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We discuss the radially symmetric solutions and the non-radially symmetric 
bifurcation of the semilinear elliptic equation Au + 26e” = 0 in Sz and u = 0 on dQ, 
where 0 = {x E R’: a2 < 1x1< 1 }. We prove that, for each a E (0, l), there exists a 
decreasing sequence { 6*(k, a)} F= o with 6*(k, a) +O as k+ co such that the 
equation has exactly two radial solutions for do (0, a*(O, a)), exactly one for 
b = 6*(0, a), and none for 6 > 6*(0, a). The upper branch of radial solutions has a 
non-radially symmetric bifurcation (symmetry breaking) at each 6*(k, a), k > 1. As 
a +O, the radial solutions will tend to the radial solutions on the disk and 
S*(O, a) -+ 6* = 1, the critical number on the disk. 0 1989 Academic mess, I~C. 

1. INTRODUCTION 

In this paper we study the multiplicity of radially symmetric positive 
solutions and the non-radially symmetric bifurcation of these solutions of 
the following (Gel’fand) equation: 

Au(x) + 2AeUcX) = 0, XEQ, (1.1) 

u(x) = 0, xEa52, (1.2) 

where 52 is the annulus 

Q=R,= 1 x=(x-,,x*)ER2:u2~X:+X:<~ ) I 
a~(0, l),A>O,andd=$+z 

1 ax:' 

If 52 is the unit disk, by the well-known theorem of Gidas, Ni, and 
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Nirenberg [8], any positive solution of (1.1) (1.2) must be radially 
symmetric. Therefore, (1.1) (1.2) are reduced to 

d’(r) + 1 u’(r) + 2M@) = 0, r E (0, 11, (1.3) r 

u’(0) = 0 = u( 1 ), (1.4) 

where r*=xT+x:. In [7], Gel’fand found that (1.3) is invariant with 
respect to the group of transformations 

u(r, a) = a + uo(rea’*), (1.5) 

i.e., if u,Jr) is a solution of (1.3), then for any a E R’, u(r, a) is also a solu- 
tion of (1.3). (Note that the boundary condition u’(0) = 0 is also invariant 
under (1.5).) By using this property, Gel’fand proved that there exist 
exactly two solutions for 1 E (0, l), one for 1= 1 and none for A> 1. In the 
case of annulus, using the same property, we are able to obtain a similar 
result for (Ll), (1.2) in the class of radially symmetric functions, i.e., there 
exists A*(a) > 1 such that there exist exactly two radially symmetric 
solutions for A E (0, A*(a)), one for A = A*(a) and none for A> A*(a). These 
solutions can be written explicitly and A*(a) is computable. 

The existence of positive radial solutions on the n-annulus was also 
studied by Bandle et al. [2] and Garaizar [6]. 

In a series of papers, Smoller and Wasserman [ 12, 133 considered the 
possibility of the non-radially symmetric bifurcation of the equation 

h(x) + ry(u(x)) = 0, XEB”, (l-6) 

with Dirichlet or Neumann boundary conditions, where B” is the unit ball 
in R”. They showed that, for a certain class of functions f(u), an asym- 
metric solution bifurcates from a radially symmetric solution. In the case of 
(l.l), (1.2), taking advantage of knowing the explicit formula of radially 
symmetric solutions ui(r) (upper branch of solutions), we are able to 
understand its linearized problem 

dw(x) + 2Ae”“(‘)w(x) = 0, XEQ, (1.7) 

w(x) = 0, xEaa (1.8) 

More precisely, we prove that there exists a decreasing sequence 
{A*@, a)};= i with A*@, a) + 0 as k + co, such that the equation 

B”(r)+tp’(r)+(21.‘ilri-~)(p(r)=0, r,(,,j), (1.9) 

cp(a)=O=cp 5 , 
0 

(1.10) 
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has a non-trivial solution qk(r) if and only if A= A*(k, a), k = 1, 2, 3, . . . . 
For these A*(k, a), the solution set of (1.7), (1.8) is spanned by qk(r) cos k0 
and qk(r) sin k& qk(r) can also be written explicitly. 

To obtain the local non-radially symmetric bifurcation results at 
I*(k, a), we have to verify a Crandall-Rabinowitz type transversality 
condition [4]. This is a crucial and sometimes difficult part in the study of 
local bifurcation problems. In the case of (l.l), (1.2), the transversality 
condition is 

(1.11) 

It is hard to check (1.11) directly even we know u1 and qk explicitly. 
However, by taking k ( >O) as a parameter and considering the linearized 
eigenvalue problem 

o”(r)+fp’(r)+(2ie”“)-~) q(r)= +(A, k)q(r), r+z,~), 

cp(a)=O=q t ) 
0 

where p(L, k) is the principal eigenvalue, we obtain 

and 

f$ (A, k) = s1’a 5 (p2(r) dr; 
a r 

here the associated eigenfunction q(r) = q(r, 13, k) has been normalized 
with 1:‘” rcp2(r) dr = 1. After a careful study of +/la2 and +/ak, we are able 
to verify that (1.11) holds. A global bifurcation result can also be obtained 
by using the well-known theorem of Rabinowitz [ 111. 

This paper is organized as follows: In Section 2, we study the radially 
symmetric solutions. In Section 3, we study the linearized problem (1.9), 
(1.10). In Section 4, a Crandall-Rabinowitz type transversality condition 
(1.11) is verified. Finally, in Section 5, we show that if the outer boundaries 
of the annuli are fixed and the inner boundaries tend to zero, then the 
radially symmetric solutions on the annuli will tend to the radially 
symmetric solution on the disk. 
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2. RADIALLY SYMMETRIC SOLUTIONS 

In this section we shall study the existence and multiplicity problems of 
(Ll), (1.2) in the class of radially symmetric solutions; i.e., we consider the 
equation 

d’(r) + 1 u’(r) + 2kw = 0, 
1 

rE a,- , 
r ( > a 

u(a)=O=u i , 
0 

(2.1) 

where a E (0, 1). 
Since for any interval [A, B] c (0, co), [A, B] is transformed into 

[a, l/a] via the transformation s = (A,)-1’2 r, where a = A’12B-1’2 E (0, 1). 
Therefore, the problem on [A, B] is equivalent to the problem on [a, l/a] 
with a= A1’2B-1i2. Hence, our study of the problem on (a, l/a) applies to 
all cases. 

Problem (2.1), (2.2) has been considered by Crandall and Rabinowitz 
[S]. They showed that there exists L*(a) > 0 such that there exist at least 
two solutions for 1 E (0, n*(a)), and exactly one for A= d*(a) and none for 
n>i*(a). In this section, we shall prove that there exist exactly two 
solutions for A E (0, L*(a)) and obtain explicit formulas for n*(a) and these 
solutions. 

By a classical transformation 

x=logr and u(x) = u(r) + 2 log r, 

(2.1), (2.2) are transformed into 

u”(x) + 2Ae”(-‘) = 0, XE(-A, A) 

u(-A)= -2A and u(A) = 2A, 

where 

(2.3) 

(2.4) 

(2.5) 

A=log+O. 

Moreover, by 

Z(x) = e”@) and Y(x) = u’(x), (2.7) 

(2.4) can be written as a dynamic system 

{ 

Z’(x) = ZY, 
Y’(x) = -212, (2.8) 
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and the corresponding boundary conditions as 

Z(-A)=e-2A and Z(A) = e2A. 

Since (2.8) is an autonomous system, (2.9) can be replaced by 

Z(0) = eC2A and Z( 2A ) = e2A. 

Hence we have the following equivalent problems: 

(A) (2.1), GQ), 

(w (2.4), (2.5), 
(C) (2.8), (2.9) with Z>O, 
(D) (2.8), (2.10) with Z>O. 

We will work on any one of them. 
The following lemma characterizes the solutions of the problem. 

(2.9) 

(2.10) 

LEMMA 2.1. The solutions of (2.4), (2.5) are given by 

/321- ~&,,i312eb 
uKdx) = log (1 + Km,9/2e92’ 

where K > 0, fl> 0 satisfies 

/12A-‘K 1 
(1=K)Z= 

(2.11) 

(2.12) 

(2.13) 

and 

m=av2. (2.14) 

Proof. We first study the effects of the invariance property of solutions 
of (2.1). If uO(r) is a solution of (2.1), then for any OIE R’, 

u,(r) s a + u0(reai2) (2.15) 

is also its solution. According to (2.3), we may set vO(x) = u,,(r) + 2x and 
V,(X) = u,(r) + 2x. Then u,(x) = uO(reai2) + 2(x + a/2) = uO(x + a/2). This 
implies that Z,(x) = Z,(x + a/2) and Y,(x) = Y,(x + a/2), i.e., (Z,, Y,) lies 
on the same trajectory with different phase on the Z- Y phase plane. This 
is also consistent with the following considerations: 
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It has been known, since Liouville [lo], that for any K>O, 

AC’Ke” 
UK(X) = log Z,(x) 5 1% (1 + Kex)2 

is a solution of (2.4). Now, for any K, > 0, let x1 = log(K,/K). Then we 
have 

A-‘K,ex l--lKeX+X1 
Z,,(x)=(1+K,e”)*=(1+Ke”+“])2 = ZK(X + x,); 

i.e., different K’s in ZK change the phase only. 
On the other hand, there is also an invariance property of solutions for 

(2.4): If u,,(x) is a solution of (2.4), then for any a E R’, 

U,(x) = a + uO(xea’*) (2.17) 

is also a solution of (2.4). Now, for different a’s, the corresponding 
(Z,, FJs will lie on different trajectories of the Z- Y phase plane. 
Hence, by (2.16) and (2.17), we have a one-parameter family of solutions 
Z,, given by Z,,(x) = exp{ VK,Jx)} = exp{a + o.(xea’*)} = #?*A-‘KeSX/ 
(1 + KesX)*, where /? = eaj2. For any K > 0, B > 0, denote by 

p211-‘KeB” 
‘dx) = (1 + Ke92’ 

It is easy to check that {(Z&x), Y&x)): K > 0, /? > 0, x E F!‘} covers the 
right half-plane IR: = ((2, JJ): z > 0, YE R’>. Hence, any solution u(x) of 
(2.4) will be of the form u(x) =log Z&x) for some K>O and /?>O. It is 
.clear that boundary condition (2.5) is transformed into (2.12), (2.13). This 
completes the proof. 

It is easier to solve the transcendental equation (2.12), (2.13) than (2.5). 
To solve (2.12), (2.13), we need some simple facts as follows: 

LEMMA 2.2. Zf 1, K, /? solve (2.12), (2.13), then 0-c K-c 1. 

Proof If g(s) = s/( 1 + s)’ for s > 0, then g’(s) = (1 - s)/( 1 + s)~. Hence 
g(s) is strictly increasing in (0, 1) and strictly decreasing in (1, co). If A, K, B 
solve (2.12), (2.13), then /12A-‘g(K) = l/m < m,= /?‘A-‘g(KmS). Hence 
g(K) -C g(Kms) and K < K&, which imply that 0 < K < 1. 

LEMMA 2.3. Zf b 2 4c > 0, then the solutions of 

bs 
(l=c 
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are 

Furthermore, if b > 4c > 0, then 

o<s- < 1 <S+. 

If we set 

t=p-l, 

then (2.12), (2.13) are transformed into more compact forms 

tKmS 
(1 +Kma)2=m’ 

(2.18) 

(2.19) 

(2.20) 

Now, taking t > 0 as a parameter, we can solve (2.19), (2.20) in terms of 
t as follows: 

LEMMA 2.4. The solutions of (2.19), (2.20) are given by two functions 
A+(-): C% 00) + (0, m), 

A.+(t)= t-l ( 
1 P+(t) 2 --log4m , log m > 

l-(t)= t-’ ( 
1 P-(t) 2 

log m -1og4m , 
> 

(2.21) 

(2.22) 

P+(t) = P1(t) P2(t), P-(t) = m P2(t), 

PI(t)= (t-2m)+(t2-4mt)“2, 

P,(t) = (t - 2m) - (t2 - 4mt)‘12, 

P2(t) = (mt - 2) + (m2t2 - 4mt)“‘. 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Proof By Lemmas 2.3 and 2.4, we have 

K=${(mt-2)-(m2t2-4mt)‘/2}, (2.27) 
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and 

Km&& {(t-2m)f(t*-4mr)1’2} (2.28) 

for t > 4m. After canceling out K in (2.27), (2.28), we obtain 

rnp=k {(t-2m)+(t2-4mt)1~2}{(mt-2)-(m2t2-4mt)1’2}-1 

=-& {(t-2m)f(t2-4mt)‘~2}{(mt-2)+(m2t2-4mt)”2}, 

and then (2.21), (2.22) follows. 

We list some properties of P, and A+ which are useful. 

LEMMA 2.5. (i) P’+(t)>OandP~(t)<Ofor t>4m, 
(ii) P+(4m) = P-(4m) = 2m((4m2 - 2) +4m(m* - l)l/*), 
(iii) lim,,, P-(t)=4m3, 
(iv) A+(t)>L(t) in (4m, co) andl,(m)=1+(4m)=1-(4m), 
(v) lim,,, A+(t)=O. 

ProojI The proof is elementary which we omit. 

LEMMA 2.6. AL(t) < 0 in (4m, co). 

Proof: It is easy to check that 

AI(t)=A-(t)“* t-3’2Q-(t)(logm)p’, 

where 

Q-(t)=2t$+-log2. 
- 

By Lemma 2.5 (i), (iii), we have Q-(t) c 0 in (4m, oo), so the result 
follows. 

LEMMA 2.7. 

n’+(t) = 1:/2(t) t-3’2Q+(t)(log m)-‘, (2.29) 

where 

Q+(t)=2t#logy, (2.30) 
+ 
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Moreover, we have 

(i) Q’+(t)cOfor t>4m, 
(ii) lim,,,, Q+(t)= co and lim,,, Q+(t)= --a~. 

Proof: The derivation of (2.29) and (2.30) is elementary, so we omit it. 
It remains to show (i), (ii). Since 

P’ +- (PlP2)’ p; p; --=-+---, Q’+ =;+~+2t{(~~+(~~}, 
p, PlP2 Pl P2 

by a straightforward computation, we have 

:=(t’-4mt)-l/‘, (2.31) 
1 

P; -= m(m2t2 - 4mt)-‘12, 
P2 

P; ’ 

( > x 
= -(t-2m)(t2-4mt)-3/2, 

P; ’ 

( > 
- 
P2 

= -m2(mt - 2)(m2t2 - 4mt)-3’2. 

(2.32) 

After simplification, we obtain Q’+(t) = -t2(t2 - 4mt)-3’2 - 
m3t2(m2t2 - 4mt)--3’2, which proves (i). By (2.23), (2.24), (2.26), (2.31), and 
(2.32), (ii) follows. 

An immediate consequence of Lemma 2.7 is 

LEMMA 2.8. Let t* = t*(m) be the unique solution of 

2t P’,(t) --log7 . 
P+(t) 

p+woo (2.33) 

Then 

Al,(t) > 0 in (4m, t*), 

and 1 +(t) attains its maximum 

and Al,(t)<0 in (t*, co), (2.34) 

A*=l*(m)=(t*)-’ 
i 

1 P+(t*) 2 
-1og4m log m I 

(2.35) 

at t = t*. 
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Combining the results of Lemmas 2.1, 2.4, 2.6, and 2.8, we have the 
following theorem. 

THEOREM 2.9. (i) For any aE (0, l), there exists a number A*(a) 
(=A*(m)), which is given by (2.35), such that (2.1) has exactly two solutions 
for 1 E (0, L*(a)), exactly one at A= A*(a), and none for 1> A*(a). 

(ii) The solutions are of the form 

u(r) = log 
/3’n - ‘Krn3.fl 

(1 + Kms’2rs)2 r2’ 
(2.36) 

2 
K=K(t)=- 

P2(t)’ 

(2.37) 

2=2*(t)=/!?:(t) t-l, (2.38) 

t > 4m, and P2(t), P+(t) are given in (2.23~(2.26). 

(iii) The upper branch of solutions uA, 1 E (0, A*(m)), is given by (2.36) 
with P=p+(t), A=A+(t), and tat*(m), where t*(m) is the solution of 
(2.33), and the lower branch of solutions gA is also given by (2.36) but 
consists of two pieces: for A~[L,(rn),I*(rn)], b=/?+(t), A=A+(t), and 
TV [4m, t*(m)], for A~(O,&(rn)l, /?=jL(t), 1=2-(t), and t>4m, where 
A,(m)=1+(4m)=1-(4m). 

3. LINEARIZED EIGENVALUE PROBLEMS 

From the last section, we know that for any m (= l/u’) > 1, there are 
two smooth branches of radially symmetric solutions of (2.1), (2.2) in 
(0, A*(m)), namely, the upper (maximal) branch u1 and the lower (mini- 
mal) branch _un. It is well-known that the minimal branch -ul can be 
obtained by a monotone iteration starting from 0 (see, e.g., [9]), and 
_ul(r) < ul(r) in (a, l/a) for any 1 E (0,1*(m)). 

Let pi(A) and r,(A) be the principal eigenvalues of linearized eigenvalue 
problem of (l.l), (1.2) at u1 and uA, respectively; i.e., let pi(A) be the least 
eigenvalue of 

dw(x) + 2Ae’“(‘)w(x) = -pw(x), XEQ, (3.1) 

w(x) = 0, XEaln, (3.2) 
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and p,(A) be the least eigenvalue of 

A w(x) + 2;le”“(‘) w(x) = -P(X), XEQ, 

w(x) = 0, XEan. 

It is known that p,(A) >O for any A E (0, A*(m)) and pi(A*(m)) = 0 (see, 
e.g., [9]). Therefore, the minimal branch u, cannot bifurcate. On the other 
hand, due to the convexity of e“, it has been shown by Crandall and 
Rabinowitz [S] that ~~(2) <O for any IE (0, A*(m)). Therefore it is 
possible that there is a bifurcation from the upper branch ui. In this 
section, we shall investigate (3.1), (3.2) in detail. 

By the method of separation of variables in polar coordinates, (3.1), 
(3.2) can be reduced to 

k=0,1,2 I..., 1=1,2 ,.... Let cplr,, be the eigenfunction of (3.3), (3.4) 
associated with the eigenvalue pk,,; then the eigenfunction wk,, of (3.1), 
(3.2) is 

wk,,(r, 0) = cp,,,(r)(a, cos kfl+ b, sin ke), 

where ak and bk are constants. 
By several changes of variables, we can bring (3.3), (3.4) into a more 

desirable form. 
First, if we set 

x = log r, ye) = q(r), and V(x) = u(r), (3.5) 

then (3.3), (3.4) are transformed into 

$“(x) + (21e”‘“) - k2) $(x) = -p,,,(A) e2xll/(x), XE(-AA), (3.6) 

tit-A)=O=!HA), (3.7) 

where A = log( l/u). 
By (2.36) (3.6) can be written as 

Ux) + 
2/12K, eBx 

(1 + ~,esx)2 - k2 $(x) = --pk.,(x) e2x$(x), XE(--A, A), 

(3.8) 
where K, = Km@/’ and K, p=p+ are given in (2.37), (2.39). 

505/80/2-5 
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Next, with 
y=Px and WY) = It/(X)> (3.9) 

(3.7), (3.8) can be transformed further into 

= -p&A) e(2’8)yY(y), YE (-BAY PA)> (3.10) 

Y(-/L4)=0= !iq?A). (3.11) 

Since the bifurcation only occurs at 1~ (0, A*(m)) which satisfies 
,+,(A) = 0, it is necessary to identify these 1. We begin with the case k = 0. 

Suppose that J. E (0, A*(m)) satisfies p&12-) = 0. Setting 

X= K,ey and @(W = ul(Y)F (3.12) 

we can transform (3.10), (3.11) into 

G”(X) + ; CD’(X) + 
2 

x(1+x)= 
@i(X) = 0, XE (K, epBA, K, eSA), (3.13) 

@(K,epBA)=O=@(KIeSA). (3.14) 

Now, the linear equation (3.13) can be solved as follows: 

LEMMA 3.1. The general solution of (3.13) is Q(X) = b@,(X) + dQ2(X), 
where QI(X) = (X - 1)/(X -t l), G2(X) = y@,(X) - 4/(X + 1) = 
( y(X - 1) - 4)/(X+ l), and b, d are constants. 

ProoJ It is easy to check that @i is a solution of (3.13), and then Q2 
is obtained from @i by the method of variation of parameters. 

Knowing the general solution of (3.13), we can prove the following 
theorem. 

THEOREM 3.2. (i) p,,,(l)=0 ifund only ifA=A*(m) and I= 1. 
(ii) For 122, p,J;l)>O for any IE(O, A*(m)] and k=O, 1, 2, . . . . 

Proof: By Lemma 3.1, (3.14) is equivalent to 

b(K,e-BA-1)+d{-~A(KIe-BA-l)-4}=0, (3.15) 

b(K,eBA-1)+d{jL4(K,eSA-1)-4}=0. (3.16) 

System (3.15), (3.16) has non-trivial solutions if and only if it has zero 
determinant, i.e., 
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O=(K,e- BA - l){j?A(K,e PA- l)-4) 

+ (KY - 1){/?A(KleC8” - 1) + 4) 

= 2PA(K,epBA - l)(KleSA - 1) + 4(K,eSA - K1e-@“). 

Using 2/lA = fi log m and eBA = mpf2, we can write the last equation as 

(fl log m)(K,m-B’2 - 1)(K,m”12 - 1) + 4K,(m@” - rnmfi12) = 0. 

By (2.39) and K, = Kms12, this becomes 

P+(t) log4m= 4K(mS - 1) 
(KmS-1)(1-K)’ 

By (2.37), mB = P, P2/4m, and a lengthy but straightforward computation, 
we can show that 

2K(mS - 1) P’,(t) 
(Kms- l)(l -k)=l P+(t)’ 

(we omit the detail here). Hence, puo,,(A) = 0 if and only if t satisfies (2.33), 
i.e., t = t*(m) and then A= n*(m). In this case, it is clear that I= 1. This 
proves (i). 

To prove (ii), we note that 

Po,z@) ’ 0 for any 1~ (0,1*(m)]. (3.17) 

Since p,,2(12*(m)) >po,l(ll*(m)) =O, (3.17) follows by (i) and the con- 
tinuous dependence of ~~,~(12) with respect to 1. 

Now, by the mini-max principle of eigenvalues (see, e.g., [3]), pk.,(A) 
can be characterized by 

where 

II,, = I”” r { (pr2(r) - 2Le”“(‘)(p’(r) + 5 q2(r)} dr, 
a 

and 

x,=c; a,’ ([ I> a ’ 
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the set of continuously differentiable functions on [a, l/a] which vanish at 
r=a and r=l/a. Since, for k,>k, and any VEX,, D,,,,(cp)>D,,,,(cp) 
holds, we have ,uk,,[(L) 2 pLk2,,(l) for k, > k,, ,I E (0, n*(m)], and I = 1, 2, . . . . 
This proves (ii). 

An immediate consequence of Theorem 3.2 is that ,LL,,(~) =0 implies 
E= 1. Therefore, we shall take k as a parameter which varies in (0, cc ) and 
search for il E (0, n*(m)) which satisfies pk, r(A) = 0. 

Set 

-k 2K, ey 
C=Bo’ A(J+=(1+K,eY)2’ 

and 

P(y) = epcy!P(y), 

and let ~~,,(1)=0. Then (3.10), (3.11) can be transformed into 

Wy)+2cWy)+R(y) !P(y)=O, 
!P(-&4)=0= !?@A). 

Set 

X= K,eY and G(X) = P(y). (3.21) 

(3.18) 

(3.19) 

(3.20) 

Then (3.19), (3.20) are transformed into 

1+2c 
G”(X) + - * @‘W)+ 

1 
X(1 +x)2 

Q(X) = 0, XE (L, R) (3.22) 

where 

CD(L) = 0 = O(R), (3.23) 

L=K,e-pA=K and R = K, esA = KmB. (3.24) 

Denote by 

(3.25) 

where 

1+2c 
Xc=- 

I-2c’ 
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Then it can be checked that @i is a solution of (3.22). By the method of 
variation of parameters, i.e., by assuming 

@2(X) = C(X) @l(X) 

is a solution of (3.22), we obtain 

C’(X) = g(X)(X- xc)-*, 
where 

g(X)=(l+X)X-i-2=. 

Therefore, the general solution of (3.22) is given by 

G(X) = b@,(X) + d@*(X) 

and the boundary conditions (3.23) are 

ml(L) + d@,(L) = 0, 

ml(R) + d@,(R) =o. 

We first prove the following lemma. 

LEMMA 3.3. If (3.30), (3.31) has a non-trivial solution, then 

CE and xc E (4 w. 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

ProoJ: If c < - l/2, then X, < 0. Hence (X- X,)* > Xf > 0 for X> 0. 
Therefore C(X) is smooth and C’(X) > 0 for X> 0. Since 

we have 

C(R) ’ C(L) and 

@l(L) @2(R) - @l(R) @2(L) = @l(L) @luwC(R) - C(L))‘O. 

This implies that (3.30), (3.31) has no non-trivial solution if c < -l/2. 
Next, we shall prove X, E (t, R) if (3.30), (3.31) has a non-trivial 

solution. 
Since 

g’(x)=(1-2c)(l+x)-2-*‘(x-x,), (3.33) 

it is clear that we can define 

C(X)= -dXc)W--Xc)-’ +jx (z-Xc)-* (g(z)- g(Xc)) dz 
1 
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for X> 0. Hence, we may write G2(X) = c(X) Q,(X) + &(A’), 
where 

c(X) = j: (z - K-’ (g(z) - g(xc)) dz, and &*(X) =gE. 

Therefore, we obtain 

1 
= (L+ l)(R+ 1) (R - L) dxc) + (R - XcU - xc-1 

x s R(~-XX,)p2(g(z)-g(Xc))dz 
L 

For c E ( - l/2,0), (3.33) implies 

g(X) 2 g(X,) if X2 X, and g(X) < g(X,) if X< X,. 

Therefore, it is easy to see that @r(L) Q2(R)- Q,(R) Q,(L)>0 whenever 
X, < L or R < A’,. Hence, if (3.30), (3.3 1) has a non-trivial solution then 
X, E (L, R). This completes the proof. 

To have an explicit expression for Q2, it is necessary to integrate C’(x). 
Fortunately, this can be done as follows: 

Set 

1-S 
s= -2c and x,=x,=- 

1 +s’ 

Then s E (0, 1) and 

C’(X) = (1 + X)’ (X- X,) -2 X”- l. 

C’(X) can be integrated as 

s+l 
c(x)=-Y+s_1 s+l X”-‘-(1+X)2(X-Xx,)-W-1. 

s 

(3.34) 

Therefore 

!Dl(X)+$, and @2(X) = sx (l;x) (Xx,- 1). (3.35) 
s 
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Knowing these two linearly independent solutions @i and oz of (3.22), 
we have 

LEMMA 3.4. Problem (3.30) (3.31) has a non-trivial solution if and only 
if 

(L-X,)(RX,-l)R”- (R-X,)(LX,-1) L”=O. 

Furthermore, (3.36) is equivalent to the system 

H( t, s, k) = 0, 

sb( t) = 2k, 

where 

(3.36) 

(3.37) 

(3.38) 

H(t,s,k)=(L-XS)(RXS-1)m2k-(R-XS)(LXS-1). (3.39) 

The corresponding eigenfunction can be taken as 

@(X) = 
1 

sX,(L+ 1)(X+ 1) 
{(L-X,)(XX,-1)x”-(X-X,)(LX,-1)L”}. 

(3.40) 

Proof. By (3.35), we have 

@,(L) %(R) - @I(R) Q,(L) 

1 
= sX,(L+ l)(R+ 1) 

{(L-X,)(RX,-l)R”-(R-X,)(LX,-1)L”). 

This gives the first part of our lemma. 
Next, by (3.18), (3.24), and (3.34), we have 

R” 0 z 
= msB = m2k 

Therefore, (3.36) is equivalent-to (3.37), (3.38). As (3.40) can be obtained 
easily, we omit the details here. This completes the proof. 

In the following, we try to solve t and s of (3.37), (3.38) in terms of k. 
Note that a function is said to be smooth if it belongs to C’ for some I> 1. 

LEMMA 3.5. For any k > 0, there exists a unique solution (t(k), s(k), k) of 
(3.37), (3.38). Furthermore, t(k) and s(k) are smooth in k and 

lim t(k) = co. 
k-m 

(3.41) 



268 SONG-SUN LIN 

Proof: First, we shall solve s as a function of t and k in (3.37). Since 
s= (1 -X,)/(1 +X,), it suffices to solve X, as a function of t and k in 
(3.36). 

Since 

P(t) > 2k LmZk - R = K(m2k - rnp) < 0, 

the requirement of X, > 0 implies 

Xs = XAt, k) 

= (RL + 1 )(m'" -l)+ {(RL+1)2(m2k- 1)2-4(Rm2k-L)(Lm2k-R)}“2 
2(Rm2k- L) 

(3.42) 

Next, we shall compute as/at or 8X,&. Since it is rather complicated to 
differentiate (3.42) with respect to t directly, we shall compute aH/at and 
aH/as instead. It is easy to obtain that 

+(t,s,k)=(l-X:){R++L’~} 
s s 

and 

Furthermore, if (t, s, k) is a solution of H(t, s, k) = 0, then L < X, < R 
implies LX, < 1 <RX,. Hence, we have 

g (t, s, k) < 0 and $$t,s,k)>O 

on {(t, s, k): H(t, s, k) = O}. This implies 

$ (t, k) = - t$ (t, 46 k), k);‘g (t, s(t, k), k) > 0, 

and then 

am k) 
at 

-2 asw)<O 
=(l+s)Zat . 

To prove the first part of the lemma, it suffices to show that for each 
k > 0, the graph of s(t, k) intersects the graph of s = 2k/j?(t) exactly once in 
the set 

(ik, m)= {teR’: t>dm and P(f) > 2kl. 
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Since s(t, k) is strictly increasing in t and 2k/fi(t) is strictly decreasing in t, 
they intersect at most once in (t‘k, co). It remains to show that they indeed 
intersect in (ik, co). 

By (3.42), it can be checked that lim,, +m A’,(& k) = l/mk < 1. 
There are two cases to be considered; 

Case 1. ik = 4m, i.e., fi( t) > 2k for t > 4m. 

Case 2. tk > 4m, i.e., there exists a ik > 4m such that p(ik) = 2k. 

In Case 1, since R(4m) = Pl(4m)/2m = 1, after a straightforward but 
lengthy computation, it can be proved X,(4m, k) = 1, i.e., s(4m, k) = 0. 
Hence, there exists a unique t(k) E (4m, 00) such that s(t(k), k) = 
WB(t(k)). 

In Case 2, we have 

1 - xs(ik, k) = 1 - 
K2m2k + 1 

(lmK) (Kms--1), 
K(m2k+ 1)=K(m2k+ 1) 

where K and /3 are evaluated at t = ik, 
Since 

Krns = 6tik) 
-= 

2m 
(ik-2m) + (tZk-4mikk)1’2, 1 

2m 7 

we have x,( ik, k) E (0, 1); i.e., s( ik) k) E (0, 1). But 2k/fl( ik) = 1, which 
implies that there exists a unique t(k) E (ik, cc) such that s( t(k), k) = 
2k/j?(t(k)). This proves the first part of lemma. 

By (3.43) and the implicit function theorem, t(k) and s(k) are smooth in 
k. Since s(k) E (0, 1) and lim,,, j(t) = co, fl( t(k)) = 2k/s(k) > 2k implies 
(3.41). This completes the proof. 

Combining the results of Lemmas 3.3, 3.4, and 3.5, we obtain the 
following theorem: 

THEOREM 3.6. For any k E (0, 00) there exists a unique l*(k) >O such 
that pk,l(l*(k)) = 0. The function A*( .): (0, co) + (0,1*(m)) is smooth and 
has the following properties: 

ci) lirnk+, A*(k) = A*(m), 

(ii) lim,, o. A*(k) = 0. 

Proof: Using Lemma 3.5 and letting 

A*(k) = t(k)-’ (3.44) 
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we see that I*(k) is the unique solution of P~,~(A) = 0. Then (i), (ii) follow 
from (3.41) and (3.42). 

Summarizing the results of Theorems 3.2 and 3.6, we have the following 
theorem: 

THEOREM 3.7. The linearized problems 

A w + 21eu2(‘)w = 0, 

w = 0, 

in l2 

on 52, 

have a non-trivial solution if and only if A= I*(k), k=O, 1,2, . . . . Further- 
more, for each k > 1, the corresponding eigenspace is spanned by qk(r) cos k8 
and qk(r) sin k9, where qk(r) = @,JX) and @,JX) is given in (3.40) with 
X = Kmfi/‘rfi. 

4. SYMMETRY BREAKING 

In this section we shall prove that there are non-radially symmetric solu- 
tions which bifurcare from the upper branch u1 at every I*(k), k= 1,2, . . . . 
We shall apply a bifurcation theorem of Crandall and Rabinowitz [4]. 

THEOREM 4.1. Let X, Y be Banach spaces, V a neighborhood of 0 in X, 
X, E in R’, and 

z?(X-&,X+&)X v-, Y 

have the properties 

(a) F(~,O)=O~~~IE(A-E,X+E), 

(b) the partial derivatives F,, F,, F,, exist and are continuous, 

(c) N(F,(& 0)) and Y/R(F,,(& 0)) are dne-dimensional, 

(d) FJJ, 0) wo $ NF,(& O)), where N(F,(X, 0)) = span{ wo}. 

Zf Z is any complement of N(F,(& 0)) in X, then there is a neighborhood U 
of (A, 0) in R x X, an interval (-6,6), and continuous functions 

cp: (-6,6) -+ R’, I): (-6,6)+Z 

such that q(O) = 0, $(O) = 0, and 

F-‘(O) n u= {(cp( ) c( ) clwo + all/(a)): Jc11 < S} u {(A, 0): (A, 0) E U}. 

To apply Theorem 4.1, we need to rewrite (l.l), (1.2) as a nonlinear 
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operator equation on an appropriate function space. We shall work on 
Holder spaces. 

Denote by C, I +‘(a) the set of continuously differentiable functions on fi 
which vanish on an and whose first order derivatives are Holder con- 
tinuous in Q with exponent y E (0, 1). 

CA’y(8) is a Banach space under the usual norm, 

MI l+Y = max ju(x)l + max max 
xes-2 i=1,2 xsR 3) I I I 

+ max max %x)-~(v)(/lx-Y,y. 
i= 1.2 y+y axi I 

Denote by cA+Y(fi) the subspace of C, l+ y(sZ) consisting of functions 
which are even with respect to the x,-coordinate, i.e., 

2;;+yn, = {UE c;+qi=q: u( -x1, x,)= u(x1, x2,}. 

Then (1.1 ), (1.2) is equivalent to 

F(A, 24) = 0, 
where 

F(l., u): (0, n*(m)) x c;+‘(n) + c;+y@) 

is defined by 
F(Iz, u) = u + u1 + 2IGf(u + uJ 

with 
G=(d)-’ and f(u) = eU. 

It is easy to check that the linearized operator 

F,(A, 0): q)“(O) + c;+ylq 

is given by 

(4.2) 

(4.3) 

FJA, 0) w = w + 2IG(e”“w) (4.4) 

and the mixed derivative 

is given by 

F&, 0): Iw’ x c;+‘(n) + c;+‘(o) 

F,,(I.,O)w=G{;(Zle”“)w}. 

(4.1) 

(4.5) 
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By Theorem 3.7, the kernel of FJA, 0) is non-trivial if and only if A = A*(k), 
and for any k> 1, 

Ker F,(A*(k), 0) = span{cp,(r) cos k0, (PJY) sin k0}. 

However, if we restrict (l.l), (1.2) on zih+Y(sZ) then for any ka 1, 

Ker FJA.*(k), 0) n cA+y(@ 

span{ qk(r) cos ke} if k is even 
= span(cp,(r) sin k0} 1 if k is odd. 

This is obtained from the following elementary facts: 

LEMMA 4.2. Let x1 = r cos 8 and x2 = r sin 8. Then, cos k9 is even (odd) 
in x1 if k is even (odd), and sin ke is odd (euen) in x1 if k is even (odd). 

Therefore, with this setting the conditions (a), (b), (c) of Theorem 4.1 
are satisfied and (d) is 

I 
110 

r&(r): {~eU”(‘)}Ij.=l.(k,dr#O. (4.6) 
a 

We shall prove 

LEMMA 4.3. For k > 0, we have 

0) 7 

da*(k) <o 

, 

(ii) J:la r&r): {/ze”““‘}Ij.=,.(,,dr<O. 

(4.7) 

Proof To verify (4.6) directly is rather difficult even we have explicit 
expressions for Uj. and qk. We shall verify it in the following way. 

For A E (0, A*(m)) and k E (0, co), let ,u(A, k) and cp(l, k) be the principal 
eigenvalue and principal eigenfunction of linearized eigenvalue problem 

q”(r)+tp’(r)+(2Aeui(rJ-$)cp(r)= -p&r), rE(a,k), 

where rp(l, k) is normalized by s:‘” rcp2(r, 1, k) dr = 1. 
It is not difficult to verify that both ~(2, k) and cp(A, k) are smooth in 

(4 k). 
Denote by W(r, 1, k) = (&/aA)(r, ;I, k) and V(r, 1, k) = (&p/ak)(r, A, k). 

Then W and V satisfy 
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W”(r) +; W’(r) + 212 ( 

= -p(l, k) W(r) - 

and 

respectively. Therefore, we have 

1 
l/a 

0 

i.e., 

and 

$ (A, k) = -I”” rcp*(r, 1, k) i {21e”“(‘)) dr 
a 

(4.8) 

f$ (A, k) = 2k j:” f c&r, A, k) dr > 0. (4.9 1 

Since p(A*(k), k) = 0, using Theorem 3.6, we have 

g (l*(k), k) y + $ (I*(k), k) = 0. 

Therefore, (4.9) implies dA*(k)/dk # 0. Moreover, using Theorem 3.6, we 
have dh*(k)/dk c 0. Hence 

g (A.*(k), k) > 0. (4.10) 

Therefore (4.7) follows by (4.8) and (4.10). This completes the proof. 
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Using Theorem 4.1, Lemmas 4.2 and 4.3, we obtain the following 
theorem: 

THEOREM 4.4. The upper branch uA of radially symmetric solutions of 
(1.1 ), (1.2) has a non-radially symmetric bifurcation at each I*(k), 
k = 1, 2, . . . . Furthermore, in a neighborhood of (I*(k), u,.(,)), the dimension 
of the set of bifurcating asymmetric solutions is two. 

Remark 4.5. By using the global bifurcation theorem of Rabinowitz 
[l 11, we can obtain the following global results: 

Denote by S the solution set of (l.l), (1.2) and R the set of radial 
symmetric solutions of ( 1.1 ), (1.2). Let C be the closure of 
{ (0, A*(m)) x cA+y(G)} n (S\R). Then, for any k > 1, the connected com- 
ponent Ck of Cu {(l*(k), Us*} to which (A*(k), u,.(,,) belongs is either 
unbounded or meets (A*(l), uJ..tlj) for some positive integer I # k. 

5. ANNULI AND DISK 

In this section we shall prove that if the outer boundaries of annuli are 
fixed and the inner boundaries tend to zero, i.e., the annuli tend to the disk, 
then the radially symmetric solutions of (1.1 ), (1.2) will tend to the (radial) 
solutions of (1.1 ), (.2) on the disk. 

We shall rewrite the equations (1.1 ), (1.2) on the disks as 

u”(s) + A u’(s) + 2Beucs) = 0, s E (0, 11, (5.1) 
S 

u’(O)=O=u(l). (5.2) 

The critical number 6* of (5.1), (5.2) is 6* = 1 and it is known (see, e.g., 
[l, 73) that for any 6 E (0,6*), the maximal solution u,(s) and minimal 
solution g,(s) are given by 

u,(s)=log4 y and g,(s) = log 4 7 
6 (1 + ys2)2 6 (1 + Ts2)2’ 

where 

y= i-1 +i@ and 7=($-l)-:@. 
( > 

Set 
2 

s=ar,6=--Am, 
a2 

and u(s) = u(r). (5.3) 
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Then (2.1), (2.2) are transformed into 

d’(S) + i u’(s) + 28fe = 0, =(a29 11, (5.4) s 

u(a2)=O=u(l). (5.5) 

The critical number 6*(a) of (5.4), (5.5) is 

6*(a) = l*(m) m, (5.6) 

where A*(m) is given in (2.35). 
For simplicity, we shall only treat the upper branch u,,~ of (5.4), (5.5); 

the lower branch -u,~ can also be treated analogously. 
Using (2.36) and (5.3), we write 

u,&) = z&J(s) = log f_ 
Km@.@ 

m (1 + Kmsss)2 s2’ 

where K and j3 = /I+ are given in (2.37), (2.39), respectively. 
For any 6 E (0, 1 ] and a E (0, 1 ), the solution u, of (5.1X (5.2) is a super- 

solution of (5.4), (5.5). Since 0 is a subsolution of (5.4), (5.5), by using the 
monotone iteration (starting from 0) (see, e.g., [9]), we have a positive 
solution for (5.4) (5.5). Hence, 

6*(u) > 6* = 1. (5.8) 

In the remaining part of the section, we shall adapt the following 
notation: 

g(m)-h(m) or g-h if lim Am) - 1 
m-m h(m) ’ 

We first prove 

LEMMA 5.1. lim,,,+ 6*(u) = 1. 

Proof Since 6*(u)=l*(m)m, it sullices to show that 

lim A*(m) m = 1. (5.9) m-m 

We need the asymptotic expansion of t*(m) as m + co, where t*(m) 
satisfies 

(2.33) 

For simplicity, we shall abbreviate t*(m) = t for any m > 1. 
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Denote by z = z(m) = t - 4m > 0. 
We shall prove 

4m 
7(m) -(log. 

112 
PI(t) = (2m + 7) + (tz)‘/*, P,(t)=(mt-2)+mt 1 -f , 

( > 

Pi(t) plo= (h-‘/2, z= t-1 (1 A-“‘, 
we have 

P+(t) 
log 4m 

--log 
1 
i [(2m+z)+(tz)1/2] 

1 

and 

2t P’,(t) 
FJp{(f)l’l+l}. 

Therefore, (2.33) implies 

Hence r/t N 0, i.e., lim, _ o. (r(m)/m) = 0. 
Furthermore, using (5.11) we obtain 

2 f 
0 

u* 

7 
- log mt N log 4m2 N 2 log m. 

This proves (5.10). 
Now, using (2.35) and (5.10), we have 

ml*(m) =mtr’ 
{ 
-&log~~+$.+. 

This completes the proof. 

By (2.21) and (5.3), 6 E (0, 1) satisfies 

&rn ‘l,,c$ 
{ t log m 1 

2 . 

(5.10) 

(5.11) 

(5.12) 



NON-RADIALLY SYMMETRIC BIFURCATION 277 

Using (2.34), in (2.21), we can obtain I = t(m, 2) which is a function of 
(m, 2) E (1, co) x (0, n*(m)) with t(m, A) > t*(m). Hence (5.3) implies that 
t = t(m, 6) being a function of (m, 8)~ (1, co) x (0, l), satisfies t(m, 6) > 
t*(m). It is clear that t(m, 6) satisfies (5.12), for (m, 6) E (1, cc) x (0, 1). By 
w3), 

jv(m, b) = A(m, 6) t(m, 6). (5.13) 

Then, using an argument as in proving Lemma 5.1, we can prove 

LEMMA 5.2. For any 6 E (0, 1 ), we have 

lim t(m, 6) 4 -=- 
m-m m 6 

(5.14) 

and 

lim P(m, 6) = 2. (5.15) 
m-CC 

Proof The proof can be made as rigorous as the proof of Lemma 5.1; 
here we only sketch it. First, we find the asymptotic expansion of t(& m) 
as m -+ co. Assuming t(8, m) - qm for q > 0, we obtain 

(52 L,og- 
1 

P+(f) 2 1 1 N- t .log m 4m I { 
-logm* *wi. 

rl log m I 

Then, using an argument as in proving Lemma 5.1, we can prove. (5.14). 
Finally, (5.3), (5.13), and (5.14) imply (5.15). This completes the proof. 

Now, we are ready to prove the main result of this section. 

THEOREM 5.3. For any b E (0, 11, let So,d be the point in (a*, 1) where 
u~,~ attains its maximum. Then 

lim So,* = 0. (5.16) 
a-o+ 

Furthermore, u&s) converges uniformly to u,(s) on [Sa,S, 11; i.e., for any 
E>O there exists aC=a(e., 6)>0 such that lu,,(s)-u~(s)( <E for 
SE [Sa,gr l] and aE(0, a,). 

Pro05 In (5.7), we first prove 

lim K(t) m B’r) = y. 
m-cc 

(5.17) 

so5/80/2-6 
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Using (2.42) and Lemma 5.2, we obtain KmB = 2mBIPz - mpp2(6/4). 
Now, 

mSP2=exp{(j3-2)logm) =exp i 
P+(t) log?- 1 

P+(t) 210gm =T. 

Using Lemma 5.2 again, we have 

This proves (5.17). 
Next, we shall prove (5.16). Let ra,6 = C’S,,, and x,,~ = log ra,*. Then 

4&o,s) = max,, Ca,llal u,,&(r). Therefore, using (2.3), we have o’(x) - 2 = 
u’(r). Hence u&(x,~) - 2 = u&(r,,) = 0. On the other hand, it is easy to 
check that o’(x) = D( (1 - X)/( 1 + X)), where X= K, eBx = Kmsss. Therefore, 
X=(/l--2)/(/?+2) at x=x,.~, i.e., 

(5.18) 

Using (5.15), (5.17), and (5.18), we obtain (5.16). 
Finally, (5.18) implies 

Using (5.15) and (5.17) again, we obtain lim,,, S$‘= 1. Hence 

lim 
a-o+ 

u,,~(S~,~) = log i y = uJ0). 

Since 8>2 and for any SE [S+ 11, we have S$2<ssBP2< 1. Then 

lim sBP2= 1 uniformly on [S+ 1). (5.19) 
m-m 

Now, 

t GkmB 
z&J(s) - #a(S) = log -. - - s@ - 2 

(1 +ysq* 
m4 Y (1 + Kmsss-2s2)2’ 

Therefore, (5.14), (5.17), and (5.19) imply that u,Js) converges to u&(s) 
uniformly on [Sa,6, 1 ] as a -+ O+. This completes the proof. 
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