
2OMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 47, 227-242 (1989) 

NOTE 

A Systolic Algorithm for Extracting Regions 
from a Planar Graph 

Z E N - C H U N G  SHIH 

Department and Institute of Information Science, National Chiao Tung University, 
Hsinchu 30050, Taiwan, Republic of China 

R. C. T. LEE 

Institute of Computer and Decision Sciences, National Tsing Hua University, Hsinchu 30043, 
Taiwan, and Academia Sinica, Nankang, Taipei, Republic of China 

AND 

S. N. YANG 

Institute of Computer and Decision Sciences, National Tsing Hua University, 
Hsinchu 30043, Taiwan, Republic of China 

Received January 6, 1988; accepted January 4, 1989 

In  this paper, we describe a systolic algorithm for extracting all of the fundamental  regions 
in a planar  graph. It takes O(n) computat ion time and uses O(n) processing elements, where n 
is the number  of  edges of the input  planar  graph. �9 1989 Academic Press, Inc. 

1. I N T R O D U C T I O N  

Let us consider Fig. 1. In Fig. 1, there are four regions, as indicated (R4 
�9 epresents the entire space not occupied by the graph). Suppose we are given all of 
he edges of the graph and their geometrical orientation. Can we find all of the 
'egions automatically? A similar problem was discussed in [Nie 82]. In their 
)roblem, we are given a polygon which is not simple and we are asked to produce 
dl regions formed by the intersecting line segments of the polygon. 

In this paper, we shall show that indeed we can. We have designed a systolic 
dgorithm to produce all of these regions. 

This paper is organized as follows: Some definitions and notations are given in 
;ection 2. An overall picture of our algorithm is given in Section 3. Sections 4 and 5 
ntroduce the systolic algorithm. Concluding remarks and future research are 
)resented in Section 6. 

2. DEFINITIONS A N D  NOTATIONS 

DEFINITION 1. An edge is a portion of a line having two endpoints. 

Let v a and v b be the endpoints of an edge e. This edge e will be representdd by 
va, %) or (v b, va) and va and v b are called the ending vertices of e. An edge without 
lirection is called an undirected edge. An undirected edge e = (v~, %) defines two 
lirected edges e i = (v a, Vb) and ej = (v b, v,). Let e = (v a, %) be a directed edge. 
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There are four regions R1, R2, R3, and R 4 in the planar graph. 

We define /3 a and /3 b to be the initial and terminal /3ertices of e, respectively. 
Conversely, e is called the outgoing and incoming edges of v a and v b, denoted as 
OUTGO(v,,) and INCOM(vb), respectively. For an edge, either undirected or 
directed, it is said to be incident on its ending vertices. 

A path of directed edges is a sequence of directed edges which are linked at their 
ending vertices. Let [el, e2, . . .  , ek] denote a path of directed edges where e I = 
<Vi, , v i 2 > , e  2 ---- </3i2 , v i a > , . . . , e  k = <Vik , Vik+t >. A cycle of directed edges is a path of 
d i r e c t e d  e d g e s  [e 1, e 2 . . . . .  em], w h e r e  e I = <Vjx , vj2>, e 2 = </312 , vj3 > . . . .  , era_ 1 = 
<Vjm_l, Vj,>, and e m = <vj , vA), where vjo r vjb, for 1 < a < b < m. 

DEFINITION 2. A polygon is a dosed plane figure formed by three or more 
edges. 

Since a polygon is realized by a collection of edges, it can be specified by a cycle 
of directed edges. The cycle may begin with any edge and proceed in clockwise 
direction. That is, when we move along the cycle of directed edges, the interior of 
the polygon lies to the right of us. 

DEFINXTION 3. A polygon is simple [Sham 78] if and only if no non-consecutive 
edges intersect and consecutive edges intersect only at the ending vertices. 

DEFINITION 4. The area which consists of a simple polygon and its interior is 
called a region. 

Consider Fig. 1. The polygon [<vl, v2>, <v2, v8>, <v 8, v9>, <v 9, vt0>, (vx0, Vl> ] and 
its interior form region R t. The polygon [(v2, v3>, (v3, v4>, <13 4, V5>, <V 5, /-)6>, 
<v6, v7>, <v7, Vs>, (vs, v2> ] and its interior is also a region which is the union of 
regions R 2 and R 3. We shall say that the region which is not the union of other 
regions is a fundamental region, such as R 1, R 2 and R 3 in Fig. 1. We specify a 



ALGORITHM FOR EXTRACTING REGIONS 229 

region to be the same as specifying a polygon. The difference between a polygon and 
a region is that a polygon is a cycle of directed edges, but a region is an area. 

DEFINITION 5, Let there be two edges ea = (v~: vi2) and e b = (0i2, via ). Let us 
assume that when we sweep from e~ to e b in the counterclockwise direction, we 
encounter no other edges incident on v;2. Then the area comprised by e~ and e b is a 
wedge between e a and eb, denoted as (v i :  vi2, vi3 ). The wedge (via, vi2, 0 i )  is said to 
be associated with v i .  

By the definition, if there are k edges incident on a vertex v, there are k wedges 
associated with v, Since an edge is incident on its two ending vertices, there are 2n 
wedges formed by an n-edge planar graph. 

Let w = (v~: v~2, 0i3 ) be a wedge which is comprised by ea = (v;:  vi2 ) and 
e b = ( v i :  v~3). We define e a and e b to be the back and front  edges of w, denoted as 
BE(w) and FE(w), respectively. Two wedges w x and w 2 are said to be contiguous if 
w 1 = (via , vi2 , v i )  and w 2 = (vi2, vi:  vi, ). For two consecutive wedges Wl and w 2, 
there is a common edge, e -- (vi2, 0i3 ), shared by them, i.e., FE(Wl) = BE(w2). We 
shall define w 1 and w 2 to be the back and front  wedges of e, denoted as BW(e) and 
FW(e), respectively. 

Since a fundamental region contains no other regions, it is more appropriate to 
describe a fundamental region by a sequence of contiguous wedges. Let R = 
[ e l ,  e 2 . . . . .  ek ]  be a fundamental region, where e I = (t31, o 2 ) , e 2  = ( 0 2 , 0 3 )  . . . .  , 

ek = (Vk, Or)- Then R can also be represented as [w 1, w 2 . . . . .  w~], where w 1 = 
(vl, v2, v3), w 2 = (02, v 3, v4) . . . . .  w k = (vk, vt, v2). From the above discussion, a se- 
quence of wedges [w 1, w 2 . . . .  , win] defines a fundamental region if and only if w i and 
wi+ 1 are  contiguous, for i --- 1, 2 . . . . .  m - 1, and w m and w 1 are also contiguous. 

3. AN OVERALL PICTURE OF THE REGION EXTRACTION ALGORITHM 

In this section, we shall try to present an overall picture of our region extraction 
algorithm, 

The input of our algorithm is a set of undirected edges. To extract regions, we 
must perform two tasks: 

(1) Find ~ of the wedges. 

(2) Group the wedges into 
corresponds to a region. 

sequences such that each sequence of wedges 

Let us explain this informally by an example. Consider Fig. 2. Since there are six 
edges in this planar graph, by the definition, there are twelve wedges formed. All the 
wedges will be found to be (05, 01, 04), (04, vl, v2), (02, vl, os), (01, 02, 03), (03, 02, 01), 
(v2, 03, v4), (v4, v3, v2), (v3, v4, vl), (01, v4, 05), (v5, v4, v3), (01, v5, v4), and (v 4, v 5, Vl). 

After finding all of the wedges, our algorithm will then group them into the 
following sequences: 

S~ : [(v5, vl, 04),(vl, v4, 05),(v4, v5, vO] 
$2 : [(v4, vl, vD,(vl, v2, v3), (v2, v3, v4), (v3, v4, 01)] 
S3 : [(v2, v~, vD, (v~, v5, v4), (v5, 04, v3), (v4, v3, v2), (v3, v2, v2)]. 
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FIG. 2. There are twelve wedges in the planar graph. 

It can be easily seen that each sequence of wedges corresponds to a fundamental 
region. The following table gives the one-to-one correspondence relationship: 

$1: R 1 
$2: RE 
S 3 : R  3. 

In the following section, we shall explain how we can find all of the wedges by 
examining the input edges. 

4. PHASE ONE: A SYSTOLIC ALGORITHM TO FIND WEDGES 

The principle to construct wedges is quite simple. Consider Fig. 3. There are four 
edges incident on 01 . Note that the edges mentioned in this section are undirected. 

Let us sort these four edges according to their angles with respect to the 
horizontal line passing through 01. We have (v,, v2) < (vl, v3) < (01, 04) < (vl, 05). 
After these edges are sorted, we can consider these edges as forming a cycle by 
logically linking the last edge to the first one. Then, each pair of consecutive edges 
in this cycle forms a wedge. 

V 3 
V 2 

V 4 
V 5 

FIG. 3. There are four edges incident on v 1. 
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In general, let e i and ei+ x be a pair of consecutive edges. Let v b be the ending 
vertex common to both edges. Let v a and v c be the ending vertices other than v b 

which appear in e i and e~+l, respectively. Then e; and ei+ 1 are considered to form 
the wedge (Va, Vb, Vc). For the above sorted sequence of edges, the following wedges 
are formed: (v2, vl, v3), (v 3, v 1, v4), (v4, vl, vs), and (vs, vl, v2). The last wedge is 
formed by combining the last and the first edges. 

Given a planar graph, let E ( o )  denote the set of edges incident on a vertex v. To 
find the wedges associated with v, we may sort E ( v )  according to their angles with 
respect to the horizontal line passing through v. We then combine each consecutive 
pair of edges in the sequence to form wedges. The last edge is also combined with 
the first edge in the sequence. Let IE(v)l denote the number of edges incident on v. 
Then the total number of wedges formed is [E(v)l- 

Actually, we do not have to separate the edges into groups and sort edges within 
each group. As shown below, we may sort all of the edges once and for all by the 
following rules: 

(la) Duplicate every edge. If an edge is incident on v i and vj ,  then one edge is 
labeled with tag i and the other edge is labeled with tag j. Thus, each edge is now 
labeled with a tag. 

(lb) The precedence-relation between two edges is defined as follows: 
(a) If two edges have the same tag, e i < e j  if the angle between e i and the 

horizontal line is smaller than the angle between e j  and the horizontal 
line. 

(b) If two edges have two different tags, then e i < ej if the tag associated 
with e~ is smaller than the tag associated with e j .  

Using the above rules, duplicated edges of a planar graph can be sorted into a 
sequence. Note that in the resulting sorted sequence, edges labeled with the same tag 
will be grouped together. A linear scanning over all of the edges will produce all of 
the wedges. 

Let us consider Fig. 4 which contains the same planar graph in Fig. 2. The input 
edges after the duplication process will be as follows: 

(01, 02) 1, (01, 02) 2, (02,/33) 2, (02,/33) 3, (/33,/34) 3, (/33,/34) 4, (/31,/3,) 1, 

(/31, v4) 4, (vl, vs) 1, (01,/35) 5, (/34, vs) 4, and (/34,/35) 5. 

The superscripts of edges in the above sequence are the tag values. The sorting 
process will produce the sequence: 

(01,/35) 1, (01,/34) 1, (/31,/32) 1, (/31, 02) 2, (02,/33) 2, (/32,/33) 3, (/33,/34) 3, 

(V3, 04) 4, (/31' /34) 4, (/34, /35) 4, (/31, /')5) 5, and (/34, vs) 5. 

A linear scanning over the sorted sequence will now take place to produce all of 
the wedges by using the following rules: 

(2a) Within every group of edges with the same tag, combine every pair of 
consecutive edges. 

(2b) Within every group of edges with the same tag, combine the last edge with 
the first edge. 
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There are 12 edges generated after the edge duplication process. 

In our wedge-finding algorithm, we exploit the zero-time sorter [Lee 81; Mir 83] 
with a slight modification to perform the edge sorting process. There are n 
processing elements, which are controlled locally and named as PE 1, PEz, , . . ,  PE, 
from left to right. 

In addition to the sorter, we shall attach a special cell S in front of the 
input/output  cell of the sorter as shown in Fig. 5. In the input phase of sorting, 
each edge should pass through cell S and be duplicated. Then, the edges leave this 
cell and enter the sorter one by one. Therefore, there are 2n edges entering the 
sorter. In the output phase of sorting, the Sorted sequence of edges should be 
scanned by this cell where the consecutive edges are merged to form wedges 
according to the rules discussed before. That is, this special cell ~ performs two 
functions, it duplicates edges and attaches tags to them before they are fed into the 
sorter. It later examines edges coming out of the sorter and merges consecutive ones 
and also the last and the first in the ~ame group to form wedges. Finally, there are 
2n wedges constructed, where n is the number of input edges. Let these 2n wedges 
be denoted as wl, Wz,.,. , w2,. 

In this phase, there are 2n edges fed into the zero-time sorter. By [Mir 83], the 
time spent by the sorter is O(n). The special cell S is operated parallel with the 
sorter. In the input phase of sorter, cell S scans and duplicates each edge in one 
time unit. Therefore, the total time complexity of phase one is O(n) and takes O(n) 
processing elements in the sorter. 

5. PHASE TWO: A SYSTOLIC ALGORITHM TO EXTRACT REGIONS 

In Section 4, we showed a systolic algorithm to find all of the wedges of a planar 
graph. In this section, we shall show how the wedges can be combined to form 
regions. 

Sorter 

N N N --- [l] 

PIG. 5. The cell S is linked to the left of the sorter. 
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In our phase-two algorithm, we use a linear systolic array which consists of 
2n + 1 processing dements, where n is the total number of edges of the planar 
graph. The input of our phase-two algorithm is the set of wedges w l ,  w 2 . . . .  , w2 , ,  

which is the output of our phase-one algorithm. This set of wedges define m regions 
R1; R z , . . . ,  R m. Let [Ri[, i = 1, 2 . . . .  , m ,  denote the number of wedges of R i. As 
explained in Section 3, a sequence of wedges [Wal, Wa2 . . . .  , W j  define a region if and 
only if wa, and Wai+l are contiguous for i = 1 to k - 1 and wak and w~a are also 
contiguous. Let wi, j denote a wedge of R r Let us assume that wi, j a n d  wi, j +  1 a re  

contiguous for j = 1 to I R i t -  1 and Wi, la,I a n d  wi, 1 are also contiguous. Our 
algorithm will accept a set of wedges wl, w2,...,  WE, and output a sequence of 
w e d g e s  a s  f o l l o w s :  Wl,1, Wl, 2 . . . .  , wl ,  iRd, W2,1, w2,2, . . . , W2, IR21 , . . . , Win, l ,  

Wm, 2 . . . . .  Wm, iRmr It should be obvious, that in the output sequence, each subse- 
quence corresponds to a region. 

Initially, the set of wedges w 1, WE,..., w2, are fed into the systolic array one by 
one from left to right, such that w, will be stored in PEi. Then, we shall arrange the 
wedges into the output sequence. That is, the wedges of each R, are placed in 
continuous processing elements and the wedges in each pair of neighboring process- 
ing dements are contiguous if they belong to the same region. 

Our Phase two algorithm consists of the following four major steps: 

Step 1. Feed the set of 2n wedges wl, w2, . . . ,  w2, into the systolic array one by one from left 
to right, such that w i will be stored in PE r 

Step  2. Find wiA , for i = 1,2 . . . . .  m. Then delete the back edge, BE(w/A), of wi, 1. 
S tep  3. Label all of the wedges in such a way that two wedges have the same label if and only 

if they are in the same region. And, assign a sequence number to each wi, j such that 
the sequence number of wi, j is j. 

Step  4. Arrange the wedges so that they can be outputted in the following sequence: 

wt. 1, Wl.2, ..... Wl, i/~x I, w2,1, W2,2,..., W2.1R21,..., Win, l, Win, 2 , . . . ,  W,n. tRml, where Wi, j 
and  wi, j+ 1 are contiguous, for i = 1,2 . . . . .  m and j = 1,2 . . . . .  [R~], and wi.lu,i and  
wiA are also contiguous, for i = 1,2 . . . . .  m. 

Step 1 is rather simple. There are 2n + 1 processing elements, labeled as 
PE 1, PE2, . , . ,  PE2,+I from left to right. We input the wedges wl ,  w 2 . . . . .  w2 ,  one by 
one from left to right and w~ will be stored in PE;, for i = 1,2, . . .  ,2n. PE2,§ is 
essentially a buffer area and its function will be explained and made clear later. 

Inside each PEi, i = 1, 2 , . . . ,  2n we shall store five pieces of data as shown in Fig. 
6. Except w~, which is stored in Step 1, the others are created by each PE r 
LABEL(wi) is the label of w r SEQNO(w~) is the sequence number of wi. LABEL(w/) 

PE.  
1 

W. 
1 

LABEL (W i ) 

SEQNO (W i ) 

FE(W i) 

BE (Wi) 

FIG. 6. There are five pieces of data stored in each PE~, for i = 1,2 . . . . .  2n. 
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and SEQNO(wi) will be initialized to be i and 1, respectively, for all wi's. FE(w~) 
and BE(w~) are the front edge and the back edge of wi, respectively. 

In the following paragraphs, we shall first introduce Step 2. Basically, we use a 
labeling scheme to identify each wi,1 for i = 1, 2 , . . . ,  m. The basic principle of the 
labeling can be described below: 

(3a) w 1 is labeled with 1. 

(3b) For  1 < i < 2n, if there exists a j ,  j < i, such that wj and w~ are in the 
same region, then label w~ as wj is labeled; otherwise, label wi with i. 

For  example, imagine that we have wedges wl, w 2 . . . .  , ws, where Wl, ws, and w 6 
belong to one region, w2, w3, and w 7 belong to one region, and the rest of wedges to 
another region. Then our labeling process will label the wedges as follows: 

w~ 

LABEL(~)  

W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 

1 2 2 4 1 1 2 4 

Step 2 consists of three basic steps. Step 2a labels each wedge in such a way that 
two wedges will be labeled the same if and only if they belong to the same region. 
Step 2b identifies the first wedge wi, 1 of region i for each i. Step 2c then eliminates 
the back edge of wi, 1. 

Let e 1, e 2 . . . .  , e2n be the set of directed edges of the input planar graph. In Step 
2a, we feed each ei to the linear systolic array. Each wj. is labeled j initially. After it 
enters PE2n+I, it will have found the back wedge and the front wedge of e v For 
instance, for edge (2, 3), let its back wedge be (1, 2, 3) and its front wedge be 
(2, 3, 4). Let the label of (2, 3, 4) be initially greater than that of (1, 2, 3). Then, as 
edge (2, 3) travels back through the systolic array, it will change the label of (2, 3, 4) 
to the label of (1, 2, 3). 

But, we have another problem. Consider wedges (1, 2, 3), (2, 3, 4), and (3, 4, 5). 
suppose edge (2, 3) enters the systolic array before edge (3, 4). Suppose (1, 2, 3) is 
labeled as 1. (2, 3, 4) will be labeled 1 as we discussed in the above paragraph. But, 
how can the label of (3, 4, 5) be labeled to 1 also? This is accomplished as follows: 

(a) Case 1. Edge (2, 3) arrives at the processor holding (2, 3, 4) as it travels 
back before edge (3, 4) arrives as it travels forward. In this case, the label of the 
wedge (2, 3, 4) will be changed by edge (2, 3) to 1. Later, edge (3, 4) arrives at this 
processor holding (2, 3, 4). It will identify (2, 3, 4) as its back wedge and also it will 
identify (3, 4, 5) as its front wedge. Besides, it notes that the label of (2, 3, 4) is 1. As 
it travels back, it will then change the label of (3, 4, 5) to 1. 

(b) Case 2. Edge (2, 3) arrives at the processor holding (2, 3, 4) as it travels 
back after edge (3, 4) arrives as it travels forwardly. In this case, edge (3, 4) will 
identify (2, 3, 4) as its back wedge and it notes the label of (2, 3, 4). Later, edge (3, 4) 
will encounter edge (2, 3) at a processor on the right of the processor holding 
(2, 3, 4). The label of (2, 3, 4) traveling with edge (3, 4) will be changed by edge 
(2, 3) to 1. As edge (3, 4) travels back, it will then change the label of (3, 4, 5) to 1. 

Through the above mechanism, we can label all of the wedges such that they are 
labeled the same if and only if they are in the same region. This is the main task of 
Step 2a. 



A L G O R I T H M  FOR EXTRACTING REGIONS 235 

eo 
1 

LABEL(FW(ei)) 
LABEL(BW(ei)) 

PEj 

W. 
3 

LABEL (Wi) SEQNO (W i ) 

BE (Wj) FE (Wj) 
e k 

MIN (ek) 
MAX(e k) 

FIG. 7. Edges ei and e k may be entering from the left and right of PEj,  respectively. 

In Step 2b, each processor PE i checks the label of the wedge it holds. If the label 
of the wedge is also i, then this wedge is identified as the first wedge of a region. 

In Step 2c, each PE k which holds wi, x eliminates the back edge of wi, 1. 
To label each wj, for j = 1 to 2n, we have to input the set of directed edges 

el, e2,. . .  , e2n one by one from left to right into the systolic array, ei is fed into the 
systolic array at an interval of every two time steps. The reason will become clear 
later. For each e~, the following parameters travel together with e~: LABEL(FW(ei)) 
and LABEL(BW(ei)). Initially, LABEL(FW(ei)) and LABEL(BW(ei) ) are set t o  
null. As ej enters PE2,+I , we shall have two parameters attached to e/MIN(e~) and 
MAX(e/). MIN(ei) and MAX(e;) will be explained later. 

In the systolic array, e~ and the associating parameters travel from left to right 
and the movement takes place at an interval of every time step. As soon as e i enters 
PE2,+I , all of the parameters have been updated. Then, e i will travel from right to 
left. Again, the movement takes place at an interval of every time step. Thus, at PEj, 
ei may be entering from the left and e k may be entering from the right as shown in 
Fig. 7. In Step 2a, the value of SEQNO(wj) is not updated. 

The operations inside PEj, 1 < j < 2n, is summarized as follows: 

(4a) If FE(wj) = ei, then LABEL(BW(e~)) ".= LABEL(wj). 

(4b) If BE(wj)  -- e~, then LABEL(FW(e~)) .'= LABEL(wj). 

(4c) If LABEL(BW(e~)) -- MAX(ek) , then LABEL(BW(ei)) := MIN(ek). 

(4d) If LABEL(FW(ei) ) = MAX(ek) , then LABEL(FW(e~)) .'= MIN(ek). 

(4e) If LABEL(wj) = MAX(ek) , then LABEL(wj) .'= MIN(ek). 

In PE2,+I , if e~ arrives, then let MIN(e~) be the minimum of LABEL(FW(e~)) 
and LABEL(BW(ei)) and MAX(e~) be the maximum of LABEL(FW(ei)) and 
LABEL(BW(e,)). 

Now, let us consider a simple example. There are five wedges in the systolic array. 
The whole process of entering (2, 3) and (3, 4) is shown in Fig. 8. In this example, 
when (2,3) arrives at PE 1 and PE3, the parameters LABEL(FW((2,3))) and 
LABEL(BW((2,3))) are set according to operations (4a) and (4b), respectively. 
When (3,4) arrives at PE 3 and PE4, the parameters LABEL(FW((3,4))) and 
LABEL(BW((3, 4))) are set according to operations (4a) and (4b), respectively. At 
time step 7, (2, 3) and (3 ,4)  encounter in PE 5 and the parameter 
LABEL(BW((3, 4))) of (3, 4) is updated according to (4c). At time steps 9 and 10, 
the labels of (2, 3, 4) and (3, 4,1) are updated according to (4e). 
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<312>1<2,1> 

t=5 

(1,2,3) 

<a :2>1 <2, 3- 

(4,1,2) (2,3,4) (3,4,1) 

<4,!><1,2~ <2,3><3,4> <3,4><4,1> 

<3,4> 
A 
A 

(3,2,1) 

<372>1 <~, 1> 
<2,3> 

3 
1 

W :FIG. 8. An  example o f  the labeling scheme to find all i,1 s. 

From the above example, it is easy to see why e i is fed into the systolic array 
every two time steps, In order to ensure operations (4c) and (4d) to be performed, ei 
and e k should encounter in some processing element. Only by feeding ei every two 
time steps can achieve this purpose. 

When the above labeling process is completed, we can easily identify W~,l, for 
i = 1, 2 . . . . .  m. Then, we shall clear the value of BE(wi.1). 

In the f o n o ~ g  paragraphs, we shall discuss Step 3. Before starting Step 3, each 
PEg should initialize LABEL(w/) with the value i, again. 

Basically, Step 3 consists of the labeling operation and the sequencing operation. 
The basic principle of labeling is the same as that of Step 2. The sequencing 
operation is to assign a sequence number to each w~, for i = 1, 2 , . . . ,  2n. The basic 
principle of  sequencing is described below: 

(5a) The sequence number of  wl is 1. 

(5b) For 1 < i < 2n, if there exists a j ,  j < i, such that w/and  w i are in the 
k levels 

r= 
same region and w , =  W ( F E ( . . . F W ( F E ( w j ) ) . . . ) ) ,  then SEQNO(w~) is set to 
SEQNO(wj) + k; otherwise SEQNO(wi) is 1. 
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t=6 

t---7 

(1,2,3) (4,1,2) (2,3,4) 

~,2> <2,3> <4,1><1,2> 4> 

(1,2,3) (4,1,2) (213,4) 

1 [ 2 t <213><3, d,2> <2,3> <4,1> <:I,2> 4> 

(3,4,1) 

<314> <4, 1> 
<:3,4> 

A 
3 

( 3 , 4 , 1 )  

<314> <4, 1: 

(3,2,1) 

<312> <2, 1; I 
<2, 3> 

3 
1 

( 3, 2, 1 ) 

<312> <2, 1> 
<3,4> <2,3; 

4 1 
3 3 

t~  

(1,2,3) 

<3-1, 2>I<2, 3> 

(4,1,2) 

<411>1<1,2> 

(2, 3,4) 

<2, 3> <3, 4> 

(3,4,1) 

<3~4 >I <4, I> 
<2, 3> i 3 

(3,2, 1) 
5 

<3, 2> <1,2>1 
<3,4> 

4 
1 

t=9 

(1,2,3) 

<11, 2>I<2, 3> 

(4, 1, 2) 

<4,1 <1,2> 

(2,3,4) 

<213> <3, 4> 
<2,3> 

1 
3 

(3,4,1) 

<3,4 <4,1> 

(3,2,1) 

<312> <2, 1:~ 
<3, 4> 

1 
4 

t =I0 

t=ll 

t=12 

t=13 

(1,2,3) 

<21 , 2>[<2, 3> 

(1,2,3) 

<112>1<2,3> 
<2,3> 

1 
3 

(4,1,2) (2, 3,4) 

<2, 3> 
1 
3 

(4, 1,2) (2,3,4) 

o:,> ~ o:3>Io,,  

( 3 , 4 , 1 )  

1<314>1<4, 1> 
<3, 4> 

1 
4 

(3,2,1) 

<3, 2 <2, 1> 

(3,4, l) (3,2,1) 

<3,4><4,1.: <3,2 <2,1> 

(1,2,3) 

11 <1,2> <2,3> 

(1,2,3) 

112> <2,3> 
<3,4> 

1 
4 

(4,1,2) I 

<411>1<1,2> 
<3~4> 

(2, 3, 4) 1 [ ]1 1 [ 1 1  (3,4, 1) 1 

i <2, 3> <3, 4:, <3,4><4,1 

(2,3,4) 

51(3'2'1) t 

<3, 2> <2, l 

(4, 1,2) (3,4, 1) (3,2,1) 

(1,2,3) (4,1,2) (2,3,4) (3,4,1) (3,2,1) 

" <3, 2> <2, 1 > t=14 <1,2> <2,3> 1> 

FIG. 8--Continued 
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For example, imagine that we have wedges w~, w 2 . . . . .  Ws, where w~, w 5, and w 6 
belong to one region, w 2, w 3, and w 7 belong to one region and the rest of wedges to 
another region. Moreover, w 6 = FW(FE(wl)), w 5 = FW(FE(FW(FE(wl)))  ), w 3 = 
FW(FE(w2)), w 7 = FW(FE(w3) ) and w s = FW(FE(w4)). Then, the result of the 
sequencing process is: 

w~ 

SEQNO(w~) 

Wl WE w3 W4 W5 W6 W7 W8 

1 1 2 1 3 2 3 2 

Initially, each w i is stored in PE;. Then the set of directed edges el, e 2 . . . . .  e2n are 
fed into the systolic array one by one from left to right again. Each ei is fed into the 
systolic array at an interval of every two time steps. Af te r i t  enters PE2,+I, it will 
have found the back wedge and front wedge of e r For instance, for edge (2, 3), let 
its back wedge be (1, 2, 3) and its front wedge be (2, 3, 4). Suppose that the label of 
(2, 3, 4) is greater than that of (1, 2, 3). Later, edge (2, 3) will travel back through the 
systolic array. We shall change the label of (2, 3, 4) to the label of (1, 2, 3) and 
change the sequence number of (2, 3, 4) to the sequence number of (1, 2, 3) plus one. 

Consider wedges (1, 2, 3), (2, 3, 4), and (3, 4, 5). Let edge (2, 3) enter the systolic 
array before edge (3,4).  Suppose (1, 2, 3) is both labeled and sequenced as 1. 
(2, 3, 4) will be labeled 1 and sequenced 2 as we discussed in the above paragraph. 
To label (3, 4, 5) to 1 is the same as in Step 2. But, how can the sequence number of 
(3, 4, 5) be changed to 3? This is accomplished as follows: 

(a) Case 1. Edge (2, 3) arrives at the processor holding (2, 3, 4) as it travels 
back before edge (3, 4) arrives as it travels forward. In this case, the sequence 
number of the wedge (2, 3, 4) will be changed by edge (2, 3) to 2. Later, edge (3, 4) 
arrives at this processor holding (2, 3, 4). It will identify (2, 3, 4) as its back wedge 
and also it will identify (3, 4, 5) as its front wedge. Besides, it notes that the sequence 
number of (2, 3, 4) is 2. As it travels back, it will then change the sequence number 
of (3, 4, 5) to 3. 

(b) Case 2. Edge (2, 3) arrives at the processor holding (2, 3, 4) as it travels 
back after edge (3, 4) arrives as it travels forward. In this case, edge (3, 4) will 
identify (2, 3, 4) as its back wedge and it notes the sequence number of (2, 3, 4). 
Later, edge (3, 4) will encounter edge (2, 3) at a processor on the right of the 
processor holding (2, 3, 4). The sequence number of (2, 3, 4) traveling with edge 
(3, 4) will be changed by edge (2, 3) to 2. As edge (3, 4) travels back, it will then 
change the sequence number of (3, 4, 5) to 3. 

Through the above mechanism, we can set the sequence number of each wi, j ,  for 
i = 1 , 2 , . . . ,  m and j = 1,2 . . . . .  [Ria, to j.  

For  each ei, the following parameters travel together with e;: LABEL(FW(ei)), 
LABEL(BW(ei) ), and SEQNO(BW(e,)). Initially, LABEL(FW(ei)), LABEL(BW(ei)), 
and SEQNO(BW(e;)) are set to null. As e i enters PE2n+I, we shall have four 
parameters attached to ei: MIN(ei), MAX(ei) , LABEL(FW(ei)), and BASE(ei). 
BASE(ei) will be explained and made clear later. 

In the systolic array, e i and its associating parameters travel from left to right and 
the movement takes place at an interval of every time step. As soon as e i enters 
PE/n+~ , all of the parameters have been updated. Then, e~ will travel from right to 
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e. 
1 

LABEL(FW(ei)) 
LABEL(BW(ei)) 
SEQNO(BW(ei)) 

PE. 
3 

W. 
3 

LABEL (Wi) SEQNO (W i ) 

BE (Wj) FE (Wj) 

e k 

MIN ( ~k ) 
MAX (~k) 

LABEL(FW (e k) ) 
BASE (e+k) 

FIG. 9. Edges e i and e k may be entering from the left and right of PEj, respectively. 

left. Again the movement takes place at an interval of every time step. Thus, at PEj, 
e i may be entering from the left and e k may be entering from the right as shown in 
Fig. 9. 

The operations inside PEj, 1 < j < 2n, are summarized as follows: 

(6a) If FE(wj) = ei, then 

LABEL(BW(e i)) := LABEL(wj) 

SEQNO(BW(e~)) := SEQNO(wj). 

(6b) If BE(wj) = ei, then 

LABEL(FW(ei)) := LABEL(wj). 

(6c) If LABEL(BW(e~)) = LABEL(FW(ek)), then 

SEQNO(BW(e,)) := SEQNO(BW(ei) ) + BASE(e~). 

(rd) If LABEL(BW(ei) ) = MAX(ek) , then 

LABEL(BW(ei)) := MIN (e k). 

(6e) If LABEL(FW(ei)) = MAX(ek) , then 

LABEL(FW(ei)) := MIN(ek). 

(6f) If LABEL(wj) = LABEL(FW(ek)), then 

SEQNO(wi) := SEQNO(wj) + BASE(e~). 

(6g) If LABEL(wj) = MAX(e~), then 

LABEL(wj) := MIN(e k). 

In PE2,+I, if e~ arrives, then let MIN(ei) be the minimum of LABEL(FW(ei)) 
and LABEL(BW(ei)), MAX(el) be~the maximum of LABEL(FW(ei)) and 
LABEL(BW(e,)), and BASE(e~) be SEQNO(BW(e~)). 
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P~ P~ P~4 P~ P~ 

t--I 

t=2 

(1,2,3) 

111 
<2, 3> 

<2,3> 
A 
A 
A 

! ( 1 , 2 , 3 )  

1 <213> 

(4,1,2) 

<411> <112> 

(2,3,4) 
3 1 

<2,3> <3,4> 

(3,4,1) 

411 
<3,4> <4, 1> 

(3, 2, 1) 

5 <211> 

(4, 1,2) 

<4, 1> <1,2> 

<2, 3> 
A 
I 
1 

(2,3,4) 

3 1 

2,3> <3,4> 

(3,4, 1) 

<314> <4:1> 

(3,2,1) 

<2, 1> 

t-~ 

t=4 

t ~  

(1,2,3) 

1 <213 > 

<3,4> 
A A 
A 

(1,2,3) 

111 
<2, 3> 

( 1 , 2 , 3 )  

111 
<2,3> 

(4,1,2) 

<411> 1 <1,2> 

(4,1,2) 

<411> 1 <1,2> 

<2,4> 
A 
A 
A 

(4,1,2) 

<411> <1:2, 

(2,3,4) 

311 
<2,3> <3,4> 

<2, 3> 
A 
1 
1 

(2,3,4) 

311 
<2, 3> <3, 4> 

(3,4,1) 

411 
<3, 4> <4, 1> 

(3,4,1) 

<2, 3> 
3 
1 
1 

(3,2, 1) 

<2, 1> 

. ( 3 , 2 , 1 )  

<2, 1> 

I 
(2,3,4) 

<2:3> <3:4> 

<3,4> 
A 
A 
A 

(3,4,1) 

4 1 

<3,4> <2,1> 

(3,2, 1) 

<21i> 
<2,3> 

3 
1 
1 

t=6 

(1,2,3) (4, i,2) (2,3,4) 

<2,3> <4, 1>[<1,2> <2,3> <3,4> 

(3,4,1) 

<3,4> 
A 
3 
1 

( 3, 2, 1) 

5 <211 > r 
<2, 3> 

3 
1 
1 

t=7 

(1,2, 3-) (4,1,2) 

1 I 1 <411 > 1 <2,3> <1,2> 

(2,3,4) 

<213> 1 <3,4> 

(3,4, 1) 

<3:4> <4:1> 

(3,2, 1) ~[1 
~,1> 

<3,4> <2,3> 
4 1 
3 3 
1 3 

1 

t=8 

(1,2,3) 

111 
<2,3> 

( 4 , 1 , 2 )  (2,3,4) 

e,3> <3,4> 

(3,4,1) 

<314> <411> 
<2,3> 

1 
3 
3 
1 

(3,2, 1) 

<3,4> 
4 
1 
2 

FIG. 10. An example of the sequencing process. 
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t ~  

t =10 

t =11 

(1,2,3) (4,1,2) 

(1,2,3) (4,1,2) 

<2,3> 
1 
3 
3 
1 

(1,2,3) (4,1,2) 

3> 2>: 
<2 ,3>  

1 
3 
3 
] 

(2,3,4) 

<213> <314> 
<2, 3> 

1 
3 
3 
1 

(3,4,1) 
<314> <411, 

(3, 2, 1) 

<2, 1> 
<3,4>  

1 
4 
4 
2 

(2 ,3 ,4)  

<213> <314> 

( 2 , 3 , 4 )  

<3, 4> 
1 
4 
4 
2 

( 3 , 4 , 1 )  

411 
<3,4> <4, 1> 

<3,4> 
1 
4 
4 
2 

(3, 4, 1) 

<314> <411> 

(3,2,1) 

<2, 1> 

( 3, 2, 1) 

'<1,2> 

t =12 

(1,2,3) 

1 <21, 3> 

(4,1,2) 

2 <112 > <4, I> 
<3,4> 

1 
4 
4 
2 

( 2 , 3 , 4 )  

o: 
(3,4,1) (3,2,1) 

5 t<2111 > 

t~3  

t =14 

(1,2,3) 

1 <213 > 

<3,4>I 
1 
4 
4 
2 

(1,2,3) 

1 <213 > 

(4,1,2) (2,3,4) (3,4,1) (3,2,1) 

(4,1,2) 
<4;1> <12> 

( 2 , 3 , 4 )  ( 3 , 4 , 1 )  

<21~"> <374> <314> <411-~ 

( 3, 2, 1) 

<2, 1> 

FIG. lO--Continued 

Now,  let us consider a simple example as shown in Fig. 10. There are five wedges 
in the systolic array. Initially, the label of the wedge in PEg is i and the sequence 
number of each wedge is 1. Since (1, 2, 3) and (3, 2, 1) are the first wedges of regions, 
their back edges are set to null in Step 2. 

When Step 3 is completed, the wedges have the same label if and only if they are 
in the same region. And, each wi, j for i = 1 to m and j = 1 to [R i I, have sequence 
number j.  Then we can apply a sorting process on the set of wedges wl, w 2 . . . .  , w2, 



242 SHIH, LEE, AND YANG 

in the systolic array according to the following n~es: 

(7a) w i < wj, if LABEL(wi) < LABEL(wj). 

(7b) w~ < wj, if LABEL(wi) = LABEL(wj) and 

SEQNO(w~) < SEQNO(wg). 

(7c) w~ > wj, otherwise. 

The above sorting process is the main task of Step 4. We can use the odd-even 
transposition sort [Baud 78, Knut 72] and zero-time sorter to accomplish the sorting 
process. When the sorting process completed, the wedges in the systolic array are in 
the following sequence: wx,1, Wl,2, . . . , Wl, IRxl , W2,1, W2,2, . . . , W2,1R21 , . . . ,  Wrn,1 , 

Wrn,2 , . . . ,  Wm, iRml , where wi, i and wi, j+ 1 are contiguous, for i = 1 to m and j = 1 to 
IR~I and Wi, ig,i and wi, 1 are also continuous, for i = 1 to m. 

Since there are 2n wedges output from phase one, the phase two algorithm needs 
O ( n )  processing elements. In O ( n )  time steps all of the directed edges can be fed 
into the systolic array, move forward and backward, and, finally, leave the systolic 
array. So, the time complexity of the phase two algorithm is O(n) .  

6. CONCLUSIONS 

In this paper, we showed how a systolic algorithm can be constructed to extract 
all regions of a planar graph. We believe that the techniques developed in this 
research can be used to develop a systolic algorithm to solve the polyhedra 
congruity problem discussed in [Sugi 84]. We are presently working on this research 
and we hope that we can report progress in the near future. 

In the process of demonstrating the practical value of our region extraction 
algorithm we found another interesting research topic. That is, how are we going to 
put a label, say a 2-digit integer into a region appropriately. We should put this 
integer inside the region without touching the sides of the region and it should be 
close to the center as much as possible. We are also working on this research topic. 
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