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摘要 

   蛋白質酪氨酸亞硫酸化酵素位於細胞內反式高爾基氏網，催化蛋白質中酪氨

酸亞硫酸化反應，為一調控細胞外蛋白質交互影響力之重要因子，且調控許多生

理上重要功能，例如：發炎作用，人類免疫系統缺乏病毒的入侵及甲狀腺機能減

退侏儒症。但因缺乏同質性蛋白質酪氨酸亞硫酸化酵素來瞭解其生化上特性，使

其在分子層級上之資訊所知甚少。在我的論文研究中，利用一凝血蛋白脢去除融

合蛋白- 轉錄延長因子，首次能夠得到同質性黑腹果蠅蛋白質酪氨酸亞硫酸化酵

素。藉由此瞭解黑腹果蠅蛋白質酪氨酸亞硫酸化酵素之酵素動力學，蛋白質四級

結構，酵素穩定度和受質調控的特性。經分子篩層析法指出於溶液下其具有兩種

結構,且在鹽與甘油的存在下得以穩定，目前已可以將其分離用於日後的研究。

在人類與黑腹果蠅蛋白質酪氨酸亞硫酸化酵素上之點突變 H269Q，H267Q並不會

影響其比活性，但在大腸桿菌內表現量大幅降低導致其總活性隨之大幅減少。而

相同的點突變被報導在家鼠上會造成侏儒症，推測可能的原因是此點突變會影響

酵素的穩定度或表現量。 
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ABSTRACT 

Protein tyrosine sulfation, mediated by tyrosylprotein sulfotransferase (TPST) that 

resides in trans-Golgi network, is a key modulator of extracellular protein-protein 

interactions and consequently regulates various physiological functions including 

inflammation, HIV infection, and hypothyroidism related dwarfism. Limited 

information at molecular level is available due to the lack of homogenous TPST for 

detailed biochemical characterization. In this study, a truncated Drosophila 

melanogaster TPST (DmTPST) was first prepared following thrombin proteolysis to 

remove NusA fusion protein. The kinetics, structure, stability, and substrate regulation 

of DmTPST were characterized. The result of gel filtration indicated that there were 

two configurations of DmTPST were simultaneously presented in the solution and 

could be isolated for future studies. DmTPST can be stabilized with salt and glycerol. 

A hypothyroidism-related mutation in DmTPST and hTPST2 did not cause any loss of 
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specific activity. However, the total TPST activity was significantly decreased 

following its expression in E. coli. Similar mutation has been reported to cause 

dwarfism in mouse. It is proposed that such mutation may affect the stability or 

expression of TPST.  
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INTRODUCTION 

Sulfation is a widespread biological reaction responsible for many important 

physiological functions, such as hormone regulation, signal transduction, viral entry, 

and molecular recognition (Kansas et al., 1996; Wang et al., 2005; Ueoka et al., 2000). 

Sulfotransferases, whose chemical reaction is somewhat similar to kinases, catalyze 

the transfer of a sulfuryl group (SO3
-) from a donor molecule, usually 

3’-phosphoadenosine 5’-phosphosulfate (PAPS), to a variety of amine and hydroxyl 

substrates as nucleophiles (Fig. 1). In vertebrates, there are two classes of 

3sulfotransferases: cytosolic and membrane-associated sulfotransferases. Cytosolic 

sulfotransferases catalyze small endogenous and exogenous compounds, such as drugs, 

steroid hormones, chemical carcinogens, bile acids, and neurotransmitters (Chapman 

et al., 2004). Membrane-associated sulfotransferases catalyze the sulfation of 

macromolecules, such as carbohydrates, peptides and proteins, and are mainly 

membrane-bound forms localized in Golgi apparatus. Although there are enormous 

amount of sulfated proteins in biological system, very little information about their 

biological functions either on metabolic pathways or physiological significances is 

available. While sulfation is vital for various physiological regulations, hydrolysis of 

sulfate esters catalyzed by arylsulfatase (ARS) also linked to many important cellular 

functions including bioactivation of endogenous compounds, cellular degradation, and 
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modulation of signaling pathways (Hanson et al., 2004). In particular, how the 

interplay between various members of sulfotransferases and ARS enzyme families 

regulates the availability and biological activity of xenobiotics and endogenous 

molecules remains poorly understood.    

Pal peptides, such as gastrin, phyllokinin, cholecystokinin, and caerulein 

(Gregory et al., 1964; Anastasi et al., 1966; Mutt et al., 1968; Anastasi et al., 1968). 

Post-translational tyrosine O-sulfation of proteins was mediated by the enzyme, 

namely tyrosylprotein sulfotransferase (TPST, EC 2.8.2.20), which localizrotein 

tyrosine sulfation was first observed by Bettelheim in bovine fibrinopeptide B in 1954 

(Bettelheim et al., 1954). The enzyme catalyzes the transfer of sulfate group to the 

hydroxyl group of a tyrosine residue to form a tyrosine sulfate ester and a 

3’-phosphoadenosine-5’-phosphosphate (PAP) from the universal sulfate donor 

adenosine 3-phosphate 5- phosphosulfate (PAPS) (Fig. 1) (Lee et al., 1983). In 1960s, 

the protein sulfation was detected as tyrosine O-sulfate in severed in trans-Golgi 

network (Lee et al., 1983). Protein tyrosine sulfation has been known to take place in 

a variety of organisms including prokaryotes and multicellular species (Lee et al., 

1983). The target proteins belong to the classes of lysosomal proteins, secretory, and 

plasma membrane, which reflects their intracellular localizations. As compared to 

phosphorylation, there is much less information in sulfation either on its biochemical 
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characterizations or biological functions. So far there are two distinct human TPSTs, 

namely hTPST1 and hTPST2, have been identified. They are in similar size (370–377 

residues) (Ouyan

Tyrosine-sulfated proteins play important roles in many physiological and 

pathological processes including hormonal regulation hemostasis, inflammation and 

infectious diseases (Moore, 2003; Kehoe et al., 2000). For the majority of these 

proteins, the specific function of protein tyrosine sulfation is not well understood 

(Moore, 2003). Tyrosine sulfation has been implicated in intracellular trafficking 

(Friederich et al., 1988) and proteolytic processing (Bundgaard et al., 1995) of certain 

secreted proteins. Many studies indicated that tyrosine sulfation is a key modulator of 

extracellular protein-protein interactions (Moore, 2003; Kehoe et el., 2000). For 

example, tyrosine sulfation on the leukocyte adhesion molecule, P-selectin 

glycoprotein ligand-1 (PSGL-1), reinforces the binding affinity with P-selectin on 

 et al., 1998) and share 66% identity in primary sequence 

(Supplementary Fig. S2). Each TPST cDNA encodes a sequence with type II 

transmembrane domain, continues with a short N-terminal cytoplasmic domain and a 

luminal catalytic domain (Moore et al., 2003). Moreover, each has six conserved 

luminal cysteine residues and two N-glycosylation sites (Mishiro et al., 2006). In 

addition, it is proposed that only one TPST gene in Drosophila melanogaster 

(DmTPST) via genomic analysis (Moore, 2003).                                                                                                                                                                                                  
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activated vascular endothelium (Wilkins et al., 1995). Also, it has been demonstrated 

that several sulfated tyrosine residues in the N-terminal domain of the chemokine 

receptor CCR5 is required for optimal binding of the chemokines RANTES, MIP-1a 

and MIP-1b (Farzan et al., 2000). Furthermore, tyrosine sulfation of CCR5, a major 

HIV-1 co-receptor, is also critical for its ability to interact with the HIV-1 envelope 

glycoprotein gp120 and mediates viral entry into host cells (Bannert et al., 2001). A 

missense mutation of a highly conserved region of the tyrosylprotein sulfotransferase 

2 (TPST-2) gene in growth-retarded (grt) mouse resulted in an autosomal recessive, 

fetal-onset, severe thyroid hypoplasia-related TSH hyporesponsiveness. It has been 

found that TPST-2 has a high degree of substrate preference for TSH receptor 

(TSHR); however, no TPST-2 activity is detected in grt-mutated mice. Consequently 

it will lead to a loss-of-function on TSH-TSHR signal transduction pathway (Sasaki et 

al., 2007). 

TPSTs have been purified from several mammalian tissues such as bovine 

adrenal medulla, rat liver, and human liver (Niehrs et al., 1990; Ramaprasad et al., 

1998; Young et al., 1990). The recombinant TPSTs from mammalian cells, Chinese 

hamster ovary cell line have also been reported (Danan et al., 2010). We developed 

the prokaryotic expression system utilizing E. coli as host to purify TPST with high 

throughput, homogeneity, and confidence. The recombinant TPST has been reported 
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to couple with the PAPS generating system to produce the desired tyrosine sulfated 

proteins (Lu et al., unpublished). However, fusion protein-free hTPST was not 

acquired because of hTPST was digested to fragment by thrombin but not that for 

DmTPST. In this study, a method using bovine thrombin protease to remove fusion 

protein was developed. Various biochemical and structural characterization of 

DmTPST were investigated. Moreover, the hypothyroidism-related mutation (H266Q) 

in mTPST2 was studied using DmTPST and hTPST2 as model. 
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MATERIALS AND METHODS 

Materials  

T4 DNA ligase, BamHI, XhoI restriction endonucleases were purchased from 

New England Biolabs (Ipswich, MA, USA). Oligonucleotide primers and peptides 

were individually synthesized by Mission Biotech Co., Ltd. (Taiwan) and Genemed 

Synthesis Inc.( San Antonio, USA). MES, Trizma base, sodium phosphate, NaCl, 

imidazole, glycerol, bovine thrombin, and pyrophosphatase were products of Sigma 

(St. Louis, MO, USA). Blue Dextran 2000, Albumin, Ovabumin, Chymotrypsinofen A, 

Ribonuclease A, Aldolase, HisTrap fastflow sepharose, Hitrap Q sepharose fastflow, 

and Sephacryl S-100HR were purchased from Pharmacia Biotech GE Healthcare 

(Uppsala, Sweden). Sodium [35S]sulfate was purchased from PerkinElmer (Boston, 

MA, USA). Cellulose thin-layer chromatographic plates were obtained from Merck & 

Co., Inc. (Whitehouse Station, NJ, USA). All other reagents were the highest grade 

and commercially available. 

Methods  

Sequence alignment and transmembrane domain analyses - The sequence 

alignment was performed by ClustalW and sorted shading by BOXSHADE server 

(http://www.ch.embnet.org/software/BOX_form.html). The residue colored in red was 
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the predicted transmembrane domain calculated by PSIPRED 

(http://bioinf.cs.ucl.ac.uk/psipred/psiform.html

Vector construction – All primers for site directed mutagenesis: sense (5' - 

ggtgctgcaccatgaggagttca - 3') and antisense (5'- TGAACTCCTCCTGGTGCAGC 

ACC - 3'). The DmTPST and DmTPST (H269Q) were subcloned into pET43a 

expression vectors. The cDNA of potential cytosolic domain (29-377) of DmTPST 

predicted above was amplified by PCR through specific primers designed to contain 

XhoI restriction site (5’-tgaagaattcgacgccgccaacgagctctcctc -3’) in the sense and the 

antisense one consisted of EcoRI restriction site (5’- 

tgccctcgagctctcccacagcattcgattggc -3’). cDNA fragment was inserted into the 

EcoRI/XhoI doubly-restriction sites and then confirmed using ABI Prism 377 DNA 

sequencer (Applied Biosystems, Foster City, CA) following the standard protocol. 

). 

Expression and purification – A single colony of BL21 (DE3) consisted of 

pET-43a plasmid with DmTPST cDNA was cultured in LB medium containing 

ampicillin at 37 oC. The 1 mM ITPG was added to induce DmTPST expression while 

the bacterium reached mid-long growth (A600 0.8-1.0) for 16 hr at 20 oC in a shaking 

incubator. The cells were harvested by centrifugation at 13400 g for 30 min at 4oC and 

the pellet was disrupted by sonication in IMAC5 buffer (50mM Tris-HCl at pH 8.0, 
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500mM NaCl, 5mM imidazole, and 10% glycerol). The Ni-NTA sepharose was used 

to purify NusA-DmTPST and further digested by bovine thrombin for 3 hours at 4 oC 

to get rid of NusA. NusA-free DmTPST was purified by Hitrap Q sepharose, and the 

protein purity was determined by SDS-polyacrylamide gel electrophoresis.  

In-gel digestion and identification by MALDI-TOF - The spots of interest were 

excised and digested in gel with trypsin according to standard procedure (Shevchenko 

et al., 1996). The digested samples were analyzed by MALDI-TOF, and the results 

were analyzed by Mascot software using NCBI and Swissprot as databases.  

Stability assay and optimal preservation – The DmTPST was treated with NaCl 

gradient (0mM, 50mM, 100mM, 150mM, 200mM) for 2hrs at 4oC , using SDS-PAGE 

electrophoresis pattern to indicate the result. To reveal the relationship between 

quaternary structure and salt stability, the DmTPST was treated with 0mMNaCl and 

500mM NaCl for 2hr, was determined by Sephacryl S-100 HR. The thermal stability 

was determined by analyzed SDS-PAGE electrophoresis pattern, DmTPST was 

incubated at 20oC and 4oC for 3 days in optimal condition (50mM Tris, 150mM NaCl, 

10%glycerol). 

Gel filtration – The quaternary structure of DmTPST, peak1 of DmTPST, peak2 

of DmTPST were analyzed by monitoring the Sephacryl S-100 HR elution pattern and 
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apparent elution volume (Ve), which was used to confirm the estimated molecular 

weight of DmTPST. The molecular weight marker was used Blue Dextran 2000 as V0 

and the calibration was consisted of albumin (67 kDa), ovabumin (43 kDa), 

chymotrypsinofen A (25 kDa), and ribonuclease A (13.7 kDa)]. Total amount of 1 mg 

DmTPST in the buffer of 50 mM Tris-HCl at pH 8.0, 150 mM NaCl, and 10% 

glycerol was injected into Sephacryl S-100 HR at a rate of 1 ml per min. The 

Sephacryl S-100 HR separated DmTPST peak1 and DmTPST peak2 was re-injected 

into Sephacryl S-100 HR to determine the relationship between two peaks. 

Furthermore, the DmTPST was completely separated by Sephacryl S-100 HR- 

Sephacryl S-200 HR joining. 

EDC crosslinking – 6µg DmTPST was treated with 50mM EDC on total volume 

20µl. at various temperatures for 2, 5 and 6 hours. The SDS-PAGE electrophoresis was 

used to analyze the result.   

Activity assay - The recombinant TPST activity was determined using the 

radiation of [35S]PAPS as donor and transferred the sulfate group to substrate, 

PSGL-1.The coupled-enzyme (hPAPSS-1 and TPST) radioactive assay was newly 

established for the measurement of TPST activity in our lab (Liu et al., unpublished). 

The standard assay was composed of 50 mM MES at pH 6.5, 5 mM 
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beta-mercaptoethanol, 4 mM inorganic [35S]SO4
2-, 1 mM MgCl2, 1 mM ATP, 120µM 

PSGL-1 peptide (ATEYEYLDYDFL), 1 µg recombinant hPAPSS-1, 1 unit (unit = 

mole product/min) pyrophosphatease and then incubated for 15 minutes at 37°C to 

generate saturated [35S]PAPS. After this pre-incubation, purified TPST was added to 

initiate the reaction of protein tyrosine sulfation for 45 minutes at 37°C in a final 

volume of 20 µl. The reactions were terminated by heating at 95°C for 2 minutes. The 

supernatant was collected and analyzed by spotting 2 µl aliquot of the reaction 

mixture onto a cellulose thin-layer chromatographic (TLC) plate and developed with 

n-butanol/pyridine/formic acid/water (5:4:1:3; by volume) as the solvent system. The 

dried plate was exposed with Kodak BioMax MR film which provided the optimal 

resolution for 35S autoradiography. For the enzyme kinetic assay, the concentration of 

PSGL-1 varied from 0.16 to 120 µM. Results of kinetic experiments were analyzed 

using nonlinear regression to fit the appropriate equation to the data. Kinetic data 

obtained from non-inhibitory experiments were individually fit to Michaelis-Menten 

Equation 1 (Cornish-Bowden, 1995). The rate constants (Km and Vmax) were obtained 

using SigmaPlot 2001, V7.0 and Enzyme Kinetics Module, V1.1 (SPSS Inc., Chicago, 

IL). Data used represent mean values derived from three determinations. 

v = V[S]/(Km + [S])                                                  (1) 
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RESULT 

High sequence alignment and homology of TPST– Through the use of the 

bioinformatic tool, we determined that hTPST2 and DmTPST shared ~56 % identity 

of sequences with a similar length (Fig. 2). The identity of sequences between 

hTPST2 and mTPST-2 was too high to reach 96 %, thus hTPST2 replaced mTPST-2 

in the hypothyroidism-related mutation experiment. 

Cloning, expression and purification of TPST – hTPST2 and DmTPST cDNA 

were subcloned to pET-43a (+) expression vectors to render the maximal soluble 

protein (Fig. 3a and Fig. 4 and Fig. 5). Although the fusion protein, NusA, facilitated 

TPST protein folding, excessive residual buildup (60 kDa) might have influenced the 

DmTPST catalysis (Fig. 3b). The NusA-TPST was divided into NusA and TPST 

owing to the thrombin digestive site between the two proteins (lane 3 in Fig. 5). Only 

DmTPST was suitable for acquiring fusion free enzymes, because hTPST2 had been 

digested by thrombin protease, but it was unsuitable for hTPST-2 (Fig. 4 and Fig. 5). 

NusA and DmTPST were separated by Hitrap Q sepharose according to differences in 

anion ion exchange (lane 4 in Fig. 4). As the purification table of DmTPST (Table 1) 

shows, there was approximately 10 % recovery and 0.6 mg homogeneous DmTPST in 

a single batch (2.5 liter LB broth cultivation). The purified DmTPST was identified by 



12 

trypsin in-gel digestion following MS analysis (Fig. 6). 

Various stability assays – DmTPST was found to be stable in the optimal buffer 

containing 50 mM Tris-base at pH 8, 200 mM NaCl, 10 % glycerol (Fig. 7a). Low salt 

concentration and absence of glycerol, contributed to the instability of DmTPST (Fig. 

6a). In addition, DmTPST was even more unstable at 20 °C than 4 °C, with the 

incubation (Fig. 6b). The protease inhibitor cocktail prevented the degradation of the 

protein from uncertain proteolytic digestion (Fig. 6b). 

Analysis of structure – Figure 9a shows two forms of DmTPST in sephacryl 

S-100 HR elution pattern, with both identified as DmTPST according to SDS-PAGE 

electrophoresis (Fig. 9b). Under non-reducing, two forms of DmTPST had equal 

migration of electrophoresis. The corresponding molecular weight of standard 

proteins related to elution volume is shown in Fig. 10 and TABLE 3, and the 

calculated values of DmTPST were similar to the theoretical molecular weight of the 

dimer and monomer of DmTPST (TABLE 4). However, the EDC treated TPST 

revealed that only the monomer form of DmTPST existed, because the EDC treated 

TPST showed only one band apparent molecular weight of TPST-36kDa (Fig. 11). 

Furthermore, the sephacryl S-100 HR- sephacryl S-200 HR were used to separate two 

structures of DmTPST (Fig. 12 and Fig. 13), and two structures of DmTPST were not 

in equilibrium with each other, as shown in Fig. 14 shown. Although sephacryl S-100 
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HR- sephacryl S-200 HR had better separation than sephacryl S-100 HR, the length of 

the two forms of TPST were wider than used. Neither forms of TPST had an effect 

under high concentrations of sodium chloride; but degradation was caused by low 

sodium chloride (Fig. 15). 

TPST activity assay – Our lab developed a coupled enzyme assay to generate 

freshly saturated [35S] PAPS, which we applied to TPST catalysis (Fig. S3). The 

catalytic efficiency of hPAPSS-1 in generating PAPS was a great deal higher than the 

TPST exhausted PAPS (Liu et al., unpublished). The sulfated peptide was separated 

by thin-layer chromatography (TLC) and probed via liquid scintillation analyzer. In a 

standard assay, 0.12 M P-selectin glycoprotein ligand-1 (PSGL1) peptide was used as 

the substrate for 1.5 µg TPST, shown in Fig. 16. For the kinetics assay the Km and kcat 

values for NusA-free DmTPST were 42.1 µM and 0.32 min-1, respectively (TABLE 

5). In addition, the catalytic efficiency (kcat/Km) of NusA-free DmTPST was similar to 

that with NusA-TPST (Wang et al., unpublished).  

Hypothyroidism-related point mutation of TPST – Previous studies showed 

that the H267Q mutation of mouse TPST-2 resulted in dysfunctional enzymatic 

activity (Sasaki et al., 2007). The detailed mechanism, however, remains unclear. 

Multiple sequence alignment revealed that the H267Q of mouse TPST-2 was highly 
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conserved among various species (Sasaki et al., 2007). The H269Q of DmTPST and 

H267Q in human TPST-2 was examined (Fig. 17). The expression profile revealed 

that the protein expression of DmTPST-H269Q and hTPST2-H267Q provided very 

little soluble protein, (TABLE 6). However, the specific activity of purified 

hTPST2-H267Q and DmTPST-H269Q was slightly less than wild type TPST, with 

few soluble enzymes (TABLE 6). This indicated that the hypothyroidism-related point 

mutation had led to an expression of less TPST, but the activity of TPST remained. 
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DISCUSSION 

It was found that only one TPST gene in Drosophila melanogaster (DmTPST) via 

genomic analysis (Moore, 2003) was found. DmTPST sequence identity compared to 

hTPST1 and hTPST2 was 57 % and 61 % respectively (Fig. 2); moreover, 

approximately 75 % of known human genes associated with disease have a 

recognizable match to the genetic code of fruit flies, and 50 % of fly protein sequences 

have mammalian analogues. Drosophila melanogaster is one of the most studied 

organisms in biological research, particularly in genetics and developmental biology.  

In previous studies, TPST was purified from mammalian tissue, or purified 

recombinant TPST from mammalian cells. However, the amount of TPST purified 

from eukaryote was too limited for the molecular based characterization to be studied. 

This was the cause of the difficulty in performing further research. Our lab developed 

an expression system utilizing E. coli as a host in the purification of hTPST-2, 

optimized to provide high throughput, homogeneity, and confidence (Lu et. al., 

unpublished). However, fusion protein free hTPST could not be acquired from fusion 

protein – hTPST, because the TPST was fragmented due to thrombin digestion. In 

contrast, DmTPST was much more tolerant of thrombin digestion than hTPST. Thus, 

according to the results of Hitrap Q sepharose separation, fusion protein free DmTPST 
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was homogenously purified through thrombin digestion and Hitrap Q sepharose 

separation. In addition, the net charge of DmTPST was weakly negative.  

The fact that NusA-free DmTPST was found to be increasingly unstable under 

low salt concentration with an absence of glycerol might be attributable to the 

disequilibrium of the salt bridges among DmTPST, which further destructs the 

architecture of peptide formation. Previous research indicated that zebrafish TPST 

activity decreased at temperatures higher than 37 oC (Emi et al., 2004). Our research 

also indicated that a protease caused TPST to degrade into fragments. The protease 

digestion level of TPST at 20 oC was more serious than it was at 4oC. 

Gel filtration analysis revealed that the truncated transmembrane DmTPST had 

two structures; perhaps TPST with two sharps or two quaternary structures. The 

non-reducing SDS-phage indicated that the covalent bond was not the reason for the 

structures, and this led to the formation of two structures of DmTPST. In addition, no 

dimer quaternary structure of TPST was found with EDC formed amide covalent 

bond between the two enzymes. Dynamic equilibrium was not observed between the 

two structures, and sodium chloride had no effect on either of them. As a result, we 

propose that DmTPST may have only monomer quaternary structures with two sharps, 

and of course, dynamic equilibrium between the two structures was not observed 

either salt effect. The function and characterization of the two sharps of the DmTPST 
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were the next issues we had to deal with.  

Hypothyroidism-related point mutation nearly leads to a different expression 

profile on DmTPST-H269Q that much less level expression on either supernatant or 

pellet of E. coli cultivation. The mutation codon, CAG, is used extensively in E. coli 

systems; therefore, the factor of codon usage in the expression system could be 

excluded. The protein expression level of hTPST2-H267Q showed a similar situation 

to that with a very less expression of protein. The enzyme activity of H267Q of 

hTPST2 however, showed no apparent difference from wild type, as shown in Table 3. 

Previous research indicated that the enzyme activity of mTPST2-H266Q had been 

eliminated (Sasaki et al., 2007). The identity of the protein sequence between human 

and mouse TPST-2 was 96 %, which might contribute to the sharp conflict. Although 

the less protein expression of the H266Q of mTPST2, might be attributed to detection 

of mTPST2 by western blot in this study (Sasaki, et al. 2007). Also, the expression 

system of mTPST2-H266Q was cell culture and that differed from ours in this research. 

The activity of mTPST2-H267Q was examined amidst contamination from cell lysate; 

therefore, the results might be questionable and insensitive for the detection of TPST 

activity.  

So far, the structure of TPST2 is still unavailable, and difficult to computationally 
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model. We use the MODELLER server to model the TPST2 with the 1xv1, the human 

sulfotransferase SULT1B1, as the template. We were able to roughly understand the 

relative structure and regulatory residue from this modeled structure. According to this 

modeled structure, the H266Q was localized at the surface of TPST and excluded from 

the active packed site as shown in the modeling of mTPST2 (Fig. S2). Up to this point, 

the possible reason that a mutation could lead to lower expression levels, might affect 

the structural stability. As a result, we proposed a pathway of hypothyroidism-related 

point mutation. A mutation on TPST may lead to structural instability of TPST, thus 

TPST would be fragmented or unable to folded TPST. This could lead to a lack of 

TPST expression decreasing sulfation on TPST substrate-TSHR. Sulfation less TSHR 

has weaker interaction with TSH, thus blocking the downstream signal transduction 

(Fig. 18).  

In this study, we were the first to purify and identify DmTPST with enzymatic 

activity. The compound stability of DmTSPT was both examined. The structure of 

DmTPST in vitro may also be determined by the existence of two sharp structures. A 

hypothyroidism-related mutation, H269Q in TPST was not competent to be 

translationally expressed, which led to a loss of activity. Further study to uncover and 

characterize the two sharp structures and the role of His-269 on mechanism will be 

investigated in detail, in future studies. 
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Figure 1. Sulfotransferases catalyzation mechanisam. Sulfotransferases catalyze the 

transfer of a sulfuryl group (SO3
-) from a donor molecule, usually 

3’-phosphoadenosine 5’-phosphosulfate (PAPS), to a variety of amine and hydroxyl 

substrates as nucleophiles, resulting in the formation of a substrates O4-sulfate ester 

and 3’, 5’-ADP (PAP). 
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Figure 2. Multiple alignment of amino acid sequences of TPSTs. Sequence 

alignment and transmembrane domain analysis of human TPST-2 (hTPST2), Mouse 

musculus (mTPST2), and Drosophila melanogaster TPST (DmTPST). The sequence 

alignment was performed by ClustalW and sorted shading by BOXSHADE server 

(http://www.ch.embnet.org/software/BOX_form.html), the sequence identity of 

mTPST2 to hTPST2 and DmTPST are 94% and 54%, individually. The black 

background indicated identity to each other and the gray one meant conserved 
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substitutions. The residue colored in red was the predicted transmembrane domain 

calculated by PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/psiform.html). The thrombin 

autolytic cleavage site was identified by FindPept and indicated as the green 

triangle (http://au.expasy.org/tools/findpept.html). 
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Figure 3. DmTPST Clone to plasmid-pET 43a (a) pET43a-DmTPST along, with 

EcoRI, XhoI, EcoRI+XhoI, respectively were by agarose gel electrophoresis (1%).  

(b) Vector pET43a, DmTPST constructed between EcoRI and xhoI restriction site. 

This figure was acquired from Merck company.  
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Figure 4. hTPST2 purification. The purification process of hTPST2 was as follows, 

1.crude extract of TPST-cultivated host bacteria; 2.Ni-NTA column purification from 

crude extract; 3.NusA-hTPST2 digested with thrombin. The red triangle indicated 

fusion protein NusA, which the molecular weight is approximate 60kDa.  
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Figure 5. DmTPST purification. Overall purification process of NusA-free 

DmTPST was as follows, 1. crude extract of TPST-cultivated host bacteria; 2. Ni-NTA 

column purification from crude extract; 3. NusA-DmTPST digested with thrombin; 4. 

purified NusA-free DmTPST by HiTrap Q column. 
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DmTPST

 

1 MRLPYRNKKV TLWVLFGIIV ITMFLFKFTE LRPTCLFKVD AANELSSQMV 

51 RVEKYLTDDN QRVYSYNREM PLIFIGGVPR SGTTLMRAML DAHPDVRCGQ 

101 ETRVIPRILQ LRSHWLKSEK ESLRLQEAGI TKEVMNSAIA QFCLEIIAKH 

151 GEPAPRLCNK DPLTLKMGSY VIELFPNAKF LFMVRDGRAT VHSIISRKVT 

201 ITGFDLSSYR QCMQKWNHAI EVMHEQCRDI GKDRCMMVYY EQLVLHPEEW 

251 MRKILKFLDV PWNDAVLHHE EFINKPNGVP LSKVERSSDQ VIKPVNLEAM 

301 SKWVGQIPGD VVRDMADIAP MLSVLGYDPY ANPPDYVKGQ SNAVGE 

 

Figure 6. The identification of DmTPST. The score of DmTPST was 198, and was 

shown as the arrow indicated. The red and bold typefaces were the peptides 

fingerprinted in the assay. Only indicated the identity or extensive homology (p<0.05), 

the vertical bars outside the shaded green region in the histogram. 
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Figure 7. DmTPST stability and optimal preserved buffer. (a) DmTPST (3.5ug) 

was incubation with different buffer (1. 50mM tris, 150mM NaCl, 2. 50mM tris, 

10%glycerol, 3. 50mM tris, 150mM NaCl, 10%glycerol) for 1hr at 4 oC. (b) DmTPST 

(2µg) was treated with NaCl gradient (1. 0mM, 2. 50mM, 3. 100mM, 4. 150mM, 5. 

200mM) for 2hrs at 4oC , using SDS-PAGE electrophoresis pattern to indicate all 

results. The red and orange triangle indicated DmTPST and DmTPST fragment, 

individually. 
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Figure 8. Thermal effect study of DmTPST. DmTPST (3.5µg) was incubated at two 

temperatures (1 and 3 at 20°C; 2 and 4 at 4°C) for 3 days in the optimal buffer, also 

number 3 and 4 was treated with protease inhibitor cocktail. Number 5 was control 

that had no any treatment for the enzyme. The red and orange triangle indicated 

DmTPST and DmTPST fragment, individually. 
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Figure 9. The quaternary structure of DmTPST. The quaternary structure of 

DmTPST (1mg) was determined by sephacryl S-100 HR in an optimal buffer, as the 

FPLC elution pattern showed that (a) two peaks (P1 and P2) were eluted at total 

volume 120ml. (b) And peak1 and peak2 were identical component- DmTPST, was 

indicated by reducing SDS-PAGE. (c) Also, peak1 and peak2 were analyzed by 

non-reducing SDS-PAGE. 
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Figure 10. The standard proteins for gel filtration analysis. A Calibration curve  

which defined the relationship between the logarithm of their respective molecular 

weights and the elution volumes of a set standard, was determined by sephacryl S-100 

HR. Using blue dextran as Vo, Ribonuclease A(15.6 KDa), Chymotrypsinofen A(19.4 

KDa), Ovabumin(47.6 KDa), Albumin(62.9 KDa),were as calibration standard. Two 

peaks of DmTPST were circle and diamond sharps, respectively. 
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Figure 11. Identification of two peaks of TPST. EDC is used to yield stable amide 

bonds between two proteins to demonstrate the interaction of two proteins. 6µg 

DmTPST was treated with 50mM EDC on total volume 20µl. (C) was the control 

which had no treatment. TPST was treated with EDC at 25oC for 2hr (1), 25oC for 5hr 

(2) and 4oC for 6hr (3). 
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Figure 12. Picture of sephacryl S-100 HR- sephacryl S-200 HR connection. For 

joining sephacryl S-100 HR and sephacryl S-200 HR, a pipe connected sephacryl 

S-100 HR and sephacryl S-200 HR with connection point 1 and connection point 2, 

individually. The sample was inputted at sephacryl S-200 HR side, and outputted at 

sephacryl S-100 HR side. The red arrow indicates the sample flow way. 
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Figure 13. Separation of two forms structure of DmTPST. DmTPST(1 mg) was 

separation to peak1 and peak2 by sephacryl S-100 HR- sephacryl S-200 HR at optimal 

buffer 120ml.The peak1and peak 2 was eluted 101ml and 117ml, individually. 
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Figure 14. The two forms structure of DmTPST. The DmTPST (a) peak 1(0.23 mg) 

and (b) peak 2(0.38 mg) was separated by sephacryl S-100 HR- sephacryl S-200 HR, 

and re-injected into sephacryl S-100 HR at optimal buffer 120ml, individually.  
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Figure 15. The influence of Sodium chloride on quaternary structure of DmTPST. 

The DmTPST treated with (a) 500mM NaCl, and (b) 0mM NaCl to determine the 

influence on quaternary structure of DmTPST, were analyzed by sephacryl S-100 HR 

at total volume 120 ml. 
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Figure 16. Reaction optimization for DmTPST. (a) TPTS activity were measured by 

monitoring the sulfated substrate-[35S]PSGL-1, which separated by thin-layer 

chromatography (TLC). . (b) With the enzyme gradient [35S]PSGL-1 was increased. 

The dash line means the optimal reaction for TPST kinetics assay, and the red and 

orange triangle indicate the [35S]PSGL-1 and [35S]sulfate, individually 
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Figure 17. The expression levels of TPST mutation and wild type. The crude 

extract (left) and Ni-NTA column purified (right) of DmTPST (wild), 

DmTPST-H269Q, hTPST2 (wild), hTPST2-H2697Q, following as the order. The 

crude extract was 20 µg and purified TPST is 2µg. The red triangle indicated that the 

NusA-TPST was approximated 102 kDa. 
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Figure 18. Possible Pathway of TPST-related Hypothyroidism. We proposed a 

pathway of hypothyroidism-related point mutation. A mutation on TPST may lead to 

structural instability of TPST, thus TPST would be fragmented or unable to folded 

TPST. This could lead to a lack of TPST expression decreasing sulfation on TPST 

substrate-TSHR. Sulfation less TSHR has weaker interaction with TSH, thus blocking 

the downstream signal transduction 

 

 

 



 
 

48 

TABLES 

Table 1. Purification table of hTPST2. 

Total protein Total activity Specific activity Yield
(mg) (nmole.min-1) (nmol.min-1.mg-1) (%)

Crude 218.5 29.0 0.3 100 

Ni-NTA column 2.7 b 6.6 2.4 a 23 

Thrombin digestion 2.7b N.D. c N.D. c N.D. c

 

TPST activity was measured as indication under” Experimental Procedure.” 

a The specific activity of TPST through Ni-NTA column was calculated without 

NusA fusion tag. 

b The total protein of TPST through Ni-NTA column showed without NusA fusion 

tag. 

c N.D. mean TPST was too fragmented to detect enzyme activity  
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Table 2. Purification table of fusion tag-free DmTPST. 

Step
Total protein Total activity Specific activity Yieldc Purificationd

(mg) (nmole.min-1) (nmol.min-1.mg-1) (%) fold

Crude extract 436.2 45 0.10 100 1 
Ni-NTA column 2.6 b 19 6.9 a 42 69 
Hitrap Q column 0.6 5 7.71 10 75 

 

a The specific activity of TPST through Ni-NTA column was calculated without 

NusA fusion tag. 

b The total protein of TPST through Ni-NTA column showed without NusA fusion 

tag. 

c Yield= total activity of product / total activity of crude extrude) * 100% 

d Purification fold=specific activity of product / specific activity of crude extract 

TPST activity was measured as indication under” Experimental Procedure.” 
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Table 3. The standard protein for gel filtration analysis 

S-100
Voa (Blue Dextran 2000)：40.83 Vtb(ml) : 120

Name MW log Vec Kavd

(standard) ( kDa ) ( MW ) ( ml )

Albumin 67 4.83 48.34 0.09 

Ovabumin 43 4.63 53.81 0.16 

Chymotrypsinofen A 25 4.40 67.07 0.33 

Ribonuclease A 13.7 4.14 77.05 0.46 
 

a The Blue Dextran 2000 (2000 kDa) was as Vo, which retention volume was 

40.83ml. 

b Vt was the volume of column volume as 120 ml.  

c Ve was the eluted volume of standard protein. 

d Kav was calculated by equation: Kav = (Ve – Vo)/( Vt – Vo).  
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Table 4. Estimated MW of two quaternary structure of DmTPST  

Name
Theoretical log Kava Apparentb

( kDa ) (MW) ( kDa )

DmTPST-P1 76.6 4.58 0.07 70.7 

DmTPST-P2 38.3 4.58 0.18 44.5 
 

a Kav was calculated by equation : Kav = (Ve – Vo)/( Vt – Vo) . 

b The DmTPST apparent molecular weight was acquired from the log(MW) and 

Kav relationship of a set standards.  
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Table 5. Comparison with kinetic constants of DmTPST and hTPST2a. 

Enzyme 

Kinetics 

kcat Km kcat/Km 

(min-1) (µM) (M-1sec-1) 

DmTPST 0.32 ± 0.013 42.1 ± 5.3 126.7 

NusA-DmTPST 0.16 ± 0.007 12.0 ± 2.5 222.2

NusA-hTPST-2 0.11 ± 0.006b 19.5 ± 3.1b 73.9b

 

a TPST activity was measured as indication under” Experimental Procedure.” 

b The kinetic constants of hTSPT-2 wild type was from Lu et al. unpublish. 
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Table 6. Purification efficient of DmTPST- H269Q and hTPST2 -H267Q. 

Type Step Total protein Total activity Specific activity Yield Purification 

(mg) (nmole.min-1) (nmol.min-1.mg-1) (%) fold

DmTPST 
Wild

Crude 436.2 45 0.1 100 1
Ni-NTA 2.6b 19 6.9a 42 69 

H269Q
Crude 373.5 0.1 0.0002a 100 1
Ni-NTA 0.5 0.1 0.2a 134 1027 

hTPST-2 
Wild

Crude 218.5 29 0.3 100 1
Ni-NTA 2.7 7 2.4 23 7 

H267Q
Crude 512.0 0.1 0.0002 100 1
Ni-NTA 1.2 0.4 0.3 330 1446 

 

a The specific activity of TPST through Ni-NTA column was calculated without 

NusA fusion tag. 

b The total protein of TPST through Ni-NTA column showed without NusA fusion 

tag. 

TPST activity was measured as indication under” Experimental Procedure.” 
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Figure S1. TPST catalytic reaction. TPST utilizes the unique sulfate donor, PAPS, 

and transfers sulfate group to tyrosine residue amongst the specific domain in 

proteins or peptides. The TPST and PAPS denote the tyrosylprotein sulfotransferase 

and 3’-phosphoadenosine 5’-phosphosulfate, respectively. This figure is supplied by 

ABD Lu- Yi Lu.  
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Figure S2. Simulation modeling of mTPST-2. We use the MODELLER server to 

model the TPST2 and use the 1xv1, the human sulfotransferase SULT1B1, to be the 

template. Overall the modeling score of this template is 0.94 and overwhelmingly 

higher than other template structures. Mostly the secondary structures are 

well-modeled and the PAP binding site is converged. This figure is supplied by 

ABD Lu- Yi Lu.  
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Figure S3. Scheme for the determination of TPST activity. The biosynthesis of 

PAPS from ATP and SO4
2- was catalyzed by PAPSS, a bifunctional enzyme contains 

ATP sulfurylase and APS kinase activities (Step A). TPST transferred a moiety of 

sulfuryl group of the saturated PAPS generated from Step A to protein acceptors (Step 

B).  
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