Chapter 4

Improvement of TaSi_xN_y Barrier Property by Post-Deposition Plasma Treatment and Thermal Annealing

4.1 Introduction

There have been a number of reports in the literature regarding the post-deposition treatments on diffusion barrier for the improvement of barrier property against Cu diffusion, such as N2-plasma and O2-plasma treatments [33] and N₂-thermal-annealing [34] on Ta-based diffusion By a N₂-plasma-treatment and/or N₂-thermal-annealing process, barrier. a nitrogen-rich thin layer is formed at the surface of the diffusion barrier and the grain boundaries of the diffusion barrier would be stuffed with nitrogen atoms, resulting in efficient suppression of the diffusion of Cu Moreover, the localized defects can also be healed at the same atoms. time during the N_2 -thermal-annealing process. In this chapter, we investigate the improvement of the barrier capability of the TaSi_xN_y layer by N_2 -thermal-annealing and/or N_2 -plasma-treatment on the surface of the barrier layer. The barrier layer used for the post-deposition treatment was $TaSi_xN_v(15\%)$, which exhibited the best barrier property among the various $TaSi_xN_y$ barrier layers that we studied in Chapter 3. For the samples of the $TaSi_xN_y(15\%)$ barrier receiving different post-deposition treatments, the following nomenclature is used: $TaSi_{x}N_{y}(A)$ stands for the barrier layer treated by N₂-thermal-annealing,

TaSi_xN_y(B)stands for the barrier layer treated by N₂-plasma, and TaSi_xN_y(C)stands for the barrier layer treated by N₂-thermal-annealing followed by N₂-plasma-treatment. The N₂-thermal-annealing was performed in N₂ ambient at a temperature of 500°C for 30min, while the N₂-plasma-treatment was performed for 10min with a plasma power of 150 watts at a gas pressure of 385 mTorr with N₂ flow rate of 200 sccm and at a substrate temperature of 100°C.

4.2 Property of TaSi_xN_v after Post-Deposition Treatment

Table 4-1 shows the composition of $TaSi_xN_y(15\%)$ after various post-deposition treatment determined by RBS analysis. Compared to the as-deposited sample, the post-deposition-treated samples all showed significant increase in nitrogen content. The sheet resistance change versus annealing temperature for the three post-deposition treated $TaSi_xN_y/Si$ samples is illustrated in Fig. 4-1. It is notable that the as-prepared samples stand for any of the post-deposition-treated $TaSi_{x}N_{y}(15\%)/Si$ samples before they were subjected to thermal annealing. It can be seen from Fig. 4-1 that 400° C annealing resulted in about 15% decrease in Rs, whereas the samples all exhibited a good thermal stability from 400 to 800° C. Figure 4-2 shows the XRD spectra for the as-prepared and 800°C-annealed TaSi_xN_v(A)/Si and TaSi_xN_v(C)/Si samples. It is apparent that the amorphous state of both as-prepared samples remained unchanged after annealing at temperatures up to 800°C. The surface morphology of the as-prepared and $800 \,^\circ C$ -annealed TaSi_xN_v(A)/Si samples, as shown in Fig. 4-3, reveals that the

TaSi_xN_y(A) film annealed at 800°C still retained a very smooth surface morphology of nanostructure phase in consistent with the result of XRD analysis (Fig. 4-2).

4.3 Electrical Measurements

Figure 4-4 shows the statistical distributions of reverse bias leakage current density measured at -5 volts for the Cu/TaSi_xN_v(A)/p⁺-n, $Cu/TaSi_xN_y(B)/p^+-n$ and $Cu/TaSi_xN_y(C)/p^+-n$ junction diodes annealed at The Cu/TaSi_xN_v(A)/ p^+ -n junction diodes, in various temperatures. which the barrier layer had been treated by N₂-thermal-annealing, were able to sustain a 30min thermal annealing at temperatures up to 500° C without causing degradation to the diodes electrical characteristics [Fig There is a 50°C improvement in thermal stability over the 4-4(a)]. $Cu/TaSi_xN_y/p^+$ -n junction diodes whose barrier was not treated by the N₂-thermal-annealing [Fig. 3-4(c)]. The Cu/TaSi_xN_y(B)/ p^+ -n junction diodes, in which the barrier layer had been treated by N₂-plasma, were able to remain stable at temperatures up to 550°C [Fig. 4-4(b)], a further $50\,^\circ\!\mathrm{C}$ improvement over the diodes with $N_2\text{-thermal-annealed}$ barrier layer. When we combined the two post-deposition treatments on the surface of the barrier layer, the resultant $Cu/TaSi_xN_v(C)/p^+$ -n junction diodes were able to retain the integrity of their electrical characteristics up to a temperature of 600° [4-4(c)], indicating the superiority of the double-treated $TaSi_xN_v(C)$ barrier layer. It is apparent that the barrier capability of the TaSi_xN_y barrier layer can be efficiently improved by performing a certain post-deposition treatment on the surface of the

barrier layer, and that the N₂-plasma-treatment is more efficient in improving the barrier capability than the N₂-thermal-annealing. Moreover, the combined post-deposition-treatment of N₂-thermal-annealing followed by N₂-plasma-treatment resulted in the most efficient TaSi_xN_y(C) barrier layer, which revealed a 150 °C improvement compared with the as-deposited TaSi_xN_y barrier layer.

4.4 Material Analyses

4.4.1 Sheet Resistance Measurements

Figure 4-5 shows the changes of sheet resistance versus annealing temperature for the Cu/TaSi_xN_y/Si samples, in which the TaSi_xN_y barrier had been separately treated with three different post-deposition treatments. After annealing at 400°C, the approximate 80% decrease in Rs for all samples is presumably due to the sputter induced damage recovery of the Cu electrode. Then, the Rs of all samples remained nearly constant up to around 750°C, which is a 50°C improvement over the barrier without the post-deposition treatment. Upon annealing at 800°C, the sample with a barrier layer of TaSi_xN_y(A) exhibited a remarkable increase in Rs, while the sample with a barrier layer of TaSi_xNy(A) showed only a slight increase in Rs, whereas the Rs of the sample with a barrier layer of TaSi_xNy(A), while the TaSi_xNy(C) showed no obvious change. This indicates that the barrier capability of the TaSi_xNy(B) is better than that of the TaSi_xNy(A), while the TaSi_xNy(C) layer has the best barrier property against Cu diffusion.

4.4.2 XRD Analyses

The XRD spectra of the Cu/TaSi_xN_v(A)/Si, Cu/ TaSi_xN_v(B)/Si and $Cu/TaSi_xN_v(C)/Si$ samples are illustrated in Fig. 4-6. All the spectra remained the same as the spectrum of the as-prepared sample for all samples annealed at various temperatures up to 750°C. After annealing at 800 °C, the Cu/TaSi_xN_v(A)/Si sample showed the appearance of Cu-silicide and Ta-silicide phases [Fig. 4-6(a)], implying that the structure of the barrier layer was seriously destroyed. Cu-silicide phase also appeared in the XRD spectrum of the 800 °C -annealed $Cu/TaSi_xN_v(B)/Si$ sample [Fig. 4-6(b)], though the intensity of the diffraction peaks was much weaker than that appeared in the $Cu/TaSi_xN_v(A)/Si$ sample. This may imply a minor reaction between Cu and Si substrate in the Cu/TaSi_xN_y(B)/Si sample in comparison with the reaction of Cu and Si substrate in the Cu/TaSi_x $N_v(A)$ /Si sample. In other words, the $TaSi_xN_y(B)$ layer has a better barrier property than the TaSi_xN_v(A) layer. As for the Cu/TaSi_xN_v(C)/Si sample, the XRD spectrum remained unchanged even after the sample was annealed at 800 °C [Fig. 4-6(c)]. The appearance of Cu-silicide and/or Ta-silicide contributed to the increase of sheet resistance as shown in Fig. 4-5, and the results of XRD analyses are consistent with those of sheet resistance measurements.

4.4.3 SEM Observation

Figure 4-7 shows the top view (surface morphology) and cross sectional view SEM micrographs for the Cu/TaSi_xN_y(A)/Si, Cu/TaSi_xN_y(B)/Si and Cu/TaSi_xN_y(C)/Si samples annealed at various temperatures. For the Cu/TaSi_xN_y(A)/Si sample, the surface

morphology remained fairly stable after annealing at temperatures up to 650° C except a minor Cu grain growth; however, cracks appeared on the surface after annealing at 700 $^{\circ}$ C, presumably due to the beginning of the Cu-silicide formation [Fig. 4-7(a)]. After annealing at 750°C, localized protrusions were clearly observed, and the cross sectional view shows a typical feature of Cu₃Si phase that the formation of Cu-silicide broke through the barrier layer and completely destroyed the Cu/barrier/Si Similar phenomena were observed for the samples of structure. Cu/TaSi_xN_v(B)/Si [Fig. 4-7(b)] and Cu/TaSi_xN_v(C)/Si [Fig. 4-7(c)] except at higher temperatures. Figure 4-8 shows the top view and oblique view SEM micrographs, with a smaller magnification, for the 800°C-annealed samples of Cu/TaSi_xN_y(A)/Si, Cu/TaSi_xN_y(B)/Si and Cu/TaSi_xN_y(C)/Si. There are many more protrusions appeared on the surface of the $Cu/TaSi_xN_y(A)/Si$ sample than the $Cu/TaSi_xN_y(B)/Si$ sample, while the number of protrusions appeared on the surface of the Cu/TaSi_xN_v(C)/Si sample is the least among the three samples investigated. From the results of SEM observation, it is also very clear that the post-deposition treatment with N₂-thermal-annealing followed by N₂-plasma-treatment is the most efficient one for improving the barrier property of TaSi_xN_y layer.

4.4.4 AES Analyses

Figure 4-9 and Fig. 4-10 show, respectively, the AES depth profiles of the Cu/TaSi_xN_y(A)/Si and Cu/TaSi_xN_y(C)/Si samples; the Cu overlayer of the samples was removed by chemical etching prior to the AES analysis. For the Cu/TaSi_xN_y(A)/Si sample, Cu atoms had diffused through the barrier layer to the Si substrate after annealing at 550° C [Fig.4-9(b)], and deep into the Si substrate after annealing at 600°C [Fig. 4-9(c)]. As for the Cu/TaSi_xN_y(C)/Si sample, Cu diffused into the barrier layer after annealing at 600°C [Fig. 4-10(b)], and diffused further to the Si substrate after annealing at 650°C [Fig. 4-10(c)], causing degradation to the devices electrical characteristics [Fig. 4-4(c)].

4.5 Summary

The barrier property improvement of the sputter deposited $TaSi_xN_y$ layer by post-deposition N₂-thermal-annealing, N₂-plasma-treatment, as well as combined N2-thermal-annealing and N2-plasma-treatment was investigated using a Cu/barrier/p⁺-n structure with electrical measurement and various techniques of material analysis. The comparative thermal stability temperatures of these diffusion barriers determined in the study of this chapter are summarized in Table 4-2. All three post-deposition treatments employed in this study attained efficient barrier property improvement of various degrees, with the N₂-plasma-treatment more efficient than the N₂-thermal-annealing. Moreover, accumulative effect of the combined N₂-thermal-annealing and N₂-plasma-treatment resulted in the most efficient improvement in barrier capability against Cu diffusion. The improvement in the diffusion barrier property may be attributed to the healing of localized defects in the reactively sputter deposited TaSi_xN_y layer by the post-deposition N₂-thermal-annealing, and the formation of a nitrogen rich layer by N₂-plasma-treatment such that nitrogen atoms in this nitrogen rich layer are stuffed into the grain boundaries and localized defects, thus obstructing the diffusion paths of Cu atoms. In addition, the thermal stability temperature determined by electrical measurement is always the lowest one compared with those determined by various techniques of material analysis. This confirms once again that the technique of electrical measurement is the most sensitive method in detecting the failure of barrier layer employed in a device structure.

Post-deposition treatment	Composition (Ta : Si : N)
None	1:1.88:0.96
N ₂ -thermal-annealing	1: 1.67: 1.50
N ₂ -plasma	1: 1.44: 1.26
$N_2\mbox{-thermal-annealing}$ followed by $N_2\mbox{-plasma}$	a 1 : 1.65 : 1.70

Table 4-1 Composition of TaSiN-based diffusion barrier with and without post-deposition treatments

Martine,

Table 4-2 Thermal stability temperature (°C) of TaSiN-based diffusion barriers in Cu/barrier/Si structure determined by electrical measurement and various techniques of material analysis.

Measurement	Diffusion Barrier			
/Analysis method	$TaSi_{x}N_{y}(15\%)$	$TaSi_xN_v(A)$	$TaSi_xN_y(B)$	$TaSi_xN_v(C)$
p ⁺ n junction diodes	450	500	550	600
Sheet resistance (Rs)	700	750	800+	800+
XRD	800	750	750	800+
SEM	600	700	750	800
AES	450	500	N/A	600

Fig 4-1 Percentage of sheet resistance change vs. annealing temperature for the three post-deposition-treated $TaSi_xN_y/Si$ samples. The $TaSi_xN_y$ layer is 100 nm in thickness.

Fig. 4-2 XRD spectra for the as-prepared and 800° C-annealed (a) TaSi_xN_y(A)/Si and (b) TaSi_xN_y(C)/Si samples. The TaSi_xN_y layers are 100 nm in thickness.

Fig. 4-3 SEM micrographs showing surface morphology of the $TaSi_xN_y(A)/Si$ sample (a) as-prepared and (b) 800°C - annealed.

Fig. 4-4 Histograms showing the statistical distribution of reverse bias leakage current density for (a) $Cu/TaSi_xN_y(A)/p^+$ -n, (b) $Cu/TaSi_xN_y(B)/p^+$ -n and (c) $Cu/TaSi_xN_y(C)/p^+$ -n junction diodes annealed at various temperatures for 30 min.

Fig. 4-5 Percentage of sheet resistance change vs. annealing temperature for the $Cu/TaSi_xN_y/Si$ samples with the $TaSi_xN_y$ layer being treated separately with three different post-deposition treatments.

Fig. 4-6 XRD spectra for (a) $Cu/TaSi_xN_y(A)/Si$, (b) $Cu/TaSi_xN_y(B)/Si$ and (c) $Cu/TaSi_xN_y(C)/Si$ samples annealed at various temperatures.

Fig. 4-6 XRD spectra for (a) Cu/TaSi_xN_y(A)/Si, (b) Cu/TaSi_xN_y(B)/Si, and (c) Cu/TaSi_xN_y(C)/Si samples annealed at various temperatures.

(a) Cu/TaSi_xN_y(A)/Si

Fig. 4-7 Top view and cross sectional view SEM micrographs for the Cu/barrier/Si samples annealed at various temperatures with a barrier layer of (a) $TaSi_xN_y(A)$, (b) $TaSi_xN_y(A)$, and (c) $TaSi_xN_y(C)$.

(b) Cu/TaSi_xN_y(B)/Si

Fig. 4-7 Top view and cross sectional view SEM micrographs for the Cu/barrier/Si samples annealed at various temperatures with a barrier layer of (a) $TaSi_xN_y(A)$, (b) $TaSi_xN_y(B)$, and (c) $TaSi_xN_y(C)$.

5.0kV 12.4mm x20.0k SE(U)

5.00um

5.0kV 12.8mm x10.0k SE(U)

2.00um

(c) Cu/TaSi_xN_y(C)/Si

Fig. 4-7 Top view and cross sectional view SEM micrographs for the Cu/barrier/Si samples annealed at various temperatures with a barrier layer of (a) $TaSi_xN_y(A)$, (b) $TaSi_xN_y(B)$, and (c) $TaSi_xN_y(C)$.

Fig. 4-8 Top view and oblique view SEM micrographs for the Cu/barrier/Si samples annealed at 800°C with a barrier layer of (a) $TaSi_xN_y(A)$, (b) $TaSi_xN_y(B)$, and (c) $TaSi_xN_y(C)$.

Fig. 4-9AES depth profiles of Cu/TaSi_xN_y(A)/Si sample (a) as-fabricated, and (b) 550° C - and (c) 600° C - annealed. The Cu-electrode was removed before the AES analysis.

Fig. 4-10 AES depth profiles of Cu/TaSi_xN_y(C)/Si sample (a) as-fabricated, and (b) 600° C- and (c) 650° C-annealed. The Cu-electrode was removed before the AES analysis.

Chapter 5

Conclusion

This thesis studies the barrier property of very thin (10-nm thickness) TaSi_xN_y barrier layer against Cu diffusion using electrical measurements on Cu/barrier/p⁺-n junction diodes as well as various techniques of material analysis. The study also includes the barrier capability improvement of the TaSi_xN_y thin layer by various post-deposition treatments, including N₂-thermal-annealing, N₂-plasma-treatment, and the combination of N₂-thermal-annealing and N₂-plasma-treatment.

The TaSi_x layer, sputter deposited using a TaSi₂ target in Ar ambient, was able to make the Cu/TaSi_x/p⁺-n junction diodes capable of sustaining a 30min thermal annealing at temperatures up to 350° C. The TaSi_xN_y layers, sputter deposited on Si substrates using a TaSi₂ target in N₂/Ar mixed ambient, were able to remain in the state of amorphism at temperatures up to 800° C, irrespective of receiving the post-deposition N₂-thermal-annealing and/or N₂-plasma-treatment. The TaSi_xN_y layer of the most efficient barrier property can be obtained by sputter deposition in a N₂/Ar mixed ambient with the N₂/Ar flow ratio of 15 to 20%. The Cu/TaSi_xN_y/p⁺-n junction diodes with this optimal 10-nm-thick TaSi_xN_y barrier layer, were able to remain thermally stable at temperatures up to 450° C.

The barrier capability of the $TaSi_xN_y$ thin layer can be improved by thermal annealing in N₂ ambient and/or N₂-plasma-treatment on the $TaSi_xN_y$ surface. For the $TaSi_xN_y(15\%)$ layer (sputter deposited in N₂/Ar

mixed ambient with the N₂/Ar flow ratio of 15%) thermally annealed at **500** ℃ for 30min, the thermally stable temperature of the Cu/ TaSi_xN_y(15%)/p⁺-n junction diodes was determined to be 500°C, which was 50 $^{\circ}$ C improvement over the TaSi_xN_y barrier layer without the N₂-thermal-annealing. With 150W N₂-plasma-treatment for 10min on the surface of the TaSi_xN_y(15%) layer, 100°C improvement over the bare $TaSi_{x}N_{y}(15\%)$ layer was obtained. Moreover, the combined post-deposition-treatment N₂-thermal-annealing of followed by N₂-plasma-treatment resulted in the most efficient barrier layer, which revealed a 150 °C improvement over the as-deposited $TaSi_xN_v(15\%)$ barrier layer. The improvement in the diffusion barrier property may be attributed to the healing of localized defects in the reactively sputter deposited TaSi_xN_y layer by the post-deposition N₂-thermal-annealing, and the formation of a nitrogen rich surface layer by N2-plasma-treatment such that nitrogen atoms are stuffed into the grain boundaries and localized defects, thus obstructing the diffusion paths of Cu atoms.

References

- [1] D. Butler, *Solid State Technol.*, **S7**, March , 1996.
- [2] B. Roberts, A. Harrus, and R. L. Jackson, *Solid State Technol.*, **G9**, February, 1995.
- [3] J. M. E. Harper, E. G. Colgan, C. K. Hu, J. P. Hummel, L. P. Buchwalter, and C. E. Uzoh, *MRS Bulletin*, 23 August, 1994.
- [4] M. T. Bohr, *IEDM Tech. Digest* (1995) p.241.
- [5] S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros, and W. A. Lanford, *Thin Solid Films*, **236**, 257 (1993).
- [6] D. H. Kim, R. H. Wentorf, and W. N. Gill, *J. Electrochem. Soc.*, **140**, 3273 (1993).
- [7] Y. S. Diamand, A. Dedhia, D. Hoffstetter, and W. G. Oldham, J. *Electrochem. Soc.*, 140, 2427 (1993).

440000

- [8] Y. Shacham-Diamand, J. Li, J. O. Olowlafe, S. Russel, Y. Tamou, and J. W. Mayer, *IEEE Microelectronics Symposium*, Piscataway, NJ (1991) p.210.
- [9] C. K. Hu, B. Luther, F. B. Kaufman, J. Hummel, C. Uzoh, and D. J. Person, *Thin Solid Films*, **262**, 84 (1995)
- [10] L. A. Clevenger, N. A. Bojarczuk, K. Holloway, J. M. E. Harper, C. Cabral, Jr., J. R. G. Schad, F. Cardone, and L. Stolt, *J. Appl. Phys.*, 73, 301 (1993).
- [11] M.-A. Nicolet, *Thin Solid Films*, **52**, 415 (1978).
- [12] J.C. Chuang, S. L. Tu, and M. C. Chen, J. Electrochem. Soc., 145, 4290 (1998).

- [13] J.C. Chuang, S. L. Tu, and M. C. Chen, J. Electrochem. Soc., 146, 2643 (1999).
- [14] S. D. Kim, S. G. Jin, M. R. Hong, and C. T. Kim, J. Electrochem. Soc., 144, 664 (1997).
- [15] S. H. Kim, D. S. Chung, K. C. Park, K. B. Kim, and S. H. Min, J. *Electrochem. Soc.*, **146**, 1455 (1999).
- [16] M. Takeyama, A. Noya, T. Sase, and A. Ohta, *J. Vac. Sci. & Technol.*, B 14, 674 (1996).
- [17] M. T. Wang, Y. C. Lin, J. Y. Lee, C. C. Wang, and M. C. Chen, J. Electrochem. Soc., 145, 4206 (1998).
- [18] S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin, and S. D. Kim, J. Electrochem. Soc., 146, 3274 (1999).
- [19] M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, and T. Ohta, *Thin Solid Films*, 286, 170 (1996).
- [20] B.S. Suh, Y. J. Lee, J. S. Hwang, and C. O. Park, *Thin Solid Films*, 348, 299 (1999).
- [21] G. S. Chen and S. T. Chen, J. Appl. Phys., 87, 8473 (1993).
- [22] E. Kolawa, P. Pokela, J.S. Reid, R.P. Ruiz, and M.-A. Nicolet, *IEEE Electron Devices Lett.*, **12**, 321 (1991).
- [23] E. Kolawa, P.J. Pokela, J.S. Reid, J.S. Chen, and M.-A. Nicolet, *Appl. Surf. Sci.*, **53**, 373 (1991).
- [24] P.J. Pokela, E. Kolawa, R.P. Ruiz, and M.-A. Nicolet, *Thin Solid Films*, 203, 259 (1991).
- [25] P.J. Pokela, E. Kolawa, R.P. Ruiz, and M.-A. Nicolet, *J. Electrochem. Soc.*, **138**, 2125(1991).

- [26] J.S. Reid, X. Sun, E. Kolawa, and M.-A. Nicolet, *IEEE Electron Devices Lett.*, 15, 298 (1994).
- [27] Y. J. Lee, B. S. Suh, S. K. Rha, and C. O. Park, *Thin Solid Films*, 320, 141 (1998).
- [28] Y. J. Lee, B. S. Suh, M. S. Kwon, and C. O. Park, J. Appl. Phys., 85, 1927 (1999).
- [29] D. J. Kim, Y. T. Kim, and J. W. Park, J. Appl. Phys., 82, 4847 (1997).
- [30] D. J. Kim, S. P. Jeong, Y. T. Kim, and J. W. Park, *Mat. Res. Soc. Symp. Proc.*, 472, 331 (1997).
- [31] C. Lee and Y. H. Shin, Mater. Chem. Phys., 57, 17 (1998).
- [32] D. Fischer, T. Scherg, J. G. Bauer, H. J. Schulze, and C. Wenzel, *Microelectron. Eng.*, 50, 459 (2000).
- [33] K. L. Ou, W. F. Wu, C. P. Chou, and C. C. Wu, J. Vac. Sci. & Technol., B 20, 5124 (2002).
- [34] J. C. Chuang and M. C. Chen, J. Electrochem. Soc., 145, 4029 (1998).

簡歷

- 姓 名:林信宏
- 性 别:男
- 出生年月日:民國六十九年五月二十五日
- 住 址:台南縣新化鎮唪口里 129-1 號
- 學 歷:

私立港明高級中學(84.9~87.6)

國立成功大學電機工程學系(87.9~91.6)

國立交通大學電子研究所碩士班(91.9~93.6)

碩士論文:

: TaSi_xN_y 薄膜對銅原子擴散之阻障特性

Barrier Properties of $TaSi_xN_y$ Thin Films against Cu Diffusion