國立交通大學

生物資訊研究所

碩士論文

蛋白質催化位置之結構特性

On the structural characteristics of protein catalytic sites

研究生: 官慧雯 指導教授: 黃鎮剛 教授

中華民國九十八年七月

蛋白質催化位置之結構特性

學生:官慧雯

指導教授:黃鎮剛

國立交通大學生物資訊及系統生物研究所碩士班

摘 要

大量的未知功能蛋白質結構已經被解出並存放於蛋白質資料銀行 (Protein Data Bank-PDB)。因此,藉著蛋白質結構來臆測其功能也變得相當 重要。為了達成這個目標,蛋白質結構-功能關係的知識將會成為非常有用。 藉著一個有著887個已知酵素結構且有2368個催化殘基的資料集我們提出 了一個非常廣泛的分析。我們發現(i)多數的催化殘基不是有電性(charged) 就是有極性(polar); (ii)催化殘基通常座落於纏繞區(coil region); (iii)催化 位置通常較深層; (iv)催化殘基具有較低的韌性(flexibility); (v)催化位置 似乎較喜歡座落於接近蛋白質領域(domain)的中心; (vi)催化位置通常發 生在蛋白質中較緊密的地方。我們的結果也提供了蛋白質催化殘基結構特 性的資訊,這個資訊和序列保存度具有互補關係。總而言之,我們的結果 在了解蛋白質結構-功能關係上也許會有幫助。更進一步而言,這樣的結果 也許在未來預測蛋白質催化位置上能提供發展新方法的新視野。

On the structural characteristics of protein catalytic sites

Student: Huei-Wen Guan

Advisor: Dr. Jenn-Kang Hwang

Institute of Bioinformatics and Systems Biology

National Chiao Tung University

ABSTRACT

An enormous number of structures of proteins with unknown function has been solved and deposited in PDB. Hence, it becomes increasingly important to infer function directly from protein structures. To do this, the knowledge of protein structure-function relationship will be valuable. We carried out a comprehensive analysis of the dataset consisting of 887 enzymes of known structure with a total of 2368 catalytic sites. We found that (i) most catalytic residues are either charged or polar; (ii) catalytic sites are usually located on coil region; (iii) catalytic sites are usually buried; (iv) catalytic residues appear to be less flexible; (v) catalytic sites seem to prefer to be in the proximity of the centroid of the domains; (vi) catalytic sites usually occur in the compact regions of proteins. Our results also provide information of structural characterization of catalytic residues in protein, which is complementary to that sequence conservation. In summary, our results may be helpful in understanding the protein structure-function relationship. Furthermore, they may give new insight into developing novel methods for the prediction of catalytic sites in protein.

誌謝

謝謝在研究這條路上幫助我,陪伴我,指導我的所有人。還有在生活 上支持我,鼓勵我,協助我的所有人。

CONTENTS

中文摘要i
ABSTRACTii
誌謝iii
CONTENTS iv
TABLE CONTENTS
FIGURE CONTENTS vi
1. Introduction1
2. Materials and Methods
2.1 Dataset of catalytic residues3
2.2 Identification and Classification of catalytic sites4
2.2.1 Amino acid type4
2.2.2 Sequence conservation4
2.2.3 Secondary structure5
2.2.4 Relative Solvent Accessibility (RSA)5
2.2.5 B-factor
2.2.6 Centroid-model (CM)7
2.2.7 Weighted contact number model (WCN)7
3. Results and Discussion
3.1 The distribution of amino acid types in catalytic sites9
3.2 The characteristic feature profiles of catalytic residues 10
3.2.1 Sequence conservation profile10
3.2.2 Secondary structure profile10
3.2.3 Relative Solvent Accessibility (RSA) profile11
3.2.4 Rigidity profile12
3.3 The 2D-profiles of catalytic residues13
4. Conclusion
REFRENCES
TABLE
FIGURES 19
APPENDIX

TABLE CONTENTS

Table 1. The range	and the number	of proteins of each	group19
--------------------	----------------	---------------------	---------

FIGURE CONTENTS

Figure 1. The frequency of each amino acid type in catalytic sites	22
Figure 2. The histograms of the frequency between catalytic sites and all residues	23
Figure 3. Sequence conservation distributions for individual amino acid types	26
Figure 4. Secondary structure_H,S,C distributions for individual amino acid types	28
Figure 5. Secondary structure_H,B,E,G,I,T,S,U distributions for individual amino acid	
types	30
Figure 6. RSA_binary model distribution for individual amino acid types	32
Figure 7. RSA_ternary model distribution for individual amino acid types	34
Figure 8. zB-factor distribution for individual amino acid types	36
Figure 9. CM distribution for individual amino acid types	38
Figure 10. WCN distribution for individual amino acid types	40
Figure 11. The XY-plot of 2-D profile	42

1. Introduction

Enzymes play an important role in controlling and performing most life process. Therefore, understanding the characteristics of catalytic sites will help us realize how enzymes work. Most enzymes are proteins and their catalytic machinery occurs in a relatively small region.¹ The regions of an enzyme designed to directly interact with substrates, are defined as catalytic sites. The side-chain of catalytic residues are usually polar or charged¹: imidazole group of histidine, guauidinium group of arginine, amine group of lysine, carboxylate group of glutamate and aspartate, amide group of glutamine and asparagines, hydroxyl group of serine, threonine and tyrosine, and thiol group of cysteine. We consider the functions of the amino acid's side chain as the overall structure and dynamics of enzymes in catalysis.²

The first enzyme structure was the X-ray structure of lysozyme solved in 1965². Since then, a huge number of determined enzyme structures have been stored in database. Because of the Structural Genomics Project, an increasing number of structures with unknown function were deposited in the Protein Data Bank (PDB). The vast number of structures allows us to study the structure-function relationship directly from the protein structures. Then, it is still a challenging task that using only protein structures deduce catalytic sites function.

There are many previous studies identifying and predicting the catalytic sites of enzymes. First, sequence and structural similarity based methods are the most used to recognize catalytic residues in a query enzyme. For example, a number of methods ³⁻⁸ based on the observation that most catalytic sites are highly conserved in sequence and structure; Thorton et al. ^{4,5}developed a methodology, utilizing a library of 3D structural templates

formed from small number of residues to recognize catalytic sites of proteins. However, we do not have to do any sequence or structure alignment in our study. We only utilize the unique structural characteristic of enzymes to analyze catalytic sites. Then, the distinct property of large force constants associated with the catalytic residues is consistent with the recent study ^{9,10} that the catalytic residues usually have lower B-factors than noncatalytic residues. A residue with lower B-factors will be less flexible (i.e., more rigid). Ben-Shimon and Eisentein¹¹ then observed that the catalytic residues are usually located in small fractions of the exposed residues closet to the protein centroid. Some literature ^{12,13} show that the B-factor of the atom is linearly proportional to its squared distance from the protein centroid. In another word, the residues in proximity to the protein centroid will have lower thermal fluctuation or more rigid than those further residues. Besides, a recent study ¹⁴ shows that the atom's thermal fluctuations are linear inverse proportion to the protein contact number of this atom. It means that a residue has lower flexibility also more compact in structure. For all of this, catalytic sites may be able to be confirmed through these characteristic information.

According to the previous studies, catalytic sites probably have unusual features to differentiate themse¹lves from noncatalytic sites in enzyme. With these unique characteristic structural features of catalytic sites, it may enable people to understand the structure function relationship and to identify them. Since 1988, Zvelebil, M. and Sternberg, E¹⁵formed an analysis of catalytic residues in just 17 enzymes and Thornton et al. in 2002¹ analyzed only 178 structures. However, the completeness of the dataset is a major problem. Hence, in this study we will carry out the most comprehensive analysis of the protein structure properties of the catalytic sites.

2. Materials and Methods

2.1 Dataset of catalytic residues

The enzyme was taken from the Catalytic Site Atlas (CSA)-2.2.10 which original comprised 968 protein structures ¹⁶.We do not consider the structures of proteins which situate at the cell membrane, contain inter-chain catalytic residues, and exclude the main-chain functional part. Furthermore, we only consider interactions between charged, hydrophilic residues. The nonpolar residues often not directly participate to the catalysis reaction or only create the hydrophobic environment to help the polar residues to take part in the reaction. Moreover, the nonpolar residues, especially alanine, are usually mutated from the polar charged residues. It would abolish the autoproteolytic activity during protein structure determination. In addition, there has a study also show that only the 11 polar and charged residues of the 20 amino acids are generally observed to occupy directly in catalysis¹⁷. The residues of dataset in this study are defined by the previous criteria. The final dataset consists of 887 protein structures, including 2368 catalytic residues. The length distribution of our dataset was shown in Table1. The list of our dataset was shown in Appendix I.

2.2 Identification and Classification of catalytic sites

2.2.1 Amino acid type

Different amino acids apparently have various propensities to be catalytic residues. Catalytic residues are classified according to the 11 standard amino acid's three letter abbreviation, i.e., CYS, ASP, GLU, HIS, LYS, ASN, GLN, ARG, SER, THR, and TYR.

2.2.2 Sequence conservation

It is well-known that catalytic residues are highly conserved. In order to know each residue's conservation, we use the Shannon entropy¹⁸ to represent it. Here,

$$H(x) = -\sum_{i=1}^{n} P_i \log_{20} P_i$$
 (1)

where Pi is taken from the PSSM (position-specific scoring matrices) which generated by the PSI-BLAST, has 20 × L elements, where L is the length of query sequences. The base of *log* is changed to 20 so that we can get the score in a range from 0 to 1, where 0 means strict conserved.

2.2.3 Secondary structure

Secondary structure information may be helpful in realizing catalytic residues. The classification of secondary structures which we use is according to DSSP ¹⁹. DSSP is a database of secondary structure assignments for all protein entries in the Protein Data Bank (PDB). The elements describe the probabilities of each residue in three or eight states of secondary structure. The eight states structural categories followed by DSSPcont include α -helix(H), residue in isolated β -bridge(B), extended strand, participates in β -ladder(E), 3_{10} -helix(G), π -helix(I), hydrogen bonded turn(T), bend(S), and others undefined(U). We further classify these eight states into helix(H)={ H,G,I }, sheet(S)={ B,E }, and coil(C)= { T,S,U}.

2.2.4 Relative Solvent Accessibility (RSA)

The surface area is an important structural characteristic since the protein-protein interaction often happens on the surface. Besides, it has been published that catalytic residues are generally more exposed to solvent than others. Amino acid relative accessibility is the degree to which a residue in a protein is accessible to a solvent module. The relative solvent accessibility is computed by

$$\operatorname{Re} lAcc(\%) = \frac{100 \times Acc}{MaxAcc(\%)}$$
(2)

where Acc is the solvent accessibility of a residue was assigned by using the program DSSP,

given in Å² units. *MaxAcc* is the maximal accessibility for the amino acids given by B.Rost et al ²⁰. We use two models to define the residue's solvent accessibility. One is binary model which distinguish all residues into two states, *RelAcc* <16% means Buried, \geq 16% means Exposed. The other one is ternary model which distinguish all residues into three states, *RelAcc* <9% means Buried, 9-36% means Intermediate, \geq 36% means Exposed. The thresholds that we selected are the same as those in Rost and Sander ²⁰.

2.2.5 B-factor

The B-factor also called atomic mean-square displacement or temperature factor is used in condensed matter physics to describe the attenuation of x-ray scattering or neutron scattering caused by thermal motion or quenched disorder. It is used to measure residue flexibility. The B-factor of a protein is presented as $b = (b_1, b_2, b_3, ..., b_N)$, where b_i is the B-factor of C α of *i* residue taken from the PDB file; N is the total residue numbers of the protein. We normalize the B-factor by the following formula:

$$Z_i^b = \left(b_i - \overline{b}\right) / \sigma_b \tag{3}$$

where \overline{b} and σ_b are the mean and the standard deviation of the B-factor Later, we will refer it to zB-factor.

2.2.6 Centroid-model (CM)

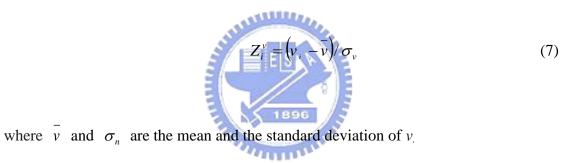
Residues contacting with catalytic site usually have more interaction with other residues, so centrality values of catalytic residues of enzyme structures are really important. It is a method which used to compute protein dynamics directly from the static protein geometrical shape without any mechanical models ¹². It based on the observation that the deeper an atom is buried inside a protein structure, the less it will fluctuate around its equilibrium position. It calculates the square of the atomic distance from the protein's center of mass. Let X_0 be the center of mass of the protein, that is, $X_0 = \sum_k m_k X_k / \sum_k m_k$, where m_k and X_k are the mass and the crystallographic position of atom k, respectively. The distance of atom *i* from the center of mass of the protein is computed by

$$r_i^2 = (X_i - X_0)(X_i - X_0)$$
(4)

where X_i is the coordinate of C α atoms of the *i* residue, and X_0 is the centroid of the protein. We will refer it as the centroid-model (CM). In order to make it easier to comparison, we normalized r_i^2 by

$$Z_i^{r^2} = \left(r_i^2 - \overline{r^2}\right) / \sigma_{r^2}$$
(5)

where $\overline{r^2}$ and σ_{r^2} are the mean and the standard deviation of r_i^2 .


2.2.7 Weighted contact number model (WCN)

The neighboring atoms would affect function of the catalytic residues. A recent study ²¹ showed that the atomic mean-square displacement (or B-factor) is closely related to the number of noncovalent neighboring atoms. Here, we will refer to this method as the protein

contact number (CN). This method can be further improved if the protein CN is scaled down by the square of the distance between the contacting pair. To consider the distance factor, a distance-dependent contact number v_i will defined by weighting the integral contact number with the factor $1/r_{ij}^2$ which is the distance between C α atoms of *i* and *j* residues.

$$v_i = \sum_{j \neq i}^{N} \frac{1}{r_{ij}^2}$$
(6)

where N is the total residue numbers of the protein. We will refer is as the weighted CN model (WCN). And, we also normalize v_i to its Z-score:

3. Results and Discussion

Detailed analyses of these unique properties were illustrated here. It was suggested that catalytic sites and all residues did differ in these characteristics.

3.1 The distribution of amino acid types in catalytic sites

We analyzed the frequency distribution of the 11 polar or charged amino acid types occurring in the catalytic sites compared with all residues in the dataset. Figure 1 shows that the amino acids who have positively or negatively charged R groups (ASP, GLU, HIS, ARG, LYS), they account for 71% of all catalytic residues, while 29% of catalytic residues are provided by the amino acids having polar R groups (SER, THR, CYS, ASN, GLN, TYR). As we already known that catalysis reaction involves the transfer of protons and electrons and charge stabilization, this result is consistent with the previous studies ²² showed that major contribution of enzyme catalysis came from electrostatic interaction.

Aspartate and glutamate residues compose 19% and 14% of all catalytic sites, respectively. It could be that their pKa values far from neutral, around 4.0, provide charges that affect other residues and the substrate. Moreover, aspatate has a shorter side chain than glutamate, making the side-chain less flexible to be easier getting involved with substrate.

We can also see the importance of histidine in enzyme from Figure 1. Histidine constitutes 18% of all catalytic sites. While it has a pKa value of 6, it is really close to neutral and can function as an acid-base or be involved in stabilizing the transition state of catalysis.

The other most commonly observed residues are the positively charged and long side-chain residues, arginine and lysine. Both of them compose about 10% of all catalytic sites. The reason for that might be that both of them have nitrogen groups in the side-chain;

hence, the side-chain of them can make more electrostatic interactions.

The polar residues are used less often, since they are uncharged in proteins. They tend to form covalent intermediates during the catalysis reaction.

3.2 The characteristic feature profiles of catalytic residues

3.2.1 Sequence conservation profile

Catalytic sites are clearly more conserved than other residues; it can be shown in Figure 2(A). The average conservation score of catalytic sites is 0.09. Since the catalytic sites in proteins are all have important function, it would not be easily substituted by other amino acids. Figure 3 shows the conservation score trend of 11 amino acids respectively. The trends of the performance of these amino acids appear to be similar.

annun h

3.2.2 Secondary structure profile

Figure 2(B) and Figure 2(C) show the secondary structure distribution of catalytic sites compared with all residues in the dataset. Catalytic sites prefer to locate on the coil regions (about 50%) than other types. On the contrary, catalytic sites not favor to occur in helix regions (only 23%). This is different from the distribution of all residues. When we use the eight states structural categories followed by DSSP, we can found out that catalytic sites are especially prefer to occur in β – ladder (E) and undefined (U) regions (Figure 2(C)).

Make it more clearly, in Figure 4 and Figure 5; we analyze the 11 amino acid individually. The catalytic sites of threonine and tyrosine have different distribution with

others; they do not often locate on β - ladder. It may because both of them have the hydroxyl group on the side-chain. Furthermore, cysteine, whose side-chain has thiol group, also not prefers to occur in β - ladder region. Oppositely, aspartate and glutatmate, who have negatively carboxyl group on the side-chain, are more prefer to locate on β - ladder regions. The remaining six amino acids have similar distribution of secondary structure.

3.2.3 Relative Solvent Accessibility (RSA) profile

Figure 2(D) and Figure 2(E) show the relative solvent accessibilities profiles of catalytic sites compared with all residues in the dataset. As we have mentioned in our method, we use binary and ternary model to analyze the distribution of catalytic sites. The 67% of catalytic sites are more buried residues in protein structures (Figure 2(D)). While in ternary model of relative solvent accessibility, only 11% of all catalytic sites are fully exposed. This result consistent with other study which shows that the catalytic site is often occurred in a large and deep cleft or cavity 23 .

We analyzed 11 amino acids respectively, as shown in Figure 6 and Figure 7. The side chain of cysteine is thiol group, surprisingly; its distribution between catalytic sites and all residues is quite different with other amino acids. The RSA trend of catalytic sites or all residues of cysteine are exceptionally similar, both of them tend to have more buried to solvent. The reason for that might because the thiol group of cysteine is the most reactive side chain found amongst the 20 naturally amino acid residues. However, the exposed frequency of catalytic sites of cysteine is unusual higher than all residues. It may due to that the side chain of cysteine is prefer to form disulfide bonds, which is a strong covalent bond and adopted in solution.

3.2.4 Rigidity profile

In this study we use three kind features (i.e., zB-factor, CM, WCN) to represent a protein structural rigidity. The B-factor is often used to measure residue flexibility, the smaller value is, and the less flexibility is. The smaller WCN value a residue is means that it locates on more crowded environment. The CM value represents whether a residue is close to its structural center or not.

Figure 2(F) compares the zB-factor of the catalytic sites with that of all residues. There are around 81% of catalytic sites with zB-factor ≤ 0 , compared with 54% of all residues. Figure 2(G) shows that the WCN of catalytic sites compared with all residues. There are around 90% of catalytic sites with WCN ≤ 0 , compared with 14% of all residues. Moreover, the CM of catalytic sites compared with all residues is shown in Figure 2(H). It should be noted that there are about 94% of catalytic sites with CM ≤ 0 , compared with 13% of all residues. No matter which feature of these three can suggest that catalytic residues tend to be more rigidity, it means catalytic sites often held in fixed place in enzyme than all residues.

However, we further shows that WCN and CM can perform a much better result than zB-factor. If we use a cutoff value ≤ 0 , the WCN and CM will contain about more than 90% of the catalytic residues. CM shows that the catalytic sites are usually closet to the protein centroid. The lower WCN means the catalytic sites tend to lie in the more packed regions than other residues do. According to our results, CM and WCN can play an expressive role in determine the catalytic sites, since the refined B-factor easily affecting by factors like temperature, crystallization conditions or structural refinement.

zB-factor, CM, WCN plots for individual amino acid types can be seen in Figure 8,9,10, respectively. The charged side-chain catalytic residues are easier to be differentiated with all residues. Nevertheless, figure 9(F)(G) and figure10 (F)(G) show that the catalytic sites of

serine and threonine, which has polar side chain, especially more prefer the environment which is more crowed and more center than tyrosine. It is reasonable that tyrosi²⁴ne needs more space for its larger side chain.

It is worth noting that, our results are consistent with previous study²⁴. Since 1894, Emil Fisher proposed that the catalytic site has a specific geometric shape that is complementary to the geometric shape of a substrate molecule. It means that enzymes are very specific, and the catalytic site of enzyme are especially less flexibility than other residues.

3.3 The 2D-profiles of catalytic residues

In order to understand the relationship between each feature, we combine any two features to plot 2D-profiles (Figure 11).

Figure 11(A) shows the relationship between conservation score and relative solvent accessibility. Figure 11(B) shows the relationship between conservation score and normalized B-factor. Figure 11(C) shows the relationship between conservation score and centriod model and figure 11 (D) shows the relationship between conservation score and weighted contact number. The conservation score and RSA in catalytic sites are usually low, but conservation score has no readily observable connection with RSA (Figure 11 (A)). However, using the zB-factor, CM, or WCN may help the conservation score to have a better discrimination between catalytic sites and all residues as shown in Figure 11 (B) (C) (D).

Next, we discuss about the relative solvent accessibility combined with other features, which are zB-factor, CM, and WCN, the values of all features tend to be low as shown in figure 11 (E)(F)(G). In this case, we might say that if a residue's RSA value lower than 0.36 (means intermediate or buried) ²⁰ and CM/WCN value lower than 0, it usually located on the catalytic sites.

It was clear that catalytic residues tend to have lower zB-factor, CM and WCN values according to our characteristics feature profile results. As using any two of them plot a XY chart, we can figure out how correlative they are. We use the same cutoff value with the characteristics feature profile that is zB-factor, CM, WCN values ≤ 0 . Figure 11 (H) shows that about 78% of catalytic sites have WCN and zB-factor ≤ 0 . When CM and zB-factor ≤ 0 , there has around 80% of catalytic sites are included (Figure 11 (I)). One notice that, when we use this threshold value (i.e., CM, WCN ≤ 0) for analyzing catalytic sites, Figure 11 (J) shows close to 90% of catalytic sites can be recognized only uses the CM and WCN features. It is proven that CM and WCN are indeed important characteristics of catalytic sites.

To sum up, sequence conservation score has no significant correlation with CM, or WCN value. The CM, or WCN are used for indicate structural rigidity. However, there are complementary relationship between structural characteristics of catalytic sites and those based on sequence conservation. We can say that using CM or WCN can distinguish catalytic residues from all residues although they are not conserved in sequence.

mann

4. Conclusion

In this work, we represent a structural analysis of enzyme catalytic sites using a dataset of 887 enzymes which was chosen from CSA. This dataset is nonredundant, but Thornton's group does not mention the sequence identity of this dataset. The conclusion that we draw from this analysis is that catalytic sites are highly conserved; they are often found in a coil region, and most of them have very limited exposure to solvent although they are polarity and charged. In addition, catalytic sites have large property to locate on the centroid of a protein and catalytic sites also tend to lie in the crowded regions. It means that catalytic sites are more rigid than other noncatalytic residues according to their low B-factor, CM, and WCN values. Interestingly, the B-factor profile did not perform as well as CM or WCN profiles. It may cause of the refined B-factor easily affecting by factors like temperature, crystallization conditions or structural refinement.

Based on all these distinct characteristics with catalytic sites may enable people to understand the structure-function relationship; furthermore, it will be helpful for predicting catalytic sites in enzymes of unknown function from protein structures.

REFRENCES

- 1. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of Catalytic Residues in Enzyme Active Sites. Journal of Molecular Biology 2002;324(1):105-121.
- Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR. Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 [angst] Resolution. Nature 1965;206(4986):757-761.
- 3. Lu CH, Lin YS, Chen YC, Yu CS, Chang SY, Hwang JK. The fragment transformation method to detect the protein structural motifs. Proteins 2006;63(3):636-643.
- 4. Torrance JW, Bartlett GJ, Porter CT, Thornton JM. Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. J Mol Biol 2005;347(3):565-581.
- Laskowski RA, Watson JD, Thornton JM. Protein function prediction using local 3D templates. J Mol Biol 2005;351(3):614-626.
- Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofanov VY, Kimmel M, Kavraki LE, Lichtarge O. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. BMC Bioinformatics 2008;9:17.
- 7. Tseng YY, Liang J. Predicting enzyme functional surfaces and locating key residues automatically from structures. Ann Biomed Eng 2007;35(6):1037-1042.
- Richard A. George RVS, Gail J. Bartlett, Alex Gutteridge, Malcolm W. MacArthur, Craig T. Porter, Bissan AI-Lazikani, Janet M. Thornton, Mark B. Swindells. Effective function annotation through catalytic residue conservation. PNAS 2005;102:12299-12304.
- 9. Yang LW, Bahar I. Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 2005;13(6):893-904.
- 10. Sacquin-Mora S, Laforet E, Lavery R. Locating the active sites of enzymes using mechanical properties. Proteins 2007;67(2):350-359.
- 11. Ben-Shimon A, Eisenstein M. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces. J Mol Biol 2005;351(2):309-326.
- 12. Shih CH, Huang SW, Yen SC, Lai YL, Yu SH, Hwang JK. A simple way to compute protein dynamics without a mechanical model. Proteins 2007;68(1):34-38.
- Lu CH, Huang SW, Lai YL, Lin CP, Shih CH, Huang CC, Hsu WL, Hwang JK. On the relationship between the protein structure and protein dynamics. Proteins 2008;76(3).

- Lin CP, Huang SW, Lai YL, Yen SC, Shih CH, Lu CH, Huang CC, Hwang JK. Deriving protein dynamical properties from weighted protein contact number. Proteins 2008;72(3):929-935.
- 15. Zvelebil MJ, Sternberg MJ. Analysis and prediction of the location of catalytic residues in enzymes. Protein Eng 1988;2(2):127-138.
- Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 2004;32(Database issue):D129-133.
- 17. Gutteridge A, Thornton JM. Understanding nature's catalytic toolkit. Trends Biochem Sci 2005;30(11):622-629.
- Strait BJ, Dewey TG. The Shannon information entropy of protein sequences. Biophys J 1996;71(1):148-155.
- 19. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
- 20. Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994;20(3):216-226.
- 21. Halle B. Flexibility and packing in proteins. Proc Natl Acad Sci U S A 2002;99(3):1274-1279.
- 22. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MH. Electrostatic basis for enzyme catalysis. Chem Rev 2006;106(8):3210-3235.
- 23. Laskowski RA LN, Swindells MB, Thornton JM. Protein clefts in molecular recognition and function. Prot Sci 1996:2438–2452.
- 24. Fischer E. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft 1894;27(3):2985 2993.

TABLE

number
8
128
262
236
108
73
31
21
10
2
8

Table 1. The length distribution of dataset

FIGURES

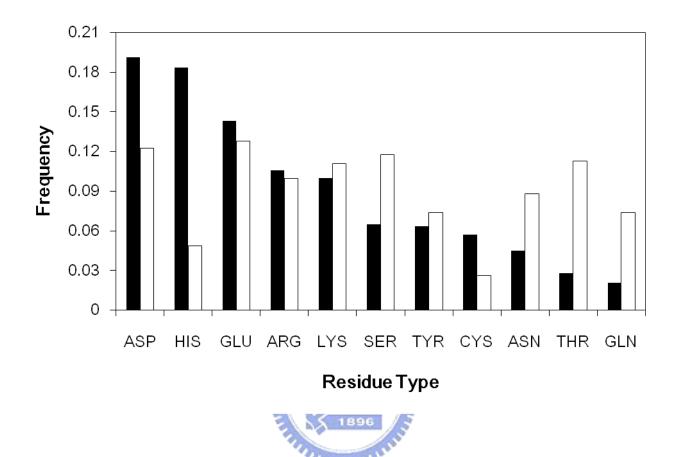


Figure 1. The frequency of polar and charged amino acid type in catalytic sites (black) compared with all residues (white).

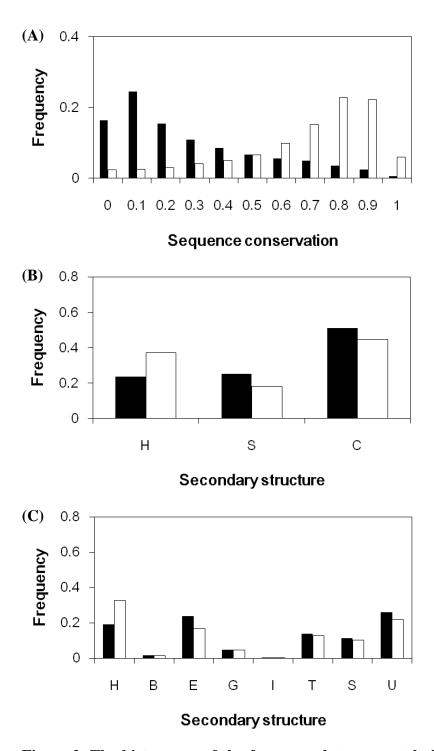
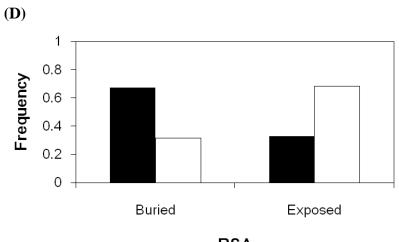
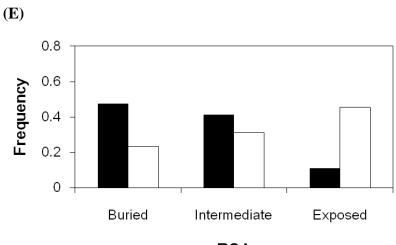




Figure 2. The histograms of the frequency between catalytic sites and all residues (A) Sequence conservation; (B) Secondary structure_Helix (H), Sheet (S), Coil (C); (C) Secondary structure_ α -helix (H), β -bridge(B), β -ladder(E), 3_{10} -helix(G), π -helix(I), hydrogen bonded turn(T), bend(S), and others undefined (U); (D) Relative Solvent Accessibility(RSA)_binary model; (E) Relative Solvent Accessibility(RSA)_tertiary model; (F) Normolized B-factor(zB-factor); (G) Weighted contact number model(WCN); (H) Centroid-model(CM).

RSA

Figure 2. (Continued)

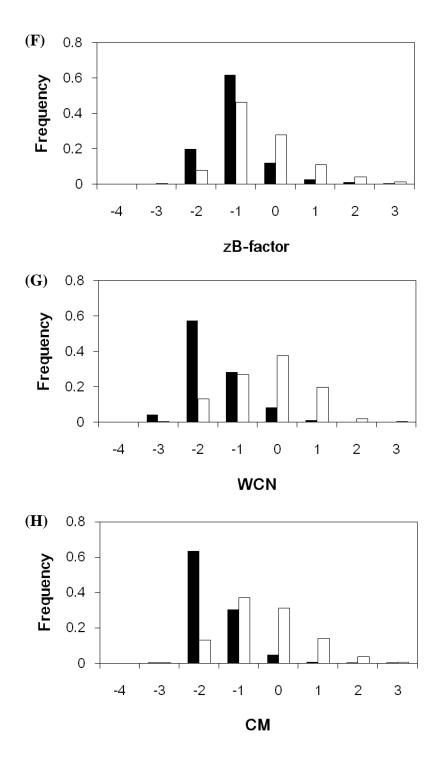


Figure 2. (Continued)

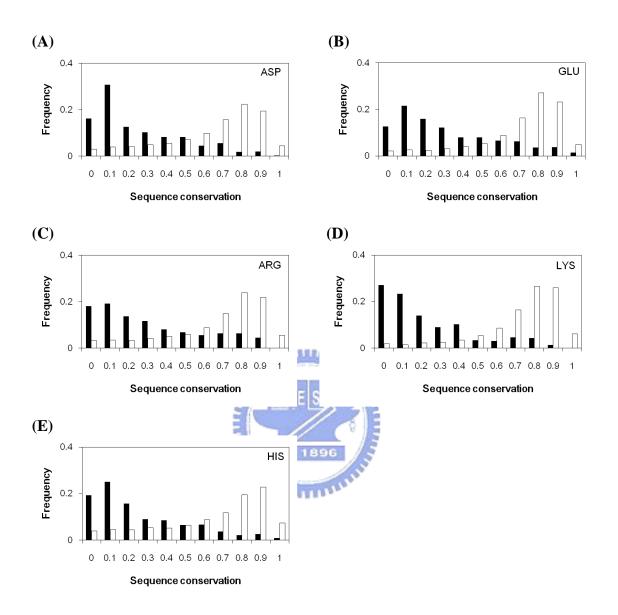


Figure 3. Sequence conservation for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

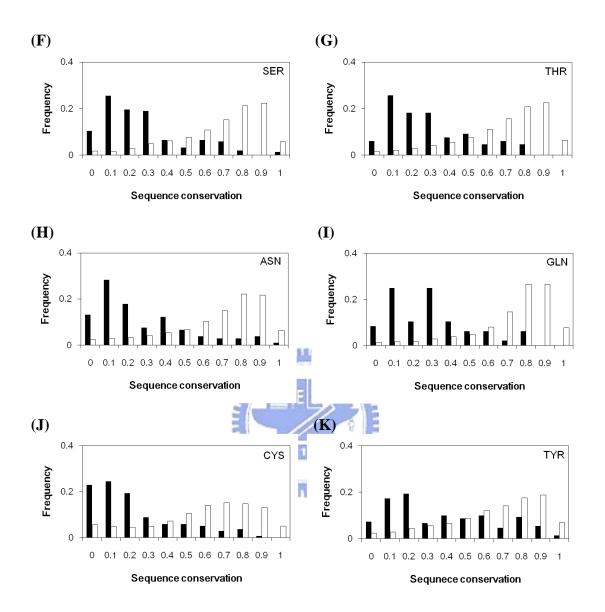


Figure 3. (Continued)

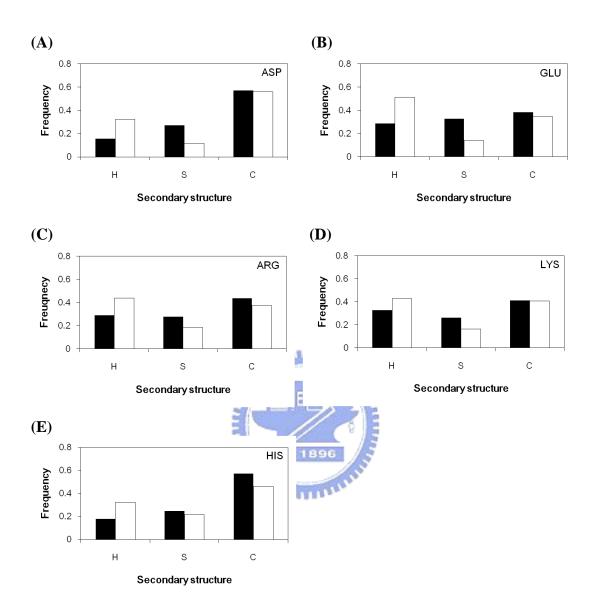


Figure 4. Secondary structure_Helix (H), Sheet (S), Coil (C) for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

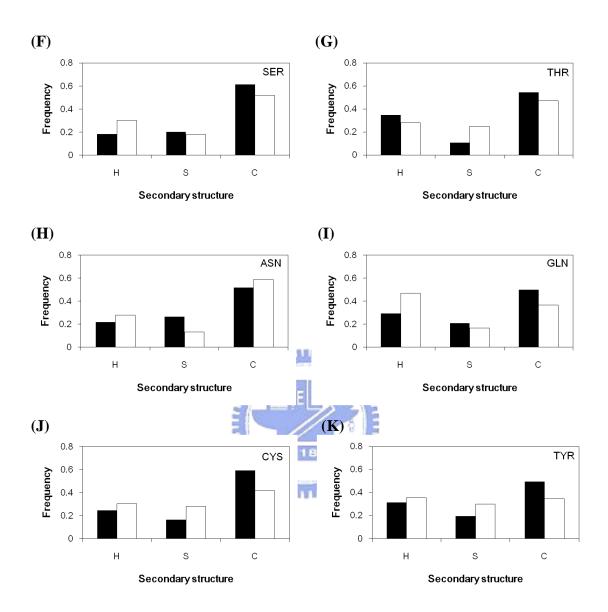


Figure 4. (Continued)

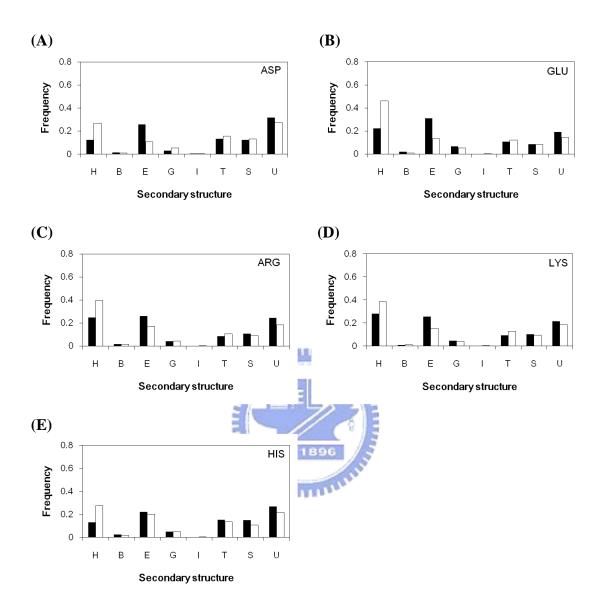


Figure 5. Secondary Structure_ α -helix(H), β -bridge(B), β -ladder(E), 3_{10} -helix(G), π -helix(I), hydrogen bonded turn(T), bend(S), and others undefined(U) for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

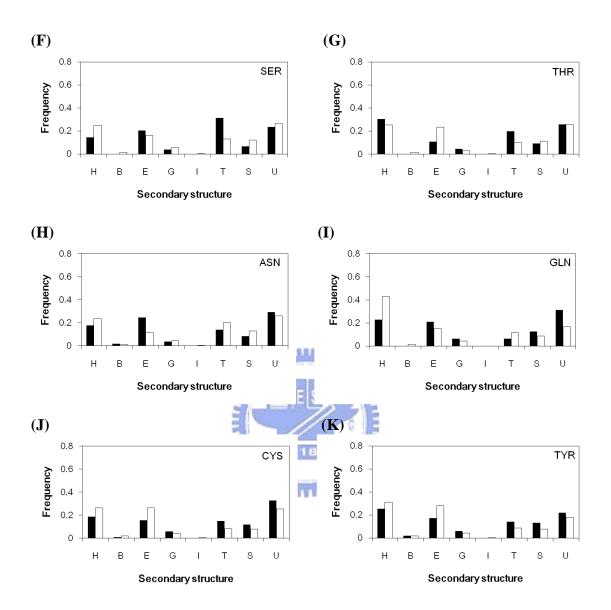


Figure 5. (Continued)

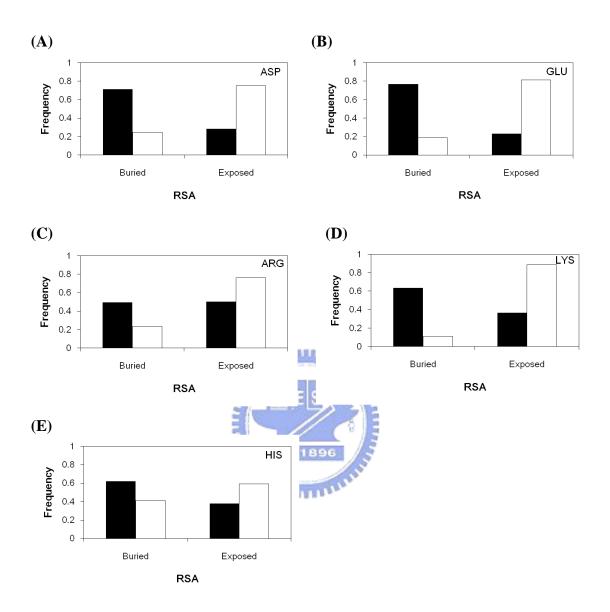


Figure 6. Relative Solvent Accessibility(RSA)_binary model for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

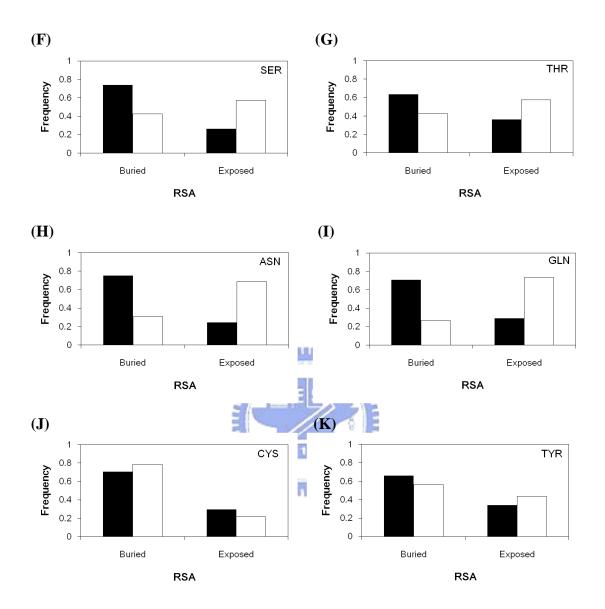


Figure 6. (Continued)

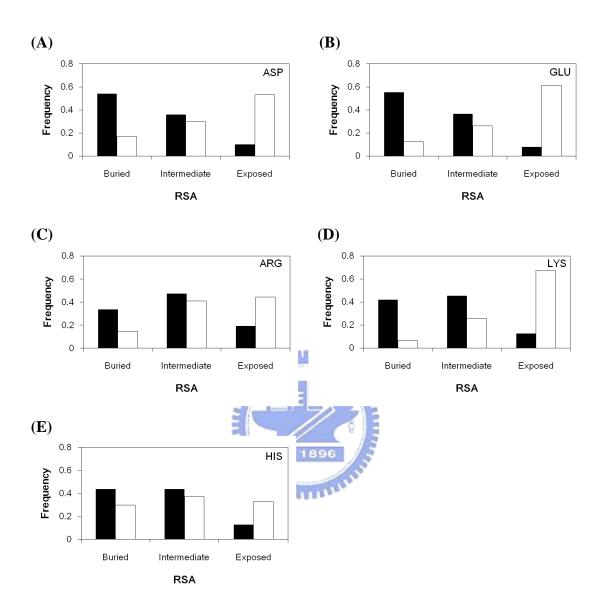


Figure 7. Relative Solvent Accessibility(RSA)_ternary model for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

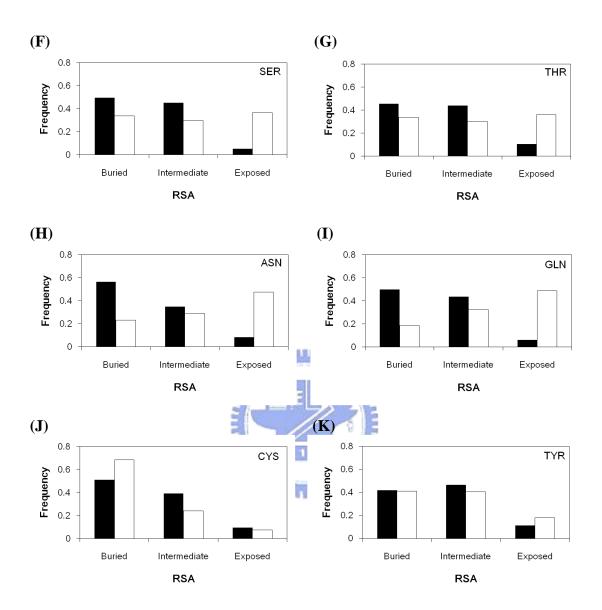


Figure 7. (Continued)

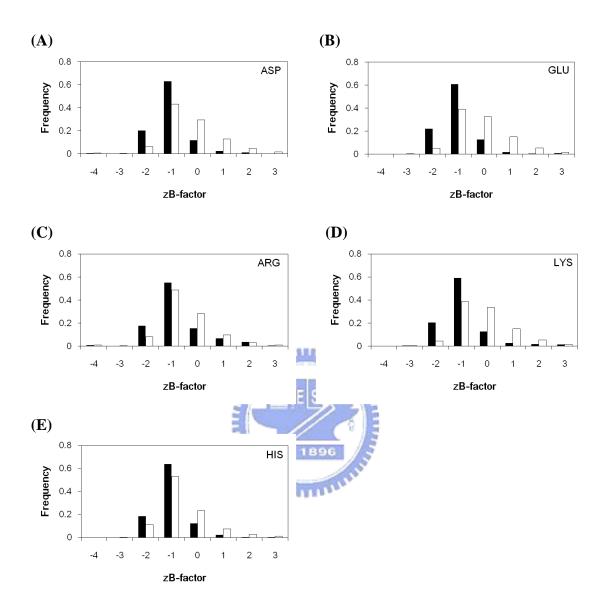


Figure 8. zB-factor for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

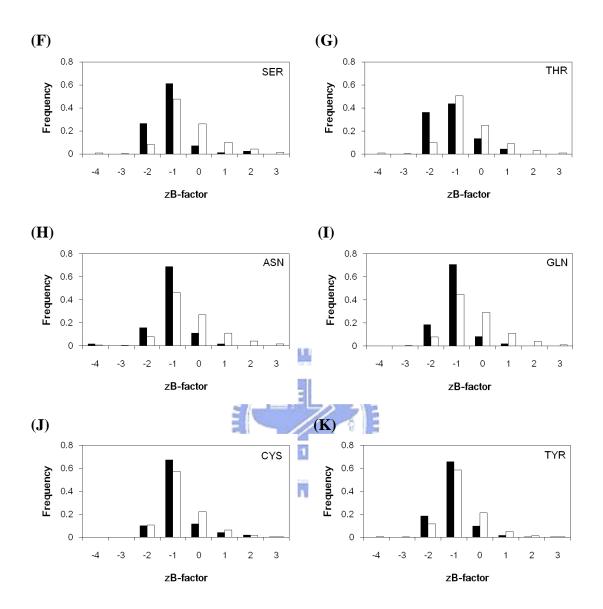


Figure 8.(Continued)

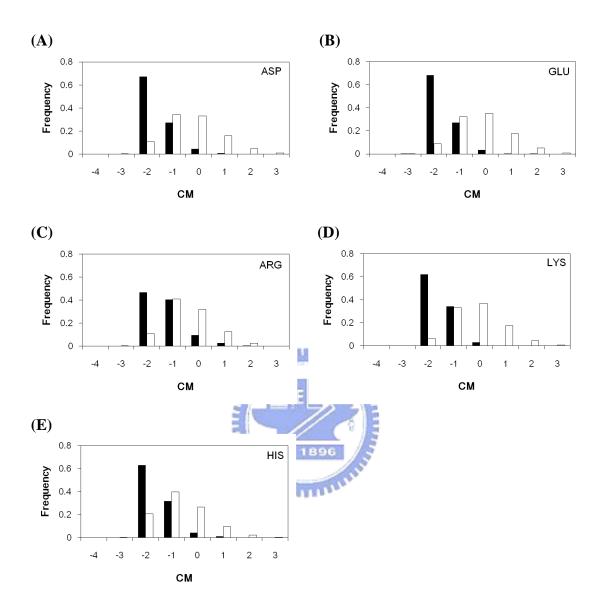


Figure 9. CM for individual catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

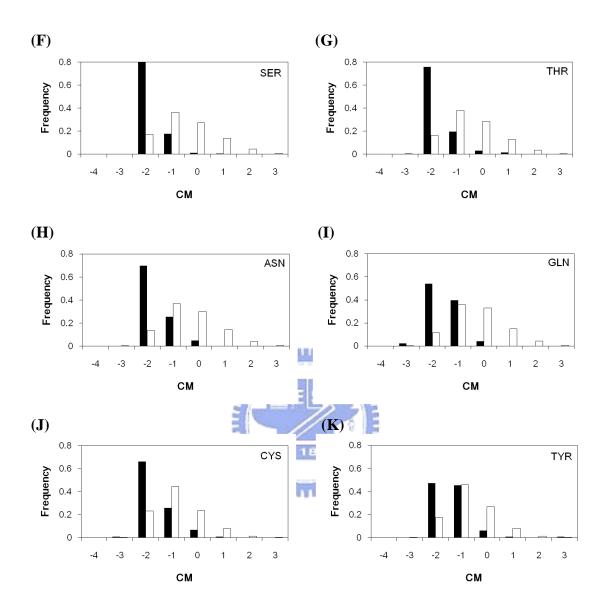


Figure 9. (Continued)

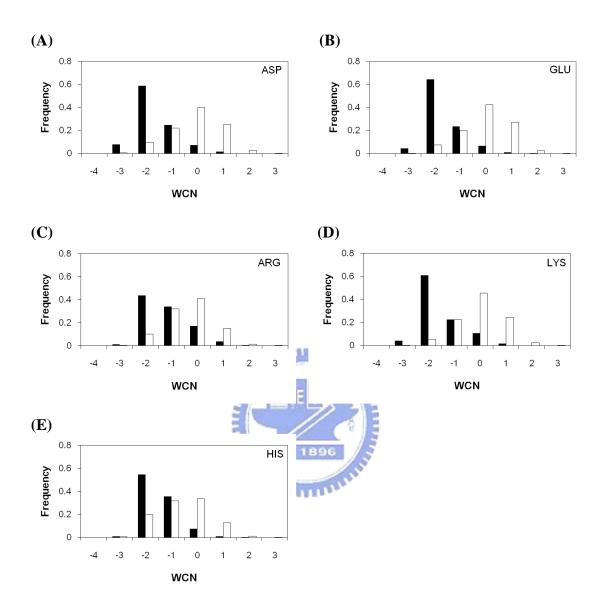


Figure 10. WCN model catalytic residues (ASP, HIS, GLU, ARG, LYS, SER, TYR, CYS, ASN, THR, GLN) compared with all residues of the same type.

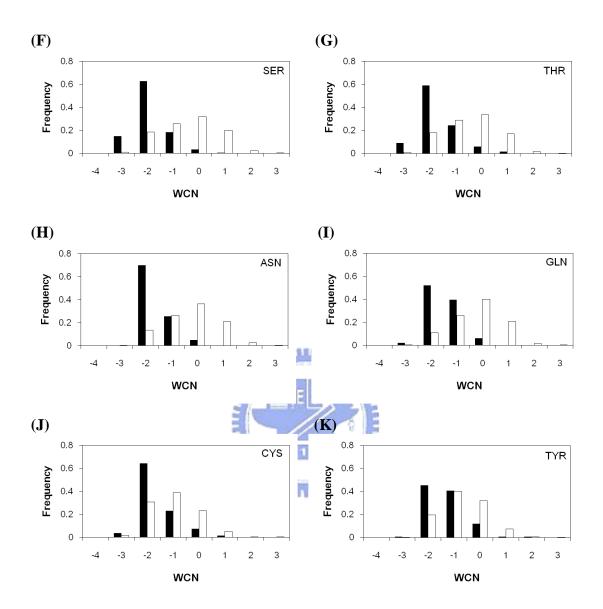


Figure 10. (Continued)

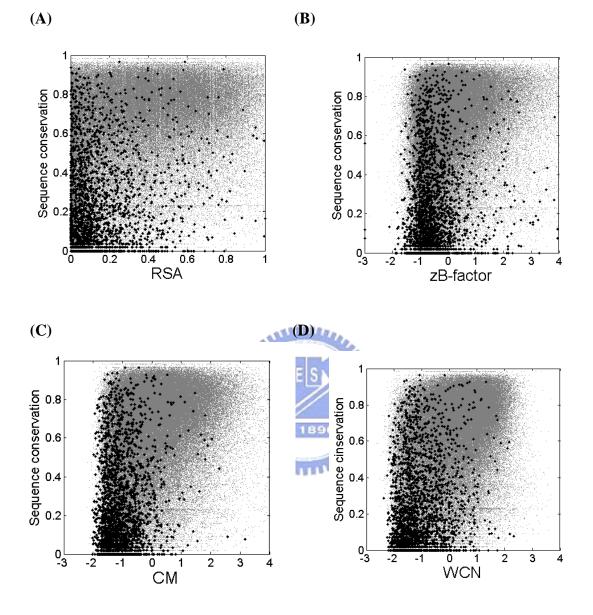


Figure 11. The 2-D profile of catalytic residues (black dots) compare with all residues (grey dots). (A) sequence conservation and relative solvent accessibility properties; (B) sequence conservation and normalized B-factor; (C) sequence conservation and centroid model; (D) sequence conservation and weighted contact number model; (E) relative solvent accessibility properties and normalized B-factor; (F) relative solvent accessibility properties and centroid model; (G) relative solvent accessibility properties and weighted contact number model; (H) normalized B-factor and weighted contact number model; (I) normalized B-factor and centroid model; (J) weighted contact number model; (I) normalized B-factor and centroid model; (J) weighted contact number model.

Figure 11. (Continued)

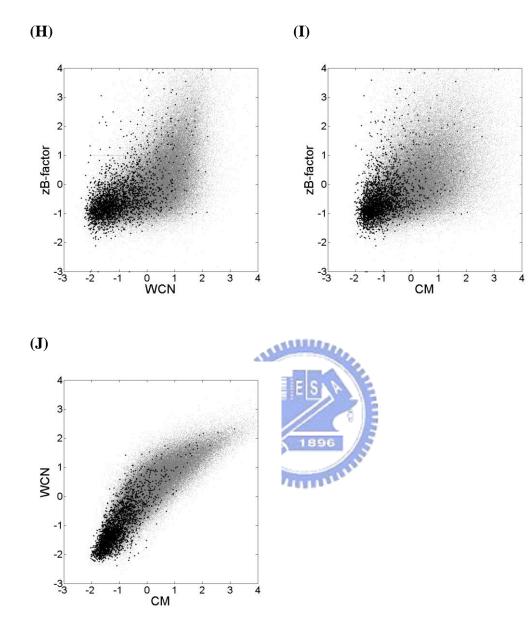


Figure 11. (Continued)

APPENDIX

Appendix I. 8	387 PDBID ^a
---------------	------------------------

IDs							
12as A 1321 A	1351 A	13pk A	1a0i A	1a0j A	1a16 A	1a26 A	la2t A
			la4s_A		1a50_B	1a65_A	1a69_A
1a6d_A 1a79_A	1a7u_A	1a8h_A	1a8q_A	la8s_A	1a95_C	1aa6_A	laam_A
1ab4_A 1ab8_A	labr_A	ladn_A	laf7_A	lafr_A	lafw_A	lagm_A	lagy_A
1ah7_A 1aj0_A	1aj8_A	lak0_A	lakd_A	lakm_A	lako_A	lal6_A	1ald_A
1alk_A 1am2_A	lam5_A	lamo_A	lamp_A	lamy_A	laop_A	lapt_E	lapx_A
1aq0_A 1aq2_A	laql_A	larz_A	last_A	lasy_B	lat1_A	laug_A	laui_A
lauk_A lauo_A	lavf_A	lavq_A	lax4_A	lay4_A	lazw_A	lazy_A	1b02_A
1b04_A 1b2m_A	1b2r_A	1b3m_A	1b3r_A	1b57_A	1b5d_A	1b5q_A	1b5t_A
1b65_A 1b6b_A	1b6g_A	1b6t_A	1b73_A	1b7y_A	1b8b_A	1b8f_A	1b8g_A
1b93_A 1b9h_A	1bbs_A	1bd3_A	1be1_A	1bf2_A	1bfd_A	1bg0_A	1bg6_A
1bgl_A 1bh2_A	1bhg_A	1bib_A	1bix_A	1bjo_A	1bmt_A	1bob_A	1bol_A
1boo_A 1bou_B	1bp2_A	1bqc_A	1brm_A	1brw_A	1bs0_A	1bs4_A	1bs9_A
1bsj_A 1bt1_A	1btl_A	1bu7_A	1bvv_A	1bvz_A	1bwd_A	1bwl_A	1bwp_A
1bwz_A 1bxr_B	1bya_A	lbzc_A	1bzy_A	1c0k_A	lc2t_A	1c3j_A	lc4x_A
1c4z_A 1c54_A	1c82_A	1c9u_A	1ca2_A	lca3_A	1cb7_B	1cb8_A	lcbg_A
1cbx_A 1cd5_A	lcde_A	1cdg_A	lcel_A	lcev_A	1cf2_0	lcfr_A	lcg2_A
lcg6_A lcgk_A	lchd_A	lchk_A	1chm_A	lci8_A	lcjy_A	lck7_A	1cl1_A
1cm0_A 1cms_A	1cmx_A	lcns_A	lcoy_A	lcqg_A	1cqq_A	1ct9_A	lctn_A
1ctt_A 1cv2_A	lcvr_A	1cw0_A	1cwy_A	1cz0_A	lcz1_A	lczf_A	ld0s_A
1d1q_A 1d2h_A	ld2r_A	1d2t_A	1d3g_A	1d4a_A	1d4c_A	1d6i_A	ld6m_A
1d6o_A 1d7r_A	1d8c_A	1d8h_A	1d8t_A	ldaa_A	ldae_A	1db3_A	ldbf_A
1dbt_A 1dci_A	ldco_A	1dd8_A	1ddj_A	1de3_A	1de6_A	ldek_A	ldf9_A
ldfo_A ldgk_N	ldgs_A	ldhf_A	1dhp_A	ldhr_A	ldil_A	ldii_A	ldin_A
ldio_A ldiz_A	1dj0_A	1dj1_A	ldjl_A	ldki_A	1d12_A	1d15_A	ldli_A
1dmu_A 1dnk_A	ldnp_A	1do6_A	1do8_A	ldod_A	ldoo_A	ldpg_A	ldqs_A
lds2_E ldub_A	ldup_A	ldve_A	ldwo_A	ldxe_A	ldzr_A	le0c_A	1e19_A
1e1a_A 1e2a_A	le2t_A	1e3v_A	1e5q_A	1e7q_A	leag_A	leb6_A	lebf_A
lec9_A lecf_A	lecl_A	lecx_A	leed_P	leej_A	lef0_A	lef8_A	leg7_A
1eh5_A 1eh6_A	lehy_A	lei5_A	leix_A	1elq_A	lels_A	lemd_A	1eo7_A
leq2_A lesc_A	leso_A	let0_A	leul_A	leug_A	leul_A	leuu_A	leuy_A
levy_A lex1_A	lexn_A	lexp_A	ley2_A	leyi_A	leyp_A	lez1_A	lez2_A
lf2d_A lf2v_A	1f48_A	lf6d_A	1f75_A	1f71_A	lf7u_A	lf8m_A	lf8r_A

lf8x A lfa0 A	lfc4 A	lfcb A	lfcq A	lfdy A	1ff3 A	lfqh A	1fhl A
lfiq C lfnb A	_	_	_	_	_	_	_
lfr8 A lfro A	_	_	_	_	_	_	_
 1g24 A 1g4p A	—	—	_	_	_	—	_
 1g99 A 1ga8 A	—	—	_	_	_	—	_
 lghs_A lgim_A	 1glo_A	 lgns_A	_ lgog_A	 lgox_A	 1gp1_A	 1gp5_A	 1gpa_A
 lgpj_A lgpm_A	lgpr_A	1gq8_A	lgqg_A	lgrc_A	lgsa_A		lgtp_A
lgtx_A lguf_A	lgxs_A	1gz6_A	1h19_A	1h3i_A	lh4g_A	1h54_A	1h7o_A
1h7x_A 1hdh_A	lhfe_L	lhfs_A	1hka_A	1hpl_A	1hpm_A	1hqc_A	1hr6_B
1hr7_B 1hrd_A	1hti_A	1hto_A	1hv9_A	lhxq_A	1hy3_A	lhzd_A	lhzf_A
1i19_A 1i1e_A	lili_P	1i29_A	1i6p_A	li8d_A	li8t_A	1i9a_A	lidj_A
lidt_A liec_A	lig8_A	lim5_A	lima_A	linp_A	liph_A	lir3_A	lit4_A
litx_A liu4_A	livh_A	liyd_A	1j00_A	1j09_A	1j2u_A	1j49_A	1j53_A
1j70_A 1j79_A	lj7g_A	ljag_A	ljch_A	1jdw_A	1jfl_A	1jh6_A	ljhf_A
ljkm_A ljm6_A	ljms_A	1joa_A	ljof_A	1jqn_A	1jrp_B	1js4_A	ljxh_A
1k0w_A 1k30_A	1k32_A	1k41_A	lk4t_A	1k82_A	1kae_A	lkas_A	1kaz_A
1kc7_A 1kcz_A	1kdg_A	1kez_A	lkfu_L	lkfx_L	lkim_A	1kl7_A	1knp_A
1kny_A 1kp2_A	1kqc_A	1kra_C	lksj_A	lkws_A	1kyq_A	1kyw_A	1kzh_A
1kzl_A 1100_A	111d_A	1111_A	111r_A	117d_A	117n_A	117q_A	118t_A
119x_A 11am_A	1lba_A	1lbu_A	11cb_A	1lci_A	11dm_A	llij_A	1lio_A
1lj1_A 1lj1_A	llnh_A	1ltq_A	lluc_A	llvh_A	11ws_A	llxa_A	1lz1_A
1m21_A 1m53_A	1m54_A	1m6k_A	1m9c_A	1mas_A	1mbb_A	1mdr_A	1mek_A
1mfp_A 1mht_A	1mhy_D	1mj9_A	1mla_A	1mlv_A	1mok_A	1moq_A	1mpp_A
1mpx_A 1mpy_A	1mqw_A	1mrq_A	1mt1_B	1muc_A	1mud_A	1mug_A	1mvn_A
1myr_A 1n20_A	ln2t_A	lnaa_A	1nba_A	lnbf_A	lndh_A	lndi_A	lnf9_A
lnhx_A lnid_A	lnir_A	lnkk_A	lnln_A	1nlu_A	lnml_A	lnmw_A	lnn4_A
lnsf_A lnsj_A	lnsp_A	lnu3_A	lnvm_A	lnvt_A	lnw9_B	lnww_A	lnzy_A
1004_A 1098_A	109i_A	loac_A	loas_A	loba_A	lodt_C	10e8_A	lofd_A
lofg_A log1_A	logo_X	loh9_A	1oj4_A	lok4_A	lokg_A	lonr_A	lopm_A
loqz_A lor8_A	lord_A	loro_A	10s7_A	lotg_A	loxa_A	loya_A	loyg_A
lozh_A lplx_A	1p3d_A	1p4n_A	1p4r_A	1p5d_X	1p7m_A	1pa9_A	1pad_A
lpae_X lpbg_A	1pd2_1	lpeg_A	lpfk_A	lpfq_A	lpgs_A	lpii_A	1pj5_A
1pja_A 1pjb_A	1pjh_A	lpjq_A	lpkn_A	1pma_A	1pmi_A	lpnl_B	1pnt_A
1pow_A 1pp4_A	lps1_A	1ps9_A	lpsd_A	1ptd_A	1pud_A	lpvd_A	1pvi_A
1pwh_A 1pwv_A	lpxv_A	lpyl_A	lpym_A	1pz3_A	1q18_A	lq3n_A	1q3q_A
1q6x_A 1q91_A	lqam_A	lqaz_A	lqb4_A	lqba_A	lqcn_A	lqd1_A	1qe3_A
lqf6_A lqfe_A	_						_
lqhf_A lqhg_A	lqho_A	lqi9_A	lqib_A	1qj2_B	1qj4_A	lqje_A	1qk2_A

1qlh_A 1qmh_A 1qc	ol_A 1qq5_A 1qrg_A	lqrr_A lqrz_A	lqsg_A lqtn_A
lqum_A lqv0_A lqw	wn_A 1qx3_A 1qz9_A	1r16_A 1r1j_A	1r30_A 1r44_A
1r4f_A 1r4z_A 1r6	6w_A 1r76_A 1ra0_A	1ra2_A 1rba_A	1rbl_A 1rbn_A
1rdd_A 1req_A 1rg	gq_A 1rhc_A 1rhs_A	1rk2_A 1rne_A	lro7_A lroz_A
lrpt_A lrpx_A lrq	ql_A 1rtf_B 1rtu_A	1ru4_A 1rvv_A	1s20_A 1s2k_A
1s3i_A 1s76_D 1s9	95_A 1s9c_A 1sca_A	lses_B lsll_A	lslm_A lsme_A
lsml_A lsmn_A lsn	nn_A lsnz_A lsox_A	lssx_A lstc_E	lstd_A lszd_A
lszj_G ltOu_A lt7	7d_A 1tah_A 1tde_A	ltdj_A lteh_A	lthg_A ltht_A
lti6_A ltlp_E ltm	nl_A 1tmo_A 1tox_A	1tph_1 1trk_A	ltyf_A ltys_A
1tz3_A 1u3f_A 1u5	5u_A 1u7u_A 1u8v_A	luae_A luag_A	luam_A luaq_A
luas_A luch_A luf	f7_A luk7_A lula_A	lunl_A luok_A	luox_A luqr_A
luqt_A luro_A lus	sh_A luw8_A lv04_A	lv0e_A lv0y_A	1v25_A 1vao_A
lvas_A lvid_A lvi	ie_A 1vlb_A 1vnc_A	lvom_A lvq1_A	lvr7_A lvzx_A
lvzz_A lwOh_A lw1	lo_A 1w2n_A 1wd8_A	lwgi_A lwnw_A	1x7d_A 1x9h_A
1x9y_A 1xa8_A 1xg	gm_A lxik_A lxqd_A	1xqw_A 1xrs_B	1xtc_A 1xva_A
1xvt_A 1xyz_A 1y9	9m_A lybq_A lybv_A	lycf_A lygh_A	lylu_A lyon_A
lysc_A lytw_A lyv	ve_I 1ze1_A 1zio_A	1zm2_B 1znv_B	lzoi_A lzrz_A
1zym_A 2061_A 2a0	On_A 2a86_A 2aat_A	2abk_A 2ace_A	2acu_A 2acy_A
2adm_A 2alr_A 2am	ng_A 2apr_A 2ayh_A	2b3i_A 2bbk_L	2bhg_A 2bif_A
2bkr_A 2blt_A 2bm	ni_A 2bsx_A 2bx4_A	2c7v_A 2cnd_A	2cpo_A 2cpu_A
2dbt_A 2dhn_A 2dl	ln_A 2dor_A 2dw7_A	2ebn_A 2eng_A	2eql_A 2esd_A
2f61_A 2f9r_A 2f9	9z_C 2fmn_A 2fok_A	2gsa_A 2hdh_A	2his_A 2hsa_A
2isd_A 2jcw_A 2jx	xr_A 2lip_A 2lpr_A	2nac_A 2nlr_A	2npx_A 2oat_A
2pda_A 2pec_A 2pf	fl_A 2pgd_A 2phk_A	2pia_A 2plc_A	2pth_A 2qf7_A
2rnf_A 2tdt_A 2th	ni_A 2tmd_A 2toh_A	2tpl_A 2tps_A	2ts1_A 2xis_A
2ypn_A 3cla_A 3cs	sm_A 3eca_A 3mdd_A	3nos_A 3pca_M	3pva_A 3r1r_A
4kbp_A 4mdh_A 5cc	ox_A 5cpa_A 5eat_A	5enl_A 5fit_A	5rsa_A 7atj_A
7nn9_A 7odc_A 8pc	ch_A 8tln_E 9pap_A		

^a12as A means the A chain of protein PDBID 12as