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Gain Margin and Phase Margin Analysis of a
Nuclear Reactor Control System with
Multiple Transport Lags

C. H. CHANG anp K. W. HAN

Abstract—A method for finding the boundaries of constant gain
margin and phase margin of control systems with transport lags and
adjustable parameters is presented. The considered systems are first
modified by adding a gain-phase margin tester, then the characteristic
equations are formulated, and finally the stability equations are used to
find the boundaries of constant gain margin and phase margin. The main
advantage of the proposed method is to obtain complete information
about the effects of adjustable parameters on gain margin and phase
margin and their corresponding crossover frequencies. In order to show
the usefulness of the proposed method a nuclear reactor control system
with multiple transport lags is chosen as one of the examples.

I. INTRODUCTION

OR THE ANALYSIS and design of practical control

systems, gain margin (GM) and phase margin are the two
important specifications. The frequency domain approach,
based upon the works of Nyquist, Bode, and Nichols, permits
a designer to find these two values in a sample manner [1].
However, this approach is unsuitable for systems with two or
more adjustable parameters.

Control system containing transport lags are usually diffi-
cult to analyze due to the existance of exponential functions in
system transfer functions. Lawrence Eisenberg has analyzed a
system with a transport lag using the parameter plane method
[2]. Hu and Han have presented a method to analyze control
systems with multiple transport lags and multiple adjustable
parameters using the parameter plane and parameter space
methods [3]. However, all these methods cannot give informa-
tion on gain margin and phase margin.

The main purpose of this paper is to present a method to find
gain margin and phase margin of control systems with
transport lags and adjustable parameters. Based upon the
proposed method, the boundaries of constant gain margin and
phase margin can be plotted in a parameter plane or a
parameter space. For each selected point on these boundaries
the specific phase margin and gain margin are the same as
those obtained by use of a Nyquist diagram.

The proposed method is advantageous because the effects
on phase margin and gain margin due to parameter variations
can be clearly defined, simplifying design work by adjusting
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Fig. 1. Control system with a gain-phase margin tester.

parameters to obtain desirable gain margin and phase margin
and their corresponding crossover frequencies. As an illustra-
tion, the nuclear reactor control system considered by Hu and
Han in [3] is reconsidered in this paper.

I1. THe Basic METHOD

Consider the system shown in Fig. 1 where Gy(s) is the
open loop transfer function which may have exponential
functions (¢ ~*7) due to transport lags (see the Nomenclature).
A gain-phase margin tester represented by Ae=/© is added to
Gy(s) for plotting the boundaries of constant gain margin and
phase margin as explained later.

The characteristic equation of the system is

F()=1+AeOGys)=D(s)+Ae®PN(s)=0. (1)

Let s = jw, then (1) can be written as
F(jw)zF(a’ 6’ Y "7, Tls TZ) Tty Tiy A9 e,.lw)zo
2

where «, 3, v, * - - are variable and/or adjustable parameters,
and T, 7>, -, T; are constants due to transport lags.
Decomposing the characteristic equation into two stability
equations, i.e., the real part (Fr) and the imaginary part (F7) of
F(jw), one has

Fr(aaﬁava"'a Tls Tz,"', ’TiaA’eyw)ZO (3)

and

Ft(a’ B"Y’”" le TZ’“.’ T}’A’ e)(‘))zo (4)
Assume that (3) and (4) are linear functions of « and 3, then
one has

Fr(a, B; Y " Tla TZ’ Tty ’Ti:Aae, w)
=a-B+8 - C+D,=0 (5
Fi(a9 6, Yy "7 Tls T25 Y ’TiaA7 e’ 0-’)

=o B+ Co+D,=0 (6)
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Fig. 2. Block diagram of control system with transport lag.
where B,, B,, C, C;, Dy, and D, are functions of y --- |, T},
Ts, -+, T, A, O, and w. Solving (5) and (6) for « and 3, one
has [4], [5]

C -D,-C D
o= 1 2 2 1 )

A

Dl * B2 - D2 * Bl
= 8
8 < ®)

where

A=B1 * Cz_Bz' Cl' (9)

If (5 and (6) are not linear functions of « and S,
theoretically o and 8 can be solved also since there are two
independent equations [5].

In (7)and (8),let A = 0dB (i.e., A = 1)and © = 0, and
setvy, -+, Ty, T, - - -, T;equal to constants, then for various
values of w, a locus that contains the stability boundary of the
system can be plotted in the o versus 8 plane. Each point on
this locus represents a condition of the system to have its
Nyquist plot of Gy(s) passing through the critical point (—1,
J0), i.e., to have a pair of characteristic roots on the imaginary
axis of the s-plane. If A is assumed equal to a constant and ©
= 0, the locus in the « versus 3 plane is a boundary of
constant gain margin. On the other hand, if A = 0dB, and O is
assumed equal to a constant, the locus is a boundary of
constant phase margin. The corresponding values of w on the
constant gain-margin boundary and the constant phase-margin
boundary are the phase crossover frequency and the gain
crossover frequency, respectively. For several values of v a
subspace can be found in the three dimensional parameter
space using v as the third axis [6]-[8].

In general, the stability boundary is plotted first, and then
the boundaries of constant gain margin and phase margin are
plotted in the stable region. The rule for finding the stable
region for the stability boundary is that, facing the direction in
which w is increasing, if A defined in (9) is positive (negative),
the left (right) side of the stability boundary is the stable
region.

III. EXAMPLES

The main purposes of this section are to reconsider the
examples analyzed in [2] and [3] and to obtain complete
information on boundaries of constant gain margin and phase
margin.

Example 1 [2]: Consider the system shown in Fig. 2. The
open loop transfer function is

K(s+7e T

Gols) =——— (10)
S

Defining a = K, 8 = K7, setting s = jw, and adding the gain-
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Fig. 3. Boundaries of stability constant gain margin and constant phase

margin in ¢ versus 3 plane.

phase margin tester to the system, the characteristic equation is
F(jwy=14Ae 79Gy(jw)
= —w?+ A (cos O —j sin ©)(jaw+B)

* (cos wT—j sin wT)=0. (1)
After some algebraic manipulations, the two stability equa-
tions can be expressed as

Fr(a, 8, T, A, ©, ®)=a - B,+8 - C,+D,
=« * [Aw sin (wT+ 9)]
+B[A cos (wT+0O)]+ [~ w,]
12)
Fi(e, 3, T, A, 0, w)=a * By+8 - C,+D,
=« - [Aw cos (0T + 0)]
+8 - [—Asin (wT+6)}+[0]. (13)

Assuming T = 1, using (7) to (9), and letting w vary from
zero to infinity, the stability boundary (by setting A = 0 dB
and © = 0), the constant gain-margin boundary (by setting A
= 6 dB and © = 0), and the constant phase-margin boundary
{(by setting A = 0 dB and § = 30°) are plotted in the « vs.
plane as shown in Fig. 3. It can be seen that these three
boundaries divide this parameter plane into several regions,
where the region denoted by R, is the stable region [2]. For
better understanding of R, an enlarged figure is shown in Fig.
4, where each region has its specific gain margin and phase
margin (PM). For example, the region denoted by Ry,
represents GM > 6 dB, and PM > 30°. Similarly, R,
represents GM > 6 dB and 30° > PM > 0°, If o and 3 are
adjusted to point Py(a = 0.686, 3 = 0.166), the gain margin
and phase margin will be 6 db and 30°, respectively. The
corresponding phase crossover frequency (w.) and gain
crossover frequency (w.,) are at 1.396 rad/s and 0.724 rad/s,
respectively. Therefore, a designer can select desirable values
of parameters to make the system meet specifications on gain
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Fig. 5. Nyquist plots of Example 1.
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Fig. 6. Block diagram of control system with two transport lags.
margin and phase margin simply by looking at the few
boundaries shown in Fig. 4.

In order to check the results in Fig. 4, three points Py(cx =
0.686, 8 = 0.166), Pi(o« = 0.6, 8 = 0.1) and Py = 0.8, 3
= 0.3) are selected, and the corresponding Nyquist plots are
shown in Fig. 5. From Figs. 4 and 5 it can be seen that, for
analysis and design of a system with multiple adjustable
parameters, to plot the boundaries of constant gain margin and
phase margin is better than plotting several Nyquist plots.

Example 2 [3]: A control system with two transport lags
and multiple adjustable parameters is shown in Fig. 6, where
a, K;, and K, are adjustable parameters; 7, and 7, are
transport lags. Assume that the purpose of analysis and design
is to find the ranges of parameters such that the system is
stable and has phase margin and gain margin defined as 60° >
PM > 30° and GM > 6 dB, respectively.
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Fig. 7.  Stability boundary of Example 2.

The open loop transfer function of the system is

Ki(s+a)e Tis
2+ K Kys(s+a)e T+ Ts

Go(s) = (14)

After adding a gain-phase margin tester, the characteristic
equation is
F(s)=s>+ K, K;s(s+a)e {T1+T2s

+Ae PK(s+a)e T15=0. (15)

Defining K|, = o, Kja = 8, K, = v, and setting s = jw, the
stability equations are found as

Fr(a) B! Y Tla TZ’A) 9’ w)
:(X'B1+B'C|+D1
=« [—yw?cos (T\w+ Thw) + Aw sin (T w + O)]

+8 - [ywsin (Tho+ Trw)+ A4 cos (Tiw+0)]+[—w?]

(16)
Fila, B,v, T\, T», A, O, w)
=a - B+ C+D,
=« [yw?sin (Tiw+ Thw)+ Aw cos (T w + 0)]
+8  [yw cos (Tiw+ Thw)— A sin (T, w+ 0)] +[0].
(a7

Assuming Ty = 1.5, T, = 0.5, and v = 1, and using of the
same approach as in Example 1, the stability boundary is
plotted as shown in Fig. 7, where R, is the stable region [3].
The details of R, are shown in Fig. 8, which indicates that the
boundaries of constant gain margin (4 = 6 dB) and constant
phase margins (6 = 30° and © = 60°) divide the stable
region R, into six regions, and that the region marked by R, is
the desirable one for having GM > 6 dB and 60° > PM >
30°.

In order to find the effect of the third parameter v, several
values are assigned to it, and the corresponding boundaries in
parameter plane are found. Then a subspace with GM > 6db
and 60° > PM > 30° in a three dimensional parameter space
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Fig. 10. Block diagram of reactor control system.

can be constructed as shown in Fig. 9. Inside this subspace any
point selected will represent a set of values of «, 3, and +y to
make the system stable and meet specifications (60° > PM >
30° and GM > 6 dB). The results in this example have been
checked by use of Nyquist plots also.

Example 3: A chemical system operated for the automatic
fine control of a nuclear reactor is considered in this example,
[11, [3]. The system block diagram is given in Fig. 10. For
simplicity, the system is considered linear, and the transfer
functions of the blocks are as follows.

1) Injection valves

x(s) G,(0)
TUs) (s/wo) +20(s/we)+1

(18)

v
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2) Flow rate versus injection valve opening

_mm_1<%—

P\ 112
i1= - = constant (19)
8o

x(5) - C,

(20

i2

W) 1 (PO—P,,>1/2 oS +2X, W—dH/dW

Txts) G\ g o' S+2XW—~dH/dW

where C, is a constant, and the time constants may be
neglected in comparison with others affecting the system
dynamics [1].

3) Poison concentration versus injection flow rate

Ci(s)
Wi(s)

exp (—=sT7)/(1 +s7y)

Ge(s)=
I—exp (=sT)/(1 +s7 X1 +5713)

=aG.(s)=a

@1

where a = (C, — C)/ W or C/W for poison or water injection
respectively.
4) Reactivity versus concentration

Gk(s):K’(s): <d_K) 1—exp (—ST,)Z 22)
- Ci(s) \dC /. T,s[1+(T,/4m7

where (dK/dC), is the slope of the characteristic given the
reactivity versus poison concentration at steady state [1].
5) Nuclear power versus reactivity

N(s)

=N ke

=1/N,s(I*+2,;8:/s + \;). (23)

The ion chamber transfer function is assumed to be a constant
gain (G).
The open loop system transfer function is

G, T*exp (—sT)/(1+s71) 1—exp (—sT,)
1—exp (=sT)/(1 +st)(1 +575) sT,[1+(sT,/47)?]

1
X
(s/wo)?+28(s/wp) + 1

Go(s)=

X G (s) (24)

where G, is the open loop gain. After simplification (24)
becomes

K(s+1/7)e Ti(1 — e~5Tr)

O = e 1 167/ THG + 2Kmgs + o)
G/ (s
x [s+1/7)(s+ lr/(rz)) —e /111 @3
where
K=(16203T*Gy)/1, T’N, (26)
G’ (s)=1/(I*+Z:B/s+\). e

Note that one pole of G,(s) in (23) is combined with the pole
of (25), and the steady state reactor power (V,) is included in
K. Thus the parametric investigation of the reactor power as
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well as the open loop gain can be investigated by changing the
parameter K.

In this case, the following values are given as constants,
suchas: Ty = 4s; T, = 0.6s; 7y = 0.25s; 7, = 1.3 s; wg =
5s; ¢ = 0.8; and the values of Biand A; are stated by Keepin
[9], then G/ (s) can be rewritten as

Hi(s+)\,-)
I*H,‘(S‘f’ )\,) + E,‘B,’Hj#;,'(s + )\j)

G/ ()=1/(*+Z,Bi/s+N)=

G
1*Gy(s) + Gs(s)
where
G\(s)=IL(s+ )
=5%+4.55495%+5.2165545*+1.71376s3
+0.1765%+0.0053s + 0.0000417 (29)
Gs(s) =28l (s +N)
=0.006455°+0.02685*+0.0255s3
+0.0055452+ 0.000318s +0.00000349.  (30)
From (25), the open loop transfer function becomes
Guls) = K(s+0.7692307)e %
)= 252+ 238.6483)(s2 + 85+ 25)
(1 _ e—0.6s)
X
s2+4.769235+ 3.076923 - 3.076923e~ ¢
G
x— 31)
[*G\(s) + Gg(s)

After adding a gain-phase margin tester the characteristic
equation is

F(s)=1+Ae/9G,(s)
=52(s2+438.6483)(s2 + 8s + 25)(s* + 4.76923s
+3.076923 — 3.076923¢~ )
X [1*G(s) + G(s)] + Ae 7OK (s +0.7692307)
- e ¥(1—e "G, (s)=0. 32)

Letting K and /* be two parameters and setting s = jw, after
some algebraic manipulations, the two stability equations can
be expressed with the same forms as (5) and (6); they are

FrK,!1*, T, A, O, w)=K - Bj+!* - C\+D, (33)
FiK,1*, T, A, 0, w)=K - By+I* - C;+D, (34)
where
B =A{(—ag0®+ ayw*— a0’ + ap)
- [cos (4w + O)—cos (4.6w+ O)]
+(— a0’ +a50° — G30° + a,w)
- [sin (4w + ©) —sin (4.6w+O)]} (335)
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Ci=(=buw*+bw'?=bw'®
+ bgw®— bew® + by — byw?)
—(Caw'? = clpw !+ cgw® — cewb
+cqw* — cyw?) [cos (Tw)]
—(—cno'+ow—cw’

+ c50° — c3w?) [sin (Tw)] (36)

D1=(dlzwlz—dlow'°+dgws—d(,w6+d4w4—d2w2)
—(—epw!'+ewd —egwb + e,w* — e;w?) [cos (Tw)]
—(—e“w“+e9w9—e7w7+e5w5—e3w3) [sin (Tw)]

37

By=A{(—a70" + a50° — @303 + @) w)
+ [cos (4w + O) —cos (4.6w + O)]
—(—agwb+a,wt— a0+ ay)

+ [sin (4w +O)—sin (4.6w+O)]} (38)

Cy=(bj30P —bjyw' + byw?
—brw” + bsw® — byw?)
—(—cnwll+ew’—cro’+ csw?’
—¢30%) [cos (Tw)]
+(cpw'?—cpw''+ Ccyw?

—Cewb+ 0 — cyw?) [sin (Tw)] 39)

D2=(d130)l3—d110)“ +dgw9-d7w7+d5w5—d3w3)
—(—enwll+eyw’ - erw” + esw’ — e;w?) [cos (Tw)]

+ ( - €10w10+ egw8 - 86w6+ e4w4 - ezwz) [sin (Tw)]
(40)

where the values of @’s, b’s, ¢’s and d’s are tabulated in the
Appendix.

Setting T = 9.3, and applying the same approach as before,
the stability boundary, the boundary of constant gain margin
(A = 6db) and the boundaries of constant phase margins (O
= 30°, ® =37.2°) can be plotted in a K versus /* plane as
shown in Fig. 11, which indicates that the region denoted by
R, is the region for A > 6 dB and © > 30°. For example, if K
and /* are adjusted to point P,(K = 247, I* = 0.0272), the
system will have a gain margin at A = 6 dB and a phase
margin at © = 30°. The corresponding phase crossover
frequency (w,) and gain crossover frequency (wc) are at
0.555 rad/s and 0.075 rad/s, respectively. It can be seen that if
the gain margin is limited at 6 dB, the maximum phase margin
is approximately at 37.2°, because the boundary for © =
37.2° is tangent to the boundary for 4 = 6db at point P;.

If point Po(K = 100, /* = 0.02) in the region Rg is
selected, its Nyquist plot is shown in Fig. 12, and its Bode
diagram is shown in Fig. 13. From these two figures one
obtains GM = 10.2 dB, PM = 31.2°, w,, = 0.563 rad/s and
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Fig. 13. The Bode diagram for P,(100,0.02) in Fig. 11.

weg = 0.0455 rad/s. Note that all these results can be predicted
from Fig. 11, approximately.

In this example, although adjusting two parameters K and /*
can make the system stable and have a gain margin larger than
6 dB and phase margin larger than 30°, unfortunately the
transient behavior of the system is too slow, because the
maximum gain crossover frequency is 0.075 rad/s for gain
margin and phase margin limited at 6 dB and 30°, respec-
tively. In order to improve the transient response a compensa-
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Fig. 15. The Nyquist plot for P(1013.7, 0.1725) in Fig. 14.

tor H(s) is introduced [1] i.e.,

1—e3T a(s+1/ar)
X

H(s)=
©) sT s+1/7

(41)

where the first term is based upon the inverse function
criterion to compensate the first term given in (24) concerning
the closed loop circulation time; the second term is the lead
term by @ > 1 to compensate for the delay relative to the
injection point-core inlet transit time.

Assuming 1/7 = 0.6 and @ = 10, after adding H(s) into the
system and applying the same approach as before, the result in
the K versus /* plane is shown in Fig. 14, which indicates that
the region denoted by R gives GM > 6 dB and 45° > PM >
30°. If K and /* are adjusted to point P(K = 1013.7, I* =
0.1725), the compensated system will have a gain margin at A
= 6 dB and a phase margin at © = 30°. The corresponding
phase crossover frequency (w,) and gain crossover frequency
(weg) are at 0.25 rad/s and 0.126 rad/s, respectively. The
Nyquist plot for P(K'= 1013.7, /* = 0.1725) is shown in Fig.
15.

Note that the compensator does improves the gain crossover
frequency from 0.075 rad/s to 0.126 rad/s and keep the gain
margin and phase margin limited at 6 dB and 30°, respec-
tively, In addition, Fig. 14 also shows that the compensated

.system can give higher gain crossover frequency by adjusting
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parameters, but the higher the gain crossover frequency is the i Injection valves input signal.
smaller the gain margin will be. For example, the gain margin I, Ion chamber current.
will decrease to 2.46 dB if phase margin and gain crossover K’ Reactivity excess.
frequency are limited at 30° and 0.2 rad/s, respectively. In K Over all open loop gain.
short, all the effects of adjusting parameters can be realized L Total loop length.
from the boundaries of constant gain margin and phase L, Loop Length from expansion tank to injection
margin. point.
* Neutron mean lift time.
IV. CONCLUSION N Nuclear power.
N, Steady state power.
A method for plotting the boundaries of constant gain P, Injection point pressure.
margin and phase margin of control systems with multiple P, Injection tank pressure.
transport lags and adjustable parameters has been presented. s Laplace operator.
The main advantage of the presented method is that the T Total circulation time.
relations among gain margin, phase margin, and the adjustable T* T+ 7, + 72
parameters can be completely and easily defined. Therefore, T, Injection point-reactor inlet time delay.
the design work by adjusting parameters to obtain desirable T, In-pile section transit time.
gain margin and phase margin and their corresponding X Injection valve fractional opening.
crossover frequencies can be simplified. Since all the analyses W In-pile flow rate.
are based upon two stability equations that are amenable to W, Injection flow rate.
digital computer computation, the proposed method has the w, Poison injection flow rate.
potential for analysis and design of very complicated systems. W, Water injection flow rate.
A’ Pipe cross section.
NOMENCLATURE Qe L./A’g.
o’ L/A’g.
C Solution concentration. Bi Delay neutrons ith group yield.
o Reactor inlet solution concentration. i Delay neutrons ith group decay constants.
C, Saturated solution concentration. p Solution density.
F(s) System characteristic equation. T Injection point—reactor inlet mixing time con-
G, Open loop gain. stant.
Gy(s) Open loop transfer function. T Reactor outlet—injection point mixing time con-
G.(5) Hydraulic transfer function. stant.
G.(s) Normalized G.(s) transfer function. ¢ Injection valve damping ratio.
Gi(s) Hydraulic transfer function. X, Expansion tank—injection point pressure drop
Gi(s) K versus C; transfer function. factor.
G(s) Ion chamber transfer function. X Total pressure drop factor.
G,(s) Reactor transfer function. wo Injection valve natural frequency.
G,(9) Injection valves transfer function. Wy Natural frequency.
g Gravity constant. Wep Phase-Crossover frequency.
dH/dW Pump characteristics. Weg Gain-crossover frequency.
H(s) Controller transfer function. «, B,y Parameters.
APPENDIX
a; = 1.000000000000000E0 as = 5.324130700000000E0
as = 8.720322915430000E0 a, = 5.726493485007800E0
a; = 1.494276804432000E0 a, = 1.406846032000000E — 1
a; = 4.118622710000000E -3 ay = 3.207692019000000F — 5
b4 = 1.000000000000000E0 by; = 1.732413000000000E1
b, = 5.682581827270000E2 by = 8.113045947701120E3
bo = 5.795283829941001E4 by = 2.266140896816154E5
by = 4.830338474910203E5 b; = 5.337794507432882E5
b = 2.893096381243585E5 bs = 6.908583833703266E4
by = 6.274256335917373E3 by = 1.814647140727353E2

b, = 1.407048742516088E0
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(11

{2)

3]

(4]

¢, = 3.076923000000000E£0
clo = 1.554781665745842E3

cg = 9.040840730076884E4
cs = 1.947734149039538ES5
¢y = 5.995909210268758F3
c; = 1.407048742516088E0
di; = 6.450000000000000E — 3
d;; = 3.624185320350000E0

dy = 3.547943683229924E2
d; = 2.683435732640813E3
ds = 1.219270697727660E3
d; = 1.095022353215910E1

en = 1.984615335000000E -2

e = 9.939789089966807E0
e; = 5.435258434733920E2
es = 9.206973677068729E2
e; = 1.076769525553377E1
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