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TABLE IV
p. COMPARED WITH p. AMPLITUDE DISTORTION ONLY. p 1S THE IMAGE CORRELATION PREDICTED BY THE
THEORY. p, AND p] ARE THE MEASURED CORRELATIONS WHEN THE QUANTIZER DESIGN WAS OPTIMIZED FOR
EACH APERTURE DISTRIBUTION, AND FOR THE RAYLEIGH DISTRIBUTION, RESPECTIVELY. THE VALUES IN THE
BoTTOM ROW ARE OBTAINED BASED ON SIMULATION DATA HAVING A RAYLEIGH DISTRIBUTION

H, (bits)
0 1 2

Run p=Kps b Py p = Kp, e or p=Kps . o

301 0.70 0.70 0.69 0.80 0.81 0.84 0.88 0.90 0.89

303 0.79 0.77  0.77 0.92 0.91 0.92 0.97 0.97 0.96

308 0.88 0.89 0.89 0.95 0.95 0.95 0.96 0.97 097

309 0.78 0.79 0.79 0.89 0.89 091 0.93 0.95 0.95

310 0.80 0.81 0.81 0.92 0.90 091 0.95 0.95 094

312 0.85 0.86 0.86 0.93 0.94 094 0.96 0.97 0.96
Rayleigh 0.95 0.94 094 0.99 0.98 0.98 0.99 0.99 0.99

tizer. The estimate of p is not a scene-free quantity in general. [13] —. Microwave Imaging with Large Antenna Arrays, Radio Camera

However, if we classify scenes into different groups (e.g., residen-
tial housing, industrial, farmland, etc.) according to the nature of
the scenes, such that an amplitude distribution can be identified
with a group, then the scene dependence of p can be eliminated.
Under this condition, the theory can be considered scene-free.

5) Capability of Real-Time Processing: In many image pro-
cessing situations, real-time processing is preferred. The optimum
design requires knowledge of the amplitude distribution of the in-
put data which, in principle, requires that data be acquired and
analyzed. Such a process precludes real-time operation. However,
the nearly scene-free performance observed in this study allows the
designer to avoid the distribution-estimation steps and to base the
design upon assumptions of uniform phase and Rayleigh amplitude
distributions. By making these a priori assumptions regarding the
data, the quantizing operation becomes real time.
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Spatial Pseudorandom Array Processing

CHENG-YUAN LIOU anp RUEY-MING LIOU

Abstract—A pseudorandom permuting procedure along with its ar-
ray signal processing is introduced to resolve muitiple coherent signal
sources. Conventional adaptive beamforming algorithms fail to oper-
ate in such a situation or their performance will degrade. In addition,
when applied to an irregularly spaced array or when background noise
is colored, most of the existing adaptive algorithms are not capable of
working. The important contribution of this work is that, by introduc-
ing a new procedure to the conventional processing algorithms, they
can overcome the many difficulties which occur. We test this method
with computer simulations, and their results are consistent with our
prediction.

[. INTRODUCTION

In radar, sonar, and seismology, one is frequently interested in
estimating the dircctions of arrival and the spectral densities of ra-
diating sources from measurements provided by a passive array of
sensors. The problem of simultaneous estimation of the directions
of arrival and the spectral densities of the impinging sources can
be regarded as a two-dimensional spectral estimation problem.
Given spatial and temporal samples of the reccived signals. the
problem is to determine the 2-D spectrum or the energy distribution
in both the spatial and temporal domain. The spatial spectrum con-
sists of point masses at different angles of arrival. The temporal
spectrum may consist of point masses at different frequencies in
the case of narrow-band sources or may be continuous in the case
of wide-band sources.

Manuscript received July 6, 1987; revised November 14, 1988.

C.-Y. Liou is with the Department of Computer Science and Informa-
tion Engineering, National Taiwan University, Taipei 10764, Taiwan.

R.-M. Liou is with the Institute of Communication Engineering. Na-
tional Chiao Tung University. Taipei. Taiwan.

IEEE Log Number 8929366.

0096-3518/89/0900-1445$01.00 © 1989 IEEE



1446

Since the number of samples (i.e., sensors) in the spatial domain
is usually small, classical Fourier analysis yields low spatial res-
olution. As a result, alternative methods [1] that provide high res-
olution have been developed. These methods are known to yield
high resolution and asymptotically unbiased estimates. Although
the details differ in various applications, thc main assumptions and
processing algorithms are the same. In particular, the key assump-
tion in all the previous cited works is that the interfering signals
are not correlated with the desired signal. Once correlated inter-
ferences happen to occur, they completely destroy the performance
of adaptive array systems. Theoretically, these methods encounter
difficulties only when the signals are perfectly correlated. In prac-
tice, however, significant difficulties arise even when the signals
are highly correlated. The perfect correlation case (or coherence
case) serves as a good model for the highly correlated signals.

In spite of its practical importances, the coherence case did not
receive considerable attention until recently. The earliest pioneer
works on this problem are that of Gabriel [2] and Widrow [3]; they
described two similar approaches, both aimed at ‘‘decorrelating”’
the coherent signals. The scheme by Widrow et al., called **spatial
dither,”” is based on mechanical movement of the array elements
in some way. However, this technique does not provide a clear
general procedure. Gabriel’s scheme is based on ‘‘Doppler
smoothing;’’ he also mentioned that for the so-called ‘*single snap-
shot’” case, a solution is sometimes possible via synthetic motion
of a smaller sampling subaperature along the single snapshot data
samples. Evans et al. [4] presented an attractive solution to the
problem for the case of a uniformly spaced linear array. Their so-
lution is based on a preprocessing scheme referred to as *‘spatial
smoothing™’ that essentially decorrelates the signals and thus elim-
inates the difficulties encountered with coherent signals. Shan er
al. 5] have done a complete analysis for the ‘‘subaperature sam-
pling’’ or *‘spatial smoothing’’ preprocessing scheme. They pro-
vided an algorithm that can be applied to an on-line adaptive beam-
former, and its performance is good evea when coherent signals
are presented. Su er al. [6] modified the above method by a so-
called ‘‘parallel spatial smoothing’ algorithm, using a parallel
structure with a spatial averaging effect to overcome coherent jam-
ming. Their conclusion is that a spatially smoothed maximum like-
lihood estimate of the desired signal can be obtained when the
adaptive beamformer converges.

In parameter estimation using eigenstructure techniques, the
noise covariance must be known explicitly [7]. A method based on
some sort of translation or rotation of the array to overcome this
problem has been developed in [7]. It is our intent to propose a
solution which does not need mechanical movements to the prob-
lem of estimation of direction of arrival for a broad class of un-
known noise fields.

In Section II, some investigations of current adaptive arrays will
be reviewed, and several difficulties with them will be pointed out,
i.e., the signal cancellation phenomenon that arises when coherent
interferences present. Current approaches that solve this problem
will also be examined. In Section III, a random smoothing method
will be introduced plus its rationales. A high-resolution technique
for spectral estimation is reviewed for later use. In Section IV, we
present computer simulations of our method. And the results of
simulations are analyzed and compared to other methods. In Sec-
tion V, this work is concluded with several remarks.

II. PROBLEM STATEMENTS

In this section, we will review the problem briefly. Then we will
use a method by Su to point out the difference between his design
and ours.

Consider a simple two-element Frost beamformer. Generally,
the constraint of the Frost algorithm is to let the array have unit
gain and zero phase shift over a certain frequency band in the look-
ing direction, which can be preselected by time-delay steering of
the array elements, while it eliminates all the off-looking direction
jammers by means of minimizing its own output power. Suppose
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the desired sinusoidal signal § arrives from the looking direction
and the jammer J with the same frequency as the desired signal is
arriving from an off-looking direction and thus keeps a fixed phase
shift with the desired signal. Denote signal S and jammer J as § =
A- e’ andJ = B - ™" where A and B are the corresponding
amplitudes of § and J, ¢ is the constant phase shift between desired
signal § and jammer J, and w is the angular frequency. Suppose an
array has two sensor elements which are placed in the plane parallel
to the propagation direction of the waves. Element 1 and element
2 receive both the desired signal and jammer as

X =A-e™ + B et and

X, =A- et + B eltiomi

where A = d - sin 0/c, d: the interelement spacing. ¢: propagation
speed of the waveform, 6: the jammer’s incident angle from broad-
side. Let the received vector and the weight vector to be denoted
as X = [X,, X,1". W = [W,, W,]7; then the output of the beam-
former is given by y = X7 - W = X,W, + X, W,. Note that all the
mathematical representatives we used here are complex and the
complex algorithm of linearly constrained adaptive beamformer by
Su [8] is used. Typically, the Frost constraint is set to cause the
receiving array having a unit gain and zero phase shift in the look-
ing direction. Thus, we have the following expressions:

min Iy[: subject to W, + W, = 1.
W

Substituting X, and X, by using (1) and (2), and remembering that
W, =1 — W,, we have

min ]ef“"HA + B e (W, + et — W,e‘j““)'.
W

Solving the above equation, the optimal weights are

W;( B (,‘.I'WA . Ae*]@
YT e — 1 B(e = 1)
+ -1 A("iw
W: = ~jud

— 1 B(e™ — 1)

When the beamformer converges, i.e., the weights reach their
steady state, the optimal solution results in a zero output,
1M, & o ¥oin (1) = W' - X > 0. This is what we emphasized in the
signal cancellation phenomenon. This adaptive beamformer has a
null in the incorrect direction, even though the linear constraints in
the desired looking direction have been imposed.

To preserve the desired signal while eliminating the coherent
jammer, the optimal solution should be

e

el -1

W(lwm — W«zwpn —

e | e

Compare W, and W™: we find that there are two ways to let W,
approach W{P. The first one is to make A << B, i.c., the desired
signal power is much smaller than that of the coherent jammer. But
even in this case, W, = W™, we still get a zero output in the time
domain. The second one is to set A to zero or eliminate the desired
signal in the adaptation process, which means the influence over
weight settings will be dominated by the jammer. Duvall {9} ap-
plied this ideal in his master-slave beamformer. But nevertheless,
this method will introduce an undesirable bias term in the system
output, and when there exist two or more coherent interferences,
their directions of arrival will not be resolved correctly.

The method which is helpful to understanding our method is the
“‘parallel spatial processing’’ algorithm. It is proposed in different
ways by Shan, Evan, and Su: one way is to smooth spatially in the
direction orthogonal to the desired looking direction of the beam-
former. This kind of array structure can be applied in conjunction
with any adaptive algorithm and any array structure. We now re-
view it briefly.

Given a **shapshot™ of N sensor outputs sampled at time instant
t and sample interval 7 (r = m - 7), X(m) = [X,(m), X>(m),
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, Xy(m)|": let it be divided into K subarrays with each su-
barray having P scnsors and adjacent subarrays having P — 1 over-
lapping sensors. Also suppose the desired signal § and the jammer
J are impinging on the array; the desired signal is from the looking
direction and the jammer is from an off-looking direction. Since
the array is an equally spaced linear array, each element receives

ejwmr+jq) + = Dwd

X, (m)=4"-¢e*" +B-

n=1,2, ,N=P+ K- L

The linear constraint of the weights is expressed as Lf  Wi(m) =
1 for any m. Then the overall system output is obtained as follows:

vim+ K — 1) = de™™ + BeJemm+ 6

1 &
memf L]

where
p
a(m + K) = Z] W,(m + K — 1)el 71,
pe

In the above equation, we see that the jammer can be modified
by two factors. The first factor is a function of time and subject to
the least mean square criterion and the lincar constraint. The sec-
ond term is given as 1 /K LX_, ¢/* " 1%2 which is the summation
of K uniformly spaced terms on unit circle. As K becomes large,
the summation term results in a very small value. So when the
adaption process reaches steady statc, the coherent jammer effect
will be greatly reduced by such a modification. Therefore, if a large
number of subarrays are used, i.e., when K is very large, it is easy
to get limg o y(m + K — 1) = A4 - /" as desired.

To make the spatial summation factor close to zero in the time
domain is the key of this method to solve coherence cases. Since
the signature (or envelope) part of the target’s spectrum is much
more important than the flat whitc noise part, can we reduce the
effect of the second term in resolving the directional spectrum by
making the jammer’s spectrum into a white-noise-like spectrum?
The following section will give a solution to this question when K
=1.

III. DESCRIPTION OF THE RANDOM SMOOTHING ALGORITHM

We now describe a preprocessing method for the sensor outputs
that will preserve all the information of the desired signal from the
steered looking direction while stirring all the off-looking direction
signals into white noise.

This scheme is based on permuting the measurements of the ar-
ray sensors. Let

X(m) = [X,(m), Xo(m), -~ -, Xy(m)]" (1)

denote the steered N X 1 vector sequence received from the sensors
where N is the number of sensors that the array contains and m
represents the ordered time. The N data within each X(m), i.e.,
[X,(m), X,(m), ©, Xy(m)], will be randomly permuted and
independent permutations are applied for different m value. Thus,
we obtain a new permuted N X 1 vector sequence, namely,

Y(m) = [Y,(m), Ys(m), - YN(M)] (2)

Note that there are N! ways to permute the data within cach X(m).
Each outcome Y(m) has a probability of occurrence 1/N! when
X(m) has N different data. Then we estimate the autocorrelation
functlon R, (i) for each permuted data sequence {Y,(m), m = 1,

2, - , M } using any conventional methods, e.g.,
1 Mjl
Rpi) =7 2 Y,(m) - Yi(m +i)
M—i w=
O<is=sL-1=M (3)

where M is the total number of ‘‘snapshots,”” L is the number of
autocorrelation functions we want, and the asterisk denotes com-
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plex conjugate. The average autocorrelation function R (i), which
resembles the ensemble mean, can be estimated by averaging R, (i)
overn =1, 2, N, i.e.,

1 N
R(i) =~ Zl R,(i). (4)

This R(i) contains all the spectral information of the looking di-
rection. Now the target’s spectrum can be estimated using any high-
resolution spectral analysis methods based on R(i). Finally.
changing the time-delayed steering vector degree by degree and
doing the same procedures, the estimated target spatiotemporal
spectrum can be obtained. Fig. 1 illustrates a general block dia-
gram of this random smoothing algorithm.

To carry out our scheme, the high-resolution mcthod for power
spectral estimation we will use in simulations is the maximum like-
lihood method (MLM) developed by Capon |10]. The MLM spec-
trum is given by

1

P(w) = A7(@) R A(w) 0<w=<27
R(0) R(1) R(L — 1)
R - R (1 ’:?(0) 1:?(L~2) (5)

*(L=1) R*(L-2) ... R(0)

e /wT (."jw Zr —jert ([7177][

where A (w) = [1, ,e is the steer-
ing vector at temporal angular frequency wand {R(i),i =0, 1.
2, -+, L ~ 1} is the averaged autocorrelation function obtained
from (4). The temporal power spectra of the signals coming from
each steered direction can be obtained using the above formula.
This is different from the conventional beamforming method which
focuses on one frequency for all direction and obtains the direc-
tional spectrum for that frequency. In our method, we obtain the
whole temporal power spectrum of all frequencies for one direc-
tion, and then steer to another direction.

The Rationales

The rationale for our algorithm is that the random permuting
procedure can whiten the coherent signals coming from off-looking
directions. With this kind of permutation, the correlation properties
of the signal sources coming from all directions, except the steered
one, are totally or partially destroyed. The spectral energy of those
off-looking directions is whitened by the random permutation. In
other words, the desired signal’s spectrum cannot be contaminated
by coherence jammers from a different direction. The jammer’s
signals will add a white-noise spectrum or thermal-noise spectrum
to the baseline of the desired signal’s spectrum.

According to our scheme, the signals coming from the off-look-
ing direction are stirred by the random permuting procedure and
their { ¥,(m), m = 1, - - - | M } should be close to random noise
or thermal noise. And their entropy should be increased by this
random permutation, too. In order to see this point and the reso-
lution ability in the direction spectrum, we employ the entropy rate
function A [11] to show this effect. The definition of h for a Gauss-
ian-distributed random variables of zero mean is given by

h = lim h = lim -
o 2

L—+ o L—

- In [det R)] (6)

where H = 2’ < In[det (R)] and L is the order of correlation matrix.
Theoretically, when a signal is a pure tone, its R is one eigenvector
dominant and # tends to —oco. When a signal is close to thermal
noise (or white noise), it has a very large value of . We test this
idea by simulation of a very narrow-band signal s(¢) which is im-
pinging on an array from the normal direction of the array. Apply-
ing our algorithm shown in Fig. 1 and using (1)-(4), we can esti-
mate the R matrix for each steered direction. Then we substitute
this R in (6). The result is plotted in Fig. 2. It is clear that this
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Fig. 1. Block diagram of the random smoothing algorithm.
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Fig. 2. Entropy analysis of the effect of the random smoothing algorithm
on a tonal signal coming from all directions using a uniformly spaced
linear array with 5 wavelength interelement spacing.

algorithm will preserve the information content of the signal only
when the array is steered toward the signal. When the direction
steered is not consistent with the arrival direction of the signal, the
R is close to white noise, that is, its & is increased by the permu-
tation. Instead of deriving the theoretical approach to the resolution
bandwidth reached by taking the expectation values of correlations
between adjacent directions, we give the following simple intuitive
explanation to the solution of resolution bandwidth. Since the
whiteness (or randomness) of unwanted signals, which have no
correlation property with R(i) = 0 for i + 0 after the random
permutation, designates the independence between the desired
(steered) signal, which has some correlation properties, and un-
wanted signals, according to the definition of resolution, the ability
of resolution in the direction spectrum can be properly indicated
by the width of the notch in Fig. 2. And the widths of the notches
can be predetermined by computer simulations for a given array.
In the above analyses, we do not assume that the sensors are equally
spaced. When the array is composed of irregularly spaced sensor
elements, the autocorrelation functions of all permuted time se-
quences will still preserve the autocorrelation function properties
of the signals from the steered direction except R(0).

IV. SIMULATION RESULTS

This section provides several computer simulations. The results
of simulations support our prediction. The example we considered
had ten (Q = 10) planar wavefronts at directions of arrival —90
+ 18 : (¢ — 1)degree, g = 1, 2, , 10. All of the ten signal
sources are perfectly coherent with the same amplitude, namely,
§,(t) = sin 0.57¢. In the first case, the array is linear and uni-
formly spaced with ten sensor elements. Each element is assumed
to be omnidirectional, and the interelement spacing is one-half
wavelength. The ambient white noise is assumed to be negligible.
Two-hundred snapshots (M = 200) for a steered direction are thus
obtained. We then apply the algorithm shown in Fig. | with the
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Fig. 3. (a) Spatiotemporal spectrum by the random smoothing method with
a uniformly spaced linear array. (b) Profile of Fig. 3(a) at f = 0.25 (or
w = 0.57).
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Fig. 5. (a) Spatiotemporal spectrum by the random smoothing method with
irregularly spaced linear array. (b) Profile of Fig. 5(a) at f = 0.25 (or w
= 0.57).

substitution of (1)-(5) in proper places and obtain the power spec-
trum for that direction. Then we steer to another direction, from
—90° to 90°, degree by degree. The result is shown in Fig. 3(a).
The profile of Fig. 3(a) at frequency 0.25 is shown in Fig. 3(b).
The ten peaks corresponding to the ten signal sources are clearly
seen in these figures. The resolution bandwidth along the axis of
the direction spectrum is close to the width of the notch of Fig. 2.
Fig. 4(a) and (b) shows the results of simulation using conventional
delay-and-summed algorithm in the same environment. In this fig-
ure, the ten coherent signals are totally lost by the coherence.

In the second case, suppose three of the ten sensors, namely,
sensor number 2, 5, and 9, are damaged. Thus, the array is linear
but irregularly spaced. The results, obtained from 200 *‘snap-
shots’” using our algorithm are presented in Fig. 5(a). The profile
of Fig. 5(a) at frequency 0.25 is presented in Fig. 5(b). We still
can identify the ten peaks corresponding to the ten signal sources.
There is no other method that can resolve this case efficiently as
far as we know.

V. CONCLUSIONS

A ‘“‘random smoothing’’ algorithm for array signal processing is
proposed to overcome signal cancellation effects in correlated jam-
ming environment. Our method is able to handle the particular sit-
uation when the array is irregularly spaced, especially when some
of the sensors have been damaged and when the background noise
is colored. The effectiveness of our method has been verified by
many simulations. Due to the estimation of the ensemble average
R(i), our algorithm requires additional computations. Our scheme
is easily extended to a multidimensional irregularly spaced array
for broad-band signals and it has been verified by enormous sim-
ulations.
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Instability in the Solution of Banded
Toeplitz Systems

ALLAN J. MacLEOD

Abstract—Some algorithms for the solution of banded Toeplitz sys-
tems calculate certain elements of the solution first and then the re-
maining elements by forward or backward substitution. We show that,
for symmetric matrices, this method is almost always highly unstable.
A numerical example is given to support the argument.

[. INTRODUCTION
We consider the solution of the system of linear equations

T,x =y (1)

where T, is a Toeplitz matrix, i.e., (T,);; = t;.;,j =0, - - -, n.
We also assume that 7, is a banded matrix, i.e., there exist p, ¢
with 1 < p, g < nsuchthats;, =0,i > pori < —q.

For small values of p and ¢, standard linear equation solvers take
essentially O(n) operations to solve (1). There has, thus, been in-
terest in adapting the general Toeplitz methods to the banded case
so that O (n) operations only are required.

Dickinson [1] and Trench [2] are examples of such methods.
Fundamental to the efficient implementation of these methods is
the observation that we need only calculate some of the elements
of x. The remainder can be calculated by forward or backward sub-
stitution.
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