
 

國 立 交 通 大 學 
 

電機與控制工程學系 
 

博 士 論 文 

 
 
 
 

循環碼、MP3 以及先進加密標準之複合式編碼研究 
 

The Study of Hybrid Coding on Convolution Codes, MP3, and AES 
 
 
 
 
 

研 究 生：顏志旭 

指導教授：吳炳飛  教授 

 

 

 
 
 

中 華 民 國 九 十 四 年 七 月 

 



 

  

循環碼、MP3 以及先進加密標準之複合式編碼研究 

The Study of Hybrid Coding on Convolution Codes, MP3 and AES 
 
 
 
 
 

研 究 生：顏志旭                   Student：Chih-Hsu Yen 

指導教授：吳炳飛                   Advisor：Bing-Fei Wu 

 
 
 

國 立 交 通 大 學 
電機與控制工程學系 

博 士 論 文 
 
 

A Dissertation 

Submitted to Department of Electrical and Control Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Ph. D. 

in 

 
College of Electrical Engineering and Computer Science 

 
July 2005 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十四年七月 



i 

 

循環碼、MP3 以及先進加密標準之複合式編碼研究 

學生：顏志旭 

 

指導教授：吳炳飛

國立交通大學電機與控制工程學研究所博士班 

摘 要       

本論文在循環碼、MP3 以及先進加密標準三種編碼技術上，以安全編碼為主

軸，通道編碼和訊源編碼為支線，進行複合式編碼之研究，目的在於提升應用面

上的編碼效能或其應用價值。我們提出跳躍式的位移暫存器，並將之取代循環碼

中的位移暫存器架構，且加入亂數向量產生器，讓循環碼也具加密的效果，如此

即可在進行循環編碼的同時，也完成加密功能。而在解碼部份，則修改循序解碼

器的架構，使其不但能解循環碼，同時也可以解密。而在 MP3 音樂壓縮法中，

我們引入串流加密器，對壓縮後的符號位元和赫夫曼碼等資料加密，以作為數位

權利管理中之音樂內容保護技術。同時，針對雙核心平台，設計有效的編解碼流

程，讓系統僅需多負擔 1~2%的效能，即可達到具加密功能的 MP3 編碼。最後，

我們將(n+1,n) CRC 編碼技巧引進先進加密標準的硬體設計，其中 n 為 4、8 或

16，讓先進加密標準的硬體能夠對抗誤差攻擊法。 
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student：Chih-Hsu Yen 
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ABSTRACT 

This dissertation presents three hybrid coding techniques on convolution code, 
MP3 and AES to enhance the coding efficiency of overall data coding flow or their 
application value. Each hybrid coding technique is based on secrecy coding, and 
accompanied by channel coding or source coding. First, state-hopping shift registers 
are proposed instead of the shift registers used in convolution code to obtain a new 
coding scheme. A pseudo-random vector generator (PRVG) is incorporated into the 
new scheme to achieve secure coding and channel coding simultaneously. The new 
scheme can be either a pure cryptosystem or a secrecy-channel coding by demand. If 
the secrecy-channel coding is chosen, the decoder of this new scheme is modified 
from the sequential algorithm, which is a decoding algorithm for convolution code. 
Finally, we apply (n+1, n) cyclic redundancy check (CRC) in the implementation of 
AES, where n is 4, 8 or 16 to let that implementation against differential faults attacks 
(DFA). 
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Abstract

This dissertation presents three hybrid coding techniques on convolution code, MP3 and AES

to enhance the coding efficiency of overall data coding flow or their application value. Each

hybrid coding technique is based on secrecy coding, and accompanied by channel coding or

source coding. First, state-hopping shift registers are proposed instead of the shift registers

used in convolution code to obtain a new coding scheme. A pseudo-random vector generator

(PRVG) is incorporated into the new scheme to achieve secure coding and channel coding

simultaneously. The new scheme can be either a pure cryptosystem or a secrecy-channel

coding by demand. If the secrecy-channel coding is chosen, the decoder of this new scheme

is modified from the sequential algorithm, which is a decoding algorithm for convolution

code. Finally, we apply (n + 1, n) cyclic redundancy check (CRC) in the implementation

of AES, where n is 4, 8 or 16 to let that implementation against differential faults attacks

(DFA).
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Chapter 1

Introduction

The great pace of internet, wireless services and multimedia services have led to an increasing

demand for efficient, secure, and reliable digital data-transmission systems. A typical data-

transmission model may be represented by the block diagram shown in Fig. 1.1. The source

encoder compresses the original information to increase the utilization of channel. The

secrecy encoder encrypts the outputs of source encoder, in order to prevent the transmitting

contents from being known directly by eavesdropper. The channel encoder, the end of

transceiver, transfers the input into codeword to provide data-resilience transmission on a

noisy channel. The receiver is the inverse operation of transceiver. The more stages are

in the data-transmission model, the more processing time is needed. Hence the hybrid

systems which merge heterogeneous systems, e.g., the source-channel coding, the secrecy-

source coding, or the secrecy-channel coding, are developed to cut down the processing time

and to achieve the efficient implementation.

Therefore, this work proposes a secrecy-channel coding scheme and a secrecy-source cod-

ing scheme. The design of secrecy-channel coding scheme is based on the convolution code

and a pseudo-random vector generator (PRVG) [49] and it has a flexible structure. A new

structure of shift registers, named state-hopping shift register (SHSR), is proposed in this

scheme instead of general shift registers in convolution code, and the PRVG is a calculation

of modulo matrix-vector multiplication. The scheme is a flexible system described by a 4-

tuple (Nc, Np,m,M), where Nc and Np are bit length of plaintext (message) and ciphertext

(codeword) respectively, m is the number of registers in one SHSR, and M is the modulus

of PRVG. When the 4 tuples are given, the whole system is generated by following proposed

2
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Figure 1.1: Data transmission model with source, secrecy, and channel coding

rules. If Nc equals to Np, then the generated system is a pure cryptosystem. In this case,

the decoder is simply the inverse of encoder. However, if Nc is smaller than Np, then it

is a secrecy-channel coding scheme. The decoder in secrecy-channel coding scheme is far

complex than that in the pure cryptosystem, because the decoder not only decrypts the

ciphertext but also decodes a codeword to a message. The stack algorithm [40], one of the

sequential algorithms, is chosen, and modified to meet the requirement of hybrid decoding.

The decoding steps of the modified stack algorithm are as well as those of original stack

algorithm, but the fields of stack are extended by adding two new fields, the state and the

tracking information.

A secrecy-source coding scheme is the second hybrid coding proposed in this work. It

is a combination of MP3 codec [27] and stream ciphers. The main concept is to protect

music by encrypting small amounts of data instead of an entire MP3 file; hence, only a

partial part of compressed audio data or sign information are selected to be encrypted. The

experimental results showed that the encryption introduced 1 2% overhead of encrypting

or decrypting music. In the early stage of developing such a system, software encryption

algorithm (SEAL) [56] is adopted and seamlessly incorporated into MP3 algorithm, but we

found that it is not flexible to use the secure MP3 codec. Thereupon, based on the first

structure, a more efficiency one is proposed and suitable to dual-core systems as well as to

single-core system. The efficiency structure does not limit the type of the stream cipher to

3
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SEAL, and any kind of stream cipher which generates bit sequence can be adopted.

A different kind of hybrid coding from the two kinds described above is proposed in

Advanced Encryption Standard (AES) [47]. This coding scheme is designed for increasing

the security of implementation of AES, not for enhancing the coding efficiency. Because AES

is vulnerable to differential faults analysis (DFA) [7, 14, 53], the error detection mechanism

is required in the implementation of AES against DFA. Once errors are detected, the AES

circuit halts and stops outputting erroneous results to prevent the results from being analyzed

by cryptanalysts. We propose a (n + 1, n) cyclic redundancy check (CRC) as the error

detection mechanism in implementation of AES, where n ∈ {4, 8, 16}. The parity generation

and the syndrome generation of our approach only use the XOR operation over GF (28), so

the overhead of detecting errors is small. This approach is symmetrical, because encryption

and decryption can share hardware of detecting errors. Moreover, it is also scalable, since it

can be applied to an 8-bit, 32-bit or 128-bit implementation of AES.

Ultimately, for enhancing the security of AES usage, an implementation of AES with

on-line changing coefficients is proposed. This is not about the hybrid coding scheme, nev-

ertheless, we also put the results as an appendix of AES security in Chapter 4. In here,

we implement a parameterizable Rijndael in two ways, non-pipeline (normal) and pipeline

structure. Because the coefficients are changeable; hence, the chip will operate in different

dual ciphers with different given coefficients. The normal structure executes one round per

clock cycle on a 128-bit data block, and the pipeline structure requires six clock cycles to

perform one round on a 128-bit data block. The data bus of both structures is 32-bit, and

only the 128-bit key scheduler is implemented in this work. The normal structure achieves

a throughput of 1.7902 Gbps and a 153.84 MHz clock, and has 83.094k gate counts. The

pipeline structure has a throughput of 4.9516 Gbps with 425.53 MHz clock and 125.993k

gate counts. This implementation of Rijndael is not only compatible to AES but also avail-

able to replace the coefficients in Rijndael, so it can be applied to applications that require

customized security. Besides, the throughput of our implementations is over 1 Gbps; hence,

the results of this work are suitable to network devices over Fast Ethernet or Giga Ethernet.

In particular, the virtual private network (VPN) is an appropriate application, because this

work can provide customized security for VPN users.

This dissertation is organized as follows. Chapter 2 is the first topic of hybrid coding
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scheme about secrecy-channel coding. Chapter 3 describes the second hybrid coding scheme

– secure MP3 algorithm. The two security issues and their countermeasures are discussed in

Chapter 4. The future works related to hybrid coding are addressed in Chapter 5.

5



Chapter 2

A Stream Cipher Based on

Convolution Codes

A new architecture of stream cipher based on state-hopping shift registers and a pseudoran-

dom vector generator (PRVG) is introduced. The proposed stream cipher merges secrecy

coding and channel coding into one processing step. It could be either a pure cryptosystem

or a secrecy-channel coding by demand. In aspect of cryptography, the PRVG generates the

pseudo random vectors which are treated as keystreams setting up the encryption scheme.

Different from the general concept in stream ciphers, state-hopping shift registers do not

generate a pseudo random sequence but act as substitutions on plaintexts. From the point

of channel coding, the state-hopping shift registers play as the ones in convolution code and

the PRVG generates a sequence of pseudorandom vector to determine the Trellis diagram.

If the system acts as a pure cryptosystem, the decoding scheme is exactly the inverse of en-

cryption scheme. When the error-correcting ability is chosen, a modified sequential decoding

is proposed to decode.

This chapter is organized as follows. The introduction of secrecy-channel coding scheme

is given in Section 2.1. Section 2.2 defines the representation of the stream cipher and

the most symbols used throughout this manuscript, and the invertibility of the proposed

system is also explained. The significant functions of our proposed scheme are separately

described in Section 2.3. The design flows of the proposed scheme are depicted in Section 2.4.

The encryption scheme with and without the error correction ability, named inverse SHSR

(iSHSR) and state-hopping sequential algorithm (SHS), are shown in Section 2.5. The sim-
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ulation and discussion of our approach are presented in Section 2.6. The conclusions are

given in Section 2.7.
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CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

2.1 Overview

The great pace of internet, wireless services and multimedia services have led to an increasing

demand for efficient, secure, and reliable digital data-transmission systems. A typical data-

transmission model may be represented by the block diagram shown in Fig. 1.1. The source

encoder compresses the original information to increase the utilization of channel. The

secrecy encoder encrypts the outputs of source encoder, in order to prevent the transmitting

contents from being known directly by eavesdropper. The channel encoder, the end of

transceiver, transfers the input into codeword to provide data-resilience transmission on a

noisy channel. The receiver is the inverse operation of transceiver. The more stages are

in the data-transmission model, the more processing time is needed. Hence the hybrid

systems which merge heterogeneous systems, e.g., the source-channel coding, the secrecy-

source coding, or the secrecy-channel coding, are developed to cut down the processing time

and to achieve the efficient implementation.

For secrecy-source coding, the partial encryption scheme is proposed by Cheng and Li

[10] to decrease the processing time by only encrypting the important data which are the

low-low band information analyzed by the wavelet technique. There are many researches

on source-channel coding (SCC) [44, 9, 21]. These approaches are to provide each priority

class of information with distinct data-resilience level, then the processing time is lowered

by coding the significant data only. The technique of a secure and reliable transmission of

information is introduced by A. Denis and W. Kinsner [13]. The data integrity is protected

by a concatenation of a Reed-Solomon (RS) code, interleaved with a self-orthogonal majority

decodable convolution code, and the security is achieved through a probabilistic encryption

scheme. The resilience and security are realized by two separate coding systems in [13], the

secrecy coding and the channel coding.

McEliece [42] presented a public-key cryptosystem based on t-error correcting Goppa

code. The main idea is to add a random error vector with Hamming distance t′ < t to the

encoded message before transmission. Rao and Nam [54, 55] proposed a similar approach,

a private-key cryptosystem based on algebraic code. These two schemes execute the secrecy

coding and the channel coding in one step. There are two definitions of secrecy-channel

coding defined by Rao [23], the Joint Encryption and Error Correction (JEEC) scheme and

the Secret Error-Correcting Code (SECC) scheme. The JEEC has the trade-off problem

8



CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

between data secrecy and data reliability, but SECC does not. Besides, cryptanalysts are

unable to correct the noises without the knowledge of key of the both schemes. However, the

SECC scheme [23] is attacked by Zeng, Yang, and Rao [64] with a known-plaintext attack.

A new secrecy-channel coding is presented in this manuscript. The proposed stream

cipher can be either a pure cryptosystem or a secrecy-channel coding by demand. The

design of encryption scheme is based on the shift registers and the PRVG. In general, the

contents of the registers and system parameters are initialized by a private key. Then, it

becomes possible for encrypting the same plaintext into different ciphertexts by distinct

private keys. Not elaborately designing the system will cause fatal results. There are various

well-known attacks. The differential cryptanalysis introduced by Biham and Shamir is a

chosen-plaintext attack [6]. The basic idea is to compare the exclusive or of two plaintexts

with the exclusive or of the corresponding two ciphertexts. The linear feedback shift registers

(LFSRs) based on stream ciphers are susceptible to various versions of the correlation attack

[58, 43, 65].
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Figure 2.1: The secrecy-channel coding system.

When the pure cryptosystem is chosen, the decryption scheme is just the inverse of de-

cryption scheme. In secrecy-channel coding, the encryption scheme is a maximum likelihood

decoding. In Fig. 2.1, the error correction is impossible for lacking of the knowledge about

the private key, hence the channel noise will create a more secure channel than the one pro-

vided by general systems which do secrecy coding and channel coding in two steps. Noises

are removable for cryptanalyst in conventional system, since the scheme of channel decoder

is known. Certainly, the security of the secrecy-channel system can not rely on the channel

noise. Therefore, a new architecture, the shift register with state hopping, named state-

hopping shift register (SHSR), is proposed. States of SHSRs can be changed by two sources,
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CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

one is plaintext and the other is the partial output of the PRVG. An m-degree SHSR has

2m state diagrams, and each diagram will randomly appear. Given a private key, the PRVG

establishes a sequence of state diagram. The output of an m-degree SHSR is the result of

linear combination of registers.

2.2 Preliminary

By the description of stream ciphers in [59], the basic idea of stream ciphers is to generate

a keystream z = z1z2 . . . and use it to encrypt a plaintext string p = p1p2 . . . according to

the rule

c = c1c2 . . . = ez1(p1)ez2(p2) . . . ,

where c is a ciphertext string and ezi
is an encryption scheme with key zi.

Definition 1 A stream cipher is a tuple (P, C,K,L,F,E,D), where the following conditions

are satisfied [59]:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K, the keyspace, is a finite set of possible keys.

4. L is a finite set called the keystream alphabet.

5. F = (f1, f2, . . .) is the keystream generator. For i > 1,

fi : K× Pi−1 → L.

6. For each z ∈ L, there is an encryption rule Ez ∈ E and a corresponding decryption

rule Dz ∈ D. Ez : P → C and Dz : C → P are functions such that Dz(Ez(x)) = x for

every plaintext x ∈ P.

Define Zm×n
l is a set of m×n matrixes whose entry belongs to the set {0, 1, 2, . . . , l− 1}.

Our stream cipher (P, C,K,L,F, E,D) is proposed, where P = ZNp×1
2 , C = ZNc×1

2 , K =

Z1×Nk
2 , L = ZN×1

M , F is a PRVG by using the matrix method [49], E is an Np-SHSR, and D

is an Np-iSHSR or an SHS algorithm.

10
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Figure 2.2: The block diagram of encryption scheme

The description of the notations is shown below. Np and Nc are the bit length of plaintext

Pi ∈ P and of ciphertext Ci ∈ C, respectively. The length of the private key k ∈ K is Nk

bits. M is the modulus used by PRVG and N is the dimension of PRVG. When the error

correction ability is chosen for reliable transmission, Nc is greater than Np, because of the

redundancy caused by the channel encoder; otherwise, Nc equals Np. Instead of 7-tuple

presentation of the system in Def. 1, the proposed stream cipher will be represented in a

simple form, a 4-tuple (Nc, Np,m, M) throughout the whole manuscript, where m is the

number of registers in one SHSR.

The block diagram of the encryption scheme is shown in Fig. 2.2, the system has three

major parts: Key Expansion (KE), N -dimensional PRVG, and Np SHSRs. The KE enlarges

the private keyspace,

KE : K → K̃, where K̃ = Z1×Nke
2 ,

to get the expansion key ke ∈ K̃ of bit length Nke required for initializing the system.

In Fig. 2.2, exclusive-or pairs {Xp,Xc}, initial conditions of PRVG, and initial states of

Np SHSRs are initialized by k̃∈ K̃, a key expanded from k by KE. The PRVG determines

the random permutation (RP) by giving R1,i and R2,i, exclusive-or pairs {X1,i, X2,i}, and

transition of of state diagram of SHSRs by giving Vi and posi. The SHSRs take as a bit-

substitution function Se,i. For each zi ∈ L, there is a corresponding Ezi
∈ E, consisting of

11
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Figure 2.3: The block diagram of decryption scheme

Xp,i, Xc,i and Se,i, such that

Ezi
: P → C.

The decryption scheme is obtained by reversing the procedure of encryption scheme and

substituting Sd,i into Se,i. The block diagram of the decryption scheme is depicted in Fig. 2.3.

2.2.1 The Invertibility (without Error Correction)

Given the ith plaintext Pi ∈ P, according to Fig. 2.2 and Fig. 2.3, the encryption Ez and

decryption Dz are the following:

Ez : P → C, Ci = Ezi
(Pi) = Se,i(Pi ⊕Xp,i)⊕Xc,i, (2.1)

Dz : C → P, Pi = Dzi
(Ci) = Sd,i(Ci ⊕Xc,i)⊕Xp,i. (2.2)

At the ith time, PRVG generates one subkey zi and Xp,i, Xc,i ∈ ZNp×1
2 are calculated from

zi. Both Se,i and Sd,i are functions of posi, Vi, and the past data. Assuming Pi ∈ ZNp×1
2 , the

system is invertible if

Sd,i(Se,i(Pi)) = Pi =
[
pi,0 pi,1 . . . pi,Np−1

]T

. (2.3)

Because an SHSR of degree m is a linear combination of m memories in shift registers

whose content is assignable, for Np independent SHSRs, Sd,i will equal to Se,i when three
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arguments are correctly provided to Sd,i and Se,i. Thus we can use Si to represent Se,i and

Sd,i. In an Np-SHSR, the Si should be treated as Np subsystems,
[
si,0 si,1 . . . si,Np−1

]
, and

each si,n : Z1×1
2 → Z1×1

2 . Given pi,n ∈ Z1×1
2 , si,n acts as following:

ci,n = si,n(pi) = (An ⊗Bi,n)⊕ pi,n (2.4)

An =
[
an,1 an,2 · · · an,m

]

Bi,n =
[
bn,1 bn,2 · · · bn,m

]T

,

where An ∈ Z1×m
2 is the coefficient vector of function, Bi,n ∈ Z1×N

2 is the content in SHSR at

the ith time. And pn(x) = 1+an,1x+an,2x
2+· · ·+an,mxm is the polynomial representation of

the nth SHSR. An is constant for a given system, and Bi,n is modified by randomly changing

two entries at most for each pi,n. Consider a subsystem si,n in (2.3), at the ith time, then

si,n(si,n(pi,n)) = si,n((An ⊗Bi,n)⊕ pi,n)

= (An ⊗Bi,n)⊕ ((An ⊗Bi,n)⊕ pi,n)

= pi,n. (2.5)

The pictorial representation of si,n(si,n(pi,n)) is shown in Fig. 2.4.

Substituting (2.5) into (2.3), it yields

Si(Pi) =
[
si,0(pi,0) si,1(pi,1) . . . si,Np(pi,Np−1)

]
. (2.6)

According to (2.5), Si(Si(Pi)) = Pi, the cryptosystem is invertible, i.e., P = Dk(Ek(P )).

2.2.2 The Invertibility (with Error Correction)

In the case with error correction, the encryption scheme is similar to (2.1) except the rela-

tionship of Np and Nc. Given a system (Np, Nc, m, M), the encryption is

Ez : P → C (2.7)

, and the substitution function of Np-SHSR is

Se,i : ZNp×1
2 → ZNc×1

2 . (2.8)

Given the ith plaintext Pi ∈ P, Pi is encrypted as

Ci = Ezi
(Pi) = Se,i(Pi ⊕Xp,i)⊕Xc,i, (2.9)

13
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Figure 2.4: The structure of si,n(si,n(pi,n))

and each matrix An in Se,i is

An =




a0,1 a0,2 . . . a0,m

...
...

. . .
...

arn,1 arn,2 . . . arn,m




, where 1
rn

is the coding rate of each SHSR, and
∑Np−1

n=0
1
rn

= Nc. Then each si,n in Se,i is a

mapping from Z1×1
2 to Zrn×1

2 .

The decryption scheme is a Maximum Likelihood Decoder (MLD). Suppose that the plain-

text sequence P = (P0, P1, , . . . , Pl−1) of lNp-bit length is encrypted into the ciphertext C =

(C0, C1, . . . , Cl−1) of lNc-bit length, and that a binary sequence D = (D0, D1, . . . , Dl−1) is

received over a Discrete Memoryless Channel (DMC). The MLD chooses Ĉ as the transmit-

ted ciphertext C which maximizes the log-likelihood function log Pr(D|C), where Pr(D|C)

is the conditional probability of an event D assuming C.
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2.3 Descriptions on Main Functions

Each block in Fig. 2.2 is addressed in this section. The processing flow of this scheme can be

divided into two parts: key processing and data processing. The private key k is the input

in key processing of which objectives are key expansion and system initialization. In key

processing part, only the KE function is involved. In data processing, PRVG generates the

pseudorandom vectors or keystream based on the initial conditions given by ke, and SHSRs

substitute plaintexts.

2.3.1 Pseudorandom Vector Generator

The task in PRVG is to produce a sequence of independent and identically distributed ran-

dom vectors. In our approach, the matrix method [49] is adopted to produce pseudorandom

vectors. Also the matrix method inherits some of the drawbacks of the linear congruential

method, but each vector is not in a systematic form when using it. Before the vectors are sent

to next functions, they will be transformed through nonlinear functions to get the suitable

bit length.

Because the state of linear feedback shift register (LFSR) can be analyzed so easily by

linear complexity analysis that makes the prediction of state possible. For more complex

behavior of the state flow of a shift register, a system proposed here is SHSR which is

modified from a shift register to prevent the stream cipher from statistical cryptanalysis.

One important duty in PRVG is to vary the state transition of SHSRs that will make

intruders hard to attack the system by predicting the state trajectory.

PRVG in our proposed system is depicted in the following.

Xn+1 = (G ·Xn + Uj) mod M (2.10)

, where G ∈ ZN×N , X ∈ ZN×1
M , U ∈ ZN×1

M , and M is a prime.

This system may have the maximum period MN − 1 for some G and M . To let the period

of PRVG be maximum, the characteristic polynomial of G must be primitive over finite field

FM . Let FM be a finite field with M elements and GL(N,FM) be a linear group with order

NM − 1. Given a matrix G ∈ ZN×N
M , system (2.10) has the maximum period if G satisfies

Theorem 1.
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Theorem 1 G is a general linear group GL(N, FM), if and only if the characteristic poly-

nomial of G is primitive over the finite field FM [59].

It is almost impossible to design a Random Number Generator (RNG) due to the finite

precision of number presentation in digital world, so a PRVG is designed for a very long

period such that its period is infinite-like. In order to get a longer period than MN − 1, a

simple method is to add a control term which starts off once the period of system (2.10)

is detected. Because (2.10) has the maximum period if G satisfies Theorem 1, each vector

Xn ∈ ZN×1
M is a periodic point. The dynamics of system (2.10) can be changed by altering

the control term Uj = [u0,j, u1,j, u2,j, u3,j]T , where j indexes how many times the period

occurs.

Because the PRVG sequence generated by (2.10) is a uniform distribution vector and

has the maximum length NM − 1, each Xn ∈ ZN×1
M is periodic. Herewith the period can be

checked by discovering the repetition of X0. When the period is detected, the control term

Uj = [u0,j u1,j u2,j u3,j]T (U0 is given by ke) is computed below:

Uj+1 =




2 0 0 0

0 4 0 0

0 0 2 0

0 0 0 4



⊗M Uj, (2.11)

where⊗M is modulo-M multiplication. A period-check mechanism can dramatically increase

the period. Since the modulus M is prime, the set {ui,0, ui,1, . . . , ui,M−1} is a multiplicative

group. With altering control term in (2.10), the period will grow into (NM − 1)2. The

functions controlled by PRVG are itemized as follows:

1. State transition or substitution functions (Se,i and Sd,i): the distinct pair (posi, Vi)

alters one state diagram to the others at the ith time. For a (Nc, Np, m, M) cipher,

the maximum number of state diagram is 2m.

2. Random permutations (R1,i and R2,i): the random permutation of Xp ⊕ X1,i and of

Xc⊕X2,i will let the intruder hard use differential attacks to get the information about

Xp, Xc, X1,i, and X2,i.
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3. Exclusive-or pair: exclusive-or operation acts as mask. There are two types exclusive-

or pairs, {Xp, Xc} and {X1,i, X2,i}. The former pair is constant when the private key

k is given and the latter is obtained from the output of PRVG.

2.3.2 Expansion Function

The expansion function is used to yield not only ke but also R1,i ∈ Z
Np×1
2 and R2,i ∈ ZNc×1

2 .

If the bit length of PRVG’s output is less than NRP bits required to set the permutation,

then R1,i and R2,i are created through expansion function with pseudorandom vectors as

inputs.

Assume the input of bit length li and output of bit length lo. The expansion function

can be implemented by the following steps.

Step 1: Segment the input into ν = d li
8 e blocks of which block size is 8 bits. If li is not an

8-multiple number, then 0s are attached to the LSB of the input, where n is an element

of the set {0, 1, . . . , 7}.

Step 2: The ν blocks, Λ = {λ0, λ1, . . . , λν−1}, can be at most grouped into 8 subsets Λn={λµ |
µ ≡ n mod 8}.

Step 3: The another ν blocks, {λ̃0, λ̃1, . . . , λ̃ν−1}, can be obtained by circularly left shifted by

n of each entry in set Λn.

Step 4: Extend 8ν bits obtained in Step 3 to lo bits by appending 0s as the LSB of the new

block set Λ̃.

Step 5: Set TEMP = Λ̃. The output is obtained as below:

for µ = 1 : (l0 − 8ν)

Λ̃ = Λ̃ << µ; circular left shift of Λ̃ by ν.

TEMP = TEMP⊕Λ̃

end

output =TEMP

If li and lo are smaller than 8, then the block size can be reduced as 4 bits. The illustrative

representation of this algorithm is shown in Fig. 2.5.
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Figure 2.5: The illustrative representation of Expansion Algorithm

Key expansion (KE) in Fig. 2.2 expands the original key to meet the requirement of the

initialization process. Assume that the key length of k and ke are Nk and Nke , respectively,

and Nk + Np + Nc = Nke . KE is an expansion function with li = Nk, lo = Nke , and the

private key k as input.

2.3.3 Random Permutation

The permutation is a function which maps the input x = [x0 x1 . . . xn−1] into the output

y = [y0 y1 . . . yn−1], and the mapping is determined by the R1,i and R2,i of bit length

NRP . For a permutation box which is obtained by given dlog2 ne bits as position indexes,

each input bit possibly appears on each output bit. Assume νl is the decimal presentation

of the lth index, then the output yl is

yl = xνl mod n. (2.12)

Hence, for an n-bit random permutation function, the total bits to define the mapping are

ndlog2ne. The permutation is a nonlinear mapping, because it will result in an one-to-
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multiple mapping, i.e., not injective.

NRP required by R1,i and R2,i is calculated by

NRP = NP · blog2 Npc+ Nc · blog2 Ncc. (2.13)

Because NRP bits needed by RP are probably larger than the bits that PRVG can provide,

the expansion function described in the previous subsection can solve this problem. The

output bits of PRVG are fed into a expansion function with lo = NRP and the output of

expansion function will be sufficient to set the mapping.

2.3.4 State-Hopping Shift Register

These shift registers are used as substitution functions. All shift registers are formed by

distinct primitive polynomials over GF(2) with degree m. There is a new concept introduced

into the shift-register structure. In Fig. 2.6, the state is changed by not only shifting the

content in registers but also the value of Vi. Besides the plaintext Pi = [pi,0, pi,1, . . . , pi,Np−1],

Vi = [vi,0, vi,1, . . . , vi,Np−1] and posi ∈ Z1×1
m are the inputs of SHSRs, where pi,n, vi,n ∈ Z1×1

2 .

Given the nth SHSR with the primitive polynomial

p(x) = 1 + a1x + · · ·+ am−1x
m−1 + xm, (2.14)

then the output can be obtained by (2.5). The content of the SHSR, [bn,1 bn,2 . . . bn,m],

is changed by pi,n and vi,n sequentially. After b1,n = pi,n, the value vi,n is assigned to SHSR

by the following rule.

bposi
= vi,n (2.15)

It can be adumbrated that the transition of state diagram is determined by Vi and posi

obtained from PRVG.

When the input source of the shift register is not one but two, the state transition will

be more complex. It is obvious by comparison of Fig. 2.7 and Fig. 2.8. Fig. 2.7 is the

state diagram of the shift register with m = 3. There is only one state diagram of the shift

register. Fig. 2.8 is the possible state diagrams of an SHSR with m = 3. The state diagram is

determined by (Vi, posi), hence the maximum number of state diagram is 2m. In Fig. 2.8, the

sequential corresponding 2-tuple (Vi, posi), are (0/1, 1), (0/1, 1) and (0/1, 1). The transition

of state diagram is dominated by the sequence of 2-tuple (Vi, posi), i = 0, 1, . . .. The state

19



CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

� �
� �

�

�
� �
�

�
	 � � 
 � � � � � �
� �
� �

�

�
� �
�

� �
� �

�

�
� �
�

� �
� �

�

�
� �
�

� �
� �

�

�
� �
�

� �
� �

�

�
� �
�

� �
� �

�

�
� �
�

� �
� �

�

�
� �
�

��� ����� ��� ��� ����� ���

Figure 2.6: The shift register with arbitrary bit assignment
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Figure 2.7: State diagram of shift register with m = 3

will enter into another state diagram while the (Vi, posi) is changed. This will let the state

trajectory hard to be predicted, because the transition of state diagrams is dependent on the

dynamic of PRVG. An example is shown in Table 2.1. Assume that the primitive polynomials

of an SHSR are

p1(x) = 1 + x + x3, and (2.16)

p2(x) = 1 + x2 + x3 (2.17)

and the content of three registers can be modified by (Vi, posi). For plaintext P = [0 1 0 0],

the state transition is shown in Table 2.1.

2.4 System Design Flow

In our scheme, only the expansion algorithm and system structure in Fig. 2.2 are fixed,

but the others, e.g., PRVG, SHSRs, the bit assignment on ke and the output of PRVG, are

20



CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

���

���

���

���

���

�	�

��
 ���

� 
��

��� �

� 
 �

� � �

� � �

����

��� � � ��!

(a) (Vi, posi) = (1, 1)
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(b) (Vi, posi) = (0, 1)
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(c) (Vi, posi) = (1, 2)
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(d) (Vi, posi) = (0, 2)
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(e) (Vi, posi) = (1, 3)
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(f) (Vi, posi) = (0, 3)

Figure 2.8: State diagram of an SHSR with m = 3

configurable in the design procedure. Without any consideration about security, a stream

cipher (Nc, Np, m, M) can be arbitrarily chosen by demand under two constraints: Np ≤ Nc

and a prime M ≥ max{dlog2 me, dlog2 Nce}. The system parameters are configured as

follows:

Step1: Give a system (Nc, Np,m,M), then calculate the length Nk of the private key k, the

expanded key length Nke, dimension N of PRVG, and the bit length NRP needed by

RP function.

Step2: Choose a matrix G such that Xn has the maximum period MN − 1 with nonzero X0
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Table 2.1: State transition of an SHSR with m = 3, initial state is S0.

i Vi posi Pi Next stata output

0 1 2 0 S2 00

1 1 2 0 S6 10

2 0 1 1 S4 10

3 0 2 0 S0 11

by the following identity.

Xn+1 = GXn mod M, where Xn ∈ ZN×1
M , G ∈ ZN×N

M . (2.18)

Step3: Select Nc m-degree primitive polynomials of which the coefficients are the entries of

A = {A0, A1, . . . , ANp} in (2.5).

2.4.1 Parameters Determination

When Nc and Np are given, NRP is computed by (2.13). And the dimension N is an integer

falling in the interval defined below.
[
max(

NRP

blog2 Mc , 4) , d NRP

blog2 Mce+ 4

]
(2.19)

NRP is the bit length needed by RP1 and RP2 in Fig. 2.2. N must be selected from the

interval (2.19) with minimum value 4. The reason of restricting N no less than 4 is that

four significant parameters, posi, Vi, X1,i and X2,i in Fig 2.2, must be separately given by

four outputs of PRVG. The input argument, needed by RP1 and RP2 to set the permutation

table at the ith time, can be obtained from arranging and expanding the four outputs to fit

the length NRP .

Before computing the key length Nk and Nke bits, dimension of PRVG, N , has to be

chosen one value from the interval (2.19). For the case that N equals to the maximum integer

in (2.19), six parts(RP1, RP2, posi, Vi, Xc and Xp) use the distinct output bits of PRVG;

otherwise, the outputs are shared among RP1, RP2, and et al.. From Fig. 2.2, it’s obvious

that there are four parts which are determined by ke, exclusive-or pairs(Xp and Xc), control

term(U0), initial conditions of PRVG, and the initial state B0 = {B0,1, B0,2, . . . , B0,m} of
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SHSRs. Given initial conditions X0 and U0 of PRVG and the initial state B0 of SHSRs, Nk

is the smallest 8-multiple bits with the following inequality.

Nk ≥ Np ×m + 2Ndlog2Me (2.20)

The right half side in (2.20) is derived from the required bit length for initializing U0, X0,

and B0. For initializing Xp and Xc, Nke is given by

Nke = Np + Nc + Nk. (2.21)

In the initialization process, the total bit length needed by the stream cipher is Nke . Once

Nk and Nke are obtained, pass the private key k and the information of li and lo to KE, and

KE will expand k to ke of bit length Nke .

2.4.2 The design with Error Correction

In general, our scheme can perform secrecy coding and channel coding simultaneously with-

out further modification. In some cases, an SHSR has a problem that the states and some

segments of ciphertexts do not change with distinct plaintexts. When the errors occur just

before these segments, the decoder may make the wrong decision, that is, the correction abil-

ity decreases. The phenomenon can be explained by the example shown in Table 2.1. After

stage 2, the outputs of SHSRs and the states are the same no matter what the inputs are.

From Table 2.1, the transmitted signal v = [0 0 1 0 1 0 1 1]. Assume an additive

noise is e = [0 0 1 1 0 0 0 0], then the received signal r is [0 0 0 1 1 0 1 1].

The decoder chooses the codeword with zero hamming distance and obtains the output

[0 1 1 1], but this error can be corrected by (2, 1, 3) convolution code. This situation

can be avoided by not changing the first memory of SHSRs and, for large m, the probability

of occurrence of this situation will decrease.

2.5 The Decryption Scheme

The structure of decryption scheme is similar to the encryption scheme in Fig. 2.2, except

the design of the SHSRs block. This block can be designed with or without the channel

coding. Without error correction ability, i.e. Np = Nc, the decoder is similar to the encoder,

and it is simply using the AR structure shown in Fig. 2.4.
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When the channel coding is enable, i.e., Np < Nc, the decoding algorithm of convolution

code must be suppose to adopt. The Viterbi algorithm and sequential decoding [40] are

two frequently used techniques. Due to the intrinsic characteristic of SHSRs, the Viterbi

algorithm is hard to modify for decoding. But the sequential algorithm is suitable for SHSR-

based stream ciphers. The Viterbi algorithm decoding is based on trellis diagram. In the

center portion of the trellis, 2m states are possible for m-memory convolution code, but it

is impossible for the one generated by SHSRs. Hence the Viterbi algorithm is not suitable

for the proposed stream cipher. The sequential algorithm decoding is based on the code

tree as that shown in Fig. 2.9, hence there will have no problems in decoding by sequential

algorithm.

An SHSR is an nonlinear error coding, hence there must have a corresponding decoder

for each SHSR, as the Fig. 2.10 shows.

2.5.1 Sequential Decoding with State Hopping

There are several algorithms of the sequential decoding , e.g., stack algorithm, Fano al-

gorithm, generalized stack algorithm, and multiple stack algorithm [40]. The purpose of a

sequential decoding algorithm is to find the maximum likelihood in an efficient way through

the code tree. For simplicity, the stack algorithm [40] is adopted.

Step 1: Load the stack with the origin node in the tree, whose metric is taken to be zero.

Step 2: Compute the metric of the successors of the top path in the stack.

Step 3: Delete the top path from the stack.

Step 4: Insert the new paths in the stack, and rearrange the stack in the order of decreasing

metric values.

Step 5: If the top path in the stack ends at a terminal node in the tree, stop. Otherwise ,

return to step2.

A revised state algorithm is proposed here. At Step 2, the two metrics are computed by

adding previous metric stored in the stack and the current metric obtained by comparing

the outputs of shift registers and received signals. In general, the outputs of shift registers
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are dependent on the current state, but not for the proposed system. In convolution code,

there is only one state diagram, i.e., the state is changed only by the inputs of the shift

registers. So the state can be obtained from the decoding path in the stack when computing

the metric in Step 2.

For our system, the SHSRs are taken as substitution functions. For 3-degree SHSR, the

transition between state diagrams Fig. 2.8 (a), (b), and (c) is random. When computing the

metric in Step 2, the current state needed to yield the outputs of SHSRs can not be observed

from the top path stored in the stack. In other words, the corresponding state for a path

must be stored in the stack. For example, when a convolution code with memory size of 3

has a decoding result (1, 0, 1, 1, 0, 0), we can say that the current state is (1, 0, 0). But in our

system, the state can be also changed by PRVG, hence the current may be not (1, 0, 0).

There still lacks one information in the SHS algorithm. Besides the inputs of SHSRs, the

determination of the next state must have the knowledge about the two values, posi and Vi

in Fig. 2.2. Hence the history of posi and Vi have to be recorded.

2.6 Simulation

The experimental results of a (4,8,8,977) system are illustrated in this section. Following the

design described earlier, we can obtain that the private key length Nk is 96 bits, the expanded

key length Nke is 108 bits, the dimension N of PRVG is 4, and NRP is 7 × 2 + 7 × 3 = 35.

The polynomial matrixes of SHSRs are selected as

A0 =


1 1 1 0 0 1 1 1 1

1 1 1 1 1 0 1 0 1


 , A1 =


1 1 0 0 0 1 1 0 1

1 0 1 0 0 1 1 0 1


 , (2.22)

A2 =


1 0 0 1 0 1 1 0 1

1 1 1 0 0 0 0 1 1


 , A3 =


1 1 1 1 0 0 1 1 1

1 0 0 0 1 1 1 0 1


 , (2.23)

where each row in An is the coefficient of the primitive polynomial in ascending degree.

Because of Np = 4 and Nc = 8 in the system, the secrecy-channel coding scheme is selected.

From (2.22) and (2.23), each subsystem se,i is an error control code with coding rate 1/2.

Note that the code rate is not obtained directly from the division Np

Nc
.
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Table 2.2: Probability distribution in 4 tests with zero-input, one-input, different keys and

different data

Outcome Test 1 Test 2 Test 3 Test 4

0 0.49362 0.50325 0.49363 0.50054

1 0.50638 0.49676 0.50637 0.49946

2.6.1 Security analysis

In Table 2.2, the probabilities of 0 and 1 are addressed for the four cases. The input in

test 1 is a zero vector with length 105 bits, and is a 105-bit vector of 1 in test 2. There are

103 patterns in test 3, each pattern is a 103-bit vector with Hamming distance 1. In test 4,

the 103 zero bits are encrypted in 96 distinct keys {k0, k1, . . . , k95}, the Hamming distance

between k0 and kj is 1, where 1 ≤ j ≤ 95.

Table 2.3: The experimental results of our system obtained by NIST’s statistical test suite

Statistical Test C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-Value Ratio

Frequency 6 3 5 3 4 2 5 2 6 4 0.834308 0.9750

Block-Frequency 4 4 6 4 3 4 5 3 1 5 0.834308 1.0000

Cusum 5 6 7 2 5 1 5 5 1 3 0.350485 0.9750

Runs 2 6 5 4 3 4 4 2 3 7 0.739918 1.0000

Long-Run 3 2 3 5 2 6 2 6 6 5 0.637119 1.0000

Rank 2 5 5 8 6 3 4 2 3 2 0.437274 1.0000

FFT 1 1 4 5 3 4 4 5 6 7 0.484646 1.0000

Aperiodic 5 4 4 5 3 4 4 3 4 4 0.999438 1.0000

Serial 6 3 5 3 4 2 5 2 6 4 0.834308 0.9750

Lempel-Ziv 9 3 4 4 1 3 3 2 5 6 0.242986 0.9750

L. Complexity 3 3 3 3 5 7 2 5 5 4 0.834308 1.0000

According to the numerical data shown in Table 2.2, the probability approximates to

0.5 for each case. For security issue or randomness concern, this is a good phenomenon.
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It is not helpful for error control coding, since the error control ability is determine by the

shortest Hamming weight of the designed code. Table 2.2 also shows that no matter what

the distance is calculated by the number of 0 or 1, the Hamming distance is not long enough

for constituting a good code for error-control coding.

We also use NIST’s statistical test suite [48] to verify the randomness of our system.

We generate 40 sequences of 105 bits and run the 11 tests, frequency test, block-frequency

test, cumulative sums test, runs test, long-run test, rank test, discrete fourier transform test,

non-overlapping template matching test, serial test, Lempel-Ziv test, and linear complexity

test. The results are shown in Table 2.3. The table has 13 columns: column 1 is the name of

test, column 12 is the P-value that arises via the application of chi-square test, column 13 is

the ratio of sequences that passed the test, columns 2-11 is the distribution of P-value of the

give 40 sequences, where C1 to C10 are separately correspond to 10 equal bins obtained by

dividing an unit interval. Each row in Table 2.3 is a single test. The test program transform

each result into an identical index named P-value. High P-value means that the sequence

provides high randomness. In general, if the P-value is greater than 0.01, we can conclude

that the sequence is random. As Table 2.3 shows, our system has high P-value above 0.5

in most tests and high passing ratio. From the testing results, we assure the randomness of

our system.

Even the linear congruential PRNG is not a secure random number generator, the crypt-

analyses are hard to obtain the sequence generated by PRVG. Because we add several non-

linear functions, as Fig.2.2 shows, to translate the values before using them. Therefore, the

security of our system will not be thinned by PRVG.

2.6.2 Performance of error correction ability

Fig. 2.11 is the error probability of this code over an AWGN channel. The system parameters

are the same in both cases, the only difference is the changeability of the 1st register in

SHSRs. From the simulation result, it’s obvious that, under the channel-coding sense, the

coding performance in case 1 which the 1st register is unchangeable, is better than the one in

case 2 which the 1st register is changeable. Comparing to pure channel coding, our system

has normal performance at low SNR, but lower performance at high SNR. This causes by

the noise-like state transition of SHSRs.
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2.7 Conclusions

The SECC and JEEC schemes presented by Rao and et al. are block coding systems, but our

proposed scheme, a new secrecy-channel scheme, is a stream coding system. Our architecture

can be either a pure cryptosystem or a secrecy-channel coding system. The combination of

secrecy-channel coding reduces the computation time and enjoys an extra benefit that the

channel error will make intruders hard to attack. The proposed scheme is also flexible for

design. Given a 4-tuple (Np, Nc,m, M) for an application, following the design flow will get

an appropriate system. The plaintexts/ciphertexts can be fast encrypted/decrypted by a

pure cryptosystem, since the system is designed based on two simple structures, SHSRs and

PRVG. The system security is dependent on three nonlinear functions RPs, SHSRs ,and

PRVG. These nonlinear functions and exclusive-or pairs are changed each time with the

values indirectly given by PRVG.

Each subsystem se,i may have different code rates. The error control ability depends

on the polynomial of SHSRs, the output of PRVG and the decoding scheme. Comparing

with the convolution code, the merging of PRVG and convolution code reduces the error

control ability. The SHSRs let the code become a nonlinear code, and the Trellis diagrams

are distinct for each key. The key-dependent Trellis diagram is hard to be decoded by a

Trellis decoder, however it is suitable in secrecy communication.
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Figure 2.9: The code tree for a (2,1,3) stream cipher
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Figure 2.11: The error probability on system (4,8,8,977)
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Chapter 3

Secure MP3 Algorithm

Three new partial/adaptive encryption approaches to secure MP3 compression algorithm are

presented. To adopt the proposed approaches, a cryptosystem can be chosen to be embedded

into or be concatenated behind the MP3 algorithm, depending on the different characteristics

of applications. The MP3 [27] is a popular format for audio distribution, hence securing

MP3 will provide diversified applications, such as music trial services, authorized access, and

multilevel encryption. To encipher a compressed file by partial encryption, the encrypted bits

will be diffused after decompression, hence the partial/adaptive encryptions are suitable for

multimedia security. In this work, the audio data are separately enciphered by these proposed

approaches: sign bits of frequency magnitudes, Huffman codes and side information, and the

results are analyzed in Masking to Noise Ratio sense. The proposed secure MP3 algorithm

can be easily achieved without extensive computation, major modifications for MP3, and

loss of the compression ratio. Moreover, the partial encryption can exactly provide enough

security on multimedia application. And the encrypted MP3 files is compatible to MP3

standard for trial service.

Moreover, for portable devices with MP3 codec, the demands of digital right management

arise recently. To provide a secure scheme to the most portable devices with MP3 codec,

the approach described above is modified to be efficiently implemented it on a dual-core

system with one DSP and one RISC. The secure MP3 algorithm is a combination of a MP3

algorithm and a stream cipher. The MP3 algorithm is executed on DSP and the stream

cipher is on RISC. This separated design can dynamically update the type of stream ciphers

in various applications. However, only the main data of a MP3 frame, rather than sign bits
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and side information, is encrypted in the modified approach.

This chapter is organized as follows. The overview of security of MP3 is given in Sec-

tion 3.1. Section 3.2 gives brief descriptions on Masking to Noise Ratio (MNR), MP3, and

Software encryption algorithm (SEAL) and the definitions of partial encryption and adaptive

encryption. The three proposed schemes and their performance are dilated on in Section 3.3.

The simulation results are shown and explained in Section 3.4. In Section 3.5, the realiza-

tion issues, security of three algorithms, and solutions for trial service are described here.

Section 3.6 briefly describes the modified secure MP3 scheme, describes the scheme and ana-

lyzes the security thereof. The performance of the modified approach is shown in Section 3.7.

Finally, Section 3.8 summarizes this work and provides directions for future work.
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3.1 Overview

The digitization of media has profoundly affected copyright and intellectual property. Online

MPEG Layer III (MP3) sharing seems to threaten the music industry. Accordingly, topics

in the area of Digital Rights Management (DRM) have become increasingly important over

recent years. The aim of DRM is to solve the problems of the distribution of digital content.

The access to content produced using DRM is restricted in several ways, including encryption,

watermarking, finger-printing, mechanism of access control and others. Currently, selling

music is the most popular DRM application, as done by Apple’s iTunes [1], iMUSIC [26],

and others. The details of DRM systems of music industry vary from implementation to

implementation. However, the encryption is a method to limit the access of the protected

music. First, the content is encrypted using a media key. Then, the encrypted content,

the encryption key, the copyrights and information about the content are packaged and

encrypted once more using a license key. After the consumer receives the digital product

and pays for the license key, the player decrypts and undo the package to yield the encrypted

content and the encryption key. Then, the player can fully access the encrypted content if

all of the information is correct.

Some studies of the encryption of MP3 have been published. Torrubia et al. [61] pre-

sented the perceptual cryptography of MP3 streams. They employed two primitives —

scalefactor encryption and Huffman-codeword substitution. Torwirth et al. [60] presented

a selective encryption algorithm, that encrypts the main data of MP3 granules. The en-

crypted part is determined by mapping the byte index of Huffman codeword onto the exact

frequency boundaries. Both schemes can be used to encrypt the already encoded MP3 files.

However, both schemes involve extra computations to determine accurately the quality of

the encrypted MP3 files. This work presents a simple method for adaptively encrypting the

main data in MP3 frame, and yields similar results to those of Torrubia et al. [61] and Tor-

wirth et al. [60]. The security level can be varied from 0%(lowest security) to 100%(highest

security). Any stream ciphers can be adopted. Therefore, any stream cipher can be employed

to generate the random bitstreams. The advantage of the partial encryption/decryption is

that it accelerates processing overall. Additionally, the encryption scheme and decryption

scheme are identical, so only one security scheme is required to perform both encryption

and decryption. Following encryption, the format of MP3 frame remains valid. Therefore,
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the MP3 algorithm could directly decompress the encrypted MP3 without decryption, but

the consumers receive only the low-quality music. Content providers can use this feature to

provide free music to consumers. Gang et al. [18] concluded that MP3 files can be encrypted

in compression progress or after compression.

Usually, multimedia encryption is just to cascade a cryptosystem behind a source encoder.

Indeed, the multimedia encryption has been especially designed for practical applications.

Source coding is data-dependent and compacts the data size; however, secrecy coding is

data-independent and keeps the data size. Because of the different natures between source

coding and secrecy coding, the secrecy-source coding is hard to design. At general points,

designs of cryptosystems do not consider the properties of data. In fact, the characteristics of

the the multimedia content have to be taken more consideration to achieve more efficiency on

processing and more flexibility on applications while applying a cryptosystem on a compres-

sion algorithm. The diffusion, which is an important feature for substitution-permutation

ciphers, also appears on decompression, hence the encrypted bits will extensively infect the

decompressed multimedia content, i.e., the effects on quality of partial encryption may be

as well as of full encryption. Additionally, the partial encryption can process less data and

is suitable in real-time applications.

Our schemes can be implemented into two cases: simultaneously encrypting and com-

pressing or encrypting the already encoded MP3 files. For live applications, which the former

case is fit, the media streams are encoded then are delivered immediately. Since it is a time

critical issue, so it would be better to do encryption and compression simultaneously. For

other applications, such as MP3 providers, because the compression is time-wasting process-

ing, it would be fine enciphering compressed files than doing encryption in compression step.

In this research, we propose several approaches to secure MP3 to meet the above cases. The

first approach is the sign-bit encryption: the sign bits of frequency magnitudes are treated

as plaintext. The second method encrypts the Huffman codes of quantized frequency mag-

nitudes. Both above schemes are applicable to adaptive encryption. In adaptive encryption,

the information must be recorded in headers for receivers, hence we devise a way of recording

the extra information to be compatible the MP3 standard. The last approach enciphers the

side information in MP3 headers.

However, most playback devices are dual-core systems, DSP and RISC, so the proposed
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approach is modified for being implemented and accelerated on such a system. In the

modified approach, only Huffman-code encryption is chosen as the security phase to execute

on RISC, and the MP3 algorithm is on DSP. The stream cipher SEAL is chosen in our

schemes to perform encryption, but not limit which ciphers to be adopted for our approaches.

The security phase executes parsing and encryption/decryption of the XOR operation. The

MP3 phase performs as does the MP3 algorithm.
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Figure 3.1: The model description of partial/adaptive encryption

3.2 Preliminaries

3.2.1 Partial Encryption and Adaptive Encryption

The partial/adaptive encryption is a particular derivative from the combination of a cryp-

tosystem and a source coding or an error control coding. The main concept of the par-

tial/adaptive encryption is to protect the entire content by only encrypting the significant

part which has smaller size. Generally, the encryption is behind compression. Hence, as

shown in Fig. 3.1, the original signal M is processed by filters or compression algorithm to
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obtain Y . The significant part can be determined among the generation of Y , and we denote

it as Ye, the part to be encrypted. Therefore, in the partial/adaptive encryption, Y is divided

into an encrypted part Ye and a clear part Yc. The transmitted signal R is the combination

of Yc and E(k, Ye). Signal M̂ is the reconstruction of R without decryption, and we can

compare M and M̂ to examine how the influence E(k, Ye) has. A scheme which makes some

cumbrance on sensible presentation and causes that the polluting size of M̂ is larger than

the size of Ye is called partial/adaptive encryption, as shown in Fig. 3.2.
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Figure 3.2: The data flow of partial/adaptive encryption

Both schemes are similar in the concept of encryption, but not in the applications. Hence

we give definitions of partial encryption and adaptive encryption below.

Definition 2 Partial encryption is an encryption method which brings about the larger size

of infected part of M̂ than the size of Ye and some cumbrance while displaying M̂ , but the

quality of M̂ is too troublesome to be determined by the size of Ye.

Definition 3 Adaptive encryption is an encryption method which brings about the larger

size of infected part of M̂ than the size of Ye and some cumbrance while displaying M̂ , but

the quality of M̂ can be determined by the size of Ye in a systematic way.

Both schemes have a common property that the complete reconstruction can’t be gained

without decryption or authorized access. The partial/adaptive encryption relies upon how
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to select Ye. The only principle for Ye selection is to pick the M -dependent data to encrypt.

There are two types of the M -dependent data.

1. Variant of M : This kind of data can be truly regarded as signal M of other formats, in

other words, it is just some transformation of M , for examples, the results of Discrete

Cosine Transform (DCT), or Huffman coding of M .

2. Accompaniment of M : The input-dependent and additional information, which re-

ceivers needed to decode, are belong to this type, for examples, Huffman table, CRC

code, and frame headers.

Generally, the partial encryption encrypts the later type and the adaptive encryption

takes the other.

The MP3 algorithm has both pre-described types of M -dependent data; actually, most

applicable algorithms do. Hence our proposed schemes include both partial encryption and

adaptive encryption.

3.2.2 Masking-to-noise ratio

We use MNR to analyze the audio quality after MP3 compression and encryption. MNR can

be obtained from the masking model of human hearing, so it’s better than SNR to represent

the audio quality. The MNR is defined in (3.1).

MNR = 10 log10

(
power of masking threshold

power of noise

)
. (3.1)
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Figure 3.3: The general model of a lossy compression

Fig. 3.3 shows the general diagram of a lossy codec. An original signal X[n] is compressed

as Y [n], then the error between X[n] and X̂[n] is defined as

E[n] = X[n]− X̂[n].
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To have MNR, the masking threshold is calculated from the results of feeding psychoacoustic

model with X[n] and the noise energy is computed by E[n]. When MNR is greater than

zero, human hearing is hard to detect the noises; more exactly, noises are masked. For a

compressed audio, each frequency band has its own MNR. For convenient comparison, we

use the mean value of MNRs to represent the audio quality.

3.2.3 MP3 algorithm

The MP3 [27] algorithm is firstly introduced. Fig. 3.4 presents a block diagrams of the

general MP3 encoding process. A time-to-frequency mapping converts the audio input into

spectral lines frame by frame. In the hybrid transformation block, MP3 uses a poly-phase

filter bank followed by a Modified Discrete Cosine Transform (MDCT) to increase the spec-

tral resolution. These spectral components are then divided into several scalefactor bands,

according to the critical-band rate. The audio input simultaneously passes through the

PAM-II, that determines the ratio of the signal energy to the masking threshold for each

scalefactor band.

Iteration loop

Hybrid transform 

for time to 

frequency mapping

Rate control for 

bit allocation Bitstream

formatting

FFT

PCM

audio

input

Ancillary data 

(optional)

Encoded

bitstream

Masking

Threshold

Distortion

control for

noise allocation

Psychoacoustic Model II

Figure 3.4: MPEG/audio encoding process.

The rate controller varies the quantizer in an orderly way: quantizes the spectral values

and counts the number of Huffman code bits required to code the quantized values, to satisfy

the bit rate constraint. The quantizer in MP3 is non-uniform. In the quantization of the

gth granule in the f th frame, the spectral value xf,g(i) is pre-emphasized and amplified by

applying (3.2) and (3.3).

x′f,g(i) = xf,g(i)×
√

2
z2×(1+z1)×P (bi)

, (3.2)

x′′f,g(i) = x′f,g(i)×
√

2
(1+z1)×C(bi)

, (3.3)
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where i is the index of the spectral line; z2 ∈ {0, 1} switches on or off the pre-emphasis;

z1 ∈ {0, 1} determines whether the scalefactors are logarithmically quantized with a step

size of 2 or
√

2; bi is the scalefactor band of the ith spectral line; P (·) is the preemphasis

table as defined in [27], and C(·) is the scalefactor of all scalefactor bands. Then, the

processed spectral value x′′f,g(i) is quantized by

yf,g(i) = nint

(( |x′′f,g(i)|
2

δ+q
4

)0.75

− 0.0946

)
, (3.4)

where nint is the rounding function; q is the lower bound of quantization parameter, and

δ is the increasing variable of quantization parameter.

Huffman coding is applied as the lossless coding tool and Huffman tables are predefined

in [27]. MP3 also uses scalefactors to amplify the spectral band energy when the quantization

noise exceeds the masking threshold. The distortion controller determines the scalefactors

that control the quality. Finally, the information required by the decoder is packaged with

compressed audio data as a valid stream of MP3 stream.

The MP3 decoding process comprises three main parts [27] — bitstream decoding, de-

quantization and frequency-to-time mapping, as shown in Fig. 3.5. Bitstream decoding

synchronizes encoded bitstream inputs, and extracts the quantized frequency coefficients

and other information about each frame. Fig. 3.6 depicts the detail functional blocks.

Bitstream

Decoding

Encoded

bitstream
Dequantization

Frequency to 

Time Mapping

PCM

audio

output

Figure 3.5: Blcok diagram of MPEG/Audio Layer 3 decoding.

Dequantization reconstructs the frequency coefficients, which are perceptually identical

to those during encoding. The dequantization calculation based on the output of Huffman

decoding and scalefactor information is given by (3.5) [27].

xf,g(i) = (−1)s(i) · yf,g(i)
4
3 · 2

1
4 (∆f,g−8∆s(wi))

2(1+z1)·(C(bi)+P (bi))
(3.5)

where s(i) is the sign bit of yf,g(i); ∆f,g = δ+q is the step size of the nonuniform quantizer; wi

is the short-block window of the corresponding ith spectral line, and ∆s(wi) is the pre-defined

gain of the short-block window.
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The final part shown in Fig. 3.7, frequency-to-time mapping produces an audio PCM

output from the dequantized coefficients. This part includes a set of reversed operations of

the MDCT and analysis subband the filter bank in the encoder. The alias reduction block

adds alias artifacts to dequantized coefficients, to reconstruct the data approximately as

those of analysis subband filter bank in encoder. Then, the inverse MDCT reconstructs time

domain subband signals from frequency lines. The frequency inversion is then applied in

order to compensate the decimation used in the analysis polyphase filterbank. Thereafter,

the synthesis subband filter bank is applied to the subband signals to yield the audio PCM

output.

Of the above procedures, dequantization, IMDCT, and subband synthesis in particular,

depend on numerous arithmetic operations, and produce quantization noise in fixed point

implementation. This work describes the optimization of these three processes.

3.2.4 SEAL

The SEAL [56] is a software optimized stream cipher with key length of 160 bits. For the

case of the processors with eight registers, SEAL can keep the number of involving variables
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less than 8. Most operations in SEAL only have two operators and the table size is less

than 4K bytes, which is especially designed for the processors with small on-chip cache.

SEAL uses secure hash algorithm (SHA) [46] to generate three tables, which are needed by

initialization and key generation. According to Table 3.1, SEAL is more efficient than most

stream ciphers and that’s why we apply it in our work.

Table 3.1: Performance of several ciphers on Intel Pentium processor [56]

Algorithm Mbit/s Relative speed

SEAL 198 1

RC4 110 1.8

RC5-32/12 38.4 5.2

DES 16.9 11.7

MD5 133.1 1.5

3.3 Our Proposed Schemes

Based on the designed principle and definitions of partial encryption and adaptive encryp-

tion, we proposed three approaches, sign-bit encryption, Huffman-code encryption, and side-

information encryption, to secure MP3 algorithm. All proposed schemes can be applied by

embedding a cipher into MP3 encoder or using a cipher to straight encrypt the MP3 files.

3.3.1 Sign-bit encryption

In MP3, the frequency magnitude for each sample has two parts: an absolute value and a

sign bit. When the value of the sample is less than 0, the sign bit is set to 1; otherwise, it is

set to 0. The human hearing is sensitive to the variation on sound stemming from changing

sign bits of samples below 5 kHz [19, 20], hence the audio quality is dropped significantly

while encrypting those sign bits. Encrypting the sign bits above 5 kHz is not easy to be

observed by audiences, though the energy is twisted. According to the properties discussed

above on sign bits, that encrypting sign bits could achieve the adaptive encryption is obvious.

For each granule in MP3, there are 576 samples with equal bandwidth, and we denote the

set of sign bits of ith granule as Si = {si,j| the sign bit of the sample j, 0 ≤ j ≤ 575, at the
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ith granule}. The encrypted part of ith granule, Ye,i = {si,k| si,k ∈ Si and a ≤ k ≤ b, where

[a b] is the interval of granule to be encrypted }. If the full-band encryption is selected, we

encrypt the entire set Si, i.e., the special case of a = 0, b = 575; otherwise, we can adjust

the music quality by selecting which bands to encrypt, while the encrypted MP3 files are

directly played by original MP3 player.
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Figure 3.8: The simulation of sign-bit encryption on different frequencies: (a)The original

MP3 file; (b)The sign bits above 5kHZ are encrypted; (c) The sign bits below 5kHz are

encrypted

Fig. 3.8 shows the MNR distribution in several cases. In Fig. 3.8(b), MNRs are greater

than zero for all bands, but drop slightly at frequency about 5 kHz, as compared with

42



CHAPTER 3. SECURE MP3 ALGORITHM

Fig. 3.8(a). But Fig. 3.8(c) reveals the poor performance in MNRs within the frequency

range from 0 to 5k Hz, even having some MNRs smaller than zero. As opposed to Fig. 3.8(a),

that decrements of MNR in Fig. 3.8(c) is more than the ones in Fig. 3.8(b) reveals the the

fact that human hearing is sensitive to the variation stemming from changing sign bits of

samples below 5 kHz[19, 20].

3.3.2 Huffman-code encryption

In MP3 definition, each frame has four granules, each granule has 576 MDCT coefficients.

The absolute values of these 576 coefficients will be divided into three regions: big value,

count one region, and zero region, and be sequently compressed with four Huffman tables.

We denote the Huffman code Wi = {wi,0, wi,1, . . . , wi,575} as the whole Huffman codeword of

576 coefficients at the ith granule, where wi,j is the Huffman codeword of the jth quantized

coefficient.

The Huffman code Wi is made of concatenating each codeword of samples sorted by

frequency from low to high. However, when choosing some bits of Wi, that distinctly pointing

out their corresponding frequency is hard. We can only know the information that the

corresponding frequency of wi,j is lower than the one of wi,k, when j < k.

Similarly to sign-bit encryption, the quality of unauthorized accessing can be adjusted by

selecting the bytes of W to encrypt, so Huffman-code encryption is an adaptive encryption.

Different from sign-bit encryption, an error avalanche occurs in Huffman-code encryption,

because Huffman coding has an error propagation problem, even encrypting the first byte

will cause tremendous errors in decompression.

The Wi is a variant of 576 MDCT coefficients, hence the encrypted part Ye,i can be

determined from Wi as the plaintext in Huffman-code encryption. Because the bit length of

wi,j is variable, not multiple of byte, it is inconvenient to pick a set Ye,i = {wi,j|wi,j ∈ Wi,

and a ≤ j ≤ b, where [a b] is the interval to be encrypted}. Therefore, we select Ye,i in byte.

3.3.3 Side-information encryption

Side information records the data needed by MP3 encoder. There are several fields of side

information. Some are media dependent and some are not. For security concern, we have to
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avoid known-plaintext attacks, hence much attention have to be paid on encrypting header-

like data.

In our scheme, we choose those fields which changed by input media as plaintext. In MP3,

all fields are classified into three kinds: frame side information, channel side information,

and granule side information. Literally, frame side information is for each frame, and so as

channel side information and granule side information. We choose some side information, of

which symbols are defined in MP3 specification [27], to keep the side-information encryption

from the known-plaintext attacks and list them below.

1. Frame side information: main data bigin indicates the beginning of compressed data,

hence an MP3 encoder won’t correctly decode without possessing this information.

2. Granule side information: These fields are the decoding information, such as quantizer

step, region boundary, Huffman table, and so on.

(a) part2 3 length: this value contains the number of main data bits used for scale-

factor and Huffman code data.

(b) big values: the spectral values of each granule are coded with different Huffman

code.

(c) global gain: the quantizer step size information is transmitted in the side in-

formation variable global gain .

(d) scalefac compress: selects the number of bits used for the transmission of the

scalefactors.

(e) region address: a further partitioning of the spectrum is used to enhance the

performance of the Huffman coder.

(f) table select: different Huffman code tables are used depending on the maxi-

mum quantized value and the local statistics of the signal.

Additionally, the CRC is encrypted necessarily to probably keep away from attacks,

because CRC implicitly manifests some relationship among all fields in side information.

All the listed fields are accompaniments of input signal, so side-information encryption is a

partial encryption. It is obvious that the quality can not be systematically adjust by choosing

the side information.
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3.4 Simulation Results
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Figure 3.9: The simulation of sign-bit encryption on different frequencies in three types of

music, piano, rock, and pop. The horizontal lines are the MNR of original MP3 files.

We use SEAL to encrypt and simulate the proposed schemes with three types of music:

piano, rock, and pop. We discuss the results over the average MNR. The frequency distri-

bution of piano, rock, and pop are 0 ∼ 8 kHz, 0 ∼ 22 kHz, and 0 ∼ 16 kHz, respectively.

In sign-bit encryption, we simulate with encrypting different bands. As shown in Fig. 3.9,

when the encrypted frequency is increased, the audio quality is also improved. As we men-

tioned above, upon 5 kHz, the variation of sign bits will not vastly drop the quality. This

simulation also tells one thing that sign-bit encryption has tolerable quality with encrypting

a section between 4 ∼ 6 kHz for music trial service.

In Huffman-code encryption, because we can not exactly have the frequency information

on Huffman codes, we use byte index instead of frequency index as x-axis. In spite of what
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Figure 3.10: These results are obtained by encrypting Huffman codes. The x-axis is the

number of encrypted bytes counted from the first byte of Huffman codes.
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Figure 3.11: These results are obtained by encrypting Huffman codes. The x-axis is the byte

index of the encrypted byte.

kinds of music, from Fig. 3.10, we found no matter one byte or several bytes are encrypted,

the quality of encrypted MP3 file are similar under MNR sense. The effects are resulted

from the property of error propagation on Huffman decoding.

Different from the simulation of Fig. 3.10, instead of encrypting consecutive bytes, we

separately encrypt each byte. The simulation results shown in Fig. 3.11 provide us that

encrypting which byte is proper to music trial service. However, the Huffman-code encryption

is hard to determine which frequency band is good for music trial service. The byte index

only shows the relative information about frequency. For examples, even the 2nd byte implies

higher frequency than the 1st byte in each granule, but the 1st bytes of distinct granules do

not represent the same frequency. The Huffman codes are the compressed data of nonzero

region. For piano music, most of energy are concentrated in low bands and wide bandwidth
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in zero region, hence the quality of piano increases slowly while the frequency of encrypted

band increases.

Table 3.2: MNR Comparison: Side information encryption on piano, rock, and pop.

Non En-

crypted

Frame side Channel

side

Granule

side

Piano 29.3831dB 20.6328dB 23.6214dB 20.317dB

Rock 19.3537dB 19.1296dB 19.1816dB 19.1308dB

Pop 21.1033dB 19.2218dB 19.5985dB 19.1237dB

The results of side information encryption are illustrated in Table 3.2. From the MNR

values, the MP3 files have been successfully encrypted. The important information are

mostly in frame side information and granule side information, hence encryption on both of

them provide good multimedia security.

For high security application, the sign-bit encryption encrypts the sign bits of samples

below 5 kHz, the Huffman-code encryption takes 1st ∼ 70th bytes of each granule as Ye,i, and

side-information encryption enciphers all side information. Table 3.3 lists the encrypted size

for each case.

Table 3.3: Size of Ye for High Security of three schemes

Sign-bit encryp-

tion

Huffman-code

encryption

Side-information

encryption

Ye

Y
(% ) 15.56% (< 5

kHz)

19% (0 ∼ 20

bytes)

7.65% (256 bits)

3.5 Implementations and Security

Based on the simulation results, some practical issues and suggestions are addressed in

following subsections.
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3.5.1 Quality Level for Trial Services

According to the simulation results in Section 3.4, we suggest a quality level for music trial

services for the both proposed adaptive encryption, sign-bit encryption and Huffman-code

encryption, to original MP3 players. In sign-bit encryption, encryption of bands about

1, 225 ∼ 3, 062 Hz could obtain the music for trial service. For Huffman-code encryption, the

quality for trial services could be provided by encrypting the 60th ∼ 90th bytes of Huffman

codeword in each granule. The results are shown in Table 3.4.

Table 3.4: The suggested significant part Ye for trial service and its quality.

Sign-bit encryption Huffman-code encryption

Ye 1, 225 ∼ 3, 062 Hz 60th ∼ 90th bytes

MNR ∼ 22 db ∼ 23 db

If the audio quality is not highly concerned, the devised three schemes can fully encrypt

the corresponding encrypted parts Ye: sign bits, Huffman codes, and side information. If

there exits the time issue of processing, the data size of Ye can be reduced by selecting those

parts Ye from the low frequency bands to the high bands for sign-bit encryption or from low

bytes to high bytes for Huffman-code encryption.

3.5.2 Extra Header Design

Taking inspection on side-information encryption firstly, because the quality adjustment

is unsuitable, for realization, it is a good strategy that the encrypted side information is

beforehand defined and known by encoders and decoders. So there doesn’t need extra

information to indicate how to decrypt with full quality, and standard MP3 players could

decode the side-information encryption MP3 files as usual ones, but with low quality.

For sign-bit and Huffman-code encryptions, while the quality adjustment is available

in encryption, saving the information of how many data are encrypted is necessary. In

order to be compatible with the standard MP3 players, the information, needed for correct

decryption, has to be added into standard MP3 header in a proper way so that the standard

MP3 players can play the encrypted MP3 with low quality.

On sign-bit and Huffman-code encryptions, we can place the extra information prior

to the synchronization word, because the MP3 decoder takes no consideration on the input
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before detecting the synchronization word, i.e., standard MP3 players can play the encrypted

MP3 files as well. Without doubt, the music of full quality can be gotten under success

authorization and specific MP3 decoders.

The synchronization word of hex is 0xFFF, hence the construction of extra information

must have no probabilities to produce the pattern, 0xFFF. In sign-bit encryption, the en-

crypted part Yi,e can be described by two 10-bit digits ranging from 0 to 575, therefore the

cases with the maximum length of consecutive 1’s are {01111111111000xxx} in all possible

combinations of the two digits. It is apparent that the pattern 0xFFF by no means occurs

in extra information for sign-bit encryption. In Huffman-code encryption, we also use two

10-bit digits to define the bound of bytes to encrypt. Generally, the Huffman codeword size

of a granule is less than 512 bytes, the most 1’s case is {01111111110111111111}. For that

reason, the extra information of Huffman-code encryption is certainly not to get the same

pattern as synchronization word.

3.5.3 On-Line and Off-Line Encryptions
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Figure 3.12: The block diagram of on-line cases. The side-information and Huffman-code

encryption both are inside the bitstream formatting process. In terms of MP3 encoding

procedure, the side-information encryption is ahead of Huffman-code encryption.

The proposed three schemes can on-line or off-line encrypt MP3 files according as the

practical applications.In general, the on-line applications are time critical, such as live broad-
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Figure 3.13: The block diagram of off-line cases.

casts of sport games, and concerts, so it’s better to produce encrypted MP3 files by simul-

taneously encrypting and compressing the raw data. And the off-line instances, therefore,

can be done by directly encrypting the ready MP3 files.

The on-line cases are composed of MP3 algorithm and SEAL, each case has different

insertion position of SEAL as shown in Fig. 3.12. The off-line cases have to extract the

encrypted part Ye from the ready MP3 files, then encrypt Ye. The encrypted part Ye of

side-information and Huffman-code encryptions are directly extracted from each frame of a

MP3 file. In off-line sign-bit encryption, however, the sign bits to encrypt are obtained after

Huffman decoding of each frame. The pictorial description is at Fig. 3.13

3.5.4 Security

Apparently, the proposed schemes are cipher independent, hence the security on our schemes

are dependent on what kind of data we encrypted. For this concern, we have noted whether

the encrypted data are predictable or known already by cryptanalysts. For sign-bit encryp-

tion, cryptanalysts are not easy to get or predict the sign bit of each sample. In Huffman-code

encryption, the compressed data are the variant of the original signal, hence it has similarly

intrinsic property as sign-bit encryption, that is, the compression results are a huge alphabet

to guess. However, some fields of side information are still and simple to predict. For security

concern, we have to avoid encrypting those fields and keep our side-information encryption

from known-plaintext attacks.
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3.6 The Overview of Modified Scheme

Fig. 3.14 is the overview of the proposed scheme. The proposed scheme has two phases, the

secure phase and the MP3 phase.

MP3

Phase

Secure

Phase

RAW

Data

MP3

Streams

Encrypted

MP3 Streams

Security Level

0~100 %
Key

Figure 3.14: Block diagram of the coding flow.

The secure phase parses the MP3 frame to identify the security part and the normal

part, encrypts/decrypts the security part, and joins normal part to processed security part

as a valid MP3 frame. The security level s can be varied from 0% to 100%. The percentage

is mapped onto the size of the security part. Fig. 3.14 indicates that the security phase has

three inputs.

1. Key;

2. Security level;

3. A normal MP3 frame or an encrypted MP3 frame.

The MP3 phase executes a low-complexity MP3 algorithm, sends the ordinary MP3

frames to the security phase and decompress the decrypted MP3 frames from the security

phase.

For on-the-fly production, the two-phase scheme increases the efficiency in dual-core

platform, because we can run the two phases on two distinct CPUs for executing the low-

complexity MP3 algorithm and secure coding simultaneously. Additionally, the proposed

scheme can encrypt the existent MP3 files directly by security phase. The security phase

reads the MP3 frames and processes the security parts. This makes the scheme easily be

applied to the actual state.

Torrubia et al. [61] and Torwirth et al. [60] presented selective encryption algorithms

for audio compressing. In the case of encrypting an encoded MP3 file, Torrubia et al.
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An Encrypted/Normal MP3 frame
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Figure 3.15: Detail of processing flow of the security phase.

[61] decompressed an MP3 file and performed Huffman encoding using a secure table to

substitute codeword; Torwirth et al. [60] also decompressed an MP3 file; determined the

exact frequency boundary of main data in MP3 frame, and encrypted the protected part.

These tasks are all time-consuming. However, the proposed scheme uses a more simple

encryption scheme than described above, yielding similar results.

Fig. 3.15 presents how the security phase works. Each MP3 frame has two or four

granules for one channel or two channels, respectively. In the security phase, each granule is

sequentially processed in the same way. The flow of the security phase is as follows:

1. Determine the size of the security part with given security level s, where 0 ≤ s ≤ 1 and s

has only two digits after decimal point. The security level for each MP3 granule is fixed.

However, in each MP3 granule, the size of the security part is S = s × |main data|b,
where operation | · |b counts the bit length.

2. Obtain a sequence of S successive bits from the output of stream cipher. The stream

cipher in proposed scheme may be any secure one. The stream cipher generates a
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random sequence of appropriate length in advance, whereas the MP3 phase performs

compression to accelerate the entire process.

3. XOR the security part with the sequence.

4. Join the security part to the normal part to form a valid MP3 granule.

Fig. 3.16 depicts the file format of MP3. The header field contains information about

the sampling frequency, bit rates and audio modes, for example. The CRC is used to detect

whether errors occurred in fields of header and in the side information. All parameters

related to decoding information are in the side-information field. Finally, the main-data field

contains the compressed audio data. The security part is backwardly extracted successive S

bits from the last bit (highest frequency) of main data. However, the length of main data is

not fixed, but the header of each frame includes this information. Data at lower frequency

are generally more important than those at higher frequency. Therefore, when the security

level s increases, the security part becomes more important. Additionally, the encrypted

MP3 file has the same size as the one without encryption, because the encryption part is the

final results of MP3 encoding for a granule.
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Figure 3.16: File format of MP3 [28].

Fig. 3.15 reveals that the encryption is performed by XOR-ing the pseudo-random binary

sequence with the security part of main data. The decryption process is identical to the

encryption process. The encrypted MP3 frame is parsed by the same function as applied in

encryption, to determine the normal part and the security part, according to the specified

security level. The stream cipher generates the identical pseudo-random binary sequence

used in encryption. Therefore, one copy of the flow depicted in Fig. 3.15 is involved in both

encryption and decryption.
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3.7 Performances and Comparisons

3.7.1 Performance of partial encryption

Quality loss is addressed using the Objective Difference Grade (ODG) of PEAQ (Perceptual

Evaluation of Audio Quality) [29]. The software encryption algorithm (SEAL) [56] is applied

as the stream cipher in the following simulation. The three audio samples, bass, harp and

spfg, are obtained from EBU SQAM [39]. Fig. 3.17 shows the ODG of the encrypted MP3

files, obtained by the proposed approach with different security levels. The quality clearly

monotonically declines as the security level increases.
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Figure 3.17: Quality loss following encryption using SEAL stream cipher

3.8 Conclusions

We propose several approaches to secure MP3 in this research. They provide an easy solution

to integrate the cryptosystem and MP3 algorithm. If the adaptive encryption is needed, the

sign-bit encryption and Huffman-code encryption can fit in with, along with good security.

When the size of encrypted data are fixed, the side-information encryption provides good

security than the others. Our schemes can be applied on simultaneously encrypting and

compressing or encrypting the already encoded MP3 files. For live applications, e.g., diverse
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sport shows, and concerts, the former case is fit, because the media streams are encoded then

are delivered immediately; otherwise, because the compression is time-wasting processing,

it’s better enciphering compressed files than doing encryption in compression step. The

partial/adaptive encryption and the selection principle of Ye addressed in Section 3.2 are

applicable not only on MP3 algorithm but also other compression algorithms. Then, a

modified one of Huffman-code encryption is proposed on a dual-core platform with RISC

and DSP. It represents faster and simpler structure than the original one.
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Chapter 4

Enhancement of the Application

Security of AES

This chapter addresses two security issues of Advanced Encryption Standard (AES) [47].

First, in order to prevent AES from the differential fault attacks (DFA) [7, 14, 53], error

detection is required to detect the errors during encryption or decryption, and then to provide

the information for taking further actions, such as interrupting the AES process or redoing

the process. Because errors occur within a function, it is not easy to predict the output.

Therefore, general error control codes are not suited for AES operations. In this work, several

error-detection schemes have been proposed. These schemes are based on the (n+1, n) cyclic

redundancy check (CRC) over GF (28), where n ∈ {4, 8, 16}. Because of the good algebraic

properties of AES, specifically the MixColumns operation, these error detection schemes

are suitable for AES and efficient for the hardware implementation; they may be designed

using round-level, operation-level, or algorithm-level detection. The proposed schemes have

high fault coverage. In addition, the schemes proposed are scalable and symmetrical. The

scalability makes these schemes suitable for an AES circuit implemented in 8-bit, 32-bit or

128-bit architecture. Symmetry also benefits the implementation of the proposed schemes

to achieve that the encryption process and the decryption process can share the same error

detection hardware. These schemes are also suitable for encryption-only or decryption-only

cases. Error detection for key schedule in AES is also proposed and is based on the derived

results in the data procedure of AES.

In addition, we also implement a parameterizable Rijndael algorithm with three change-
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able coefficients, including the irreducible polynomial, affine matrix, and the row vector of

the matrix used in MixColumns . The coefficients are on-line changeable, i.e., they are

also the inputs of the circuit. For increasing the speed of SubBytes , two techniques, ba-

sis conversion and composite field, are applied to implementations in this work. Moreover,

MixColumns is also speeded up by pre-calculating the values of every power of xtime

of constants in MixColumns . Two structures of 32-bit data bus are implemented. The

normal structure provides throughput of 1.7902 Gbps and costs 83.094k gate counts on 0.18-

µm CMOS cell standard library; the pipeline structure has 4.9516 Gbps and costs 125.993k

gate counts. This work provides a customized Rijndael cipher to let users change coefficients;

therefore, it can be utilized in the applications requiring customized security, e.g., the virtual

private networks.

This chapter is organized as follows. In Section 4.1, the problems about DFAs on AES

are introduced. The other weaknesses caused by algebraic properties of AES are shown

in Section 4.2. Section 4.3, the AES algorithm is briefly described and the notations used

throughout are defined. In Section 4.4, our proposed error detection schemes for AES are de-

scribed. Derivation of error detection for each operation, including SubBytes , ShiftRows ,

MixColumns , and AddRoundKey , is explained, as well as the design of the key schedule.

The undetectable errors of each proposed method are theoretically analyzed in Section 4.5,

while in, Section 4.6, the realization issues of three levels, operation level, round level, and

algorithm level, are described. In Section 4.7 advantages and comparisons between this work

and other research studies are discussed and in Section 4.8 the detection capability of each

scheme is simulated. In Section 4.9, the details of designing SubBytes and MixColumns

are described. Section 4.10 shows the architecture and how it works. The performance and

hardware complexity of each structure are discussed in Section 4.11. Finally, our conclusions

are offered in Section 4.12.
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4.1 The Security Issues While Implementing AES

The Advanced Encryption Standard (AES) [47], a successor to the Data Encryption Stan-

dard (DES), was finalized in October 2000 by the U.S. National Institute of Standards and

Technology (NIST), when the Rijndael algorithm [12] was adopted. The data block size of

AES is 128-bit, and the key size can be 128-bit, 192-bit, or 256-bit. In AES, although the

data block is 128-bit, all operations are byte-oriented over GF (2) or GF (28). Therefore,

several kinds of AES implementations have been discussed. In general, three main types

of AES implementations have been discussed, 128-bit, 32-bit, or 8-bit architecture. Each

architecture has its own applications. Feldhofer et al. [15] designed an 8-bit AES chip to

provide security for radio frequency identification (RFID). Satoh et al. [57] introduced a 32-

bit implementation of AES. Mangard et al. [41] proposed a scalable architecture for AES,

which could process 128-bit data or 32-bit data, depending on the number of Sbox.

The hardware implementation of AES would be countered by some side-channel attacks,

such as Differential Fault Attacks (DFA), or Differential Power Analysis (DPA). Differential

fault attacks was originally proposed by Biham and Shamir [7]. Theses side-channel attacks

actually threaten the security of several cryptosystems, because they are practical for a crypto

module. The idea of DFA is to apply the differential attacks to a crypto module or a crypto

chip. The cryptanalyst injects errors by using microwave or ionizing techniques during the

encryption or decryption process. Theses errors cause the encryption results to differ from

the correct results; hence, the cryptanalyst will receive the difference of outputs. Therefore,

such differential attacks may be carried out in real world. Dusart et al. [14] broke the 128-bit

AES under the assumption that you can physically modify a hardware AES device. This

attack required 34 pairs of differential inputs and outputs, to obtain the final round key.

Piret and Quisquater [53] broke AES with two erroneous ciphertext under the assumption

that the errors occur between the antepenultimate and the penultimate MixColumns .

To avoid the possibility of suffering such attacks, error detection can be considered while

implementing a cipher. In 2002, Karri et al. [31] proposed a general error detection method,

called concurrent error detection (CED), for several symmetric block ciphers including RC6,

MARS, Serpent, Twofish, and Rijndael. CED requires an inverse operation to check whether

errors have occurred in calculations, or not, and has three levels: the operation level; the

round level; and the algorithm level. Taking an operation-level CED in AES as an example,
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the InvSubBytes is required to detect the errors occurring in SubBytes , and vice versa.

This method has very high fault coverage, but it is time-consuming and high hardware cost,

because inverse operations are required. In 2003, Karri et al. [32] proposed a parity-based

detection technique for general substitution-permutation block ciphers. However, the size of

the table, required by substitution box, is enlarged. In addition, the paper did not address

the error detection techniques for some specific functions, such as MixColumns in AES. In

2004, Wu el al. [63] applied the structure of [32] to AES and used one-bit parity for a 128-bit

data block. The method of Wu et al. [63] can let the parity pass through the MixColumns .

Bertoni et al. [3] used an error detection code of 16-bit parity for a 128-bit data block. To

be precise, this approach uses one-bit parity for each byte, and thus, can detect all single

errors and perhaps all odd errors. In [4], Bertoni et al. used the error detection scheme in

[3] not only to detect errors bit also to locate errors. In 2004, Bertoni et al. [5] implemented

the model proposed in [4]. The introduction of the mode into AES brought the performance

18% overhead of area and 26% decreasing of throughput. According the results given in [3],

their approach was able to detect most cases of multiple faults. However, this approach is

asymmetrical, between MixColumns and InvMixColumns , because the parity prediction

of InvMixColumns is more complex than that of MixColumns . Therefore, two circuits

are required to predict the parity while merging the encryption and the decryption. Besides,

the detection technique for SubBytes doubled the table size of SubBytes in AES, from

256 to 512 bytes. In addition, it cannot easily be applied to an AES implementation of 8-bit

architecture, because the parity prediction of MixColumns (InvMixColumns ) requires

information from other bytes and other parities.

This work proposes several error-detection schemes for AES. They are based on the

(n + 1, n) cyclic redundancy check (CRC) over GF (28), where n ∈ {4, 8, 16} is the number

of bytes contained in the message. The proposed schemes easily predict the parity of an

operation’s output. Because AES is byte-oriented and its constants are ingeniously designed,

the parity of the output can be predicted from a linear combination of the parity of the

input. In most cases, the parity is the summation of the input data; also, the proposed

schemes are highly scalable and are suitable for 8-bit, 32-bit, or 128-bit architecture. This

is important, because many AES designs are in an AES hardware designed either 8-bit or

32-bit architecture. Another advantage of proposed approaches is that the parity calculation
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between the encryption and the decryption is symmetric, because the parity generation in

encryption is quite similar to the one in decryption. This will bring some benefits, while

integrating encryption and decryption into one circuit.

4.2 The Algebraic Properties of AES

There are many researches on the algebraic properties of Rijndael. Fuller and Millan [17]

showed that the outputs of 8×8 Rijndael SBox are all equivalent under affine transformation.

Ferguson et al. [16] represented Rijndael as an algebraic formula. Murphy and Robshaw [45]

defined a new block cipher, Big Encryption System (BES), which only operates in GF (28)

and it is a proper superset of AES. BES is mathematically simpler description than AES, and

that is helpful to cryptanalysis work of AES. Barkan and Biham [2] showed that replacements

of constants in AES can create several dual ciphers. Courtois and Pieprzyk [11] showed that

Rijndael can be written as an overdefined system of multivariate quadratic equations (MQ) [8]

and presented an attack, called XSL attack, based on MQ. The above researches discovered

different algebraic properties from different views of Rijndael, and those properties can be

utilized for cryptanalysts.

Although Rijndael has above probable leaks, but we still can build a secure connection

with it. In Barkan and Bihamn’s [2] research, they pointed out that random selecting a dual

cipher is desired during a connection. Therefore, if all data in a connection are encrypted

by several dual ciphers is possible, a more secure connection can be established by Rijndael.

The coefficients of irreducible polynomial m(x), MixColumns row vector c(x), and affine

transformation could be replaced by other values such that they follow some requirements,

such as minimization of the largest non-trivial value for SubBytes , relevant diffusion power

for MixColumns [12], et al..

A parameterizable structure is needed for on-line replacing coefficients during a connec-

tion. However, the design, providing the function of on-line changing coefficients, will incur

enormous burden on complexity, area and performance, so several techniques are used to

increase the performance. Different irreducible polynomials m(x) result in different results

of SubBytes , the most complex computation in Rijndael, so two techniques are adopted to

increase the throughput and to reduce the hardware complexity. First, the basis conversion
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is used to fix the basis, i.e., the irreducible polynomial, of GF (28) inversion. Once the basis

is fixed, the implementation of GF (28) inversion can be optimized for speed and area. In

addition, the GF (28) inversion is implemented in a composite field GF (((22)2)2) for saving

the gate counts. The performance of another complex computation, MixColumns , will also

be dropped, when m(x) and c(x) are changeable. Therefore, based on a given irreducible

polynomial m(x), we calculate each power value of xtime of constants in c(x) to be used

in following encryption/decryption to speed up the implementation of MixColumns .

In here, we implement a parameterizable Rijndael in two ways, non-pipeline (normal)

and pipeline structure. Because the coefficients are changeable; hence, the chip will operate

in different dual ciphers with different given coefficients. The normal structure executes one

round per clock cycle on a 128-bit data block, and the pipeline structure requires six clock

cycles to perform one round on a 128-bit data block. The data bus of both structures is

32-bit, and only the 128-bit key scheduler is implemented in this work. The normal structure

achieves a throughput of 1.7902 Gbps and a 153.84 MHz clock, and has 83.094k gate counts.

The pipeline structure has a throughput of 4.9516 Gbps with 425.53 MHz clock and 125.993k

gate counts. The details are explained in Section 4.9, 4.10, and 4.11.

This implementation of Rijndael is not only compatible to AES but also available to

replace the coefficients in Rijndael, so it can be applied to applications that require cus-

tomized security. Besides, the throughput of our implementations is over 1 Gbps; hence, the

results of this work are suitable to network devices over Fast Ethernet or Giga Ethernet.

In particular, the virtual private network (VPN) is an appropriate application, because this

work can provide customized security for VPN users.

4.3 AES Algorithm

The AES [47] consists of two parts, the data procedure and the key schedule. The data

procedure is the main body of the encryption (decryption), and consists of four operations,

(Inv)SubBytes , (Inv)ShiftRows , (Inv)MixColumns , and (Inv)AddRoundKey .

During encryption, these four operations are executed in a specific order– AddRoundKey ,

a number of rounds, and then the final round. The number of rounds is 10, 12, or 14,

respectively, for a key size of 128 bits, 192 bits or 256 bits. Each round comprises the
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four operations, and the final round has SubBytes , ShiftRows and AddRoundKey . The

decryption flow is simply the reverse of the encryption, and each operation is the inverse

of the corresponding one in encryption. In the data procedure, the 16-byte (128-bit) data

block is rearranged as a 4× 4 matrix, called state S,

S =




s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15




, (4.1)

where si notes the ith byte of the data block. In this context, S denotes the input of an

operation, and T denotes as the output. AES is operated in two fields, GF (2) and GF (28).

In GF (2), addition is denoted by ⊕, and multiplication is denoted by ⊗. Similarly, the two

symbols, + and ×, denote addition and multiplication in GF (28).

4.3.1 SubBytes

Two calculations, the GF (28) inversion and the affine transformation, are involved in this

operation. SubBytes substitutes each byte si of the data block by

ti = As−1
i + 63 , (4.2)

where s−1
i is the inverse of the input byte, si ∈ GF (28), A is an 8 × 8 circulant matrix

of a constant row vector [1 0 0 0 1 1 1 1] over GF (2), and 63 (the Courier font number

representing a hexadecimal value) belongs to GF (28). As−1
i is a matrix-vector multiplication

over GF (2).

4.3.2 ShiftRows

The ShiftRows operation only changes the byte position in the state. It rotates each row

with different offesets to obtain a new state as following:



s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15




−−−−−−−−→
ShiftRows




s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11




. (4.3)
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The first row is unchanged, the second row is left circular shifted by one, the third row is by

two, and the last row is by three.

4.3.3 MixColumns

The MixColumns operation mixes every consecutive four bytes of the state to obtain four

new bytes as following.



s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15




−−−−−−−−−→
MixColumns




t0 t4 t8 t12

t1 t5 t9 t13

t2 t6 t10 t14

t3 t7 t11 t15




(4.4)

Let si, si+1, si+2, and si+3 represent every consecutive four bytes, where i ∈ {0, 4, 8, 12}.
Then, the four bytes are transformed by




ti

ti+1

ti+2

ti+3




=




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







si

si+1

si+2

si+3




. (4.5)

Each entry of the constant matrix in (4.5) belongs to GF (28), hence (4.5) is a matrix-vector

multiplication over GF (28).

4.3.4 AddRoundKey and Key Expansion

Each round has a 128-bit round key which is segmented into 16 bytes ki as (4.1); the

AddRoundKey operation is simply an addition,

ti = si + ki, where 0 ≤ i ≤ 15. (4.6)

The key expansion expands a unique private key as a key stream of (4r + 4) 32-bit words,

where r is 10, 12, or 14. The private key is segmented into Nk words according to the key

length, where NK is 4, 6 or 8 for a 128-bit, 192-bit or 256-bit cipher key, respectively. As

Fig. 4.1 shows, then, it generates the ith word (32 bits) by EXORing the (i − Nk)th word

with either the (i − 1)th word or the conditionally transformed (i − 1)th word, where NK≤
i ≤ (4r + 3). The (i− 1)th word is conditionally transformed by RotWord , SubBytes and
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RotWord

SubWord

1][iW' 2][iW' Nk][iW'

[i]W'

4-byte word

Round Key

Rcon[i/Nk]

]n[iW'

(i%Nk = 0)?

(i%Nk = 0) OR
(Nk = 8 & i%Nk = 4)

?

(i%Nk = 0)?

1

1

1

Figure 4.1: The block diagram of key expansion in AES

EXORing with Rcon[i/Nk] = {02bi/Nk c, 00 , 00 , 00}, where the polynomial presentation

of 02bi/Nk c is xbi/Nk c over GF (28). Finally, the key stream is segmented into several round

keys which are involved in the AddRoundKey operation.

4.4 Error Detection Techniques

The parts in decryption can be yielded in the similar way; hence, the following context only

addressed the error detection in encryption. The differential faults attacks need differential

inputs and outputs to attack a cryptosystem; hence, it is assumed that the states and round

keys are polluted by additive errors, as shown in Fig. 4.2. In this work, one operation is

the smallest granule for designing error detection. In Fig. 4.2, the errors are assumed to

be induced between the previous operation and the current operation. If the errors occur
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Figure 4.2: The error model assumed in this work. The solid line part appears in every

operation and the dotted line part appears in some operations.

in the output of the previous operation, the erroneous input of the current operation will

be treated as a different state. Actually, this situation only exists int the first round or in

the first operation. The assumed error model is logical, even in the case where the errors

occur during the operation. Because each operation of AES is invertible, one unique error

block e would exist for an erroneous output T , such that T = f(S + e), where f denotes an

operation in AES.

This work adopts a systematic (n + 1, n) cyclic redundancy check (CRC) over GF (28)

to detect errors occurring during encryption, where n ∈ {4, 8, 16} is the number of bytes

contained in the message. The generator polynomial is

g(x) = 1 + x, (4.7)

where the coefficients of (4.7) are over GF (28). Giving a message s(x) of degree n − 1, a

systematic codeword, generated by g(x), can be obtained from the following two steps:

1. Obtain the remainder p(x) from dividing xs(x) by the generator polynomial g(x). The

remainder p(x) is a scalar p here, because the degree of g(x) is one.

2. Combine p(x) and xs(x) to obtain the codeword polynomial,

p(x) + xs(x) = p + s0x + s1x
2 + · · ·+ sn−1x

n, where p, si ∈ GF (28). (4.8)

In step 1, while g(x) is 1 + x, the remainder p(x) is the summation of all coefficients of
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the message,

p(x) =
n∑

i=0

si. (4.9)

Therefore, the parity of a message may be obtained by calculating the summation of the

input message over GF (28).

Assuming that the received polynomial t(x) is

t(x) = t0 + t1x + t2x
2 + · · ·+ tnx

n, ti ∈ GF (28). (4.10)

The detection scheme checks whether the syndrome equals to zero or not, where syndrome

u is

u =
n∑

i=0

ti. (4.11)

If the syndrome equals to zero, then it is assumed that no errors have occurred; otherwise,

errors did occur.

An operation Prediction

p

0t

1

0

n

i
is

Syndrome
n

i
it

0

Parity
}{ 110 ns,,s,sS

}{ 21 nt,,t,t

Figure 4.3: The block diagram of the error detection in this work.

In the channel coding field, it is assumed that the message s(x) is transmitted over a

noise channel. The channel does not change the message if no errors occur. Therefore, it is

easy to predict that t0 is identical to p, with t0 being used to detect the errors. However, as

shows in Fig. 4.3, the message, S = {s0, s1, . . . , sn−1}, is transformed into another message,

{t1, t2, . . . , tn}, by an AES operation; hence, t0 cannot be obtained instinctively. Therefore,

this work investigates the function for each operation, such that t0 can be predicted by p as

shown in Fig. 4.3, making error detection, in each operation, is possible.

This work applies (n + 1, n) CRC to AES, where n ∈ {4, 8, 16}. In the case where,

n = 16, the 128-bit AES state is treated as a message; hence, only one parity is generated
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for a 128-bit data block. When n = 4, the error detection is designed to check each column

of the output state. Therefore, four output messages, {t4j+1, t4j+2, t4j+3, t4j+4}, 0 ≤ j ≤ 3,

are checked separately. Therefore, four parities are required for a 128-bit data block when

n = 4. For n = 8, two parities are required for a 128-bit data block. The following context

addresses the two cases, n = 16 and n = 4, because (9, 8) CRC for the AES algorithm can

be constructed under the similar conditions to (17, 16) or (5, 4) CRC for AES.

4.4.1 In SubBytes

In this work, two implementation types of SubBytes are considered. The first type uses one

table instead of the GF (28) inversion and the affine transformation. The second type calcu-

lates separately the GF (28) inversion and the affine transformation, and the implementation

of the GF (28) inversion is not limited to the look-up-table method or the combinational

logical circuit. In this work, the first type is named as united SubBytes, and the second type

is as separated SubBytes.

For united SubBytes, it is assumed that both the SubBytes table and the InvSubBytes

table are stored in a chip, as shown in Fig. 4.4. Error detection is achieved by feeding the

output of SubBytes into InvSubBytes , then comparing the input of SubBytes and

the output of InvSubBytes , and vice versa, as Fig. 4.4 shows. If the both are identical,

then it is concluded that no errors have occurred. Otherwise, the errors did occur. This

error detection method may be time-consuming, if only the SubBytes operation is consid-

ered. However, in practical terms, normal encryption could be further processed, without

waiting for the error detection result, because SubBytes is either the first operation or

the second operation in each round. In other words, the operation after SubBytes , such

as ShiftRows , MixColumns or AddRoundKey , may continue, when the output of the

round would be intercepted if errors are detected in SubBytes .

If separated SubBytes is adopted, error detection must be applied separately to the

GF (28) inversion and the affine transformation. Considering the error detection for the

GF (28) inversion first, there are two schemes are proposed herein. Similar to Fig. 4.4, the

first scheme detects errors by using the relationship of the mutual inverse. However, the

computation of the GF (28) inversion is identical for both SubBytes and InvSubBytes ;

hence, this scheme does not require the encryption and decryption circuits to simultaneously
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SubBytes InvSubBytes

Compare

Figure 4.4: The error detection for united SubBytes

exist in one chip. It can be used with the encryption-only or decryption-only hardware.

The second scheme is the (n + 1, n) CRC, and assumed that the GF (28) inversion is

implemented in look-up-table approach. Instead of the inverse value of a giving input, the

exclusive value of the giving input and its inverse is stored in the table. Therefore, giving an

input α ∈ GF (28), the value, β = α + α−1, is obtained from the table, and then the input

α is added to β to yield α−1, as the marked block in Fig. 4.4. The error is detected by the

syndrome obtained by the dashed line in Fig. 4.4. In this diagram, no errors are introduced,

hence the syndrome is zero.

+ -1

1+ 1

-1

2+ 2

-1

...

Exclusive
of Inverse

Pair

Input si:

+ -1

Output ti+1:
-1

GF(28) Inversion

Table

-1

Syndrome

Prediction

Figure 4.5: The block diagram of one GF (28) inversion with the error detection.

For one GF (28) inversion, according to Fig. 4.3 and the error model given in Fig. 4.2,

the errors are induced a fault at the input of the GF (28) inversion, as shown in Fig. 4.6.

Supposing that the byte si is changed into another byte s′i by adding the error e0. Then the

syndrome, used to detect errors, is calculated as

(si + e1) + ti+1 + (ti+1 + t−1
i+1) = e0 + e1. (4.12)
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Exclusive of
Inverse Pair

e0 e1

Previous Operation

Next Operation

is

is

10 ee
1
11 ii tt

1it

Figure 4.6: An error is injected into the input state after entering the GF (28) inversion.

The one-byte structure in Fig. 4.5 could be extended to the 4-byte, 8-byte, or 16-byte

structure. Taking the 16-byte structure in consideration, the input state is denoted as

S = {s0, s1, . . . , s15}, and then the parity p is
∑15

i=0 si from (4.9). According to (4.12) and

Fig. 4.3, the parity of the output parity t0 could be predicted by

15∑
i=0

si +
15∑
i=0

(ti+1 + t−1
i+1), (4.13)

and the syndrome is

t0 +
15∑
i=0

ti+1,

⇒
15∑
i=0

ti+1 + p +
15∑
i=0

(ti+1 + t−1
i+1). (4.14)

If no errors have occurred, the value t−1
i+1 will equal to si. Therefore, the syndrome (4.14) is

zero.

In this work, all ShiftRows , MixColumns , and AddRoundKey are protected by error

detection code. However, the detection technique of SubBytes is varied with its implemen-

tation. According to the error detection scheme for SubBytes , three proposed architec-
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tures for AES are denoted by, united-SubBytes detection (USBD), hybrid-SubBytes detection

(HSBD), and parity-based-SubBytes detection (PbSBD), as shown in Fig. 4.7.

SubBytes
and

InvSubBytes

GF(28) inversion

Affine
transformation

GF(28) inversion

Affine
transformation

ShiftRows

MixColumns

AddRoundKey

United-SubBytes
Detection (USBD)

Hybrid-SubBytes
Detection (HSBD)

Parity-based-SubBytes
Detection (PbSBD)

The error detection 
uses the error detection
code.

The error detection
uses the inverse 
relationship.

Figure 4.7: The three proposed architecture for AES.

For the affine transformation, error detection is achieved by the (n + 1, n) CRC, where

n ∈ {4, 8, 16}. Considering n = 16 first, and according to (4.9), the parity p of an input

state, S = {s0, s1, . . . , s15}, where si ∈ GF (28), is generated by

p =
15∑
i=0

si. (4.15)

The output state is denoted as T = {t0, t1, . . . , t16}. From (4.2) and Fig. 4.3, ti+1 is Asi +63 ,

where 0 ≤ i ≤ 15. The hexadecimal constant 63 will be eliminated after taking summation

of the output state T\t0, i.e.,

n−1∑
i=0

ti+1 =
n−1∑
i=0

(Asi + 63) = A

15∑
i=0

si = Ap. (4.16)

Therefore, t0 can be predicted by (4.16) with input parity p. If no errors occur, the syndrome

u must be a zero vector

u =
16∑
i=0

ti = 0. (4.17)

In the case of (5,4) CRC or (9,8) CRC, (4.16) also holds.
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4.4.2 In ShiftRows

From (4.3), the ShiftRows operation simply rotates the input state S, but does not alter

the value of si. Therefore, t0 may be directly predicted by
∑n

i=0 si in the case of n = 16.

Similarly, the ShiftRows operation is error free, if the syndrome is zero

16∑
i=0

ti = 0. (4.18)

When n = 4, because each column of the output state would be detected, the four parities

pj, where 0 ≤ j ≤ 3, are

p0 = s0 + s5 + s10 + s15,

p1 = s4 + s9 + s14 + s3,

p2 = s8 + s13 + s2 + s7,

p3 = s12 + s1 + s6 + s11;

hence, the tj,0 for each output message {t4j+1, t4j+2, t4j+3, t4j+4} is pj. The case of n = 8 is

analogous to the case of n = 4.

4.4.3 In MixColumns

The behavior of the MixColumns operation is more complex, because each byte in the

input state S influences four bytes in the output state T . However, because of the ingenious

design of the coefficients, it is also possible to apply the (n + 1, n) CRC directly, where

n ∈ {4, 8, 16}. The MixColumns operation works as following




t4j+1

t4j+2

t4j+3

t4j+4




︸ ︷︷ ︸
T ′

=




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







s4j

s4j+1

s4j+2

s4j+3




︸ ︷︷ ︸
S′

, where 0 ≤ j ≤ 3. (4.19)
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From (4.19), it is yielded that the summation of vector T ′ equals to that of vector S ′.

3∑

k=0

t4j+k+1 = (02 + 01 + 01 + 03)s4j +

(03 + 02 + 01 + 01)s4j+1 +

(01 + 03 + 02 + 01)s4j+2 +

(01 + 01 + 03 + 02)s4j+3,

= s4j + s4j+1 + s4j+2 + s4j+3,

=
3∑

k=0

s4j+k. (4.20)

Therefore, when the (5,4) CRC is applied, the output parity tj,0 of the jth column vector may

be directly predicted from the jth column vector of the input state by
∑3

k=0 s4j+k. Similarly,

in the case n = 16, t0 is predicted by

t0 =
3∑

j=0

3∑

k=0

t4j+k+1,

=
3∑

j=0

3∑

k=0

s4j+k,

=
15∑
i=0

si.

Because the summation of 02 , 01 , 01 and 03 is 01 , (4.20) can be satisfied for the (17,16),

(9,8), or (5,4) CRC. The coefficients of InvMixColumns display an identical phenomenon.

The summation of the four coefficients used in decryption, 0B, 0D, 09 , 0E, is also 01 .

Therefore, t0 or tj,0 can be predicted in the same way as that of MixColumns .

4.4.4 In AddRoundKey

Discussing the case n = 16 first, it is assumed that each round key already has a parity;

hence, the round key is represented as {k0, k1, . . . , k16}, where k0 =
∑15

i=0 ki+1 is the parity

and {k1, . . . , k16} is the normal round key. The AddRoundKey operation only adds the

input state with a normal key K = {k1, k2, . . . , k16} to yield the output state as following:

T = S + K. (4.21)
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Applying the summation operation to (4.21) to obtain

15∑
i=0

ti+1 =
15∑
i=0

si +
15∑
i=0

ki+1 = p + k0. (4.22)

Accordingly, t0 may be obtained from p + k0. The parities for n = 4 or n = 8, pj, are

calculated in the same way; however, the round key must also have four or two parities.

4.4.5 In the Key Expansion

The (n + 1, n) CRC is also adopted in key expansion, where n ∈ {4, 8, 16}. However, the

(5,4) CRC is always used in the interior of the key expansion. The key expansion and the

error detection scheme are jointly depicted in Fig. 4.8, where the decision blocks are removed

from Fig. 4.1 for a simple description of error detection, as the conditions only determine

where the error detection is applied to, not how it is designed.

RotWord

SubWord

1][iW' 2][iW' n][iW' Nk][iW'

[i]W'

RC[i]

4-byte word

parity byte

Round Key

Conditional

Rcon[i/Nk]

temp

temp

temp

temp

Figure 4.8: The error detection scheme for key expansion.

In this key expansion, with error detection, one word contains five bytes, and the symbol

of a word is denoted by W’[i] =[W[i] ‖parity], where ‖ is a catenation symbol. At first,

74



CHAPTER 4. ENHANCEMENT OF THE APPLICATION SECURITY OF AES

the parities of the first Nk words, where Nk ∈ {4, 6, 8}, are obtained by the generator 1 + x,

i.e., the parity pi of W[i] = [wi,0 wi,1 wi,2 wi,3] is

pi = wi,0 + wi,1 + wi,2 + wi,3. (4.23)

Then, the Nk-pair parities and messages form new Nk words, W’[0] , W’[1] , . . ., and

W’[Nk-1] . The new words are successively put into the Nk shift blocks, from W’[i-Nk]

to W’[i-1] , at the top of Fig. 4.8, after which, the key expansion starts. A 128-bit round

key and its one-byte parities are collected after each period of four shifts. If (17,16) CRC is

chosen for AES, the one-byte parity of a round key is obtained by summing the four parities

of output words. If (5,4) CRC is chosen, then the four parities are kept.

In the key expansion, the RotWord rotates the byte order of W[i-1] ; hence, the parity

is the same as that of W’[i-1] . For the SubWord operation, because it is a function which

executes SubBytes on each byte of input, the error detection scheme is the same as that in

SubBytes , described in Section 4.4.1. However, in the case of united SubBytes being used,

the parity must be calculated separately.

For the EXOR operation with Rcon[i/Nk] , the error detection is achieved by EXORing

the parity of temp and that of Rcon[i/Nk] , where Rcon[i/Nk] = {02bi/Nk c, 00 , 00 , 00}.
The parity of Rcon[i/Nk] equals to 02bi/Nk c due to the three bytes of zero value in

Rcon[i/Nk] . At the end of the key expansion, the parity t0 is the EXOR of the par-

ity of current data and the parity of W’[Nk-1] .

4.4.6 More details for (5,4) CRC

Although the (5,4) CRC has four parities, it is possible for only one parity to be used in

realization of this scheme. AES can be implemented in a 32-bit structure, i.e., one column

of a state is processed once in every round. In this structure, the position of ShiftRows

must be shifted above the SubBytes operation. After ShiftRows , each column passes

through the identical calculations, SubBytes , MixColumns , AddRoundKey ; the parity

generation, or the syndrome calculation for each column, are also identical, so only one

circuit is required.
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4.5 Undetectable Errors

Even though the AES algorithm propagates the errors during encryption, the error coverage

can be also analyzed mathematically. Actually, only the MixColumns and SubBytes op-

erations cause numerous erroneous bits when a single-bit error is injected, when ShiftRows

or AddRoundKey do not change the bit number of the errors. Several assumptions are

made, as follows:

1. The error model is considered as Fig. 4.2.

2. All nonzero error block over GF (28(n+1)) have the same probability, where n ∈ {4, 8, 16}.

3. Each operation has the same error injection probability.

4.5.1 The undetectable errors in SubBytes

Because SubBytes is invertible, all errors injected into input can be detected by InvSubBytes ,

and vice versa. Therefore, the united SubBytes, has 100% fault coverage. In separated Sub-

Bytes, the both operations, the GF (28) inversion and the affine transformation, have their

own error detection. The GF (28) inversion is also invertible, so it has 100% fault coverage

in hybrid SubBytes.

In parity-based SubBytes, the error detection capability of the GF (28) inversion is ana-

lyzed. According to (4.14), the scheme only uses XOR operations, so all the codewords are

the undetectable errors in parity-based SubBytes. Therefore, while applying the (17, 16) CRC

to a 128-bit data block, the number of undetectable nonzero errors is (28)16 − 1, and the

percentage of undetectable errors is (28)16−1
(28)17 % ∼= 0.4%. When the (5, 4) CRC is applied to a

128-bit data block, the total number of undetectable nonzero errors is ((28)4 − 1)4, and the

percentage is ( (28)4−1
(28)5 )4 × 100% ∼= 2.56 × 10−8%. Similarly, the percentage of undetectable

errors for the (9, 8) CRC is 0.16× 10−2%.

The affine transformation is detected by (n + 1, n) CRC. Although five erroneous bits

were caused, while injecting a single-bit error, the error coverage can still be analyzed.

Theorem 2 Giving an input state S = {p, s0, s1, . . . , sn−1}, where parity p is
∑n−1

i=0 si, and

n ∈ {4, 8, 16}, the output state is T = {t0, t1, . . . , tn} where t0 is Ap from (4.16), and ti+1,

0 ≤ i ≤ n − 1, is obtained from (4.2). Introducing an error E = {e0, e1, . . . , en} into the
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state S = {p, s0, s1, . . . , sn−1}, the summation of the output T ′ will equal to zero if and only

if
∑n

i=0 ei = 0.

Proof: Because n is even, the value 63 will be cancelled. Therefore, the summation of

the erroneous output T ′ is

n∑
i=0

t′i = Ap + e0 + A

n−1∑
i=0

(si + ei+1),

= Ap + A

n−1∑
i=0

si

︸ ︷︷ ︸
0

+A

n∑
i=0

ei,

= A

n∑
i=0

ei.

Therefore,
∑n

i=0 t′i equals to zero if and only if A
∑n

i=0 ei = 0 is held. Because the matrix A

is nonsingular over GF (2), A
∑n

i=0 ei is zero if and only if
∑n

i=0 ei is zero.

In the (n+1, n) CRC, the nonzero errors are undetected, when the equation
∑n

i=0 ei = 0 is

held, i.e., errors are also the codewords. According to Theorem 2, all undetectable errors are

also undetected after the affine transformation. Therefore, while applying the (n+1, n) CRC

to a 128-bit data block, the percentages of the undetectable errors are 0.4%, 0.16× 10−2%,

and 2.56× 10−8%, respectively for n = 16, n = 8, and n = 4.

4.5.2 The undetectable errors in MixColumns

MixColumns also has a diffusion property. It causes five or eleven erroneous bits while

injecting a single-bit error in one column vector of the input state. However, the coefficients

eliminate the diffusion of errors after summing the erroneous column vector of the output

state. The MixColumns is shown again below, and it is supposed that each byte of the

input vector is polluted by an error.



ti+1

ti+2

ti+3

ti+4




=




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







si + ei

si+1 + ei+1

si+2 + ei+2

si+3 + ei+3




. (4.24)
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Then, the summation of the column vector ti+1 is
3∑

k=0

ti+k+1 = (02 + 01 + 01 + 03)(si + ei) +

(03 + 02 + 01 + 01)(si+1 + ei+1) +

(01 + 03 + 02 + 01)(si+2 + ei+2) +

(01 + 01 + 03 + 02)(si+3 + ei+3),

=
3∑

k=0

(si+k + ei+k). (4.25)

The equation also holds for two or four columns vectors.

Theorem 3 Giving an input state S = {p, s0, s1, . . . , sn−1}, where p =
∑n−1

i=0 si is the

checksum of the input state and n ∈ {4, 8, 16}. After MixColumns and the parity pre-

diction (4.20), the output state is T = {t0, t1, . . . , tn}, where t0 = p, and the rest is the

output of MixColumns . Introducing an error E = {e0, e1, . . . , en} into the state S =

{p, s0, s1, . . . , sn−1}, then the errors of the (n + 1, n) CRC in MixColumns are undetectable

if and only if the summation
∑n

i=0 ei is zero.

Proof: The syndrome
∑n

i=0 ti is used to check whether errors occurred or not. It is

assumed that no errors occurred, if and only if the syndrome is zero. The summation of the

erroneous output state is
n∑

i=0

t′i = (t0 + e0) +
n∑

i=1

t′i

From (4.25), because n is the multiple of four, the above equation is represented as
n∑

i=0

t′i = (t0 + e0) +
n∑

i=1

(si−1 + ei),

= t0 +
n−1∑
i=0

si

︸ ︷︷ ︸
0

+
n∑

i=0

ei,

=
n∑

i=0

ei.

Therefore, the error is undetectable if and only if
∑n

i=0 ei is zero.

From Theorem 3, there are ((28)16 − 1) nonzero errors that are undetectable, when the

(17, 16) CRC is applied to a 128-bit data block. This result is the same as those in the affine

transformation described above. Similarly, the total number of the undetectable errors for

the (9,8) or (5,4) CRC is ((28)4 − 1)4 or ((28)8 − 1)2, respectively.
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4.5.3 The undetectable errors in ShiftRows or AddRoundKey

ShiftRows does not change the value of the input state, and AddRoundKey only EXORs

the input state with a round key. Therefore, the undetectable errors are the same as those

analyzed in the affine transformation or MixColumns .

4.6 Detection Levels

The proposed scheme may be used in operation-level, round-level or algorithm-level error

detection. In operation level detection, the syndrome is checked at the end of each oper-

ation. Similarly, if the syndrome is obtained at the end of each round, it is round-level

detection. The implementation of operation-level error detection is easy to figure out. The

syndrome is calculated at the end of each operation according to the equations derived in

Section 4.4. However, the implementation of a round-level detection needs more ingenuity,

when the SubBytes is protected by united SubBytes. The parity is generated at the end

of the SubBytes or the beginning of the ShiftRows . Then, the parity directly passes

through ShiftRows , and MixColumns , because its value will not be changed after the

two operations. Finally, the parity is EXORed with the key parity. The total path is shown

in Fig. 4.9 below. Obviously, the syndrome could be then checked at the end of the round. In

hybrid SubBytes, the structure for round-level error detection is similar to Fig. 4.9, but the

parity is generated after the GF (28) inversion. Because the parity of the state, in ith round,

can not pass through the inversion of GF (28) in i+1 round, the parity must be re-generated

in each round. Therefore, united-SubBytes detection or hybrid-SubBytes detection cannot be

implemented as algorithm-level detection.

However, each operation of parity-based SubBytes is protected by (n + 1, n) CRC, hence

the parity could pass through a round. Therefore, parity-based SubBytes could be applied

as an operation-level, round-level, or algorithm-level error detection.
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AddRoundKey

SubBytes

ShiftRows

MixColumns

State

Parity

Figure 4.9: The proposed scheme under round-level error detection.

4.7 Features and Costs

4.7.1 Scalability

In Section 4.4, it was found that the three error detections, (n + 1, n) CRC, where n ∈
{4, 8, 16}, had similar structures. The calculations of parities or syndromes were all based

on Byte-EXOR (B-EXOR) operation and the length of the message was a multiple of four

bytes. Therefore, the proposed approach is scalable with practical hardware design; in other

words, the three CRCs can be applied to an AES implementation of an 8-bit, 32-bit, or

128-bit structure. In general, the portable devices are more probable to encounter DFA than

non-portable device. Therefore, the scalability of error scheme is good for practical purposes,

because 8-bit and 32-bit architectures are most commonly used in portable applications, such

as cell phones, SmartCard, or RFID tag.

The approach proposed by Bertoni et al. [3] cannot easily be scaled down into the 8-bit

architecture, because the parity of si requires the information from si+1 and si+2. However,

this work can easily be applied to an 8-bit, 32-bit or 128-bit AES architecture. The syndrome

generation is similar to parity generation. Fig. 4.10 shows a block diagram of (4.17) and

(4.16) for 8-bit AES architecture. While sixteen bytes ti, are obtained, the syndrome u

is obtained immediately, where the initial value of parity registers as a zero byte. The
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ShiftRows , MixColumns , or AddRoundKey have similar structures to Fig. 4.10, but

the matrix transformation, A, is not required. The 32-bit or 128-bit AES can also be

implemented, based on the concept in Fig. 4.10.

Affine A

parity

is

it

Syndrome, u

parity

Figure 4.10: The block diagram of error detection for 8-bit AES architecture.

The 32-bit architecture is the most flexible structure from the point of error detection,

because it could use (17,16), (9,8) or (5,4) CRC to achieve the error detection objective. No

matter which one is selected, it is possible that only a one-byte register is required to store

the parities. However, the input must be a one-column vector, defined in AES; thus, (4.20)

may be used to detect faults for a one-column calculation.

4.7.2 Symmetry

From Fig. 4.10, it can be seen that the proposed scheme is symmetric in both encryption

and decryption. This has the advantage of the encryption and decryption being integrated

into one chip. However, the scheme proposed by Bertoni et al. [3] is asymmetrical in

MixColumns and InvMixColumns . As shown in Table 4.1, the output parity prediction

of InvMixColumns is more complex than that of MixColumns .

4.7.3 Costs

While introducing proposed error detection schemes into AES, hardware cost, required by

those schemes, is evaluated through their computational complexity. Error detection consists

of two parts– the parity and syndrome generation. Discussing the cost in parity generation
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Table 4.1: The cost of syndrome generation in each AES operation. (B-EXOR = 8 b-EXORs,

b-EXOR=bit EXOR operation, EN=encryption, DE=decryption, AM = affine multiplica-

tion)

Ours (n =16, 8 or

4)

Bertoni [3] Karri [31]

Bit number of parity 8/16/32 bits 16 bits 0 bit

SubBytes USB InvSubBytes m×256 bytes mem-

ory, and compari-

son circuits.

HSB the GF (28) inver-

sion, 16 × 8 b-

EXORs, and 1/2/4

AMs

— InVSubBytes

PbSB 32 × 8 b-EXORs,

16 × 8 b-EXORs,

and 1/2/4 AMs

—

ShiftRows 16× 8 b-EXORs 16× 8 b-EXORs InvShiftRows

MixColumns
Cost in EN 16× 8 b-EXORs 16 × 8 + 16 × 4 b-

EXORs

InvMixColumns

Cost in DE 16× 8 b-EXORs More complicated

than in EN

MixColumns

AddRoundKey (16 + 1/2/4)× 8 b-

EXORs

16 × 8 + 16 b-

EXORs

AddRoundKey
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first, in our proposed schemes, the parity requires only the EXOR operation. A total of

(n − 1) × 16
n

Byte-XORs (B-EXOR) is required to calculate the parity of the input for the

proposed approach. Taking the (5, 4) CRC for a 128-bit data block as an example, one

checksum of an input message is generated by three B-EXORs, and a total of 12 B-EXORs

for four parities. However, united SubBytes uses InvSubBytes to check error, so no parity

generation is required. In hybrid SubBytes, the (n + 1, n) CRC is applied to the affine

transformation; fifteen, fourteen or twelve B-XORs are required to produce the parities for

n being 16, 8 or 4, respectively. In the method proposed by Bertoni et al. [3], 16 × 7

bit-EXORs (b-EXOR) were required to obtain sixteen one-bit parities for an AES state. In

[31], they used the inversion operation to detect the errors; hence, no parities were paid

for. However, the hardware of parity generation is minor, because the parity generation is

required to perform at the beginning of the parity-based detection is applied. In PbSBD,

because the parity can pass through each operation along with predicting the parity, the

parity generation only performs once. In USBD and HSBD, the parity must be regenerated

in SubBytes of each round; nevertheless, only one circuit of parity generation is required

when one round is implemented to achieve AES computing. In the approach of Bertoni et

al. [3], the parity also can pass through the round; hence, one circuit of parity generation is

required.

As regards the cost of the syndrome generation, it varies from operation to operation.

United SubBytes uses the InvSubBytes to detect errors. In hybrid SubBytes, the GF (28)

inversion is used to check errors; the (n + 1, n) CRC is used to detect errors. According

to (4.17), 16 B-EXORs are required to obtain the syndrome for every (n + 1, n) CRCs.

However, the execution number of affine multiplication, (4.16), depends on n; the number

is one, two or four, when n is 16, 8 or 4, respectively. For parity-based SubBytes, the

cost in affine transformation is the same as that in hybrid SubBytes. However, the GF (28)

inversion also uses (n + 1, n) CRC; according to (4.14), 32 B-EXORs are required (note

that the (ti+1 + t−1
i+1) in (4.14) is obtained from table, not requiring EXOR calculation). In

ShiftRows and MixColumns , no prediction functions are necessary, and the syndrome is

obtained by summing all output byte and the parity. Therefore, in the two operations, 16

B-EXORs are required. In AddRoundKey , the one, two or four one-byte parities of a round

key are involved in the calculation, requiring extra B-EXORs to be paid for.
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The costs of Bertoni et al. [3]’s approach are varied in each operation. The SubBytes

requires extra m 256-byte memory spaces, where m is dependent on the implementation of

the AES. Taking an AES implemented in a 32-bit structure as an example, four bytes are

calculated in parallel, thus four tables are required. The size of a table with error detection,

in [3], is a double of that in AES, so a total of 512 bytes is for one table, i.e., 256 extra

bytes are caused for one table. The 256 extra bytes are constants with odd parity, e.g.,

00000000 1; therefore, one comparison circuit or syndrome generation circuit are required

to detect the error. The error detection of one byte, appended with one-bit parity, requires

eight b-EXORs (bit EXOR operation), or a total of 16 × 8 b-EXORs for a 128-bit data

block. However, Bertoni et al.’s scheme must predict the output parity in MixColumns ,

therefore the extra calculations of 16 × 4 b-EXORs are required in the encryption process.

In decryption, the error-detection hardware for InvMixColumns is more complicated than

in encryption. Because the prediction of InvMixColumn is not derived in [3], the cost is

not specified in Table 4.1. The costs of Karri et al.’s scheme required the inversion of each

operation and it was also time-consuming. The operations in the key expansion are similar

to the four major operations of AES; thus, the detailed comparisons of the key expansion are

not discussed. Although most operations require 16 B-EXORs to compute the syndrome, it

is possible to achieve the computation with less B-EXORs.

4.8 Performances

Table 4.2: The possible combinations of our proposed schemes.

USBD HSBD PbSBD

(17,16) (17,16) (17,16)

(9,8) (9,8) (9,8)

(5,4) (5,4) (5,4)

All simulations and statements, addressed here, are also under the three assumptions

given in Section 4.5. Three architectures, USBD, HSBD and PbSBD, were proposed herein;

each architecture has three types of CRC, (17,16), (9,8) and (5,4) CRCs, as shown in Ta-

ble 4.2. Thus nine methods were simulated. In PbBSD, the data procedure is thoroughly
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protected by the (n + 1, n) CRC; thus, each operation has undetectable errors. However,

in USBD, the fault coverage in SubBytes is 100%, so the amount of overall undetectable

errors is 80% of that in USBD. Similarly, in HSBD, the amount is reduced 75% of that in

USBD.

AddRoundKeyi

SubBytesi

ShiftRowsi

MixColumnsi

107th data block

2nd data block

1st data block

.

.

.

107th  error block

2nd error block

1st error block

.

.

.

128 bits

128+8/16/32 bits

Pseudo random
data pattern

Pseudo random
error patterns

Pseudo random
 error assignm

ent
(uniform

 distribution)

Select round i

26 error patterns

1-bit error of each 
error block n-bit error of each 

error block

random-bit error 
of each error block

Figure 4.11: The simulation model. Each data block has 64 ones, and the position of ones

uniformly distributed in a data blcok. The error bits uniformly distribute in an error block.

The assignment of error blocks uniform distributes in both rounds and operations.

The simulation model is shown in Fig. 4.11. Each method is simulated by twenty six

tests distinguished by the bit number of the injected errors. The last test in Fig 4.12,

Fig. 4.13 and Fig. 4.14, labeled as random, used error patterns with random erroneous bit

number. Each error pattern has 107 blocks, and the bit length of every block is 136(128+8),

144(2× (64 + 8)), or 160(4× (32 + 8)), respectively for the (17,16), (9,8), or (5,4) CRC. The

all-one error block was considered as a totally different state; hence, the maximum number

of erroneous bits was 135, 143, or 159 in random test. Each test used one data pattern of 107

data blocks, and every block has 64-bit ones of normal distribution. The erroneous rounds

and erroneous operation were also randomly chosen.

As seen in Fig. 4.12, all the simulated odd-bit errors were detected. The percentage of

the undetectable errors dropped dramatically, as the erroneous bit number increased. When

the number of erroneous bits was greater than eight, the percentage was below 1%, and
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stable. The test using random erroneous bits is about 0.3%, and it was close to the theoretic

value obtained in Section 4.5, 0.4%. Obviously, all the experimental results followed the

curves of ideal cases.
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Figure 4.12: Percentage of undetectable errors of the (17,16) CRC over GF (28).

The same data patterns used in the above tests were also used for the (9,8) CRC and

the (5,4) CRC; all test conditions, except for the error patterns, were identical to those used

to test the (17,16) CRC. The (9,8) CRC generated two parities for a 128-bit data block.

Because the values in the two tests, 2-bit and 4-bit erroneous bits, are too large, they were

dependently shown in Fig. 4.13. All odd-bit errors were also detected. The percentage also

dropped dramatically when the erroneous bits increased, as shown in Fig. 4.13. For the

random test, the percentage is about 0.14 × 10−2%, very close to the theoretical value of

0.16× 10−2%.

In Fig. 4.14, the results of the (5,4) CRC and Bertoni et al. [3] are shown. Obviously,

this percentage is very small in contrast to the (17,16) CRC or the (9,8) CRC. When the

number of erroneous bits was larger than 16, the percentages of undetectable errors dropped
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to zero. The percentage in the random test was 0%, very close to the theoretic value of

2.56× 10−8%. Of course, all odd-bit errors could be detected.

Fig. 4.14 also shows the results in Bertoni et al. [3]. The test models of Bertoni et al.

[3] are different from ours. They have injected multiple bit errors (between 2 to 16) at the

beginning of the round. From Fig. 4.14, their scheme has better error detection than ours,

when the errors are between 2 to 6, and the cases of 8-bit errors are close. When the number

of erroneous bits is above 10, the performance of the proposed scheme is better than that of

Bertoni et al. [3].
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Figure 4.13: Percentage of undetectable errors of the (9,8) CRC over GF (28). The percentage

is 4.14% for 2-bit errors and 0.67% for 4-bit errors.
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Figure 4.14: Percentage of undetectable errors of the (5,4) CRC over GF (28). The percentage

is 1.8% for 2-bit errors and 0.13% for 4-bit errors.
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4.9 Parameterized Rijndael Algorithm

According to the algebraic properties described in Section 4.2. The model of Rijndael is very

mathematical, and the operations are easy to represent in equations over GF (28) and GF (2).

The constants, chosen in the design of Rijndael, are security-concerned and implementation-

oriented. However, it is possible to replace the coefficients in Rijndael algorithm without

changing the strength. In this work, the irreducible polynomial, the matrix of MixColumns ,

the matrix of affine transformation is changeable.

4.9.1 Change irreducible polynomial

The irreducible polynomial affects the implementation of multiplication over GF (28). In

Rijndael, the SubBytes and MixColumns obtain different values with different irreducible

polynomials. The multiplication and inversion over Galois Field are time-consuming; hence,

changing irreducible polynomial lets the hardware design of SubBytes and MixColumns

more complex and more inefficient than that of original Rijndael. For enhancing the per-

formance, the technique of basis conversion is adopted to speed up the SubBytes , and

xtime n(ci) is calculation in advance, where n ∈ {0, 1, . . . , 7}, i ∈ {0, 1, 2, 3}, and ci is the

entry of the MixColumns matrix.

The SubBytes includes two calculations, the GF (28) inversion and the affine trans-

formation. In the proposed design, the implementation of the GF (28) inversion uses the

techniques including basis conversion and the composite-field inverter. The basis conversion

[25] changes the representation of an element, over GF (2m), from a basis to another basis

with an m×m matrix over GF (2). If any input is transformed into the representation in a

fixed basis, then the GF (28) inversion in parameterized Rijndael can be implemented in a

fixed-basis architecture.

Suppose that an element αB1 ∈ GF (28) is given, where αB1 denotes the representation

of α by means of basis B1, and the element αB1 is transformed into the fixed basis B0

before performing the GF (28) inversion. The GF (28) inversion calculates in B0, and then

the outcome of inversion is transformed back to the basis B1. The block diagram is shown

in Fig. 4.15.

We choose the irreducible polynomial defined in Rijndael as B0, so the hardware design
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GF(28)
Inverter

-1

B0
B1 B0 B0 B1

Figure 4.15: Basis conversion in SubBytes

of the GF (28) inverter could be adopted an existing one. In this work, the implementation of

GF (28) inverter implemented in the GF (((22)2)2) field, proposed in [57]. Two isomorphism

functions are required between GF (28) and GF (((22)2)2).

isomorphism Θ : GF(28) → GF(((22)2)2) (4.26)

isomorphism Θ−1 : GF(((22)2)2) → GF(28) (4.27)

The two isomorphism matrices are

Θ =




1 1 0 0 0 0 1 0

0 1 0 0 1 0 1 0

0 1 1 1 1 0 0 1

0 1 1 0 0 0 1 1

0 1 1 1 0 1 0 1

0 0 1 1 0 1 0 1

0 1 1 1 1 0 1 1

0 0 0 0 0 1 0 1




, Θ−1 =




1 0 1 0 1 1 1 0

0 0 0 0 1 1 0 0

0 1 1 1 1 0 0 1

0 1 1 1 1 1 0 0

0 1 1 0 1 1 1 0

0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 1 1




. (4.28)

The GF (((22)2)2) inverter replaces the GF (28) inverter in Fig. 4.15, as shown in Fig. 4.16,

and the four matrices, Λ, Λ−1, Θ and Θ−1 ,can be merged into two matrices, Γ = Λ×Θ and

Γ = Θ−1 × Λ−1, to reduce the computing times. There are thirty 8-degree irreducible

polynomials, i.e., thirty bases, {B0, B1, ..., B29}. Therefore, the 58 matrices, {ΛBi→B0 ×
Θ, Θ−1 × Λ−1

Bi→B0
}, can be calculated beforehand by using the algorithm described in [25],

where i ∈ {1, 2, . . . , 29}. The 58 matrices only require memory space of 464 (58 × 64 bits)

bytes. In this work, ΓBi→B0 and Γ−1
B0→Bi

are given from the outside, not being stored in the

chip.
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GF(((22)2)2)
Inverter
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B0B1 B0 B0 B1

-1

Figure 4.16: The computation of GF (28) inversion with arbitrary irreducible polynomial

4.9.2 Change affine matrix

The affine transformation in Rijndael composes of an 8 × 8 matrix multiplication and an

8× 1 vector addition,

β = Aα + B,

where α and β ∈ GF (28), A is an 8 × 8 matrix over GF (2), and B is an 8 × 1 vector

over GF (2). In Rijndael, the affine transformation is obtained from the modular polynomial

multiplication followed by an addition,

β(x) = α(x)(x7 + x6 + x5 + x4 + 1)+,

(x7 + x6 + x2 + x) mod x8 + 1.

This polynomial calculation results in a circulant matrix A in original Rijndael. However,

the affine transformation is bijective, if and only if the matrix A is unique; hence, any unique

8× 8 matrix over GF (2) could be applied to affine transformation in this work. The matrix

multiplication is implemented by using only AND and XOR gates in this work.

4.9.3 Change MixColumns matrix

Because the irreducible polynomial is changeable, the implementation of xtime() function,

described in [12], should be modified. In addition, the MixColumns matrix is also change-

able in this work. If each multiplication of two elements of GF (28) is achieved by repeating

xtime() , the performance of MixColumns will drop dramatically. Therefore, after the
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irreducible polynomial, m(x), and the MixColumns matrix, C, are given,

C =




c0 c1 c2 c3

c3 c0 c1 c2

c2 c3 c0 c1

c1 c2 c3 c0




(4.29)

the value of xtime n(ci) is calculated beforehand and stored in 4 × 8 8-bit registers, where

ci is the entry of MixColumns matrix, and n ∈ {0, 1, . . . , 7}. Suppose s0 = 0xCA in (4.5),

the calculation of c0 × 0xCA is achieved by

c0 × 0xCA = 1 · xtime 7(c0) + 1 · xtime 6(c0)+,

0 · xtime 5(c0) + 0 · xtime 4(c0)+,

1 · xtime 3(c0) + 0 · xtime 2(c0)+,

1 · xtime (c0) + 0 · c0.

In this approach, there are 32 8-bit registers to save xtime n(ci) of MixColumns or InvMixColumns .

4.10 The Hardware Structure

In this work, a 128-bit half-duplex parameterized Rijndael is proposed, and its architecture is

depicted in Fig. 4.17. The key schedulers for encryption and decryption are also implemented.

The solid line is the encryption path, and the dash lined is the decryption path. In order to

make the decryption have the identical sequence of operations as encryption has, the positions

of AddRoundKey and InvMixColumns are exchanged. Therefore, InvMixColumns also

presents in key scheduler in decryption. Considering a 128-bit state, x, is processed with a

normal sequence, AddRoundKey and then InvMixColumns ,

x′ = C−1 × (x + k),

where k is a round key. If the sequence is reversed, i.e., InvMixColumns and then

AddRoundKey , then x′ is

x′ = C−1x + C−1k.

Therefore, the InvMixColumns has to be incorporated into the key scheduler in decryption

to obtain C−1k.
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text_Reg

[ ]       [A-1 ]
Matrix multiplier

GF(((22)2)2) inverter

[ -1
A]        [ -1]

Matrix multiplier

ShiftRows

MixColumns
InvMixColumns

[ ]
Matrix multiplier

RotWords

GF(((22)2)2) inverter

[ -1]

Matrix multiplier
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round key

8'h63

8'h63

8'h63^Rcon

RoundKey

SubWordSubBytes

Figure 4.17: Architecture of parameterized Rijndael designed in this work. The dash line is

the decryption path.

In this architecture, the generation of round keys in decryption is on-the-fly to save

the memory requirement for storing every round key. In decryption, the final round key is

generated first, and then is used to produce other round keys. The data procedure is a 128-

bit architecture, i.e., 16 bytes are processed simultaneously. In key schedule, the structure

is 32-bit; hence, the SubWords calculates one 32-bit word per clock cycle. However, the

InvMixColumns in key schedule processes one 128-bit state per clock cycle.

For enhancing the throughput, a six-stage pipeline designed based on the architecture

shown in Fig. 4.17 is proposed. The critical path delay of SubBytes is largest; hence, it is

divided into three stages, and one stage for each remaining operation.
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4.10.1 Input Coefficients

In order to utilize this module easily, the data bandwidth of the input and output interface

is 32-bit. In the proposed architecture, besides the key and text, the coefficients of Rijndael

also need to be given. The bit number of each coefficient is given in Table 4.3.

Table 4.3: The bit number of each changeable coefficient

Parameters Bit number (bits)

basis conversion matrix (Γ) 64

inverse basis conversion matrix (Γ−1) 64

affine matrix 64

inverse affine matrix 64

affine constant 8

row vector of C 32

As that described in subsection 4.9.1, instead of the irreducible polynomial m(x), the

8× 8 matrix of basis conversion and its inverse are as inputs. The affine matrix can be any

unique matrix, so 64-bit input is required. Because the matrix over GF (28) in MixColumns

is circulant, only a 32-bit row vector is necessary.

4.10.2 Initialization

Text
(4)

Key
(4)

Parameter
(9)

Parameter
initialization

Key
Round1

Next_Text
(4)WDATA input

Parameter

Key

Cipher

RDATA output

Key
Round2

Text
Round1

Text
Round2

Text
Round11

Next_Text
Round1

Key
Round1

Key
Round2

Plain_text
(4)

Next_Text
(4)

4 cycles 4 cycles 9 cycles 1 cycle 11 cycles

Latency : 29 cycles Throughput : 11 cycles

Figure 4.18: Clock distribution of the normal structure.

Once coefficients listed in Table 4.3 are given, an initial process is required. When

encryption function is set, the initial process calculates Γ−1A in Fig. 4.17, and 32 8-bit
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registers, storing xtime n(ci), for MixColumns . In decryption, A−1Γ and xtime n(ci) is

calculated in initial process. Besides, the key scheduler has to compute the final round key

according to the given cipher key. Therefore, the latency of decryption is larger than that

of encryption by 66 clock cycles in pipeline structure or 11 clock cycles in normal structure.

Text1~6
(24 cycles)

Key
(4 cycles)

Parameter
(9 cycles)

Parameter
initialization

Key
Round1

Next_Text1~6
(24cycles)

WDATA
input

Parameter

Key

Cipher stage 1

24 cycles 4 cycles 9 cycles 1 cycle 66 cycles/block
Latency : 104 cycles

Text1 Text2 Text3 Text4 Text5 Text6

Text1 Text2 Text3 Text4 Text5 Text6

Text1 Text2 Text3 Text4 Text5 Text6

Text1 Text2 Text3 Text4 Text5 Text6

Text1 Text2 Text3 Text4 Text5 Text6

Text1 Text2 Text3 Text4 Text5 Text6
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Cipher stage 4
Cipher stage 5
Cipher stage 6

Text1 Text2 Text3 Text4 Text5 Text6

Text1 Text2 Text3 Text4 Text5
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Round2
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Text7 Text8 Text9 Text10 Text11 Text12
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Round 10

Round 11

Figure 4.19: Clock distribution of the pipeline structure.

The clock cycles of the normal structure and the pipeline structure are depicted in

Fig. 4.18 and Fig. 4.19. The two figures are illustrated under the assumption that the

coefficients are given at the beginning of a transmission and not changed during a transmis-

sion. Obviously, in normal structure, the latency of the first block requires 29 clock cycles,

and each following block requires 11 clock cycles to process. In the pipeline structure, the

latency of the first block needs 104 cycles, and each following block requires 66 clock cycles.

4.11 Results

The gate counts and performance of the normal structure and the pipeline structure are

described in Table 4.4. The throughput is estimated under the assumption that the coeffi-

cients are given at the beginning of a transmission, and not altered during the transmission,

as shown in Fig. 4.18 and Fig. 4.19. We achieve 1.7902 Gbps and a 153 MHz on a 0.18-µm

CMOS standard cell library for a speed-optimized normal structure, and 4.9516 Gbps and

425 MHz for a speed-optimized pipeline structure.
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Table 4.4: Performance of the two proposed structures. The gate counts are obtained from

0.18-µm CMOS standard cell technology. C/B = cycles per block, GC = gate counts, MF

= max frequency, Thr. = throughput, OF = optimization factor.

Structure C/B GC (k) MF (MHz) Thr. (Gbps) OF

Normal
11 70.855 76.51 0.8903 area

11 83.094 153.84 1.7902 speed

Pipeline
66 124.518 212.77 2.4758 area

66 125.993 425.53 4.9516 speed

Table 4.5 shows the detail gate counts of each submodule in the normal and pipeline

structures. The cipher core of the normal structure has gate counts of 63.392k and 75.482k,

respectively, for area optimized and speed optimized configuration. The cipher core of the

pipeline structure has gate counts of 98.719k and 96.198k, respectively, for area optimized

and speed optimized configuration. However, the speed-optimized cipher core has less gate

counts than area-optimized cipher core has; event hough, the entire gate counts of the speed-

optimized design is larger than that of the area-optimized design.

Table 4.6 shows the performance comparisons. The function of changing coefficients

needs massive hardware costs to achieve, although our results are also compared with other

implementations of original AES. From Table 4.6, our results provide throughput over gigabit

per second, and the gate counts do not hugely increase.

4.12 Conclusions

This work has proposed a simple, symmetric, and high-fault-coverage error detection schemes

for AES. Although error bits are diffused in AES, this work used the linear behavior of each

operation in AES to design CRC. This scheme only uses a (n + 1, n) CRC to detect the

errors, where n ∈ {4, 8, 16}, and the parity of the output of each operation is predicted in

a simple fashion. Even though the number of parities is two or four, respectively for n = 8

or n = 4, it is possible to use only one 8-bit register for storing the parities during hardware

implementation. This error detection may also be used in encryption-only or decryption-only

designs. Because of the symmetry, the encryption and decryption circuit can share the same
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Table 4.5: The detail hardware cost of each submodule in the normal and pipeline structures.

GC = gate counts; P. = percentage.

Normal structure Pipeline structure

Submodules Area optimized Speed optimized Area optimized Speed optimized

GC

(k)

P.

(%)

GC

(k)

P.

(%)

GC

(k)

P.

(%)

GC

(k)

P.

(%)

P-Rijndael core 63.392 89.34 75.483 90.84 98.719 79.28 96.198 76.35

Control 0.142 0.2 0.181 0.22 0.212 0.17 0.258 0.2

register tables 3.696 5.21 3.708 4.46 3.710 2.98 3.668 2.91

Cipher 34.774 49.06 46.797 56.32 59.213 47.55 58.087 46.10

– Data register 0.981 1.38 0.981 1.18 5.546 4.45 5.546 4.40

– (Inv)MixColumns 16.447 23.2 20.423 24.58 20.908 16.79 21.358 16.95

– ShiftRows 0.324 0.46 0.861 1.03 0.324 0.26 0.555 0.44

– SubBytes 13.999 19.75 20.259 24.38 25.520 20.50 23.148 18.37

Key schedule 24.717 34.87 24.797 29.84 35.584 25.58 34.176 27.13

– Key registers 0.981 1.38 0.981 1.18 3.776 3.03 3.776 3.00

– InvMixColumns 16.329 23.04 16.329 24.58 20.743 16.66 19.215 15.25

– SubBytes 3.360 4.74 3.289 3.96 7.990 6.42 7.517 5.97

Input interface 4.799 6.77 4.853 5.84 10.896 8.73 11.878 9.43

Output interface 2.758 3.89 2.758 3.32 14.930 11.99 17.909 14.22

Total 70.885 100 83.094 100 124.518 100 125.993 100

error detection hardware. In addition, the proposed scheme can easily be implemented in a

variety of structures, such as 8-bit, 32-bit or 128-bit structures.

A Rijndael algorithm with changeable coefficients is also designed in this work. Two

architectures are proposed – the normal architecture and the pipeline architecture. The

former provides 1.7902 Gbps and costs 83.094k gate counts on 0.18-µm CMOS cell standard

library; the later provides 4.9516 Gbps and costs 125.993k gate counts. The goal of this

design is providing customized security for virtual private network (VPN) application. In

VPN, sessions do not need to compatible with standard traffics; hence, the enterprize can

configure their own coefficients to protect their network. In addition, our designs provides
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Table 4.6: Performance comparison. Ichikawa [24], Kuo [33], Satoh [57], Lin [38].

[24] [33] [57] [38] Ours: normal case Ours: normal pipeline

Technology (µm) 0.35 0.18 0.11 0.35 0.18 0.18

Clock rate (MHz) N/A N/A 224.22 200 153.84 425.53

Throughput (Gbps) 1.95 2.609 1.328 2.008 1.7902 4.9516

Gate counts (k) 612 173 21.337 58.430 83.094 125.993

Change coefficients No No No No Yes Yes

throughput over gigabit per seconds, so they are suitable for Fast Ethernet or Giga Ethernet.
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Chapter 5

Future Works

5.1 Futures of Secrecy-Channel Coding

The structure of secrecy-channel coding proposed in Chapter 2 is too scalable to analysis its

security. From the results listed in Section 2.6, only the randomness is examined. However,

the structural security against attacks for stream ciphers, e.g., correlation attacks, linear

consistency test, linear syndrome algorithm and linear cryptanalysis, is not investigated

herein. First, the analysis works can be focused on the structure of one SHSR with a fixed

random vector, and then expand the results to the entire system. Additionally, the PRVG

can be replaced by a stream cipher. Because the PRVG is used to generate a fixed-length

binary sequence, a stream cipher also can accomplish this kind of work. In general, the

security of a well-designed stream cipher is stronger than that of PRVG. Therefore, it is

possible to make the proposed secrecy-channel coding more secure than the original one.

5.2 Futures of Secure MP3

For a DRM solution on MP3 music, proposing only a multimedia cipher is insufficient.

Several mechanisms, including key exchange, authentication, digital signature or building of

a secure channel, are also required. For example, in this dissertation, the secure MP3 is finally

deployed on a dual-core system; however, the channel between RISC and DSP is exposed to

crackers for intercepting the unprotected traffics. Therefore, for a ideal secure environment,

the secure channel has to be built between RISC and DSP. Besides, the management of
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content key and license distribution are another interesting research to complete this topic.

In addition to complete the research, the proposed concept also can be put in use on other

audio, image or video compression algorithm.

5.3 Futures of Two Results about AES

The results of error detection built in AES is fruitful, but a realization in hardware will

certainly make the research more solid. How much the hardware will be brought in? How

much decrement of throughput will be while performing encryption/decryption and error

detection in the meantime. As for parameterizable Rijndael, its applications to customized

security are interesting topics, e.g., the basis-invariant MixColumns matrix, the orthogonal

MixColumns matrix. The basis-invariant matrix and its inverse are always mutual inverse

without changing the representation of each entry, when the basis is changed. Therefore,

we can use any irreducible polynomial m(x) in a session, and the ciphertext always can be

correctly decrypted. In other words, only m(x) is modified, rather than every coefficients,

during a session. This will save the time for initializing MixColumns matrix.
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