
much lesser extent on the size distribution. The relationship 
between the differential attenuation and the phase allows the 
propagation analysis to be simplified because this analysis will 
depend mainly on one parameter. The importance of this sim- 
plification is apparent in the adaptive cancellation of cross- 
polarisation. For dual linearly polarised links, in the case 
where differential phase shift is the dominant cause of cross- 
polarisation, it is proposed to perform adaptive cancellation 
of the cross-polarisation by means of a simplified network 
with only one variable parameter. 
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COMPLETE DECODING ALGORITHM OF 
(11. 6. 5) GOLAY CODE 

Indexing terms: Codes, Error-correction codes, Decoding, 
Algorithms 

A simple complete decoding algorithm for the (11, 6, 5) 
perfect ternary Golay code is presented. This algorithm is 
based on a step-by-step method and requires only 17 shift 
operations for decoding one received word. 

Introduction: The three known perfect codes are the (7, 4, 3) 
Hamming code, the (23, 12, 7) binary Golay code and the (11, 
6, 5 )  ternary Golay code.’ The (11, 6, 5 )  Golay code is a 
double-error-correcting perfect code since the minimum dis- 
tance of this code is confirmed to  be 5.’ Therefore, a complete 
decoding algorithm can be easily achieved if any combination 
of two or fewer errors can be corrected. Since the (11, 6, 5 )  
Golay code is a cyclic code, the step-by-step decoding method 
can be employed if the different weights of received error pat- 
terns can be distinguished by the r e~e ive r .~  In this letter, a 
simple algebraic step-by-step decoding algorithm of the (1 I, 6, 
5 )  Golay code is presented. This method is much faster than 
the method presented in Reference 2 which considers the tem- 
porary correction of two errors and hence takes a large 
amount of shift operations to complete the correction process. 

( 1 1 ,  6 .5 )  G o l a y  code:  Consider the (1 I ,  6, 5 )  Golay code with 
generator polynomial g(x) = x5 + x4 + 2x3 + x’ + 2, the 
encoded codeword c ( x )  can be simply generated in systematic 
form by K ( x ) x 6  - Mod {K(x)x6/g(x)}, where K(x) is the infor- 
mation polynomial of degree 5 and Mod {K(x)x6/g(x)} indi- 

cates the remainder polynomial of K(x)x6 divided by g(x). The 
roots of this generator polynomial are confirmed to  be (j?, p3. 
P4, p’, P9), where j? is the primitive 11th root of unity.’.’ 
Letting a be the primitive element in G F  (37, it is found that 
j? = a’’ and therefore the arithmetic computation of this code 
can be performed in GF (35). Furthermore, since {0, 1, 2) are 
the elements of G F  (3). the addition of any two elements in 
G F  (35) is accomplished by adding the corresponding poly- 
nomial term by term using modulo-3 addition. The multipli- 
cation of nonzero elements may be done by multiplication of 
the corresponding polynomials and reduction of the product 
modulo a5 + 2z + 
Complete decoding algorithm: If the received polynomial is 
expressed as T ( X )  = T,, + T ~ X  + .. . + T ~ , , X ’ ~ ,  by choosing two 
roots j? and j?’, the syndrome values SI and S ,  of T ( X )  can be 
obtained from 

si = T ( F )  i = l , 5  

i =  I ,  5 = Mod {T(X)/g(X)}lx=az~t 
2 

= C y x j  i = 1, 5 (1) 
j =  1 

where Xj  is the error locator of j th  error symbol and Y is the 
corresponding error value. Since Y, can only be 0, 1 o:2, it is 
found that if only one error has occurred, then 

( 2 )  

It implies that T5 = (Si)’ + 2S, = 0 if one error has occurred. 
Moreover, as confirmed by computer simulation, we found 
that T, # 0 if two or three errors have occurred. Clearly, SI = 
T, = 0, if no error occurs. Thus, the relationships of the syn- 
drome values for various weights of error patterns can be 
concluded as follows: 

(i) if there is no error, then SI = T, = 0 

(ii) if there is one error, then SI # 0 and T5 = 0 

(iii) if there are two or three errors, then SI # 0 and T5 # 0. 

Furthermore, the syndrome values of a cyclic shift of T(x), Si” 
and S y ) ,  can be simply obtained by shifting the syndrome 
generator of g(x) once with initial contents Si (Reference 5,  
theorem 8.7). Thus, 

(SI), = (Y’X1)5 = Y,x: = S ,  

S!” = Mod {T”’(X)/S(X)}l,=.*, 

0 i j  I 11, i = I, 5 (3) 

are the syndrome values of T(~’(x) = T~ -I + - x + . . . 
+ T , X ~  + ... + T ~ , , - ~ X ~ ” .  Since the relationships between S\J’ 

and Sy’ change only when the weight of the error pattern 
changes and are independent of the cyclic shift of T(x), a com- 
plete decoding algorithm of the (11, 6, 5 )  Golay code is then 
presented as follows: 

( a )  Calculate the syndrome values S ,  and S,. If SI = 0 then 
read out T(X) and end this algorithm; otherwise, calculate T5. 

(b) j = 1. 

( c )  Find SI”, i = I, 5 

(d) If T5 = 0 then calculate Z :  = S\j) + 1 and Z :  = Sy) + 2. If 
Z :  = 0 then replace T ~ ~ - ~  with 711-J + 1; if Z :  = 0 then 
replacer,,_, withr,,-,  + 2.Go tostep(f). 
( e )  If T5 # 0 then calculate Z :  = (Sy’ + + 2(SY’ + 1) and 
Z :  = ( S y )  + 2)5 + 2(Sy) + 2). If Z :  = 0 then replace T~ I ~ by 
T ~ ~ - ~ +  1;ifZ:=Othenreplacer, ,- ,by~,,- ,+ 2. 

(f)  If j = 6 then the decoding algorithm is completed; other- 
wise, j = j + 1 and go to step (c). 

This step-by-step decoding algorithm needs only 17 shift oper- 
ations to decode one received word, where 11 shift operations 
are used for calculating the syndrome values SI and S ,  in step 
( a )  and the other 6 shift operations are used for correcting the 
errors in the information part. 
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Conclusions: A simple algebraic step-by-step decoding algo- 
rithm of (11, 6, 5 )  Golay code in systematic form has been 
presented. This decoding algorithm requires only 17 shift 
operations to decode one received word. Since the decoding 
algorithm makes use of the cyclic properties of the code and 
requires only the calculation of the value of (S$  + 2S5 in 
G F  (35), the algorithm can be easily implemented in hardware 
by employing ternary-state logic gates. 
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'Error-correcting codes' 

J USTESEN CONSTR UCTlON 
POLY NOMlAL REDUNDANT 
CODES 

FOR 
RES1 D U  E 

Indexing terms: Codes, InJormation theory, Error-correction 
codes, Polynomials 

The Justesen construction for asymptotically good codes is 
described in terms of polynomial redundant residue codes by 
constructive methods using polynomial operations. Irreduc- 
ible polynomials of higher degree give asymptotic limits 
equivalent to RS codes. A different construction gives higher 
rate codes with asymptotic results similar to the punctured 
Justesen codes. 

Redundant residue codes' are a general class of linear 
maximum distance separable codes. In a certain sense, they 
can be said to contain Reed-Solomon (RS), Goppa and alter- 
nant codes. The Justesen codes' were constructed with RS 
codes as the outer codes in a concatenated scheme. In this 
letter it is shown how redundant residue codes, instead of RS 
codes, can be used in a similar construction. The construction 
and proofs involve operations on polynomials modulo irre- 
ducible polynomials. 

Let u(x) be a polynomial of degree less than mK with coeff- 
cients over a field F .  Let mo(x), m,(x),  m2(x),  . . . , m N -  i(x) be N 
relatively prime polynomials (called the moduli) each of 
degree m, where N t [deg u(x)] /m and N > K .  Then the word 
or vector c = [ro(x),  r ,(x).  r2(x),  . . . , r N -  , (x) ]  is a code word of 
a ( N ,  K ,  N - K + 1) linear maximum distance separable code, 
where r i x )  = u(x) mod m i x ) .  This code is called a redundant 
residue code since r i x )  is the residue of u(x) modulo m i x ) .  The 
term redundant comes from the fact that u(x) can be recovered 
from c by K residues ro(x), r l (x) ,  . . . , rK ~ '(x) if mK > deg u(x) 
by means of the Chinese remainder theorem. The residues 
r d x ) ,  r K +  l (x) ,  . . . , rN- ' ( x )  are redundant residues which lead 
to the distance N - K + 1 for this code. If m(x) = x - a' 
where ai are the elements of a finite field GF(qh), the code is a 
Reed-Solomon (RS) code where u(x) is a polynomial over 
GF(qh) which carries the information. 

Let C be a ( N ,  K ,  N ~ K + 1 )  redundant residue code over 
a field F where a = [a,@), a,@), . . . , aN- i ( x ) ]  is a codeword of 
C, and ai (x)  = u(x) mod m i x )  for deg u(x) < m K .  Let b be the 
vector 

b = [a&), U d X ) ;  a,(X),  Ui(X); . . . ; a ~ -  i ( X b  U N -  i ( X ) l  (1) 

where U@) = aAx)v(x) mod m i x )  for 0 I i < N - 1, and where 
v(x) is a polynomial of degree m over F so that the members of 
the set m,(x), mi@) ,  . . . , m N -  ' (x) ,  v(x) are relatively prime. It is 
now shown that every nonzero pair of polynomials [ai(x),  
u i x ) ]  is distinct, i.e. [ai(x), u ix) ]  # [ a j x ) ,  u j x ) ]  for i # j and 
a i x )  and a j x )  both nonzero. For the obverse, [a j (x) .  u ix) ]  = 
[ a j x ) ,  u j x ) ] .  Then ai@) = aAx) and u i x )  = ujx) ,  which means 
that aix)v(x)  mod m i x )  a ix)v(x)  mod m j x ) .  Since deg 
aix)v(x)  2 m, then 

(2)  

where cix), c j x )  # 0. Therefore cix)mi(x) = c,(x)mJ(x). Since 
mi(x). m j x )  are relatively prime, then it is necessary that 
c j x )  = e i x ) m i x ) ,  cix) = e j x ) m j x ) ,  where e i (x)  and eJ(x) are 
both nonzero. As a result, deg c i x )  t m and deg c j x )  t m, 
whereas deg ai(x)v(x) < 2m - 1, so that eqn. 2 is not a poly- 
nomial of degree less than m. This gives a contradiction since 
u i x )  must have degree less than m. If in eqn. 1 ,  a i (x)  # 0, then 
u i x )  # 0 since mj(x)  and v(x) are relatively prime. Since the 
code C has distance N - K + 1, then there are at least 
N - K + 1 distinct pairs [ a i x ) ,  u X X ) ]  in eqn. 1. 

The redundant residue code E ,  composed of words such as 
eqn. 1 ,  is linear, if we assume two code words generated by the 
information polynomials u(x) and u'(x). Then the sum of coor- 
dinate pairs [ a i x ) ,  u ix) ]  and [aXx), u;(x)] is [a i (x)  + axx),  ui(x) 
+ u W l  =, C C ( W  + u'(x)l mod m i x ) ,  Caix) + a'@)lu(x) mod 
m i x ) ] .  Thls code can be considered a concatenated code for 
the same reasons as for the Justesen code using RS code: as 
the outer codes, and has length 2mN symbols from F and mK 
information symbols, giving a rate of K / 2 N .  If m i x )  = x - a', 
0 < i I qh - 1, where a is a primitive element of GF(qh) and 
v(x) = x ,  then this construction yields the original Justesen 
construction.' This is because a i x )  = u(x) mod x - a' = u(a') 
and x mod x - a ' =  a', so that aix)v(x)  mod mi(x) E 

[ai(x)][v(x) mod m i x ) ]  = a'u(a'). 
Now assume the m i x )  are irreducible polynomials of degree 

m over GF(2).  The length of the resulting code (eqn. 1 )  will be 
determined by the number I ,  of such polynomials where lim 
1 4 2 " / m )  = I, as m + 00. Now let yo, y,, y 2 ,  . . . , y , _  be a 
set of M distinct binary vectors, each of length 2m, and let wa 
be the Hamming weight of y j .  Let p = (wo + _ . .  
+ w M - , ) / 2 m M .  Then3 log M I 2mH,(p) where H ,  is the 
binary entropy function. For the above redundant residue 
code E, M = N - K + 1 where N = I , ,  and each pair yJ = 
[a,(.), u j x ) ]  has components of degree less than m and length 
2m. The polynomial v(x) can be of the form t , (x ) t , (x) ,  where 
t , ( x )  and t2 (x)  are irreducible and deg t , ( x )  + deg t2(x) = m. 
Thus all I ,  irreducible binary polynomials of degree m can be 
used for the moduli m i x ) .  The rate R of B is K / 2 N ,  and since 
the distance of C is D = N - K + 1, then D / N  = 1 - K /  
N + 1/N > 1 - K / N  = 1 - 2R. Then the ratio of distance d 
to length 2mN of code, in bits, is 

d/ZmN[d/Zm(N - K + l ) ] [ ( N  - K + 1) /N]  

a ix)v(x)  - c i x ) m i x )  = aix)v(x) - c j x ) m j x )  

t [ ( N  - K + I ) /N]H;' [ (1 /2m)  log ( N  - K + l ) ]  

t (1  - 2R)H; [( 1/2m) log N (  1 - 2R)] 

t ( 1  - 2R)H;' ( (1 /2m)  log [(2"/m)(l - 2-""2'i)(1 - 2 R ) ] }  

= ( 1  - 2R)H;'((m/2m) + (1/2m)[log ( 1  - 2 - " ) 2 + ' )  

+ log ( 1  - 2R) - log m ] }  

+ ( 1  - 2R)H;' ( (1 /2)  + (1/2m)[log ( 1  - 2 R )  -log m ] }  

+ ( 1  - 2R)H;'(1/2) 

as m -  m, since log ( 1  - 2 - " ' 2 + 1 )  = - 2 - m ' 2 + 1  + q 2 - - + 2 )  
which tends to zero as m + m. Also, (log m)/m + 0 as m + CO. 
Thus we get the same asymptotic result as the Justesen codes 
using RS codes. 
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