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Abstract

After the discrete cosine transform (DCT) was widely used in image compression,
discrete wavelet transform (DWT) was the new dominated transform for research and
industrial applications, and it has been adopted in the new still-image compression
standards (e.g. JPEG2000) and video compression standards (e.g. MPEG-4 and
H.264/AVC). In literature, the realization of DWT was convolution-based in early days,
and for better computation efficiency, saving memory space, integer-to-integer transform,
parallel processing, and boundary extension problem the lifting-based DWT was
proposed later. Lifting-based DWT is still an important research topic, since it is more
flexible than the convolution-based DWT to adopt new functionalities.

In this dissertation, the lifting-based DWT was studied, and a lifting-based
direction-adaptive DWT was discussed. Then, the lifting-based shape-adaptive DWT
(LSA-DWT) and the lifting-based shape-direction-adaptive DWT, which was adaptivein
shape and direction, were proposed. Because SDA-DWT has the adaptabilities of shape
and direction, by paying affordable cost, we can achieve superior improvement in image
compression. Beside lifting-based SA-DWT and SDA-DWT, the combination of
lifting-based DWT and vector quantization (V Q) was discussed in the dissertation.
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CHAPTER 1

INTRODUCTION

Discrete wavel et transform (DWT) are widely and successfully used in many fields,
especially for image compression. Since more and more new applications and
requirements are emerging, some variants of discrete wavelet transform have been
designed to support new functionalities of these new applications. Shape-adaptive
functionality is required in object-based image compression (e.g. MPEG-4), and Li et al.
[1] and Lu et al. [2] had proposed to use convention DWTSs to solve this problem.
Recently, the direction-adaptive functionality of DWT was discussed by Ding et al. [3]
and Chang et al. [4], and they both use lifting-based structures to design DWTswhich are
directional adaptive and achieve very efficient results. Those instances inspired us to
develop anovel method that is both shape and directional adaptive, and to well exploit the

correlation of images to achieve better performance of image compression.

In this dissertation, a shape-direction-adaptive lifting-based discrete wavelet
transform (SDA-DWT), which isdirection adaptive and can be used for arbitrarily shaped
segments, is proposed. The SDA-DWT contains three major techniques: the lifting-based
DWT, the adaptive directional technique, and the concept of object-based compressionin
MPEG-4. The conventional separable 2-D DWT can be implemented by using 1-D DWT
on the horizontal and vertical directions, respectively. Therefore, for images containing
large amount of non-horizontal and non-vertical line textures, the conventional DWT is
not efficient for image coding, and the direction-adaptive DWT (DA-DWT) can improve
the performance for such cases. On the other hand, the traditional 2-D DWT also requires
the images that are going to be transformed to be rectangular and their width and height

are multiples of two. Such a requirement of the conventional DWT confines its
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applications for arbitrarily-shaped-region or object-image compression. Hence, some
shape-adaptive DWTs have been proposed for solving this problem. The lifting-based
DWT implementsthe DWT by factoring it into threelifting steps and the lifting technique
simplifies hardware implementation and SDA-DWT redlization. For supporting the
shape-adaptive and direction-adaptive functionalities at the same time, we propose the
new SDA-DWT which can handle arbitrarily shaped still images and are directional
adaptive. SDA-DWT can improve energy compaction for any shaped region containing
sharp edges or line-type textures, and improve the overall coding efficiency. For the
application in object-based image compression, compared to the shape-adaptive DWTs
proposed in [1] and [2], SDA-DWT has the advantages that it can well exploit the
orientation correlation in images and it is easier to implement for using the lifting DWT.
The disadvantages of SDA-DWT include that SDA-DWT needs more side information
than the shape-adaptive DWTs need, and it needs extra computation for direction
decision. For the application in norma size image compression, compared to
direction-adaptive DWTs, SDA-DWT can handle arbitrarily shaped partition and have
higher resolution to exploit the correlation hiding in shape and orientation, while the

direction-adaptive DWTs only can process rectangular partition.

1.1 Discrete Wavelet Transform

Wavelet transform [5]-[8] iswell known asamultiresol ution analysis that provides
many advantages. joint space-spatial frequency localization, clustered wavelet
coefficients of significance with strong correlations between subbands, and exact

reconstruction, which are truly beneficia to image compression. Discrete wavelet
transform (DWT) decomposesasignal: S, (n) at resolution ¢ into two components:

S.a(m =S (k) h(2n-k), (1.1a)

D,..(n)=2S.(k) §(2n-k), (1.1b)



where S, (n) isits approximation (lowpass signal) at the next coarser resolution ¢ +1,
D,.,(n) is the detail information (highpass signal) between the two successive
resolutions: ¢ and ¢ +1, h(n) =< ¢, ¢, 0> 9(N) =<y, ¢, >, < ->Iisaninner
product operator, y is a valid (mother) wavelet, ¢ is the scaling function that is an
aggregation of wavelets at scales larger than 1, and ¢ (x)=2""?¢(2"'x—n). The

origina signa S, (n) can be exactly reconstructed from S, (n) and D, ,(n) by using

the following inverse DWT (IDWT):
S (n) = Z S«;+1(k) h(n—2k) +Z D/+1(k) g(n—2k), (1.2)
k k

where h(n) = h(-n) and g(n) = §(-n).
For image applications, the two-dimensional DWT can be obtained by using the
tensor product of two one-dimensional DWT, i.e. the row processing followed by column

processing, or vice versa. Figure 1.1 shows a 3-level, 2-D DWT in a pyramid structure.

Where, HL,,LH, and HH, are the wavelet subbands composed of the wavelet
coefficients D} (m,n), D?(m,n) and D?(m,n), representing the detail information at
resolution ¢ in the horizontal, vertical and diagona directions, respectively, LL, is
composed of the scaling coefficients S,(m,n) representing the approximation at the
coarsest resolution 3, and the original imageis usually considered the scaling coefficients
S,(m,n) at the finest resolution 0. S,(m,n) can be decomposed into S, ,(m,n),
D;.,(mn), D?,(mn) and D’,(mn) by using the 2-D DWT. And, the 2-D IDWT
obtained by using the tensor product of two 1-D IDWT exactly reconstructs S, (m,n)
from S,,,(mn), D;,(mn), D?,(mn) and D}, (m,n).

In wavelet domain, an image is decomposed into subbands with orientation
selectivity. Wavelet coefficients taken from al the subbands of the same orientation are
rearranged to form the wavelet trees. The tree hierarchy is based on the resolution level.
The wavelet coefficients at coarse resolution are called parent nodes, each of which has

four children nodes at the next finer resolution. Tree roots are at the coarsest resolution,



and tree leaves are at the finest resolution. Figure 1.2 shows awavelet tree in the diagonal
direction. Many natural images are composed of large portions of homogeneous regions,
textures, together with a small portion of edges, which are typically the low, middle and
high frequency components, respectively. The significant wavelet coefficients of the
homogeneous regions are usually at the coarser resolutions, i.e. in the lower frequency
subbands, while those near the noticeable edges are usually clustered in the higher
frequency subbands with strong similarities across subbands. If a non-leave node is
insignificant, then all the descendants at the finer resolutions are likely to be insignificant.
This cross-subband dependency of wavelet coefficients can be exploited to improve the

Image compression performance.

LL, [ HL, D(m,n)
LH, HH HL,
3 D;(m,n)
DZ(m,n) D;(m,n)
LH, HH, HL,
D;(m,n) D;(m,n)
LH, HH,

Figure 1.1 Example of 3-level 2-D DWT with subbands delimited by thick lines.



Figure 1.2 Example of 3-level 2-D DWT and awavelet tree in the diagonal direction.

1.2 TheApplications and Limitations of Conventional DWT

The concept of wavelet transform was discovered by mathematicians more than one
hundred years ago [9][10], and the applications of wavelets were developed
independently in many fields such as mathematics, quantum physics, seismic geology,
and electrical engineering. Exchanging ideas among these fields, during the past two
decades, have led to many novel wavelet applications, for example, molecular dynamics,
ab initio calculations, density-matrix localization, seismic geophysics, optics, quantum
and turbulence mechanics, image processing, sSpeech recognition, general signa
processing, multifractal analysis, DNA analysis, protein analysis, blood-pressure, ECG
and heart-rate analyses. The wavelet transform is usualy compared with the Fourier
transform [11], since most persons are more familiar with the Fourier transform than the
wavelet transform. Hence, in most of the applications of wavelet transforms, people
directly replaced the conventional Fourier transform with wavelet transforms in a large
amount of applicationswhich were originally Fourier-transform-based. In the dissertation,
we focus on image compression applications.

The discrete wavelet transforms implemented by using Eg. (1.1) are cadled
convolution-based because of involving convolution computation. The conventional
method for realizing DWT is to use the convolution-based or finite impulse response
(FIR) filter bank structures. Compared to the block-based implementation of discrete



cosine transform (DCT), DWT is essentialy a frame-based redization. Generally
speaking, a frame-based redlization costs more computations and memory spaces than a
block-based realization, and these two disadvantages limit the DWT for either high-speed
or low-power image and video processing applications. Besides complexity and large
storage space requirement, the convolution-based DWT is difficult for hardware
implementation. Daubechies and Sweldens had proposed a new approach, called
lifting-based DWT [12]-[14], for implementing DWT. The lifting-based scheme is to
decompose a discrete wavelet transform into a finite sequence of simple filtering steps,
which are called lifting steps. Using the language of agebraists, the decomposition of
lifting-based DWT corresponds to a factorization of the polyphase matrix of the wavelet
into elementary matrices. The lifting-based approach can provide advantages such as
in-place implementation of the fast DWT, capability of integer-to-integer transform, ease
for hardware implementation, less storage space requirement, and flexibility for some
adaptations on DWT. For thelifting structure, each finite impulse response (FIR) wavel et
filter is factored into several pairs of lifting steps. One pair of lifting steps includes a
prediction step followed by one update step.

In Chapter 2 we will discuss the lifting-based discrete wavelet transform which is
the second generation discrete wavel et transform and also the foundation of the proposed
method. The mathematical theories and realizations of the lifting-based DWT are
discussed in detail. Two potential applications which are originaly two wavelet-based
hybrid coders are given in Chapter 3. The proposed methods of lifting-based DWTs are
discussed in Chapter 4, in which lifting shape-adaptive DWT and the shape-direction
adaptive DWT are introduced. Chapter 5 includes the experimental results of the
proposed SDA-DWT in object image compression and regular still image compression.

Finally, conclusions are given in Chapter 6.



CHAPTER 2

LIFTING-BASED DISCRETE WAVELET
TRANSFORM

Lifting-based DWT isavery flexible method for implementing DWTSs, and it makes
the proposed method, that will be discussed in Chapter 4, easy to adopt functionalities
such as shape-adaptive and directional-adaptive abilities. In this chapter, the
mathematical theories of lifting-based DWTswill be thoroughly discussed in Section 2.1,
and some examples, including well-known Harr, 5/3, and 9/7 wavelet transforms, are
discussed and implemented in Section 2.2. Lifting direction-adaptive DWT and
shape-adaptive conventional DWT are discussed in Sections 2.3 and 2.4, respectively.

A discrete wavelet transform, whose high frequency and low frequency filters are
complementary FIR filters, can be represented as factorization of lower triangular and
upper triangular matrices. Each elementary matrix (upper triangular or lower triangular) is
related to alifting step. Since the operations in alifting step can be executed paralel, the
lifting DWTs are more efficient than the traditional convolution-based DWTs. Generally
speaking, using lifting scheme to implement DWT can reduce about 50% computation
time of the corresponding convolution DWT [12].

2.1 Mathematical Theoriesof Lifting-Based DWT
In the mid-eighties Mallat and Meyer proposed the multiresolution analysis
[15]-[17] and the fast wavelet transform which connected subband filters and wavelets,

and the connection led to new constructions, for example, the smooth orthogonal and



compactly supported wavelets. Soon after that, a lot of generaizations to the
biorthogonal or semiorthogonal (pre-wavelet) case were proposed, and, then, symmetric

wavelets and linear phase filters were able to be constructed.

There are some different techniques to construct wavel et bases, or to factor existing
wavelet filtersinto basic building blocks. Lifting is one of these. The original motivation
to develop lifting was for building second generation wavelets. Wavelets are usually
classified into two generations. First generation wavelets are al translates and dilates of
one or some basic waveforms. On the other hand, second generation wavelet are able to
be adapted to situations that translation and dilation are not allowed (e.g. non-Euclidean
spaces). Using lifting to construct wavelet bases is entirely spatial, so it is suited for
building second generation wavelets. The lifting becomes famous ladder type structures
and certain factoring algorithms when it is restricted to the translation and dilation
invariant case. Some discussions on lifting-based DWTs from the important papers by
Daubechies and Sweldens [12]-[13] are adopted in this dissertation.

Exploiting the correlation structure in signals and building sparse approximations
are the basic concepts of wavelet transform. Since adjacent samples and frequencies are
more correlated than those far apart, the correlation structure is usually local in space
(time) and frequency. Fourier transform was used to build the space-frequency
localization of conventional wavelet constructions. It can be shown that building the

space-frequency localization can be achieved by the following simple example.

Assume that x is a onedimensional signa which is defined as
x={x |x €R, keZ}. Then, we split x into two digoint subsets which are called
polyphase components. One subset X, contains all the odd samples of x, and the other

subset X includes all the even samples of x. Since X, and x. are usually closely correlated,

given anyone of them (say X¢), we can build agood predictor P for the other set (xo). Using



theideaof DPCM (differential pulse code modulation), we record the difference or detail
d:

d=x,-P(x,). (2.1)

This is because that we expect d is a sparse set, and the first entropy of d is smaller than
Xo’S. The operation that calculates a prediction and records the detail is caled a lifting
step. Some of the spatia correlation is exploited by the prediction steps, but we also need
to get some separation in the frequency domain. Frequency separation could be done by
applying another lifting step which uses an update operator U on the detailsto determine a

smoothed values s and use it to replace xe:

s=Xx,+U(d). (2.2

Itistrivial that X and X, can be reconstructed by applying Egs. (2.3) and (2.4):

%, =s-U(d), (2.3)

X, =d+ P(x.), (2.4)

where X, and X, are the reconstruction versions of xe and X,, respectively. Hence, the

scheme is aways invertible and leads to critically sampled perfect reconstruction filter
banks. Figure 2.1 shows the block diagram of a pair of lifting steps which contain a
prediction and an update lifting steps. According to Figure 2.1, the following Egs.:

X predict (2k +1) = P(x(2K), x(2k + 2)) = 3[x(2k) + x(2k + 2)], (2.59)
d(k) = X(2K +1) — X e (2K +1), (2.5b)
U(d(k-1),d(k)) = z[d(k=1) +d(K)], (2.69)



s(k) = x(2k) + U (d(k),d(k - 1)), (2.6b)

show a simple example of 5/3 lifting DWT, where Egs. (2.5a) and (2.6a) are the
prediction and update functions, respectively. The Xpredict(2k+1) isthe prediction value of
the odd sample x(2k+1), and it is the average of two nearest even neighbors x(2k) and
X(2k+1). The update-function output for an even sample (say x(2Kk) is a quarter of the
detail signal sum of its two odd neighbors (i.e. d(k-1) + d(k+1)). Because of
downsampling, d(k) and d(k-1) are corresponded to the origina x(2k+1) and x(2k-1),
respectively. The reason to use Eq. (2.6a) as the update function is to keep the running
average the same asthe original x. In wavelet transform Egs. (2.3)-(2.6) are corresponded
to the biorthogonal (2, 2) wavelet transform [18]. Thus, this example implements the
biorthogonal (2, 2) wavelet transform by using a pair of lifting steps. In other words,
lifting structure provides aframe work which can construct certain biorthogonal wavelets

which are able to be generalized to the second generation setting.

g e +‘;."£-\ 5

N/ {lowr freq.

" subband)

x ) Prediction Update
—»  Gplit POY ey
r

Xpradiar (high ﬁ'Eq

S + II/_.-‘L_\ subband}h i

Figure 2.1 Block diagram of a pair of lifting steps (prediction and update steps). The x
means the input signal vector, and s and d are the output subsampled smooth (low-pass)
and detail (high-pass) signal vectors, respectively.
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Representing the wavelet transform in the polyphase form, statements concerning
perfect reconstruction can be made by using matrices with polynomial or Laurent
polynomial entries. A lifting step is equivalent to an elementary matrix that isatriangular
matrix with all diagonal entries equal to one, in matrix algebra. By the theorem in Matrix
algebra, any matrix with polynomial entries and determinant one is able to be factored
into elementary matrices. From above discussion, we can conclude that every FIR (finite

impulse response) wavelet or filter bank can be decomposed into lifting steps.

2.1.1 Filters and Laurent polynomials

Strictly speaking, a (digital) filter [19] suggests a system which passes certain
frequency components and totally rejects all others, but in a broader context any system
which modifies certain frequencies corresponding to others is also called afilter. A filter
isalso alinear time-invariant operator which can be completely determined by itsimpulse
response: {h(k) | h(k) e R,k € Z} . Based on thelengths of digital filters, digital filtersare

commonly classified into two categories which are finite-impulse-response (FIR) and
infinite-impulse-response (IIR). The former (FIR) has finite number of non-zero filter
coefficients, and the later (IIR) has infinite number of non-zero coefficients. Only FIR
filters are discussed in the dissertation. For a linear time-invariant system, the relation
among input x, system impulse response h, and the output y is Eq. (2.7):

00

y(n) = kz X(k)-h(n-k) . (2.7)

The most important advantage of IIR filtersis that a variety of frequency-selective
filters are able to designed using closed-form design formulas. Thus, once the design
problem has been specified in terms appropriate for a given approximation method, then
the order of the filter which will meet the specifications can be obtained by substitution
into some design equations straightforwardly. This advantage makes it feasible to design

an IIR filter by manua computation if necessary and it leads to straightforward

11



non-iterative computer programs for IR filter design. On the contrarily, FIR filters can
have precisely linear phase, athough the closed-form design equations do not exist for
FIR filters.

A Laurent polynomia [20] with coefficients in the field F is an algebraic object
typically expressed as that in Eq. (2.8),

ta,z"ra 2 "V ragrazrazi o +a,z + o, (2.8)

wherethe coefficients ai’s are elements of F and the number of nonzero termsisfinite. For
example, the collection of Laurent polynomials with coefficientsin afield R form aring,
denoted R[z, Z'], with ring operations given by componentwise addition and

multiplication according to Egs. (2.9) and (2.10), respectively:

(Z a(k)- zkj + (Z b(k) - zk] = 3 [(a(k) +b(K)] - 2, (2.9)

(Zk:a(k).zkj.(zk:b(k).zkj :Zk“( Za(i).b(j)j. 2% (2.10)

i i+ )=k

The equation (2.11):

h(z) = i h(k)- 2™, (2.11)

k=k,

shows the z-transform of a FIR filter h(z), where k and k;, are the smallest and largest k,
respectively, for which h(k) is not zero. Thus, Eq. (2.11) is a Laurent polynomial.

The degree of a Laurent polynomial h(z) in Eq. (2.11) is defined as Eq. (2.12):

Ih(2) |F k, —K, . (2.12)

12



Hence, the length of a FIR filter is the degree of its corresponding Laurent polynomial
plus one. By the above definition, Z' has degree zero when it is seen as a Laurent
polynomial, but it has degree n when it is seen as aregular polynomial. Assume that a(z)
and b(2) are two Laurent polynomias with b(z) # 0 and |a(2)| = [b(2)|. Thus, there always
exists two Laurent polynomials q(z) and r(2) with |g(z)| = |a(2)| - |b(2)|, such that a(z) =
b(2)q(2 + r(2). The Laurent polynomials q(z) and r(z) are the quotient and remainder

respectively of the result that a(z) is divided by b(z), and they are denoted as :
a(2) =a(2)/b(2),
and
r(z) = a(2) mod b(2).

If b(2) is a monomial, then |b(2)| = 0, r(2) = 0, and the division is exact. Any Laurent
polynomial isinvertibleif and only if it isamonomial. Note that for regular polynomials,
only constant polynomials are invertible. Another important property is that the long

division of Laurent polynomialsis not unigue.

Example 2.1 Assuming a(z) =z "+6+ 2z, b(z) =3+3z, we want to determine the
quotients q(z) and remaindersr(2) of that a(z) isdivided by b(z). Since the degrees of a(z)
and b(z) are 2 and 1 respectively, the quotient q(z) is a Laurent polynomial of degree one.
The corresponding remainder can be determined by therelation: r(z) = a(z) — b(2)q(2), and

b(2)q(2) has to match a(2) in two terms.

If we choose b(2) to match a(z) with z* + 6, then q(z) = é(z‘1 +5) and r(z) = -4z.

The degree of the Laurent polynomial r (2) iszero. However, if welet the two match terms

13



bez! + z, the new answer is q(z):%(zl+1) and r(z) = 4. Finaly, if we select to match

6 + zin a(2), then the third answer is q(z) = %(52‘1 +1) and r(2) =-4z".

From the results of Example 2.1, we see the fact that the division of two Laurent

polynomiasis not unique, and b(z) hasto match a(z) at least |a(2)| - [b(2)| +1 terms. Each

selection of q(2) corresponds to a long division agorithm, and this will turn out to be
useful later.

2.1.2 Discrete wavelet transformin FIR form

The one-dimensional discrete wavelet transform can be represented as Figure 2.2.
h and g arethe low-pass and high-pass anaysis filters, respectively, and h and g are the
low-pass and high-pass synthesis filters, respectively. The blocks (circles) after analysis
filters are subsampling units, and the blocks (circles) before synthesis filters are
upsampling units. In the dissertation, all the filters in DWT are FIR filters. Equations

(2.13) and (2.14) are the requirements for perfect reconstruction:
h(2h(zY) +9(2)3(z ) = 2, (2.13)

h(2)h(-z%) + 9(2)§(-z 1) = 0. (2.14)
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DWT

h (Z_l) Low-pass
.  signal
—»| filter pairs downsampling

A 4

0 ‘High-p
9(z") %ﬁgmﬂ

+ upsampling

IDWT

(e

filter pairs

9(2)

Figure 2.2 Block diagram of one-dimensional DWT. x isthe original signal and X isthe
reconstruction signal of x.

The modulation matrix M(2) and dual modulation matrix M(z) are defined in Egs.

(2.15) and (2.16), respectively:

M(2) =

M (2) =

h(2)
19(2)

h(2)

19(2)

h(-2) |
9(-2) ]

h(-2)]
§(-2)|

Hence, the perfect reconstruction conditions can be represented as

M(zH)'M(2) =2,

(2.15)

(2.16)

(2.17)

where | is the 2-by-2 identity matrix and M isthe transpose of M . Since all the filters

here are FIR, the modulation and dual modulation matrices belong to GL(2, R[z, Z%])

which denotes a ring whose elements are 2-by-2 matrices with Laurent-polynomial

entries, and any matrix from this set isinvertible and unitary.

15
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The polyphase representation of afilter his given by
h(z) = h,(z*) + 2 'h,(z%),

where he and h, contains the even and odd coefficient terms of h, respectively. He and h,

can be represented as the form in Egs. (2.18) or (2.19):

h(2) = Y h(2k)z*,

h,(2) = Zkh(Zk +1hz’, (2.18)
and
he(ZZ) . h(Z) I h(—Z) ,
(2.19)
ho (22) = h(Z) = 2(_2) \
2z
We define the polyphase matrix as
(2 9.(9
P Luz) go(zj | (220
and then
1 z
P(z?)' =iM (z){ } : (2.21)
1 -z
Similarly, the dual polyphase matrix can be defined as that in Eq. (2.22):
s _|h(@ 6.2
P(2)=| -* e . 2.22
@ {ho(z) ‘g*o(z)} &2
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By using I5(z) and P(2), the DWT can be represented as shown in Figure 2.3, and the

perfect reconstruction condition is represented as
P(2)P(z V) =1. (2.23)

In the Figure 2.3, for DWT side, first, the original signal x is subsampled into even and
odd samples, then the susampled results are applied the dua polyphase matrix. For the
inverse transform, the transformed inputs are applied the polyphase matrix first, and then

the even and odd results are joined to form the reconstruction signal X .

Forward transform leverse transform
O &
=k g LT
X signal:
— P(z Y TRz

Lo

upsampling

subsampling

iR
a{é

Figure 2.3 The polyphase representation of DWT and IDWT.

Because I5(z) and P(2) contain only Laurent polynomials, Eq. (2.23) implies that
the determinant and inverse matrix of P(z) are all Laurent polynomials , and that is
possible only when det(P(2)) isamonomia (i.e. det(P(2)) = cZ", where ce R and ne Z).
Thus I5(z) and P(2) areelementsin GL(2, R[z, z]). If det(P(2)) is not equal to one, then
we can divide ge(z) and go(z) by det(P(2)), and then det(P(z)) becomes one. This means
that for a specific (given) filter h, the determinant of a polyphase can always be one by
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scaling and shifting the filter g. Without loss of generality we assume that det(P(2)) = 1
and P(2) € SL[2; R[z, z]]. The problem to find aFIR wavelet transform is equivalent to
find a polyphase matrix P(z) with det(P(z)) = 1. For agiven I5(z) and the four filters for
the DWT follow immediately. Solving Eq. (2.23) we have

h(2)=0,(z"),
h,(2) = —ge(z:i), (2.24)
ge(z) = _ho(z )’
go(z) = he(zil)'

Equation (2.24) implies

{ §(2) =z "'h(-z"), (2.25)

h(z) = -z'g(-zY).

For the ssmple example P(2) = I, we have h(z) = ﬁ(z) =land g(2)=g(2)=z". The
DWT only splits the input signal into even and odd samples and downsamples these
samples. Such a DWT is named as the Lazy wavelet transform [14] or polyphase

transform.

2.1.3 Thelifting structure
In DWT, the lifting structure [12]-[14] is a specia relationship between perfect

reconstruction filter pairs (h, g) which have the samelow-pass or high-passfilters. We can
begin from the Lazy wavelet and apply lifting to build our way, step by step, up to a

multiresolution analysis with particul ar features.

If the corresponding polyphase matrix P(z) of afilter pair (h, g) has determinant one,

then thefilter pair is complementary. For acomplementary filter pair (h, g), its dual filter

pair (ﬁ,fj) is also complementary. Assume that a filter pair (h, g) is complementary.

18



Then any other FIR filter, which is denoted as g™, complementary to his of the form in
Eq. (2.26):

9™"(2) = 9(2) + h(2)s(z°) , (2.26)

where 5(2) is a Laurent polynomial. In other words, any filter of the form in Eq. (2.26) is

complementary to h.

he(2)s(z) and hy(2)s(z) are the even and odd polyphase components of h(2)s(Z),
respectively, and the new polyphase matrix is:

P (2) = P(z)[é S(lz)} . 2.27)

Since the determinant of the second term on theright sidein Eq. (2.27) isone, P"™*(2) and
P(2) have the same determinant [12]. Figure 2.4 shows the schematic representation of

lifting. In the forward DWT part, the new dual polyphase matrix is given by:

o = 1 0
P"GN(Z)=P(Z){_S(Z_1) J- (2.28)
~ Lowpass
h(z") sugnal h(Z)
X
_’ S(

5z )(12) T o (2 {9

Figure 2.4 The lifting structure: A classical subband filter scheme followed by alifting
scheme which lifts the low-pass subband with the help of the high-pass subband.
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A new low-pass filter h iIsgiven by Eq. (2.29):
h™(2) =h(2) - §(2)(z?). (2.29)

Similarly, if (h, g) iscomplementary, then any other FIR filter h"*° complementary to

gisof theform:
h™(2) = h(2) + g(2)t(z%), (2.30)

where t(2) is a Laurent polynomial. Conversely speaking, any filter of this form in Eq.
(2.30) is complementary to g. For dual lifting, the new polyphase matrix is

— 1 0
pPEL(Z)= P(Z)L(z) J. (2.32)
Dual lifting generatesanew g whichis:
§™(2)=3(d-h@uz?). (2:32)

The dud lifting structure is shown in Figure 2.5. Sweldens had proposed a family of
lifting wavelets which starts from the Lazy wavelet followed by one dual lifting and one
primal lifting step. Every h filter constructed this way is half band, and the corresponding
scaling function is interpolating.
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h(z )-@ T sga | r@-»h(z)

X t(2) t(2)
g(zh Wighpaf,@_,@_; 9(2)
signa

Figure 2.5 The dual lifting structure: A classical subband filter scheme followed by a
lifting scheme which lifts the high-pass subband with the help of the low-pass subband.
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2.1.4 The Euclidean agorithm

In this section, the Euclidean agorithm is extended to find the greatest common
divisor (ged) of two polynomials, and it will be used to determine the common factors of
two Laurent polynomials later [20]. As we have discussed in Example 2.1, the ged of
polynomiasisnot unique. Actually, the gcd of two Laurent polynomialsisdefined upto a
factor Z' (Note that, the gcd of two regular polynomialsis up to a constant.). If the gcd of
two Laurent polynomials is of degree zero, then the two Laurent polynomials are

relatively prime.
Euclidean algorithm for Laurent polynomials:

Assume there are two Laurent polynomials a(z) and b(z) with |a(2)| = |b(z)| and
b(z) # 0. Set a°(z) = a(z) and b°(z) =b(z) and iterate the following steps beginning

fromn=0.
a"™(z) =b"(2), (2.33)
b™(2) = a"(2) mod b"(2), (2.34)

where the superscripts of Laurent polynomials a(z) and b(z) denote the iteration number.
For the smallest n = m that b(2) = 0, we have a(2) = gcd(a(z), b(z)). Given that
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bn+1(z)| <

b”(z)| , there is an k such that |b"(z)| =0. The agorithm stops for m= k + 1.

The number of stepsis bounded by m(m =< |b(2)| + 1). Let "(2) = a"(2)/b"(2), then we

have

a™(2)| (4]0 1 a(2)

[ 0 }_(EL —q“(z)D{b(z)] (2.35)
Therefore

a2)| (mfa'@ 1][a"(2

LKZ)}{H{ 1 OD{ 0 } (2.36)

and a"(2) divides both a(z) and b(2). If a"(2) is a monomial, then a(z) and b(z) are

relatively prime.

Example 2.2 Assume that a(z) =a’(z)=z'+6+2z, b(z) =b°(2) =3+3z. The first

division gives us
a'(z) =3+3z
b'(z) = 4,
and
q =3(z"+1).
The second iteration gives:

a’(2) =4,
b?(2) = 0,
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and
q° =2(1+ 2).

Hence, a(2) and b(2) are relative prime and we have:

z'+6+2z| |i(z'+)) 1{%(1+z) 1}{4}
3+3z | | 1 o] 1 oo

It takes 2 (i.e. m=|b(2)| + 1) steps (iterations) to complete the process.

2.1.5 The factoring algorithm

In this section, we will discuss how to factor a pair of complementary filters (h, g)
into lifting steps. Note that he(z) and hy(z) must be relatively prime, since any common
factor would also divide det(P(2)) and det(P(2)) = 1 is already known. Use the Euclidean
algorithm to find the monomial gcd of he(2) and hy(z). Because of the non-unigqueness of
the Laurent-polynomial division, we can only select the quotients such that the gcd is a

constant. Assume the constant is ¢, we have that

h(2| &la'(2 1fc
L‘O(Z)}ln:ﬂ 1 o}{o] (2.37)

If mis odd, we can multiply h(z) with z and g(z) with z*. This does not change the
determinant of the polyphase matrix, and it flips the polyphase components of h(z) and
makes m even. Thus, we can always assume that m is even. Given afilter h(z) we can

always find a complementary filter, that is denoted as g™, by letting:

won_ @ 9P @] ~aq(2) 1]|c O
" (Z){ho(Z) gﬁp'(z)}_ln:ﬂ 1 o}{o 1/c] (2:38)
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Rewrite the second equation in Eqg. (2.38) and we have

ITRY e
1 0] |0 1 |10
and
) em
1 0] |1 0q"(2) 1
When nisodd, use Eg. (2.39), and use Eq. (2.40) for niseven. Thus Eq. (2.38) becomes
o T 2l gREENELaE 50 (ch0
3 (Z)—ln_ﬂo 1 LZ"(z) J{o 1/c] (241)

At last, the original filter g can be recovered by Eq. (2.26). The filter g can aways be

recovered from g with one lifting or:

(2.42)

P(2) = P (z){l S(ﬂ )

0

To sum up, if the complementary filter pair (h, g) is given, then there always exist Laurent

polynomials s'(z) and t"(2) for 1< n< k and anonzero constant ¢ such that

11 s"@d 1 Ofc O
P(Z)_lnﬂo 1 }L”(z) 1}{0 1/c] (243)
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signal
3

t(2)
)
I D L

Figure 2.6 The forward DWT using lifting structure.

Equation (2.43) means that every FIR filter DWT can be obtained by beginning with the
Lazy wavelet followed by k lifting and dual lifting steps followed with a scaling.
Similarly, the dual polyphase matrix is given by

_ k1 01—tz uc o
P(Z)_l,:ﬂ—s”(zl) J{O 1 }{ 0 c] (244)

Figures 2.6 and 2.7 show the different steps of DWT and IDWT, respectively.

Lowpass i A +
signal l Reconstruction
t(2) @)

s
Highpass

Figure 2.7 The Inverse DWT using lifting structure.
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2.2 Readlization of Lifting-Based Discrete Wavelet Transform

In this section, the famous Haar wavelet, 5/3 wavdet, and 9-7 wavelet and their

corresponding lifting-based realizations are discussed in the following subsections.

2.2.1 Haar wavelets
For the Haar wavelets, we have that h(z)=1+z", g(2=-%i+iz",

h(z)=4+1z*, and §(z) =—1+z*. By using the Euclidean algorithm the polyphase

matrix can be represented as:
1 -1/2| |1 0|1 -1/2
P(2) = = !
1 —gd-A2 1 10 1
Therefore, on the analysis side we have:
~ 1 1/2 1 0
P V4 71: P Zil = = .
(2) (){1 lH_lJ
Hence, we have the following realization of the forward DWT:

s@(n) = x(2n),
d@(n) = x(2n+1),
d(n) =d®(n)-s(n),
s(n) = s (n) +3d(n),

and the IDWT isgiven by:

s (n) = s(n) - 3d(n),
d©@(n) =d(n) +s?(n),
%(2n+1) = d©(n),
x(2n) = s (n).
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Inthereversetransform, weuse X to denotethereconstruction version of Xx. Thesesignals

areshown in Figs. 2.8 and 2.9.

/_\ 59 (n) m s(n) Lowpass

Input
. ——>
signal 12
7y d(n) Highpass
» Z »
g d® (n) Signal
Figure 2.8 DWT with lifting Haar wavelet.
X(2n)
Lowpass 0\ o0 @
signal \f/ econstruction
12 Sighal X
. A
Highpass d(n) ] d(o)(n) 71
signal I X(2n+1)

Figure 2.9 IDWT with lifting Haar wavelet.
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2.2.2 The 5/3 wavelets

In this section, we will discussthe 5/3 wavel ets which was recommended by the new

image compression standard JPEG2000. For the 5/3 wavelets, we have that

h(z)=-1z2+1z +3+17 172, §(z)=-1z2+2z'—-1 . According to
Egs. (2.18) and (2.19) we have:

h(z’)=-1z?+3-127°,

h(z)=%+:7",

k4 & = VAaE

g,(z) =1

The dua polyphase matrix of thisfilter bank is:

[5(2) il |:}le(z) ge(Z)} e {—% e, oy RRCERRE L7 _%} |
ho(z) go(Z)

Assuming perfection reconstruction and complementary filters, the corresponding

synthesisfilters are:
h(z)=-z"g(-z")=4z"+1+47,
and

-2

9@ =z'h(-z")=-}z° -1z +3z -1 -1z

Using the Euclidean agorithm we can factor the dual polyphase matrix as:

S5 |1 @214 1 0
(Z){o 1 }{—(1“1)/2 1]

Hence, we have the following realization of the forward DWT:
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s (n) = x(2n),

d(n) = x(2n+1),

d(n) =d®(n) —[s9(n) + s (n+1)],
s(n) = s (n) +1[d(n) +d(n+1)],

and the IDWT isgiven by:

s9(n) = s(n) —i[d(n) + d(n+1)],
d@(n) =d(n) +1[s?(n) +s?(n+1)],
x(2n+1) = d?(n),

x(2n) = s (n).

2.2.3 The 9/7 wavelets
The 9/7 wavelet [22] filter bank was also proposed in Part | of JPEG2000 standard.

For the 9/7 filter pair, the analysisfilter h has9 coefficients, and the synthesisfilter h has

7 coefficients. Each of the two high-passfilters g and g has 4 vanishing moments. For a

smoother scaling function, the filter with 7 coefficients is choused to be the synthesis
filter. Using the Euclidean algorithm, the most efficient factorization of the dual

polyphase matrix of 9/7 waveletsis as follows:

B(2) = ¥ a(l+zh) il Off1 c@+z™h
o 1 b(l+2) 1[0 1

1 O[K ©
><d(1+z) 1|0 1/K ]|

wherea =-1.586134342, b = -0.05298011854, ¢ = 0.8829110762, d = 0.4435068522, and
K =1.149604398.

Both 5/3 and 9/7 wavelet filters can be represented by banded matrix operations. For the
5/3 wavelet:
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Ys3 = XM, M,,

where

a
01 00
0 alayo

00100

0 alaydo

0 0100

0 alayol

0010

a

and

ORI T, )

0" O QRS0

OF i | e gy

00100

O b1boO

0 O ECR0O

O b10O

0

The IDWT can be represented as

“1pg -1
YosM, M,

X =

For the 9/7 wavelet, we have:

Yo7 = XM;M,M ;M
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1 c O
0100
0Ocl1lcO
00100
M, = 0OclcO ,
00100
Ocl1lc O
0010
| 0 c 1]
and
10 0 |
01 ga=e
O—OR o ()
ORCEEL T G
M, = OO 1 GIN0
0d1dao0
0 01 00
0d10
| 0 0 1]

Finally, the IDWT based on 9/7 wavel et can be represented as:

X =Yo7M 471M 371M 271|\/| 17l :

2.3 Lifting-Based Direction-Adaptive DWT (DA-DWT)

The conventional separable 2-D DWT can be implemented by consecutively
applying 1-D DWT in horizontal and vertical directions, or vice versa. That means if we
use the lifting structure to implement 2-D DWT, the prediction and update directions are
parallel to the horizontal axis or the vertical axis. The lifting-based DWT whose
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directions of prediction and update steps are adaptive is called a direction-adaptive DWT
(DA-DWT) or adaptive directiona lifting-based DWT (ADL-DWT). The DA-DWT can
be decomposed into two blocks which are shown in Figure 2.10. First, an input image is
partitioned into many small blocks and the best transform direction for each block is
determined. Then, lifting DWT is performed on the image according to the partition and
direction information obtained in the first block. Figure 2.11 shows the direction of the
lifting step of a direction-adaptive DWT, and the prediction and update direction line
intersects the horizontal axis by an angle 6. Applying the sub-pel technique, although the
angle 4 can be any value between 0 and /2 (radians) in [3], only nine directions were used.
In [4], they aso used nine directions for prediction and update, but these nine directions
were different from thosein [3]. In this dissertation, we use the directions in [4], because
this method does not involve complex sub-pel computation and has better performance.
Figure 2.11 showsthe nine directions and their corresponding neighbors of an odd sample
in prediction step of a 5/3-wavelet DWT. In Figure 2.13, each of the even samples is
updated by its two odd neighbors along the line with 6 = 45 degrees.

Input " Transformed
| Partition & » LiftingDWT |—»
Image Direction selection e

Figure 2.10 The block diagram of a DA-DWT system.

ADL-DWT [3] and DA-DWT [4] are proposed to compress arectangular image by
dividing the whole image into a lot of fixed-size small square blocks. After dividing an
image into many small square blocks, the optimal direction for directional lifting DWT of

each block isdetermined. Then, some connected blockswith the samelifting direction are
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grouped to form a large rectangular block with the same direction for saving the bits of
side information [4]. Different from the method in [4], the method used in [3] splits a
larger square block into several small rectangular blocks instead of merging some small
square blocksto form alarger rectangular block. For |osslessimage compression, the best
direction (9 ) of prediction and update of the directional lifting DWT isthe direction that
spends the least amount of bits to compress this (square or rectangular) block. For lossy
image compression, the best direction of the directional lifting DWT in ablock should be
the one that has the highest PSNR value for a given bit-budget. Either lossless or lossy
image compression, the best direction selection should have strong energy compaction
effect in the low frequency subband. On the other hand, energy compaction in low
frequency subband is equivalent to that the energy left in high frequency subband islittle.
Hence, the optimal direction selection can be approximately determined by choosing the

direction in which the directional DWT has the smallest absolute sum of the coefficients

in the high frequency subband.

even odd even odd even odd ;e%
& 5 -0 %

S\ N
Ay NG DA O D N
w %/ w U/ w
R AN WA
kri/ w /W ¥

ARV YWNAAYEN WA
w v W

Figure 2.11 A Direction selection example with angle 6 in 1-D “horizontal” DWT.
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Figure 2.13 The update stage with 6 = 45°.

The last step of the 1-D directional DWT is a subsampling stage, and the

subsampling method is just like the way in the conventional DWT, i.e. the subsampling
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direction is the horizontal direction for a “row” directiona adaptive DWT. After the
“row” directional adaptive DWT is complete, the “column” direction DWT is performed
on the whole segment block, and the last step is the subsampling step following the
“column” directional DWT in a one-level direction-adaptive DWT. The redlization of the
“column” direction-adaptive DWT is the same as the “row” direction-adaptive DWT, if

the segment block after “row” direction-adaptive DWT isrotated clockwise 90 degrees.

2.4 Shape-Adaptive DWT (SA-DWT)

Because of fast growth of multimedia applications, the needs of searching,
accessing, indexing, and manipulating visual information at the semantically meaningful
object level are becoming more and more urgent. The MPEG-4 standard supports such a
functionality of making a visual object available in the compressed form, and this
functionality provides flexibility for manipulating a visua object in multimedia
applications and improves the compression efficiency in very low bit-rate coding. There
aretwo magjor partsin an object-based video coding system. Oneistheintraframe coding,
and the other is the inter frame coding. The inter frame coding involving motion
prediction, which will not be discussed here, and we focus on the intra frame coding in
this subsection. The intra frame coding of the object-based video coding can be divided
into object shape coding and object texture coding. The alpha map (Figure 2.14 (b)) is
used to represent the region that the object occupied, and the simplest al phamap can be a
binary figure which has value 1 for the bits in the object and value O for each bit outside
the object. Thus, using the al phamap, the object in an image can be easily segmented. The
most popular technique for object texture coding is the shape-adaptive DCT (SA-DCT)
[23], which uses 8-by-8 blocks to represent the object to be transformed and coded. Since
an object usually can not be covered by 8-by-8 blocks perfectly, alot of boundary blocks
do not totally reside in the object and make this method inefficient. S. Li et al. proposed a
shape-adaptive discrete wavel et transform (SA-DWT) for arbitrarily shaped visual object
coding [1], and they used the SA-DWT for the texture coding of the intra frame part in
object based video coding. Lu et al. al'so proposed an object texture coding technique [2]
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that combined a SA-DWT and the SPECK algorithm. The experimental results in [1]
showed that the SA-DWT with extentions of zerotree entropy coding (ZTE) outperforms
SA-DCT up to 0.97 dB in Y-plane PSNR, 1.29 dB in U-plane PSNR, and 0.89 dB in
V-plane PS\R, for the Akiyo sequence (CIF) at 1.0 bpp. However, the SA-DWTs using
conventional DWTs have the disadvantage that they need complicated rulesto handle the
even and odd problems of the samples. In Chapter 4, the lifting DWTs are introduced to
realize the shape-adaptive functionality that we call lifting-based shape-adaptive DWT
(LSA-DWT).

(b)

Figure 2.14 The original image and al pha map of object 1: (a) thetest visual object 1 with
background (256-by-256), (b) the shape mask (a pha map).

36



CHAPTER 3

TWO WAVELET-BASED HYBRID CODECS
FOR IMAGE COMPRESSION

In this chapter, two image compression applications of DWT will be discussed.
Both of them are wavelet-based applications, so the lifting-based DWT can seamlessly
replace the conventional DWTs in these two applications. The first one, in Section 3.1,
proposed a hybrid image coder which combines SPIHT (set partitioning in hierarchical
trees) [24], DWT, and vector quantization [25][26] for improving image compression
efficiency. In Section 3.2, the second application used DWT, SPECK (set-partitioning
embedded block coder) [27], and residual vector quantization (RV Q) to enhance image

compression performance.

3.1 Image Compression Using SPIHT and VQ

Su et al. presents a hybrid coding system using a combination of set partition in
hierarchical trees (SPIHT) and vector quantization (VQ) for image compression [28]. In
which, thewavel et coefficients of the input image are rearranged to form the wavel et trees
that are composed of the corresponding wavelet coefficients from all the subbands of the
same orientation; a simple tree classifier has been proposed to group these wavelet trees
into two classes based on the amplitude distribution; and each class of treesisto be coded
using an appropriate procedure, specifically either SPIHT or VQ. Experimental results
show that advantages gained by combining the superior coding performance of VQ and
efficient cross-subband prediction of SPIHT are, as expected, appreciable for the

compression task, especially for many natural images with large portions of textures.
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3.1.1 Overview of SPIHT

The SPIHT algorithm has received alot of attention since its introduction for image
compression in 1996. It contains two passes: sorting pass and refinement pass, which can
be combined to form asingle scan pass. Three symbols. zero tree (ZT), insignificant pixel
(IP) and significant pixel (SP) are used to code the wavel et tree structure of images, which
arestored intheir respectivelists: list of insignificant sets(LIS), list of insignificant pixels
(LIP) and list of significant pixels (LSP). Below is the encoding algorithm presented in
four steps[24].

c )J, where ¢, is the wavelet tree node at

m,n

1) Compute b = LI 0g, (MaX ,

coordinate (m,n) . Set theinitial threshold T = 2°.

2) Sorting pass. identify the coefficients such that T < ‘Cm,n < 2T ; output their

respective coordinates and signs.

3) Refinement pass: output the b-th (most significant) bit of all the tree nodes with

|c > ZT following the same order used to output the coordinates in previous

sorting passes.

4) Decrease b by one, halve the threshold T and go to step 2.

The scan pass (i.e. Step 2 followed by Step 3) of SPIHT is performed in arecursive
manner until the expected bit rate is reached. In sorting pass, the coefficientsin LIS and
LIP are evaluated as follows. For coefficients whose magnitudes are greater than or equal
to the current threshold, they become significant and will be moved to LSP. For

insignificant coefficients whose magnitudes are less than the current threshold, they will
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be stored in LIS if al their descendants are aso insignificant with respective to the same
threshold; or otherwise, stored in LIP. A sequence of successively smaller thresholds can
be obtained by using the following recursive equation:

T, =0.5T, ,, (31

where the initial threshold T, must be greater than or equal to half the maximum
magnitude of the transform coefficients. After the k-th sorting pass, tree nodes whose
magnitudes are in the range: [T,,T, ;) for k>1 (or [T,,) for k =1) will be stored in

LSP with one bit per node to indicate their respective signs. In refinement pass, the
significant nodes stored in L SP are refined with one bit per node to update their respective
information. The great success of SPIHT is attributed to the important hypothesis of
wavelet transform: if aparent nodeisinsignificant, then all its descendants arelikely to be
insignificant with respect to the same threshold and therefore these insignificant nodes

can be efficiently coded with asingle symbol ZT.

3.1.2 Proposed hybrid coding

For images with textures composed mainly of the middle and high frequency
components, there are many significant nodes whose ancestors are insignificant. It
follows that zero trees of insignificant nodes are very rare. Figure 3.1 (a), for example
shows a256x256 grayscale Mandrill image with large portions of high frequency textures.
Empirically, we have classified the wavel et treesinto two classes based on the magnitude
distribution. The compression performance of SPIHT is evaluated for each class of

wavelet trees. As shown in Figure 3.1 (b), where the horizontal and vertical axes are the
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compression rates measured in bits per pixel (bpp) and peak signal to noise ratio (PSNR)
values measured in dB, respectively, the SPIHT algorithm is much more effective for one

class of wavelet trees than the other.

3

30k

28+

28+

2+

26+

FSNR

25

24+

23+

2+

Figure 3.1 Rate-distortion curves of the low frequency (dotted line) and high frequency
(solid line) wavelet trees of Mandrill image by using the SPIHT algorithm.
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3.1.3 Wavelet tree classification
High quality image compression at low bit rates can be achieved by coding each
individual wavelet tree using a distinct, suitable procedure. It is noted that the SPIHT
algorithm will not be suitable for coding wavelet trees with a large amount of significant
nodes scattered in the higher frequency subbands, and therefore a different coding
strategy is desirable. Moreover, a tree classifier that can efficiently divide the wavelet
trees of images into two classes based on the magnitude distribution of the dominant
wavelet coefficientsis required.
For computation simplicity, a tree classifier based on the average magnitude of
wavelet coefficients of each subband has been utilized to divide the wavelet trees of
images into two classes: low frequency tree and high frequency tree, which is given as

follows:

Arg { max a/{-Avg{ ‘Df(m,n)‘ } }< L, — highfrequencytree, (3.2)
"

where |D(d (m, n)} Isthe wavel et coefficient magnitude at tree node coordinate (m,n), ¢ =

1, 2, ---, L denotes the resolution level with larger meaning coarser, L isthe number of
decomposition levels, d = 1, 2, 3 denotes the wavelet subband orientation in the

horizontal, vertical and diagonal directions, respectively, «, is a weighting factor with

respect to theresolutionlevel, L, isathreshold value, and Avg{-} isanaverage operator.

3.1.4 MVQ Coding for High Frequency Wavelet Trees

Even though it is noted that wavel et transform provides de-correl ation property, i.e.
most of the correlation between image pixels can be removed in thewavel et domain, there
may still be some residual correlation between neighboring coefficients across subbands
of the same orientation. In order to get a good quality of the reconstructed images at
relatively low bit rates, the residual correlation between wavelet coefficients must be

exploited. According to the Shannon’s theory, VQ can significantly reduce the coding bits
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of signals over scalar quantization. The VQ approach is therefore suitable for coding the
high frequency wavel et trees of images.

Our strategy is as follows. First, group the high frequency wavelet trees into three
categories according to their respective subband orientations: horizontal, vertical or
diagonal. Second, partition each category of high frequency wavelet trees into small
vectors based on the standard deviation distribution. Third, encode the small vectors of
high frequency wavelet trees by using multistage VQ (MV Q). Figure 3.2 showsthe MVQ
structure with successive refinements. Here, the input vector is quantized at the first stage,

and the residual information is quantized at the following stages in a recursive manner.

nput___ 1st stage VQ =<> 2nd stage VQ =<> >

vector y

Figure 3.2 Multistage VQ structure.

3.1.5 MVQ codebook generation

A representative collection of images is utilized as training images for codebook
generation. After 2-D DWT, the high frequency wavelet trees will be partitioned into
small vectors to alleviate the computation complexity. The partitions chosen for each of
the three categories of high frequency trees are determined in such a manner that tree
nodes that have similar standard deviations are grouped into a single vector. Thereafter, a
unique codebook is constructed for each vector because the intrinsic statistics and

dimensions of vectors are different.
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By taking into account that one of the key issues of the proposed hybrid image
coding system, which is presented in the next subsection, isthe bit alocation between two
different coding procedures, the codebook size for each MVQ stageis 2. In other words,
each vector will be coded in a progressive manner by using MV Q with one code bit per
stage. The MV Q codebooks are constructed by using the LBG algorithm [26], stored in
tables on both encoder and decoder sides, and therefore not transmitted aong with the bit

stream header.

i i low-frequency trees
scaling coefficient DPCM .
Image —»  pwT
™  SPIHT —
*| Classifier
Wavelet trees

= MVQ —>

high-frequency trees

Figure 3.3 Block diagram of the proposed hybrid image coder by combining SPIHT and
MV Q for coding the low and high frequency wavelet trees, respectively.

3.1.6 Hybrid image coding

After wavel et tree classification, the low frequency trees can be efficiently coded by

SPIHT, and the high frequency trees are to be coded by MV Q. A hybrid coding system
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that combines SPIHT and MVQ is then proposed to improve the overall compression
performance. Figure 3.3 shows the block diagram. The input image is decomposed into a
set of subbands with orientation selectivity using 2-D DWT. The scaling coefficients at
the coarsest resolution are coded by using the differential pulse code modulation
algorithm. The corresponding wavelet coefficients taken from all the subbands of the
same orientation (i.e. horizontal, vertical or diagonal) are rearranged to form wavelet
trees. While SPIHT coding is suitable only for wavelet trees with a large amount of
significant nodes in the lower frequency subbands, the MV Q approach seems promising
for coding wavelet trees with many nodes of significance in the higher frequency
subbands.

In MVQ, the high frequency wavelet trees are partitioned into small vectors. These
partitions have been determined previously in the training process for codebook
generation. Initially, each vector is progressively coded using the MV Q algorithm with B,
stages, which is determined in such a manner that the norm of the residua quantization

error will not be greater than the initial threshold T, of SPIHT. After one MVQ pass

followed by one scan pass of SPIHT (for coding the high frequency wavelet trees and low
frequency wavelet trees, respectively), the threshold of SPIHT is halved, and based on
which the corresponding parameter of MV Q is determined similarly for the next MVQ
pass. The aternate coding of high frequency wavelet trees and low frequency wavel et
trees will go on until the expected bit rate (or the quality of the reconstructed image) is
reached.

Header| MVQ(B1)/SPIHT(T1)| MVQ(B2)/SPIHT(T>)

MVQ with B; stages | SPIHT with T,

Figure 3.4 Bitstream structure.

44



Bit allocation between the SPIHT and MV Q coding procedures needs to be truly
adaptive in order to generate an improved, embedded bit stream. During hybrid coding,
both sequences of SPIHT thresholds: T, and MVQ parameters: B, are adapted to the

input image since T, is determined by the wavelet coefficient magnitudes of the input
image, and B, isdetermined by T, . In our experiments, the parameter: B, is often about 1
or 2fork=2, 3, ---, if the sequence of successively smaller thresholds: T, is obtained by

using Eqg. (3.1), therefore, they can be set constant. The side information that isrequired to
be transmitted along with the bit stream will be the number of wavelet decomposition
levels, the tree classification threshold, one bit per wavelet tree to indicate the tree class,

the initial SPIHT threshold: T, , and the MVQ parameter: B,. Figure 3.4 shows the

embedded bit stream structure, where the side information is stored in the header portion.

3.1.7 Experimental results and conclusions
The proposed hybrid coding system is evaluated on natural 256x256 grayscale

images. A set of nine training images is utilized to determine the partitions of the high
frequency wavelet trees into small vectors, and to construct the MV Q codebooks for
encoding these vectors. The partition strategy is as follows. For each of the three
categories of high frequency wavelet trees, the standard deviation values are uniformly
quantized with nine quantization levels. All the wavelet coefficients that have the same
standard deviation level are grouped into a single vector. Consequently, the high
frequency wavelet trees are partitioned into nine small vectors. The test 256x256
grayscale images: Mandrill (shown in Figure 3.1(a)), Bridge, and Lena, which represent
natural images with a large amount of high frequency, middle frequency, and low
frequency components, respectively, are outside the training set.

The compression performance is compared with the SPIHT coding algorithm. The
compression rate is measured in bpp. The distortion is measured by peak signal to noise
ration (PSNR), which is given by
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255
PS\NR[dB] = 20109, —— , 3.3
[dB] = 20l0gy, (33)

where RMSE is the root mean squared error between the original and reconstructed
images. The computed compression rates and PSNR values are collected to generate the
rate distortion curves. The linear phase, biorthogonal wavelet with 9/7-coefficient filter
set is utilized. The number of wavelet decomposition levels is 4. The tree classification

threshold L, is 3. The weighting factors are empiricaly obtained by «,,, =0.5¢,

witha, =1. Theinfinite norm is used to compute the norms of the residual quantization
error vectors. The maximum wavelet coefficient magnitude is halved and then used for
the initial SPIHT thresholdT,, and the successively smaller thresholds are obtained by
using Eq. (3.1).

Figure 3.5 shows the rate-distortion curves. The horizontal and vertical axes arethe
compression rates (in bpp) and PSNR values (in dB), respectively. For Lenaimagethat is
relatively smooth and most of the significant wavelet coefficients are in the lower
frequency subbands, only a small number of wavelet trees are classified into the high
frequency class. The performances of the hybrid coder and SPIHT coder are comparable,
as expected. For the texture-rich images, e.g., Bridge and Mandrill that contain a large
amount of significant wavel et coefficientsin the middle and high frequency subbands, the
hybrid coder is superior to the SPIHT agorithm in general. Asindicated by the simulation
results, the hybrid coder outperforms SPIHT by 0.38 dB at 0.5 bpp for Bridge image, by
0.74 dB at 0.5 bpp for Mandrill image.

It has been shown that when the textured images are encoded, 2-D DWT isunlikely
toyield many large zero trees due to lack of homogeneous regions. Thus, the advantage of
encoding zero trees of insignificant wavel et coefficients by using SPIHT isweakened. On
the other hand, the high frequency wavel et trees can be efficiently sought out by using the
proposed tree classifier, and then can be encoded by using MV Q to improve the overall

compression performance.
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Figure 3.5 Rate-distortion curves of the test images:. Mandrill, Bridge and Lena (from | eft
to right) by using the proposed hybrid coder (dotted lines) and SPIHT (solid lines).

Wavelet transform provides an efficient multi-resolution analysis. It decomposes
images into subbands with orientation selectivity as well as joint space-frequency
localization. Many efficient wavelet coders, e.g. EZW and its improved version: SPIHT
have been developed by taking advantage of the following hypothesis: if a wavelet
coefficient is insignificant with respect to a given threshold, then all the corresponding
wavelet coefficients at the finer resolutions are likely to be insignificant with respect to
the same threshold. However, natural images are often composed of textures with rapid
variations in grayscales. For such images, there are many significant wavelet coefficients
scattered in the higher frequency subbands. Consequently, the coding performances of
both EZW and SPIHT are usually not adequate since groups of insignificant wavelet
coefficientsin the tree structure are very rare. A hybrid image coder by combining SPIHT
and MVQ with their respective advantages is proposed. In which, trees with a large
amount of significant wavelet coefficients in the higher frequency subbands are to be
identified by using a simple tree classifier, and then coded by using a different, more
suitable method instead of SPIHT. Experimental results show that the proposed hybrid

47



coding is superior to SPIHT coding for images with textures composed of the middle and
high frequency components. It improves the overall compression performance at the cost
of additional computations, i.e., the computation of Eq. (3.2) for classifying wavelet trees
into two classes, and the computation of norms of MV Q error vectors for determining the

MV Q parameters: B, .

3.2 Image Compression Based on Set-Partitioning Embedded
Block Coder and Residual Vector Quantization

A hybrid image coding scheme based on the set-partitioning embedded block coder
(SPECK) and residual vector quantization (RVQ) is proposed for image compression. In
which, the scaling and wavelet coefficients of an image are coded by using the original
SPECK algorithm and the SPECK with RVQ, respectively. The use of hybrid coding
strategy by combining SPECK with RVQ for high frequency wavelet coefficients is to
take account of the energy clustering property of wavelet transform. Experimental results
show that, for gray-level <till images, the proposed hybrid SPECK-RVQ coder
outperforms SPECK, e.g. the peak-signal-to-noise-ratio (PSN\R) values can be improved
by 1.67 dB and 0.69 dB at compression rate of 1 bit per pixel for the Lena and Barbra
Images, respectively. The application for chroma subsampling imagesis also presented in
this subsection, and the proposed method usually outperforms color SPECK method. The
PSNR values can be improved by 1.11 dB for the Y plane, 0.99 dB for the U plane, and
2.31 dB for the V plane at the bit budget of 81,920 bits for the test image Goldhill. In
addition to high coding efficiency, the proposed method also preserves the features of

embeddness, low computation complexity, and exact bitrate control.

3.2.1 Set-partitioning embedded block coder (SPECK)

The SPECK agorithm [27] is a simple, efficient image coder with coding
scalability. In which, two symbols, namely insignificant pixel (IP) and significant pixel
(SP) are stored in their respective lists called list of insignificant sets (LI1S) and list of
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significant pixels (LSP). SPECK consists of four steps: initialization, sorting, refinement,
and quantization passes. In sorting pass, four functions are performed on sets of two types:
Sand| (Figure 3.6), which are sets of significant pixels and insignificant pixels, and to be
partitioned by using quadtree partition (Figure 3.7) and octave band partition (Figure 3.8),
respectively. Figure 3.9 shows the flow chart of SPECK.

Wavelet I

X coefficients % """'":"'"'"é'""""""""

Figure 3.6 Partitioning a transformed image X into sets Sand |.

A3 A7

Sy S

Figure 3.7 Quadtree partition: partitioning set Sinto S;, S;, Sz, and S..
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Figure 3.8 Partitioning set | into S, S, Sg, and asmaller 1.

Intheinitialization pass of SPECK, X denotes the wavel et transform image and parameter

Nmax 1S determined by EQ. (3.4):

n_ :mgflogzq ) J (3.4)

The lowest frequency subband LL (Figure 3.17) of atransformed imageistakenasS. LIS
iIsset tobeequal to S, and LSP is set to be empty.

In the second pass, the significant coefficients with magnitudes in range of [2", 2™]
are identified. If there are significant coefficients found, the corresponding significant
maps with sign bits are to be coded efficiently. Functions ProcessS ) (Figure 3.10) and
Processl() (Figure 3.11) arein charge of partitioning sets Sand |, respectively, which are
to be coded by using their respective functions CodeS( ) (Figure 3.12) and Codel( )
(Figure 3.13). The significant test function SgTest( ) in procedures Processy ),
Processl( ), and CodeY ) is defined by Eq. (3.5):

1 |gR2, Vg eA

. (3.5)
0 [g k2", Vg eA

SgTest(A,n) :{
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Figure 3.9 Flow chart of the SPECK algorithm.

SgTest(A,n) = 1 implies that set A is significant, and SgTest(A,n) = 0 means set A is
insignificant. The elements of S are tested according to the specia order of SPECK. If an
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element of Sisinsignificant, itisstored in LIS and acoding bit O is therefore outputted to
the code bitstream. On the other hand, for asignificant element of S, say S, if S isapoint,
it isstored in LSP and a coding bit 1 together with the sign bit are outputted to the code
bitstream. If S is a significant set, output a coding bit 1 and divide S into four subsets
(Figure 3.7) for locating the significant pointsin the iterative manner. After the process of
S, with respect to agiven bit-plane n, isfinished, the process of | proceeds with respect to
the same bit-plane. If | is still insignificant, output a coding bit 0 and proceed the next
coding step. If set | becomes significant, it is partitioned into three subsets: S, S;, and Sz
of type Sand asmaller | by the use of octave band partition (Figure 3.8). Thisprocedureis
performed iteratively until set | becomes empty.

In the third pass of SPECK, which is known as refinement coding pass, the n-th
most significant bit of the significant pointsthat had been found in previous coding passes
and stored in LSP is updated one bit per point.

2

‘ Cutput 5§ gTesf(53,1) ‘
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r
@

Figure 3.10 The flow chart of procedure Processy( ).
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Thelast pass of SPECK isthe quantization pass. In which, Sis set to be the current
LIS and n is decreased by one. In addition, if a set of type S becomes significant and its
first three offspring subsets are still insignificant, then the fourth subset must be
significant and therefore the coding bits can be omitted for saving bit budget. Moreover,
the output bit stream of SPECK consists of three parts: significant maps, sign bits, and
refinement bits. The significant maps can be coded by using a context-based arithmetic
coder such that the compression performance can be improved at the cost of increasing

computational complexity.

Cratpat SgTesflya)
N_ “_C:_,,,—FF""—- ﬂgTestﬂ:} 19 "“-m___\__:_:'
l \h“_\-\-‘_"“-____ _d_,__,ﬂ-"'f
LIZ=LI3 U [ I v

I=

Call Codeli

L

Feturn

Figure 3.11 The flow chart of procedure Processl( ).
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Figure 3.13 The flow chart of procedure Codel( ).

3.2.2 Residual vector quantization (RVQ)

Vector quantization (VQ) plays an important role in many applications, e.g. speech
recognition, volume rendering, and image compression. Gupta et al. utilized VQ to
compress multispectral satellite images[30]. Su et al. developed a hybrid coding system
by using SPIHT and VQ for image compression in [28]. Abdel-Galil et al. applied VQ to

power systems for classifying power quality disturbances[31]. A vector quantizer Q with
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dimension m and size k can be defined as a mapping from a vector in m-dimensional
Euclidean space, R", into afinite set B with k output elements called code words, which is
given by Eq. (3.6):

Q:R" 2> B, (3.6)

where B ={xg, X, -, %} andxeR",i=1, 2, ---, kand B is called the codebook that has
size k. The code rate, resolution, of aquantizer is defined by Eq. (3.7):

SLLY (37)
m

which implies the bit number needed to represent a codeword if the codebook is well
designed. When the code vector size becomes large, the distortion of the vector quantizer
approaches the lower bound of the distortion-rate relation [32]. However, both the
computation complexity and memory requirements, associated the vector quantizer,
increase exponentially. Hence, an unconstrained full search vector quantizer usually uses
small vectors. For reducing the computation complexity and memory requirements of VQ,
several variants of the original VQ had been proposed in literature, such asresidual vector
quantization (RV Q) [33][34], hierarchical VQ [35], and tree-structured VQ (TSVQ) [25].
Each VQ variant makes a compromise between the computation complexity and
performance.

RVQ or multistage VQ [36] is a VQ variant with less computation complexity.
Because the decoder of aRVQ is constrained by a direct-sum codebook structure and the
encoder typically uses asuboptimal stage-sequential search procedure, the RVQ resultsin
performance degradation. The signal flow diagram of a p-stage

RVQ isshown in Figure 3.14, where x; (1=i = p) istheinput vector of thei-th VQ

stage in the p-stage RVQ, and X, is the code vector which has the smallest distance to x;.
Theresidua of x — % isx.1 that istheinput vector for the (i+1)-th VQ stagein the RVQ

system.
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Figure 3.14 The signal flow diagram of a p-stage RV Q.
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Figure 3.15 The proposed hybrid image coder.
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3.2.3 The Proposed Hybrid Image Compression Method

In SPECK, the wavel et transform coefficients of an image are classified into one of

two-type blocks, namely | and S. Block | denotes acollection of coefficientsthat arelikely

to be insignificant with respect to a given threshold value, whereas at least one of the

block samples of type Sislikely to be significant with respect to the same threshold value.

If block | becomes significant (with respect to the next smaller threshold value), it is

partitioned into three sub-blocks of type S and one sub-block of type I; this procedureis

performed iteratively on the successively smaller | until it isinsignificant or its block size

reaches the limit. If block S becomes significant, it is partitioned into four sub-blocks of

type Sfor zooming into the high energy areas; this procedureis also performed iteratively
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until the significant samples are found and thereby coded. Even though wavel et transform
possesses the decorrelation property, i.e. most of the correlation between image-pixels
can beremoved, there may still be someresidual correlation between neighboring wavel et
coefficients, especially in the high frequency subbands. This residual information aso
known as the energy clustering of wavelet transform needs to be taken into account to
improve the compression performance. Moreover, according to Shannon’s theory, vector
quantization (V Q) can reduce the coding bits effectively over scalar quantization. Thus,
from the compression point of view, the VQ approach, which is expected to be gaining
favor, motivates the devel opment of the vector version of SPECK.

A hybrid image coding system by combining SPECK with RVQ is therefore
proposed to improve the compression performance, and Figure 3.15 shows the block
diagram. In which, the wavelet transform coefficients of the input image are classified
into two parts. One is the LL subband, which contains the scaling coefficients, and is
taken as the initial set S. The other coefficients of X form the initia set |. Whereas the
scaling coefficients representing the lowest frequency component of an image can be
coded efficiently by using the original SPECK algorithm, the wavelet coefficients with
energy clustering are coded by using the SPECK with RV Q. Finally, the coded bit-stream
can be obtained by the use of multiplex operation. The coefficients of LL are normalized
before feeding into the (original) scalar SPECK, and the small vectors of the wavelet
coefficients are normalized such that their respective L-2 norms are less than or equal to
one. Asthe information of the lowest frequency subband LL of an image is usually more
important than that of the high frequency wavelet subbands, the bitplane resolution
involved in the scalar SPECK is therefore higher than that involved in the SPECK with
RV Q. Thus, the transmission rate of the scalar SPECK is usually faster than that of the
SPECK with RVQ. Based on the simulation results, the transmission rate of the scalar
SPECK is set empirically twice of the SPECK-RVQ transmission rate, i.e. two coding
bitplanes of the scalar SPECK are outputted with one coding bitplane of the SPECK with
RVQ.

In our proposed method, the coefficients of set | are coded by using the SPECK
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with RV Q); each vector contains four entries forming a 2x 2 coefficient block. The sorting
step performed on these vectors is similar to that of the original SPECK, however, with

the smallest block of 2x2 coefficients rather than a scalar coefficient. As a result, the

elements of LSP in the RVQ are vectors of 4 entries, and in the refinement pass, the
corresponding codewords of the vectorsin LSP are outputted into abitstream. Finally, the
compression file which contains the necessary overhead and the bitstream isformed. The
decoder of the proposed method can be implemented by simply reverseing the processing
steps of the encoder. Besides the overhead of the compression file, the bits in the
compression file are ordered in importance, so the proposed method is embedded. The
proposed encoder (decoder) can terminate the coding (decoding) process at any point, so
it can achieve the exact bit-rate control which is an important requirement of modern
codecs.

It is noted that the compression performance can be improved by the use of
arithmetic coding after SPECK, however, at the cost of increasing computational
complexity. As an example, the PSNR value of the decoded 512x512 Lenaimage can be
improved by 0.22 dB at compression rate of 1 bpp by using SPECK with arithmetic
coding [37]. For system simplicity, the operation of arithmetic coding is not performed in

our experiments.

3.2.4 Experimental results and conclusions

The compression performance of the proposed hybrid image coder is compared to
the scalar SPECK in terms of the PSNR-bpp curves. The compression rate is measured in
bits per pixel (bpp), and the peak signal to noise ratio (PSNR) measured in dB is utilized
to evaluate the decoded image quality. Computer simulations are performed on several
monochromeimages of 256x256 pixels. A set of 41 imagesis used to train the codebooks
of the RVQ, and the test images shown in Figure 3.16 are not included in the training

Images.
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Figure 3.16 Three 256x256 gray-level test images:. (a) Lena, (b) Babara, (c) Goldhill.

Figure 3.17 The partition and assignment of a 4-decomposition-leveltransformed image.

Linear phase biorthogona wavelet filters with 9/7-coefficients are used. The
number of wavelet decomposition levels is 4. Figure 3.17 depicts the wavelet

decomposition of an image into subbands of four types: LL, H, V, and D. The lowest
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frequency coefficients in subband LL are normalized such that their respective
magnitudes are in the range of [0, 1], which are coded by using the scalar SPECK. The
wavelet coefficients in subbands of types H, V, and D are coded by using SPECK with
RV Q. For the coefficients of set I, the number of threshold valuesin the RVQ part is 9. It
is noted that the characteristics of subbands of typesH, V, and D are different, each type of
subbands are therefore coded with their respective codebooks. A total number of 30
codebooks are constructed by using the K-means algorithm. The codebook size of thefirst

decomposition level is 64, and that of the other decomposition levelsis 32.

Table 3.1 Theresults of SPECK and the proposed method for 3 test images.

FSMR (dE)
Lena Barara Goldhill

bpg SPECK Propozed SPECHK P roposend SPECK Proposzen
1.5 40.54 41 65 .45 39.59 53R 34.34
1.4 40.51 40.52 .02 8.1 3322 3382
13 40.09 40.07 BEE 3879 B»aEs 3353
12 nEs 3968 I RO 38.38 B2as 3319
14 n.0s 3919 EM 3744 3210 J2E64
1.0 696 3863 =N 3641 345 T2
049 E.H 3724 3520 3546 HEE 30497
0.5 3575 36.02 64 3457 IR 3043
oy 3505 3534 .00 343 2B 29.95
0.6 T4 34.55 237 3348 209 29.45
0.5 3239 3285 3165 31.80 X4 29.00
0.4 31.43 31.56 3050 3085 a4 2776
0.3 2933 30.44 278 3009 74 26.59
025 2B.T2 2897 2559 28.93 A28 2649
0z 5.0 2514 27as 28.33 A7 2605

0125 289 26.55 2584 26.54 24 45 2492
0.1 2525 25.44 2522 2589 2411 2449
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Table 3.1 shows the simulation results of the test images. Meanwhile Figs.
3.18-3.20 show their respective PSNR-bpp curves, where the horizontal and vertical axes
are the compression rates in bpp and PSNR values in dB, respectively. For the
monochrome image Lena, the proposed hybrid coder outperforms the SPECK coder by
1.67 dB a 1.0 bpp, and 0.48 dB, on average, from 0.1 bpp to 1.5 bpp. For the
monochrome image Barbra, the proposed hybrid coder outperforms the SPECK coder by
1.23 dB at 1.1 bpp, and 0.49 dB on average. For the monochrome image Goldhill, the
proposed hybrid coder outperforms the SPECK coder by 0.73 dB at 1.5 bpp, and 0.43 dB
on average. The experimental results of more test images obtained from the USC database
are shown in Figure 3.21. In which, the curve denotes the average improvement by using
the proposed hybrid coder compared to the pure SPECK coder. It is shown that the
proposed hybrid coder is preferableto the SPECK coder in terms of the PSNR-bpp curves.

Wavelet transform has been adopted by JPEG2000 due to many desirable
properties, e.g. multi-resolution representation, embedded coding and progressive
transmission. For atexture-rich image, the high frequency wavelet coefficients are likely
to become significant after few coding passes of the SPECK algorithm, which degenerate
the compression performance. These high frequency wavel et coefficients representing the
high-detail textures of an image can be coded efficiently by exploiting the energy
clustering of wavelet transform, which motivates the development of hybrid coding
strategy. In this subsection, a hybrid image coder using SPECK (CSPECK for color
images) and RVQ is proposed. In which, the lowest frequency scaling coefficients of an
image are coded by using the original scalar SPECK (CSPECK), whereas the high
frequency wavelet coefficients are coded by using SPECK (CSPECK) with RVQ.
Experimenta results show that the proposed hybrid coder outperforms SPECK for a

broad range of compression rates.
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Figure 3.18 The experimental results of the gray-level image Lena.
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Figure 3.19 The experimental results of the gray-level image Barbara.
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Figure 3.20 The experimental results of the gray-level image Goldhill.
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Figure 3.21 The average improvements of the proposed hybrid coder compared to the
original SPECK on more test images.
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CHAPTER 4

THE PROPOSED METHODS

In this chapter we will propose two methods. One is called lifting-shape-adaptive
DWT (LSA-DWT) and the other is named as shape-direction-adaptive DWT
(SDA-DWT). LSA-DWT is different from SA-DWT for that the former uses flexible
lifting DWT to simplify implementation and shorten computation time. The major
proposed method, SDA-DWT, can well exploit the correlation of texture orientation and
segment shape in object image to contribute higher compression efficiency in
object-based image compression.

For the lifting structure, each finite impulse response (FIR) wavelet filter isfactored
into several pairs of lifting steps (Figs. 2.1, 2.6, and 2.7). One pair of lifting stepsincludes
aprediction step followed by one update step. In this dissertation, we only use the lifting
5/3 wavelet to implement the proposed methods, and the lifting 5/3 wavelet can be
realized with only one pair of lifting steps. The block diagram in Figure 2.1 shows the
structure of the lifting-based DWT containing one prediction step and one update step.
For one-dimension lifting-based DWTS, the input samples are classified into two
categories (even and odd) first. Then, each odd sample is predicted by some specific
even-neighbor samples (This depends on the wavel et type.), and replace each original odd
sample with the residual, which is obtained from subtracting the odd sample by the
prediction value. After the prediction step, in the following update step, each of the even
samplesisreplaced by theresult that obtained by adding its original value and the updated
value generated from its odd-neighbor samples. Note that, in the update step, the odd
samples are not the original inputs, and they have been changed in the preceding

prediction step. Finaly, the outputs are downsampled to produce the low frequency
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subband and the high frequency subband and complete alifting-based DWT with one pair
of lifting steps. Thelifting-based IDWT can be implemented by reversing the stepsin the
corresponding lifting-based DWT.
For the 5/3 wavelet used in proposed methods, Egs. (4.1) and (4.2) are
corresponding to the prediction and update steps, respectively:
V(2K +1) = X (2K +1) — 5[ X (2K) + X (2K + 2)], (4.2
Y(2K) = X, (2K) +1[y(2k - D) + y(2k +1) + 2], 4.2
where x(K) is the 1-D input data, Xex(k) means the symmetric extended version of x. The
equation y := K meansthat assigny as K. Signals s and d are the lowpass and highpass
output signals of the lifting DWT. Assume that
x={1,2,3,4,5},
and then we have

Xext: {”'141 3) 21 1) 2) 31 41 51 4) 3) 2) “'}-

x(2k) x(2k+D) 2242y x(2k3)  x(2k+4)

H2heH5)

172

Low feq. sy = y(2k) SR =324 | s(er2) = p(2ket4)
High freq. ... k) =x2k+]) d(kt1) = y(24+3)

Figure 4.1 The structure of alifting-based one-dimensional 5/3- wavelet DWT.

The operations corresponding to Egs. (4.1) and (4.2) can be also represented as Figure 4.1.

Therangeof kis: 0 = k = (length of x)/2, assuming the length of x is even. Equations
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(4.3) and (4.4) are two down-sampling relations used to generate the low frequency
subband output s(k) and the high frequency subband output d(k), respectively:

s(k) == y(2k), 4.3
d(k) = y(2k +1), (4.4)
Thelifting-based IDWT of the 5/3 wavelet is described by Egs. (4.5)-(4.8):
y(2k) == d(k), (4.5)
y(2k +1) := s(k), (4.6)
R(2K) = Yor (2K) = [ Vor (2k =1) + Y (2k +1) + 2], 4.7)
X(2k +1) = Yoo (2k +D + 2[x(2k - 1) + x(2k + 2) + 2], (4.8)

where ye IS the symmetric extended version of y and X is the reconstruction of the
original signal x. The lifting-based IDWT begins from applying Egs. (4.5) and (4.6) for
upsampling d and sto produce y. Then, the even samples of x are reconstructed by using
Eqg. (4.7). Findly, EQ. (4.8) is used to reconstruct the odd samples of x. The flow chartin
Figure 4.2 shows the relation among Egs. (4.1)-(4.8) and the stepsin DWT and IDWT of
alifting 1-D 5/3DWT. Follow the stepsin Figure 4.2, and alifting 1-D 5/3 DWT (IDWT)
can be implemented by software easily. For a 2-D data matrix (e.g. a graylevel image),
apply 1-D lifting 5/3 DWT on the row data, and then apply it again on the new column
data. Thus, we have done a 2-D lifting 5/3 wavelet transform on the 2-D data matrix. The
corresponding 2-D IDWT can be realized by reversing the steps in forward DWT.
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Figure 4.2 Flow charts of lifting 1-D 5/3 wavelet DWT and IDWT: (a) DWT, (b) IDWT.
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4.1 Lifting-Based Shape-Adaptive DWT (LSA-DWT)

The works of [1] and [2] used the convolution-based DWT, and both of them
involved complicated computation. Here we propose to use lifting DWT and global
even-odd relation to implement the shape-adaptive DWT which is called LSA-DWT.
Although using the global even-odd relation sometimes will leave some energy in the
high frequency subband, it is simple for implementing LSA-DWT and can preserve the

spatial correlation.

@
silefe Wap

Col. 0 Col.1 Col 2 Col. 3 Col.4 Col.5 Col6 Col7

Figure 4.3 An arbitrarily shaped segment and the relation of its even and odd pixelsin the
prediction step of the 1-D row direction lifting-based DWT.

Figure 4.3 shows an arbitrarily shaped segment which contains 10 pixels in a
6-by-8 image, and it also shows the relation of even and odd pixelsin the prediction step.
In Figure 4.3, the two arrows, pointing to each odd pixel, is used to indicate that the odd
pixel’s two nearest even neighbors in the same row which will be used to predict the odd

pixel. For the 5/3-wavelet DWT, the prediction value of each odd pixel in the
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lifting-based horizontal 1-D DWT is the mean value of itsright and left neighbors. After
the prediction step, the residual that each odd pixel subtractsits prediction value is stored
in the position of the odd pixel. If the even neighbor does not exist in the segment,
symmetric extension is used to generate the new even pixel value for prediction. For the
single point in a row (e.g. the pixel a row 1 and column 3), its two neighbors for
prediction are set to zero. Figure 4.4 shows the update stage of the arbitrarily shaped
segment when the lifting-based horizontal 1-D 5/3 DWT is performed on the segment.
Each even pixel in the segment is updated by using Eg. (4.2) in the update step, and the
corresponding pixels (coefficients) are its left and right odd neighbors. The processing of
symmetric extension and single points are the same as the methods in the prediction step.
Thelast step of thelifting-based 1-D DWT is subsampling step by which the transformed
1-D data are classified into the high frequency and the low frequency subbands, and the
result isshown in Figure 4.5. Then, the transformed imagein Figure 4.5 istransformed by
the lifting-based vertical 5/3-wavelet transform. The 1-D lifting-based vertical
5/3-wavelet DWT isjust like the processing methods in the 1-D lifting-based horizontal
5/3-wavelet DWT.
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Figure4.4 An arbitrarily shaped segment and the relation of its even and odd pixelsin the
update step of the 1-D horizonta lifting-based DWT.
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Figure 4.5 The subsampling result of the arbitrarily shaped segment in Figure 4.3.

4.2 Shape-Direction-Adaptive DWT (SDA-DWT)

Shape-adaptive and direction-adaptive functionalities are two important
improvements of DWT, and the experimental resultsin [1]-[4] show that they are very
efficient for still image coding. The DAL-DWT [3] and the DA-DWT [4] were designed
for processing rectangular images, so they can not process an arbitrarily shaped segment
directly. On the other hand, The SA-DWT [1] and the method proposed in [2] can process
arbitrarily shaped object, but they do not offer the direction-adaptive functionality. In this
dissertation, we propose a new DWT which has both the shape-adaptive and
direction-adaptive abilities, and we call it the shape-direction-adaptive DWT [38]. The
inputs of the SDA-DWT, proposed in this dissertation, are the image contai ning the obj ect
(segments) to be transformed and the corresponding shape mask (alpha map), and the
outputs are the transformed i mage contai ning these segments and the corresponding shape

masks after SDA-DWT.
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4.2.1 lllustrations of SDA-DWT

The proposed SDA-DWT can be described by using Figs. 4.6-4.11, and the same
arbitrarily shaped segment in Figs. 4.3 or 4.4 and the 5/3 wavelet are used for illustration.
Compared to the LSA-DWT step in Figure 4.3, the corresponding SDA-DWT step is
shownin Figure4.6. In Figure 4.6, assume that the 45-degree direction is selected, so each
odd pixel in the segment is predicted by two nearest even neighbors on the 45-degreeline
passing through this pixel. Then, each odd pixel isreplaced by the residual obtained from
subtracting the pixel value to the prediction value. If the prediction is good, the residual
will be a small value. In the prediction step, symmetric extension method is used for
generating those even samples not in the segments, and the symmetric relation is to the
perpendicular line, passing through the odd pixel to be predicted, of the 45-degree line.
According to Eq. (4.2), the update step in Figure 4.7 is corresponding to Figure 4.4 of
LSA-DWT, and every even sample in the segment is updated by its two nearest odd
neighbors (They have aready been replaced by the residual values in the previous
prediction step.) on the 45-degree line. After performing a pair of lifting steps (i.e. a
prediction and an update steps), the transformed image is subsampled, and the result is
shown in Figure 4.8. The subsampling process is the same as the conventional horizontal
subsampling method, and the subsampled coefficients are classified into the

low-frequency subband and the high-frequency subband.

When the horizontal subsampling step is complete, the second part (corresponding
to the vertical conventional 1-D DWT) of the SDA-DWT begins from a prediction step
(the second prediction step in SDA-DWT). Each odd sample in columns of the segment is
predicted by its upper (right) and lower (left) even neighbors on the 45-degree line
compared to the vertical line (Figure 4.9). Then, the second update step of SDA-DWT is
performed on the even samples in columns of the segment (Figure 4.10). Findly, a
conventional subsampling along the vertical direction is performed on the coefficients of
Figure4.10, and theimageistransformed and divided into four subbandsLL, HL, LH, and
HH subbands (Figure 4.11). The symmetrical extension is used to generate the even
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samples and odd samples, not in the segment, for prediction and update, respectively.
From Figure 4.6 through Figure 4.11, the one-level SDA-DWT is performed, and the LL
subband can be used to be further transformed. The new apha map is generated by
subsampled the input shape mask along the horizontal direction and followed by avertical
subsampling step.

The flow chart in Figure 12 shows an |-decomposition-level SDA-DWT. Assume
that a digital image, its object shape mask, and the decomposition number | are given.
First of all, the object segmented by using the shape mask has to be partitioned, and then
the direction of each partition segments is determined in the second step. For the third
step, those connected segments with the same direction are combined to form a large
segment. Then, one-decomposition-level SDA-DWT is performed on the visual object
image, and the parameter | is decreased by one. If | is not equal to O, the low-frequency
subband LL of the transformed image is used for further decomposition until | equalsto 0.
In every decomposition level, the new direction of each partitioned segment should be

determined in advance.
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Figure 4.6 The first prediction step of the 2-D shape-direction-adaptive DWT (4 = 45°)
performed on an arbitrarily shaped segment.
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Figure 4.7 The first update step of the 2-D shape-direction-adaptive DWT (6 = 45°)
performed on an arbitrarily shaped segment.
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Figure 4.9 The second prediction step of the 2-D SDA-DWT on an arbitrarily shaped
segment.
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Figure 4.10 The second update step of the 2-D SDA-DWT on an arbitrarily shaped
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segment.
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Figure 4.11 The vertical subsampling result of Figure 4.10 in SDA-DWT.
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Figure 4.12 The flow chart of amultilevel SDA-DWT.
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4.2.2 Filter direction determination in SDA-DWT

There are nine direction selections (as shown in Figure 2.12) in 1-D SDA-DWT.
The filter direction in SDA-DWT should be selected to minimize the distortion of the
reconstruction object image, for object-based image compression, under abit-budget. The
bit budget is used for representing the side information, which include the partition and
filter directions of every partition segment, the object shape mask, and the transformed
coefficients. Hence, to find the best filter direction is equivalent to find the direction
which results in the least amount of bits for a specified distortion. In the dissertation, the
absolute sum of high frequency subband (HH) coefficients is used as an approximation
objection function for determining the filter direction in SDA-DWT. The filter direction
which has the smallest absolute high-frequency subband coefficient sum is the selected
filter direction in the segment.

Since the absolute sum of high-frequency subband coefficientsis used as an object
function, the computation time for filter direction determining is increased when the
segment size is large and the direction choices are many. For reducing the time to select
the filter direction in each object segment, we can only do the prediction step
computations without doing the update step computations, since the high-frequency

subband coefficients epend only on the prediction step in the lifting 5/3 DWT.

4.2.3 The importance of shape-adaptive and direction-adaptive
functionalities in object-based image compression

For object-based image compression, the visual object images are usually neither
rectangular nor with height and width which are powers of 2. If the convolution-based

DWT is used for object image compression, then two techniques are often adopted in

early days. One method is to pad zeros to become a rectangular image that can be
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processed by the convolution-based DWT, and the other method isto reall ocate the obj ect
pixels for applying the convolution-based DWT. For example, we can pad 6 zeros (or
other predefined values) to the object in Figure 4.3 to form a 4x4 image, or we can
rearrange the object to be a 1-D signal with 10 discrete samples. It is clear that, both
methods are not efficient. Therefore, SA-DWT and LSA-DWT were designed for
object-based image compression.
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Figure 4.13 An 4x4 image segment and the direction that the odd samples can be
predicted perfectly.

The importance of direction-adaptive functionality can be well explained by using
the 4x4 image segment in Figure 4.13, assuming the val ues denoting the graylevel values.
For wavelet-based image compression, a DWT transformed image can be coded
efficiently by some coders (such as SPIHT or SPECK), if its high frequency subbands
contain coefficients with small amplitude and low frequency subband has coefficients
with large amplitude. We know that, in lifting 1-D 5/3 DWT, the high frequency subband

coefficients are generated in the prediction step only. If the prediction is perfect, after
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prediction step the odd samples will be zeros which will make the coefficients in high
frequency subband become zeros after subsampling step. The direction shown by the dash
line in Figure 4.13 can have perfect prediction, since the graylevels of pixels along this
lineareall 41. Thusthe prediction valueisaso 41, and theresidual value (EqQ. 4.1) is zero

for each odd sample along thisline.
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CHAPTER 5

EXPERIMENTAL RESULTS OF SDA-DWT

Theoriginal application of SDA-DWT wasfor the object image compression of the
intra frames of videos, but its applications can be extended to any wavelet-based fields.
The object-based image compression application isintroduced in Section 5.1 first. Then,
in Section 5.2 we will apply SDA-DWT to the regular still image compression.

5.1 Object Image Compression

In this section, three test object images (Figs. 2.14, 5.1, and 5.2) are used for
simulation to evaluate the performance of SDA-DWT, LSA-DWT, and DA-DWT. The
original sizes of test images 1 (Figure 2.14) and 2 (Figure 5.1) are 256-by-256 pixels, and
the third test image (Figure 5.2) is 128-by-128 pixels. Although the video frame size in
MPEG-4 is 360-by-288, we choose square images in order to reduce the bits used for
coding the paths in SPECK coding. For comparison, al methods (i.e. LSA-DWT,
DA-DWT, and SDA-DWT) use the same 5/3 wavelet, and both LSA-DWT and
SDA-DWT use symmetric extension for transform calculation while DA-DWT uses
symmetric extension for transform calculation only on the boundary between the object
image and background. For the partition boundaries in the object image, DA-DWT uses
the practical values at the extension points. Here, we ignore the bits for side information
(i.e. the partition of DA-DWT, the shape masks of LSA-DWT, and the partition and shape
mask of SDA-DWT) for simplification and focusing on the main problem. The
decomposition-level decision in wavelet transform is important and difficult. For a

suitable design of decomposition levels, energy clustering effect will make compression
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efficient. However, excessively many levels can not improve the overall compression
efficiency, sincethe LL subband becomes avery small region that may degrade the overall
compression efficiency. The suitable number of wavelet decomposition levels mainly
depends on the image size, image content, and the coder/decoder used. In most cases, for
a 512-by-512-pixel image, we select 3, 4, or 5 levels empirically. In this dissertation, 4
decomposition levels were used because the test images are small size. In the followings,
PSNR (peak-signal-to-noise ratio) values and the lengths of bit streams after SPECK
coding are used as two performance measures. The PSNR calculation is based on a
256-by-256-pixel image (objects 1 and 2) or a 128-by-128-pixel image (object 3), and the
bpp (bit/pixel) calculation is based on the pixel number in an object image.

Figure 5.1 The 256 x 256 gray-level object image and its shape mask with partition: (a)
the test object image, (b) the mask with partition. (Object 2 contains 45,012 pixels.)
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Figure 5.2 The 128 x 128 gray-level object image and its shape mask with partition: (a)
the test object image, (b) the mask with partition. (Object 3 contains 10,000 pixels.)
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For the first object image (Figure 2.14), our interested object is a suitcase covered
with many line textures, and the object occupies 30,353 pixels in a 256-by-256-pixel
image. SDA-DWT and LSA-DWT are evaluated by compressing object-1 image. Since
the orientations of linesin object 1 are almost the same, we do not partition the object into
small segments, i.e. the whole visual object is alarge segment. After performing 4-level
SDA-DWT on the visual object, the transformed object image is coded by using the
SPECK algorithm, and the resulted bit-stream can represent a compression file of the
object image. The same procedures are performed on test image 1 except that SDA-DWT
is replaced by SA-DWT, and we have another compression file of the object image by
using LSA-DWT. Table 5.1 shows the sizes (in bits) of each object image for each
method, and it tells us that SDA-DWT is more efficient than LSA-DWT is. The bit
number of SDA-DWT compression file is about 77.8% size of LSA-DWT compression
file. Table 5.2 shows that SDA-DWT outperforms LSA-DWT up to 5.88 dB under
2.15-bpp (256256 bits) condition. In this case, the performance of SDA-DWT is aways
better than that of LSA-DWT because of the directional line textures on the object. For
the characteristic of the textures on object 1, if we choose +45° direction in the prediction
step of the 1-D ‘horizontal’ transform, the predicted values will very close to the actual
values of odd pixels. Thus, much energy is clustered in the low-frequency subband, and
that makes the wavelet transform very successful, which makes the overall compression

scheme very efficiently.

Table 5.1 The bit numbers of the bit stream of each test object image after SPECK
coding. (SDA' and SDA? represent SDA-DWT without object partition
and with object partition, respectively. LSA means LSA-DWT and DA is

DA-DWT.)
Object image Object 1 Object 2 Object 3
spAt 123,341 bits 243,002 bits NA
SDA? NA 244,729 bits 67,726 bits
LSA 158,530 hits 245,330 bits 71,556 bits
DA NA NA 77,209 bits
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Table 5.2 The PSNR results for lossy compression of object image 1. (Object 1

contains 30,535 pixels.)
Rate (bpp) 1.00 2.15 3.22
SDA 36.82 dB 42.75 dB 48.30 dB
LSA 31.06 dB 36.87 dB 42.54 dB

Table 5.3 The PSNR results for lossy compression of object image 2. (Object 2
contains 45,012 pixels. SDA' and SDA? represent SDA-DWT without
object partition and with object partition, respectively.)

Rate (bpp) 1.00 1.46 2.91
SDA? 28.05 dB 28.88 dB 39.45dB
SDA? 28.11dB 29.02 dB 39.45dB

LSA 27.52 dB 28.73 dB 39.30dB

Table 5.4 The PSNR results for lossy compression of object image 3. (Object 3
contains 10,000 pixels. SDA? represents SDA-DWT with object partition.)

Rate (bpp) 1.00 1.64 3.28 4.92
SDA? 22.41 dB 22.91dB 33.29 dB 43.02 dB
LSA 18.10 dB 22.58 dB 31.79 dB 40.55 dB
DA 17.53 dB 22.29 dB 27.85 dB 38.01 dB

For the test image of object 2 (Figure 5.1(a)), SDA-DWT and LSA-DWT are
simulated and compared by their PSNR values and file sizes. The gray-level object 2 is
segmented from the famous test image Barbara, and Figure 5.1 (b) shows the shape mask
of the visual object. Two cases are ssimulated for evaluating SDA-DWT. First, the whole
object 2 without partition is used for smulation, and second, object 2 is partitioned into
two parts (Figure 5.1 (b); the white region and the gray part) for simulation. The partition
shown in Figure 5.1 (b) is an example, which is partitioned manually, for arbitrarily
shaped partition which is not the optimal one. Table 5.1 shows that, for compression-file
size, SDA-DWT with object-image partition is the most efficient case among these cases,
SDA-DWT without object partition is second place, and LSA-DWT is third place.
SDA-DWT with object partition reduces 0.95% bit-budget of LSA-DWT’s, and
SDA-DWT without object partition reduces 0.24% bit-budget. On the other hand, the
PSNR valuesin Table 5.3 show that SDA-DWT with partition has the best performance.
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The results show that for atexture rich (especially, non-horizontal or non-vertical edges)
Image, the performance of lossy compression can be enhanced by suitably partitioning the
object image. The proposed method offers much flexibility for partition, since it can
handle segments with any shape. The reconstruction object images of SDA-DWT with
object partition and LSA-DWT, under 1.46-bpp condition, are shown in Figure 5.3. We
also performed the experiments on the object images segmented from Lena, Claire, and
Akiyo. Since these object images lack non-horizontal or non-vertical edges or the
directions of textures are random, without suitable object partition, the performance of
SDA-DWT and LSA-DWT are amost the same.

Figure 5.3 The object-2 reconstruction images under 1.46-bpp condition: (a) the result of
SDA-DWT with object partition according to Figure 5.1 (b), (b) the result of LSA-DWT.

Figure 5.4 The reconstruction object images, under 1-bpp condition: (a) the result of
SDA-DWT, (b) the result of LSA-DWT.
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Figure 5.5 The reconstruction object image and the partition and direction in DA-DWT:
(a) the reconstruction result under 10,000-bit condition. (b) mask partition and block
directions of partition used in DA-DWT.

For the third gray-level object image (Fig 5.4 (a)), al the three methods
(LSA-DWT, DA-DWT, and SDA-DWT) are eva uated. The object-3 image (synthesized
from theimages from USC image database) contains 10,000 pixelsin a 128-by-128-pixel
area, and there are five different textures on the object. Hence, the object image is
partitioned into 5 segments (Figure 5.4 (b), thisis synthesized from the image in the USC
Image database, so it is given in this experiment.) for SDA-DWT. Although object-3
image is rectangular, SDA-DWT can handle any shaped objects. DA-DWT is originally
designed for processing a rectangular image, but object-3 image can be viewed as a
squared 128-by-128-pixel image containing an object 3. DA-DWT partitions the object
image into many small blocks (Figure 5.5 (b)) to discover the texture direction which can
not be seeninlarge scale. Table 5.1 showsthat, for |ossless compression, SDA-DWT uses
the least amount of bits, and DA-DWT is the most bit consuming one. For PSNR
comparison, Table 5.4 shows that SDA-DWT outperforms LSA-DWT up to 4.31 dB in
PSNR under 1.00-bpp (bit / object pixel) condition, and reduces the bit-budget up to 5.7%
for lossless compression. SDA-DWT also outperforms DA-DWT up to 5.44 dB in PSNR
under 3.28-bpp condition, and reduces the bit-budget up to 14.0%. The reconstruction

results under 1-bpp condition are shown in Figure 5.4 and Figure 5.5 (a). From the
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experiments of object 3, we understand that LSA-DWT can not well exploit the
correlation of thedirectional textures, so it has poor performance for thistest object image.
For DA-DWT, since its resolution is not high enough (the smallest partition block is
16-by-16) and can not approximating the non-rectangular segment boundaries well,

DA-DWT has the poorest performance for the special object-image.

5.2 Regular Image Compression

SDA-DWT was originaly designed for object image compression, but it can be
used for aregular (rectangular or square) image by extending the mask (or aphamaps) to
cover the whole image. For example, Figure 2.14 (b) is a partition mask for the visua
object, and we can use Figure 5.6 as a partition mask of the whole image for SDA-DWT.
In Figure 5.6, the regular image is partitioned manualy into three large connected
segments which are distinguished by three different graylevel values. For the test image
(Figure 2.14 (a@)), three compression methods, which are SDA-DWT, DA-DWT, and
conventional-direction lifting DWT, will be simulated and compared. All the three
methods use the lifting 5/3 DWT discussed in Chapter 4, and the third method uses the
conventional filter directions, i.e. horizontal and vertical directions. First, the lossless
compressed file sizes of these three methods are compared. Then, we will compare the
PINR values (dB) under several bpp conditions. Finally, we also want to examine the
reconstruction results of these three methods, since, sometimes, the PSNR values are not
reflect the real visual quality.

Test image Figure 2.14 is a 256x256 graylevel image, and it use 8 bits to represent
the gray levels of a pixel. Since the test image is small size, we choose to use 4
decomposition levels. After transformed by any one of the three methods, the transformed
image is coded by using the SPECK coder. The result bitstream of the SPECK coder is
our lossless compression file for each method. The experimental results showed that the

file sizes are 245,440 hits, 268,631 hits, and 273,254 bitsfor SDA-DWT, DA-DWT, and
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conventional-direction lifting DWT, respectively. Ignoring the side information,

SDA-DWT has the smallest lossless compression file.

Figure 5.6 An example of partitioning the image in Figure 2.14 (a) for regular image
compression. The suitcase image is partitioned into background, the handle, and the box
manually.

Table 5.5 PSN\R values of three method under 0.1-bpp, 0.25-bpp, 0.5-bpp, and
1.0-bpp conditions, where CD-DWT means the conventional-direction

lifting DWT.

bpp SDA-DWT DA-DWT CD-DWT
0.1 22.52 dB 21.92 dB 22.43dB
0.25 22.94dB 22.52dB 22.96 dB
0.5 28.54 dB 27.51dB 27.82dB
10 34.10dB 32.85dB 32.96 dB

From the datain Table 5.1, we know that SDA-DWT has the best (highest) PSNR
values in all cases, but it is interesting that DA-DWT is third place. The results showed
that the partition in direction DWTs s critical, and locally optimal is not equal to global
optimal. Although DA-DWT isinferior to lifting conventional-direction DWT for PSNR
value in this experiment, but, for 0.25-bpp and 0.5-bpp, the reconstruction images of
DA-DWT have better visual quality than lifting conventional-direction DWT’s do.
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{a) SDA, L-bpp (b) DA, 1-bpp

(c) CD-DWT, L-bpp

(d) 3DA, 0.5-bpp te) DA, 0.5-bpp ) CD-DWT, 0.5-bpp

Figure 5.7 Reconstruction images of three methods under 1-bpp and 0.5-bpp conditions
respectively, where SDA means SDA-DWT, DA is DA-DWT, and CD-DWT denotes

lifting conventional-filter-direction DWT.

Figure 5.9 shows another example whose original image is the Pentagon. For the
Pentagon image (Figure 5.9 (a)), there are two partition methods shown in Figure 5.9 (b)
and (c), respectively. The partition shown in Figs. 5.9 (b) is based on the partition method
of [4] which partitions an image into some small rectangular blocks, and we joint the
blocks with the same local filter direction to form 9 types of segments. Note that
sedgments belonged to the same filter direction are not necessarily connected. The
gray-level valuein Figs. 5.9 (b) and () is used to represent the filter direction of each of
the nine types of segments. The smallest pixel value corresponds to 8 = -71.5°, and the
highest gray-level corresponds to 6 = 71.5°. From Figure 5.9, we can see the
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segmentation- direction relation. Since SDA-DWT does not require the boundary of each
segment to be vertica or horizontal, we can partition the image according to any

reguirement need. For example, ahuman body can be partitioned based on his body shape

or other ways that is meaningful to us.

fa) SDA, 0.25-bpp (b) DA, 0.25-bpp {c) CD-DWT, 0.25-bpp
() 3D4, 0.1-bpp () DA, 0.1-bpp i) CD-DWT, 0.1-bpp

Figure 5.8 Reconstruction images of three methods under 0.25-bpp and 0.1-bpp
conditions respectively, where SDA means SDA-DWT, DA isDA-DWT, and CD-DWT

denotes lifting conventional-filter-direction DWT.

SDA-DWT outperforms DA-DWT because the former allows flexible partition on
shape and size. A simple method can guarantee that SDA-DWT obtains better
performance than DA-DWT can do is that use the partition of DA-DWT as a initia

partition of SDA-DWT, then modify the partition to be a better one. For example, we can
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partition the image into many small triangular segments which should be able to better
exploit the directional correlation in the image. For many natural or artificial images, the
best partition boundaries are usually not vertical or horizontal lines, so SDA-DWT are

suitable for such cases.

@l (] (&)

Figure 5.9 A 256x256 image and its partitions: (a) the origina image Pentagon, (b)
partitioning the image into 9 types of blocks, (¢) another non-block partition.

Finally, SDA-DWT (5/3 wavelet) is compared with the lifting 5/3-wavelet
conventional-directional DWT by transforming Figure 5.7 (a) with 3 decomposition
levels. The results are shown in Figure 5.10, and we can see that |ess energy is left in the
high frequency subbands for SDA-DWT because the high-frequency-subband image of
Figure 5.9 (a) are darker than that in Figure 5.9 (b). Hence, generally speaking,
SDA-DWT can well exploit the correlation existing in the image and achieve higher
coding efficiency in image compression. The maximum amplitude of the transformed
coefficientsin Figure 5.9 (a) is423.5, and the maximum coefficient valuein Figure 5.9 (b)
Is 222.8. It usually means good energy compaction and a better transform in image

compression, if the coefficient amplitudes are large in the low-frequency subband.
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(b)

Figure 5.10 Transformed images of Figure 5.7 (a): (a) by SDA-DWT, (b) by
conventional-direction lifting DWT. (both use 5/3 wavelet and 3 decomposition levels)
Note that the high-frequency subband of (a) is smoother than (b), and it means that the

former transform is usually more efficient than the | ater.
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CHAPTERG6

CONCLUSIONS

In this dissertation we discuss lifting-based DWT and propose SDA-DWT, which
can be used for arbitrarily shaped image segments, and whose direction of prediction and
update are adaptive. The conclusions and comments (or future works) of these two topics
are presented in the followings in this chapter.

For lifting-based DWTs, we discussed how every wavelet filter pair can be
decomposed into lifting steps. The decomposition is equivalent to present the polyphase
matrix and dual polyphase matrix as products of elementary matrices (i.e. lower triangular
and upper triangular matrices), which was known to be possible by mathematicians long
time ago. Compared to conventional implementation, lifting structure can lead to a
speed-up. The lifting structure also allows for an in-place redlization of the fast wavelet
transform, so the wavelet transform can be computed without allocating auxiliary
memory. In a lifting step, all operations can be done totally parallel, and the only
sequential part is the order of the lifting operations. For hardware implementation and
lossless image compression, lifting structure is important because it is easier to build on
non-linear wavel et transform and wavel et transforms which map integers to integers. And,
it is possible to integrate biorthogona wavelets with scalar quantization and also keep
cubic quantization cells which are optimal like in orthogonal cases, by using both the
lifting and integer-to-integer transforms. At last, the special feature of lifting, which helps
usto develop SDA-DWT, isthat lifting allows for adaptive wavel et transform. Therefore,
one can start the analysis of afunction form the coarsest levels and build the finer levels
by refining the region of interest.

Since the results of factoring lifting steps are not unique, we should know what the

optimal case is in the future work. The Euclidean agorithm, which is used to factor
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polyphase and dual polyphase matrices, can not work for integer or dyadic-number filter
coefficients. Hence, we can not assure that filters with binary coefficients are able to be
factored into lifting steps with binary filter coefficients. Any invertible polyphase matrix
which has a non-identity polynomial on the diagona can be obtained using lifting, but
some of the advantages of lifting structure discussed above rely on the identity diagonal
requirement.

For the proposed SDA-DWT, since it can well exploit the correlation because of
spatial orientation and handle regions with any shape and size, SDA-DWT has superior
performance than SA-DWT or DA-DWT does for visual objects with non-horizontal or
non-vertical edge textures. SDA-DWT can be applied to any wavelet-based application,
although, in this dissertation, we only give three application examples. The extra costs of
SDA-DWT compared to SA-DWT are the increased complexity and the storing and
processing of the side information of the directions in each segment of the object image.

For convenience, we focus on how to compress the partitioned still-object image
while assuming that the partition of the object image has been donein this work. In order
to achieve the optimal result, a good texture-segmentation method is necessary. The
optimal partition depends on the image to be compressed, and it is usually not the case in
DA-DWT (i.e. rectangular blocks). Partitioning an image into many small rectangular
blocks is usually not the optimal partition, and the reconstruction result is possible to
suffer from blocking effect when the bit rate is low. The optimal partition usualy
partitions an image into many irregular segments, so it is difficult to determine a global
optimal partition for SDA-DWT. Thus, solving the optimal partition problem is the most
important work in future, and the partition method used in DA-DWT can be used as a
starting point.
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