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The Study of Hybrid Coding on Convolution Codes, MP3 and
AES

student : Chih-Hsu Yen Advisors : Dr. Bing-Fei Wu

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

This dissertation presents three hybrid coding techniques on convolution code,
MP3 and AES to enhance the coding efficiency: of overall data coding flow or their
application value. Each hybrid coding. technique:is based on secrecy coding, and
accompanied by channel coding or source coding. First, state-hopping shift registers
are proposed instead of the shift registers used in convolution code to obtain a new
coding scheme. A pseudo-random vector generator (PRVG) is incorporated into the
new scheme to achieve secure coding and channel coding simultaneously. The new
scheme can be either a pure cryptosystem or a secrecy-channel coding by demand. If
the secrecy-channel coding is chosen, the decoder of this new scheme is modified
from the sequential algorithm, which is a decoding algorithm for convolution code.
Finally, we apply (n+1, n) cyclic redundancy check (CRC) in the implementation of
AES, where n is 4, 8 or 16 to let that implementation against differential faults attacks
(DFA).



Ny oy

=1 >4
#iS =)
%A BT AR Sa BT Ra v S E S L2 RY e [ 3RG o AT
B o SR FREPE AR A 0 af A TR A A
X e % oo
Ao R H A R e 5 A W TR B RS R — G R i
AR G P L RR 2 BRI R R AR BB T R G L
:\m#%ga%gm_flﬁﬁxg{;fh,xf P e ¢§}%m,&g ICREE ERE iyl L S N S NP
E/—??{aﬁ-}\}jﬁkﬂ Laﬁ!}f ;i&}f@-ﬂ'\f‘;iim ‘B\)J”wii;ﬁ%mm(% L%ﬁﬂ@m&ﬂk .
#:k—;}frﬁ%;i{":g%ﬁﬂ;* 'i»vv”ﬁ’“‘ﬁ&ﬁﬁzvﬁ”“/”r& ‘*‘”’?’tgﬂ; 6[&]¢TL.—P ’?ﬂ}ir
B e X XFFA WR - BRI g Ao TR - A E R X LR
g?lﬁ: ',eA, a;y‘ﬁj%i o
bR LR AR imﬁ%g%Poﬁ“- S8 AR 2k R
ABEE a7 e B FAR Y > BIRIE A A ot ATy o 3 v g W frEA R
o B EAR AR o o PF o A L BT E B L Ty d o BMA AT R T FEL s
B fop-go BAGER T hE & ARG 0 B B0 AP A 2 B P PR A A
i g g
B 18 QA RF frpdkanad L EHEE LA R oAk - TR LG R
A it 4 j;g_um)ﬁmxaf i3 ¥
RV =~
RRYE A L E H'L'r}, BEE A



=L

EHE(FR)

1. 2004, 4eq + % ipy A @ (if * ** RISC 2. MP3 78 B B jv)
2. 2003, " LfEEET R (EFENCEHA2 AESASICH BT BRI L)
3. 2003, ¥ LEEFT IR (B2 FMERH a2 oL PR 27T )
4. 2001, ¢ L& 7 e (The Research of A Configurable Architecture of Vector Signal
Processors)

e

1. 2005, % - E# 4 A SIP K #E Mg iF
2. 2004, %+~ EdEEGhY B OTAPEE YA TiEE
3. 2008, ¥ ¥% Wﬁw?% ¥ EF 3 LA I
4. 2003, FmE2 %k &€ F 7 B TICI00 4 44147% ¥ K.
5. 2003, pr% % = &L EHE AR AR TR* =
6. 2001, pr% % - ELERUTART L F T - B FE TREAIL



[1]

[2.]

[3.]

[4.]

[5.]
[6.]

[7.]

[1]

[2.]

[1]

FIiTP &

Journal

Chih-Hsu Yen, and Bing-Fei Wu, “An Error-Correcting Stream Cipher Design with
State-Hopping Architecture,” Journal of the Chinese Institute of Engineers, Vol. 28,
No. 1, pp. 9-16, 2005.
Chih-Hsu Yen, Hung-Yu Wei, and Bing-Fei Wu, “New Encryption Approaches to MP3
Compression,” WSEAS Transactions on Acoustic and Music, Issue 4, Vol. 1, pp.
165-172, Oct. 2004.
Chih-Hsu Yen, and Bing-Fei Wu, “An Efficient Implementation of a Low-Complexity
MP3 Algorithm with a Stream Cipher,” Multimedia Tools and Applications,
(accepted,2005)
Chih-Hsu Yen, Yu-Shiang Lin, and Bing-Fei Wu, “A Low-complexity MP3 Algorithm
Using a New Rate Control and a Fast Dequantization,” IEEE Transactions on
Consumer Electronics, (accepted, 2005)
TR B -BTF G EL D2 HRB N Bk 0 092133583 -
Chih-Hsu Yen, and Bing-Fei Wu, ‘Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard,” IEEE Transactions on Computers,
(revised 1, 2005)
Chih-Hsu Yen, Tsung-Yao Pai,.and Bing-Fei Wu, “Efficient Implementations of the
Rijndael Algorithm with Changeable Coefficients,” submitted on IEEE Transactions
on Computers, 2005.

Conference
Hung-1 Chin, Chih-Hsu Yen, and' Bing=Fei 'Wu, “An observer-based secure system
with chaotic signals,” Proceedings of 1998 Conference on Industrial Automatic
Control & Power Applications, Kaohsiung, pp. A2-28-A2-32, 1998.
Chih-Hsu Yen, Tsung-Yao Pai, and Bing-Fei Wu, “The Implementations of the
Reconfigurable Rijndael Algorithm with Throughput of 4.9Gbps,” accepted on the
16th VLSI Design/CAD Symposium, 2005.

Book

T ~paue-sHE» 42 F 5%k & Audio Coding s+ p t MP3 &
203 »ERF



Contents

Abstract (Chinese)
Abstract (English)
Acknowledgement
Vita

Publication List
Contents

List of Figures
List of Tables

1 Introduction

2 A Stream Cipher Based on Convolution Codes

2.1 Overview . . . . . .,

2.2 Preliminary . . . . .. .. ... L

2.2.1 The Invertibility (without Error Correction)

2.2.2  The Invertibility (with Error Correction) . . . . . . . ..
2.3 Descriptions on Main Functions . . . . ... ... ... .....
2.3.1 Pseudorandom Vector Generator . . . .. ... .. ...
2.3.2 Expansion Function . . . . . . ... ... ... .
2.3.3 Random Permutation . . . . . .. .. ... ... .....

2.3.4 State-Hopping Shift Register . . . . . . . ... ... ...

vi

ii

iii

iv

vi

xiii



CONTENTS

2.4 System Design Flow . . . .. .. .. ... o 20
2.4.1 Parameters Determination . . . . . . .. . ... ... 22
2.4.2  The design with Error Correction . . . . . . .. ... ... ... ... 23

2.5 The Decryption Scheme . . . . . . . . ... ... ... . 23
2.5.1 Sequential Decoding with State Hopping . . . . . . .. .. ... ... 24

2.6 Simulation . . . . ... 25
2.6.1 Security analysis . . . . . . .. .. 26
2.6.2 Performance of error correction ability . . . . ... ... ... .. 27

2.7 Conclusions . . . . . . . .. 28

3 Secure MP3 Algorithm 31

3.1 Overview . . . . . . L e 33

3.2 Preliminaries . . . . . . ..o 35
3.2.1 Partial Encryption andAdaptive Encryption . . . . . . . .. ... .. 35
3.2.2  Masking-to-nois@ ratio mypat, oL L Lo L Lo 37
3.2.3 MP3 algorithnt e o0 oo win Lo 38
3.24 SEAL . . . 5. pedf e LS 40

3.3 Our Proposed Schemes ™« w. . . . . 0% . ... 41
3.3.1 Sign-bit encryption . . ... ... 41
3.3.2  Huffman-code encryption . . . . . . . .. .. ... 43
3.3.3 Side-information encryption . . . .. .. ... 43

3.4 Simulation Results . . . . . .. .. oo 45

3.5 Implementations and Security . . . . . . .. ..o 48
3.5.1 Quality Level for Trial Services . . . . . .. ... ... ... ..... 49
3.5.2 Extra Header Design . . . . . . ... ... . ... ... .. 49
3.5.3 On-Line and Off-Line Encryptions . . . . . . . . . ... ... ..... 50
3.5.4  Security . . . ... 51

3.6 The Overview of Modified Scheme . . . . . . . . ... .. ... .. ... ... 52

3.7 Performances and Comparisons . . . . . . . . . .. .. ... ... 55
3.7.1 Performance of partial encryption . . . . . . ... ... ... ... 55

3.8 Conclusions . . . . . . . .. L 55

vii



CONTENTS

4 Enhancement of the Application Security of AES 57
4.1 The Security Issues While Implementing AES . . . . . ... ... ... ... 59
4.2 The Algebraic Properties of AES . . . . . .. ... 0oL 61
4.3 AES Algorithm . . . . . . . .. 62

4.3.1 SubBytes . . ... 63
4.3.2 ShiftRows . . . . . ... 63
433 MixColumns . . . . . .. 64
4.3.4 AddRoundKey and Key Expansion . . . . .. ... ... .. ..... 64
4.4 Error Detection Techniques . . . . . . . . .. ... ... .. ... ... 65
44.1 InSubBytes . .. .. . ... 68
442 In ShiftRows . . . ... ... oo 72
443 InMixColumns . . .. . ... 72
444 In AddRoundKey . . . . . . . ... 73
4.4.5 In the Key Expangion . . .l . . . ... ..o 74
4.4.6 More details for (5,4) CRC "o e« o o 0oL 75
4.5 Undetectable Errors =. .70 o i s UL UL L L 76
4.5.1 The undetectable errorsin-SubBytes . . . . . . .. ... ... ... 76
4.5.2 The undetectable errors.in-MixColumns . . . . . . . ... ... ... 7
4.5.3 The undetectable errors in ShiftRows or AddRoundKey . . . . .. 79
4.6 Detection Levels . . . . . . . . . ..o 79
4.7 Features and Costs . . . . . . . ... 80
4.7.1 Scalability . . . . ... 80
4.7.2 Symmetry . . . . ... 81
4.7.3 Costs . . . . . e 81
4.8 Performances . . . . .. .. 84
4.9 Parameterized Rijndael Algorithm . . . . . . . .. ... ... ... ... ... 89
4.9.1 Change irreducible polynomial . . . . . . .. .. ... ... 89
4.9.2 Change affine matrix . . . . . . . ... ... L 91
4.9.3 Change MixColumns matrix . . . . ... .. .. ... ... ..... 91
4.10 The Hardware Structure . . . . . . . . . . . .. ... ... ... .. ... 92
4.10.1 Input Coefficients . . . . . . . . . .. ... 94

viil



CONTENTS

4.10.2 Imitialization . . . . . . . . . . 94

4.11 Results . . . . . 95
4.12 Conclusions . . . . . . . . 96

5 Future Works 99
5.1 Futures of Secrecy-Channel Coding . . . . . . .. ... ... ... ... ... 99
5.2 Futures of Secure MP3 . . . . . . . . 99
5.3 Futures of Two Results about AES . . . . . . . . . ... ... ... .... 100
Bibliography 101

1X



List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Data transmission model with source, secrecy, and channel coding . . . . . . 3
The secrecy-channel coding system. . . . . . . ... ... ... ... ..... 9
The block diagram of encryption scheme . . . . . . .. ... ... ... ... 11
The block diagram of decryption scheme . . . . . . .. ... ... ... .. 12
The structure of $; ,,(Sin(Din)) - -« v o v 14
The illustrative representation of Expansion Algorithm . . . . . .. ... .. 18
The shift register with-arbitrary bit assighment . . . . . .. ... ... ... 20
State diagram of shift-register with m=3- . . . . . .. ... ... ... ... 20
State diagram of an SHSR™withm=3 . . . . . . .. ... ... ... ... 21
The code tree for a (2,1,3)'stream cipher . . . . . . .. ... ... ... ... 29
Each SHSR has a own decoder . . . . . . . ... ... ... ... ....... 30
The error probability on system (4,8.8977) . . . . . . ... ... ... .... 30
The model description of partial/adaptive encryption . . . . . . ... .. .. 35
The data flow of partial/adaptive encryption . . . . . . . ... .. ... ... 36
The general model of a lossy compression . . . . . . .. .. ... ....... 37
MPEG /audio encoding process. . . . . . . . ... ... 38
Blcok diagram of MPEG/Audio Layer 3 decoding. . . . . . . ... ... ... 39
Bitstream decoding. . . . . . .. ..o 40
Frequency to time mapping . . . . . . . . . ... 40

The simulation of sign-bit encryption on different frequencies: (a)The original
MP3 file; (b)The sign bits above 5kHZ are encrypted; (c) The sign bits below
bkHz are encrypted . . . . . . . . . .. 42



LIST OF FIGURES

3.9 The simulation of sign-bit encryption on different frequencies in three types

of music, piano, rock, and pop. The horizontal lines are the MNR of original

MP3 files. . . . . . . 45
3.10 These results are obtained by encrypting Huffman codes. The x-axis is the

number of encrypted bytes counted from the first byte of Huffman codes. . . 46
3.11 These results are obtained by encrypting Huffman codes. The z-axis is the

byte index of the encrypted byte. . . . . . . . ... ... L. 47
3.12 The block diagram of on-line cases. The side-information and Huffman-code

encryption both are inside the bitstream formatting process. In terms of MP3

encoding procedure, the side-information encryption is ahead of Huffman-code

ENCTYPLION. . . . .« o o e e e e 50
3.13 The block diagram of off-line cases. . . . . . . .. .. ... ... ... .. 51
3.14 Block diagram of the coding flow. . . . . . . .. ... ... oL 52
3.15 Detail of processing flow of the security phase. . . . . . . . . ... ... ... 53
3.16 File format of MP3 [28]. | .ol ot v o oo 54
3.17 Quality loss following;encryption using SEAL stream cipher . . .. ... .. 55
4.1 The block diagram of kéy expansion im'!AES . . . . .. ... ... ... ... 65
4.2 The error model assumed in this'work. The solid line part appears in every

operation and the dotted line part appears in some operations. . . . . . . . . 66
4.3 The block diagram of the error detection in this work. . . . . . . . ... . .. 67
4.4 The error detection for united SubBytes . . . . . . . . . . ... ... ... .. 69
4.5 The block diagram of one GF(2®) inversion with the error detection. . . . . . 69
4.6 An error is injected into the input state after entering the GF'(28) inversion. 70
4.7 The three proposed architecture for AES. . . . . . ... ... ... ... ... 71
4.8 The error detection scheme for key expansion. . . . . . . .. ... ... ... 74
4.9 The proposed scheme under round-level error detection. . . . . . . . . .. .. 80
4.10 The block diagram of error detection for 8-bit AES architecture. . . . . . . . 81

4.11 The simulation model. Each data block has 64 ones, and the position of ones
uniformly distributed in a data blcok. The error bits uniformly distribute in
an error block. The assignment of error blocks uniform distributes in both

rounds and operations. . . . . . .. ..o 85

X1



LIST OF FIGURES

4.12 Percentage of undetectable errors of the (17,16) CRC over GF'(2%). . . . .. 86
4.13 Percentage of undetectable errors of the (9,8) CRC over GF(2®). The per-

centage is 4.14% for 2-bit errors and 0.67% for 4-bit errors. . . . . . . . . .. 87
4.14 Percentage of undetectable errors of the (5,4) CRC over GF(2%). The per-

centage is 1.8% for 2-bit errors and 0.13% for 4-bit errors. . . . .. .. ... 88
4.15 Basis conversion in SubBytes . . . . .. ... 0oL 90
4.16 The computation of GF(2%) inversion with arbitrary irreducible polynomial . 91
4.17 Architecture of parameterized Rijndael designed in this work. The dash line

is the decryption path. . . . . . . . ... oo 93
4.18 Clock distribution of the normal structure. . . . . . . . . ... ... ..... 94
4.19 Clock distribution of the pipeline structure. . . . . . . . .. ... ... ... 95

xii



List of Tables

2.1
2.2

2.3

3.1
3.2
3.3
3.4

4.1

4.2
4.3
4.4

4.5

4.6

State transition of an SHSR with m = 3, initial state is So. . . . . . . . . .. 22
Probability distribution in 4 tests with zero-input, one-input, different keys
and different data . . . . . ... oL 26

The experimental results of our system obtained by NIST’s statistical test suite 26

Performance of several ciphers on Intel Pentium processor [56] . . . . . . .. 41
MNR Comparison: Side.nformation encryption on piano, rock, and pop. . . 48
Size of Y, for High Security of three sechemes . . . . . . . . . ... ... ... 48
The suggested significant part ¥ for trial service and its quality. . . . . . . . 49

The cost of syndrome gemeration in-each AES operation. (B-EXOR = 8
b-EXORs, b-EXOR=bit EXOR operation, EN=encryption, DE=decryption,

AM = affine multiplication) . . . . ... ... 82
The possible combinations of our proposed schemes. . . . . . . . .. .. ... 84
The bit number of each changeable coefficient . . . . . . . . ... ... ... 94

Performance of the two proposed structures. The gate counts are obtained
from 0.18-pum CMOS standard cell technology. C/B = cycles per block, GC
= gate counts, MF = max frequency, Thr. = throughput, OF = optimization
factor. . . . oL 96
The detail hardware cost of each submodule in the normal and pipeline struc-
tures. GC = gate counts; P. = percentage. . . . . . . ... ... .. ..... 97
Performance comparison. Ichikawa [24], Kuo [33], Satoh [57], Lin [38]. . .. 98

xiil



Abstract

This dissertation presents three hybrid coding techniques on convolution code, MP3 and AES
to enhance the coding efficiency of overall data coding flow or their application value. Each
hybrid coding technique is based on secrecy coding, and accompanied by channel coding or
source coding. First, state-hopping shift registers are proposed instead of the shift registers
used in convolution code to obtain a new coding scheme. A pseudo-random vector generator
(PRVG) is incorporated into the new scheme to achieve secure coding and channel coding
simultaneously. The new scheme'can be eithet-a pure cryptosystem or a secrecy-channel
coding by demand. If the secreey-channel:coding'is chosen, the decoder of this new scheme
is modified from the sequential algorithm, which is a decoding algorithm for convolution
code. Finally, we apply (n + 13m) “cyclic redundancy check (CRC) in the implementation
of AES, where n is 4, 8 or 16 to let'that implementation against differential faults attacks
(DFA).



Chapter 1

Introduction

The great pace of internet, wireless services and multimedia services have led to an increasing
demand for efficient, secure, and reliable digital data-transmission systems. A typical data-
transmission model may be represented by the block diagram shown in Fig. 1.1. The source
encoder compresses the original:information t6- increase the utilization of channel. The
secrecy encoder encrypts the outputs of source encoder, in order to prevent the transmitting
contents from being known directly, by eavesdropper. The channel encoder, the end of
transceiver, transfers the input‘into ¢odeword to.provide data-resilience transmission on a
noisy channel. The receiver is the mverse operation of transceiver. The more stages are
in the data-transmission model, the more processing time is needed. Hence the hybrid
systems which merge heterogeneous systems, e.g., the source-channel coding, the secrecy-
source coding, or the secrecy-channel coding, are developed to cut down the processing time
and to achieve the efficient implementation.

Therefore, this work proposes a secrecy-channel coding scheme and a secrecy-source cod-
ing scheme. The design of secrecy-channel coding scheme is based on the convolution code
and a pseudo-random vector generator (PRVG) [49] and it has a flexible structure. A new
structure of shift registers, named state-hopping shift register (SHSR), is proposed in this
scheme instead of general shift registers in convolution code, and the PRVG is a calculation
of modulo matrix-vector multiplication. The scheme is a flexible system described by a 4-
tuple (N., N,, m, M), where N, and N, are bit length of plaintext (message) and ciphertext
(codeword) respectively, m is the number of registers in one SHSR, and M is the modulus

of PRVG. When the 4 tuples are given, the whole system is generated by following proposed
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) Source ) Secrecy ) Channel
Encoder Encoder Encoder

noise
¢ Source ¢ Secrecy ¢ Channel
Decoder Decoder Decoder

Figure 1.1: Data transmission model with source, secrecy, and channel coding

rules. If N, equals to N,, then the generated system is a pure cryptosystem. In this case,
the decoder is simply the inverse of encoder. However, if N, is smaller than N, then it
is a secrecy-channel coding scheme. The decoder-in secrecy-channel coding scheme is far
complex than that in the pure cryptosystem, because the decoder not only decrypts the
ciphertext but also decodes a codeword to a message. The stack algorithm [40], one of the
sequential algorithms, is chosen, and modified to meet the requirement of hybrid decoding.
The decoding steps of the modified stack algorithm are as well as those of original stack
algorithm, but the fields of stack are extended by adding two new fields, the state and the
tracking information.

A secrecy-source coding scheme is the second hybrid coding proposed in this work. It
is a combination of MP3 codec [27] and stream ciphers. The main concept is to protect
music by encrypting small amounts of data instead of an entire MP3 file; hence, only a
partial part of compressed audio data or sign information are selected to be encrypted. The
experimental results showed that the encryption introduced 1 2% overhead of encrypting
or decrypting music. In the early stage of developing such a system, software encryption
algorithm (SEAL) [56] is adopted and seamlessly incorporated into MP3 algorithm, but we
found that it is not flexible to use the secure MP3 codec. Thereupon, based on the first
structure, a more efficiency one is proposed and suitable to dual-core systems as well as to

single-core system. The efficiency structure does not limit the type of the stream cipher to
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SEAL, and any kind of stream cipher which generates bit sequence can be adopted.

A different kind of hybrid coding from the two kinds described above is proposed in
Advanced Encryption Standard (AES) [47]. This coding scheme is designed for increasing
the security of implementation of AES, not for enhancing the coding efficiency. Because AES
is vulnerable to differential faults analysis (DFA) [7, 14, 53], the error detection mechanism
is required in the implementation of AES against DFA. Once errors are detected, the AES
circuit halts and stops outputting erroneous results to prevent the results from being analyzed
by cryptanalysts. We propose a (n + 1,n) cyclic redundancy check (CRC) as the error
detection mechanism in implementation of AES, where n € {4,8,16}. The parity generation
and the syndrome generation of our approach only use the XOR, operation over GF(2%), so
the overhead of detecting errors is small. This approach is symmetrical, because encryption
and decryption can share hardware of detecting errors. Moreover, it is also scalable, since it
can be applied to an 8-bit, 32-bit or 128-bit implementation of AES.

Ultimately, for enhancing thesSecurity of AES usage, an implementation of AES with
on-line changing coefficients is proposed. This:is not about the hybrid coding scheme, nev-
ertheless, we also put the results as an appendix of AES security in Chapter 4. In here,
we implement a parameterizable Rijndaelin-two ways, non-pipeline (normal) and pipeline
structure. Because the coefficients are changeable; hence, the chip will operate in different
dual ciphers with different given coefficients. The normal structure executes one round per
clock cycle on a 128-bit data block, and the pipeline structure requires six clock cycles to
perform one round on a 128-bit data block. The data bus of both structures is 32-bit, and
only the 128-bit key scheduler is implemented in this work. The normal structure achieves
a throughput of 1.7902 Gbps and a 153.84 MHz clock, and has 83.094k gate counts. The
pipeline structure has a throughput of 4.9516 Gbps with 425.53 MHz clock and 125.993k
gate counts. This implementation of Rijndael is not only compatible to AES but also avail-
able to replace the coefficients in Rijndael, so it can be applied to applications that require
customized security. Besides, the throughput of our implementations is over 1 Gbps; hence,
the results of this work are suitable to network devices over Fast Ethernet or Giga Ethernet.
In particular, the virtual private network (VPN) is an appropriate application, because this
work can provide customized security for VPN users.

This dissertation is organized as follows. Chapter 2 is the first topic of hybrid coding
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scheme about secrecy-channel coding. Chapter 3 describes the second hybrid coding scheme
— secure MP3 algorithm. The two security issues and their countermeasures are discussed in

Chapter 4. The future works related to hybrid coding are addressed in Chapter 5.



Chapter 2

A Stream Cipher Based on

Convolution Codes

A new architecture of stream cipher based on state-hopping shift registers and a pseudoran-
dom vector generator (PRVG) isiintroduced.” The proposed stream cipher merges secrecy
coding and channel coding intg one processing step. It could be either a pure cryptosystem
or a secrecy-channel coding by.demand. In aspect of cryptography, the PRVG generates the
pseudo random vectors which are treated as keystreams setting up the encryption scheme.
Different from the general concept instream ciphers, state-hopping shift registers do not
generate a pseudo random sequence but act as substitutions on plaintexts. From the point
of channel coding, the state-hopping shift registers play as the ones in convolution code and
the PRVG generates a sequence of pseudorandom vector to determine the Trellis diagram.
If the system acts as a pure cryptosystem, the decoding scheme is exactly the inverse of en-
cryption scheme. When the error-correcting ability is chosen, a modified sequential decoding
is proposed to decode.

This chapter is organized as follows. The introduction of secrecy-channel coding scheme
is given in Section 2.1. Section 2.2 defines the representation of the stream cipher and
the most symbols used throughout this manuscript, and the invertibility of the proposed
system is also explained. The significant functions of our proposed scheme are separately
described in Section 2.3. The design flows of the proposed scheme are depicted in Section 2.4.
The encryption scheme with and without the error correction ability, named inverse SHSR

(iISHSR) and state-hopping sequential algorithm (SHS), are shown in Section 2.5. The sim-
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ulation and discussion of our approach are presented in Section 2.6. The conclusions are

given in Section 2.7.




CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

2.1 Overview

The great pace of internet, wireless services and multimedia services have led to an increasing
demand for efficient, secure, and reliable digital data-transmission systems. A typical data-
transmission model may be represented by the block diagram shown in Fig. 1.1. The source
encoder compresses the original information to increase the utilization of channel. The
secrecy encoder encrypts the outputs of source encoder, in order to prevent the transmitting
contents from being known directly by eavesdropper. The channel encoder, the end of
transceiver, transfers the input into codeword to provide data-resilience transmission on a
noisy channel. The receiver is the inverse operation of transceiver. The more stages are
in the data-transmission model, the more processing time is needed. Hence the hybrid
systems which merge heterogeneous systems, e.g., the source-channel coding, the secrecy-
source coding, or the secrecy-channel coding, are developed to cut down the processing time
and to achieve the efficient implementation:.

For secrecy-source coding, the partialrencryption scheme is proposed by Cheng and Li
[10] to decrease the processing time by only encrypting the important data which are the
low-low band information analyzed. by -the wavelet technique. There are many researches
on source-channel coding (SCC)+44, 9, 21]. These approaches are to provide each priority
class of information with distinct data-resilience level, then the processing time is lowered
by coding the significant data only. The technique of a secure and reliable transmission of
information is introduced by A. Denis and W. Kinsner [13]. The data integrity is protected
by a concatenation of a Reed-Solomon (RS) code, interleaved with a self-orthogonal majority
decodable convolution code, and the security is achieved through a probabilistic encryption
scheme. The resilience and security are realized by two separate coding systems in [13], the
secrecy coding and the channel coding.

McEliece [42] presented a public-key cryptosystem based on t-error correcting Goppa
code. The main idea is to add a random error vector with Hamming distance ¢’ < t to the
encoded message before transmission. Rao and Nam [54, 55] proposed a similar approach,
a private-key cryptosystem based on algebraic code. These two schemes execute the secrecy
coding and the channel coding in one step. There are two definitions of secrecy-channel
coding defined by Rao [23], the Joint Encryption and Error Correction (JEEC) scheme and
the Secret Error-Correcting Code (SECC) scheme. The JEEC has the trade-off problem
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between data secrecy and data reliability, but SECC does not. Besides, cryptanalysts are
unable to correct the noises without the knowledge of key of the both schemes. However, the
SECC scheme [23] is attacked by Zeng, Yang, and Rao [64] with a known-plaintext attack.

A new secrecy-channel coding is presented in this manuscript. The proposed stream
cipher can be either a pure cryptosystem or a secrecy-channel coding by demand. The
design of encryption scheme is based on the shift registers and the PRVG. In general, the
contents of the registers and system parameters are initialized by a private key. Then, it
becomes possible for encrypting the same plaintext into different ciphertexts by distinct
private keys. Not elaborately designing the system will cause fatal results. There are various
well-known attacks. The differential cryptanalysis introduced by Biham and Shamir is a
chosen-plaintext attack [6]. The basic idea is to compare the exclusive or of two plaintexts
with the exclusive or of the corresponding two ciphertexts. The linear feedback shift registers
(LFSRs) based on stream ciphers are susceptible to various versions of the correlation attack

[58, 43, 65].

Channel with

noise Eavesdropping

Secrecy-Channel | S N S’ N Secrecy-Channel

Encoder Decoder

Figure 2.1: The secrecy-channel coding system.

When the pure cryptosystem is chosen, the decryption scheme is just the inverse of de-
cryption scheme. In secrecy-channel coding, the encryption scheme is a maximum likelihood
decoding. In Fig. 2.1, the error correction is impossible for lacking of the knowledge about
the private key, hence the channel noise will create a more secure channel than the one pro-
vided by general systems which do secrecy coding and channel coding in two steps. Noises
are removable for cryptanalyst in conventional system, since the scheme of channel decoder
is known. Certainly, the security of the secrecy-channel system can not rely on the channel
noise. Therefore, a new architecture, the shift register with state hopping, named state-

hopping shift register (SHSR), is proposed. States of SHSRs can be changed by two sources,

9
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one is plaintext and the other is the partial output of the PRVG. An m-degree SHSR has
2m state diagrams, and each diagram will randomly appear. Given a private key, the PRVG
establishes a sequence of state diagram. The output of an m-degree SHSR is the result of

linear combination of registers.

2.2 Preliminary

By the description of stream ciphers in [59], the basic idea of stream ciphers is to generate
a keystream z = 212 ... and use it to encrypt a plaintext string p = pips ... according to

the rule
c=cicy... = ey (pr)esn(p) .- -,

where c is a ciphertext string and e,, is an encryption scheme with key z;.

Definition 1 A stream cipher is a uple (Py@; K, L, F, E, D), where the following conditions
are satisfied [59]:

1. P is a finite set of possible plaintewts.
2. € is a finite set of possible ciphertexts.
3. K, the keyspace, is a finite set of possible keys.
4. L is a finite set called the keystream alphabet.
5. F = (f1, fa,...) is the keystream generator. For i > 1,
fi i K x Py — L.
6. For each z € L, there is an encryption rule E, € € and a corresponding decryption

rule D, € D. E,: P — C and D, : € — P are functions such that D,(E.(x)) = x for

every plaintext v € P.

Define Z;"*" is a set of m x n matrixes whose entry belongs to the set {0,1,2,...,1—1}.
Our stream cipher (P,C,K,L,F, &, D) is proposed, where P = ZéVpXI, C =27z K =
Ty N L= 757t F is a PRVG by using the matriz method [49], € is an N,-SHSR, and D
is an IV-iSHSR or an SHS algorithm.

10
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Initial conditions il
I

N, SHSRs (S,,)

|

Initial
Conditions

—AUO

Figure 2.2: The block diagram of encryption scheme

The description of the notations is shownsbelow. N, and N, are the bit length of plaintext
P; € P and of ciphertext C; € @, respectively. The length of the private key k£ € K is Ny
bits. M is the modulus used by PRVG and’/V is the dimension of PRVG. When the error
correction ability is chosen forireliable transmission, N. is greater than N,, because of the
redundancy caused by the channel encoder; otherwise, N, equals N,. Instead of 7-tuple
presentation of the system in Def. 1, the proposed stream cipher will be represented in a
simple form, a 4-tuple (N., N,,m, M) throughout the whole manuscript, where m is the
number of registers in one SHSR.

The block diagram of the encryption scheme is shown in Fig. 2.2, the system has three
major parts: Key Ezpansion (KE), N-dimensional PRVG, and N, SHSRs. The KE enlarges
the private keyspace,

KE : K — K, where X = 73",

to get the expansion key k. € X of bit length Ny, required for initializing the system.
In Fig. 2.2, exclusive-or pairs {X,,X.}, initial conditions of PRVG, and initial states of
N, SHSRs are initialized by ke ch, a key expanded from k& by KE. The PRVG determines
the random permutation (RP) by giving R;,; and R, ;, exclusive-or pairs {X;,;, Xs,}, and
transition of of state diagram of SHSRs by giving V; and pos;. The SHSRs take as a bit-

substitution function S.;. For each z; € L, there is a corresponding £, € &, consisting of

11
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IL Initial conditions
I

N, SHSRSs (S,,)

4 Y

pos, \

I

Intial
Conditions

bl
by
<
®

Eil

U, A 7|

Figure 2.3: The block diagram of decryption scheme

Xp,i, X and Sc;, such that
il L.

The decryption scheme is obtained by.reversing the procedure of encryption scheme and

substituting S, ; into S ;. The block diagranrof the-decryption scheme is depicted in Fig. 2.3.

2.2.1 The Invertibility (without Error Correction)

Given the ith plaintext P; € P, according to Fig. 2.2 and Fig. 2.3, the encryption F, and
decryption D, are the following:

Ez . :P — @, CZ = EZZ<PZ) = Se,i(Pi EB Xpﬂ') @ Xc,i; (21)
DZ :C— j), R = Dzl(Cz) = Sdﬂ-(C'Z- D Xc,i) D Xp,i' (22)

At the ith time, PRVG generates one subkey z; and X,;, X.; € ZéVpXI are calculated from
z;. Both S.; and Sy ; are functions of pos;, V;, and the past data. Assuming P; € Zév”ﬂ, the
system is invertible if
T
Sd,i<Se,i(R‘)) =P = Pio Pix .-+ DiN,—1| - (2-3)
Because an SHSR of degree m is a linear combination of m memories in shift registers

whose content is assignable, for N, independent SHSRs, S;; will equal to S.; when three

12
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arguments are correctly provided to S4; and Sc;. Thus we can use 5; to represent S.; and

Sa;- In an N,-SHSR, the S; should be treated as N, subsystems, [Si,o Si1 ... s@Np_l], and

each s;,, : Zy*' — 7. Given p;,, € Zy*', s;,, acts as following:

Cin = Sin(Pi) = (An ® Bin) © Pin (2.4)
A, = [%1 g - an,m}

T
Bi,n = [bn,l bn,2 bn,m] )

where A,, € Zéxm is the coefficient vector of function, B, ,, € Z%XN is the content in SHSR at
the sth time. And p,(z) = 1+a,12+a, 20>+ - -+ a, ™ is the polynomial representation of
the nth SHSR. A,, is constant for a given system, and B, ,, is modified by randomly changing

two entries at most for each p;,,. Consider a subsystem s;, in (2.3), at the ith time, then

Si,n(si,n(pi,n)) = Si,n(<An ® Bz,n) 5% pz,n)

= Pin- (25)

The pictorial representation of's; ,(s/(P;,)) is shown in Fig. 2.4.

Substituting (2.5) into (2.3),%t yields

Si(Pi) = [Sz‘,o(pz‘,o) Si,l(pz‘,l) Si,Np(pi,Npq)] . (2-6)

According to (2.5), S;(S;(P;)) = P;, the cryptosystem is invertible, i.e., P = Dy(E(P)).

2.2.2 The Invertibility (with Error Correction)

In the case with error correction, the encryption scheme is similar to (2.1) except the rela-

tionship of N, and N.. Given a system (N,, N., m, M), the encryption is
E,:?P—¢C (2.7)
, and the substitution function of /V,-SHSR is
S 257 — phext, (2.8)
Given the ith plaintext P; € P, P; is encrypted as
Ci=FE,(P)=5:(P®X,,) ® X, (2.9)

13
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Figure 2.4: The structureof s, ,,(s;.(pin))

and each matrix A,, in S, ; is

ao,1 Qg2 <o Qom

A, =

(l,,«ml Cbrmg armm

, Where % is the coding rate of each SHSR, and Zgigl % = N.. Then each s;, in S.; is a
mapping from Z3*! to Z5*!.

The decryption scheme is a Mazimum Likelihood Decoder (MLD). Suppose that the plain-
text sequence P = (B, Py, ,..., Pi_1) of IN,-bit length is encrypted into the ciphertext C' =
(Co, C1, ..., Cj_1) of IN-bit length, and that a binary sequence D = (Dqy, D1, ..., D;_1)is
received over a Discrete Memoryless Channel (DMC). The MLD chooses C' as the transmit-
ted ciphertext C' which maximizes the log-likelihood function log Pr(D|C), where Pr(D|C)

is the conditional probability of an event D assuming C.

14
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2.3 Descriptions on Main Functions

Each block in Fig. 2.2 is addressed in this section. The processing flow of this scheme can be
divided into two parts: key processing and data processing. The private key k is the input
in key processing of which objectives are key expansion and system initialization. In key
processing part, only the KE function is involved. In data processing, PRVG generates the
pseudorandom vectors or keystream based on the initial conditions given by k., and SHSRs

substitute plaintexts.

2.3.1 Pseudorandom Vector Generator

The task in PRVG is to produce a sequence of independent and identically distributed ran-
dom vectors. In our approach, the matriz method [49] is adopted to produce pseudorandom
vectors. Also the matrix method inherits some of the drawbacks of the linear congruential
method, but each vector is not in asystematic form when using it. Before the vectors are sent
to next functions, they will be transformed through nonlinear functions to get the suitable
bit length.

Because the state of linear-feedback shift register (LFSR) can be analyzed so easily by
linear complexity analysis that makes.the prediction of state possible. For more complex
behavior of the state flow of a shift register, a system proposed here is SHSR which is
modified from a shift register to prevent the stream cipher from statistical cryptanalysis.
One important duty in PRVG is to vary the state transition of SHSRs that will make
intruders hard to attack the system by predicting the state trajectory.

PRVG in our proposed system is depicted in the following.

Xot1 = (G- X, +U;) mod M (2.10)

, where G € ZN*N X € 7z U € 73, and M is a prime.

This system may have the maximum period M* — 1 for some G and M. To let the period
of PRVG be maximum, the characteristic polynomial of G must be primitive over finite field
Fyp. Let Fiy be a finite field with M elements and GL(N, Fi;) be a linear group with order
NM — 1. Given a matrix G € Z{", system (2.10) has the maximum period if G satisfies

Theorem 1.
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Theorem 1 G is a general linear group GL(N, Fyy), if and only if the characteristic poly-
nomial of G is primitive over the finite field Fy; [59].

It is almost impossible to design a Random Number Generator (RNG) due to the finite
precision of number presentation in digital world, so a PRVG is designed for a very long
period such that its period is infinite-like. In order to get a longer period than MY — 1, a
simple method is to add a control term which starts off once the period of system (2.10)
is detected. Because (2.10) has the maximum period if G satisfies Theorem 1, each vector
X, € ZJ\N/[XI is a periodic point. The dynamics of system (2.10) can be changed by altering
the control term U; = [ug j,uy ;, Uz ;,us ], where j indexes how many times the period
occurs.

Because the PRVG sequence generated by (2.10) is a uniform distribution vector and
has the maximum length N — 1, each X,, € Z3*! is periodic. Herewith the period can be

checked by discovering the repetitionof X¢.2 When the period is detected, the control term

Uj = [uoj urj us; us ;)" (Up is given byikiz)d8 computed below:

50 0 0
a0 o
U= ®m Uj, (2.11)
0:012 0
000 4

where ®,; is modulo-M multiplication. A period-check mechanism can dramatically increase
the period. Since the modulus M is prime, the set {u; o, w;1, ..., w;a—1} is a multiplicative
group. With altering control term in (2.10), the period will grow into (N — 1)%. The

functions controlled by PRVG are itemized as follows:

1. State transition or substitution functions (S.; and Sg;): the distinct pair (pos;, V;)
alters one state diagram to the others at the ith time. For a (N., N,, m, M) cipher,

the maximum number of state diagram is 2m.

2. Random permutations (R;; and Rs;): the random permutation of X, & X;, and of
X.® Xy; will let the intruder hard use differential attacks to get the information about
Xp7 XC7 Xl,i7 and X2,i-
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3. Exclusive-or pair: exclusive-or operation acts as mask. There are two types exclusive-
or pairs, {X,,, X.} and {X;;, X5,}. The former pair is constant when the private key
k is given and the latter is obtained from the output of PRVG.

2.3.2 Expansion Function

The expansion function is used to yield not only k. but also R;; € ng“ and Ry; € ZévCXl.
If the bit length of PRVG’s output is less than Ngp bits required to set the permutation,
then R;; and R,; are created through expansion function with pseudorandom vectors as
inputs.

Assume the input of bit length /; and output of bit length [,. The expansion function

can be implemented by the following steps.

Step 1: Segment the input into v = [%] blocks of which block size is 8 bits. If /; is not an
8-multiple number, then Os areattached to the LSB of the input, where n is an element

of the set {0,1,...,7}.

Step 2: The v blocks, A = {Xo, Aj,. .., Au=1}, can be @t most grouped into 8 subsets A,={\, |

= mn mod 8}.

Step 3: The another v blocks, {:\0, Moo, 5\1,_1}, can be obtained by circularly left shifted by

n of each entry in set A,,.

Step 4: Extend 8v bits obtained in Step 3 to [, bits by appending Os as the LSB of the new
block set A.

Step 5: Set TEMP = A. The output is obtained as below:

for pu=1:(lp—8v)
A = A << p; circular left shift of A by v.

TEMP = TEMPA
end

output =TEMP

If [; and [, are smaller than 8, then the block size can be reduced as 4 bits. The illustrative

representation of this algorithm is shown in Fig. 2.5.
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Figure 2.5: The illustrative'representation of Expansion Algorithm

Key expansion (KE) in Fig. 2.2 expands.the original key to meet the requirement of the
initialization process. Assume that the key length of k and k. are N and Ny, respectively,
and N + N, + N, = N;,. KE is an expansion function with l; = Ny, [, = N, , and the

private key £ as input.

2.3.3 Random Permutation

The permutation is a function which maps the input © = [z, 2; ... z,_;] into the output
Y=1lyo 1 ... yn_1], and the mapping is determined by the R;; and R,; of bit length
Ngp. For a permutation box which is obtained by given [log,n] bits as position indexes,
each input bit possibly appears on each output bit. Assume v; is the decimal presentation

of the [th index, then the output y; is

Y = Ty, mod n- (212)

Hence, for an n-bit random permutation function, the total bits to define the mapping are

nllogan]. The permutation is a nonlinear mapping, because it will result in an one-to-
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multiple mapping, i.e., not injective.

Ngrp required by R;; and Ry ; is calculated by
Ngrp = Np - |logy N, | + N, - [logy, N|. (2.13)

Because Nyp bits needed by RP are probably larger than the bits that PRVG can provide,
the expansion function described in the previous subsection can solve this problem. The
output bits of PRVG are fed into a expansion function with [, = Nrp and the output of

expansion function will be sufficient to set the mapping.

2.3.4 State-Hopping Shift Register

These shift registers are used as substitution functions. All shift registers are formed by
distinct primitive polynomials over GF(2) with degree m. There is a new concept introduced

into the shift-register structure. In Figi12:6, the state is changed by not only shifting the

content in registers but also the value of-}4= Besides the plaintext P; = [p; o, i1, - - -, PiN,—1);
Vi = [05,0, Vi1, .-, Vi n,—1) and posy€ Zb<"are the inputs of SHSRs, where p; ,, v;, € Z3*".

Given the nth SHSR with the primitive polynomial
p(z) = 'He@wtiit ap12™ 7 + 2™, (2.14)

then the output can be obtained by (2.5). The content of the SHSR, [b,; b2 ... buyml
is changed by p; , and v;,, sequentially. After b;, = p;,, the value v;, is assigned to SHSR
by the following rule.

Bpos, = Vin (2.15)

It can be adumbrated that the transition of state diagram is determined by V; and pos;
obtained from PRVG.

When the input source of the shift register is not one but two, the state transition will
be more complex. It is obvious by comparison of Fig. 2.7 and Fig. 2.8. Fig. 2.7 is the
state diagram of the shift register with m = 3. There is only one state diagram of the shift
register. Fig. 2.8 is the possible state diagrams of an SHSR with m = 3. The state diagram is
determined by (V;, pos;), hence the maximum number of state diagram is 2m. In Fig. 2.8, the
sequential corresponding 2-tuple (V;, pos;), are (0/1,1), (0/1,1) and (0/1,1). The transition
of state diagram is dominated by the sequence of 2-tuple (V;, pos;), i = 0,1,.... The state
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Modulo 2 Modulo 8

Figure 2.6: The shift register with arbitrary bit assignment
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Figure 2.7: State diagram of shift register with m = 3

will enter into another state diagram while the (V;, pos;) is changed. This will let the state
trajectory hard to be predicted, because the transition of state diagrams is dependent on the
dynamic of PRVG. An example is shown in Table 2.1. Assume that the primitive polynomials

of an SHSR are

pi(z) =142 +2° and (2.16)

po(z) =142 +2° (2.17)

and the content of three registers can be modified by (V;, pos;). For plaintext P=1[0 1 0 0],

the state transition is shown in Table 2.1.

2.4 System Design Flow

In our scheme, only the expansion algorithm and system structure in Fig. 2.2 are fixed,

but the others, e.g., PRVG, SHSRs, the bit assignment on k. and the output of PRVG, are
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L, L,
BO)

(e) (Vi,posi) = (1,3) (f) (Vi,posi) = (0,3)

Figure 2.8: State diagram of an SHSR with m = 3

configurable in the design procedure. Without any consideration about security, a stream

cipher (., N,, m, M) can be arbitrarily chosen by demand under two constraints: N, < N,

and a prime M > max{[log, m], [logy N.|}. The system parameters are configured as

follows:

Stepl: Give a system (N., N, m, M), then calculate the length Ny of the private key k, the
expanded key length Ng., dimension N of PRVG, and the bit length Ngp needed by

RP function.

Step2: Choose a matrix G such that X, has the maximum period M” — 1 with nonzero X,
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Table 2.1: State transition of an SHSR with m = 3, initial state is Sy.

1 Vi pos; P, Nextstata output

o1 2 0 So 00
1 1 2 0 Se 10
2 0 1 1 S4 10
3 0 2 0 So 11
by the following identity.
X1 = GX,, mod M, where X,, € Z*, G € 73V, (2.18)

Step3: Select N, m-degree primitive polynomials of which the coefficients are the entries of

A= {Ao, Al, ceey ANP} in (25)

2.4.1 Parameters Determination

When N, and N, are given, Npp is computed by/(2.13). And the dimension N is an integer

falling in the interval defined below.

Ngp

Ngp
g, 117 Y 1 Tlog, a7+ (21

et [log; 1]

Ngp is the bit length needed by RP; and RP, in Fig. 2.2. N must be selected from the
interval (2.19) with minimum value 4. The reason of restricting N no less than 4 is that
four significant parameters, pos;, V;, X1, and X5, in Fig 2.2, must be separately given by
four outputs of PRVG. The input argument, needed by RP; and RP; to set the permutation
table at the ith time, can be obtained from arranging and expanding the four outputs to fit
the length Ngp.

Before computing the key length N, and Ny, bits, dimension of PRVG, N, has to be
chosen one value from the interval (2.19). For the case that N equals to the maximum integer
in (2.19), six parts(RPy, RPs, pos;, V;, X, and X,) use the distinct output bits of PRVG;
otherwise, the outputs are shared among RP;, RPs, and et al.. From Fig. 2.2, it’s obvious

that there are four parts which are determined by k., exclusive-or pairs(X, and X.), control

term(U)), initial conditions of PRVG, and the initial state By = {Bo1, Bosa, ..., Bom} of
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SHSRs. Given initial conditions Xy and Uy of PRVG and the initial state By of SHSRs, N
is the smallest 8-multiple bits with the following inequality.

Ny > N, x m + 2N [loga M| (2.20)

The right half side in (2.20) is derived from the required bit length for initializing Uy, Xo,
and By. For initializing X, and X., Ny, is given by

Ny, = N, + N, + Ny (2.21)

In the initialization process, the total bit length needed by the stream cipher is Ny . Once
Ny and Nj,_ are obtained, pass the private key k and the information of /; and [, to KE, and
KE will expand k to k. of bit length N, .

2.4.2 The design with Error Correction

In general, our scheme can perfornisecrecy coding and channel coding simultaneously with-
out further modification. In some cases; an ' SHSR: has a problem that the states and some
segments of ciphertexts do not change with distinct plaintexts. When the errors occur just
before these segments, the decoder may make the wrong decision, that is, the correction abil-
ity decreases. The phenomenon can be explained by the example shown in Table 2.1. After
stage 2, the outputs of SHSRs and the states are the same no matter what the inputs are.
From Table 2.1, the transmitted signal v = [0 0 1 0 1 0 1 1]. Assume an additive
noiseise=1[0 0 1 1 0 0 0 0], then the received signal 7is[0 0 0 1 1 0 1 1]
The decoder chooses the codeword with zero hamming distance and obtains the output
[0 1 1 1], but this error can be corrected by (2, 1, 3) convolution code. This situation
can be avoided by not changing the first memory of SHSRs and, for large m, the probability

of occurrence of this situation will decrease.

2.5 The Decryption Scheme

The structure of decryption scheme is similar to the encryption scheme in Fig. 2.2, except
the design of the SHSRs block. This block can be designed with or without the channel
coding. Without error correction ability, i.e. N, = NNV;, the decoder is similar to the encoder,

and it is simply using the AR structure shown in Fig. 2.4.
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When the channel coding is enable, i.e., N, < N, the decoding algorithm of convolution
code must be suppose to adopt. The Viterbi algorithm and sequential decoding [40] are
two frequently used techniques. Due to the intrinsic characteristic of SHSRs, the Viterbi
algorithm is hard to modify for decoding. But the sequential algorithm is suitable for SHSR-
based stream ciphers. The Viterbi algorithm decoding is based on trellis diagram. In the
center portion of the trellis, 2™ states are possible for m-memory convolution code, but it
is impossible for the one generated by SHSRs. Hence the Viterbi algorithm is not suitable
for the proposed stream cipher. The sequential algorithm decoding is based on the code
tree as that shown in Fig. 2.9, hence there will have no problems in decoding by sequential
algorithm.

An SHSR is an nonlinear error coding, hence there must have a corresponding decoder

for each SHSR, as the Fig. 2.10 shows.

2.5.1 Sequential Decoding with State Hopping

There are several algorithms of the sequential decoding , e.g., stack algorithm, Fano al-
gorithm, generalized stack algorithm, and multiple=stack algorithm [40]. The purpose of a
sequential decoding algorithm is‘to.find the maximum likelihood in an efficient way through

the code tree. For simplicity, the stack algorithm [40] is adopted.

Step 1: Load the stack with the origin node in the tree, whose metric is taken to be zero.
Step 2: Compute the metric of the successors of the top path in the stack.
Step 3: Delete the top path from the stack.

Step 4: Insert the new paths in the stack, and rearrange the stack in the order of decreasing

metric values.

Step 5: If the top path in the stack ends at a terminal node in the tree, stop. Otherwise ,

return to step?2.

A revised state algorithm is proposed here. At Step 2, the two metrics are computed by
adding previous metric stored in the stack and the current metric obtained by comparing

the outputs of shift registers and received signals. In general, the outputs of shift registers
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are dependent on the current state, but not for the proposed system. In convolution code,
there is only one state diagram, i.e., the state is changed only by the inputs of the shift
registers. So the state can be obtained from the decoding path in the stack when computing
the metric in Step 2.

For our system, the SHSRs are taken as substitution functions. For 3-degree SHSR, the
transition between state diagrams Fig. 2.8 (a), (b), and (c) is random. When computing the
metric in Step 2, the current state needed to yield the outputs of SHSRs can not be observed
from the top path stored in the stack. In other words, the corresponding state for a path
must be stored in the stack. For example, when a convolution code with memory size of 3
has a decoding result (1,0,1,1,0,0), we can say that the current state is (1,0,0). But in our
system, the state can be also changed by PRVG, hence the current may be not (1,0, 0).

There still lacks one information in the SHS algorithm. Besides the inputs of SHSRs, the
determination of the next state must have the knowledge about the two values, pos; and V;

in Fig. 2.2. Hence the history of pos; and V; have to be recorded.

2.6 Simulation

The experimental results of a (4,8,8,977) system are illustrated in this section. Following the
design described earlier, we can obtain that the private key length Ny is 96 bits, the expanded
key length N, is 108 bits, the dimension N of PRVG is 4, and Nrp is 7 x 2+ 7 x 3 = 35.

The polynomial matrixes of SHSRs are selected as

111001111 110001101

AO - 7141 - y (222)
111110101 101001101
100101101 111100111

Ay = ,Ag = . (2.23)
111000011 100011101

where each row in A, is the coefficient of the primitive polynomial in ascending degree.
Because of N, = 4 and N, = 8 in the system, the secrecy-channel coding scheme is selected.
From (2.22) and (2.23), each subsystem s, ; is an error control code with coding rate 1/2.

Note that the code rate is not obtained directly from the division %
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Table 2.2: Probability distribution in 4 tests with zero-input, one-input, different keys and
different data

Outcome Test 1 Test 2 Test 3 Test 4

0 0.49362 0.50325 0.49363 0.50054
1 0.50638 0.49676 0.50637 0.49946

2.6.1 Security analysis

In Table 2.2, the probabilities of 0 and 1 are addressed for the four cases. The input in
test 1 is a zero vector with length 10° bits, and is a 10°-bit vector of 1 in test 2. There are
10® patterns in test 3, each pattern is a 103-bit vector with Hamming distance 1. In test 4,
the 103 zero bits are encrypted in 96 distinct keys {kq, k1, . .., ko5 }, the Hamming distance

between ko and k; is 1, where 1 < j.<095."

Table 2.3: The experimental résults of out s“y‘stem‘obtained by NIST’s statistical test suite

Statistical Test Cl C2 @3 €4 C5:C6 C7 C8 (C9 C10 P-Value Ratio

Frequency 6 3 H5%WRBe. 42 5 2 6 4 0.834308 0.9750
Block-Frequency 4 4 6 4‘ 3 4 5 3 1 5 0.834308 1.0000
Cusum 5 6 7 2 5 1 5 O 1 3 0.350485 0.9750
Runs 2 6 5 4 3 4 4 2 3 7 0.739918 1.0000
Long-Run 3 2 3 5 2 6 2 6 6 5 0.637119 1.0000
Rank 2 5 5 8 6 3 4 2 3 2 0.437274 1.0000
FFT 1 1 4 5 3 4 4 5 6 7 0.484646 1.0000
Aperiodic 5 4 4 5 3 4 4 3 4 4 0.999438 1.0000
Serial 6 3 5 3 4 2 5 2 6 4 0.834308 0.9750
Lempel-Ziv 9 3 4 4 1 3 3 2 5 6  0.242986 0.9750
L. Complexity 3 3 3 3 5 7T 2 5 b 4 0.834308 1.0000

According to the numerical data shown in Table 2.2, the probability approximates to

0.5 for each case. For security issue or randomness concern, this is a good phenomenon.
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It is not helpful for error control coding, since the error control ability is determine by the
shortest Hamming weight of the designed code. Table 2.2 also shows that no matter what
the distance is calculated by the number of 0 or 1, the Hamming distance is not long enough
for constituting a good code for error-control coding.

We also use NIST’s statistical test suite [48] to verify the randomness of our system.
We generate 40 sequences of 10° bits and run the 11 tests, frequency test, block-frequency
test, cumulative sums test, runs test, long-run test, rank test, discrete fourier transform test,
non-overlapping template matching test, serial test, Lempel-Ziv test, and linear complexity
test. The results are shown in Table 2.3. The table has 13 columns: column 1 is the name of
test, column 12 is the P-value that arises via the application of chi-square test, column 13 is
the ratio of sequences that passed the test, columns 2-11 is the distribution of P-value of the
give 40 sequences, where C1 to C10 are separately correspond to 10 equal bins obtained by
dividing an unit interval. Each row in Table 2.3 is a single test. The test program transform
each result into an identical index!named P-value. High P-value means that the sequence
provides high randomness. In general, if the P-value is greater than 0.01, we can conclude
that the sequence is random. ;As Table 2.3 shows,. our system has high P-value above 0.5
in most tests and high passing Tatio. From-the testing results, we assure the randomness of
our system.

Even the linear congruential PRNG is not a secure random number generator, the crypt-
analyses are hard to obtain the sequence generated by PRVG. Because we add several non-
linear functions, as Fig.2.2 shows, to translate the values before using them. Therefore, the

security of our system will not be thinned by PRVG.

2.6.2 Performance of error correction ability

Fig. 2.11 is the error probability of this code over an AWGN channel. The system parameters
are the same in both cases, the only difference is the changeability of the 1st register in
SHSRs. From the simulation result, it’s obvious that, under the channel-coding sense, the
coding performance in case 1 which the 1st register is unchangeable, is better than the one in
case 2 which the 1st register is changeable. Comparing to pure channel coding, our system
has normal performance at low SNR, but lower performance at high SNR. This causes by

the noise-like state transition of SHSRs.
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2.7 Conclusions

The SECC and JEEC schemes presented by Rao and et al. are block coding systems, but our
proposed scheme, a new secrecy-channel scheme, is a stream coding system. Our architecture
can be either a pure cryptosystem or a secrecy-channel coding system. The combination of
secrecy-channel coding reduces the computation time and enjoys an extra benefit that the
channel error will make intruders hard to attack. The proposed scheme is also flexible for
design. Given a 4-tuple (N,, N.,m, M) for an application, following the design flow will get
an appropriate system. The plaintexts/ciphertexts can be fast encrypted/decrypted by a
pure cryptosystem, since the system is designed based on two simple structures, SHSRs and
PRVG. The system security is dependent on three nonlinear functions RPs, SHSRs ,and
PRVG. These nonlinear functions and exclusive-or pairs are changed each time with the
values indirectly given by PRVG.

Each subsystem s.; may have differéntscode rates. The error control ability depends
on the polynomial of SHSRs, the outputiof PRVG and the decoding scheme. Comparing
with the convolution code, thé merging of PRVG-and convolution code reduces the error
control ability. The SHSRs let:the eode become a-nhonlinear code, and the Trellis diagrams
are distinct for each key. The key-dependent Trellis diagram is hard to be decoded by a

Trellis decoder, however it is suitable in Secrecy communication.

28



CHAPTER 2. A STREAM CIPHER BASED ON CONVOLUTION CODES

10
101
11 (1o
011
(011) o1
00 (©o1)
(111) 10
101
0 (101)
(011)
01
11 —oT)
(110)
o0
(100)
10
{001)
1
11 ~ (oo0)
o110 00
(100)
01
(001)
1
{000y~
10
(101)
11
(011)
01
01 (o
(111) 10
(101)
00
011
©1n 01
00 ooty
©70)
00
(100)
10
(001
10
(011) 00
100
01 (100)
001
oot) 11
—{ouo)

Figure 2.9: The code tree for a (2,1,3) stream cipher
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SHSR Np > Decoder Np
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SHSR n > Decoder n
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SHSR 2 > Decoder 2
G

SHSR 1 > Decoder 1
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Figure 2.10: Each SHSR has a own decoder
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Figure 2.11: The error probability on system (4,8,8,977)

30



Chapter 3

Secure MP3 Algorithm

Three new partial/adaptive encryption approaches to secure MP3 compression algorithm are
presented. To adopt the proposed approaches, a cryptosystem can be chosen to be embedded
into or be concatenated behind the MP3 algorithm, depending on the different characteristics
of applications. The MP3 [27] is'a popular format for audio distribution, hence securing
MP3 will provide diversified applications, such as music trial services, authorized access, and
multilevel encryption. To encipher a compressed file'by partial encryption, the encrypted bits
will be diffused after decompression; lience the partial /adaptive encryptions are suitable for
multimedia security. In this work, the andio data are separately enciphered by these proposed
approaches: sign bits of frequency magnitudes, Huffman codes and side information, and the
results are analyzed in Masking to Noise Ratio sense. The proposed secure MP3 algorithm
can be easily achieved without extensive computation, major modifications for MPS3, and
loss of the compression ratio. Moreover, the partial encryption can exactly provide enough
security on multimedia application. And the encrypted MP3 files is compatible to MP3
standard for trial service.

Moreover, for portable devices with MP3 codec, the demands of digital right management
arise recently. To provide a secure scheme to the most portable devices with MP3 codec,
the approach described above is modified to be efficiently implemented it on a dual-core
system with one DSP and one RISC. The secure MP3 algorithm is a combination of a MP3
algorithm and a stream cipher. The MP3 algorithm is executed on DSP and the stream
cipher is on RISC. This separated design can dynamically update the type of stream ciphers

in various applications. However, only the main data of a MP3 frame, rather than sign bits
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and side information, is encrypted in the modified approach.

This chapter is organized as follows. The overview of security of MP3 is given in Sec-
tion 3.1. Section 3.2 gives brief descriptions on Masking to Noise Ratio (MNR), MP3, and
Software encryption algorithm (SEAL) and the definitions of partial encryption and adaptive
encryption. The three proposed schemes and their performance are dilated on in Section 3.3.
The simulation results are shown and explained in Section 3.4. In Section 3.5, the realiza-
tion issues, security of three algorithms, and solutions for trial service are described here.
Section 3.6 briefly describes the modified secure MP3 scheme, describes the scheme and ana-
lyzes the security thereof. The performance of the modified approach is shown in Section 3.7.

Finally, Section 3.8 summarizes this work and provides directions for future work.
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3.1 Overview

The digitization of media has profoundly affected copyright and intellectual property. Online
MPEG Layer III (MP3) sharing seems to threaten the music industry. Accordingly, topics
in the area of Digital Rights Management (DRM) have become increasingly important over
recent years. The aim of DRM is to solve the problems of the distribution of digital content.
The access to content produced using DRM is restricted in several ways, including encryption,
watermarking, finger-printing, mechanism of access control and others. Currently, selling
music is the most popular DRM application, as done by Apple’s iTunes [1], iMUSIC [26],
and others. The details of DRM systems of music industry vary from implementation to
implementation. However, the encryption is a method to limit the access of the protected
music. First, the content is encrypted using a media key. Then, the encrypted content,
the encryption key, the copyrights and information about the content are packaged and
encrypted once more using a license, key.! "After the consumer receives the digital product
and pays for the license key, the player decrypts and undo the package to yield the encrypted
content and the encryption key. Then, theplayer ¢an fully access the encrypted content if
all of the information is correct.

Some studies of the encryption.of MP3 have'been published. Torrubia et al. [61] pre-
sented the perceptual cryptography of MP3 streams. They employed two primitives —
scalefactor encryption and Huffman-codeword substitution. Torwirth et al. [60] presented
a selective encryption algorithm, that encrypts the main data of MP3 granules. The en-
crypted part is determined by mapping the byte index of Huffman codeword onto the exact
frequency boundaries. Both schemes can be used to encrypt the already encoded MP3 files.
However, both schemes involve extra computations to determine accurately the quality of
the encrypted MP3 files. This work presents a simple method for adaptively encrypting the
main data in MP3 frame, and yields similar results to those of Torrubia et al. [61] and Tor-
wirth et al. [60]. The security level can be varied from 0%(lowest security) to 100%(highest
security). Any stream ciphers can be adopted. Therefore, any stream cipher can be employed
to generate the random bitstreams. The advantage of the partial encryption/decryption is
that it accelerates processing overall. Additionally, the encryption scheme and decryption
scheme are identical, so only one security scheme is required to perform both encryption

and decryption. Following encryption, the format of MP3 frame remains valid. Therefore,
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the MP3 algorithm could directly decompress the encrypted MP3 without decryption, but
the consumers receive only the low-quality music. Content providers can use this feature to
provide free music to consumers. Gang et al. [18] concluded that MP3 files can be encrypted
in compression progress or after compression.

Usually, multimedia encryption is just to cascade a cryptosystem behind a source encoder.
Indeed, the multimedia encryption has been especially designed for practical applications.
Source coding is data-dependent and compacts the data size; however, secrecy coding is
data-independent and keeps the data size. Because of the different natures between source
coding and secrecy coding, the secrecy-source coding is hard to design. At general points,
designs of cryptosystems do not consider the properties of data. In fact, the characteristics of
the the multimedia content have to be taken more consideration to achieve more efficiency on
processing and more flexibility on applications while applying a cryptosystem on a compres-
sion algorithm. The diffusion, which is an important feature for substitution-permutation
ciphers, also appears on decompression, hence the encrypted bits will extensively infect the
decompressed multimedia contént, i.e.; the effectsion quality of partial encryption may be
as well as of full encryption. Additionally, the partial encryption can process less data and
is suitable in real-time applications:

Our schemes can be implemented into two cases: simultaneously encrypting and com-
pressing or encrypting the already encoded MP3 files. For live applications, which the former
case is fit, the media streams are encoded then are delivered immediately. Since it is a time
critical issue, so it would be better to do encryption and compression simultaneously. For
other applications, such as MP3 providers, because the compression is time-wasting process-
ing, it would be fine enciphering compressed files than doing encryption in compression step.
In this research, we propose several approaches to secure MP3 to meet the above cases. The
first approach is the sign-bit encryption: the sign bits of frequency magnitudes are treated
as plaintext. The second method encrypts the Huffman codes of quantized frequency mag-
nitudes. Both above schemes are applicable to adaptive encryption. In adaptive encryption,
the information must be recorded in headers for receivers, hence we devise a way of recording
the extra information to be compatible the MP3 standard. The last approach enciphers the
side information in MP3 headers.

However, most playback devices are dual-core systems, DSP and RISC, so the proposed
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approach is modified for being implemented and accelerated on such a system. In the
modified approach, only Huffman-code encryption is chosen as the security phase to execute
on RISC, and the MP3 algorithm is on DSP. The stream cipher SEAL is chosen in our
schemes to perform encryption, but not limit which ciphers to be adopted for our approaches.
The security phase executes parsing and encryption/decryption of the XOR operation. The

MP3 phase performs as does the MP3 algorithm.
Encryption Key, k

Classified/Compressed
Signals Y

Original Y
Signals Analysis/ Encryption. E
Compression ypron
M
E(K,Y,) |
Y * -
R Transmitted
Signals
Synthesis/
Decompression
~ | Recovered
M Signals

Figure 3.1: The model description of partial/adaptive encryption

3.2 Preliminaries

3.2.1 Partial Encryption and Adaptive Encryption

The partial/adaptive encryption is a particular derivative from the combination of a cryp-
tosystem and a source coding or an error control coding. The main concept of the par-
tial/adaptive encryption is to protect the entire content by only encrypting the significant
part which has smaller size. Generally, the encryption is behind compression. Hence, as

shown in Fig. 3.1, the original signal M is processed by filters or compression algorithm to
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obtain Y. The significant part can be determined among the generation of Y, and we denote
it as Y,, the part to be encrypted. Therefore, in the partial/adaptive encryption, Y is divided
into an encrypted part Y, and a clear part Y.. The transmitted signal R is the combination
of Y, and E(k,Y.). Signal M is the reconstruction of R without decryption, and we can
compare M and M to examine how the influence E (k,Y.) has. A scheme which makes some
cumbrance on sensible presentation and causes that the polluting size of M is larger than

the size of Y, is called partial/adaptive encryption, as shown in Fig. 3.2.

_ Partial/Adaptive
Transformation Encryption

Reconstruction

Infected
Signal

<

Figure 3.2: The data flow of partial/adaptive encryption

Both schemes are similar in the concept of encryption, but not in the applications. Hence

we give definitions of partial encryption and adaptive encryption below.

Definition 2 Partial encryption is an encryption method which brings about the larger size
of infected part of M than the size of Y. and some cumbrance while displaying M, but the
quality of M is too troublesome to be determined by the size of Y,.

Definition 3 Adaptive encryption is an encryption method which brings about the larger
size of infected part of M than the size of Y. and some cumbrance while displaying M , but

the quality of M can be determined by the size of Y, in a systematic way.

Both schemes have a common property that the complete reconstruction can’t be gained

without decryption or authorized access. The partial/adaptive encryption relies upon how
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to select Y,.. The only principle for Y, selection is to pick the M-dependent data to encrypt.
There are two types of the M-dependent data.

1. Variant of M: This kind of data can be truly regarded as signal M of other formats, in
other words, it is just some transformation of M, for examples, the results of Discrete

Cosine Transform (DCT), or Huffman coding of M.

2. Accompaniment of M: The input-dependent and additional information, which re-
ceivers needed to decode, are belong to this type, for examples, Huffman table, CRC

code, and frame headers.

Generally, the partial encryption encrypts the later type and the adaptive encryption
takes the other.

The MP3 algorithm has both pre-described types of M-dependent data; actually, most
applicable algorithms do. Hence our proposed schemes include both partial encryption and

adaptive encryption.

3.2.2 Masking-to-noise ratio

We use MNR to analyze the audio‘quality after MP3 compression and encryption. MNR can
be obtained from the masking model of human hearing, so it’s better than SNR to represent

the audio quality. The MNR is defined in (3.1).

MNR = 101og;, (powerofmaskzngthreshold) .

power_of _noise

Lossy Y[n]

X[n] —» encoder ——— decoder |, X|n]

Figure 3.3: The general model of a lossy compression

Fig. 3.3 shows the general diagram of a lossy codec. An original signal X [n] is compressed

as Y'[n], then the error between X[n] and X|[n] is defined as
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To have MNR, the masking threshold is calculated from the results of feeding psychoacoustic
model with X[n] and the noise energy is computed by E[n]. When MNR is greater than
zero, human hearing is hard to detect the noises; more exactly, noises are masked. For a
compressed audio, each frequency band has its own MNR. For convenient comparison, we

use the mean value of MNRs to represent the audio quality.

3.2.3 MP3 algorithm

The MP3 [27] algorithm is firstly introduced. Fig. 3.4 presents a block diagrams of the
general MP3 encoding process. A time-to-frequency mapping converts the audio input into
spectral lines frame by frame. In the hybrid transformation block, MP3 uses a poly-phase
filter bank followed by a Modified Discrete Cosine Transform (MDCT) to increase the spec-
tral resolution. These spectral components are then divided into several scalefactor bands,
according to the critical-band rate. The .audio input simultaneously passes through the
PAM-II, that determines the ratio of the.signal’energy to the masking threshold for each

scalefactor band.

PCM Hybrid transform Rate control for Ep coded
. for time to . . Bitstream | Ditstream
audio > . »| bit allocation > ° 5
. frequency mapping formatting
mput
A
v
Distortion Ancillary data
Masking control for (optional)
» FFT > Threshold > noise allocation
Psychoacoustic Model 11 Iteration loop

Figure 3.4: MPEG /audio encoding process.

The rate controller varies the quantizer in an orderly way: quantizes the spectral values
and counts the number of Huffman code bits required to code the quantized values, to satisfy
the bit rate constraint. The quantizer in MP3 is non-uniform. In the quantization of the
g™ granule in the f™ frame, the spectral value z; /(i) is pre-emphasized and amplified by

applying (3.2) and (3.3).

¥y (i) = ap (i) x V2O (3.2)

. . (1+21)xC(bs)
'y (i) = 2 (i) x V2 : (3.3)
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where i is the index of the spectral line; z, € {0,1} switches on or off the pre-emphasis;
z1 € {0,1} determines whether the scalefactors are logarithmically quantized with a step
size of 2 or v/2; b; is the scalefactor band of the i*" spectral line; P(-) is the preemphasis
table as defined in [27], and C(-) is the scalefactor of all scalefactor bands. Then, the
processed spectral value z; (i) is quantized by

[ (10N
Yr,4(i) = nint ( 2’5; ) —0.0946 | , (3.4)

4

where nint  is the rounding function; ¢ is the lower bound of quantization parameter, and
0 is the increasing variable of quantization parameter.

Huffman coding is applied as the lossless coding tool and Huffman tables are predefined
in [27]. MP3 also uses scalefactors to amplify the spectral band energy when the quantization
noise exceeds the masking threshold. The distortion controller determines the scalefactors
that control the quality. Finally, the information required by the decoder is packaged with
compressed audio data as a validsstream of MP3: stream.

The MP3 decoding process-comprises three. main parts [27] — bitstream decoding, de-
quantization and frequency-to-time mapping, as shown in Fig. 3.5. Bitstream decoding
synchronizes encoded bitstream. inputs, and extracts the quantized frequency coefficients

and other information about each frame. Fig. 3.6 depicts the detail functional blocks.

Encoded Bitstream L Frequency to PCM
. . » Dequantization > . . audio
bitstream Decoding Time Mapping tout
outpu

Figure 3.5: Blcok diagram of MPEG/Audio Layer 3 decoding.

Dequantization reconstructs the frequency coefficients, which are perceptually identical
to those during encoding. The dequantization calculation based on the output of Huffman
decoding and scalefactor information is given by (3.5) [27].

; s(i) N Qi(Afvg*SAs(wi))
xf,g(l) = (—1) -yﬁg(l)s . 9(1+21)-(C(bs)+P (b)) (3.5)

where s(i) is the sign bit of ys 4(i); A, = 0+¢ is the step size of the nonuniform quantizer; w;
is the short-block window of the corresponding i*" spectral line, and A, (w;) is the pre-defined

gain of the short-block window.

39



CHAPTER 3. SECURE MP3 ALGORITHM

Huffman Huffman Magnitude & Sign
code bits Decoding A ”
=)
g £
g 5
Encoded g= Huffman Huffman Info g
bitstream £ [ Tnformation Decoding =
g &
>
n
Scalefactor Scalefactor
Information Decoding
Ancillary
Data
Figure 3.6: Bitstream decoding.
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Figure 3:7: Frequeneyto time mapping

The final part shown in Fig. 3.7, frequency-to-time mapping produces an audio PCM
output from the dequantized coefficients. This part includes a set of reversed operations of
the MDCT and analysis subband the filter'bank in the encoder. The alias reduction block
adds alias artifacts to dequantized coefficients, to reconstruct the data approximately as
those of analysis subband filter bank in encoder. Then, the inverse MDCT reconstructs time
domain subband signals from frequency lines. The frequency inversion is then applied in
order to compensate the decimation used in the analysis polyphase filterbank. Thereafter,
the synthesis subband filter bank is applied to the subband signals to yield the audio PCM
output.

Of the above procedures, dequantization, IMDCT, and subband synthesis in particular,
depend on numerous arithmetic operations, and produce quantization noise in fixed point

implementation. This work describes the optimization of these three processes.

3.2.4 SEAL

The SEAL [56] is a software optimized stream cipher with key length of 160 bits. For the

case of the processors with eight registers, SEAL can keep the number of involving variables
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less than 8. Most operations in SEAL only have two operators and the table size is less
than 4K bytes, which is especially designed for the processors with small on-chip cache.
SEAL uses secure hash algorithm (SHA) [46] to generate three tables, which are needed by
initialization and key generation. According to Table 3.1, SEAL is more efficient than most

stream ciphers and that’s why we apply it in our work.

Table 3.1: Performance of several ciphers on Intel Pentium processor [56]

Algorithm  Mbit/s Relative speed

SEAL 198 1
RC4 110 1.8
RC5-32/12 384 5.2
DES 16.9 11.7
MD5 133.1 1.5

3.3 Owur Proposed Schemes

Based on the designed principle’and definitions of partial encryption and adaptive encryp-
tion, we proposed three approaches, sign-bit encryption, Huffman-code encryption, and side-
information encryption, to secure MP3 algorithm. All proposed schemes can be applied by

embedding a cipher into MP3 encoder or using a cipher to straight encrypt the MP3 files.

3.3.1 Sign-bit encryption

In MP3, the frequency magnitude for each sample has two parts: an absolute value and a
sign bit. When the value of the sample is less than 0, the sign bit is set to 1; otherwise, it is
set to 0. The human hearing is sensitive to the variation on sound stemming from changing
sign bits of samples below 5 kHz [19, 20], hence the audio quality is dropped significantly
while encrypting those sign bits. Encrypting the sign bits above 5 kHz is not easy to be
observed by audiences, though the energy is twisted. According to the properties discussed
above on sign bits, that encrypting sign bits could achieve the adaptive encryption is obvious.

For each granule in MP3, there are 576 samples with equal bandwidth, and we denote the
set of sign bits of i" granule as S; = {s, ;| the sign bit of the sample j, 0 < j < 575, at the
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i" granule}. The encrypted part of i'" granule, Y,; = {s;x| six € S; and a < k < b, where

[a b] is the interval of granule to be encrypted }. If the full-band encryption is selected, we

encrypt the entire set .9;, i.e., the special case of a = 0,b = 575; otherwise, we can adjust

the music quality by selecting which bands to encrypt, while the encrypted MP3 files are

directly played by original MP3 player.
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Figure 3.8: The simulation of sign-bit encryption on different frequencies: (a)The original

MP3 file; (b)The sign bits above 5kHZ are encrypted; (c) The sign bits below 5kHz are

encrypted

Fig. 3.8 shows the MNR distribution in several cases. In Fig. 3.8(b), MNRs are greater

than zero for all bands, but drop slightly at frequency about 5 kHz, as compared with
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Fig. 3.8(a). But Fig. 3.8(c) reveals the poor performance in MNRs within the frequency
range from 0 to bk Hz, even having some MNRs smaller than zero. As opposed to Fig. 3.8(a),
that decrements of MNR in Fig. 3.8(c) is more than the ones in Fig. 3.8(b) reveals the the
fact that human hearing is sensitive to the variation stemming from changing sign bits of

samples below 5 kHz[19, 20].

3.3.2 Huffman-code encryption

In MP3 definition, each frame has four granules, each granule has 576 MDCT coefficients.
The absolute values of these 576 coefficients will be divided into three regions: big value,
count one region, and zero region, and be sequently compressed with four Huffman tables.
We denote the Huffman code W; = {w; o, w;1, ..., w; 575} as the whole Huffman codeword of
576 coefficients at the i"* granule, where w; ; is the Huffman codeword of the j™ quantized
coefficient.

The Huffman code W; is made of concatenating each codeword of samples sorted by
frequency from low to high. However, when choosing some bits of W;, that distinctly pointing
out their corresponding frequency is hard. .We can only know the information that the
corresponding frequency of w; ; 15 lower than the;one of w;;, when 57 < k.

Similarly to sign-bit encryption, the quality of unauthorized accessing can be adjusted by
selecting the bytes of W to encrypt, so Huffman-code encryption is an adaptive encryption.
Different from sign-bit encryption, an error avalanche occurs in Huffman-code encryption,
because Huffman coding has an error propagation problem, even encrypting the first byte
will cause tremendous errors in decompression.

The W, is a variant of 576 MDCT coefficients, hence the encrypted part Y., can be
determined from W; as the plaintext in Huffman-code encryption. Because the bit length of
w; ; is variable, not multiple of byte, it is inconvenient to pick a set Y.; = {w; j|w;; € W,

and a < j < b, where [a b] is the interval to be encrypted}. Therefore, we select Y. ; in byte.

3.3.3 Side-information encryption

Side information records the data needed by MP3 encoder. There are several fields of side

information. Some are media dependent and some are not. For security concern, we have to
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avoid known-plaintext attacks, hence much attention have to be paid on encrypting header-
like data.

In our scheme, we choose those fields which changed by input media as plaintext. In MP3,
all fields are classified into three kinds: frame side information, channel side information,
and granule side information. Literally, frame side information is for each frame, and so as
channel side information and granule side information. We choose some side information, of
which symbols are defined in MP3 specification [27], to keep the side-information encryption

from the known-plaintext attacks and list them below.

1. Frame side information: main data _bigin indicates the beginning of compressed data,

hence an MP3 encoder won'’t correctly decode without possessing this information.

2. Granule side information: These fields are the decoding information, such as quantizer

step, region boundary, Huffman table, and so on.

(a) part2 _3_ength:  this'value contains the number of main data bits used for scale-

factor and Huffman-code datal.

(b) big _values: the spectral values of each-granule are coded with different Huffman

code.

(c) global _gain: the quantizer step size information is transmitted in the side in-

formation variable global _gain .

(d) scalefac _compress: selects the number of bits used for the transmission of the

scalefactors.

(e) region _address: a further partitioning of the spectrum is used to enhance the

performance of the Huffman coder.

(f) table _select:  different Huffman code tables are used depending on the maxi-

mum quantized value and the local statistics of the signal.

Additionally, the CRC is encrypted necessarily to probably keep away from attacks,
because CRC' implicitly manifests some relationship among all fields in side information.
All the listed fields are accompaniments of input signal, so side-information encryption is a
partial encryption. It is obvious that the quality can not be systematically adjust by choosing

the side information.
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3.4 Simulation Results
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Figure 3.9: The simulation of sign-bit encryption on different frequencies in three types of

music, piano, rock, and pop. The horizontal lines are the MNR of original MP3 files.

We use SEAL to encrypt and simulate the proposed schemes with three types of music:
piano, rock, and pop. We discuss the results over the average MNR. The frequency distri-
bution of piano, rock, and pop are 0 ~ 8 kHz, 0 ~ 22 kHz, and 0 ~ 16 kHz, respectively.

In sign-bit encryption, we simulate with encrypting different bands. As shown in Fig. 3.9,
when the encrypted frequency is increased, the audio quality is also improved. As we men-
tioned above, upon 5 kHz, the variation of sign bits will not vastly drop the quality. This
simulation also tells one thing that sign-bit encryption has tolerable quality with encrypting
a section between 4 ~ 6 kHz for music trial service.

In Huffman-code encryption, because we can not exactly have the frequency information

on Huffman codes, we use byte index instead of frequency index as x-axis. In spite of what
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Figure 3.10: These results are obtained by encrypting Huffman codes. The x-axis is the

number of encrypted bytes counted from the first byte of Huffman codes.
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Figure 3.11: These results are obtained by‘encrypting Huffman codes. The x-axis is the byte

index of the encrypted byte.

kinds of music, from Fig. 3.10, we found no matter one byte or several bytes are encrypted,
the quality of encrypted MP3 file are similar under MNR sense. The effects are resulted
from the property of error propagation on Huffman decoding.

Different from the simulation of Fig. 3.10, instead of encrypting consecutive bytes, we
separately encrypt each byte. The simulation results shown in Fig. 3.11 provide us that
encrypting which byte is proper to music trial service. However, the Huffman-code encryption
is hard to determine which frequency band is good for music trial service. The byte index
only shows the relative information about frequency. For examples, even the 2"? byte implies
higher frequency than the 1% byte in each granule, but the 1% bytes of distinct granules do
not represent the same frequency. The Huffman codes are the compressed data of nonzero

region. For piano music, most of energy are concentrated in low bands and wide bandwidth
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in zero region, hence the quality of piano increases slowly while the frequency of encrypted

band increases.

Table 3.2: MNR Comparison: Side information encryption on piano, rock, and pop.

Non En- Frame side Channel Granule
crypted side side
Piano 29.3831dB  20.6328dB  23.6214dB  20.317dB
Rock 19.3537dB  19.1296dB  19.1816dB  19.1308dB
Pop  21.1033dB  19.2218dB  19.5985dB  19.1237dB

The results of side information encryption are illustrated in Table 3.2. From the MNR
values, the MP3 files have been successfully encrypted. The important information are
mostly in frame side information and granule side information, hence encryption on both of
them provide good multimedia security.

For high security application; the sign-bit eneryption encrypts the sign bits of samples
below 5 kHz, the Huffman-code encryption takes- 1°t ~ 70™ bytes of each granule as Y, ;, and
side-information encryption enciphers-all side-information. Table 3.3 lists the encrypted size

for each case.

Table 3.3: Size of Y, for High Security of three schemes

Sign-bit encryp- Huffman-code Side-information
tion encryption encryption
(%) 1556% (< 5 19% (0 ~ 20 7.65% (256 bits)

kHz) bytes)

3.5 Implementations and Security

Based on the simulation results, some practical issues and suggestions are addressed in

following subsections.
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3.5.1 Quality Level for Trial Services

According to the simulation results in Section 3.4, we suggest a quality level for music trial
services for the both proposed adaptive encryption, sign-bit encryption and Huffman-code
encryption, to original MP3 players. In sign-bit encryption, encryption of bands about
1,225 ~ 3,062 Hz could obtain the music for trial service. For Huffman-code encryption, the
quality for trial services could be provided by encrypting the 60" ~ 90*" bytes of Huffman

codeword in each granule. The results are shown in Table 3.4.

Table 3.4: The suggested significant part Y, for trial service and its quality.

Sign-bit encryption Huffman-code encryption
Y. 1,225 ~ 3,062 Hz 60" ~ 90" bytes
MNR ~ 22 db ~ 23 db

If the audio quality is not highly concerned, the devised three schemes can fully encrypt
the corresponding encrypted parts Y.: sign-bits;» Huffman codes, and side information. If
there exits the time issue of processing, the datassize of Y. can be reduced by selecting those
parts Y, from the low frequency bandste thehigh bands for sign-bit encryption or from low

bytes to high bytes for Huffman-code encryption.

3.5.2 Extra Header Design

Taking inspection on side-information encryption firstly, because the quality adjustment
is unsuitable, for realization, it is a good strategy that the encrypted side information is
beforehand defined and known by encoders and decoders. So there doesn’t need extra
information to indicate how to decrypt with full quality, and standard MP3 players could
decode the side-information encryption MP3 files as usual ones, but with low quality.

For sign-bit and Huffman-code encryptions, while the quality adjustment is available
in encryption, saving the information of how many data are encrypted is necessary. In
order to be compatible with the standard MP3 players, the information, needed for correct
decryption, has to be added into standard MP3 header in a proper way so that the standard
MP3 players can play the encrypted MP3 with low quality.

On sign-bit and Huffman-code encryptions, we can place the extra information prior

to the synchronization word, because the MP3 decoder takes no consideration on the input
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before detecting the synchronization word, i.e., standard MP3 players can play the encrypted
MP3 files as well. Without doubt, the music of full quality can be gotten under success
authorization and specific MP3 decoders.

The synchronization word of hex is OxFFF, hence the construction of extra information
must have no probabilities to produce the pattern, OxFFF. In sign-bit encryption, the en-
crypted part Y; . can be described by two 10-bit digits ranging from 0 to 575, therefore the
cases with the maximum length of consecutive 1’s are {01111111111000xxx} in all possible
combinations of the two digits. It is apparent that the pattern OxFFF by no means occurs
in extra information for sign-bit encryption. In Huffman-code encryption, we also use two
10-bit digits to define the bound of bytes to encrypt. Generally, the Huffman codeword size
of a granule is less than 512 bytes, the most 1’s case is {01111111110111111111}. For that
reason, the extra information of Huffman-code encryption is certainly not to get the same

pattern as synchronization word.

3.5.3 On-Line and Off-Line Encryptions

Huffman-code
encryplion
Sign-bit Side-information !
_____ > Insert a SEAL encryption encryption |
I | |
Digital ! v ¥
I

Audio
Signal | 32-Chennel Polyphase
Analysis Filterbank

Bit Allocation Loop
MDCT Quantization
Huffman Coding

A

Coded
Audio

A

Bitstream

window Formatting

switching SMR

Coding of
Side-Infomation

Psychoacoustic
Model II

Figure 3.12: The block diagram of on-line cases. The side-information and Huffman-code
encryption both are inside the bitstream formatting process. In terms of MP3 encoding

procedure, the side-information encryption is ahead of Huffman-code encryption.

The proposed three schemes can on-line or off-line encrypt MP3 files according as the

practical applications.In general, the on-line applications are time critical, such as live broad-
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Figure 3.13: The block diagram of off-line cases.

casts of sport games, and concerts, so it’s better to produce encrypted MP3 files by simul-
taneously encrypting and compressing the raw data. And the off-line instances, therefore,
can be done by directly encrypting the ready MP3 files.

The on-line cases are composed of MP3 algorithm and SEAL, each case has different
insertion position of SEAL as shown'in Fig:.3.12. The off-line cases have to extract the
encrypted part Y, from the ready MP3 files; then encrypt Y.. The encrypted part Y, of
side-information and Huffman=code encryptions are directly extracted from each frame of a
MP3 file. In off-line sign-bit encryption;-hewever, the sign bits to encrypt are obtained after
Huffman decoding of each frame."The pictorial description is at Fig. 3.13

3.5.4 Security

Apparently, the proposed schemes are cipher independent, hence the security on our schemes
are dependent on what kind of data we encrypted. For this concern, we have noted whether
the encrypted data are predictable or known already by cryptanalysts. For sign-bit encryp-
tion, cryptanalysts are not easy to get or predict the sign bit of each sample. In Huffman-code
encryption, the compressed data are the variant of the original signal, hence it has similarly
intrinsic property as sign-bit encryption, that is, the compression results are a huge alphabet
to guess. However, some fields of side information are still and simple to predict. For security
concern, we have to avoid encrypting those fields and keep our side-information encryption

from known-plaintext attacks.
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3.6 The Overview of Modified Scheme

Fig. 3.14 is the overview of the proposed scheme. The proposed scheme has two phases, the

secure phase and the MP3 phase.

Key Security Level
l l 0~100 %
RAW MP3 Encrypted
Data MP3 Streams | Secure | MP3 Streams
—> » F—»
Phase | Phase

Figure 3.14: Block diagram of the coding flow.

The secure phase parses the MP3 frame to identify the security part and the normal
part, encrypts/decrypts the security part, and joins normal part to processed security part
as a valid MP3 frame. The security level's/can be varied from 0% to 100%. The percentage
is mapped onto the size of the s¢eurity, part: Fig:"3.14 indicates that the security phase has

three inputs.
1. Key;
2. Security level;
3. A normal MP3 frame or an encrypted MP3 frame.

The MP3 phase executes a low-complexity MP3 algorithm, sends the ordinary MP3
frames to the security phase and decompress the decrypted MP3 frames from the security
phase.

For on-the-fly production, the two-phase scheme increases the efficiency in dual-core
platform, because we can run the two phases on two distinct CPUs for executing the low-
complexity MP3 algorithm and secure coding simultaneously. Additionally, the proposed
scheme can encrypt the existent MP3 files directly by security phase. The security phase
reads the MP3 frames and processes the security parts. This makes the scheme easily be
applied to the actual state.

Torrubia et al. [61] and Torwirth et al. [60] presented selective encryption algorithms

for audio compressing. In the case of encrypting an encoded MP3 file, Torrubia et al.
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Figure 3.15: Detail lof processing flow of the security phase.

[61] decompressed an MP3 file and performed Huffman encoding using a secure table to
substitute codeword; Torwirth et al.” [60] also decompressed an MP3 file; determined the
exact frequency boundary of main data in MP3 frame, and encrypted the protected part.
These tasks are all time-consuming. However, the proposed scheme uses a more simple
encryption scheme than described above, yielding similar results.

Fig. 3.15 presents how the security phase works. Each MP3 frame has two or four
granules for one channel or two channels, respectively. In the security phase, each granule is

sequentially processed in the same way. The flow of the security phase is as follows:

1. Determine the size of the security part with given security level s, where 0 < s < 1 and s
has only two digits after decimal point. The security level for each MP3 granule is fixed.
However, in each MP3 granule, the size of the security part is S = s X |main dataly,

where operation | - |, counts the bit length.

2. Obtain a sequence of S successive bits from the output of stream cipher. The stream

cipher in proposed scheme may be any secure one. The stream cipher generates a
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random sequence of appropriate length in advance, whereas the MP3 phase performs

compression to accelerate the entire process.
3. XOR the security part with the sequence.
4. Join the security part to the normal part to form a valid MP3 granule.

Fig. 3.16 depicts the file format of MP3. The header field contains information about
the sampling frequency, bit rates and audio modes, for example. The CRC' is used to detect
whether errors occurred in fields of header and in the side information. All parameters
related to decoding information are in the side-information field. Finally, the main-data field
contains the compressed audio data. The security part is backwardly extracted successive S
bits from the last bit (highest frequency) of main data. However, the length of main data is
not fixed, but the header of each frame includes this information. Data at lower frequency
are generally more important than thosesat higher frequency. Therefore, when the security
level s increases, the security part becemes-more important. Additionally, the encrypted
MP3 file has the same size as the one without encryption, because the encryption part is the

final results of MP3 encoding for a granule.

Header CRC Side information

(32 bits) | (0,16 bits) (136,256 bits ) Wain data

Figure 3.16: File format of MP3 [28].

Fig. 3.15 reveals that the encryption is performed by XOR-ing the pseudo-random binary
sequence with the security part of main data. The decryption process is identical to the
encryption process. The encrypted MP3 frame is parsed by the same function as applied in
encryption, to determine the normal part and the security part, according to the specified
security level. The stream cipher generates the identical pseudo-random binary sequence
used in encryption. Therefore, one copy of the flow depicted in Fig. 3.15 is involved in both

encryption and decryption.
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3.7 Performances and Comparisons

3.7.1 Performance of partial encryption

Quality loss is addressed using the Objective Difference Grade (ODG) of PEAQ (Perceptual
Evaluation of Audio Quality) [29]. The software encryption algorithm (SEAL) [56] is applied
as the stream cipher in the following simulation. The three audio samples, bass, harp and
spfg, are obtained from EBU SQAM [39]. Fig. 3.17 shows the ODG of the encrypted MP3
files, obtained by the proposed approach with different security levels. The quality clearly

monotonically declines as the security level increases.

-0.5

—A— bass
—— harp
- spfg

ODG

L L L L Y Y
0 10 20 30 40 50 60 70 80 90 100
Secure level, s

Figure 3.17: Quality loss following encryption using SEAL stream cipher

3.8 Conclusions

We propose several approaches to secure MP3 in this research. They provide an easy solution
to integrate the cryptosystem and MP3 algorithm. If the adaptive encryption is needed, the
sign-bit encryption and Huffman-code encryption can fit in with, along with good security.
When the size of encrypted data are fixed, the side-information encryption provides good
security than the others. Our schemes can be applied on simultaneously encrypting and

compressing or encrypting the already encoded MP3 files. For live applications, e.g., diverse
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sport shows, and concerts, the former case is fit, because the media streams are encoded then
are delivered immediately; otherwise, because the compression is time-wasting processing,
it’s better enciphering compressed files than doing encryption in compression step. The
partial/adaptive encryption and the selection principle of Y, addressed in Section 3.2 are
applicable not only on MP3 algorithm but also other compression algorithms. Then, a
modified one of Huffman-code encryption is proposed on a dual-core platform with RISC

and DSP. It represents faster and simpler structure than the original one.
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Chapter 4

Enhancement of the Application

Security of AES

This chapter addresses two security issues of Advanced Encryption Standard (AES) [47].
First, in order to prevent AES from the differential fault attacks (DFA) [7, 14, 53], error
detection is required to detect the errors during encryption or decryption, and then to provide
the information for taking further actions, such as-interrupting the AES process or redoing
the process. Because errors octur within a function, it is not easy to predict the output.
Therefore, general error control codes are not'suited for AES operations. In this work, several
error-detection schemes have been proposed. These schemes are based on the (n+1,n) cyclic
redundancy check (CRC) over GF(2%), where n € {4,8,16}. Because of the good algebraic
properties of AES, specifically the MixColumns operation, these error detection schemes
are suitable for AES and efficient for the hardware implementation; they may be designed
using round-level, operation-level, or algorithm-level detection. The proposed schemes have
high fault coverage. In addition, the schemes proposed are scalable and symmetrical. The
scalability makes these schemes suitable for an AES circuit implemented in 8-bit, 32-bit or
128-bit architecture. Symmetry also benefits the implementation of the proposed schemes
to achieve that the encryption process and the decryption process can share the same error
detection hardware. These schemes are also suitable for encryption-only or decryption-only
cases. Error detection for key schedule in AES is also proposed and is based on the derived
results in the data procedure of AES.

In addition, we also implement a parameterizable Rijndael algorithm with three change-
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able coefficients, including the irreducible polynomial, affine matrix, and the row vector of
the matrix used in MixColumns . The coefficients are on-line changeable, i.e., they are
also the inputs of the circuit. For increasing the speed of SubBytes , two techniques, ba-
sis conversion and composite field, are applied to implementations in this work. Moreover,
MixColumns is also speeded up by pre-calculating the values of every power of xtime
of constants in MixColumns . Two structures of 32-bit data bus are implemented. The
normal structure provides throughput of 1.7902 Gbps and costs 83.094k gate counts on 0.18-
pum CMOS cell standard library; the pipeline structure has 4.9516 Gbps and costs 125.993k
gate counts. This work provides a customized Rijndael cipher to let users change coefficients;
therefore, it can be utilized in the applications requiring customized security, e.g., the virtual
private networks.

This chapter is organized as follows. In Section 4.1, the problems about DFAs on AES
are introduced. The other weaknesses caused by algebraic properties of AES are shown
in Section 4.2. Section 4.3, the AES algorithmi.is briefly described and the notations used
throughout are defined. In Section 4.4, our. proposed error detection schemes for AES are de-
scribed. Derivation of error detection for each operation, including SubBytes | ShiftRows |,
MixColumns , and AddRoundKey ; is explained, as well as the design of the key schedule.
The undetectable errors of each propesed-meéthod are theoretically analyzed in Section 4.5,
while in, Section 4.6, the realization issues of three levels, operation level, round level, and
algorithm level, are described. In Section 4.7 advantages and comparisons between this work
and other research studies are discussed and in Section 4.8 the detection capability of each
scheme is simulated. In Section 4.9, the details of designing SubBytes and MixColumns
are described. Section 4.10 shows the architecture and how it works. The performance and
hardware complexity of each structure are discussed in Section 4.11. Finally, our conclusions

are offered in Section 4.12.
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4.1 The Security Issues While Implementing AES

The Advanced Encryption Standard (AES) [47], a successor to the Data Encryption Stan-
dard (DES), was finalized in October 2000 by the U.S. National Institute of Standards and
Technology (NIST), when the Rijndael algorithm [12] was adopted. The data block size of
AES is 128-bit, and the key size can be 128-bit, 192-bit, or 256-bit. In AES, although the
data block is 128-bit, all operations are byte-oriented over GF(2) or GF(28). Therefore,
several kinds of AES implementations have been discussed. In general, three main types
of AES implementations have been discussed, 128-bit, 32-bit, or 8-bit architecture. Each
architecture has its own applications. Feldhofer et al. [15] designed an 8-bit AES chip to
provide security for radio frequency identification (RFID). Satoh et al. [57] introduced a 32-
bit implementation of AES. Mangard et al. [41] proposed a scalable architecture for AES,
which could process 128-bit data or 32-bit data, depending on the number of Sbox.

The hardware implementation of AES woeuld be countered by some side-channel attacks,
such as Differential Fault Attacks (DFA)yor-Diffetential Power Analysis (DPA). Differential
fault attacks was originally proposed by Biham and. Shamir [7]. Theses side-channel attacks
actually threaten the security of several cryptosystems, because they are practical for a crypto
module. The idea of DFA is to apply the differential attacks to a crypto module or a crypto
chip. The cryptanalyst injects errors by using microwave or ionizing techniques during the
encryption or decryption process. Theses errors cause the encryption results to differ from
the correct results; hence, the cryptanalyst will receive the difference of outputs. Therefore,
such differential attacks may be carried out in real world. Dusart et al. [14] broke the 128-bit,
AES under the assumption that you can physically modify a hardware AES device. This
attack required 34 pairs of differential inputs and outputs, to obtain the final round key.
Piret and Quisquater [53] broke AES with two erroneous ciphertext under the assumption
that the errors occur between the antepenultimate and the penultimate MixColumns .

To avoid the possibility of suffering such attacks, error detection can be considered while
implementing a cipher. In 2002, Karri et al. [31] proposed a general error detection method,
called concurrent error detection (CED), for several symmetric block ciphers including RC6,
MARS, Serpent, Twofish, and Rijndael. CED requires an inverse operation to check whether
errors have occurred in calculations, or not, and has three levels: the operation level; the

round level; and the algorithm level. Taking an operation-level CED in AES as an example,
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the InvSubBytes is required to detect the errors occurring in SubBytes , and vice versa.
This method has very high fault coverage, but it is time-consuming and high hardware cost,
because inverse operations are required. In 2003, Karri et al. [32] proposed a parity-based
detection technique for general substitution-permutation block ciphers. However, the size of
the table, required by substitution box, is enlarged. In addition, the paper did not address
the error detection techniques for some specific functions, such as MixColumns in AES. In
2004, Wu el al. [63] applied the structure of [32] to AES and used one-bit parity for a 128-bit
data block. The method of Wu et al. [63] can let the parity pass through the MixColumns .
Bertoni et al. [3] used an error detection code of 16-bit parity for a 128-bit data block. To
be precise, this approach uses one-bit parity for each byte, and thus, can detect all single
errors and perhaps all odd errors. In [4], Bertoni et al. used the error detection scheme in
[3] not only to detect errors bit also to locate errors. In 2004, Bertoni et al. [5] implemented
the model proposed in [4]. The introduction of the mode into AES brought the performance
18% overhead of area and 26% decteasing of throughput. According the results given in [3],
their approach was able to detéct most|:cases of multiple faults. However, this approach is
asymmetrical, between MixColumns and InvMixColumns | because the parity prediction
of InvMixColumns is more complex than'that of MixColumns . Therefore, two circuits
are required to predict the parity while merging the encryption and the decryption. Besides,
the detection technique for SubBytes doubled the table size of SubBytes in AES, from
256 to 512 bytes. In addition, it cannot easily be applied to an AES implementation of 8-bit
architecture, because the parity prediction of MixColumns (InvMixColumns ) requires
information from other bytes and other parities.

This work proposes several error-detection schemes for AES. They are based on the
(n + 1,n) cyclic redundancy check (CRC) over GF(28), where n € {4,8,16} is the number
of bytes contained in the message. The proposed schemes easily predict the parity of an
operation’s output. Because AES is byte-oriented and its constants are ingeniously designed,
the parity of the output can be predicted from a linear combination of the parity of the
input. In most cases, the parity is the summation of the input data; also, the proposed
schemes are highly scalable and are suitable for 8-bit, 32-bit, or 128-bit architecture. This
is important, because many AES designs are in an AES hardware designed either 8-bit or

32-bit architecture. Another advantage of proposed approaches is that the parity calculation
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between the encryption and the decryption is symmetric, because the parity generation in
encryption is quite similar to the one in decryption. This will bring some benefits, while

integrating encryption and decryption into one circuit.

4.2 The Algebraic Properties of AES

There are many researches on the algebraic properties of Rijndael. Fuller and Millan [17]
showed that the outputs of 8 x 8 Rijndael SBox are all equivalent under affine transformation.
Ferguson et al. [16] represented Rijndael as an algebraic formula. Murphy and Robshaw [45]
defined a new block cipher, Big Encryption System (BES), which only operates in GF(2%)
and it is a proper superset of AES. BES is mathematically simpler description than AES, and
that is helpful to cryptanalysis work of AES. Barkan and Biham [2] showed that replacements
of constants in AES can create several dual ciphers. Courtois and Pieprzyk [11] showed that
Rijndael can be written as an overdefined systein of multivariate quadratic equations (MQ) [8]
and presented an attack, called=XSL attack, based-on M(Q. The above researches discovered
different algebraic properties from different views of Rijndael, and those properties can be
utilized for cryptanalysts.

Although Rijndael has above probable leaks, but we still can build a secure connection
with it. In Barkan and Bihamn’s [2] research, they pointed out that random selecting a dual
cipher is desired during a connection. Therefore, if all data in a connection are encrypted
by several dual ciphers is possible, a more secure connection can be established by Rijndael.
The coefficients of irreducible polynomial m(x), MixColumns row vector ¢(z), and affine
transformation could be replaced by other values such that they follow some requirements,
such as minimization of the largest non-trivial value for SubBytes |, relevant diffusion power
for MixColumns [12], et al..

A parameterizable structure is needed for on-line replacing coefficients during a connec-
tion. However, the design, providing the function of on-line changing coefficients, will incur
enormous burden on complexity, area and performance, so several techniques are used to
increase the performance. Different irreducible polynomials m(x) result in different results
of SubBytes , the most complex computation in Rijndael, so two techniques are adopted to

increase the throughput and to reduce the hardware complexity. First, the basis conversion
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is used to fix the basis, i.e., the irreducible polynomial, of GF(2®) inversion. Once the basis
is fixed, the implementation of GF(2®) inversion can be optimized for speed and area. In
addition, the GF(2®) inversion is implemented in a composite field GF(((2%)?)?) for saving
the gate counts. The performance of another complex computation, MixColumns | will also
be dropped, when m(z) and c(z) are changeable. Therefore, based on a given irreducible
polynomial m(x), we calculate each power value of xtime of constants in ¢(x) to be used
in following encryption/decryption to speed up the implementation of MixColumns .

In here, we implement a parameterizable Rijndael in two ways, non-pipeline (normal)
and pipeline structure. Because the coefficients are changeable; hence, the chip will operate
in different dual ciphers with different given coefficients. The normal structure executes one
round per clock cycle on a 128-bit data block, and the pipeline structure requires six clock
cycles to perform one round on a 128-bit data block. The data bus of both structures is
32-bit, and only the 128-bit key scheduler is implemented in this work. The normal structure
achieves a throughput of 1.7902 Gbps and a 153.84 MHz clock, and has 83.094k gate counts.
The pipeline structure has a throughput 0f:4.9516 Gbps with 425.53 MHz clock and 125.993k
gate counts. The details are explained in-Section 4.9, 4.10, and 4.11.

This implementation of Rijndael is not only compatible to AES but also available to
replace the coefficients in Rijndael; So-it-can be applied to applications that require cus-
tomized security. Besides, the throughput of our implementations is over 1 Gbps; hence, the
results of this work are suitable to network devices over Fast Ethernet or Giga Ethernet.
In particular, the virtual private network (VPN) is an appropriate application, because this

work can provide customized security for VPN users.

4.3 AES Algorithm

The AES [47] consists of two parts, the data procedure and the key schedule. The data
procedure is the main body of the encryption (decryption), and consists of four operations,
(Inv)SubBytes , (Inv)ShiftRows , (Inv)MixColumns | and (Inv)AddRoundKey

During encryption, these four operations are executed in a specific order— AddRoundKey
a number of rounds, and then the final round. The number of rounds is 10, 12, or 14,

respectively, for a key size of 128 bits, 192 bits or 256 bits. Each round comprises the
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four operations, and the final round has SubBytes , ShiftRows and AddRoundKey. The
decryption flow is simply the reverse of the encryption, and each operation is the inverse
of the corresponding one in encryption. In the data procedure, the 16-byte (128-bit) data

block is rearranged as a 4 X 4 matrix, called state S,

S0 Sa Sg  S12
51 S5 S9 S13

S2 S¢ S10 S14

S3 St S11 Si15

where s; notes the i byte of the data block. In this context, S denotes the input of an
operation, and T' denotes as the output. AES is operated in two fields, GF(2) and GF(28).
In GF(2), addition is denoted by @, and multiplication is denoted by ®. Similarly, the two
symbols, + and x, denote addition and multiplication in GF(28).

4.3.1 SubBytes

Two calculations, the GF'(2%)%nversion. and the affine transformation, are involved in this

operation. SubBytes substitutes each byte-s; of the data block by
t; = As; ' + 63, (4.2)

where s; ! is the inverse of the input byte, s; € GF(2%), A is an 8 x 8 circulant matrix
of a constant row vector [1 000 1 1 1 1] over GF(2), and 63 (the Courier font number
representing a hexadecimal value) belongs to GF(2%). As; ! is a matrix-vector multiplication

over GF(2).

4.3.2 ShiftRows

The ShiftRows operation only changes the byte position in the state. It rotates each row

with different offesets to obtain a new state as following;:

S0 S4 S8 S12 S0 S4 S8 S12
S1 S5 89 S13| = [ S5 S9 S13 S1
ShiftRows : (4.3)
S2 S S10 Si14 S10 S14 S22 Sg
§3 S7 S11 S15 S15  S3 St S11
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The first row is unchanged, the second row is left circular shifted by one, the third row is by

two, and the last row is by three.

4.3.3 MixColumns

The MixColumns operation mixes every consecutive four bytes of the state to obtain four

new bytes as following.

So S4 Sg S12 to ts g t12
S1 85 89 S13| ——— |[t1 l5 T9 T13
MixColumns (4.4)
S2 S¢ S10 S14 ta te tio t1a
83 St S11 Si5 t3 tr tuin tis

Let s;, Sit11, Sit2, and s;,3 represent every consecutive four bytes, where ¢ € {0,4,8,12}.

Then, the four bytes are transformed by

t, 02 .03 0L 01| | s
£ 0L 0203 -01 | |s::s
t; 0L 01 02 203 | |sis
tisf [0370T 007 02 | |siys

Each entry of the constant matrix in (4.5) belongs to GF(2%), hence (4.5) is a matrix-vector

multiplication over GF(28).

4.3.4 AddRoundKey and Key Expansion

Each round has a 128-bit round key which is segmented into 16 bytes k; as (4.1); the
AddRoundKey operation is simply an addition,

t; = s; + k;, where 0 <17 < 15. (4.6)

The key expansion expands a unique private key as a key stream of (4r + 4) 32-bit words,
where r is 10, 12, or 14. The private key is segmented into NK words according to the key
length, where NKis 4, 6 or 8 for a 128-bit, 192-bit or 256-bit cipher key, respectively. As
Fig. 4.1 shows, then, it generates the i"* word (32 bits) by EXORing the (i — NKk)"* word
with either the (i — 1) word or the conditionally transformed (i — 1) word, where NK <

i < (4r +3). The (z — 1) word is conditionally transformed by RotWord , SubBytes and
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W Li- 2]--» W [i- n}-»W"[i- Nk]}—

> W [i- 1]

\

Ny 4-byte word

-

Round Key

Figure 4.1: The block diagram of key expansion in AES

EXORing with Rcon[i/Nk] = {02/Nk 1 00,00,00}, where the polynomial presentation
of 02LMNK I jg Nk | oyer GF(28). Finally, the key stream is segmented into several round

keys which are involved in the AddRoundKey operation.

4.4 Error Detection Techniques

The parts in decryption can be yielded in the similar way; hence, the following context only
addressed the error detection in encryption. The differential faults attacks need differential
inputs and outputs to attack a cryptosystem; hence, it is assumed that the states and round
keys are polluted by additive errors, as shown in Fig. 4.2. In this work, one operation is
the smallest granule for designing error detection. In Fig. 4.2, the errors are assumed to

be induced between the previous operation and the current operation. If the errors occur
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— — — some operations

each operation

Previous Current Next
Opeation Operation Operation
Errors
Key — — + »f —
An AES » Output
Operation o P
State —»@—»

Figure 4.2: The error model assumed in this work. The solid line part appears in every

operation and the dotted line part appears in some operations.

in the output of the previous operation, the erroneous input of the current operation will
be treated as a different state. Actually, this situation only exists int the first round or in
the first operation. The assumed error_model is.logical, even in the case where the errors
occur during the operation. Bécause each ‘operation of AES is invertible, one unique error
block e would exist for an erroneous output 7', such that 7' = f(S + e), where f denotes an
operation in AES.

This work adopts a systematic (n 4= 1, m) cyclic redundancy check (CRC) over GF'(2°)
to detect errors occurring during encryption, where n € {4,8,16} is the number of bytes

contained in the message. The generator polynomial is
g(z) =14z, (4.7)

where the coefficients of (4.7) are over GF'(2%). Giving a message s(z) of degree n — 1, a

systematic codeword, generated by g(x), can be obtained from the following two steps:

1. Obtain the remainder p(x) from dividing xs(x) by the generator polynomial g(x). The

remainder p(z) is a scalar p here, because the degree of g(z) is one.

2. Combine p(z) and zs(x) to obtain the codeword polynomial,

p(z) + xs(x) = p+ sox + 5102 + -+ + 5,_12", where p,s; € GF(2°). (4.8)

In step 1, while g(x) is 1 + z, the remainder p(z) is the summation of all coefficients of
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the message,
p(z) = Z Si. (4.9)
=0

Therefore, the parity of a message may be obtained by calculating the summation of the
input message over GF(2%).

Assuming that the received polynomial ¢(z) is
t(x) = to + t1x + toa® + - + t,a”, t; € GF(2%). (4.10)

The detection scheme checks whether the syndrome equals to zero or not, where syndrome
u is
n
u=>t. (4.11)
i=0

If the syndrome equals to zero, then it is assumed that no errors have occurred; otherwise,

errors did occur.

S={s.5, 18

Figure 4.3: The block diagram of the error detection in this work.

In the channel coding field, it is assumed that the message s(x) is transmitted over a
noise channel. The channel does not change the message if no errors occur. Therefore, it is
easy to predict that ¢, is identical to p, with ty being used to detect the errors. However, as
shows in Fig. 4.3, the message, S = {so, s1,...,Sn—1}, is transformed into another message,
{t1,ta,...,t,}, by an AES operation; hence, t, cannot be obtained instinctively. Therefore,
this work investigates the function for each operation, such that ¢y can be predicted by p as
shown in Fig. 4.3, making error detection, in each operation, is possible.

This work applies (n + 1,n) CRC to AES, where n € {4,8,16}. In the case where,

n = 16, the 128-bit AES state is treated as a message; hence, only one parity is generated

67



CHAPTER 4. ENHANCEMENT OF THE APPLICATION SECURITY OF AES

for a 128-bit data block. When n = 4, the error detection is designed to check each column
of the output state. Therefore, four output messages, {t4;+1, tajra, tajrs, tajrat, 0 < 5 <3,
are checked separately. Therefore, four parities are required for a 128-bit data block when
n = 4. For n = 8, two parities are required for a 128-bit data block. The following context
addresses the two cases, n = 16 and n = 4, because (9,8) CRC for the AES algorithm can
be constructed under the similar conditions to (17,16) or (5,4) CRC for AES.

4.4.1 In SubBytes

In this work, two implementation types of SubBytes are considered. The first type uses one
table instead of the GF'(2®) inversion and the affine transformation. The second type calcu-
lates separately the G F(2%) inversion and the affine transformation, and the implementation
of the GF(2®) inversion is not limited to the look-up-table method or the combinational
logical circuit. In this work, the first type is named as united SubBytes, and the second type
is as separated SubBytes.

For united SubBytes, it is assumed that both the SubBytes table and the InvSubBytes
table are stored in a chip, as shown in‘Fig. 4.4. Error detection is achieved by feeding the
output of SubBytes into InvSubBytes , then' comparing the input of SubBytes and
the output of InvSubBytes , and vice versa, as Fig. 4.4 shows. If the both are identical,
then it is concluded that no errors have occurred. Otherwise, the errors did occur. This
error detection method may be time-consuming, if only the SubBytes operation is consid-
ered. However, in practical terms, normal encryption could be further processed, without
waiting for the error detection result, because SubBytes is either the first operation or
the second operation in each round. In other words, the operation after SubBytes , such
as ShiftRows , MixColumns or AddRoundKey, may continue, when the output of the
round would be intercepted if errors are detected in SubBytes .

If separated SubBytes is adopted, error detection must be applied separately to the
GF(2%) inversion and the affine transformation. Considering the error detection for the
GF(2%) inversion first, there are two schemes are proposed herein. Similar to Fig. 4.4, the
first scheme detects errors by using the relationship of the mutual inverse. However, the
computation of the GF(2%) inversion is identical for both SubBytes and InvSubBytes ;

hence, this scheme does not require the encryption and decryption circuits to simultaneously
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A

SubByt es

I nvSubByt es

Compare

Figure 4.4: The error detection for united SubBytes

exist in one chip. It can be used with the encryption-only or decryption-only hardware.
The second scheme is the (n + 1,n) CRC, and assumed that the GF(2%) inversion is
implemented in look-up-table approach. Instead of the inverse value of a giving input, the
exclusive value of the giving input and its inverse is stored in the table. Therefore, giving an
input o € GF(2%), the value, 8 = o + a~', is obtained from the table, and then the input
a is added to 3 to yield a™!, as the marked block in Fig. 4.4. The error is detected by the
syndrome obtained by the dashed line in Fig.*4.4. In this diagram, no errors are introduced,

hence the syndrome is zero.

Input s;: o
GF(2°) Inversion

1 o~

ota e S A/
clusive

artart of Inverse

il
oyta
2ra; _

B Prediction
L -1

Table

.1
Output 7.1 @ Syndrome

Figure 4.5: The block diagram of one G F'(2®) inversion with the error detection.

For one GF(2®) inversion, according to Fig. 4.3 and the error model given in Fig. 4.2,
the errors are induced a fault at the input of the GF(2®) inversion, as shown in Fig. 4.6.
Supposing that the byte s; is changed into another byte s; by adding the error ey. Then the

syndrome, used to detect errors, is calculated as
(si+e1) +tip1 + (tip1 +t55) = eo + €1 (4.12)
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S

! Previous Operation

Excl usi ve of
| nverse Pair

Next Operation

Figure 4.6: An error is injectednto the inpufrstate after entering the G F(2%) inversion.

The one-byte structure in Fig. 4.5 could be extended to the 4-byte, 8-byte, or 16-byte
structure. Taking the 16-byte structure in comsideration, the input state is denoted as
S = {s0,51,...,515}, and then the parity pis >, s; from (4.9). According to (4.12) and
Fig. 4.3, the parity of the output parity tg could be predicted by

15 15
Z i + Z(ti—i-l +t5h), (4.13)
i=0 i=0

and the syndrome is

15
to + Z tiv1,
=0
15 15
=0 =0

If no errors have occurred, the value ¢, +11 will equal to s;. Therefore, the syndrome (4.14) is
Zero.

In this work, all ShiftRows , MixColumns , and AddRoundKey are protected by error
detection code. However, the detection technique of SubBytes is varied with its implemen-

tation. According to the error detection scheme for SubBytes , three proposed architec-

70



CHAPTER 4. ENHANCEMENT OF THE APPLICATION SECURITY OF AES

tures for AES are denoted by, united-SubBytes detection (USBD), hybrid-SubBytes detection
(HSBD), and parity-based-SubBytes detection (PbSBD), as shown in Fig. 4.7.

United-SubBytes Hybrid-SubBytes Parity-based-SubBytes
Detection (USBD) Detection (HSBD) Detection (PbSBD)
GF(2%) inversion GF(2% inversion
SubByt es
and * +
I nvSubByt es Affine Affine
transformation transformation

L [ ] Theerror detection

- uses the inverse
Shi f t Rows relationship.
|:| The error detection

uses the error detection
M xCol umtms code.

AddRoundKey

Figure 4.7: The threesproposed architecture for AES.

For the affine transformation,jerror detection is achieved by the (n 4+ 1,n) CRC, where
n € {4,8,16}. Considering n'= 16 first,-and according to (4.9), the parity p of an input
state, S = {s¢, 51, ..., 515}, wheré.s;.€ GF(28),is generated by

15
p=> s (4.15)
1=0

The output state is denoted as T' = {to, t1,...,t16}. From (4.2) and Fig. 4.3, t;,1 is As; +63,
where 0 <4 < 15. The hexadecimal constant 63 will be eliminated after taking summation

of the output state T'\ty, i.e.,

n—1 n—1 15
1=0 1=0 =0

Therefore, ty can be predicted by (4.16) with input parity p. If no errors occur, the syndrome

u must be a zero vector

16
u=>y t;=0. (4.17)
=0

In the case of (5,4) CRC or (9,8) CRC, (4.16) also holds.
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4.4.2 In ShiftRows

From (4.3), the ShiftRows operation simply rotates the input state S, but does not alter
the value of s;. Therefore, t, may be directly predicted by Y s, in the case of n = 16.

Similarly, the ShiftRows operation is error free, if the syndrome is zero

> ti=0. (4.18)

When n = 4, because each column of the output state would be detected, the four parities

pj, where 0 < j < 3, are

Do = So + 85 + S10 + S15,
P1 = S4 + Sg + S14 + S3,
P2 = Sg + 813 + 82 + S7,

P3 = S19 F£:S1 + Sg + S11;

hence, the ¢, for each output message {t1; 1} ta;45, taj+3, taj+a} is pj. The case of n = 8 is

analogous to the case of n = 4;

4.4.3 In MixColumns

The behavior of the MixColumns operation is more complex, because each byte in the
input state .S influences four bytes in the output state 7. However, because of the ingenious
design of the coefficients, it is also possible to apply the (n + 1,n) CRC directly, where

n € {4,8,16}. The MixColumns operation works as following

t4j+1 02 03 01 01 S4;
t4j+2 01 02 03 01 S45+1

= , where 0 < 5 < 3. (4.19)
t4j+3 01 01 02 03 S4542
t4j+4 03 01 01 02 54543
L . L J L .

T %
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From (4.19), it is yielded that the summation of vector 7" equals to that of vector S’

23: tyjrrr1 = (02 401 +01 +03)s4; +

- (03 +02 + 0L +0L)sy41 +
(01 + 03 + 02 +01)sy;,0 +
(01 + 01 + 03 + 02)s;45,

=S4 + Sajy1 + Sajy2 + Saj+3,

3
k=0

Therefore, when the (5,4) CRC is applied, the output parity ;¢ of the j column vector may
be directly predicted from the j** column vector of the input state by Zizo S4j+k. Oimilarly,

in the case n = 16, t; is predicted by

M=
PSE

o = Laj1k+1s
=0 k=0
L 28
- E S4G+k»
F=07k=0
15
¥ S;.

Il
<)

Because the summation of 02,01, 01 and 03 is 01, (4.20) can be satisfied for the (17,16),
(9,8), or (5,4) CRC. The coefficients of InvMixColumns  display an identical phenomenon.
The summation of the four coefficients used in decryption, 0B, OD, 09, OE, is also O1.

Therefore, ty or ¢, can be predicted in the same way as that of MixColumns .

4.4.4 In AddRoundKey

Discussing the case n = 16 first, it is assumed that each round key already has a parity;
hence, the round key is represented as {ko, k1, ..., kig}, where kg = Zio k;y1 is the parity
and {ki,...,kis} is the normal round key. The AddRoundKey operation only adds the

input state with a normal key K = {kq, ko, ..., ki6} to yield the output state as following:

T=5+K. (4.21)
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Applying the summation operation to (4.21) to obtain

15 15 15
ZtH_l = ZSZ' _’_Zki-i-l :p+k0 (422)
=0 1=0 =0

Accordingly, ¢y may be obtained from p + ky. The parities for n = 4 or n = 8, p,, are

calculated in the same way; however, the round key must also have four or two parities.

4.4.5 In the Key Expansion

The (n + 1,n) CRC is also adopted in key expansion, where n € {4,8, 16}. However, the
(5,4) CRC is always used in the interior of the key expansion. The key expansion and the
error detection scheme are jointly depicted in Fig. 4.8, where the decision blocks are removed
from Fig. 4.1 for a simple description of error detection, as the conditions only determine

where the error detection is applied to, not how it is designed.

R 4-byte word
Il parity byte

»WoLi- 1

\i

W Li- 2} - » W [i- n]j——»W'[i— NK]

SN tenp

Conditional
RotWord

temp N |

SubWord

Round Key
RC[i]

NN temp
Rcon[i1/Nk
W Li]

i A temp

RN

Figure 4.8: The error detection scheme for key expansion.

In this key expansion, with error detection, one word contains five bytes, and the symbol

of a word is denoted by W'[i] =[WI[i] ||parity], where || is a catenation symbol. At first,
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the parities of the first Nk words, where Nk € {4, 6,8}, are obtained by the generator 1+ x,

i.e., the parity Pi of W[l] = [wi70 Wi 1 Wi 2 wi73] is
Pi = Wi+ w1 + W2 + Wiz (4.23)
Then, the NK-pair parities and messages form new NK words, W’[0] , W’[1] , ..., and

W’'[Nk-1] . The new words are successively put into the NK shift blocks, from W’[i-NK]

to W[i-1] | at the top of Fig. 4.8, after which, the key expansion starts. A 128-bit round
key and its one-byte parities are collected after each period of four shifts. If (17,16) CRC is
chosen for AES, the one-byte parity of a round key is obtained by summing the four parities
of output words. If (5,4) CRC is chosen, then the four parities are kept.

In the key expansion, the RotWord rotates the byte order of W[i-1] ; hence, the parity
is the same as that of W’[i-1] . For the SubWord operation, because it is a function which
executes SubBytes on each byte of input, the error detection scheme is the same as that in
SubBytes , described in Section 4.4.1. However, in the case of united SubBytes being used,
the parity must be calculated separately.

For the EXOR operation with Rcon[i/NK] ~  the error detection is achieved by EXORing
the parity of temp and that of Reon[ilNK] =~ where Rcon[i/Nk] = {02/N< ] 00,00,00}.
The parity of Rcon[i/NK] equals 10-02UNK' ] due to the three bytes of zero value in
Rcon[i/Nk] . At the end of the key expansion, the parity ¢, is the EXOR of the par-
ity of current data and the parity of W’[Nk-1]

4.4.6 More details for (5,4) CRC

Although the (5,4) CRC has four parities, it is possible for only one parity to be used in
realization of this scheme. AES can be implemented in a 32-bit structure, i.e., one column
of a state is processed once in every round. In this structure, the position of ShiftRows

must be shifted above the SubBytes operation. After ShiftRows , each column passes
through the identical calculations, SubBytes , MixColumns , AddRoundKey; the parity
generation, or the syndrome calculation for each column, are also identical, so only one

circuit is required.
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4.5 Undetectable Errors

Even though the AES algorithm propagates the errors during encryption, the error coverage
can be also analyzed mathematically. Actually, only the MixColumns and SubBytes op-
erations cause numerous erroneous bits when a single-bit error is injected, when ShiftRows

or AddRoundKey do not change the bit number of the errors. Several assumptions are

made, as follows:
1. The error model is considered as Fig. 4.2.
2. All nonzero error block over GF(28("+1)) have the same probability, where n € {4,8,16}.

3. Each operation has the same error injection probability.

4.5.1 The undetectable errors in SubBytes

Because SubBytes is invertible,all errors injected into input can be detected by InvSubBytes |
and vice versa. Therefore, the united SubBytes; has 100% fault coverage. In separated Sub-
Bytes, the both operations, the G F'(28) inversion and the affine transformation, have their
own error detection. The GF(2%) iniversion is alse invertible, so it has 100% fault coverage

in hybrid SubBytes.

In parity-based SubBytes, the error detection capability of the GF(2®) inversion is ana-
lyzed. According to (4.14), the scheme only uses XOR operations, so all the codewords are
the undetectable errors in parity-based SubBytes. Therefore, while applying the (17,16) CRC
to a 128-bit data block, the number of undetectable nonzero errors is (28)% — 1, and the
percentage of undetectable errors is %% = 0.4%. When the (5,4) CRC is applied to a
128-bit data block, the total number of undetectable nonzero errors is ((2%)* — 1), and the
percentage is (%)4 x 100% = 2.56 x 1078%. Similarly, the percentage of undetectable
errors for the (9,8) CRC is 0.16 x 1072%.

The affine transformation is detected by (n + 1,n) CRC. Although five erroneous bits

were caused, while injecting a single-bit error, the error coverage can still be analyzed.

Theorem 2 Giving an input state S = {p, s, S1, ..., Sn—1}, where parity p is Z?;Ol s;, and
n € {4,8,16}, the output state is T = {tg,t1,...,t,} where ty is Ap from (4.16), and t;1,

0 <i<n-—1, is obtained from (4.2). Introducing an error E = {eg,€e1,...,e,} into the
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state S = {p, S0, S1, .-, Sn_1}, the summation of the output T' will equal to zero if and only

Zf Z:’L:O €; = 0.

Proof: Because n is even, the value 63 will be cancelled. Therefore, the summation of

the erroneous output 7" is

n n—1
Zt; = AP+60+AZ(Si+€i+1),
i=0 =0
n—1 n
= AP+AZSi+AZ€ia
=0 =0

0
n

= AE €;.
1=0

Therefore, > """t equals to zero if and only if A" je; = 0 is held. Because the matrix A
is nonsingular over GF(2), AY " e, is gero, if and only if >~ e, is zero. |

In the (n+1,n) CRC, the nonzero errors.are undetected, when the equation Y " ,e; = 01is
held, i.e., errors are also the codewords. According to Theorem 2, all undetectable errors are
also undetected after the affinedransformation. Therefore, while applying the (n+1,n) CRC
to a 128-bit data block, the percentages of the undetectable errors are 0.4%, 0.16 x 1072%,

and 2.56 x 1073%, respectively for n =16, 7 = 8, and n = 4.

4.5.2 The undetectable errors in MixColumns

MixColumns also has a diffusion property. It causes five or eleven erroneous bits while
injecting a single-bit error in one column vector of the input state. However, the coefficients
eliminate the diffusion of errors after summing the erroneous column vector of the output
state. The MixColumns is shown again below, and it is supposed that each byte of the

input vector is polluted by an error.

ti+1 02 03 01 01 S; + €;

t; 01 02 03 01 Sit1 t €
2 = L (4.24)

ti+3 01 01 02 03 Si+2 + €i+2

ti+4 03 01 01 02 3i+3+ei+3
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Then, the summation of the column vector ¢;,; is

3
D tigkn = (02 +01+ 01 +03)(s; +¢;) +
k=0

(03 + 02 + 01 + Ol)(SH.l + 6“.1) +
(01 + 03 + 02 + 01) (8442 + €i42) +
(

01 +01 +03 + 02)(81'4_3 + 6i+3);
3

= ) (Sisk + €isk)- (4.25)

k=0

The equation also holds for two or four columns vectors.

n—1

Theorem 3 Giving an input state S = {p,so,51,...,5,-1}, where p = > " s; is the
checksum of the input state and n € {4,8,16}. After MixColumns and the parity pre-
diction (4.20), the output state is T = {to,t1,...,t,}, where to = p, and the rest is the
output of MixColumns . Introducing an error E = {eg,e1,...,e,} into the state S =
{p, S0, 1, - -, Sn_1}, then the errox§ of the (n+1,n) CRC in MixColumns are undetectable

if and only if the summation Y2 €; is|zero.

Proof:  The syndrome >3 ¢; is.used to check whether errors occurred or not. It is
assumed that no errors occurredy if and only if the syndrome is zero. The summation of the

erroneous output state is
Zt; = (to +€0) + Zt;
i=0 i=1

From (4.25), because n is the multiple of four, the above equation is represented as

Dot = (to+eo)+ ) (sia+er),
i=0

=1
n—1 n
= t0+§ SH’E €i,
1=0 =0
———
0
n
= E €;.
=0

Therefore, the error is undetectable if and only if >~ e; is zero. u

From Theorem 3, there are ((2%)'® — 1) nonzero errors that are undetectable, when the
(17,16) CRC is applied to a 128-bit data block. This result is the same as those in the affine
transformation described above. Similarly, the total number of the undetectable errors for

the (9,8) or (5,4) CRC is ((28)* — 1)* or ((2%)® — 1)2, respectively.
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4.5.3 The undetectable errors in ShiftRows or AddRoundKey

ShiftRows does not change the value of the input state, and AddRoundKey only EXORs
the input state with a round key. Therefore, the undetectable errors are the same as those

analyzed in the affine transformation or MixColumns .

4.6 Detection Levels

The proposed scheme may be used in operation-level, round-level or algorithm-level error
detection. In operation level detection, the syndrome is checked at the end of each oper-
ation. Similarly, if the syndrome is obtained at the end of each round, it is round-level
detection. The implementation of operation-level error detection is easy to figure out. The
syndrome is calculated at the end of each operation according to the equations derived in
Section 4.4. However, the implementation of a round-level detection needs more ingenuity,
when the SubBytes is protected by united SubBytes. The parity is generated at the end
of the SubBytes or the beginning of the' ShiftRows . Then, the parity directly passes
through ShiftRows , and MixColumns | because! its value will not be changed after the
two operations. Finally, the parity is ‘EXOReéd with the key parity. The total path is shown
in Fig. 4.9 below. Obviously, the syndrome could be then checked at the end of the round. In
hybrid SubBytes, the structure for round-level error detection is similar to Fig. 4.9, but the

" round,

parity is generated after the GF(2®) inversion. Because the parity of the state, in 7*
can not pass through the inversion of GF(2%) in i+ 1 round, the parity must be re-generated
in each round. Therefore, united-SubBytes detection or hybrid-SubBytes detection cannot be
implemented as algorithm-level detection.

However, each operation of parity-based SubBytes is protected by (n + 1,n) CRC, hence
the parity could pass through a round. Therefore, parity-based SubBytes could be applied

as an operation-level, round-level, or algorithm-level error detection.
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Shi f t Rows

Figure 4.9: The proposed scheme under round-level error detection.

4.7 Features and Costs

4.7.1 Scalability

In Section 4.4, it was found that theé three error detections, (n + 1,n) CRC, where n €
{4,8,16}, had similar structures. Thelcalculations of parities or syndromes were all based
on Byte-EXOR (B-EXOR) operation and the length of the message was a multiple of four
bytes. Therefore, the proposed approach is scalable with practical hardware design; in other
words, the three CRCs can be applied to an AES implementation of an 8-bit, 32-bit, or
128-bit structure. In general, the portable devices are more probable to encounter DFA than
non-portable device. Therefore, the scalability of error scheme is good for practical purposes,
because 8-bit and 32-bit architectures are most commonly used in portable applications, such
as cell phones, SmartCard, or RFID tag.

The approach proposed by Bertoni et al. [3] cannot easily be scaled down into the 8-bit
architecture, because the parity of s; requires the information from s;; and s;,». However,
this work can easily be applied to an 8-bit, 32-bit or 128-bit AES architecture. The syndrome
generation is similar to parity generation. Fig. 4.10 shows a block diagram of (4.17) and
(4.16) for 8-bit AES architecture. While sixteen bytes t;, are obtained, the syndrome u

is obtained immediately, where the initial value of parity registers as a zero byte. The
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ShiftRows , MixColumns , or AddRoundKey have similar structures to Fig. 4.10, but
the matrix transformation, A, is not required. The 32-bit or 128-bit AES can also be
implemented, based on the concept in Fig. 4.10.

6 Syndrome, u

Figure 4.10: The block diagram of error detection for 8-bit AES architecture.

The 32-bit architecture is the mest flexible.structure from the point of error detection,
because it could use (17,16), (9,8) or (5,4) CRC to achieve the error detection objective. No
matter which one is selected, itis:possible that only a one-byte register is required to store
the parities. However, the input must be @ one-column vector, defined in AES; thus, (4.20)

may be used to detect faults for a one-column calculation.

4.7.2 Symmetry

From Fig. 4.10, it can be seen that the proposed scheme is symmetric in both encryption
and decryption. This has the advantage of the encryption and decryption being integrated
into one chip. However, the scheme proposed by Bertoni et al. [3] is asymmetrical in
MixColumns and InvMixColumns . As shown in Table 4.1, the output parity prediction

of InvMixColumns  is more complex than that of MixColumns .

4.7.3 Costs

While introducing proposed error detection schemes into AES, hardware cost, required by
those schemes, is evaluated through their computational complexity. Error detection consists

of two parts— the parity and syndrome generation. Discussing the cost in parity generation
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Table 4.1: The cost of syndrome generation in each AES operation. (B-EXOR = 8 b-EXORs,

b-EXOR=bit EXOR operation, EN=encryption, DE=decryption, AM = affine multiplica-

tion)

Ours (n =16, 8 or | Bertoni [3] Karri [31]
9
Bit number of parity | 8/16/32 bits 16 bits 0 bit
SubBytes USB InvSubBytes m x 256 bytes mem-
ory, and compari-
i . | son circuits.
HSB the SGF (28‘); ‘inv‘gr—i — InVSubBytes
sion, 16 x 8 b- .
EXORs,‘and 1/2/4 | =
PbSB 32 x 8 b-EXORs, | —
16 x 8 b-EXORs,
and 1/2/4 AMs
ShiftRows 16 x 8 b-EXORs 16 x 8 b-EXORs InvShiftRows
Cost in EN | 16 x 8 b-EXORs 16 x 8 + 16 x 4 b- | InvMixColumns
MixColumns
EXORs
Cost in DE | 16 x 8 b-EXORs More complicated | MixColumns
than in EN
AddRoundKey (16 +1/2/4) x8b- | 16 x 8 + 16 b- | AddRoundKey
EXORs EXORs
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first, in our proposed schemes, the parity requires only the EXOR operation. A total of
(n — 1) x £ Byte-XORs (B-EXOR) is required to calculate the parity of the input for the
proposed approach. Taking the (5,4) CRC for a 128-bit data block as an example, one
checksum of an input message is generated by three B-EXORs, and a total of 12 B-EXORs
for four parities. However, united SubBytes uses InvSubBytes  to check error, so no parity
generation is required. In hybrid SubBytes, the (n + 1,n) CRC is applied to the affine
transformation; fifteen, fourteen or twelve B-XORs are required to produce the parities for
n being 16, 8 or 4, respectively. In the method proposed by Bertoni et al. [3], 16 x 7
bit-EXORs (b-EXOR) were required to obtain sixteen one-bit parities for an AES state. In
[31], they used the inversion operation to detect the errors; hence, no parities were paid
for. However, the hardware of parity generation is minor, because the parity generation is
required to perform at the beginning of the parity-based detection is applied. In PbSBD,
because the parity can pass through each operation along with predicting the parity, the
parity generation only performs ounee. In USBD.and HSBD, the parity must be regenerated
in SubBytes of each round; nevertheless, only one circuit of parity generation is required
when one round is implemented to achieve AES computing. In the approach of Bertoni et
al. [3], the parity also can passthrough the round; hence, one circuit of parity generation is
required.

As regards the cost of the syndrome generation, it varies from operation to operation.
United SubBytes uses the InvSubBytes to detect errors. In hybrid SubBytes, the GF(28)
inversion is used to check errors; the (n + 1,n) CRC is used to detect errors. According
to (4.17), 16 B-EXORs are required to obtain the syndrome for every (n + 1,n) CRCs.
However, the execution number of affine multiplication, (4.16), depends on n; the number
is one, two or four, when n is 16, 8 or 4, respectively. For parity-based SubBytes, the
cost in affine transformation is the same as that in hybrid SubBytes. However, the GF(28)
inversion also uses (n + 1,n) CRC; according to (4.14), 32 B-EXORs are required (note
that the (f;11 + ¢;;5) in (4.14) is obtained from table, not requiring EXOR calculation). In
ShiftRows and MixColumns , no prediction functions are necessary, and the syndrome is
obtained by summing all output byte and the parity. Therefore, in the two operations, 16
B-EXORs are required. In AddRoundKey, the one, two or four one-byte parities of a round

key are involved in the calculation, requiring extra B-EXORs to be paid for.
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The costs of Bertoni et al. [3]’s approach are varied in each operation. The SubBytes
requires extra m 256-byte memory spaces, where m is dependent on the implementation of
the AES. Taking an AES implemented in a 32-bit structure as an example, four bytes are
calculated in parallel, thus four tables are required. The size of a table with error detection,
in [3], is a double of that in AES, so a total of 512 bytes is for one table, i.e., 256 extra
bytes are caused for one table. The 256 extra bytes are constants with odd parity, e.g.,
00000000 1; therefore, one comparison circuit or syndrome generation circuit are required
to detect the error. The error detection of one byte, appended with one-bit parity, requires
eight b-EXORs (bit EXOR operation), or a total of 16 x 8 b-EXORs for a 128-bit data
block. However, Bertoni et al.’s scheme must predict the output parity in MixColumns ,
therefore the extra calculations of 16 x 4 b-EXORs are required in the encryption process.
In decryption, the error-detection hardware for InvMixColumns  is more complicated than
in encryption. Because the prediction of InvMixColumn is not derived in [3], the cost is
not specified in Table 4.1. The costs of Karri ét al.’s scheme required the inversion of each
operation and it was also time-consuming. The operations in the key expansion are similar
to the four major operations of2AES; thus; the detailed comparisons of the key expansion are

not discussed. Although most operations require 16 B-EXORs to compute the syndrome, it
is possible to achieve the computation with-less B-EXORs.

4.8 Performances

Table 4.2: The possible combinations of our proposed schemes.

USBD | HSBD | PbSBD
(17,16) | (17,16) | (17,16)
(9,8) (9,8) (9,8)
(5,4) (5,4) (5,4)

All simulations and statements, addressed here, are also under the three assumptions
given in Section 4.5. Three architectures, USBD, HSBD and PbSBD, were proposed herein;
each architecture has three types of CRC, (17,16), (9,8) and (5,4) CRCs, as shown in Ta-
ble 4.2. Thus nine methods were simulated. In PbBSD, the data procedure is thoroughly
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protected by the (n + 1,n) CRC; thus, each operation has undetectable errors. However,
in USBD, the fault coverage in SubBytes is 100%, so the amount of overall undetectable
errors is 80% of that in USBD. Similarly, in HSBD, the amount is reduced 75% of that in

USBD.

Pseudo random
data pattern

l«———128 hit:

10'th data block

1-bit error of each
error block

Select round i

SubByt es' .

2nd data block
1st data block

n-hit error of each
error block

random-bit error
Pseudo random of each error block
error patterns

=g ‘4—12&8/15/32 bns—-{
Shi f t Rows' 32 !
3§ ! . :j
o.g : 5 [
=3 |
%\. o : :— -
M xCol uims' < 2nd error block ol
o o g 1st error block |
S Q |
=3
3 _
AddRoundKey'
26 error patterns

Figure 4.11: The simulation model:" Each data block has 64 ones, and the position of ones
uniformly distributed in a data“blcok: The-etror bits uniformly distribute in an error block.

The assignment of error blocks uniformydistributes in both rounds and operations.

The simulation model is shown in Fig. 4.11. Each method is simulated by twenty six
tests distinguished by the bit number of the injected errors. The last test in Fig 4.12,
Fig. 4.13 and Fig. 4.14, labeled as random, used error patterns with random erroneous bit
number. Each error pattern has 107 blocks, and the bit length of every block is 136(128 + 8),
144(2 x (64 +38)), or 160(4 x (32+38)), respectively for the (17,16), (9,8), or (5,4) CRC. The
all-one error block was considered as a totally different state; hence, the maximum number
of erroneous bits was 135, 143, or 159 in random test. Each test used one data pattern of 107
data blocks, and every block has 64-bit ones of normal distribution. The erroneous rounds
and erroneous operation were also randomly chosen.

As seen in Fig. 4.12, all the simulated odd-bit errors were detected. The percentage of
the undetectable errors dropped dramatically, as the erroneous bit number increased. When

the number of erroneous bits was greater than eight, the percentage was below 1%, and

85



CHAPTER 4. ENHANCEMENT OF THE APPLICATION SECURITY OF AES

stable. The test using random erroneous bits is about 0.3%, and it was close to the theoretic
value obtained in Section 4.5, 0.4%. Obviously, all the experimental results followed the

curves of ideal cases.

the percentage of undetected errors

T T T T T T T T T T T T T T T T T

m - |deal case for USBD
® - |deal case for HSBD
4 Ideal case for PbSBD

Il Experimental results for USBD

[ Experimental results for HSBD ]

[ 1 Experimental results for PbSBD

12%

11%

10%

9%

8%

7%

6%

5%

4%

The rate of the undetected errors

3%

2%

1%

1234567 8 910111213141516171819 203240485664 random
The bit number of the injected errors.

Figure 4.12: Percentage of undetectable errors of the (17,16) CRC over GF'(2%).

The same data patterns used in the above tests were also used for the (9,8) CRC and
the (5,4) CRC; all test conditions, except for the error patterns, were identical to those used
to test the (17,16) CRC. The (9,8) CRC generated two parities for a 128-bit data block.
Because the values in the two tests, 2-bit and 4-bit erroneous bits, are too large, they were
dependently shown in Fig. 4.13. All odd-bit errors were also detected. The percentage also
dropped dramatically when the erroneous bits increased, as shown in Fig. 4.13. For the
random test, the percentage is about 0.14 x 1072%, very close to the theoretical value of
0.16 x 1072%.

In Fig. 4.14, the results of the (5,4) CRC and Bertoni et al. [3] are shown. Obviously,
this percentage is very small in contrast to the (17,16) CRC or the (9,8) CRC. When the

number of erroneous bits was larger than 16, the percentages of undetectable errors dropped
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to zero. The percentage in the random test was 0%, very close to the theoretic value of
2.56 x 1078%. Of course, all odd-bit errors could be detected.

Fig. 4.14 also shows the results in Bertoni et al. [3]. The test models of Bertoni et al.
[3] are different from ours. They have injected multiple bit errors (between 2 to 16) at the
beginning of the round. From Fig. 4.14, their scheme has better error detection than ours,
when the errors are between 2 to 6, and the cases of 8-bit errors are close. When the number
of erroneous bits is above 10, the performance of the proposed scheme is better than that of

Bertoni et al. [3].

the percentage of undetected errors
T T T T T T T T T T T T T T T T
» m- [deal case for USBD
@ Ideal case for HSBD
4 |deal case for PbSBD
Il Experimental results for USBD
[ Experimental results for HSBD

0.20% - : [ Experimental results for PbSBD
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o -
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B 0.15% |- '
g 7 s 4%} ' : 1
@
e]
5 3%
Q
k) L 2% | - - 1
o 0.10%f e K R -
e 1% -
" T
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o 1 2 3 4
0.05% [~ A .
0,015% - ;s .
s [ ¢ ¢ :
0.0 é7 I I I ! ! ! m \m\ﬂ!““ = | ]

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 32 40 48 56 64 random
The bit number of the injected errors.

Figure 4.13: Percentage of undetectable errors of the (9,8) CRC over GF(2®). The percentage
is 4.14% for 2-bit errors and 0.67% for 4-bit errors.
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the percentage of undetected errors
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Figure 4.14: Percentage of undetectable errors of the (5,4) CRC over GF(2®). The percentage
is 1.8% for 2-bit errors and 0.13% for 4-bit errors.
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4.9 Parameterized Rijndael Algorithm

According to the algebraic properties described in Section 4.2. The model of Rijndael is very
mathematical, and the operations are easy to represent in equations over GF'(2°) and GF(2).
The constants, chosen in the design of Rijndael, are security-concerned and implementation-
oriented. However, it is possible to replace the coefficients in Rijndael algorithm without
changing the strength. In this work, the irreducible polynomial, the matrix of MixColumns |,

the matrix of affine transformation is changeable.

4.9.1 Change irreducible polynomial

The irreducible polynomial affects the implementation of multiplication over GF(28). In
Rijndael, the SubBytes and MixColumns obtain different values with different irreducible
polynomials. The multiplication and inversion over Galois Field are time-consuming; hence,
changing irreducible polynomial lets the hardware design of SubBytes and MixColumns
more complex and more inefficient than that of original Rijndael. For enhancing the per-
formance, the technique of basis“conversion is adepted to speed up the SubBytes , and
xtime "(¢;) is calculation in advance, where m € {0,1,...,7},7 € {0,1,2,3}, and ¢; is the
entry of the MixColumns matrix.

The SubBytes includes two calculations, the GF(2%) inversion and the affine trans-
formation. In the proposed design, the implementation of the GF(2%) inversion uses the
techniques including basis conversion and the composite-field inverter. The basis conversion
[25] changes the representation of an element, over GF(2™), from a basis to another basis
with an m x m matrix over GF(2). If any input is transformed into the representation in a
fixed basis, then the GF(28) inversion in parameterized Rijndael can be implemented in a
fixed-basis architecture.

Suppose that an element ap, € GF(2®) is given, where ap, denotes the representation
of a by means of basis B;, and the element ap, is transformed into the fixed basis By
before performing the GF(2®) inversion. The GF(28) inversion calculates in By, and then
the outcome of inversion is transformed back to the basis B;. The block diagram is shown
in Fig. 4.15.

We choose the irreducible polynomial defined in Rijndael as By, so the hardware design
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a GF(?) L | B
BN ™ Inverter o A7
B1> Bo Bo Bo> B

Figure 4.15: Basis conversion in SubBytes

of the GF'(2%) inverter could be adopted an existing one. In this work, the implementation of
GF(28) inverter implemented in the GF(((2%)?)?) field, proposed in [57]. Two isomorphism
functions are required between GF(2®) and GF(((2%)?)?).

isomorphism © : GF(2*) — GF(((2?)%)?) (4.26)
isomorphism O~ : GF(((2?)?)%) — GF(2°%) (4.27)

The two isomorphism matrices are

(1 10000 1 0] 010111 0]
0100 17010 00001100
011110 07 01111001
o [0 11000 LTl o100 o)
01110101 01101110
00110101 01000110
01111011 00100010
00000101 01000111

The GF(((2%)?)?) inverter replaces the GF(2®) inverter in Fig. 4.15, as shown in Fig. 4.16,
and the four matrices, A, A™!,0 and ©~! ,can be merged into two matrices, I' = A x © and
I' = ©7! x A%, to reduce the computing times. There are thirty 8-degree irreducible
polynomials, i.e., thirty bases, {By, B1, ..., Bag}. Therefore, the 58 matrices, {Ap, 5, X
0,071 x A];L B} can be calculated beforehand by using the algorithm described in [25],
where 7 € {1,2,...,29}. The 58 matrices only require memory space of 464 (58 x 64 bits)
bytes. In this work, I'p,_, 5, and F]_gé_, p, are given from the outside, not being stored in the

chip.
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o GF(((22%? 1 1
Ao b o fomem |l e [ o 8
C > g

B1~> By Bo Bo=> By

Figure 4.16: The computation of GF(28) inversion with arbitrary irreducible polynomial

4.9.2 Change affine matrix

The affine transformation in Rijndael composes of an 8 x 8 matrix multiplication and an
8 x 1 vector addition,

0 =Aa+ B,

where o and 3 € GF(2%), A is an 8 x 8 matrix over GF(2), and B is an 8 x 1 vector
over GF(2). In Rijndael, the affine transformation is obtained from the modular polynomial

multiplication followed by an addition,

B(x) ==Wal@)(z¥E 2" 12° + z* + 1)+,

(& =t 4 ) mod 2® + 1.

This polynomial calculation results i ‘a ‘circulant matrix A in original Rijndael. However,
the affine transformation is bijective, if and only if the matrix A is unique; hence, any unique
8 x 8 matrix over GF'(2) could be applied to affine transformation in this work. The matrix

multiplication is implemented by using only AND and XOR gates in this work.

4.9.3 Change MixColumns matrix

Because the irreducible polynomial is changeable, the implementation of xtime()  function,
described in [12], should be modified. In addition, the MixColumns matrix is also change-
able in this work. If each multiplication of two elements of GF(2®) is achieved by repeating

xtime() , the performance of MixColumns will drop dramatically. Therefore, after the
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irreducible polynomial, m(z), and the MixColumns matrix, C, are given,

Cp C1 C2 C3

C C C C
o— |7 " (4.29)

Ca C3 Cp

C1 C2 C3 (g

the value of xtime "(¢;) is calculated beforehand and stored in 4 x 8 8-bit registers, where
¢; is the entry of MixColumns matrix, and n € {0,1,...,7}. Suppose so = OXCA in (4.5),

the calculation of ¢y x OXCA is achieved by

co x OXCA = 1-xtime "(c) +1-xtime %(co)+,
0 - xtime °(co) + 0 - xtime *(co)+,
1-xtime ?(cy) + 0 - xtime ?(c)+,

L xtime_(co) + 0 - co.

In this approach, there are 32 8-bit registers to savextime "(c¢;) of MixColumns or InvMixColumns

4.10 The Hardware Strueture

In this work, a 128-bit half-duplex parameterized Rijndael is proposed, and its architecture is
depicted in Fig. 4.17. The key schedulers for encryption and decryption are also implemented.
The solid line is the encryption path, and the dash lined is the decryption path. In order to
make the decryption have the identical sequence of operations as encryption has, the positions
of AddRoundKey and InvMixColumns are exchanged. Therefore, InvMixColumns  also
presents in key scheduler in decryption. Considering a 128-bit state, x, is processed with a

normal sequence, AddRoundKey and then InvMixColumns |
v =C'x (z+k),

where k is a round key. If the sequence is reversed, i.e., InvMixColumns and then
AddRoundKey, then 2’ is
' =Cte+C k.

Therefore, the InvMixColumns  has to be incorporated into the key scheduler in decryption

to obtain C k.
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Figure 4.17: Architecture of parameterized Rijndael designed in this work. The dash line is
the decryption path.

In this architecture, the generation of round keys in decryption is on-the-fly to save
the memory requirement for storing every round key. In decryption, the final round key is
generated first, and then is used to produce other round keys. The data procedure is a 128-
bit architecture, i.e., 16 bytes are processed simultaneously. In key schedule, the structure
is 32-bit; hence, the SubWords calculates one 32-bit word per clock cycle. However, the
InvMixColumns  in key schedule processes one 128-bit state per clock cycle.

For enhancing the throughput, a six-stage pipeline designed based on the architecture
shown in Fig. 4.17 is proposed. The critical path delay of SubBytes is largest; hence, it is

divided into three stages, and one stage for each remaining operation.
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4.10.1 Input Coefficients

In order to utilize this module easily, the data bandwidth of the input and output interface
is 32-bit. In the proposed architecture, besides the key and text, the coefficients of Rijndael

also need to be given. The bit number of each coefficient is given in Table 4.3.

Table 4.3: The bit number of each changeable coefficient

Parameters Bit number (bits)
basis conversion matrix (I") 64
inverse basis conversion matrix (I'™!) 64
affine matrix 64
inverse affine matrix 64
affine constant 8
row vector of C' 32

As that described in subsection 4.9.1, instead of the irreducible polynomial m(x), the
8 x 8 matrix of basis conversion and.its-inverse are as inputs. The affine matrix can be any
unique matrix, so 64-bit input is required. Begause the matrix over GF(2%) in MixColumns

is circulant, only a 32-bit row vector is necessary.

4.10.2 Initialization

Next_Text Next_Text

Parameter,
©

)

Text
(4)

WDATA input (4) (4)
e
initialization
Key - -
Roundl Round2 Roundl Round2
: Text Xt (= Text ext_Text
Cpter

RDATA output ‘ Plain_text ‘
(4)

P.}A.}n,‘}ly‘} 1oyl
‘ Latency : 29 cycles Throughput : 11 cycle:

Figure 4.18: Clock distribution of the normal structure.

Once coefficients listed in Table 4.3 are given, an initial process is required. When

encryption function is set, the initial process calculates I''*A in Fig. 4.17, and 32 8-bit
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registers, storing xtime "(¢;), for MixColumns . In decryption, A~'T" and xtime "(¢;) is
calculated in initial process. Besides, the key scheduler has to compute the final round key
according to the given cipher key. Therefore, the latency of decryption is larger than that

of encryption by 66 clock cycles in pipeline structure or 11 clock cycles in normal structure.

WDATA Textl~6 Key Parameter Next_Text1l-6 Next_Text 7~12
A (24 cycl (4cycl (@ cycl (24cycles) (24 cycles)
input
Parameter initialization
G
Key oundl Rour
Cipher stage 1 [Text1 [ Text2 | Text3] Texta | Text5 | Texto [ Texta [ Text2] Text3] Texta| Text5 | fexts | Tea7 | Texts] Texto [ Texo [ rextr | Texti2
Cipher stage2 [ Text1 | Text2 | Te3| Texta | Texts | Text6 | Text | Text2| Text3| Textd [ Texts | Teas | Text7 | Tes| Teas| exto| reais
Cipher stage3 Textl | Text2| Text3 | Text4 | Text5 | Text6 | Textl | Text2 | Text3 ]i‘exm Text5 | Text6 | Text7 | Text8 | Text9 | Text10
Cipher stage4 Text1 | Text2 | Text3 | Text4 | Text5 | Text6 | Textl Ta<t¥ Text3 | Text4 | Text5| Text6 | Text7 | Text8 | Text9
Cipher stage5 Text1 | Text2 | Text3| Text4 | Text5 | Text6 | Textf| Text2 | Text3| Texta| Texts | Text6 | Text7| Texts
Cipher stage 6 Textl| Text2| Text3| Text4 | Text5 Ta(tb Textl | Text2| Text3| Text4 | Text5 | Text6| Text7
Round 10
Round 11
}.24 oycles 4 cydles 9 cydles -1 cycle 66 cyclesblock { 66 cyclegblock ‘

Lat : 104 cycles +——Thi hput: 66 cycl
‘ ency cycl roughpu: 66 cycles—

Figure 4.19: Glock distribution of the pipeline structure.

The clock cycles of the normal structure and the pipeline structure are depicted in
Fig. 4.18 and Fig. 4.19. The two'figures are illustrated under the assumption that the
coefficients are given at the beginning of a transmission and not changed during a transmis-
sion. Obviously, in normal structure, the latency of the first block requires 29 clock cycles,
and each following block requires 11 clock cycles to process. In the pipeline structure, the

latency of the first block needs 104 cycles, and each following block requires 66 clock cycles.

4.11 Results

The gate counts and performance of the normal structure and the pipeline structure are
described in Table 4.4. The throughput is estimated under the assumption that the coeffi-
cients are given at the beginning of a transmission, and not altered during the transmission,
as shown in Fig. 4.18 and Fig. 4.19. We achieve 1.7902 Gbps and a 153 MHz on a 0.18-um
CMOS standard cell library for a speed-optimized normal structure, and 4.9516 Gbps and
425 MHz for a speed-optimized pipeline structure.
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Table 4.4: Performance of the two proposed structures. The gate counts are obtained from
0.18-um CMOS standard cell technology. C/B = cycles per block, GC = gate counts, MF

= max frequency, Thr. = throughput, OF = optimization factor.

Structure | C/B | GC (k) | MF (MHz) | Thr. (Gbps) | OF
11 70.855 76.51 0.8903 area

Normal
11 83.094 153.84 1.7902 speed
66 | 124.518 212.77 2.4758 area

Pipeline
66 | 125.993 425.53 4.9516 speed

Table 4.5 shows the detail gate counts of each submodule in the normal and pipeline
structures. The cipher core of the normal structure has gate counts of 63.392k and 75.482k,
respectively, for area optimized and speed optimized configuration. The cipher core of the
pipeline structure has gate countssof 98.719k ‘and 96.198k, respectively, for area optimized
and speed optimized configuration. However, the speed-optimized cipher core has less gate
counts than area-optimized cipher-core has; event hough, the entire gate counts of the speed-
optimized design is larger than-that of the area-optimized design.

Table 4.6 shows the performance comparisons. The function of changing coefficients
needs massive hardware costs to achieve, although our results are also compared with other
implementations of original AES. From Table 4.6, our results provide throughput over gigabit

per second, and the gate counts do not hugely increase.

4.12 Conclusions

This work has proposed a simple, symmetric, and high-fault-coverage error detection schemes
for AES. Although error bits are diffused in AES, this work used the linear behavior of each
operation in AES to design CRC. This scheme only uses a (n + 1,n) CRC to detect the
errors, where n € {4,8,16}, and the parity of the output of each operation is predicted in
a simple fashion. Even though the number of parities is two or four, respectively for n = 8
or n = 4, it is possible to use only one 8-bit register for storing the parities during hardware
implementation. This error detection may also be used in encryption-only or decryption-only

designs. Because of the symmetry, the encryption and decryption circuit can share the same
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Table 4.5: The detail hardware cost of each submodule in the normal and pipeline structures.

GC = gate counts; P. = percentage.

Normal structure Pipeline structure

Submodules Area optimized | Speed optimized | Area optimized | Speed optimized

GC | P. GC | P. GC | P GC | P.

(k) (%) (k) (%) (k) (%) (k) (%)
P-Rijndael core 63.302 | 89.34 | 75.483 | 90.84 | 98.719 | 79.28 | 96.198  76.35
Control 0.142 | 0.2 0.181 | 0.22 | 0.212 | 0.17 | 0.258 | 0.2
register tables | 3.696 | 5.21 | 3.708 | 4.46 | 3.710 | 2.98 | 3.668 | 2.91
Cipher 34.774 49.06 | 46.797 56.32 | 59.213 47.55 | 58.087 46.10
— Data register 0.981 | 1.38 0.981 | 1.18 5.046 | 4.45 5.546 | 4.40
— (Inv)MixColumns | 16.447 | 23.2 | 20.423 | 24.58 | 20.908 | 16.79 | 21.358 | 16.95
— ShiftRows 0.324 | 0.46 | 0.861 | 1.03 0.324 | 0.26 | 0.555 | 0.44
~ SubBytes 13.999 | 10.75:320:9807, 24.38 | 25.520 | 20.50 | 23.148 | 18.37
Key schedule 24.717 34.87 {24707 29.84 | 35.584 25.58 | 34.176 27.13
- Key registers 0.081 |18 0981 | 118 |77 | 303 | 3.776 | 3.00
~ InvMixColumns | 16.320 | 28,04 (463201 2438 | 20.743| 16.66 | 19.215 | 15.25
- SubBytes 3.360 | 4TAp | 3.280. 4896 | 7990 | 642 | 7.517 | 5.7
Input interface 4799 | 6.77 | 4.853 | 5.84 10.896 | 8.73 | 11.878 | 9.43
Output interface 2.758 | 3.89 2.758 | 3.32 14.930 | 11.99 17.909 | 14.22
ol | T08S5 100 83004 100 124513100 12098100

error detection hardware. In addition, the proposed scheme can easily be implemented in a

variety of structures, such as 8-bit, 32-bit or 128-bit structures.

A Rijndael algorithm with changeable coefficients is also designed in this work. Two

architectures are proposed — the normal architecture and the pipeline architecture. The

former provides 1.7902 Gbps and costs 83.094k gate counts on 0.18-pm CMOS cell standard

library; the later provides 4.9516 Gbps and costs 125.993k gate counts. The goal of this

design is providing customized security for virtual private network (VPN) application. In

VPN, sessions do not need to compatible with standard traffics; hence, the enterprize can

configure their own coefficients to protect their network. In addition, our designs provides
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Table 4.6: Performance comparison. Ichikawa [24], Kuo [33], Satoh [57], Lin [38].

[24] | [33] | [B7] | [38] | Ours: normal case | Ours: normal pipeline
Technology (jum) 0.35| 0.18 | 0.11| 0.35 0.18 0.18
Clock rate (MHz) | N/A | N/A | 22422 | 200 153.84 425.53
Throughput (Gbps) | 1.95 | 2.609 | 1.328 | 2.008 1.7902 4.9516
Gate counts (k) 612 173 | 21.337 | 58430 83.094 125.993
Change coefficients No No No No Yes Yes

throughput over gigabit per seconds, so they are suitable for Fast Ethernet or Giga Ethernet.
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Chapter 5

Future Works

5.1 Futures of Secrecy-Channel Coding

The structure of secrecy-channel coding proposed in Chapter 2 is too scalable to analysis its
security. From the results listed in Section 2.6, only the randomness is examined. However,
the structural security against_attacks for' stream:ciphers, e.g., correlation attacks, linear
consistency test, linear syndrome algorithm and linear cryptanalysis, is not investigated
herein. First, the analysis works eanbe focused on the structure of one SHSR with a fixed
random vector, and then expand the results to the entire system. Additionally, the PRVG
can be replaced by a stream cipher. Because the PRVG is used to generate a fixed-length
binary sequence, a stream cipher also can accomplish this kind of work. In general, the
security of a well-designed stream cipher is stronger than that of PRVG. Therefore, it is

possible to make the proposed secrecy-channel coding more secure than the original one.

5.2 Futures of Secure MP3

For a DRM solution on MP3 music, proposing only a multimedia cipher is insufficient.
Several mechanisms, including key exchange, authentication, digital signature or building of
a secure channel, are also required. For example, in this dissertation, the secure MP3 is finally
deployed on a dual-core system; however, the channel between RISC and DSP is exposed to
crackers for intercepting the unprotected traffics. Therefore, for a ideal secure environment,

the secure channel has to be built between RISC and DSP. Besides, the management of
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content key and license distribution are another interesting research to complete this topic.
In addition to complete the research, the proposed concept also can be put in use on other

audio, image or video compression algorithm.

5.3 Futures of Two Results about AES

The results of error detection built in AES is fruitful, but a realization in hardware will
certainly make the research more solid. How much the hardware will be brought in? How
much decrement of throughput will be while performing encryption/decryption and error
detection in the meantime. As for parameterizable Rijndael, its applications to customized
security are interesting topics, e.g., the basis-invariant MixColumns matrix, the orthogonal
MixColumns matrix. The basis-invariant matrix and its inverse are always mutual inverse
without changing the representation of each entry, when the basis is changed. Therefore,
we can use any irreducible polynoniial m(z) ity a session, and the ciphertext always can be
correctly decrypted. In other words, only-m(x) is: modified, rather than every coefficients,

during a session. This will save the time for initializing MixColumns matrix.
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