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TABLE IV 
p ,  COMPARED WITH p .  AMPLITUDE DISTORTION ONLY. p I S  THE I M A G E  CORRtLATION PREDICTED BY THE 

THEORY. p ,  A N D  p :  A R E  THE MEASURED CORRELATIONS W H E N  THE QUANTIZER DESIGN W A S  OPTIMILED FOR 
EACH APERTURE DISTRIBUTION, A N D  FOR T H E  RAYLEICH DISTRIBUTION, RESPECTIVELY. THE V A L L i t S  I N  T H E  

BOTTOM ROW A R E  OBTAINED BASED ON SIMULATION DATA H A V I N G  A RAYLFICH DISTRIBUTION 

H A  (bits) 

30 1 0.70 0.70 0.69 0.80 0.81 0.84 0.88 0.90 0.89 
303 0.79 0.77 0.77 0.92 0.91 0.92 0.97 0.97 0.96 
308 0.88 0.89 0.89 0.95 0.95 0.95 0.96 0.97 0.97 
309 0.78 0.79 0.79 0.89 0.89 0.91 0.93 0.95 0.95 
3 10 0.80 0.81 0.81 0.92 0.90 0.91 0.95 0.95 0.94 
312 0.85 0.86 0.86 0.93 0.94 0.94 0.96 0.97 0.96 

Rayleigh 0.95 0.94 0.94 0.99 0.98 0.98 0.99 0.99 0.99 

tizer. The estimate of p is not a scene-free quantity in general. 
However, if we classify scenes into different groups (e.g., residen- 
tial housing, industrial, farmland, etc.) according to the nature of 
the scenes, such that an amplitude distribution can be identified 
with a group, then the scene dependence of p can be eliminated. 
Under this condition, the theory can be considered scene-free. 

(131 -, Mic.ro\varr I m i g i n g  with Lnrge Antenmi  ArruJs. Radio Cutneru 
Principles und T~.chniques. New York: Wiley. 1983. 

5)  Capability of Real-Time Processing: In many image pro- 
cessing situations, real-time processing is preferred. The optimum Spatial Pseudorandom Array Processing 

CHENG-YUAN LlOU A N D  RUEY-MING LlOU design- requires knowledge of the amplitude distribution of the in- 
put data which, in principle, requires that data be acquired and 
analyzed. Such a process precludes real-time operation. However, 
the nearly scene-free performance observed in this study allows the 
designer to avoid the distribution-estimation steps and to base the 
design upon assumptions of uniform phase and Rayleigh amplitude 
distributions. By making these U priori assumptions regarding the 
data, the quantizing operation becomes real time. 

Abstract-A pseudorandom permuting procedure along with its ar- 
ray signal processing is introduced to resolve multiple coherent signal 
sources. Conventional adaptive beamforming algorithms fail to oper- 
ate in such a situation or their performance will degrade. In addition, 
when applied to an irregularly spaced array or when background noise 
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is colored, most of the existing adaptive algorithms are not capable of 
working. The important contribution of this work is that, by introduc- 
ing a new procedure to the conventional processing algorithms, they 
can overcome the many difficulties which occur. We test this method 
with computer simulations, and their results are consistent with our 
prediction. 

I .  INTRODUCTION 
I n  radar, sonar, and seismology, one is frequently interested in 

estimating the directions of arrival and the spectral densities of ra- 
diating sources from measurements provided by a passive array of 
sensors. The problem of simultaneous estimation of the directions 
of arrival and the spectral densities of the impinging sources can 
be regarded as a two-dimensional spectral estimation problem. 
Given spatial and temporal samples of the received signals, the 
problem is to determine the 2-D spectrum or the energy distribution 
in both the spatial and temporal domain. The spatial spectrum con- 
sists of point masses at different angles of arrival. The temporal 
spectrum may consist of point masses at different frequencies in  
the case of narrow-band sources or  may be continuous in the case 
of wide-band sources. 
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Since the number of samples ( i . e . ,  sensors) in the spatial domain 
is usually small, classical Fourier analysis yields low spatial res- 
olution. As a result, alternative methods [ I ]  that provide high res- 
olution have been developed. These methods are known to yield 
high resolution and asymptotically unbiased estimates. Although 
the details differ in various applications, the main assumptions and 
processing algorithms are the same. In particular, the key assump- 
tion in all the previous cited works is that the interfering signals 
are not correlated with the desired signal. Once correlated inter- 
ferences happen to occur, they completely destroy the performance 
of adaptive array systems. Theoretically, these methods encounter 
difficulties only when the signals are perfectly correlated. In prac- 
tice, however, significant difficulties arise even when the signals 
are highly correlated. The perfect correlation case (or coherence 
case) serves as a good model for the highly correlated signals. 

In spite of its practical importances, the coherence case did not 
receive considerable attention until recently. The earliest pioneer 
works on this problem are that of Gabriel 121 and Widrow ( 3 ) ;  they 
describcd two similar approaches, both aimed at “decorrelating” 
the coherent signals. The scheme by Widrow et u l . ,  called “spatial 
dither,” is based on mechanical movement of the array elements 
in some way. However, this technique does not provide a clear 
general procedure. Gabriel’s scheme is based on “Doppler 
smoothing;” he also mentioned that for the so-called “single snap- 
shot” case, a solution is sometimes possible via synthetic motion 
of a smaller sampling subaperature along the single snapshot data 
samples. Evans et ul. [4] presented an attractive solution t o  the 
problem for the case of a uniformly spaced linear array. Their so- 
lution is based on a preprocessing scheme referred to as “spatial 
smoothing” that essentially decorrelates the signals and thus elim- 
inates the difficulties encountered with coherent signals. Shan er 
ul. 1.51 have done a complete analysis for the “subaperature sam- 
pling” or “spatial smoothing” preprocessing scheme. They pro- 
vided an algorithm that can be applied to an on-line adaptive beani- 
former, and its performance is good eve.1 when coherent signals 
are presented. Su er ul. 161 modified the above method by a so- 
called “parallel spatial smoothing” algorithm. using a parallel 
structure with a spatial averaging etfect to overcome coherent jam- 
ming. Their conclusion is that a spatially smoothed maximum like- 
lihood estimate of the desired signal can be obtained when the 
adaptive beamformer converges. 

In parameter estimation using eigenstructure techniques. the 
noise covariance must be known explicitly 171. A method based on 
some sort of translation or rotation of the array to overcome this 
problem has been developed in [7]. It is our intent to propose a 
solution which does not need mechanical movements to the prob- 
lem of estimation of direction of arrival for a broad class of un- 
known noise fields. 

In Section 11, some investigations of current adaptive arrays will 
be reviewed, and several difficulties with them will be pointed out, 
i .e.,  the signal cancellation phenomenon that arises when coherent 
interferences present. Current approaches that solve this problem 
will also be examined. In Section 111, a random smoothing method 
will be introduced plus its rationales. A high-resolution technique 
for spectral estimation is reviewed for later use. In Section 1V. we 
present computer simulations of our method. And the results of 
simulations are analyzed and compared to other methods. In Sec- 
tion V ,  this work is concluded with several remarks. 

11. PROBLEM S.I.ATFMEN.I s 

In this section, we will review the problem briefly. Then we will 
use a method by Su to point out the difference between his design 
and ours. 

Consider a simple two-element Frost beamformer. Generally, 
the constraint of the Frost algorithm is to let the array have unit 
gain and zero phase shift over a certain frequency band in the look- 
ing direction, which can be preselected by time-delay steering of 
the array elements, while it eliminates all the off-looking direction 
jammers by means of minimizing its own output power. Suppose 

the desired sinusoidal signal S arrives from the looking direction 
and the jammer J with the same frequency as the desired signal is 
arriving from an off-looking direction and thus keeps a fixed phase 
shift with the desired signal. Denote signal S and jammer J as S = 
A . e’“‘ and J = B . e’“”’ where A and B are the corresponding 
amplitudes of S and J ,  4 is the constant phase shift between desired 
signal S and jammer J ,  and o is the angular frequency. Suppose an 
array has two sensor elements which are placed in the plane parallel 
to the propagation direction of the waves. Element 1 and element 
2 receive both the desired signal and jammer as 

X - A . + B . e / W ‘ + l @  and 
I -  

X - A . + B . e / “ ‘ t l @ - l “ A  
2 -  

where A = d . sin 0 / c ,  d :  the interelement spacing, c:  propagation 
speed of the waveform. 0: the jammer’s incident angle from broad- 
side. Let the received vector and the weight vector to be denoted 
as X = [ X I ,  X ,  ] ‘, W = [ W , ,  W2 1 T ;  then the output of the beam- 
former is given by ? = X 7  . W = XI W ,  + Xz W z .  Note that all the 
mathematical representatives we used here are complex and the 
complex algorithm of linearly constrained adaptive beamformer by 
Su [8] is used. Typically, the Frost constraint is set to cause the 
receiving array having a unit gain and zero phase shift in the look- 
ing direction. Thus, we have the following expressions: 

niin l y l -  subject to W ,  + Wz = 1 .  
U 

Substituting XI and X 2  by using ( I )  and (2). and remembering that 
W, = I - W , ,  we have 

min  le^^') ] A  + B . e ’ @ ( ~ ,  + e-+ - w,c+)\. 
U 

Solving the above equation, the optimal weights are 

- 1  Af? -Im w;=-- 

When the beamformer converges, i .e . ,  the weights reach their 
steady state, the optimal solution results in  a zero output, 
lim,- ynlln ( 1 )  = W” . X + 0. This is what we emphasized in the 
signal cancellation phenomenon. This adaptive beamformer has a 
null  in the incorrect direction, even though the linear constraints in 
the desired looking direction have been imposed. 

T o  preserve the desired signal while eliminating the coherent 
jammer, the optimal solution should be 

I B(e-’“’ - 1 1 - (,J”A ~ 

- 1  -,“A 
WSP‘ = ~ 

I - - ‘ 
W;P’ = ~ 

e-’uJ - 1 ’ 

Compare W ;  and W(iP‘: we find that there are two ways to let W ;  
approach Wyp‘. The first one is to make A << B,  i .e . ,  the desired 
signal power is much smaller than that of the coherent jammer. But 
even in this case, W ;  = W‘iP‘, we still get a zero output in the time 
domain. The second one is to set A to zero o r  eliminate the desired 
signal in the adaptation process, which means the influence over 
weight settings will be dominated by the jammer. Duvall [9] ap- 
plied this ideal in  his master-slave beamformer. But nevertheless, 
this method will introduce an  undesirable bias term in the system 
output, and when there exist two o r  more coherent interferences, 
their directions of arrival will not be resolved correctly. 

The method which is helpful to understanding our method is the 
“parallel spatial processing” algorithm. It is proposed in different 
ways by Shan. Evan, and Su: one way is to smooth spatially in the 
direction orthogonal to  the desired looking direction of the beam- 
former. This kind of array structure can be applied in  conjunction 
with any adaptive algorithm and any array structure. We now re- 
view i t  briefly. 

Given a “shapshot” o f N  sensor outputs sampled at time instant 
t and sample interval 7 ( t  = r71 . 7). X ( r r i )  = [ X , ( m ) ,  X z ( n l ) .  
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. . .  , X, (m)  I I ;  let it be divided into K subarrays with each su- 
barray having P sensors and adjacent subarrays having P - I over- 
lapping sensors. Also suppose the desired signal S and the jammer 
J arc impinging on the array; the desired signal is from the looking 
direction and the jammer is from an off-looking direction. Since 
the array is an equally spaced linear array, each element receives 

= A . e j w m  + ,y . e'wn!r + I +  + / ( , I  - I )wA 

n = l , 2 ; . .  , N = P + K - I  
The linear constraint of the weights is expressed as Cp= I W, ( m )  = 
1 for any m .  Then the overall system output is obtained as follows: 

1, ( m  + K - 1 ) == Ae /w'f'i + Be / w " r f l ~  

where 
P 

p =  I 
a(m + K )  = C Wp(m + K - ~ ) e " l ' - ' ) " ~  

In  the above equation, we see that the jammer can be modified 
by two factors. The first factor is a function of time and subject to 
the least mean square criterion and the linear constraint. The sec- 
ond term is given as 1 / K  C f =  I e'"""wA, which is the summation 
of K uniformly spaced terms on unit circle. As K becomes large, 
the summation term results in a very small value. So when the 
adaption process reaches steady state, the coherent jammer effect 
will be greatly reduced by such a modification. Therefore, if a large 
number of subarrays are used, i.e.,  when K is very large, it is easy 
to get limK,, y ( m  + K - 1 ) = A . e'"zr as desired. 

To make the spatial summation factor close to zero in the time 
domain is the key of this method to solve coherence cases. Since 
the signature (or envelope) part of the target's spectrum is much 
more important than the flat whitc noise part, can we reduce the 
effect of the second term in resolving the directional spectrum by 
making the jammer's spectrum into a white-noise-like spectrum'? 
The following section will give a solution to this question when K 
= 1 .  

111. DESCRIPTION OF T H E  RANDOM SMOOTHING ALGORITHM 
We now describe a preprocessing method for the sensor outputs 

that will preserve all the information of the desired signal from the 
steered looking direction while stirring all the off-looking direction 
signals into white noise. 

This scheme is based on permuting the measurements of the ar- 
ray sensors. Let 

x ( m )  = [ x , ( m ) ,  x2(m). . . . , x N ( m ) ] '  ( 1 )  

denote the steered N X 1 vector sequence received from the sensors 
where N is the number of sensors that the array contains and m 
represents the ordered time. The N data within each X ( m ) ,  i.e., 
[ X , ( m ) ,  X , ( m ) ,  . . . , X N ( m ) ] ,  will be rundomlypermuted and 
independent permutations are applied for different m value. Thus, 
we obtain a new permuted N X 1 vector sequence, namely, 

Note that there are N !  ways to permute the data within each X( m ) .  
Each outcome Y ( m )  has a probability of occurrence l / N !  when 
X ( m )  has N different data. Then we estimate the autocorrelation 
function R,, ( i  ) for each permuted data sequence { Y, ( m ) ,  m = I ,  
2, . . . , M using any conventional methods, e .g . ,  

1 M - i  
R , , ( i )  = __ . Y , ) ( m )  . YR(m + i )  M - i  ,,,=I 

O s i r L - 1 5 M  ( 3 )  
where M is the total number of "snapshots," L is the number of 
autocorrelation functions we want, and the asterisk denotes com- 

plex conjugate. The average autocorrelation function R (  i ), which 
resembles the ensemble mean, can be estimated by averaging R,,( i ) 
overn  = I ,  2 ,  . . . , N, i .e.,  

(4 1 I N  
R ( i )  = - N . , , = I  c R , , ( i ) .  

This R (  i ) contains all the spectral infomiation of the looking di- 
rection. Now the target's spectrum can be estimated using any high- 
resolution spectral analysis methods based on R (  i ) .  Finally, 
changing the time-delayed steering vector degree by degree and 
doing the same procedures, the estimated target spatiotemporal 
spectrum can be obtained. Fig. 1 illustrates a general block dia- 
gram of this random smoothing algorithm. 

To carry out our scheme, the high-resolution method for power 
spectral estimation we will use in  simulations is the maximum like- 
lihood method (MLM) developed by Capon I I O ] .  The MLM spec- 
trum is given by 

- 1 )  R * ( L  - 2 )  . . . R ( 0 )  1 
where A ( ~ )  = 1 ,  e - ~ w r ,  e - ~ w - ? r ,  . . . e - ~ u ' ( I . -  I . 1 I S  the steer- 
ing vector at temporal angular frequency w and { R (  i ), i = 0, 1. 
2 ,  . . . , L - 1 } is the averaged autocorrelation function obtained 
from (4). The temporal power spectra of the signals coming from 
each steered direction can be obtained using the above formula. 
This is different from the conventional beamforming method which 
focuses on one frequency for all direction and obtains the direc- 
tional spectrum for that frequency. In  our method, we obtain the 
whole temporal power spectrum of all frequencies for one direc- 
tion, and then steer to another direction. 

The Rationales 
The rationale for our algorithm is that the random permuting 

procedure can whiten the coherent signals coming from off-looking 
directions. With this kind of permutation, the correlation properties 
of the signal sources coming from all directions, except the steered 
one, are totally or partially destroyed. The spectral energy of those 
off-looking directions is whitened by the random permutation. In 
other words, the desired signal's spectrum cannot be contaminated 
by coherence jammers from a different direction. The jammer's 
signals will add a white-noise spectrum or thermal-noise spectrum 
to the baseline of the desired signal's spectrum. 

According to our scheme, the signals coming from the off-look- 
ing direction are stirred by the random permuting procedure and 
their { Y, ( m ) .  m = I ,  . . . , M } should be close to random noise 
or thermal noise. And their entropy should be increased by this 
random permutation, too. In order to see this point and the reso- 
lution ability in the direction spectrum, we employ the entropy rate 
function h [ 1 11 to show this effect. The definition of h for a Gauss- 
ian-distributed random variables of zero mean is given by 

H 1 I / I .  
h = lim - = lim - . In [det ( R ) ]  ( 6 )  

1.-m L I.-m 2 

where H = . In [ det ( R )  1 and L is the order of correlation matrix. 
Theoretically, when a signal is a pure tone, its R is one eigenvector 
dominant and h tends to - w .  When a signal is close to thermal 
noise (or white noise), it has a very large value of h.  We test this 
idea by simulation of a very narrow-band signal s ( t )  which is im- 
pinging on an array from the normal direction of the array. Apply- 
ing our algorithm shown in Fig. 1 and using (l)-(4), we can esti- 
mate the R matrix for each steered direction. Then we substitute 
this R in  (6). The result is plotted in Fig. 2. I t  is clear that this 
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Fig. 1 .  Block diagram of the random smoothing algorithm 

20 

1.5 1.0 l-7 7 

-20 I 
4 - 6 0 - 3 0  D 30 60 90 

DECREE 
Fig. 2 .  Entropy analysis of the effect of the random smoothing algorithm 

on a tonal signal coming from all directions using a uniformly spaced 
linear array with wavelength interelement spacing. 

algorithm will preserve the information content of the signal only 
when the array is steered toward the signal. When the direction 
steered is not consistent with the arrival direction of the signal, the 
R is close to white noise, that is, its h is increased by the permu- 
tation. Instead of deriving the theoretical approach to the resolution 
bandwidth reached by taking the expectation values of correlations 
between adjacent directions, we give the following simple intuitive 
explanation to the solution of resolution bandwidth. Since the 
whiteness (or  randomness) of unwanted signals, which have no 
correlation property  with R ( i  ) = 0 f o r  i # 0 &er the random 
permutation, designates the independence between the desired 
(steered) signal, which has some correlation propert ies ,  and un- 
wanted signals, according t o  the de$nition of resolution, the ability 
of resolution in the direction spectrum can be properly  indicated 
by the width of the notch in Fig. 2 .  And the widths of the notches 
can be predetermined by computer simulations for a given array. 
In the above analyses, we do  not assume that the sensors are equally 
spaced. When the array is composed of irregularly spaced sensor 
elements, the autocorrelation functions of all permuted time se- 
quences will still preserve the autocorrelation function properties 
of the signals from the steered direction except R ( 0 ) .  

IV. SIMULATION RESULTS 
This section provides several computer simulations. The results 

of simulations support our prediction. The example we considered 
had ten ( Q  = 10) planar wavefronts at directions of arrival -90 
+ 18 . ( q  - 1 )  degree, q = 1, 2 ,  . . . , 10. All of the ten signal 
sources are perfectly coherent with the same amplitude, namely, 
S , ( t )  = sin 0 . 5 a t .  In the first case, the array is linear and uni- 
formly spaced with ten sensor elements. Each element is assumed 
to be omnidirectional, and the interelement spacing is one-half 
wavelength. The ambient white noise is assumed to be negligible. 
Two-hundred snapshots (M = 200) for a steered direction are thus 
obtained. We then apply the algorithm shown in Fig. 1 with the 

LMPllllTnE 
3.01 

-w -60 -30 0 30 60 w 
DEGREE 
(b) 

Fig. 3. (a) Spatiotemporal spectrum by the random smoothing method with 
a uniformly spaced linear array. (b) Profile of Fig. 3(a) atf = 0.25 (or  
w = 0 . 5 ~ ) .  

0 2  0 4  c 6  oa i o  
NORMAUZED FWQUENCY 

0.5 

0.0 
- 8 0 - 6 0 - 3 0  0 30 60 E 

DEGREE 
(b) 

I 

Fig. 4. (a) Spatiotemporal spectrum by the delay-and-summed beam- 
former with the same array as in  Fig. 3. (b) Profile of Fig. 4(a) atf = 

0.25 (or  w = 0 . 5 ~ ) .  
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Fig. 5.  (a) Spatiotemporal spectrum by the random smoothing method with 
irregularly spaced linear array. (b) Profile of Fig. 5(a) atf = 0.25 (o r  w 
= 0 . 5 ~ ) .  

substitution of (1)-(5) in proper places and obtain the power spec- 
trum for that direction. Then we steer to another direction, from 
-90”  to 90” ,  degree by degree. The result is shown in Fig. 3(a). 
The profile of Fig. 3(a) at frequency 0.25 is shown in Fig. 3(b). 
The ten peaks corresponding to the ten signal sources are clearly 
seen in these figures. The resolution bandwidth along the axis of 
the direction spectrum is close to the width of the notch of Fig. 2 .  
Fig. 4(a) and (b) shows the results of simulation using conventional 
delay-and-summed algorithm in the same environment. In this fig- 
ure, the ten coherent signals are totally lost by the coherence. 

In the second case, suppose three of the ten sensors, namely, 
sensor number 2,  5 ,  and 9 ,  are damaged. Thus, the array is linear 
but irregularly spaced. The results, obtained from 200 “snap- 
shots” using our algorithm are presented in Fig. 5(a).  The profile 
of Fig. 5(a) at frequency 0.25 is presented in Fig. 5(b). We still 
can identify the ten peaks corresponding to the ten signal sources. 
There is no other method that can resolve this case efficiently as 
far as we know. 

V .  CONCLUSIONS 
A “random smoothing” algorithm for array signal processing is 

proposed to overcome signal cancellation effects in correlated jam- 
ming environment. Our method is able to handle the particular sit- 
uation when the array is irregularly spaced, especially when some 
of the sensors have been damaged and when the background noise 
is colored. The effectiveness of our method has been verified by 
many simulations. Due to the estimation of the ensemble average 
R (  i ), our algorithm requires additional computations. Our scheme 
is easily extended to a multidimensional irregularly spaced array 
for broad-band signals and it has been verified by enormous sim- 
ulations. 

1449 

[ 11 Special Issue on Adaptive Antennas, IEEE Trans. Antennas Propa- 
gat.,  vol. AP-24, Sept. 1976. 

121 W. F. Gabriel, “Spectral analysis and adaptive array superresolution 
techniques,” Proc. IEEE, vol. 68, pp. 654-666, June 1980. 
B. Widrow, K. M. Duvall, R .  P. Gooch. and W. C. Newman, “Sig- 
nal cancellation phenomena in adaptive antennas: Cause and cures.” 
IEEE Trans. Antennas Propagat., vol. AP-30, May 1982. 
J. E. Evans, “Aperture sampling techniques for precision direction 
finding,” IEEE Trans. Aerosp. Electron. Svst., vol. AES-15, pp. 891- 
895, Nov. 1979. 
T.-J. Shan. M. Wax, and T. Kailath, “On spatial smoothing for di- 
rection-of-arrival estimation of coherent signals,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 806-81 1. 
Aug. 1985. 
Y.-L. Su, T.-J. Shan, and B. Widrow, “Parallel spatial processing: 
A cue for signal cancellation in adaptive arrays,” lEEE Trans. An- 
tennas Propagat., vol. AP-34, pp. 347-355, Mar. 1986. 
A. Paulraj and T. Kailath, “Eigenstructure methods for direction of 
arrival estimation in the presence of unknown noise fields,’‘ IEEE 
Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 13- 
20, Feb. 1986. 
Y .-L. Su, “A complex algorithm for linearly constrained adaptive 
arrays,” IEEE Trans. Antennas Propagat., vol. AP-31. July 1983. 
K. M. Duvall, “Signal cancellation in adaptive arrays: The phenom- 
ena and a remedy,” Ph.D. dissertation. Dep. Elec. Eng., Stanford 
Univ., Stanford, CA, Sept. 1983. 
J. Capon, “High-resolution frequency-wavenumber spectrum analy- 
sis,” Proc. IEEE, vol. 57, pp. 1408-1418, Aug. 1969. 
D. Middleton, An Introduction to Statistical Communication Theor!. 
New York: McGraw-Hill, 1960. 

Instability in the Solution of Banded 
Toeplitz Systems 

ALLAN J. MAcLEOD 

Abstract-Some algorithms for the solution of handed Toeplitz sys- 
tems calculate certain elements of the solution first and then the re- 
maining elements by forward or backward substitution. We show that, 
for symmetric matrices, this method is almost always highly unstable. 
A numerical example is given to support the argument. 

I. INTRODUCTION 
We consider the solution of the system of linear equations 

where T, is a Toeplitz matrix, i.e.,  ( T , , ) , ,  = t ,  , , j = 0, . . . , n. 
We also assume that T,, is a banded matrix, i.e.,  there exist p ,  4 
with 1 5 p ,  4 < n such that t ,  = 0, i > p or i < - 4 .  

For small values o f p  and q ,  standard linear equation solvers take 
essentially O ( n )  operations to solve ( I ) .  There has, thus, been in- 
terest in adapting the general Toeplitz methods to the banded case 
so that O ( n )  operations only are required. 

Dickinson [ I ]  and Trench [2] are examples of such methods. 
Fundamental to the efficient implementation of these methods is 
the observation that we need only calculate some of the elements 
of x .  The remainder can be calculated by forward or backward sub- 
stitution. 
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