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In this paper, a new method of autoregressive (AR) spectrum estimation is presented. It shall 
be called two-sided autoregressive spectrum estimation, because an interpolative or smoothing 
model is postulated, as opposed to the predictive (one-sided) model used in AR modeling. The 
matrix equations arising in the estimation procedures proposed in this paper exhibit a special 
structure. The exploitation of these structures leads to fast solutions that reduce the total 
number of computations by an order of magnitude compared with straightforward approaches. 
Also, special attention is directed to the constrained two-sided AR model. Simulation examples 
show higher resolution capability of the proposed method relative to the least-squares AR 
method. 

PACS numbers: 43.60.Gk, 43.85.Kr 

INTRODUCTION 

In the recent past, much attention has been given to the 
rational spectral model of a time series, and the result has led 
to the generation of a number of new algorithms (e.g., Refs. 
1-5 ). Since there exists no single "correct" technique to cal- 
culate the spectrum in the absence of knowledge about the 
type of process that has generated the data, we are forced to 
assume that the data do satisfy some classes of representa- 
tion. Once we have decided on the class, an appropriate algo- 
rithm must be selected for the calculation of the actual spec- 
tral estimate. Depending on what a priori assumptions we 
make about the underlying process and the effort we are 
willing to put forth, different approximate answers will be 
given to the problem. 

So far, most parametric methods of spectrum estimation 
have used predictive models of AR or autoregressive mov- 
ing-average (ARMA) structure to estimate the spectrum. 
For example, in AR modeling the mathematical structure is 
expressed by 

x(t) = d•x(t - 1) + d2x(t - 2) 

+ "' +d,x(t-n)+a(t), (1) 

where a (t) is a zero mean white noise process with variance 

The forward prediction errors are given by 

a(t) = x(t) -- x(t It- 1,t- 2,...,t- n), (2) 

where x (t It - 1,t - 2,...,t - n) is the best estimate in a least- 
squares sense of x (t), given x (t - 1 ),x (t - 2 ),...x (t - n ). 
Similarly, the backward prediction errors are defined as 

b(t) = x(t) - x(t It q- 1,t + 2,...,t + n). (3) 

Some predictive AR schemes that minimize the forward er- 
rors, while others minimize some combination of the for- 

ward and the backward prediction errors, have been pro- 
posed in the past (e.g., see Refs. 14 and 6-8). 

However, the linear interpolation (or smoothing) mod- 
el based on past and future values has not received much 

attention in the past. The model is postulated that a stochas- 
tic AR process depends on both past as well as future values 
of x (t). In consequence, the interpolative model proposed is 
given in the following form: 

x(t) = d•x(t - 1) + d2x(t - 2) + ..- + dnx(t-- n) 

+ d_•x(t + 1) + d_2x(t + 2) 

q- "' q- d_nx(t q- n) + a(t). (4) 

Perhaps Nuttall 9 was the first researcher to work on the fea- 
sibility of this type of model. However, at that time the mod- 
el was found to be unworkable with the procedures that he 
used. The method used to estimate the model parameters is 
the key to the performance of the spectrum analysis. The 
method used by Nuttall was based on the minimization of 
magnitude-squared error, which results in a set of normal 
equations similar to the Yule-Walker equation in AR esti- 
mates. The spectrum analysis produced by Nuttall leads to 
the following problems: ( 1 ) It yields the nonwhiteness of the 
a (t) sequences; in other words, the linear filter characterized 
by filter coefficients is not a whitening filter. As a conse- 
quence, the standard spectral formula [ see Eq. (13) ] cannot 
be used in this case, and one is compelled to express the 
spectrum in another form, which in practice would yield 
severely biased and negative estimates of the spectrum. (2) 
The method technically leads to the incorrect result that the 
minimum-error sequence is uncorrelated with all past and 
future values of the x(t), excluding those that take place at 
the same instant. 

In this paper, we examine this type of model in more 
detail and present a new algorithm for parameter estimation. 
It has been shown that better results are obtained when the 

dependence of x (t) on future and past values, rather than on 
past values only, is utilized in the model. Hereafter, this type 
of model shall be called the two-sided AR model. The key 
difference between the two types of models is that the AR 
model is based on one-sided prediction, while the two-sided 
AR model is based on interpolation. The method's develop- 
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ment is based upon some fundamental concepts of time se- 
ries analysis, which will be discussed in Sec. I. 

I. PRINCIPLES 

The autocovariance function and the spectral density 
function are interchangeable fundamental properties of a 
stationary time series. That is, given one of the two, the other 
can be found by Fourier transformation or by inverse Four- 
ier transformation. Given one of the two functions, the sta- 
tistical characteristics of the stochastic process are com- 
pletely specified up to second moments. Yet, for several 
practical applications involving prediction, optimal control, 
etc., the difference equation representation of the time series 
proves to be more convenient. Furthermore, the difference 
equation representation has great appeal in data processing 
with digital computers. For a given time series (with a given 
spectral density function), there is a multiplicity of differ- 
ence equation representations to choose from, depending 
upon the purpose and application. 

Consider the factorization of the spectral density func- 
tion 

F(co) = 1/(2rr)-•A(e-•ø')A *(e-•), (5) 

where A (e - i•o) is a rational function of e - i•o and A * ( e - io,) 
is the complex conjugate of A (e - i•o). Let A (e - •o) have the 
convergent Fourier series expansion 

A(e-i•ø)-= E hle-iøt' (6) 

Then, by Theorem 9.1 in Chap. I of Rozanov, •ø there 
exists a moving average representation of x(t), 

x(t) = • hta(t-- l), (7) 

where a (t) is an uncorrelated white noise series, 

E[a(t)a(t--l)]= 0 
if/= 0, 
otherwise. 

Let B be the backshift operator, defined by the relations 
Bx(t) = x(t -- 1 ), B -•x(t) = x(t + 1 ). Now we define the 
operator 

H(B)= •5• ht Bt. (8) 

Then, Eq. (7) may be written as 

x(t) =H(B)a(t). (9) 

Conceptually, Eq. (9) means that the series x (t) is gen- 
erated from the series a (t) by passing a (t) through the filter 
H (B). That is, a (t) is view. ed as the driving force that passes 
through filter H(B) to yield time series x(t). Here, H(B) is 
termed the two-sided discrete filter. In general, H(B) will 
perform a two-sided convolution operation that is noncausal 
in nature. 

A. Relation of the filter H(B) with the spectral factor 
A(e -',•) 

Let A (e - •o) be a rational function of e - % i.e., 

A(e -go) = [Q(e -i•ø) ]/[p(e -i•ø) ], 

where P(Z) and Q(Z) are polynomials in Z of orders p and 
q, respectively. For stationarity, the polynomial P(Z) may 
have no root on the unit circle. From Eq. (6), the ht's are the 
weights appearing in the Fourier series expansion of 
A (e - •o). We have 

1 f• - ito) e itol h I = • A(e - do 

1 f• Q(e-i•ø) e -i•tdo 2rr - • P(e- 

1 • Q(2) 21__ I dz, 2rri P(z) 
(lO) 

where z -- e •ø and c is the unit circle in the complex Z plane. 
Thus the ht's are the same as the coefficients in the Laurent 
series expansion of Q(Z)/P(Z) in an annulus containing the 
unit circle, where the function to be expanded is analytic. 
Now, referring to Eq. (8), and by the uniqueness of Laurent 
series expansions, we have 

H(B) = [Q(B)]/[P(B) ]. (11) 

Thus H(B) is a rational function of B and is obtained 

from the spectral factor A (e - •o) by substituting B = e - •o. 
Equation (11) thus establishes the relation between the 
spectral factor A(e-•') and the filter H(B). 

Characteristics of H(B) such as stationarity and causal- 
ity can be associated with constraints on the pole-zero pat- 
tern and the region of convergence (ROC). For example, if a 
given time series is causal, then the ROC for H(B) will be 
inside the innermost pole. If the time series is stationary, 

'S then the h t are absolutely summable, in which case the 
Fourier transformation of hi will converge, and, consequent- 
ly, the ROC of H(B) must include the unit circle. For a time 
series that is stationary and causal, the ROC must include 
the unit circle and be inside the innermost pole. For a time 
series that is both stationary and noncausal, the ROC must 
include the unit circle and be inside the outermost pole while 
outside the innermost pole, from which it follows that the 
ROC will consist of a ring in the Z plane that includes the 
unit circle. Corresponding to the poles outside the unit cir- 
cle, we have the filter coefficients h• for l•>0, and correspond- 
ing to the pole inside the unit circle, we have the coefficients 
ht for/<0. 

For illustrative purposes, consider the following univar- 
iate time series model: 

x( t) = ( 1 -- aB + B 2) -•a(t), (12) 

where a(t) is a white noise series with • • 1 and 
a = (1 + 42)/4 for some 141 < 1, 4 being real. Here, the 
poles of the model are B = •b- • and B = •b. By the definition 
of stationarity as given in Box and Jenkins, • for instance, 
one would consider the model (12) to be nonstationary. But 
with the introduction of two-sided filters, we will consider 
(12) to be a valid representation of a stationary time series 
that has spectral density function 

F(co) = (2rr)-ll(1-ae-i•+e-2•)-•12. (13) 
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The filter H(B) of model (12) will stand for 

1 -• H(B) -- = 
1 -- aB q- B 2 ( 1 -- qbB) (B -- 4) 
--c• 2 1 q• 1 

q- •b•B + •b•B • + '"], (14) 
so that H(B)a(t) is a well-defined random number (has 
finite variance) for all t. Obviously, the representation (12) 
of a stationary time series with spectral density function 
(13) is not a useful one for the purpose of prediction or 
forecasting. The predictive model for a time series with spec- 
tral density function (13) would be 

x(t) = [(1--•bB)2]-•b(t), (15) 

where b(t) = a(t)/•b 2 is a white noise series with variance 
•b 2 . 

The two-sided filter H(B) is not just a mathematical 
artifice, but may have meaning in terms of real world sys- 
tems, for instance, space filters. However, when t refers to 
real time, the two-sided filter will just be a mathematical 
contrivance. In this paper, the generating mechanism of a 
given time series is assumed to be noncausal. A finite dimen- 
sional, two-sided AR filter with input a(t) and output x(t), 
which results in high-resolution spectral estimates, will be 
considered. 

II. THE ESTIMATION OF THE TWO-SIDED AR MODEL 

In principle, the specified model can be obtained by 
maximum likelihood (ML) estimation, being defined as the 
parameter set D, which maximizes the conditional probabili- 
ty density function P(xlD) for the observed datax(t). How- 
ever, the maximization involves a difficult nonlinear least- 

squares problem. Thus, although the variance of the ML 
estimate asymptotically approaches the Cramer-Rao 
bound, it may be unattractive in many applications because 
of the computational burden. Instead, the approach of using 
an easy-to-implement suboptimal estimator will be pursued. 

Let a finite-order, two-sided AR model be expressed as 

dox(t) =dlX(t-- 1) + d2x(t--2) + '--+ d,x(t-n) 

+ d_lX(t + 1) + d_2x(t + 2) 

+ '" + d_,x(t+ n) + a(t). (16) 

The orders of the dependence of x (t) on the future and past 
values are restricted to be equal to n in our discussion. Note 
that we may, without loss of generality, assume that do = 1. 

The two-sided AR model in (16) with do = 1 may be 
written as D(B)x(t) = a(t) and, alternatively, 

_ a(t) _ • hiBia(t) = • hia (t-- i), x(t) D(B) •= - o• i= - o• 
(17) 

where the coefficients hi were calculated from the expansion 
of 1/D(B) in terms of an infinite series in positive and nega- 
tive powers of B. The relation between hi and di can be 

expressed as 

• midi -i=00r i midi -i= --dj, (18) 
i= --n i= --n 

i%0 

where do = 1, ho = 1, and d I j_ il = 0 for I J - il y n. 
Consider the cross-correlation function betwen the a (t) 

series and the x (t) series 

ra• , (k) = E [a(t)x(t q- k) ] 

=E a(t) • hia(t + k- (19) 

Since E[a(t)a(t + i) ] is zero whenever i•:0, we have 

rax ( k) = hkcr2•. (20) 

To obtain the estimation equations that will allow us to solve 
for the parameters, we shall have to employ a certain rear- 
rangement of the unknown parameters. This rearrangement 
will be essential in our quest to find fast algorithms of order 
n 2 in computational complexity. 

Equation (17) is rewritten as 

x(t) = d•x(t -- 1) + d_•x(t + n) 

+ d2x(t -- 2) + d_ (,_ •) 

Xx(t + n -- 1) + ... + d,x(t- n) 

+ d_ •x(t + 1 ) + a(t). (21) 

Now let us multiply each side of this equation alternatively 
by [x(t--1), x(t+n), x(t-2), x(t+n-1), ..., 
x(t - n ), x(t + 1 ) ] and take the expectations on each side. 
We then obtain the following 2n simultaneous equations: 

R(0) R(--1)R(--2)...R(--nq-1) 

R(1) R(0) R(--1)-..R(--nq-2) 

R(n -- 1) ...... R(O) 

•1 Jr(1) h 1 

L4(•) 
where 

R(i,j) = R(i--j) = [r(i-- r(i--j) r(n q- 1 +j-- i)] j-- n-- 1) r(j-- i) 

(22) 

r(i) = E [x(t)x(t -- i) ], 

/•/r = (d, d( _, + i-- 1) ), _/,,r(i) = [ r(i) r( -- n + i -- 1 ) ], 
h ir= (hi h(_,+i_ l) ). 
By multiplying both sides of Eq. (21 ) by x (t) and using Eq. 
(20), we may also get the estimated residual energy 

• =E [x(t)a(t)] = r(O) -- dlr( -- 1) -- d_,r(n) 

..... d,r( - n) -d_lr(1). 

(23) 

Proceeding in the same manner, Eq. (18) can be rearranged 
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Initial estimate of Pi 

Estimate h i 

by Eq. (22) 

2 
Estimate o 

a 

,by Eq. (21) 

Estimate P. 

by Eq. (20) 
, 

No- a 

Final P. 

FIG. 1. An algorithm for two-sided AR parameter estimation. 

to obtain the following 2n simultaneous equations: 

I D(O) 

D!I) . 
LD( n q- 1) --. 

D( -- 1)D( -- 2)-'-D( -- n q- 1) 

D(0) D(--1) D(--nq-2) 

D(O) 

(24) 

di-j di-j+n+ 1 ] ß D( i, j) = D( i --j) = di • n- I 
In practice, we do not have the exact values of the covariance 
function available, but, instead, we are only given a finite 
segment of a time series x(t). So the estimates have to be 
obtained from a finite number of data. One method of ob- 

taining unbiased estimates of the correlation values is to de- 
fine estimators, 

1 

?(i) =• ,•+ x(t)x(t-- i). (25) N it 1 

There are, of course, a number of different ways of estimat- 

ing the autocorrelation sequence from a time series x (t). For 
example, see Jenkins and Watts. 12 

The parameter estimation procedure relies on Eqs. 
(22), (23), and (24) to minimize the value of •. The algo- 
rithm is an iterative procedure in which we begin with some 
initial estimate of •i, obtained from Eq. (22) by dropping 
the second term of the right-hand member in (22), acquire 
the corresponding impulse response function by using Eq. 
(24), and estimate the residual power by using Eq. (23). 
This completes one iteration, and by applying (22) again, a 
new estimate of the/•i's is obtained. This algorithm is illus- 
trated in Fig. 1. 

The block Toeplitz equations shown in Eqs. (22) and 
(24) may be solved by ordinary matrix solution methods, 
such as Gauss elimination. These methods require computa- 
tional time of O(r/3), where n is the number of unknowns. 
However, due to the special rearrangement of the unknowns, 
the resulting equations have a regularity that may be exploit- 
ed in order to reduce the number of computations by an 
order of magnitude. The block-Levinson•3 algorithm, which 
has a computational complexity of O(n2), is presented in 
Appendix A, and may be used for that purpose. 

III. CONSTRAINED TWO-SIDED AR MODEL 

In this section, we constrain the two-sided AR model to 
have identical parameters in the forward and backward di- 
rections. The model will now be 

x(') -- d•x(t -- • ) + d2x (t 9) + ... + d X(t -- n) 

+d•x(t+ 1) +d2x(t+ 2) 

q- '" q- dnx(t q- n) q- a(t). (26) 

The assumption that the forward and backward param- 
eters are identical implies that the process is stationary. That 
is, 

r(i) -- r( - i) 

and the symmetric impulse response function hi -- h_ i. 
Let us multiply both sides of (26) by x(t--i) for 

i = 1,2,...,n and take expectations. The first equation gives 
the noise variance in terms of the parameters of the model 
and the covariances of the process as 

rr2• = r(O) -- 2d•r(1) -- 2d2r(2) ..... 2dnr(n). 
(27) 

The next n equations may be written in matrix form as 

I r(O) r(1)".r(n--1) dl r(2) r(3)'"r(nq-1) d• r'(1) 

r(1) r(0) r(n -- 2) d2 r(3) r(4) 'r(n + 2) d2 r'(2) Lr(n- 1) ß r(•) •n r(n q- 1) ' r(2n)Jn r'(n) 
where r'(i) = r(i) - hi•. Also, from Eq. (24), we obtain 

1 d• '"dn-1 
d• 1 '"dn_ 2 

dn 1 ...... 1 

hi d2 d3...dn+• 
h2 d3 d4'..dn+ 2 

dn+• ...... d2n 

hl d• 

h2 = d2 

(28) 

(29) 

153 J. Acoust. Soc. Am., Vol. 86, No. 1, July 1989 An-Chen Lee: A new autoregressive method 153 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  140.113.38.11 On: Fri, 02 May 2014 01:28:11



where dl/+;I = 0 for li +Jl > n. 
It should be noted that the same equations arise when 

we multiply both sides of Eq. (26) by x(t--i) for 
i--0,1,...,n and take expectations, due to the stationarity 
relation and the symmetric impulse response function. 

The system of equations in (28) and (29) involves the 
sum of a Toeplitz plus a Hankel matrix. It was shown in Ref. 
14 that this type of equation may be transformed to a block 
Toeplitz form, and a fast solution can be obtained (see Ap- 
pendix B). 

4. 

-4 

-6 

-e I ^1=,/56 ^e=• Fl=.4 F2=.426 

I I I I II 

0 200 400 600 800 ZOO0. 

TZHE 

40. 

'• 30. 

•' 20. 

I-- tO, 0 

03 0,0 

' : (b)' 
TXdI-I-SI]•E]• AR NETHn]• 

I F1=.402 ' 
II F2-•423 

12TH-BR]]ER ESTIMATE - 

. 

w -lO 
N 

-J -P0 

r-1-30 

Z -•-••"- ! -40 i 

0,00 0,20 0,40 0,60 0,80 1,00 
NrlRMALIZEB FREQUENCY (Hz) 

40. 

30, 

20, 

10, 
0,0 
-10 

-20 

-30 

-40 _ 
o,od 

- • LS AR METHrlI) - 
• F:,402 : 

! ! iI I ...... 

0,20 0,40 0,60 0,80 
NFIRMALIZEI] FREQUENCY (Hz) 

1,00 

FIG. 2. Spectral estimates of the time series x(n) = 
X cos(0.426 rrn) + a(n), in which [a(n) ] isa white Gaussian random pro- 
cess with variance one. (a) The time series, and spectral estimates obtained' 
by using (b) the two-sided AR method and (c) the least-squares AR meth- 
od. 

IV. NUMERICAL EXAMPLES 

The constrained two-sided AR model was implemented 
in order to test the effectiveness of the proposed method. In 
the simulated case, we try to resolve two closely spaced sinu- 
soids in the presence of white noise. Specifically, we investi- 
gate the time series generated by 

x(n) =A: cos(rrf•n +•:) + A2 cos(rrf2n +•2) +a(n) 

for 1 <n<N, (30) 

where •1 --- •2 --- 0, a (n) is a white Gaussian sequence with 
variance one, and the sinusoidal frequencies are normalized 
so that f= 1 corresponds to the Nyquist rate. The individual 
sinusoidal signal-to-noise ratios (SNRs) for this time series 

are given by 20 log (A •/x/•) for k = 1,2, where use of the fact 
that the noise a(n) has variance one has been made. Two 
cases will be considered in order to test the performance of 
the proposed spectral estimator in different noise environ- 
ments. These cases have been examined in Refs. 5 and 15, 
where the performances of many modern spectral estimators 
were empirically compared. 

A. Case h {•11: q•-•, 6:0.4 A2=x/•, f2=0.426 
In this example, the stronger sinusoid has an SNR of 10 

dB while the weaker sinusoid has 0-dB SNR. The data gener- 
ated by using relationship (30) with N -- 1024 are displayed 
in Fig. 2(a). The AIC criteria provided by Akaike 16 is 
adopted for the selection of the two-sided AR model order. 
The result obtained from the proposed method is a 12th- 
order model and is shown in Fig. 2 (b). An AR spectral esti- 
mator originated by Nuttall 9 and Ulrych and Clayton 8 inde- 
pendently and modified by Marple 4 is used for comparison, 
since it has been reported to have good behavior at low SNR 
and insensitivity to initial phase. This recursive algorithm, 
called the "unconstrained least-squares" estimator by them, 
applies the modified covariance technique to obtain the 
model coefficients by minimizing the sum of the forward and 
backward prediction error energies. The result is shown in 
Fig. 2 (c) with an order selection of 15. 

As can be seen from Fig. 2 (b) and (c), and two-sided 
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FIG. 3. Two-sided AR spectral estimate obtained using the first 128 data 
points of case I. 
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AR spectral estimator pro•vides excellent •results, with two 
sharp peaks occurring at f, = 0.402 and f2 = 0.423, 'while 
the AR estimator is unable to resolve the two frequencies in 
the low SNR environment. 

To further demonstrate the ability of the new method, 
the first 128 points of the data sequence in case I were used to 
generate a spectral estimate. The resultant 15th-order, two- 
sided AR spectral estimate obtained is shown in Fig. 3, 
where the ability•to resolve the two closely spaced sinusoids 
(•, = 0.401 and f2 = 0.432) is again evident. 
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FIG. 4. Spectral estimates of the time series x(n) = x/• cos(0.3 rrn) + 
X cos(0.35 rrn) + a(n), in which [ a( n ) ] is a white Gaussian random pro- 
cess with variance one. (a) The time series, and spectral estimates obtained 
by using (b) the two-sided AR method and (c) the least-squares AR meth- 
od. 
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B. Case II: {A•=•/•, 6=0.3 A2=•, f2=0.35 
In this example, the ability to detect more widely sepa- 

rated sinusoids in a low SNR environment (i.e., 0 dB) is 
examined. The data generated with N = 1024 are displayed 
in Fig. 4(a). The same behavior is obtained in this case 
[shown in Fig. 4(b) ], where the resolution of frequencies is 
also sharper, and good quality frequency estimates 
• = 0.303 andS2 = 0.346 are obtained in this low SNR envi- 
ronment. For the purpose of comparison, an AR spectral 
estimator of 12th order generated by using this data is dis- 
played in Fig. 4(c). It is apparent that the AR estimator is 
unable to resolve the two frequencies under such a low SNR 
condition. 

v. CONCLUSION 

A new autoregressive model called the two-sided AR 
model based on interpolation (smoothing) rather than pre- 
diction has been postulated; based on such a model, spectral 
estimation has been done. Simulation examples show higher 
resolution capability of the proposed method when com- 
pared with AR spectral estimation. The matrix equations 
arising in the estimation procedures proposed in this paper 
exhibit a special structure. The exploitation of these struc- 
tures leads to fast solutions that reduce the total number of 

computations by an order of magnitude compared with 
straightforward approaches. 
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APPENDIX A: FAST SOLUTION OF TWO-SIDED AR 
EQUATIONS 

In this appendix, all the matrices involved will be of 
(2 X 2) dimension, whereas the vectors will be of length 2. 
Algorithm: . 

1 •]p, = R _•(O)_r•, (1) xo=Yo = 0 - 
= 

(2) For i = 1,2,...,n -- l, do the following: 

i--I i 

(a) E•, = • R(i--j)x•, E•, = • R(i--j)y,_•, 
j=O j=l 

i--I 

(b) _e= • R(i--j)•+,, 
j=O 

(c) B,, = V•-'E,,, By = V ff 'Ey, 
Xo Xo 0 
Xl Xl Yi- • 

(d) i • ' -- ' B,,, Xi I Yl 

i • YO 
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Yi O_ x o Yi-• i • x• 

L 1 Xi 1 Yo Yo 

[/rx•--[/rx -- gyBx, [/ry•--[/ry -- gxBy , 

(e) g = VZ •[_r'(i) - _e], where _r'(i) = _r(i) - hi•a, 

P-2 P_2 • 

(f) ß •_ + g. 

/•-i L y• !i+ 1 Yo 

(3) The solution vector is given by 

(elSeL...,eS) = (a, a a,_ a _ _,, ... a_, ). 

APPENDIX B: FAST SOLUTION OF CONSTRAINED 

TWO-SIDED AR EQUATIONS 

1. Introduction of new notation 

Let A be an (n) X (n) matrix, 

A = [a_( 1),a_ (2),...,a_ (n) ] 

and 

b r= [b(1),b(2),...,b(n) ] = b r(1,n). 

We define the (n) X (n) operator matrix 

J= [_e(n)_e(n - 1) ... _e(1)], 

where _e(i) is an n X 1 vector with 1 at the ith position and 
zeros everywhere else, for i = 1,2,...,n. In other words, J has 
l's along the cross diagonal, and zeros everywhere else. The 
J matrix performs a reversal operation, such that 

AJ r = [q(n),...,q(2),q(1) ], 

Jb r= [b(n),...,b(2),b( 1 ) ] = b r(n,1). 

The effect of postmultiplication of a matrix by J is thus 
to reverse the order of the columns. Premultiplications of a 
matrix A by J reverses the order of the rows of A. Notice, 
also, that JJ = I, the identity matrix. 

Also define a (2n) X (2n) "interleaving" operator Q 
such that 

! for i = 2r, j = r, r - o, 1,...,n - 1, {Q}ij = for i = 2r + 1,j = n + r, r = 0,1,...,n -- 1, 
for all other i, j pairs. 

The effect of Q operating on a (2n) x 1 vector is to inter- 
leave the sequence in the following way' 

Q [b(1),b(2),...,b(n),c(1),c(2) .... ,c(n) ] 

= [b(1),c(1),b(2),c(2) .... ,b(n),c(n) ]. 

2. Conversion of Eq. (28) to block Toeplitz form 

Let us rewrite the system of equations in Eq. (28) as 

Td(1,n) + Hd(1,n) = _r'(1,n), (B1) 

where T is an (n)X(n) Toeplitz matrix such that 
{T}i• = r(i--j) for i,j = 1,n and His an (n) X (n) Hankel 

matrix such that {H}ij = r(i + j) for i, j = 1,n. 
We may write (B 1 ) in two different ways' 

T d(1,n ) + HJJ d(1,n ) = _r' (1,n ), (B2) 

JTJJ d(1,n) + JH d(1,n) = Jr'(1,n). (B3) 

Since T is persymmetric (symmetric around the main 
cross diagonal), it can be shown that 

and we may rewrite (B2) and (B3) as 

T HT• [•(1,n)] [•' 1,n JH = (n,1) = _' n,1 ' (B4) 
Define $ = HJ and notice that $ is Toeplitz. Since a 

Hankel matrix is symmetric, that is, H r =H and 
S r = (H J) r = jr H = JH, we therefore conclude that the 
coefficient matrix in (B4) consists of four Toeplitz matrices. 
We now apply the interleaving operation on (B4) 

d(1,n) =Q 3' (B5) Q QrQ 3(n,1) _ (n,1) 
and we may group (B5) in terms of (2) X (2) matrices: 

R(0) 

R(1) 

R(n-- 1) -" 

r'(1) 

= r'(2) 

r' ('n) 

R( -- l)---R( -- n + 1) ]2_1 
R(0) '" • t72 

ß 'n ß .- R(0) ( ) 

where 

r(i) r(n + 1 -- i) ] R(i)= r(n+l--i) r(i) , i--O,n--1, 
p_r= [d(i)d(n - i) ], i- 1,n, 
_r r = [r(i)r(n - i) ], i = 1,n. 

What we have done is to transform an ( n ) X (n) system 

of equations that involves the sum of a Toeplitz plus a Han- 
kel matrix to a (2n) X (2n) system of equations that has a 
block Toeplitz form. This will allow us to use the fast block 
Levinson algorithm to solve the equations efficiently. 
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