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Abstract

Although Cu CMP has being the enabling technology for multilevel Cu interconnect manufacturing,
there were several challenges to its implementation. One of the serious challenges was post-Cu CMP
cleaning. There will be a large amount of contaminants on the wafers after Cu CMP, including particles
and chemicals from slurry, debris from the substrate which been polished and Cu residuals.

As polishing with colloidal silica based slurry, there was a strong tendency of the absorption of
colloidal silica on Cu surface. It was difficult to remove these chemisorbed colloidal silica by
conventional chemical clean. A novel process, which was buffing with Nitric acid (HNO:) and
1H-benzotriazole (1H-BTA, CsH:NsH), could remove colloidal silica abrasives from Cu surface [1].
HNOs would dissolve Cu oxide layer on Cu surface) while 1H-BTA would coordinate with cuprous ions
to form a mono-layer Cu( I )-BTA on the surface/'to prevent Cu form oxidation. However, one may
suspect whether the ~ Cu( I )-BTA layer on Cu'Stffacewas stable for thermal and electrical bias stress
or not? We would like to explore the mechanism of surface leakage for CuBTA and Cu oxide passivation
on Cu surface. Cu oxide on Cu surface could be used to describe the surface condition after conventional
CMP. To establish the environment of Cu oxide on the Cu surface without colloidal silica, we used KOH
for buffing followed by immersing in hydrogen peroxide (H:0.). In additional, thermal stability and
chemical durability of CuBTA layer would be discussed in this study.

One of the greatest challenges to the Cu CMP cleaning process was the removal of residual Cu
contamination from the dielectric surface. Cu ions remained on the dielectric would cause large leakage
current [2] [3]. Metal chelators were known to form stable complexes with Cu ions. Because metal

chelators had one or several dentates, they would react as electron-pair acceptors to form coordination
2



compounds or complex 1ons with metal ions. The metal chelators in solution would form uncharged

Cu-chelator complexes by coordination. In this study, three types of chelotors with different structures

would be compared from their cleaning efficiency and corrosion effect. In additional, good wetting

ability would ensure whole wafer surface would be coved with chelator chemicals, which made Cu ions

cleaning uniformly. We also discussed the wetting ability of chelator solutions in this study. Furthermore,

the effect of different pH for chelating capability would be discussed.
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Chapter 1
Introduction
1.1 Motivation
1.1.1 Cu Dual Damascene Process and CMP

In semiconductor manufacturing, we always directed toward adding device speed
and circuit function. Traditionally, we focused on decreasing feature size to reach this goal, and it
really worked. However, in deep sub-micrometer region, the impact of interconnect delay has been
beyond intrinsic gate delay (Figure.1-1) [4]. It was obvious that interconnect RC delay would limit the
overall chip performance as the technology node below 1 m. This was due to the resistance of metal
lines increased with increasing length and deereasingswidth. In addition, the parasitic capacitance of
metal lines increased with increasing length'and decreasing spacing. The interconnect RC delay was
given by

2

RC = pS:F (Eq.1-D)
where 0 was the resistivity of the metal, & was the permittivity of the insulator, 1 and d were length
and thickness of the metal line, respectively, and t was the thickness of the insulator [5]. There were three
ways to reduce the RC delay. First, introducing multilevel interconnect structure to reduce 1 and
interconnect complexity. Second, introducing low-dielectric constant materials as insulators to reduce € .
Third, introducing low resistivity metals as interconnect materials [4].
Cu as interconnect material could be understood form the view point of material properties.

Table.1-1 gave the comparison of properties of several possible interconnect metals [6]. Among these

metals, Cu with two primary characteristics of low resistivity (1.7 ¢ €2.cm ) and high melting point(1085
10



“C) could exhibit good electromigration resistance and reliability. Therefore, Cu was the most promising
candidate for the advanced interconnect metallization. However, owing to lack of Cu compounds with
high vapor pressure at low temperature, reactive ion etching (RIE) was not practical method to pattern Cu
metal lines [7]. Several different methods for fabrication of multilevel Cu interconnect has been reported
[8] [9]. The most promising method was known as dual damascene process with chemical mechanical
polishing (CMP) (Figure.1-2). Several advantages of dual damascene process using CMP were described
below. First, such approach did not need to develop the difficult RIE of copper. Second, the global
planarity of surface was achieved by CMP, which means allowing for multilayer stacking of Cu
metallization without surface topography buildup[10]. Third, dual damascene process reduced
manufacturing process steps and CMP widened 'the® process window [11]. Fourth, Cu CMP was a
room-temperature process and this process could feduce the thermal budget. Finally, it was relatively
easy to obtain a clean Cu interface after CMP process comparing to metal RIE, which would significantly
reduce contact resistance.
1.1.2 Post-Cu CMP Cleaning

Although Cu CMP was a potential process in future multilevel Cu interconnection, there were
several challenges to its implementation. One of the serious challenges was post-Cu CMP cleaning. Cu
CMP left a large amount of contaminants on the wafers, including particles and chemicals from the slurry,
particles from the materials been polished and Cu ion residuals [12].
1.1.2.1 Colloidal Silica Abrasives Removal

During the CMP process, Cu would be oxidized to form Cu oxides (CuO or Cu:0) and Cu

hydroxides (Cu(OH).) passivation on Cu surface[13]. Then, these passivation on high feature would be
11



polished to reach global planarization, while low feature would not be polished. As polishing with
colloidal silica based slurry, it shows the strong absorption of colloidal silica on Cu surface. This might
be related to that the colloidal silica chemisorbed on the Cu oxide layer by means of oxygen bridging
bonding [14]. It was difficult to remove colloidal silica by conventional chemical clean. In additional,
Several papers also indicated this Cu oxide layer was a source of surface leakage [2] [3].

A papers propose a novel process, which was buffing with Nitric acid (HNO:) and 1H-benzotriazole
(IH-BTA, CsHiN:H), to remove colloidal silica abrasive [1]. HNOs would dissolve Cu oxide layer on Cu
surface, while 1H-BTA would coordinate with cuprous ions to form a mono-layer Cu( I )-BTA on the
surface to prevent Cu form oxidation(Figure.1-3) [15]. However, one may suspect whether the
Cu( I )-BTA layer on Cu surface was stable forthéfmal.and electrical bias stress or not? We would like
to explore the mechanism of surface legkage for CuBTA and:Cu oxide passivation on Cu surface. Cu
oxide on Cu surface could be used todescribé thelSurface condition after conventional CMP. In
additional, thermal stability and chemical durability of CuBTA layer would be discussed in this study.
1.1.2.2 Cu Contamination Removal

Besides colloidal silica absorption on the surface, Cu residuals were also source of contamination
and were thought to be most deadly. Cu ions were mobile charges which would penetrate into dielectric
to form several deep levels in the silicon band gap, which would damage device performance, and likely
to lead short between metal lines [2] [3] [5]. As a result, Cu residuals must be clean as far as possible
after Cu CMP.

It was a challenge to remove Cu residuals on the dielectrics down to the level less than 5x10"

atoms/cm’ without corrosion to Cu lines [16]. From Pourbaix diagram, it indicated that Cu was corroded
12



n acidic (pH<5) and alkaline (pH>13) solutions easily (Figure.1-4) [4], ammonium hydroxide (NH:OH)
and hydrofluoric acid (HF), which were used for conventional post-oxide CMP cleaning were not suitable
for post-Cu CMP cleaning [17]. Especially for NH:«OH, it formed soluble and stable complex
Cupric-amine compounds with copper, as shown in (Figure.1-5) [4].

Metal chelators were known to form stable complexes with Cu ions [18]. Because metal chelators
had one or several dentates, they would react as electron-pair acceptors to form coordination compounds
or complex ions with metal ions. The metal chelators in solution would form uncharged copper-chelator
complexes by coordination with metal ions. In this study, three types of chelotors with different structures
would be compared from their cleaning efficiency and corrosion effect. In additional, good wetting ability
would ensure whole wafer surface would be coved Withschelator chemicals, which make Cu ions cleaning
uniformly. We also discussed the wetting ability ‘of ‘chelator=solutions in this study. Furthermore, the
effect of different pH for chelating capability would bé-diScussed.

1.2 Thesis Outline

In this study, we studied the effect of CuBTA layer on surface leakage. We would compare
Cu( I )-BTA layer with Cu oxide on Cu surface from the view of surface leakage. Cu oxide on Cu
surface could be used to describe the surface condition after conventional CMP.

In chapter 2, three types of chelotors would be compared their cleaning efficiency and corrosion
effect in this study. In additional, we would explore the influence of pH on chelating Cu ions.
Furthermore, wetting ability and corrosion of Cu lines in the cleaning solutions also were discussed.

In chapter 3, we would compare Cu( I )-BTA layer with Cu oxide on Cu surface fromed the view of

surface leakage. To build the condition of Cu oxide on Cu surface, buffing with KOH also was discussed.
13



In additional, the thermal stability of CuBTA layer would be discussed.

Finally, conclusions were given in chapter 4.

14



Chapter 2

Cleaning Efficiency of Chelator Solutions

2.1 Introduction

Although Cu CMP has being the enabling technology for multilevel Cu interconnect manufacturing,
there were several challenges to its implementation. One of the serious challenges was post-Cu CMP
cleaning. After Cu CMP, Cu contamination presented on the surface in the form of homogeneous film
[16]. Cu diffused quickly both in the silicon wafer and in deposited dielectric films. Cu would formed
several deep levels in the silicon band gap and acted as recombination centers, which reduced minority
carrier lifetime [5]. In additional, Cu residuals on dielectric would form a leaky path and were likely to
lead short between metal lines [2][3]. Hence,«CulWds: eonsidered as a very serious contamination for
silicon device and must need to be removed from ittetlevel dielectrics surface after Cu CMP.

It was a challenge to reduce Cu residual§ of the dielectrics to a level less than 5x10" atoms/cm’
without causing corrosion to Cu lines [16]. Figure.I-4 showed the Pourbaix diagram of Cu-H:0 system. It
indicated that acidic solutions(pH<5), Cu oxides did not form and Cu dissolves as Cu " at noble (high)
potential. On the other hand, in highly alkaline solutions at pH>13, Cu would form CuO2 at noble
potential. Because Cu was corroded in acidic and alkaline solutions easily, ammonium hydroxide
(NH:OH) and hydrofluoric acid (HF) which were used for conventional post-oxide CMP cleaning would
be not suitable for post-Cu CMP cleaning [17]. Especially for NH4«OH, it formed soluble and stable
complex compounds with Cu, which would corrode the Cu lines seriously as shown in Figure.1-5.

In this study, several metal chelators would be used to remove Cu ions from the interlevel dielectrics

surface. Metal chelators were known to form stable complexes with Cu ions [18]. Because metal
15



chelators had one or several dentates, they would react as electron-pair acceptors to form coordination

compounds or complex ions with metal ions. The metal chelators in solution would form uncharged

Cu-chelator complexes by coordination with metal 1ons. The removal of Cu contamination from wafer

surface by metal chelators could be understood by the distribution equilibrium [19]. The distribution

equilibrium could be expressed by the following equations. Metal ions deposited on the wafer surface

were dissolved into the aqueous phase (Eg.2-1). The complex reaction occured between metal 1on and

metal chelator molecule (Eg.2-2). Metal-chelator complex might absorb again on the wafer surface

(Eq.2-3). Metal chelator molecule might adsorb on the wafer surface (Eq.2-4).

M (soiidy € M (agueous) (Eq.2-1)
M (aqueous) T Liaqueous) € ML agueous) (Eq.2-2)
ML ueons) € ML iia) (Eq.2-3)
L aqueous)y € Lisotiay (Eq.2-4)

where M= metal ion, L= metal chelator, ML= metal-chelator complex, (aqueous)= dissolved in water

phase, (solid)= adsorb on the surface.

Three types of chelotors with different structures would be compared from their cleaning efficiency

and corrosion effect in this study. Table.2-1 listed the three types of chelator solutions. In the typel, citric

acid and ADPA-60 had two dentates. In the type2, EDTA and 422-25S had six dentates. The catechol and

TBC were aromatic compounds with a cyclobenzeze.

The pH of chelaors also played important role for chelating capability. We would research the

influence of pH on chelating Cu 1ons. Furthermore, good wetting ability would ensure whole wafer

surface would be coved with chelator chemicals, which make Cu 1ons cleaning uniformly. We would
16



discuss the wetting ability of chelator solutions in this study.

2.2 Experimental
2.2.1 Wetting Ability Test of Chelator Solutions

The substrates were standard 6-inch diameter p-type silicon, (100) orientation wafers. After the
standard RCA, about 5500A thick SiO: was thermally grown from the silicon substrate in the furnace.

Contact angle test was carried out to decide the wetting ability of chelator solutions. In this study,
the concentration of the solutions is 1E”and each drop was fixed at 3ml.
2.2.2 Corrosion Test

The blanket Cu test wafers were stacked Cu/Téaslayer structure with a combination thickness of
1000/50 nm which were sputtering deposited onto the p-type, €100) oriented, 6-inch bare silicon wafers
with 200 nm thick oxide deposited by PECVD. The PECVD. system was STS multiplex cluster system
and the sputter system was ULVAC SBH-3308 RDE. The under layer of 50nm Ta was used as an
adhesion promoter for the Cu deposition, since Cu did not adhere well on the thermal oxide. It was also
used as a diffusion barrier, because Cu was very easy to diffuse into oxide with high diffusivity.

The blanket wafer was immersed into the cleaning chelator solutions for 3 minutes. The
concentration of chelator solutions was 1E”M. Four point measurement was performed to measure the
thickness of Cu films before and after etch respectively and calculate the etch rate, describing in chapter

2.3.

2.2.3 Cleaning Test

2.2.3.1 Sample Preparation
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The experiment flow was shown in Figure.2-1. The substrates were standard 6-inch diameter p-type
silicon, (100) orientation wafers. After the standard RCA, about 5500A thick SiO: was thermally grown
from the silicon substrate in the furnace. To make the Cu ions bonded on the oxide layer uniformly
without agglomeration, CMP process was used before immersing in 1M CuSO: for 2 minutes. After CMP
process, the surfaces of oxide layers would become fresher and bond with Cu ions easily. The CMP setup
is described later in chapter 2.2.3.2. Then, the blanket wafers were cleaned using D. 1. Water ( DIW ) by
the post-CMP cleaner of Solid State Equipment Corporation MODE 50 (SSEC-M50). The duration of
cleaning was 7 cycles (15 cycles/min) and the rotation rate of wafer was 800 rpm. Then, blank wafers
were dry spun at the rotation rate of 2500 rpm.

After preparing the Cu contaminated wafer;ithe fitst TXRF analysis was carried out to calculator the
amount of Cu ions. Three types of chelator solutions ¢leaning were performed on the SSEC-M50 cleaner,
and following with the second TXRF analysis. Tablel2=2 listed the cleaning steps and parameters of
SSEC-M50. Then the second TXRF analysis was executed to calculate the cleaning efficiency, describing

in chapter 2.3.

2.2.3.2 CMP Process

Polisher Setup

A Westech Model 372M CMP processor (Figure.2-2), consisting of a wafer carrier and a primary
circular polishing table mounted with Rodel IC 1400™ grooved (made of polyurethane impregnated
polyester) pad and a secondary buffing table mounted with an Rodel Politex Regular E."™ pad, a carrier to

hold wafers against the pad, and a Rodel R200-T3 carrier film to provide buff between the carrier and

wafer was used for CMP experiments. Recesses in the carrier template mechanically constrain a single
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6-inch wafer, preventing it from sliding out from under the carrier during polishing. A polymeric film
placed in the recess brought the wafer slightly above the surrounding template surface. When the film
was wetted, it provided sufficient surface tension to hold the wafer while it is being positioned over the
polishing table. The teflon retaining ring was recessed from the wafer surface about 7 miles. The slurry,
pumped out from a reservoir at a controlled rate, was dispensed onto the center of the table. The table and
the carrier were both motor driven spindles, rotated independently at constant angular velocities (rpm).
The arm was oscillated about their position at half radius of the table to utilize more pad area and to
reduce pad wear [20]. Pressure at the wafer-slurry-pad interface was controlled via an overhead

mechanism, which allowed pressure to be applied onto the wafer carrier.

Pad Prewet & Pad Conditioning

Pad prewet was performed before the statt of €ach polishing action. The prewet slurry flow rate was

at 300 ml/min and the prewet time was fixed at 20 seconds.

Pad conditioning was employed to resurface the pad in order to maintain the removal rate without
sacrificing uniformity. The purpose of pad conditioning was to clean the slurry residuals and to lift the
pad fiber for further processing. Without this procedure, the polishing rate decreased substantially after
several polishing cycles. In our experiments, pad conditioning was done by brush artificially. Pad
conditioning was performed before and between each wafer, and polishing was terminated before pad
glazing could cause significant reduction in removal rate.

Polishing Recipes & Slurry Formations
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The polishing recipes and slurry formulations in cleaning experiment were all listed in the Table.2-3.
The commercial SS-25 slurry was colloidal silica abrasive with the size of 30-50 nm approximately. In
the phasel, oxide layers were polished to establish the fresher surface and would bond with Cu 1ons

easily. Phase? 1s to remove the residual slurry from wafer surface.

2.3 The Performances of Chelator Solutions
Wetting Ability

Information obtained from contact angle provided the fundamental understanding of solid-solid and
solid-liquid intermolecular interactions (ex: van-der Waals, acid/base type interations, and electrostatic
interations). Considered the drop of a liquid rested on a solid surface. The drop of liquid forming an angle
might be considered as resting in equilibrium by-balancing the three forces involved. Namely, the
interfacial tensions between solid and liquid (9 su), that between solid and vapor (7 s) and that between
liquid and vapor (7 v) interface. The equilibritim of three-forces and the resulting contact angle was given
by the well-known Young™ s equation (Figure.2-3) :

Vs =7Vs —yLcosb (Eq.2-5)
where € was contact angle [21].

Good wetting ability would ensure the whole wafer surface would be coved with cleaning chemicals,
which make Cu ions cleaning uniformly. In chelator wetting ability test, contact angle system was KRuSS
GmbH and each drop is fixed at 3ml. The concentrations of chelator solutions were 1E .

Cu Film Thickness Measurement

In this study, thickness of the Cu film was calculated by dividing the film resistivity with its
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measured sheet resistance. The relation between thickness and resistivity was given by

p=R,-T (Eq.2-6)
where 0 1is the resistivity (uQ * cm/[_]), Rs was the sheet resistance (uQ/_J) and T is the Cu film
thickness. We assume that the resistivity of the Cu film was not changed by the processing. The
resistivity of Cu film in our experiment was in the range from 1.8 uQ * cm/[_1t0 2.3 u2 * cm/[].

Four point probe system ( Napson RT-80/RG-80 ) was used to measure sheet resistance. For a thin
wafer with thickness T much smaller than either a or d, the sheet resistance Rs was given by

R, =CF

S

VI— (Eq.2-7)
where CF was the correction factor (Figure.2-4). In the limit when d»S, where S was the probe spacing,

the correction factor becomes ( 7 /In 2)=4.54 [22}.

The etch rate of blanket Cu films were calculated'by following formula:

(Pre-etch thickness)- (Post-etch thickness)
Etch Rate=

(Eq.2-8)
Etch time

TXRF Analysis

The total reflection X-ray fluorescence spectrometry (TXRF) could sensitively detect the metallic
impurities on surface. In this study, the Cu contamination on the dielectric surface was detected using an
ATOMIKA 8030W TXRF system. TXRF was based on the photoelectric effect. When an atom irradiated
with highly energetic photons, an electron from one of the inner shells might be ejected. As the vacant
place was filled by an electron from an outer shell, a photon whose energy was characteristic of the atom

was released. This radiation was called fluorescent radiation and detected by an energy dispersive
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detector. TXRF made use of total reflection of the primary X-ray beam at grazing incidence (Figure.2-5)

[23] [24]. The high reflectivity in the total reflection mode resulted in an extremely low energy transfer

from the incident beam into the irradiated substrate, because most of the energy was reflected and does

not penetrate through the interface.

In this study, TXRF was used to decide the amount of Cu 1ons. The cleaning efficiency was gave by

[amount of Cu 1ons before chelators cleaning]

Cleaning Efficiency=

[amount of Cu 1ons after chelators cleaning] (Ea.2-9)

FElectrochemical Analysis

Figure.2-6 depicted a typical electrochemical ¢orrosion test cell consisting of three electrodes
submerged in an electrolyte. Electrical ¢urrent form:a_potentiostat changed the test electrode potential
from 1ts open circuit potential (OCP), te a potential value that was determined by the magnitude of
potentiostat current. Test electrode polarization was measured as a potential difference between reference
and test electrodes. No electrical current flowed between a potentiostat and reference electrodes, so it
remained at its OCP and provided a fixed reference point for corrosion measurement. The reference
electrode was also used provide feedback to the potentiostat, so that test electrode potential could be
monitored and adjusted to a desired level [25].

In this study, electrochemical analysis was used to describe the corrosion behavior of chlators with
different pH. All electrochemical analyses were carried out in a conventional three-electrode system at
room temperature. A platinum electrode was used as the counter electrode, and an Ag/AgCl was

employed as the reference electrode. A Cu cylinder was used as the working electrode, and area of cross
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section is 0.5 cm’.

2.4 Results and Discussions

2.4.1 Wetting Ability and Corrosion of Chelotor Solutions

The wetting ability of metal chlators was investigated by contact angle measurement. The results
were shown in Table.2-4. The concentration of the solutions is 1E”and each drop was fixed at 3ml.
Table.2-4 indicated that all three types of chelator solutions had low contact angles, which implied good
wetting ability. Good wetting ability ensured whole wafer surface would be coved with chelator
chemicals, which make Cu ions cleaning uniformly around the wafer..

Figure.2-7 showed the corrosion effect of chelator solutions for Cu films and the formula was shown
in Eq.2-8. The concentration of the solutions is:dB*Mand etch time was 3 minutes. It indicated that all
three types of chelater solutions had low gorrosion fate, even in:high concentration.

2.4.2 Cleaning Efficiency of ChelatoriSolutions

Figure.2-8 and Figure.2-9 showed the results of cleaning efficiency. The calculating formula was
showed in Eq.2-9, which the amount of Cu ions before chelators cleaning ranged about from 170x10" to
200x10" atoms/cm’. As shown in Figure.2-8, the cleaning efficiency would be saturated after 15 cycles
(15 cycles/min) cleaning time for all kinds of cleaning solution. EDTA had six strong potential sites for
bounding with Cu ions: the four carboxyl groups and the two amino groups, hence EDTA had the best
cleaning efficiency. On the contrary, Catechol and TBC had only two dentates and exhibited the worse
cleaning efficiency. The cleaning efficiency was strongly dependent on the numbers of chelating sites.

Figure.2-9 indicated the concentration of chelators only had little influence on cleaning efficiency.

The low concentration of chelators had enough ability to cleaning the most Cu 1ons. The other Cu 1ons
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could not be chelated, even in high concentration of chelators. This indicated chelators could be used for
cleaning with low concentration to decrease budget.
2.4.3 pH Effect on Cleaning Efficiency

The pH of cleaning solutions would influence chelating capability owing to the varying activing of
protonated or deprotonated functional groups. For a metal chelator, Y, the chelating reaction for a metal
ion M could be represented as [26]:
M+Y < MY

BH"

HY,H,Y, H,Y,.... Eq.2-10
when the Eq.2-10 reached equilibrium state, the'total concentration of Y which did not complex with
metal ions was given by:

C, =[Y]+[HY]+[H,Y]+[H,Y ]+ Eq.2-11

The concentration of Y in the solution was given by:

a, = [Y]
[Cy ]
_ [Y1]
[YI+[HY]+[H,Y]+[HY]+....
1
= Eq.2-12
1+[HY]+[H2Y]+[H3Y]+....
[Y1] [Y1] [Y1]
The proton equilibrium-constant was given by
[H,Y]
= — Eq.2-13
ST ’
M:ﬂnﬂ-ﬁ] Eq.2-14

[Y]

Substituting Eq.2-14 into Eq.2-12, the expression of & v could now be written as:
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L S Eq.2-14

1+ BIH T
i=1
A high value of & v was always desirable for achieving good chelating capability. This was achieved,
according to Eq.2-14, at a high pH of cleaning solutions.

In this study, typel of chelators was taken for experiment and KOH was used to modify the pH of
chelator solutions. Figure.2-10 and Figure.2-11 showed the cleaning efficiency of citric acid with various
cleaning times and various concentration, respectively. Both Figure.2-10 and Figure.2-11 showed citric
acid in the acidic environment had better cleaning efficiency than in the alkaline environment, but it did
not agreed with Eq.2-14. ADPA-60 had the same result with citric acid as shown in Figure.2-12 and
Figure.2-13. It might be due to that Cu was oxidized to Cu oxide in the alkaline environment. Chelators
could not chelate those Cu oxide, hence thé cleaning-efficienicy reduce in the alkaline environment. The
Pourbaix diagram indicated that CuO formed between pH=7 to pH=13 at noble (high) potential and Cu.O
formed between pH=5 to pH=15 at active (low) potential'as shown in Figure.1-4. Figure.2-14 indicated
the etch rate of citric acid in the alkaline environment lower than in the acidic environment, which also
implied the passivation appeared in the alkaline environment. In additional, Tafel diagram as shown in
Figure.2-15 indicated that surface passivationon Cu formed in the alkaline environment. ADPA-60 had
the same phenomenon with citric acid in the alkaline environment as shown in Figure.2-16 and
Figure.2-17. It was reasonable to presume that all three types of chelators had the lower cleaning
efficiency in the alkaline environment than in the acidic environment, because Cu was oxidized to Cu
oxide in the alkaline environment.

2.5 Summary
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In this study, we discussed several effects on cleaning efficiency of three types of clelators. All three

types of chelator solutions had low contact angles, which implied good wetting ability. Good wetting

ability ensured whole wafer surface would be coved with chelator chemicals, which made Cu ions

cleaning uniformly around the wafer. In additional, chelater solutions had low corrosion rate for Cu lines,

even in high concentration.

The cleaning efficiency was strongly dependent on the numbers of chelating sites. EDTA had six

strong potential sites for bounding with Cu ions: the four carboxyl groups and the two amino groups,

hence EDTA had the best cleaning efficiency. On the contrary, Catechol and TBC had the fewest dentates

and showed the worse cleaning efficiency. Besides, chelator solutions in the alkaline environment were

improper for cleanig, because Cu was oxidized«to'Cu oxide in the alkaline environment. Chelators could

not chelate those Cu oxide, hence the cleaning efficiency reduced in the alkaline environment.
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Chapter 3
Effect of CuBTA Layer on Surface Leakage

3.1 Introduction

The damascene process was regarded to be the an essential and critical step for manufacturing Cu
interconnect, and the chemical mechanical polishing of Cu and barrier metal was the key to enable this
process. There were several CMP issues which should be taken into account for implement metal
polishing—non-uniformity, rounding, dishing, and erosion—had also been addressed. In order to provide
damascene metal lines with high accuracy and yield, a two step CMP had been introduced to achieve a
large removal rate while suppressing metal dishing (Figure.3-1). The performance of the second step
polishing was to remove the barrier metal selectively. Whatever the degree of dishing during the first step
was, if the removal rates of tantalum (barrier' metéal)-and oxide. (interlevel dielectric) higher than that of
Cu, it was able to reduce both the dishing-and 0xid€€fosion within the accepted range in the second step.
It had been demonstrated that the slurry composed of colloidal silica abrasive and H-O: could satisfy the
demands of the second step polishing.

During the CMP process, Cu would be oxidized to form Cu oxides (CuO or Cw0) and Cu
hydroxides (Cu(OH)2) passivation on Cu surface[13]. Then, these passivation on high feature would be
polished to reach global planarization, while low feature would not be polished. As polishing with
colloidal silica based slurry, it shows the strong absorption of colloidal silica on Cu surface. This might
be related to that the colloidal silica chemisorbed on the Cu oxide layer by means of oxygen bridging
bonding [14]. It was difficult to remove colloidal silica by conventional chemical clean. In additional,

Several papers also indicated this Cu oxide layer was a source of surface leakage [2] [3].
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A novel process, which was buffing with Nitric acid (HNO:) and 1H-benzotriazole (1H-BTA,
CeHaNsH), could remove colloidal silica abrasives from Cu surface [1]. HNOs would dissolve Cu oxide
layer on Cu surface, while 1H-BTA would coordinate with cuprous ions to form a mono-layer
Cu( I )-BTA on the surface to prevent Cu form oxidation (Figure.1-3) [15]. There were two types of
Cu( I )-BTA grew on Cu surface. Cu( I )-BTA film grew on the oxygen reconstructed Cu surface in the
amorphous-like type. On the other hand, Cu( I )-BTA film would form mono-layer on the clean Cu
surface[27]. Because of the existence of HNOs, there would be no any Cu oxide adsorbed on the Cu
surface indicated in Figure.l-4. Hence, 1H-BTA would coordinate with Cuto form a mono-layer
Cu( I )-BTA on the Cu surface during buffing with HNOs/1H-BTA.

One may suspect whether the Cu( I )-BTAdagét on-Cu surface was stable for thermal and electrical
bias stress or not? We would like to explore the mechanism of surface leakage for CuBTA and Cu oxide
passivation on Cu surface. Cu oxide on Cu.surfac€ couldbe used to describe the surface condition after
conventional CMP. In additional, thermal stability and chemical durability of CuBTA layer would be

discussed 1in this study.

3.2 Experimental Procedures
3.2.1 Chemical Durability of Cu-BTA Passivation in Cleaning

Solutions

The blanket Cu test wafers were stacked Cu/Ta layer structure with a combination thickness of
1000/50 nm which were sputtering deposited onto the p-type, (100) oriented, 6-inch bare silicon wafers
with 200 nm thick oxide deposited by PECVD. The blanket Cu wafer was immersed into the HNOs/BTA

solution to form CuBTA passivation on Cu surface. The concentrations of HNOy/BTA were 0.6/1E°M
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and the immersing time was 3 minutes. After that, the wafers were immersed into cleaning solutions for 3
minute. To evaluate the existence of CuBTA on Cu surface after immersing with cleaning solutions,
contact angle test and ESCA analysis were perform to evaluation the effect of chelator solution on
CuBTA.

3.2.2 Thermal Stability of CuBTA

The blanket Cu test wafers were stacked Cu/Ta layer structure with a combination thickness of
1000/50 nm which were sputtering deposited onto the p-type, (100) oriented, 6-inch bare silicon wafers
with 200 nm thick oxide deposited by PECVD. The blanket wafer was immersed into HNOs/BTA to form
CuBTA passivation on Cu surface. The concentration of HNO+/BTA was 0.6/1E°M and the immersing
time was 3 minutes. After that, the blanket wafets Were-baked on the hot plate for 10 minutes. Contact
angle and ESCA analysis were performed to evaluation the temperature effect on CuBTA.

The blanket Cu film could not use te perform TDS @nalysis, because Cu film would reflect infrared
ray used to rise temperature. To carry out TDS analysis, the pattern Cu test wafers were stacked Cu/Ta
layer structure with a combination thickness of 1000/50 nm using shield mask. The pattern wafer was
immersed into HNOs/BTA to form CuBTA passivation on Cu surface. The concentration of HNOs/BTA
was 0.6/1E°M and the immersing time was 3 minutes. Following that, TDS analysis was performed.
3.2.3 Surface Morphology after Buffing

The blanket Cu test wafers were stacked Cu/Ta layer structure with a combination thickness of
1000/50 nm which were sputtering deposited onto the p-type, (100) oriented, 6-inch bare silicon wafers
with 200 nm thick oxide deposited by PECVD. The polishing setup was described in chapter 2.2.3.2. The

polishing recipes and slurry formulations were all listed in the Table.3-1. After 1st polishing, buffing with
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KOH or HNOs/1H-BTA was used to remove colloidal silica. Blank wafers were dry spun at the rotation
rate of 2500 rpm following buffing. AFM was used to evaluate surface morphology after KOH and
HNOs/BTA buffing.
3.2.4 Evaluating Passivation Effect on Surtface Leakage Current

The experiment flow was shown in Figure.3-2. To establish the environment of Cu oxide on the Cu
surface without colloidal silica, we used KOH for buffing followed by immersing in hydrogen peroxide
(H202). The polishing setup was described in chapter 2.2.3.2. The polishing recipes and slurry
formulations were listed in the Table.3-2. The wafer were cleaned using the post-CMP cleaner of Solid
State Equipment Corporation MODE 50 (SSEC-M50). Table.3-3 listed the cleaning steps and parameters
of SSEC-M50. The comb structure (Figure.3-3):wasused: to evaluate the surface leakage current and the
linewidth/space is 0.8/0.8 1 m. The substtates wete'standard 6-inch diameter p-type silicon, (100)
orientation wafers. After the standard RCA; about .5 77 thick Si0: was thermally grown from the
silicon substrate in the furnace. The desired metal pattern was transferred into the SiO: layer by means of
g-line optical lithography and reactive ion etching. The trenches were etched to a depth 900nm. The
photoresist was ashed within ozone ambient and followed by a 125°C H.SO«/H:O: stripping. The wafers
were then deposited a 50 nm thick layer of Ta, followed by a 1,700nm thick Cu film by sputtering. After
sample preparing, bias temperature stress (BTS) measuring was carried out on the HP4156. The
temperature and voltage of stress are 100°C and 100V, respectively. After stress, the temperature was

descended to room temperature. Following that, surface leakage current was measured.

3.3 The Performances of Experimental
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Contact angle

The concept of contact angle was shown in chapter.2.3. In this chapter, the use of water drop was for
the purpose of fixing the 7 v (Figure.2-3) and each water drop was 3ml.
AFM Analysis

In order to evaluate the practicability of HNO+BTA buffing and KOH buffing for removing
colloidal silica abrasives on the polished Cu surface, atomic force microscope (AFM) was employed to
scould a 10umx10um area of Cu surface. In AFM, a fine tip scouldning on the substrate measured surface
morphology and properties through an interaction between the tip and surface. In the used measuring
mode commonly, the distance between the tip and sample surface was kept constant by a feedback loop
during the measurements. There were three operationmedes of the AFM (Digital Instruments DI 5000)
used to measure the SAM surface quality. From thie'image resolution viewpoint, contact mode scanning
was the best but it would damage the sample surface."Hence, the tapping mode scanning of the AFM was
used to measure the surface morphology in this study.
ESCA Analysis

ESCA was based on the photoelectric effect. When a solid was exposed to a flux of X-ray photos of
known energy, photoelectrons were emitted from the solid. This photoelectron was emitted with a kinetic
energy characteristic of the difference between the X-ray and binding energy of the electron. The energy
of the emitted photoelectron defines the type of atom, and the number of photoelectrons at this energy
was related to the number density of atoms present. A schematic drawing of a typical ESCA spectrometer
was show in Figure.3-4 [28]. ESCA analysis was performed on Americould Physical Electronics ESCA

PHI 1600 with Al anode (1486.6 V).
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In this study, electron spectroscopy for chemical analysis (ESCA) was employed to analysis the
existence of Cu( I )-BTA. Cu( I )-BTA has C ~Cu ~ N atoms, but C atoms polluted wafers easily from air
or hand-touch contamination. Hence, we observed N atoms to distinguish if BTA coordinate with Cu” ion
on the Cu surface.
1DS Analysis

Thermal Desorption Spectroscopy (TDS, Hitachi Tokyo Electronics) was a mass analysis apparatus
by heating the sample while contained in N2 or Ar and simultaneously detecting the trace of out-gassing
species transferred by carrier gas (N2 or Ar) from the sample. As the temperature rises, not only absorbed
or trapping species, but also the decomposed products of the substrate could be out-gassing species and
they would be detected as a rise in ion intensity«for’d certain mass. This resulted in a specific-mass peak
of the out-gassing species intensity versus temperattire plot.:The temperature at the maximum out-gassing
mass peak would be related to the thermal activation'enérgy for desorbing or decomposing reaction.

Hence, the thermal stability of Cu( I )-BTA could be evaluated by the mass detecting.

When 1H-BTA ions coordinated with Cu” to form a mono-layer of Cu( I )-BTA, it would cut H
atom off (Figure.1-3). We would observe the peak of mass 118 to decide that if Cu( I )-BTA exist on

wafer surface or not in this study, because the mass of 1H-BTA 1s 119.

3.4 Results and Discussions

3.4.1 Chemical Durability of CuBTA

The results of contact angle after cleaning of chelator solutions were shown in Table.3-4. It was
obvious that Cu film was hydrophilic and CuBTA layer was hydrophobic. After immersing of chelator
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solutions, the Cu film still was hydrophobic except after citric acid immersing. The contact angle was
53¢, which was close to the contact angle of Cu film, after immersing into citric acid. It 1s likely that
CuBTA were destroyed after citric acid immersing. ESCA analysis of Figure.3-5 illustrated there was no
peak of N after immersing into citric acid, which meant that CuBTA disappeared after immersing into
citric acid. Furthermore, the results of contact angle after cleaning of modified citric acid were shown in
Table.3-5 and Figure.3-6. KOH was used to adjust pH of citric acid. It was obvious that CuBTA layer
would be destroyed after immersing into higher concentration and lower pH of citric acid. In the latter
experiment of evaluating passivation effect on surface leakage current, 1E-3M citric acid would be used
to clean wafer after CMP process to prevent damaging CuBTA.
3.4.2 Thermal Stability of CuBTA

The temperature beyond 150°C wauld destroy the CuBTA layer shown in Figure.3-7. The contact
angle of BTA layer with temperature treatment 6f béyond 150°C was lower than the contact angle of
48.5°C of pure Cu film (shown in Table.3-4). TDS analysis of Figure.3-8 also showed that mass of 118
appeared beyond temperature of 150°C, which meant that CuBTA layer was destroyed. The Cu peak of
ESCA analysis showed the bigger satellite peak with higher temperature shown in Figure.3-9(b). In
additional, there were no N peak of ESCA analysis shown in Figure.3-9(c). This indicated that CuBTA
layer was destroyed and oxidation progressed gradually with high temperature [29]. The N peak of ESCA
analysis showed the N peak disappeared at 200°C, which indicated that CuBTA had destroyed. It
confirmed that CuBTA film would been destroyed at the range of about 150°C to 200C.

3.4.3 Surface morphology after butiing

To build the condition of Cu oxide on Cu surface to describe the surface condition after
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conventional CMP, KOH was used for buffing in this study. AFM wad used to characterize the surface
morphology after buffing to check if buffing with KOH remove colloidal silica or not. The AFM analysis
of buffing with HNOs/1H-BTA showed in Figure.3-10. As shown, a clean Cu surface was observed after
buffing with HNOs/1H-BTA, which agreed with the result in the thesis of Po-Lin Chen [1]. The AFM
analysis of buffing with KOH was shown in Figure.3-11 to Figure.3-14. As shown, buffing with KOH
could remove colloidal silica. However, the concentration of KOH and polishing time of buffing would
dramatically influence the roughness of polished Cu surface. Buffing with 1M KOH for 3 minutes could
bring about the cleanest surface and the least roughness. In the latter experiment of evaluating passivation
effect on surface leakage current, buffing with IM KOH for 3 minutes would be used to control the
condition of Cu oxide on Cu surface.

3.4.4 Evaluating Passivation Effect on Surface Leakage Current

Mechanism of dielectric degradation betweén Cllinterconnects and schematic band diagram were
shown in Figure.3-15 [30]. After the Cu CMP process, the Cu surface was oxidized. In the surface layer
of Cu oxide, some Cu atoms were ionized and easily moved into the SiO: interface. Also, the SiO: surface
was severely damaged during CMP process, and dangling bounds were likely to form near the interface.
Therefore, the key to reduce interface leakage current was to eliminate Cu oxide formation.

CuBTA on Cu surface could prevent Cu oxide from growing, hence it reduced surface leakage
current, shown in Figure.3-16. However, after BTS, the leakage current of CuBTA on Cu surface
increased. The high temperature would degrade the CuBTA layer as described formerly, hence, Cu oxide
would grow on Cu surface, which cause bigger leakage current. Although the high temperature would

degrade the CuBTA layer, the leakage current also was smaller than that of Cu oxide on Cu surface. In
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additional, Cu oxide on Cu surface made the distribution of leakage current non-uniform around the wafer.
This was because that Cu oxide grew non-uniformly around the wafer.
3.5 Summary

In this study, CuBTA layer on Cu surface would reduce surface leakage was proven. To build the
condition of Cu oxide on Cu surface, buffing with KOH was discussed. In additional, to prevent
damaging CuBTA layer, chemical durability of CuBTA layer also was discussed in this study. 1E-3M
citric acid was used to clean wafer after CMP process to prevent damaging CuBTA. CuBTA on Cu
surface could prevent Cu oxide from growing, hence it reduced surface leakage current. However, after
BTS, the leakage current of CuBTA on Cu surface increased. The high temperature would degrade the
CuBTA layer as described, hence, Cu oxide.would grow on Cu surface, which cause bigger leakage
current. Thermal stability of CuBTA .also ‘was ‘discussed 'in this study. CuBTA film would been
decomposed at the range of about 150°G. to 200°CAlthough the high temperature would degrade the

CuBTA layer, the leakage current also was smaller than those without Cu-BTA but oxide passivation.
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Chapter 4

Conclusions

In this study, we studied the effect of CuBTA layer on surface leakage. At first, the cleaning
efficiency of Cu ions on the dielectric of three types of chelator solutions was discussed. Metal chelators
are known to form stable complexes with copper ions. Because metal chelators had one or several
dentates, they would react as electron-pair acceptors to form coordination compounds or complex ions
with metal ions. All three types of chelator solutions had low contact angles, which implied good wetting
ability. Good wetting ability ensured whole wafer surface would be coved with chelator chemicals, which
made copper ions cleaning uniformly around the wafer. Besides, chelater solutions had low corrosion rate
for Cu lines, even in high concentration. The cleanhing‘efficiency was strongly dependent on the numbers
of chelating sites. EDTA had six strong potential sites for bounding with copper ions: the four carboxyl
groups and the two amino groups, hence: ED'TAThad the best cleaning efficiency. On the contrary,
Catechol and TBC had only two dentates and showed the worse cleaning efficiency. In additional, the
effect of pH of chelator solution were discussed. Chelator solutions in the alkaline environment were
improper for cleanig, because copper was oxidized to copper oxide in the alkaline environment. Chelators
could not chelate those copper oxide, hence the cleaning efficiency reduced in the alkaline environment.

HNO+/1H-BTA and KOH were used for buffing to remove colloidal silica. HNOs would dissolve
copper oxide layer on copper surface, while 1H-BTA would coordinate with Cuto form a mono-layer
Cu( I )-BTA on the surface to prevent copper form oxidizing. KOH for buffing followed by immersing in
H-O> was to establish the environment of copper oxide on the copper surface without colloidal silica.

CuBTA layer on Cu surface would reduce surface leakage was proven. CuBTA on copper surface could
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prevent Cu oxide from growing, hence it reduced surface leakage current. However, after BTS, the
leakage current of CuBTA on copper surface increased. The high temperature would degrade the CuBTA
layer as described, hence, Cu oxide would grow on Cu surface, which caused bigger leakage current. The
thermal stability of CuBTA also was discussed in this study. CuBTA film would been decomposed at the
range of about 150°C to 200°C. Although the high temperature would degrade the CuBTA layer, the

leakage current also was smaller than those without Cu-BTA but oxide passivation.
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Table.1-1 Properties of low resistivity metals

Ag Al | Al Alloy Au Cu w
Resistivity(uQ-cm) | 1.59 | 2.66 ~3.5 2.35 1.67 5.65
Electromigration Poor | Poor |Fair-Poor| Very Good | Very
Resistance Good Good
(at 0.5um)
Corrosion Poor | Good i “Good Excel | Poor Good
Resistance
Adhesion to Si0, Poor | Good |/Good Poor Poor Poor
Si Deep Levels Yes NO NO YES YES NO
CVD Processing None ? None None | Avail | Avail
RIE Etch None | Avail | Avail None ? Avail
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Table.2-1 Three types of chelator solutions

Type | Trade Typical structure

name

1 Citric acid OOCCH,C(OH)(COOH)CH,COOH
ADPA-60 | CH;C(OH)(POs;H3),

2 |EDTA NaOOCCH,),NCH,CH,N(CH,COONa),
422-258 (CH,PO;H,),N(CH,),N(CH,PO;H,),

3 Catechol CcHsO,
TBC C10H1402
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Table.2-2 The cleaning steps and parameters of SSEC-M50

SSEC-M50 Cleaning time | Flow rate Rotation rate
of water
Stepl Chelator Parameter 150 ml/min 800 rpm
cleaning (15 cycles/min)
Step2 DIW rinse 7T cycle unknown 800 rpm
(15 cycles/min)
Step3 Dry spin 25 sec off 2500 rpm
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Table.2-3 Polishing parameters for cleaning experiment.

IPEC 372M Phasel Phase2
Down force 5.0 psi 2.0 psi
Back pressure 1.5 psi 0 psi
Platen/carrier speed 42/45 rpm 20/25 rpm
Slurry flow rate 150 ml/min 150 ml/min
Polishing Time 60 sec 20 sec
Temperature 27°C 27 C
Polishing Pad

Rodel Politex Regular E.™

Carrier Film

Rodel R200 T3

Slurry formulation

30wt.% SS-25

DIW rinse
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Table.2-4 The results of contact angle in the wetting ability experiment.

Type | Trade name Contact angle
1 Citric acid 37.2°C
ADPA-60 38.4°C
2 EDTA 36.1°C
422-258 34.8°C
3 Catechol 412°C
TBC 435

46



Table.3-1 Polishing parameters for surface morphology evaluation.

IPEC 372M 1st step 2nd step
KOH buffing HNO3/BTA buffing
Down force 5.0 psi 2.0 psi 2.0 psi
Back pressure 1.5psi 0 psi 0 psi
Platen/carrier
speed 42/45 rpm 20/25 rpm 20/25 rpm
Slurry flow rate 150 ml/min. 150 ml/min 150 ml/min
Temperature 27°C 27C 27°C
Polishing Pad Rodel Politex Regular E.™
Carrier Film Rodel R200 T3
Slurry 10% 100S KOH HNO4/BTA=0.6/1E*M
formulation

+ 10% H,0,

Polish time

Imin

parameter

1min
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Table.3-2 Polishing parameters of evaluating passivation effect on surface leakage.

IPEC 372M Phasel Phase2 Buffing
Cu removing Ta removing
Down force 5.0 psi 5.0 psi 2.0 psi
Back pressure 1.5 psi 1.5 psi 0 psi
Platen/carrier speed 42/45 rpm 42/45 rpm 20/25 rpm
Slurry flow rate 150 ml/min 150 ml/min 150 ml/min
Polishing Time 160 sec 180 sec 180 sec
Temperature 271°C 27°C 27 C
Polishing Pad Rodel 1C-1400™ Rodel Politex Regular E.™
Carrier Film Rodel R200 T3
Slurry formulation 10% 100S 10% 50ck HNOs/BTA
+10% H,0, +10% H,0, =0.6/1E*M
or 1M KOH
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Table.3-3 The cleaning steps and parameters of SSEC-M50

SSEC-M50 Cleaning time | Flow rate Rotation rate
of water
Stepl Citric acid 15 cycles 150 ml/min 800 rpm
cleaning (15 cycles/min)
Step2 DIW rinse 7 cycles unknown 800 rpm
(15 cycles/min)
Step3 Dry spin 25 sec off 2500 rpm
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Table.3-4 The result of contact angle after immersing of chelator
solutions. The concentration of chelator solutions were 0.2M.

The Conditions of Cu Film

The Result of Contact angle

Pure Cu Film 48.5°
CuBTA on The Cu Film 88.1°
CuBTA on The Cu Film with immersing 53°
of Citric Acid

CuBTA on The Cu Film with immersing 86.2°
of ADPA-60

CuBTA on The Cu Film with immensing 85.8°
of EDTA

CuBTA on The Cu Film with immersing 86.3°
of 422-25S

CuBTA on The Cu Film with immersing 74.7°
of Catechol

CuBTA on The Cu Film with immersing 77.7°

of TBC
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Table.3-5 The result of contact angle after immersing of modified citric

acid.

The Conditions of Cu Film

The Result of Contact angle

CuBTA on The Cu Film
immersing of 0.2M Citric
(pH=1.7)

with
Acid

53¢

CuBTA on The Cu Film
immersing of 0.2M Citric
(pH=8.7)

with
Acid

71.4°

CuBTA on The Cu Film
immersing of 1E-3M Citric
(pH=3.2)

with
Acid

68°

CuBTA on The Cu Film
immersing of 1E-3M Citric
(pH=8.7)

with
Acid

85.6°
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Figure.1-1 Comparison of intrinsic gate delay and interconnect delay (RC)
as a function of feature size.
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Figure.1-2 Dual damascene process.
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Blanket Wafer
5500A thermal oxide/p-type wafer

l

CMP Process
Show in Chapter 2.2.2

l

CuSO4 Immersing
Concentration: 1M

Immersing time: 2 minute

l

DIW cleaning
Cleaning time: 7 cycles (15cycle/min)

Rotation rate of wafer: 800rpm

l

The first TXRF analysis

TXREF analysis before chelators cleaning

l

Chelator solutions cleaning

l

The second TXRF analysis

TXRF analysis after chelators cleaning

Figure.2-1 The cleaning experiment flow
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Exchanger {1 Heat Exchanger

1 - Control Console & Overarm i 6 - Clean Station & Slurry Primary
2 - Slurry Motors & Slurry Final 7 - Rotating Pad Conditioner 1}

3 - Platens and Drains 8 - Polish Arm Drive

4 - Unload Station 9 - Polish Arm

5 - Load Station
- Heat Exchanger

(a)
Figure.2-2 (a) Schematic diagram of'the Westech Model 327M CMP
polisher

(b) Platen assemblies of the Westech Model 327M CMP
polisher.
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1 - Primary Platen, Cooled (372-21110)
2 - Spray Nozzle(372M-44160)

3 - Spray Tube (372M-44160)

4 - Pad Conditioner Cover (372M-44160)
5 - Contour Top (372M-44160)

6 - Final Platen, Cooled (372-21111)

Figure.2-2 (a) Schematic diagram of the Westech Model 327M CMP

polisher
(b) Platen assemblics'of the Westech Model 327M CMP

polisher.
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Figure.2-3 Diagram of a liquid drop showing the contact angle.
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Figure.2-4 Arrangement for four points measurement.
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Figure.2-5 (a) Arrangement for TXRF analysis (b) Path of the X-rays in a
commercially available TXRF instrument.
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Figure.2-7 The corrosion effect of chelator solutions copper films.
*refer to the type of chelators.
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Figure.2-8 The cleaning efficiency as a function of cycle with
concentration=5E *Mz1s¥refer to the type of chelators.
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Figure.2-9 The cleaning efficiency as a function of concentration with
cleaning cycle=15. *refer to the type of chelators.
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Figure.2-10 The cleaning efficiency as a function of citric acid cleaning
cycle with concentration=5E ‘M.
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Figure.2-11 The cleaning efficiency as a function of citric acid
concentration with cleaning cycle=15.
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Figure2-12 The cleaning efficiency. as a function of ADPA-60 cleaning
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Figure.2-13 The leaning efficiency as a function of ADPA-60
oncentration with cleaning cycle=15.
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Figure.2-14 The etch rate as a function of citric acid concentration at
different pH.
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Figure.2-15 Tafel diagram of citric acid with different pH.
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Figure.2-16 The etch rate as a function of ADPA-60 concentration at
different pH.
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Figure.2-17 Tafel diagram of ADPA-60 with different pH.
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1st step Removal of copper

2nd step Removal of Ta

Figure.3-1 The scheme of the two-steps CMP in the damascene process.
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Pattern wafer with comb structure
Cu 17000A/Ta 500A

Ist copper remove
10% 100S + 10% H,0,

l

2nd Ta remove
10% 50ck + 10% H,0,

l

Buffing
IM KOH

|

Cleaning

Buffing
3% HNO;+ 10E™ BTA

5E™ citric acid

|

Copper oxide form

10% H,0O, immerse 1min

Cleaning

5E™ citric acid

|

|

Copper oxide on copper surface

CuBTA on copper surface

Figure.3-2 Experiment flow of evaluating passivation effect.
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(b) cross-section of comb structure.

Figure.3-3 (a) Comb-line capacitor structure



Figure.3-4 A schematic diagram of an ESCA spectrometer.
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Figure.3-5 ESCA analysis of CuBTA after immersing of chelator

solutions (a) Survey (b) Peak of N. *refer to the type of
chelators.
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Figure.3-10 AFM images of polished copper film with HNO;/1H-BTA
=0.6/1E™M, polishing time=1min (a) 3D diagram
(b)roughness analysis.
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Figure.3-11 AFM images of polished copper film with IM KOH,
polishing time=1min (a) 3D diagram (b)roughness analysis.
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(b)
Figure.3-12 AFM images of polished copper film with 1M KOH,
polishing time=3min (a) 3D diagram (b)roughness
analysis.
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Figure.3-13 AFM images of polished copper film with 1M KOH,
polishing time=8min (a) 3D diagram (b)roughness analysis.
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(b)
Figure.3-14 AFM images of polished copper film with 2M KOH,
polishing time=1min (a) 3D diagram (b) roughness
analysis.
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Figure.3-15 Mechanism of dielectric degradation
(a) TDDB degradation mechanism
(b) Band diagram of TDDB degradation.
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CuBTA w/o BTS
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Figure.3-16 Plot of surface leakage property. (In plot, CuBTA meant
CuBTA layet on surface of copper lines. Similarly, oxide
meant Cu oxide on.surface of copper lines. The current
was measured at 90V.)
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