RR_30m-normalRiR_5m-VaR-x models are the

best two on estimating VaR of S&P 500 in 97.5% wmterice interval.

As for Nasdaq Index in 97.5% level in Table 10, GARaR-x model is the most
conservative one. In regard to accuracy, EWMA-ndyiGARCH-normal, RR_30m-normal
and GARCH-VaR-x models perform much better tharexhFor efficiency, CARR-normal,
RR_30m-normal and RR_5m-normal models are moreiefffi. To summarize the result in
Table 10, EWMA-normal and RR_30m-normal are thet bbeedels. CARR-normal and

RR_5m-normal models are the next best ones.

Table 11 shows the result of S&P 500 in 99% leviéar conservatism test,
EWMA-VaR-x and GARCH-VaR-x . models are the most emative and divergent ones. As
to accuracy, RR_5m-normal As the ‘most precise moO¢her range-based models also
perform well. According to efficiency,- GARCH-normatWMA-normal, RR_30m-normal
and RR_5m-normal models “produce smaller value of SBRand error efficiency.
RR_5m-normal and RR_30m-normal model are the mmgigr ones to evaluate the risks of
S&P 500 in 99% confident interval. In addition, netsl with normal distribution perform

better than the VaR-x models.

Last, the result of Nasdaq in 99% level is presirielable 12. As for conservatism test,
EWMA-VaR-x and GARCH-VaR-x models are the most @muative and divergent ones. For
accuracy test, RR_5m-normal and RR_30m-normal nsogielduce more precise estimates.
According to efficiency test, EWMA-normal, CARR-moal and RR_30m-normal models
perform well. As a whole, the performance of RRn@®mal, RR_5m-normal and
CARR-normal is much better than others. Moreovernal-distributed models are better

than extreme value theory.
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Various criteria are used to show different impoce of VaR dimensions. Meanwhile,
accuracy is more popular and important among these dimensions. Users of VaR models
often focus on the difference between failure ratel theoretical rate first. Moreover,
financial institutions always don’t want to be censtive because they have to spend more
costs to reach the restriction of required minimaapital. In practical, conservatism and
efficiency seem to be paid less attention. To amhel realized range models can produce
better evaluation of financial risks. In 95% cowfid interval, realized range models with
normal distribution perform as well as other normabdels. In regard to VaR-x models,
range-based ones are better than return-base méthdde increasing of percentile, realized
range models dominate over return-based modelsGHER model. Moreover, in 99%
confident level, RR_30m-normal and RR_5m-normal etedare sufficient to capture the
downside risks. It may imply thatirealized rangedels with normal distribution can evaluate

VaR much better than VaR-x models in high confidewmel.
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V. Conclusion

Considering the additional downside risks is a magart in measuring VaR. Much
research has proposed the property of heterosegtiaand volatility-clustered in financial
returns. As a result, finding a proper method thatble to capture the character of financial
data is significant. In addition, the realized rang presented to be a proxy of variance in
recent years. In this paper, we do empirical rete@n S&P 500 and Nasdaqg Index and
compare different conditional VaR models. We use rtiost popular frequency, 30-min and
5-min range, to measure the realized range. Intipehcresearch, realized range models
improve its performance compared with others ascth@ident level increases. It indicates
that intra-day range data contain more informattban daily return and daily range.
Moreover, we find a surprising.result that realizetige models with normal distribution
perform better than the VaR-x-models in high caafidinterval. The possible reason may be
that intra-day range is more sensitive to outliéitss discovery may imply that even though
the financial returns are existence of fat-tailecbperty, it can still be captured by

normal-distributed realized range model.

Our contribution in this paper is applying realizethge method forecasted by MEM
model to VaR model. The new method of measuringsris proved precise by three
dimensions of comparing criteria in empirical stu@omparing VaR-normal with VaR-x
model, normal-distributed realized range models mauce much better estimates than the
other in higher percentile. However, a detailedlysia of this question is left for future
research. In addition, the restriction of this papdhat the result is data-oriented. To obtain a
more reliable result, Monte Carlo method is an rafieve for measuring VaR. With
simulating repeated process, the distribution fiencand the required cutoff values can be

estimated. This method can be conducted in fuegearch.
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Table 1:
Descriptive Statistics for Daily Returns, Daily Rg@s, Realized Range \olatility for 30-min

range and 5-min range (called RRV_30m and RRV_Bspectively) of S&P 500 and Nasdaq

Index, 1997/01/02-2003/12/31

RRf:_'z (n H,-In L,)?
R, {—Zt;lRRlJ RH
Z|:1RF{1

RRV=,/ RE,
where RF{"t is the scaled realized range (after bias-corraftend RRV is the realized range volatility.

RRV_30mandRRV_5mstand for the 30-min and 5-min frequency of dataduto measur@R\. Panel A and B
report the descriptive statistics of S&P 500 andsdda Index, respectively. The four variables arelaily
percentage units. Std. Dev. denotes standard d@vidarque-Bera is the test of normality. Q(12) @Y(12) are

the Ljung-Box statistic for auto-correlation testhwi2 lags. Numbers in parentheses@ralues.

Panel A - S&P 500

RETURN RANGE RRV_30m RRV_5m
Mean(%) 0.0233 1.6285 1.7075 1.7246
Median(%o) 0.0355 1.4593 1.5447 1.5699
Maximum(%) 5.3080 8.4792 8.7396 13.5441
Minimum(%) -7.1127 0.2800 0.3787 0.3499
Std. Dev. (%) 1.3010 0.8604 0.7566 0.7497
Skewness -0.0675 2.1811 2.2542 3.6054
Kurtosis 5.0744 12.1611 12.6527 41.8617
Jarque-Bera 316.8883 7554.1897 8016.032910332.2280

(0.0000) (0.0000) (0.0000) (0.0000)
Auto-Correlation Test
Q(12) 21.7515 2187.5000 4681.5000 4940.3000

(0.0400) (0.0000) (0.0000) (0.0000)
Q%(12) 272.2200

(0.0000)
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Table 1:

(continued)

Panel B - Nasdaq

RETURN RANGE RRV_30m RRV_5m
Mean(%) 0.0332 3.0416 3.1548 3.1748
Median(%) 0.1424 2.6787 2.8001 2.8226
Maximum(%o) 17.2434 19.2172 17.6370 14.5331
Minimum(%) -10.4345 0.5445 0.6695 0.5732
Std. Dev. (%) 2.5544 1.6586 1.5263 1.5230
Skewness 0.1486 2.1306 2.0078 1.7255
Kurtosis 5.3436 12.7884 11.7380 8.2205
Jarque-Bera 409.2518 8362.6136 6531.26722765.9193

(0.0000) (0.0000) (0.0000) (0.0000)
Auto-Correlation Test
Q(12) 27.6100 4194.9000 6646.7000 7664.3000

(0.0060) (0.0000) (0.0000) (0.0000)
Q%(12) 534.2000

(0.0000)
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Table 2:

Estimation of Conditional Models for the StandanalizProcess

X, = u+@X o+ 05, +& &1~ N(O,07)
of = +ajel, + fo,

R=¢& &lla~ fLE)

¢ =" +a R +Bf .

RRV_30m =7, &l ~ fLo)

10 = o+ g °RRV_30m, + B,
RRV_5m=1¢ &l ~ flx)

1 =¥+ @ RRV_5m, + 5,1

whereX; is the daily returnR, is the daily rangeRRV_30mandRRV_5mare the realized range volatility for
30-min and 5-min frequency, respectively. PanelBA, C and D report the estimation of parameters in
ARMA(1,1)-GARCH(1,1), CARR(1,1), RR_30m(1,1) and R#n(1,1) models. EWMA model is not required

to estimate unknown parameters, so itids not shieslow. Numbers in parentheses prealues.

Panel A ARMA(1;1)-GARCH(1,1)

S&P 500 Nasdaq

u 0.0614 0.1220
(0.0301) (0.0022)

w1 -0.9076 0.7381
(0.0000) (0.0000)

0, 0.8858 -0.7843
(0.0000) (0.0000)

® 0.0615 0.0649
(0.0000) (0.0020)

o 0.0925 0.0765
(0.0000) (0.0000)

i 0.8726 0.9142
(0.0000) (0.0000)
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Table 2:

(continued)

Panel B CARR(1,1)
S&P 500 Nasdaq
o 0.0571 0.0799
(0.0001) (0.0003)
0:© 0.1695 0.2145
(0.0000) (0.0000)
i 0.7952 0.7590
(0.0000) (0.0000)

Panel C RR_30m(1,1)
S&P 500 Nasdaq
™% 0.0662 0.1261
(0.0000) (0.0000)
0" 0.3098 0.4091
(0.0000) (0.0000)
il 0.6516 0.5513
(0.0000) (0.0000)

Panel D RR_5m(1,1)
S&P 500 Nasdaq
o™ 0.0793 0.1217
(0.0000) (0.0000)
0" 0.3898 0.4342
(0.0000) (0.0000)
B 0.5645 0.5279
(0.0000) (0.0000)
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Table 3:
Descriptive Statistics for Standard Residual Itdrdaily Returns in different models of S&P

500 and Nasdaq Index, 1997/01/02-2003/12/31

~

x —
ARMA(L1)-EWMA: (Z%,.,.,...2 )= ( Xing ~Hiena s )
5t n+l gt
X —
ARMA(L,1)-GARCH(1,1): (Z°,,1,...2 )= ( ‘”+1 ’ut L= S 'Ut)
O't n+1 Ot
ARMA(1,1)-CARR(L,1): (ZC,4y,++-2 ) = ( X nil ~ M mi ,x‘:’u‘ )
¢t -n+1 ¢t
X / X, - !
ARMA(,1)-RR_30m(1,1): (*%,,...27°) = ( 1M 2 H L)
R30 R30
Tt n+l Tt
X o
ARMA(L,1)-RR_30m(1,1): (2> ,1,..27) = ( ‘”+1 ’ut LE ‘A’ut)
R5 R5
Tt n+l Tt
where [, ;i, ¢t R3° and TtRs are estimated by those models abogas the daily return, ang

is the standard residual item. The decay factrin-EWMA model is set to be 0.94. Panel A and Boréphe
descriptive statistics of S&P 500 ;and 'Nasdag' Ind@spectively. Std. Dev. denotes standard deviation
Jarque-Bera is the test of normality. Q(12) af(iL@) are the Ljung-Box statistic for auto-corredatitest with

12 lags. Numbers in parenthesesaialues.

Panel A - S&P 500

ARMA ARMA ARMA ARMA ARMA
-EWMA -GARCH -CARR -RR_30m -RR_5m
Mean -0.0478 -0.0440 -0.0440 -0.0452 -0.0448
Std. Dev. 1.0384 0.9990 0.9579 0.9647 0.9660
Skewness -0.4081 -0.3192 -0.2498 -0.1957 -0.1822
Kurtosis 4.9656 4.3351 3.7251 3.5380 3.5420
Jarque-Bera 331.9879 160.5067 56.8348 31.2622 30.1309
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Auto-Correlation Test
Q(12) 14.3890 14.6150 15.1220 13.9750 14.8030
(0.2770) (0.2630) (0.2350) (0.3020) (0.2520)
Q*(12) 12.0960 10.2340 10.6650 12.4420 11.2760
(0.4380) (0.5950) (0.5580) (0.4110) (0.5050)
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Table 3:

(continued)

Panel B - Nasdaq

ARMA ARMA ARMA ARMA ARMA
-EWMA -GARCH -CARR -RR_30m -RR_5m
Mean -0.0399 -0.0424 -0.0396 -0.0329 -0.0312
Std. Dev. 1.0268 0.9995 0.9305 0.9393 0.9425
Skewness -0.1734 -0.1507 -0.1401 -0.1066 -0.0939
Kurtosis 3.8944 3.4617 3.0817 2.9131 2.9365
Jarque-Bera 67.4501 22.2819 6.2434 3.7458 2.7750
(0.0000) (0.0000) (0.0441) (0.1537) (0.2497)
Auto-Correlation Test
Q(12) 7.4781 8.0460 9.0003 8.9905 8.9606
(0.8240) (0.7820) (0.7030) (0.7040) (0.7060)
Q%(12) 19.1900 13.6340 13.7970 15.2810 15.0560
(0.0840) (0.3250) (0.3140) (0.2260) (0.2380)
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Table 4:

Estimation of Tail Index for S&P 500 and Nasdagexd1997/01/02-2003/12/31

y(k):%ZIn(X(n— j+1))=In(X(n-K)

V(k) = B+ Bk+e(K),
po is the estimation of tail index by using the staddaesidual series in ARMA(1,1)-EWMA,
ARMA(1,1)-GARCH(1,1), ARMA(1,1)-CARR(1,1), ARMA(1RR_30m(1,1) and ARMA(1,1)-RR_5m(1,1)

models.v is the inverse value ¢f and the degree of freedom in student-t distributithe estimates below are

k=1,..x

using data from 1997/01/02 to 2003/12/31.

S&P 500
EWMA GARCH CARR RR_30m RR_5m
Lo 0.3036 0.2653 0.2447 0.2293 0.2412
v 3.2935 3.7690 4.0858 4.3608 4.1467
Nasdaqg
EWMA GARCH CARR RR_30m RR_5m
Bo 0.2006 0.1346 0.1322 0.1033 0.1196
v 4.9855 7.4280 7.5623 9.6794 8.3618
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Table 5:

The Average of Estimated VaR of S&P 500 and Nasddex

The average VaR of total sample period and ind&lidear are presented. In this table, the absoalige of
VaR (positive-valued) is shown below. Panel A andeBort the average VaR of S&P 500 and Nasdag Index

respectively.

Panel A— S&P 500

average VaR - 95%

Total 1998 1999 2000 2001 2002 2003
EWMA-normal 2.090t 1.964€ 1.896z 2.163€ 2.236: 2.522€¢ 1.7634
GARCH-normal 2.1351 2.1024 1.998¢ 2.106¢ 2.248¢ 2.487z 1.8684
CARR-normal 2.182€ 2.1381 2.028t 2.201<4 2.248t 2.612z 1.868:
RR_30m-normal 2.1777 2.133€¢ 2.011¢ 2.2137 2.2320 2.631€ 1.8451
RR_5m-normal  2.178C 2.147€¢ 2.013& 12.220¢ 2.230t 2.627¢ 1.828¢
EWMA-VaR-x 2.218z 3:477¢€ 11.8431, 1.9984 2.080t 2.440: 1.755¢
GARCH-VaR-x  2.190¢ 3.015¢ 1.9537 1.884( 2.004&¢ 2.418Zz 1.855¢
CARR-VaR-x 2.014¢ 1.370¢€ -1.934€ 2.150<¢ 2.182¢ 2.5977 1.863:
RR_30m-VaR-x 2.096C 1.8351"1.9947 2163t 2.149¢ 2.5997 1.836¢
RR_5m-VaR-x 2.1031 1.982% 1.984€" 2.180¢ 2.170€ 2.4941 1.808¢

average VaR - 97.5%

Total 1998 1999 2000 2001 2002 2003
EWMA-normal 2.490¢ 2.340& 2.259% 2.578C 2.664t 3.005€ 2.1011
GARCH-normal 2.543¢ 2.505C 2.381€¢ 2.5104 2.679€ 2.963t 2.2262
CARR-normal 2.600t  2.547F 2.417C 2.622¢ 2.6791 3.1124 2.2261
RR_30m-normal 2.594&¢ 2.542z 2.3971 2.637€ 2.6594 3.135t 2.1984
RR_5m-normal  2.5951 2.558¢ 2.3994 2.646z 2.657€¢ 3.131C 2.178¢
EWMA-VaR-x 3.2501 5.898:% 2.400z 2.991¢ 2.812€¢ 3.209t 2.1494
GARCH-VaR-x  3.101€ 5.533C 2.4804 2.426¢ 2.776€ 3.095¢ 2.262t
CARR-VaR-x 2.609¢ 2.015C 2.4718 2.737¢ 2.916C 3.2757 2.2554
RR_30m-VaR-x 2.685¢ 2.5607 2.450€ 2.752¢ 2.752¢ 3.356€ 2.241C
RR_5m-VaR-x 2.695t  2.7657 2.462z 2.758& 2.745€ 3.248¢& 2.1917
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Table 5:
(continued)

average VaR - 99%

Total 1998 1999 2000 2001 2002 2003
EWMA-normal 2.955¢ 2.777¢ 2.681z 3.059: 3.1621 3.566¢ 2.4934
GARCH-normal 3.019C 2.972¢ 2.8264 2.979z 3.179¢ 3.516S 2.641¢
CARR-normal 3.0861 3.023z 2.868% 3.1127 3.1794 3.693€ 2.641¢
RR_30m-normal 3.079: 3.016¢ 2.844& 3.1301 3.155¢ 3.721C 2.608¢
RR_5m-normal  3.0797 3.0367 2.8474 3.140¢ 3.153¢ 3.715€ 2.5857
EWMA-VaR-x 5.566¢ 13.6267 3.260t 5.312¢ 4.025z 4.397¢ 2.657¢
GARCH-VaR-x  5.049¢ 12.635¢ 3.234¢ 3.250: 4.2254 4.076% 2.7737
CARR-VaR-x 35504 3.392( 3.248t 3.583t 4.128: 4.221t 2.739¢
RR_30m-VaR-x 3.559t 3.855: 3.038% 3.589¢ 3.632( 4.4837 2.755€
RR_5m-VaR-x 3.575( 4.164t 3.095€¢ 3.5681 3.551€¢ 4.393: 2.6694

Panel B-— Nasdaq
average VaR - 95%

Total 1998  “1999 2000 2001 2002 2003
EWMA-normal 4.127¢ 3.1161°3.427z 5.408: 5.803¢/ 4.380¢ 2.668z
GARCH-normal 4.1884 3.018¢ 3.5761 5.393¢ 5.949¢ 4.3211 2.912t
CARR-normal 4.209¢ 3.074¢ 3.6114 5.529t 5.809: 4.4097 2.861t
RR_30m-normal 4.218% 3.163:t 3.6191 5.562: 5.797/ 4.361¢ 2.844¢
RR_5m-normal  4.2294 3.215¢ 3.601€ 5.616C 5.799z 4.355¢ 2.8252
EWMA-VaR-x 3.795¢ 2.831: 2.396: 5.267( 5.627: 4.035: 2.658(
GARCH-VaR-x  4.0191 2.719€¢ 3.0801 5.333¢ 5.906z 4.218:Z 2.902:
CARR-VaR-x 4.0994 2.937¢ 3.2937 5.478t 5.757¢ 4.325¢ 2.843:
RR_30m-VaR-x 4.154z 2.9677 3.561¢ 5.516t 5.770¢ 4.325¢ 2.8221
RR_5m-VaR-x 41464 2.9231 3.501¢ 5.586<¢ 5.781t 4.322t 2.803¢
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Table 5:
(continued)

average VaR - 97.5%

Total 1998 1999 2000 2001 2002 2003
EWMA-normal 4917¢ 3.712¢ 4.083t 6.443¢ 6.9147 5.2197 3.179z
GARCH-normal  4.9904 3.597C 4.260¢ 6.4267 7.088¢ 5.148t 3.470z
CARR-normal 5.0157 3.663¢ 4.303C 6.588¢ 6.9217 5.2541 3.409:
RR_30m-normal 5.026: 3.769Z 4.312z 6.627/ 6.907¢ 5.197C 3.389%
RR_5m-normal  5.039: 3.831€ 4.291: 6.691¢ 6.9097 5.189¢/ 3.3662
EWMA-VaR-x 5.114z 4.693¢ 3.3161 6.720¢ 7.191: 5.591¢ 3.210%
GARCH-VaR-x  5.333z 4.171C 4.215€ 6.784¢ 7.5117 5.8608 3.504(
CARR-VaR-x 5.1457 3.819: 4.4451 6.698¢ 7.058¢ 5.426¢ 3.4721
RR_30m-VaR-x 5.142¢ 3.8587 4.533€ 6.759¢ 7.004t 5.290¢ 3.454%
RR_5m-VaR-x 5.151¢ 3.894(C 4.578¢ 6.787z 6.959¢ 5.300¢ 3.4341

average VaR - 99%

Total 1998 " 1999 2000 2001 2002 2003
EWMA-normal 5.836: 4.4061. 4.846(C 7.647z 8.205¢ 6.194<4 3.772¢
GARCH-normal 5.922% 4.2687 5.056€.7.626¢ 8.4127 6.109¢ 4.118Z
CARR-normal 5.952F 4.347¢ 5.106t 7.8187 8.214:z 6.232 4.0461
RR_30m-normal 5.964¢ 4.4731 5.1174 7.865(C 8.197t 6.167% 4.022t
RR_5m-normal  5.980% 4.5471 5.092¢ 7.940¢ 8.200C 6.158t 3.994¢
EWMA-VaR-x 7.510F 9.4854 4.941¢&¢ 8.800¢ 9.567t 8.392¢ 3.884t
GARCH-VaR-x  7.5927 7.5551 6.183€¢ 8.845¢ 9.951: 8.821¢ 4.236:
CARR-VaR-x 6.615C 5.166¢ 6.385¢ 8.250C 8.7261 6.944% 4.267¢
RR_30m-VaR-x 6.4604 5.2217 5.926z 8.350C 8.532( 6.518z 4.2617
RR_5m-VaR-x 6.519¢ 5.457¢ 6.246C 8.279¢ 8.380€ 6.558¢ 4.239C
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Table 6:
The Number of Failures of Conditional VaR modelslen95%, 97.5% and 99% Confidence

Interval for S&P 500 and Nasdaq Index, 1997/01/023212/31

95% level 97.5% level 99% level
S&P 500 Nasdag S&P 500 Nasdag S&P 500 Nasdaq
Theoretical
Number 76 76 38 38 15 15
Variance-Covariance Method
EWMA-normal 77 73 48 38 20 12
GARCH-normal 79 75 43 39 21 18
CARR-normal 64 65 33 28 20 12
RR_30m-normal 63 68 36 29 22 12
RR_5m-normal 59 73 34 29 20 12
Extreme Value Theory
EWMA-VaR-x 85 142 30 79 6 44
GARCH-VaR-x 83 97 40 36 9 12
CARR-VaR-x 97 73 44 26 14
RR_30m-VaR-x 75 71 37 25 10
RR_5m-VaR-x 72 81 36 27 7
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Table 7: Results of VaR models for S&P 500 in 95%onfitlent Interval,

1997/01/02-2003/12/31

VaR-x
GARCH EWMA CARR RR_30mRR_5m GARCHEWMA CARR RR_30mRR_5m

VaR-normal

Theoretical

) 76 76 76 76 76 76 76 76 76 76
Exceptions
Actual

) 79 77 64 63 59 83 85 97 75 72
Exceptions

Conservatism

MRB 0.003¢ -0.021% 0.018z 0.010¢€ 0.0115 0.038t 0.0537-0.0657 -0.027€-0.021¢

RMSRB 0.116z 0.1347 0.0647 0.086C 0.096t 0.282% 0.312F 0.2184 0.1221 0.1102
Accuracy

BLF (%) 5.2283 5.0960 4.2356: '4.1694 3.9047 5.4931 5.6254 6.4196 4.9636 4.7651

mean excess

0.6467 0.696C 0.6811

0.6572. 0.684%

0.769€ 0.6494 0.691z

0.682¢ 0.642¢

LRyc 1.9995 1.999¢ 1.992€ 1.9912°1:983€¢ =1.9977 1.996Z 1.9837 2.000C 1.9994

LRing 1.998¢ 2.000C 1:999Z ;. 1.994€ 1.996(C, ~1.987¢ 1.957F 1.9705 1.999¢ 1.9974

LR 3.998: 3.999¢ 3.991€ 3.985€ 3.979€ 3.985€ 3.953¢ 3.954z 3.999¢ 3.9967

MOC 1.010C 1.0007 0.958¢°/0.9627 0.956¢ 1.022€ 1.039Z 1.119C 0.997E 0.986¢
Efficiency

MRSB 0.0087 -0.0254-0.0284 -0.0313-0.036€ 0.056€ 0.0897 0.0402 -0.034€-0.039z

Error Efficiency 0.591E 0.582€ 0.587¢ 0.5844 0.584C 0.615C 0.601Z 0.611E 0.579€ 0.5761
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Table 8:

Results

of

1997/01/02-2003/12/31

VaR models

for

Nasdaq

in  95% nfident

VaR-normal

VaR-x

GARCH EWMA CARR RR_30mRR_5m GARCHEWMA CARR RR_30mRR_5m

Theoretical
76 76 76 76 76 76 76 76 76 76
Exceptions
Actual
75 73 65 68 73 97 142 73 71 81
Exceptions
Conservatism
MRB 0.025€ 0.0107 0.0281 0.0274 0.028¢ -0.030£-0.098¢-0.002¢ 0.0087 0.003C
RMSRB 0.143Z 0.1327 0.095€ 0.104C 0.108z 0.176E 0.389C 0.0984 0.115Z 0.134¢
Accuracy
BLF (%) 4.9636 4.8312 4.3018 4.5003'4.8312 6.4196 9.3977 4.8312 4.6989 5.3607
mean excess 1.135€ 1.044€ 0.9865 0.890F 0:840Z 1.0881 1.149z 0.970€ 0.916C 0.846(
LRy 2.000C 1.9997:1.994C 1.997C 1.9997~ 1.9837 1.900z 1.9997 1.999C 1.9987
LRing 1.9994 1.9997 1.999¢'.1.9984°1.9997" 1.996F 1.962C 1.9997 1.997€ 1.998C
LR 3.9994 3.9994 3.993€ #3.9954 3.9994 3.980z 3.862% 3.9994 3.996€ 3.9967
MOC 0.991% 0.991€ 0.9601/,0.9772.0.:987¢ 1.107z 1.3727 0.9785 0.9894 1.0097
Efficiency
MRSB 0.014€ -0.028€-0.0427 -0.0262-0.0145 0.038: 0.191C-0.053¢ -0.0317-0.0171
Error Efficiency  0.575C 0.5654 0.5627 0.561C 0.562¢ 0.5674 0.7851 0.5547 0.5572 0.5614
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Table 9: Results of VaR models for S&P 500 in 97.5@onfident Interval,

1997/01/02-2003/12/31

VaR-normal VaR-x

GARCHEWMA CARR RR_30mRR_5m GARCHEWMA CARR RR_30mRR_5m

Theoretical
38 38 38 38 38 38 38 38 38 38
Exceptions
Actual
43 48 33 36 34 40 30 44 37 36
Exceptions
Conservatism
MRB -0.0524-0.0747-0.0391 -0.046C-0.0455 0.134C 0.1852-0.034¢ -0.0152-0.0114
RMSRB 0.149¢ 0.170z 0.106€ 0.121Z 0.1271 0.434C 0.497C 0.2217 0.1318 0.117%
Accuracy
BLF (%) 2.8458 3.1767 2.1840: 2.3825 2.2502 2.6473 1.9854 2.9120 2.4487 2.3825
mean excess 0.667€ 0.662€ 0.764¢ | 0.6734.0.7032 . 0.7694 0.592z 0.773€ 0.6677 0.580C
LRy 1.9964 1.987€ 1.99® 1.999%1:997% -1.999: 1.9881 1.995C 1.999¢ 1.999¢
LRing 1.999€ 1.999C 1:9994 , 1.999€ 1.999€ -2.000C 1.985Z 1.9797 1.999¢ 1.999¢
LR 3.9961 3.9867 3.9955. 3.9994 3.9971+ 3.999Z 3.973% 3.9747 3.999€ 3.9994
MOC 1.028¢ 1.053€ 0.964¢€ ©0.979€ 0.9751 1.007t 0.948€ 1.0454 0.9944 0.952:
Efficiency
MRSB 0.0194-0.0192-0.067E -0.0597-0.0637 0.150% 0.132% 0.014E -0.014€-0.052¢

Error Efficiency 0.6321 0.6244 0.634€ 0.633t 0.6334 0.6681 0.6697 0.647% 0.642¢ 0.643€
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Table 10: Results of VaR models for

1997/01/02-2003/12/31

Nasdaq

in  97.5%onfident

VaR-normal

VaR-x

Theoretical
Exceptions
Actual

Exceptions

GARCHEWMA CARR RR_30mRR_5m GARCHEWMA CARR RR_30mRR_5m

38 38 38

39 38 28

38 38

29 29

38 38 38

36 79 26

38 38

25 27

Conservatism
MRB
RMSRB

-0.0127-0.027£-0.0104

0.144C 0.134C 0.095¢

-0.0111-0.009¢
0.104C 0.107¢<

0.044C-0.020z 0.017z
0.211C 0.465€ 0.1071

0.013¢ 0.016¢€
0.123z 0.1492

Accuracy
BLF (%)
mean excess
LRyc
LRing
LR
MOC

2.5811 2.5149 1.853%
1.056€ 0.910¢ 1.0571
1.999¢ 2.000C 1.979¢€
2.000C 1.994€ 1.9974
3.999€ 3.994¢€ 3.977z
1.0174 1.000C 0.950¢

1.9193 1.9193
0.8904.0.8787
1.9842 1.984:
1.997¢ 1.997¢
3.982z 3.9822
0.953€70.936¢€

2.3825 5.2283 1.7207
1.0286 1.104z 1.0251
1.999t 1.892: 1.9684
1.9897 1.9004 1.996C
3.989z 3.7927 3.9644
0.988t 1.7597 0.9314

1.6545 1.7869
0.9651 0.944¢
1.961% 1.974¢
1.9951 1.9967
3.9564 3.971z
0.930¢ 0.921¢

Efficiency
MRSB

Error Efficiency

{.028¢€-0.061C-0.0894
0.618¢€ 0.610C 0.614C

-0.0871-0.1024
0.6131 0.613¢

-0.0077
0.630z

0.636¢€-0.082¢
0.728€ 0.6227

-0.0860-0.091¢%
0.6207 0.622¢
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Table 11:

1997/01/02-2003/12/31

Results of VaR models for

S&P 500

in  99@onfident

VaR-normal

VaR-x

Theoretical
Exceptions
Actual

Exceptions

GARCHEWMA CARR RR_30mRR_5m GARCHEWMA CARR RR_30mRR_5m

15 15 15

21 20 20

15 15

22 20

15 15 15

14

15 15

10 7

Conservatism
MRB
RMSRB

-0.130€-0.149€-0.1194

0.2344 0.245¢ 0.205C

-0.125¢-0.1255
0.212€ 0.214:<

0.271€ 0.39120.003¢
0.6821 0.815€0.2542

-0.007¢-0.007¢
0.1694 0.1522

Accuracy
BLF (%)
mean excess
LRyc
LRing
LR
MOC

1.3898 1.3236 1.3236
0.749t 0.924€ 0.7074
1.981% 1.986% 1.986%
1.9901 1.995C 1.995C
3.971€ 3.9814 3.9814
1.0364 1.040¢€ 1.034¢

1.4560 1.3236
0.5354.0.5824
1.9761 1.986¢
1.99451.995C
3.9704 3.9814
1.031€71.034:

0.5956 0.39710.9265
1.161% 0.89571.096¢
1.9484 1.831€1.998¢
1.998(C 1.998€1.90Z
3.9464 3.830€3.901¢
0.8884 0.820£0.984¢

0.6618 0.4633
0.657¢ 0.615¢
1.967¢€ 1.884C
1.997€ 1.998¢
3.9654 3.882¢
0.9341 0.959C

Efficiency
MRSB

Error Efficiency

{.0687-0.0856-0.0581
0.677% 0.670€ 0.683¢

-0.067¢-0.0652
0.682t 0.682%

0.183<
0.737%

0.196€0.0217
0.753C0.711¢

-0.0415-0.015z
0.7171 0.718¢
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Table 12:

Results of VaR models

1997/01/02-2003/12/31

for

Nasdaqg in

99%ponfident

VaR-normal

VaR-x

Theoretical
Exceptions
Actual

Exceptions

GARCHEWMA CARR RR_30mRR_5m GARCHEWMA CARR RR_30mRR_5m

15 15 15

18 12 12

15 15

12 12

15 15 15

12 44 7

15 15

Conservatism
MRB
RMSRB

-0.068¢€-0.0832-0.066¢

0.174% 0.1674 0.135¢

-0.0677-0.066%
0.1421 0.1441

0.161€ 0.1027 0.041¢
0.338€ 0.623% 0.145¢

0.015z 0.032C
0.144C 0.185¢

Accuracy
BLF (%)
mean excess
LRyc
LRing
LR
MOC

1.1913 0.7942 0.7942
1.1381 1.363z 0.961C
1.994¢€ 1.9901 1.9901
1.988 1.997Z 1.997:
3.978t 3.9874 3.9874
1.064Z 0.9797 0.9804

0.7942 0.7942
0.797€.0.7692
1.9901 1.9901
1.99751.997:
3.9874 3.9874
0.977€°0.950¢

0.7942 2.9120 0.4633
0.945E 1.221€ 1.0074
1.9901 1.830% 1.884C
1.997Z 1.778€ 1.998%
3.9874 3.609z 3.882¢
0.928¢€ 2.325C 0.909:

0.5295 0.4633
0.532¢ 1.0661
1.921¢F 1.884C
1.998: 1.998¢
3.919¢ 3.882¢
0.9137 0.9011

Efficiency
MRSB

Error Efficiency

0.0942-0.1813-0.163C
0.667C 0.6607 0.6671

-0.165€-0.1877
0.667% 0.667¢€

-0.027¢
0.7174

1.2487-0.132¢
0.729¢ 0.699C

-0.150C-0.1462
0.692z 0.694¢
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Figure 1. S&P 500 and Nasdaq Index Daily Closingd?®; Returns, Ranges, RRV_30m and

RRV_5m, 1997/01/02-2003/12/31
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Figure 2: Daily Returns and VaR-normal Estimates $&P 500 with GARCH, EWMA

CARR model, RR_30m and RR_5m models under 95%9%87ahd 99% Confidence Interval
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Figure 3: Daily Returns and VaR-normal EstimatesNasdaq Index with GARCH, EWMA,

CARR model, RR_30m and RR_5m models under 95%%0,7ahd 99% Confidence Interval
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Figure 4: Daily Returns and VaR-x Estimates for SB®0 Index with GARCH, EWMA,

CARR model, RR_30m and RR_5m models under 95%%0,7ahd 99% Confidence Interval
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Figure 5: Daily Returns and VaR-x Estimates for ddap Index with GARCH, EWMA,

CARR model, RR_30m and RR_5m models under 95%%0,7ahd 99% Confidence Interval
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