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Gain Margin and Phase Margin Analysis of a 
Nuclear Reactor Control System with 

Multiple Transport Lags 
C. H. CHANG AND K. W. HAN 

Abstract-A method for finding the boundaries of constant gain 
margin and phase margin of control systems with transport lags and 
adjustable parameters is presented. The considered systems are first 
modified by adding a gain-phase margin tester, then the characteristic 
equations are formulated, and finally the stability equations are used to 
find the boundaries of constant gain margin and phase margin. The main 
advantage of the proposed method is to obtain complete information 
about the effects of adjustable parameters on gain margin and phase 
margin and their corresponding crossover frequencies. In order to show 
the usefulness of the proposed method a nuclear reactor control system 
with multiple transport lags is chosen as one of the examples. 

I .  INTRODUCTION 
OR THE ANALYSIS and design of practical control F systems, gain margin (GM) and phase margin are the two 

important specifications. The frequency domain approach, 
based upon the works of Nyquist, Bode, and Nichols, permits 
a designer to find these two values in a sample manner [I]. 
However, this approach is unsuitable for systems with two or 
more adjustable parameters. 

Control system containing transport lags are usually diffi- 
cult to analyze due to the existance of exponential functions in 
system transfer functions. Lawrence Eisenberg has analyzed a 
system with a transport lag using the parameter plane method 
121. Hu and Han have presented a method to analyze control 
systems with multiple transport lags and multiple adjustable 
parameters using the parameter plane and parameter space 
methods 131. However, all these methods cannot give informa- 
tion on gain margin and phase margin. 

The main purpose of this paper is to present a method to find 
gain margin and phase margin of control systems with 
transport lags and adjustable parameters. Based upon the 
proposed method, the boundaries of constant gain margin and 
phase margin can be plotted in a parameter plane or a 
parameter space. For each selected point on these boundaries 
the specific phase margin and gain margin are the same as 
those obtained by use of a Nyquist diagram. 

The proposed method is advantageous because the effects 
on phase margin and gain margin due to parameter variations 
can be clearly defined, simplifying design work by adjusting 
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Fig. 1. Control system with a gain-phase margin tester 

parameters to obtain desirable gain margin and phase margin 
and their corresponding crossover frequencies. As an illustra- 
tion, the nuclear reactor control system considered by Hu and 
Han in [3] is reconsidered in this paper. 

11. THE BASIC METHOD 
Consider the system shown in Fig. 1 where Go@) is the 

open loop transfer function which may have exponential 
functions (e-";) due to transport lags (see the Nomenclature). 
A gain-phase margin tester represented by Ae-@ is added to 
Go(s) for plotting the boundaries of constant gain margin and 
phase margin as explained later. 

The characteristic equation of the system is 

F(s)  = 1 + Ae-jOGo(s) = D(s)  + Ae-jON(s) = 0. (1) 

Let s = j w ,  then (1) can be written as 

F ( ~ u ) = F ( c Y ,  P ,  7, * e . ,  TI, T2, * e . ,  T,, A ,  e , j ~ ) = O  

(2) 

where CY, P ,  y, * . . are variable and/or adjustable parameters, 
and T, ,  T2, . , T, are constants due to transport lags. 
Decomposing the characteristic equation into two stability 
equations, i.e., the real part (Fr) and the imaginary part (Fi) of 
F ( j w ) ,  one has 

WCY, P ,  7, * * a ,  TI, T2, T;, A ,  8, w)=O (3) 

and 

Fi(ci, 0, y, * * e ,  TI, T2, * * e ,  T,, A ,  8, w)=O. (4) 
Assume that (3) and (4) are linear functions of a and 8, then 
one has 
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Fig. 2. Block diagram of control system with transport lag 

where B , ,  B2,  C1, C2, D , ,  and D2 are functions of y * * . , T I ,  
T2, * * , T,, A ,  8, and w .  Solving ( 5 )  and (6) for a and 0, one 
has VI,  151 

CI * D2-C2 . DI 
A CY= (7) 

where 

A=BI . C'2-Bz .  CI. ( 9 )  

If ( 5 )  and (6) are not linear functions of a and 0, 
theoretically a and 0 can be solved also since there are two 
independent equations [5] .  

In (7) and (8), let A = 0 dB (i.e., A = 1) and 8 = 0, and 
set y,  . . . , T I ,  T2, . . . , T, equal to constants, then for various 
values of 0, a locus that contains the stability boundary of the 
system can be plotted in the a versus 0 plane. Each point on 
this locus represents a condition of the system to have its 
Nyquist plot of Go@) passing through the critical point ( -  1, 
j O ) ,  i.e., to have a pair of characteristic roots on the imaginary 
axis of the s-plane. If A is assumed equal to a constant and 8 
= 0, the locus in the a versus 0 plane is a boundary of 
constant gain margin. On the other hand, if A = OdB, and 8 is 
assumed equal to a constant, the locus is a boundary of 
constant phase margin. The corresponding values of w on the 
constant gain-margin boundary and the constant phase-margin 
boundary are the phase crossover frequency and the gain 
crossover frequency, respectively. For several values of y a 
subspace can be found in the three dimensional parameter 
space using y as the third axis [6]-[SI. 

In general, the stability boundary is plotted first, and then 
the boundaries of constant gain margin and phase margin are 
plotted in the stable region. The rule for finding the stable 
region for the stability boundary is that, facing the direction in 
which w is increasing, if A defined in ( 9 )  is positive (negative), 
the left (right) side of the stability boundary is the stable 
region. 

111. EXAMPLES 

The main purposes of this section are to reconsider the 
examples analyzed in [2] and [3] and to obtain complete 
information on boundaries of constant gain margin and phase 
margin. 

Example I [ 2 ] :  Consider the system shown in Fig. 2. The 
open loop transfer function is 

Defining a = K ,  0 = Kr,  setting s = j w ,  and adding the gain- 

Fig. 3 .  Boundaries of stability constant gain margin and constant phase 
margin in cx versus plane. 

phase margin tester to the system, the characteristic equation is 

F( jw)  = 1 + Ae-JeCo(jw) 

= - w 2  + A  (COS e - j  sin e)(jaw + 0) 
(cos U T -  j sin U T )  = 0. (1 1 )  

After some algebraic manipulations, the two stability equa- 
tions can be expressed as 

~ a ,  P ,  T, A ,  e,  w ) = a  B , + O  e c,+D, 

= a  . [ A w  sin (UT+@)]  

+ P [ A  COS ( w T + 8 ) ] + [ - ~ 2 ]  

(12) 

Fi(a, p, T,  A ,  8,  w ) = a  . B 2 + 0  C2+D2 

=CY . [ A ~  cos (w~+e) l  
+ P  * [ - A  sin (wT+8)]+[0] .  (13) 

Assuming T = 1, using (7) to ( 9 ) ,  and letting w vary from 
zero to infinity, the stability boundary (by setting A = 0 dB 
and 8 = 0), the constant gain-margin boundary (by setting A 
= 6 dB and 8 = 0), and the constant phase-margin boundary 
(by setting A = 0 dB and 0 = 30") are plotted in the a vs. /3 
plane as shown in Fig. 3. It can be seen that these three 
boundaries divide this parameter plane into several regions, 
where the region denoted by R I  is the stable region [ 2 ] .  For 
better understanding of R I  an enlarged figure is shown in Fig. 
4, where each region has its specific gain margin and phase 
margin (PM). For example, the region denoted by R I )  
represents GM > 6 dB, and PM > 30". Similarly, RI*  
represents GM > 6 dB and 30" > PM > 0". If a and P are 
adjusted to point Po(a = 0.686, P = 0.166), the gain margin 
and phase margin will be 6 db and 30°, respectively. The 
corresponding phase crossover frequency (wcp) and gain 
crossover frequency (acg) are at 1.396 rad/s and 0.724 rad/s, 
respectively. Therefore, a designer can select desirable values 
of parameters to make the system meet specifications on gain 
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a 

Fig. 4. Enlarged boundaries of Fig. 3. 

tlmGa('v) 

I 
Fig. 5 .  Nyquist plots of Example I 

Fig. 6. Block diagram of control system with two transport lags 

margin and phase margin simply by looking at the few 
boundaries shown in Fig. 4. 

In order to check the results in Fig. 4, three points P0(a = 

0.686, /3 = 0.166), P l ( a  = 0.6, P = O.l)andPz(a = 0.8, 0 
= 0.3) are selected, and the corresponding Nyquist plots are 
shown in Fig. 5 .  From Figs. 4 and 5 it can be seen that, for 
analysis and design of a system with multiple adjustable 
parameters, to plot the boundaries of constant gain margin and 
phase margin is better than plotting several Nyquist plots. 

Example 2 [3]: A control system with two transport lags 
and multiple adjustable parameters is shown in Fig. 6,  where 
a,  K 1 ,  and K2 are adjustable parameters; TI and T2 are 
transport lags. Assume that the purpose of analysis and design 
is to find the ranges of parameters such that the system is 
stable and has phase margin and gain margin defined as 60" > 
PM > 30" and GM > 6 dB, respectively. 

INFlNlTY 

Fig. 7. Stability boundary of Example 2 

The open loop transfer function of the system is 

After adding a gain-phase margin tester, the characteristic 
equation is 

F ( s )  = sz + K I  K,s(s + ~ ) e - ( ~ l +  T2)5 

+Ae-feK1(s+ a)e- T I S =  0.  (15) 

Defining K I  = a,  K l a  = /3, K2 = y, and settings = jo, the 
stability equations are found as 

0, y, T , ,  T,, A ,  0, a) 

=CY * B I + p .  CI+DI 

= a  * [ -yo2  cos ( T 1 w +  Tzo)+Aw sin (T lw+O) l  

+/3 [ y o  sin ( T l w +  T,o)+A cos ( T l w + 0 ) ] + [ - u 2 ]  

(16) 

Fi(a,  P ,  y, TI, T,, A ,  0, U )  

B>+/3  * CZ+DZ 

= a  . [yo2 sin ( T l w +  T20)+Aw cos ( T l u + O ) ]  

+ P  . [yo cos ( T 1 w + T 2 w ) - A  sin ( T l o + O ) ] + [ O ] .  

(17) 

Assuming TI  = 1.5, Tz = 0.5, and y = 1 ,  and using of the 
same approach as in Example 1 ,  the stability boundary is 
plotted as shown in Fig. 7, where R I  is the stable region [ 3 ] .  
The details of R I  are shown in Fig. 8, which indicates that the 
boundaries of constant gain margin ( A  = 6 dB) and constant 
phase margins (0 = 30" and 0 = 60") divide the stable 
region R I  into six regions, and that the region marked by R I  is 
the desirable one for having GM > 6 dB and 60" > PM > 
30". 

In order to find the effect of the third parameter y, several 
values are assigned to i t ,  and the corresponding boundaries in 
parameter plane are found. Then a subspace with GM > 6db 
and 60" > PM > 30" in a three dimensional parameter space 
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n 1. 2) Flow rate versus injection valve opening 

where C, is a constant, and the time constants may be 
neglected in comparison with others affecting the system 
dynamics [ 11. 

3) Poison concentration versus injection flow rate 
a 

exp ( - sTl)/( 1 + s7J 

1 - exp ( - S T ) / (  1 +  ST^)( 1 + S72) 
Gc(s)  = - - Fig. 8.  Boundaries of constant gain margin and phase margins in stable 

region. 

l 3 A  

I/ 

Fig. 9. A subspace for GM > 6 dB and 60" > PM > 30". 

I 
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U U 

Fig. 10. Block diagram of reactor control system. 

where a = (C, - C)/ Wor C/ W for poison or water injection 
respectively. 

4) Reactivity versus concentration 

where (dK/dC), is the slope of the characteristic given the 
reactivity versus poison concentration at steady state [ 13. 

5 )  Nuclear power versus reactivity 

The ion chamber transfer function is assumed to be a constant 
gain (G). 

The open loop system transfer function is 

can be constructed as shown in Fig. 9 .  Inside this subspace any 
point selected will represent a set of values of CY, 6 ,  and y to 
make the system stable and meet specifications (60" > PM > 
30" and GM > 6 dB). The results in this example have been 
checked by use of Nyquist plots also. 

Example 3: A chemical system operated for the automatic 
fine control of a nuclear reactor is considered in this example, 
[l], [3]. The system block diagram is given in Fig. 10. For 
simplicity, the system is considered linear, and the transfer 
functions of the blocks are as follows. 

1 )  Injection valves 

(18) 
x ( s )  G" (0) 
&(s) (s/wo)2 + 2 l 3 / 0 0 )  + 1 . 

G u = - =  

G, T* exp ( - sT l ) / (  1 + ~ 7 1 )  1 - exp ( - ST,) 
1 -exp (-sT)/(l + n l ) ( l  +S72) sT,[1 + ( s T , / 4 ~ ) ~ ]  

GAS) = X 

NO 1 

where G, is the open loop gain. After simplification (24) 
becomes 

where 

K =  (16~~w:T*Go) /7 l  T,", (26) 

G; (s)= 1/(1*+cip; /s+A;) .  (27) 

Note that one pole of G,(s) in (23) is combined with the pole 
of (25), and the steady state reactor power (No) is included in 
K.  Thus the parametric investigation of the reactor power as 
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well as the open loop gain can be investigated by changing the CI =(- b14w14+ 6 1 2 ~ ' ~ -  blow10 
parameter K. 

In this case, the following values are given as constants, 
+ b8 w - b6 w + b40 - b2w 2 ,  

5 s; { = 0.8; and the values of Piand X i  are stated by Keepin 
[9], then Gr' (s) can be rewritten as 

n;(s + A;) 
Grf ( s ) =  l/(I*+C;p;/S+X.)- ' -l*n,(s+h;)+C;P;njti(s+Xj) 

+C4W4-C2W2) [COS (TU)] 

- (  - c I ] w I l  +c9,9-c7w7 

+ c S o 5 - c 3 w 3 )  [sin (Tu)] 

where 

G ~ ( s )  = nj(s + A;) 

=s6+4.5549s5 + 5.216554s4+ 1 . 7 1 3 7 6 ~ ~  

+ 0.1 76s2 + 0.0053 s + 0.00004 17 

G ~ ( s )  = X;p;nj+ j(s + Xj) 
= 0.00645~' + 0.0268s4+ 0 . 0 2 5 5 ~ ~  

+0.00554s2+0.000318s+0.00000349. 

From (25), the open loop transfer function becomes 

K(s+ 0.7692307)e-4s 

Go(s) = s2(s2 + 438.6483)(s2 + 8s + 25) 

(1 
X 

s2+4.76923s+ 3.076923 - 3.076923e-" 

Gus 1 

f*Gx(s) + Gds)  
X 

After adding a gain-phase margin tester the characteristic 
equation is 

F(s)  = 1 + Ae-jeG,(s) 

=s2(s2+438.6483)(s2+ 8s+25)(s2+4.76923s 

+ 3.076923 - 3.076923e-Ts) 

x [l*Gx(s)+ Gs(s)] +Ae-jeK(s+0.7692307) 

e-&(1- e-0.6")Gx(s) = 0. (32) 

Letting K and I* be two parameters and setting s = j w ,  after 
some algebraic manipulations, the two stability equations can 
be expressed with the same forms as (5) and (6); they are 

F ~ ( K ,  I* ,  T, A ,  e, w ) = ~ .  B,+I*  c,+D, (33) 

Fi(K, I*, T ,  A ,  8, w)=K B2+1* * C2+D2 (34) 

where 

B1 = A  { ( - a6w6 + a4w4 - a2w2 + 00) 

[cos (4@ + e) - cos ( 4 ~ ~  + e)] 

- [sin (4w + e) - sin (4.60 + e)]} 
+ ( - a 7 W 7 + a 5 W S - a 3 W 3 + a l o )  

(35) 

D 1 = ( d 1 2 ~ ~ ~ - d l 0 ~ ~ ~ + d g 0 ~ - d d g ~ ~ + d q ~ ~ - d 2 ~ ~ )  

- ( - e l o w 1 0 + e 8 0 8 - e 6 w 6 + e 4 w 4 - e 2 ~ 2 )  [cos (Tu)] 

- ( - el w I '  + e9w9 - e707 + e5 w - e3 w 3 )  [sin (Tu)] 

(28) 

(37) 

- ( - el 1 w + e9w9 - e7w7 + eS 0' - e3 w 3 )  [cos (To)] 

+( -e loo10+e8w8-e6w6+e4w4-e2~2)  [sin (Tu)] 

where the values of a's, b's, c's and d's are tabulated in the 
Appendix. 

Setting T = 9.3, and applying the same approach as before, 
the stability boundary, the boundary of constant gain margin 
( A  = 6db) and the boundaries of constant phase margins (e 
= 30", 8 = 37.2') can be plotted in a K versus I* plane as 
shown in Fig. 11, which indicates that the region denoted by 
Ro is the region for A > 6 dB and 8 > 30". For example, if K 
and I* are adjusted to point P2(K = 247, I* = 0.0272), the 
system will have a gain margin at A = 6 dB and a phase 
margin at 8 = 30". The corresponding phase crossover 
frequency (acp) and gain crossover frequency (acg) are at 
0.555 rad/s and 0.075 rad/s, respectively. It can be seen that if 
the gain margin is limited at 6 dB, the maximum phase margin 
is approximately at 37.2", because the boundary for 0 = 

37.2" is tangent to the boundary for A = 6db at point P I .  
If point Po(K = 100, I* = 0.02) in the region Ro is 

selected, its Nyquist plot is shown in Fig. 12, and its Bode 
diagram is shown in Fig. 13. From these two figures one 
obtains GM = 10.2 dB, PM = 31.2', wCp = 0.563 rad/s and 



CHANG AND HAN: GAIN MARGIN AND PHASE MARGIN ANALYSIS 1423 

K aon 

Fig. 11. The boundaries of constant gain margin and phase margins for 
Example 3 .  

I 
Fig. 12. The Nyquist plot for P0(100,0.02) in Fig. 1 1  

Fig. 13. The Bode diagram for P0(100,0.02) in Fig. 1 1 .  

wCg = 0.0455 rad/s. Note that all these results can be predicted 
from Fig. 11, approximately. 

In this example, although adjusting two parameters K and I* 
can make the system stable and have a gain margin larger than 
6 dB and phase margin larger than 30", unfortunately the 
transient behavior of the system is too slow, because the 
maximum gain crossover frequency is 0.075 rad/s for gain 
margin and phase margin limited at 6 dB and 30", respec- 
tively. In order to improve the transient response a compensa- 

I" 

Unstable " -- 
ALL A<O 

0 
0 O X 5  LOO 800 1200 1600 

K 

compensated system. 
Fig. 14. The boundaries of constant gain margins and phase margins 

Fig. 15. The Nyquist plot for P(1013.7, 0.1725) in Fig. 14. 

tor H(s) is introduced [l] i.e., 

1 - e-sT a(s + l / m )  
H(s )  = ~ X 

sT s+ 1/r 

for 

where the first term is based upon the inverse function 
criterion to compensate the first term given in (24) concerning 
the closed loop circulation time; the second term is the lead 
term by a > 1 to compensate for the delay relative to the 
injection point-core inlet transit time. 

Assuming 1 / ~  = 0.6 and a = 10, after adding H(s) into the 
system and applying the same approach as before, the result in 
the K versus I* plane is shown in Fig. 14, which indicates that 
the region denoted by R gives GM > 6 dB and 45" > PM > 
30". If K and I* are adjusted to point P(K = 1013.7, I* = 
0.1725), the compensated system will have a gain margin at A 
= 6 dB and a phase margin at 8 = 30". The corresponding 
phase crossover frequency (acp) and gain crossover frequency 
(wcg) are at 0.25 rad/s and 0.126 radls, respectively. The 
Nyquist plot for P(K= 1013.7, I* = 0.1725) is shown in Fig. 
15. 

Note that the compensator does improves the gain crossover 
frequency from 0.075 rad/s to 0.126 rad/s and keep the gain 
margin and phase margin limited at 6 dB and 30", respec- 
tively, In  addition, Fig. 14 also shows that the compensated 

, system can give higher gain crossover frequency by adjusting 
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parameters, but the higher the gain crossover frequency is the 
smaller the gain margin will be. For example, the gain margin 
will decrease to 2.46 dB if phase margin and gain crossover 
frequency are limited at 30" and 0.2 rad/% respectively. In 
short, all the effects of adjusting parameters can be realized 
from the boundaries of constant gain margin and phase 
margin. 

IV. CONCLUSION 

A method for plotting the boundaries of constant gain 
margin and phase margin of control systems with multiple 
transport lags and adjustable parameters has been presented. 
The main advantage of the presented method is that the 
relations among gain margin, phase margin, and the adjustable 
parameters can be completely and easily defined. Therefore, 
the design work by adjusting parameters to obtain desirable 
gain margin and phase margin and their corresponding 
crossover frequencies can be simplified. Since all the analyses 
are based upon two stability equations that are amenable to 
digital computer computation, the proposed method has the 
potential for analysis and design of very complicated systems. 

NOMENCLATURE 

Solution concentration. 
Reactor inlet solution concentration. 
Saturated solution concentration. 
System characteristic equation. 
Open loop gain. 
Open loop transfer function. 
Hydraulic transfer function. 
Normalized G, (s) transfer function. 
Hydraulic transfer function. 
K versus Ci transfer function. 
Ion chamber transfer function. 
Reactor transfer function. 
Injection valves transfer function. 
Gravity constant. 
Pump characteristics. 
Controller transfer function. 

- 

b2 = 1.407048742516088EO 

a7 = 1 . OOOOOOOOOOOOOOOEO 
a5 = 8.72032291543OOOOEO 
a3 = 1.494276804432000EO 
al = 4.11862271OOOOOOOE-3 

b 14 = 1. OOOOOOOOOOOOOOOEO 
b12 = 5.682581827270000E2 
blo = 5.79528382994 1001 E4 

b6 = 2.89309638124358585 
6,  = 6.274256335917373E3 

bg = 4.83033847491020365 

Injection valves input signal. 
Ion chamber current. 
Reactivity excess. 
Over all open loop gain. 
Total loop length. 
Loop Length from expansion tank to injection 
point. 
Neutron mean lift time. 
Nuclear power. 
Steady state power. 
Injection point pressure. 
Injection tank pressure. 
Laplace operator. 
Total circulation time. 

Injection point-reactor inlet time delay. 
In-pile section transit time. 
Injection valve fractional opening. 
In-pile flow rate. 
Injection flow rate. 
Poison injection flow rate. 
Water injection flow rate. 
Pipe cross section. 
L e / A ' g .  
L / A ' g .  
Delay neutrons ith group yield. 
Delay neutrons ith group decay constants. 
Solution density. 
Injection point-reactor inlet mixing time con- 
stant. 
Reactor outlet-injection point mixing time con- 
stant. 
Injection valve damping ratio. 
Expansion tank-injection point pressure drop 
factor. 
Total pressure drop factor. 
Injection valve natural frequency. 
Natural frequency. 
Phase-Crossover frequency. 
Gain-crossover frequency. 
Parameters. 

T + 71 + 7 2 .  

APPENDIX 

a6 = 5.324 1307OOOOOOOOEO 
a4 = 5.726493485007800EO 
a2 = 1.406846032oooO00E - 1 
a0 = 3.207692019OOOOOOE-5 

613 = 1.73241300OO00000E1 
bll = 8.113045947701120E3 
bg = 2.2661408968 161 54E5 
b7 = 5.337794507432882E5 
b5 = 6.908583833703266E4 
b3 = 1.814647140727353E2 
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= 3.0769230000000OOEO 
~ 1 0  = 1.554781665745842E3 
C8 = 9.040840730076884E4 
C6 = 1.947734149039538E5 
~4 = 5.995909210268758E3 
CZ = 1.407048742516088EO 

d13 = 6.4500OOOOOOOOOOOE - 3 
dll = 3.62418532035oooOEO 
d9 = 3.547943683229924E2 
dl = 2.683435732640813E3 
ds = 1.219270697727660E3 
d3 = 1.09502235321591OEl 

e l l  = 1.984615335OOOOOOE-2 
e9 = 9.939789089966807EO 
el = 5.435258434733920E2 
e5 = 9.206973677068729E2 
e3 = 1.076769525553377El 

~ 1 1  = 3.863046057270000El 
~9 = 1.742924336017660E4 
CI = 2.124671765468546E5 
CS = 5.973391309492905E4 
~3 = 1.792837888190744E2 

dlz = 1.091615335000000E- 1 
dlo = 5.091746847286805El 
dg = 1.33693645687672363 
d6 = 2.676488788631499E3 
d4 = 2.070984356232960E2 
dz = 1.177601945175335E- 1 

elo = 2.412307632000000E- 1 
e8 = 1.085217410408026E2 
e6 = 1.187537734225402E3 
e4 = 1.903702381877193E2 
e2 = 1.177601945175335E- 1 
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