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Abstract

In recent years, it is more and more clear that RNA molecules, especially the
non-coding RNAS, play important roles in several regulatory processes, such
as post-transcriptional regulation, transcriptional and translational gene
regulation and chemical modification. Similar to proteins, the functions of
these non-coding RNAs depend on their three-dimensional (3D) structures,
rather than their primary sequences, suggesting that detecting structural
similarities among RNA 3D structures can bring more significant insights
into their functional and even evolutionary relationships. Moreover, the
number and the size of solved RNA 3D struetures have rapidly increased in
past few years, making it difficult'and time-consuming to manually compare
and analyze these RNA 3D structures. Therefore, developing an effective

and accurate method for RNA 3D structure comparison is imperative.

In this study, we have proposed an improved structural alphabet-based
algorithm for RNA 3D structure comparison. It improves the accuracy of our
previous algorithm by replacing four standard torsion angles with two
pseudotorsion angles and by using a recently introduced affinity propagation
clustering approach for constructing of structural alphabet. Particularly, we
achieve the above improvement without compromising the computational
efficiency of the algorithm. We also demonstrate that the new version of the
implemented program, called iPARTS, indeed outperforms its previous
version, named PARTS, which in turn has been shown previously to
outperform other existing tool DIAL. The iPARTS web server is available
online at http://bioalgorithm .life.nctu.edu.tw/iPARTS/ that can serve as an

useful tool in the study of structure biology.
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Chapter 1
Introduction

In recent years, it is more and more clear that RNA molecules are not only
the carriers of genetic information, but also play important roles in several
regulatory processes, such as protein synthesis (e.g., mMRNA, rRNAs and
tRNAS), post-transcriptional regulation:.(e.g., micro RNAs and small
interfering RNASs), transcriptional and- translational gene (e.g., allosteric
conformational changes in riboswitches), and: chemical modification of
specific nucleotides in the ribosome, and so.on [11][22][17][3]. Similar to
proteins, the functions of these non-coding RNAs depend on their
three-dimensional (3D) structures, rather than their primary sequences,
suggesting that detecting structural similarities among RNA 3D structures
can bring more significant insights into their functional and even
evolutionary relationships that would not be detected by sequence
information alone. Moreover, the number and the size of solved RNA 3D
structures in the Protein Data Bank (PDB) [4] have rapidly increased in past
few years, making it difficult and time-consuming to manually compare and
analyze these RNA 3D structures. Therefore, developing an effective and

accurate method for RNA 3D structure comparison is imperative.



Basically, detecting structural similarities in two RNA molecules at the
tertiary structure level is a difficult problem, since it has been shown to be
NP-hard to find a constant ratio approximation algorithm for computing a
pair of maximal substructures from two RNA 3D structures with exhibiting
the highest degree of similarity [16]. Due to this reason, currently available
tool for comparing two RNA 3D structures are all based on heuristic

approaches.

Recently, several methods have been developed for RNA 3D structure
comparison. ATRS proceeds by a seed. match followed by a greedy
extension to approximately compute the largest common point set between
two RNA molecules [8][9], where a-seed is composed by four phosphate
atoms of two consecutive base-pairs. DIAL performs an alignment of two
RNA molecules based on a quadratic time dynamic programming algorithm
by taking into account sequence similarity, torsion and pseudo-torsion
angles and base-pair information [12]. It also provides three alignment
methods, including global, local and semi-global alignments for different
applications. SARSA is based on a structural alphabet-based algorithm that
reduces input RNA 3D structures to 1D sequences of structural alphabet
letters and uses classical sequence alignment algorithms to compare these
1D SA-encoded sequences for determining their structural similarities. It
contains PARTS for aligning two RNA structures and MARTS for aligning
two or more RNA structures [6]. Like DIAL, it also provides three

alignment methods and particularly it implements normalized local



alignment for eliminating the mosaic effect of local alignment. SARA aligns
two RNA structures based on a unit-vector alignments strategy [5]. It
calculates user-defined atoms’ trace (unit-vector) of input RNA structure,
and a set of consecutive atoms’ unit-vectors will be turn into a unit-spheres.
The structure alignment can be achieved by dynamic programming
procedure using an all-against-all score matrix calculated with the
unit-vector root mean square distance between all pairs of unit-spheres from

each structure.

Although the ARTS, DIAL;sPARTS:and SARA generally result in
accurate  RNA structure alignments, they have some limitations and
deficiencies: (1) ARTS requires the existence of secondary structure
elements in both structures to compute the final alignment, and it can’t deal
with the RNA loop structures only. Due to its cubic time complexity
algorithm, it is still a little time-consuming job for ARTS to compare large
RNA molecules and sometimes the results of ARTS may be incorrect, as
were demonstrated in [12]. (2) DIAL only calculates an alignment score in
its default version and requires substantial computational time to return a
statistical evaluation of its significance. However, it may still be incorrect
for some pairs of RNA 3D structures, as were demonstrated in [6]. (3)
PARTS uses torsion angles to deduce the structure alphabet. But it is not so
perfect to use these standard torsions for classifying RNA structure motifs,
because of the “crankshaft effect”, in which large changes in one torsion

angle are compensated by others [24]. Therefore, it may lose the accuracy of



the structure alphabet in some case (see the Experimental Results chapter).
(4) SARA is a new tool for RNA structure alignment, but it can not specify

the region of the input RNA molecular.

In this study, we have proposed an improved structural alphabet-based
algorithm for RNA 3D structure comparison. Instead of using the four
standard torsion angles (a, y, 0 and ) of RNA and the VQ clustering
approach as done in our previous work [6], we adopt the two pseudotorsion
angles (y and 6) of RNA and utilize a recently introduced clustering
algorithm, called affinity propagation[13];.to classify the nucleotides in the
2-dimensional #-6 plot. Like K-means' clustering approaches, the VQ
methods suffer from local optimality and are sensitive to outlines and noise
[25]. Another limitation of the VQ Clustering is that the identified centers in
the cluster may not be virtual nucleotides that cannot be evaluated visually.
Basically, the AP algorithm is an exemplar-based clustering method by
simultaneously considering all data points as potential exemplars and
exchanging messages between data points until a good set of exemplars and
clusters emerges. In particular, Fray and Dueck [13] have shown that the AP
algorithm can obtain better solutions than other frequently used methods,
such as K-centers clustering and hierarchical agglomerative clustering. After
obtaining this novel structural alphabet using the AP algorithm, we derive a
log-odds matrix for SA-letter substitutions using the statistical method that
was used by Henikoff and Henikoff [14] to derive the BLOSUM family of

substitution matrices for amino acid sequences. Moreover, using this



structural alphabet (SA), we reduce RNA 3D structures to 1D sequences of
SA letters and then use classical and efficient sequence alignment algorithms,
such as global [19], semiglobal [20], local [21] and normalized local [2]
alignments, to compare these 1D SA-encoded sequences and determine their
structural similarities. Based on the above modifications, we have
reimplemented our previous tool PARTS as a new web server named
IPARTS and have also evaluated its accuracies of pairwise RNA structural
alignments on a testing dataset of RNA 3D structures. Our experimental
results have finally shown that our current iPARTS indeed outperforms its
previous version PARTS, which in turn have been shown previously to
outperform other existing web._server DIAL,-without compromising the

computational efficiency.



Chapter 2
Materials and Methods

The basic idea we used in this study is as follows. We first use the affinity
propagation approach, an excellent method for clustering with much lower
error than other methods [13], to derive an RNA structural alphabet of 23
letters that represent distinct-and most common backbone conformations.
According to this structural alphabet;-we-transform RNA 3D structures to
1D sequence of SA-encoded letters.. Then:we utilize classical and efficient
sequence alignment algorithms to compare these 1D SA-encoded sequences
and determine their structural similarities. In this chapter, we will describe
the details of (1) how to use the affinity propagation approach to derive the
structural alphabet and transform RNA 3D structures into 1D sequences, and
(2) how to derive the substitution scoring matrices for aligning 1D
SA-encoded sequences, and (3) how to utilize normalized local alignment in

RNA 3D structural comparison.



2.1 Pseudotorsional Angles and Ramachandran-like # — @ Plot

For protein backbones, two torsion (or dihedral) angles (¢ and y) are
sufficient to describe the backbone conformation of each amino acid residue.
In contrast, RNA molecules have much higher dimensionality, since for each
nucleotide residue there are six backbone torsion angles (a, S, y, J, € and {)
(see Figure 2-1a) and a torsion angle of the bond between base and ribose
ring (y). This leads the analysis and classification of nucleotide conformation
to be a high-dimensional problem thatis.computationally intractable and

cannot be evaluated visually. In addition, it is difficult to use these standard

Figure 2-1. (a) Diagram of a nucleotide showing the standard backbone
torsional angles. (b) Diagram depicting the definitions of pseudotorsions, 7
and 6. The red lines indicate the pseudo-bonds that connect successive P and

C4’ atoms. (These pictures are adapted from [24].)



torsion angles to distinguish nucleotide conformations, because the so-called
crankshaft effect usually results in that different combinations of stand
torsion angles can describe identical nucleotide conformations. Recently,
Duarte and Pyle [10][24] have introduced an approach for defining and
describing RNA structure in a simple, mathematically consistent, and
computationally accessible manner which involves the of two
pseudotorsions, # and 6. Like ¢ and y for proteins, » and & can be used to
describe RNA conformation in much the same way. Base on this approach,
we reduce the nucleotide backbone to two imaginary torsion angles that
result from pseudobonds connecting C4° to P-atoms: # (C4’.1, Py, C4’, Prs1)
and 6 (P,, C4’, Pns1, C4°41) (See.Figure 2-1b). By plotting & versus 7 values
for nucleotides of a representative. RNA-structural dataset, we can obtain a
Ramachandran-like scatter plot that.displays clustering of nucleotides with

similar comformation.

In this study, we select an RNA dataset from PDB. It includes
non-redundant medium to high-resolution (minimum resolution of 3.0 A)
X-ray crystal structures from PDB that were deposited before 1 November
2008. Finally, we obtain a dataset with 117 PDB files, particularly including
74 structures that were used by Wadley et al. [24], containing 130 RNA
chains and 9,527 nucleotides in total. We then used the AMIGOS program
to calculate the # and 6 pseudotorsion angles for all non-terminal nucleotides
(9,267 nt) from all RNA molecules in the above dataset and plotted these

calculated pseudotorsion angles on the axes of a two-dimensional plot, as



was illustrated in Figure 2-2. This two-dimensional representation provides

an intuitively accessible, graphic representation of quantitatively distinct

structural features.
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Figure 2-2. An -0 scatter plot of all nucleotides from our dataset.



2.2 Affinity Propagation and Structural Alphabet

As mentioned in [10], clusters in this plot of nucleotides with similar # and
torsional angles have similar conformational properties. For this reason, we
utilized a new clustering approach, called affinity propagation (AP)
proposed by Fery and Dueuk [13], to classify all the nucleotides on the plot.
Basically, the AP algorithm is an exemplar-based clustering method for
approximately solving the exemplar learning problem that aims to identify a
set of data points as exemplars and assign‘every data point to an exemplar so
as to maximize a fitness function, where the exemplar learning problem has
been show to be NP-hard [7].Denote the input data points by xi, Xa,..., X,, the
exemplar assigned to x; by c;, and.the similarity between x; and c; by s(x;, c)).
Then the fitness function mentioned above is defined to be »7_; s(x;, ¢;).
Notably, if x; is an exemplar (i.e., ¢; = X;), then the fitness function includes

the term s(x;, C;).

Currently, most existing approaches for the exemplar learning problem
(e.g., k-centers clustering) take as input an initial and fixed set of exemplars
that are often randomly selected and then iteratively refine the exemplar set
while changing the clusters to match the set of exemplars. In fact, the
k-centers (also known as k-medians) clustering is very similar to the widely
used k-means clustering, except that its identified centers have to on data

points. The AP algorithm identifies exemplars among data points and forms
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clusters of data points around these exemplars. It operates by simultaneously
considering all data point as potential exemplars and exchanging messages
between data points until a good set of exemplars and clusters emerges. For
simplicity, the similarity s(x;, X;) between two points x; and X; is also denoted
as s(i, j). In each iteration, two kinds of messages (i.e., responsibility and
availability) were exchanged between data points. The responsibility r(i, k)
that is sent  from point x; to point x, indicates the accumulated evidence for
how proper it would be for x to serve as the exemplar of x;, with taking into
account other potential exemplars for x;. Before being sent, the value of r(i, k)
Is updated according to .the following rule: r(i, k) = s(,
k) —max, ., . {a(i, k") + s(i,k')}. The availability a(i, k) that is sent from
point X, to point x; indicates-the saccumulated -evidence for how proper it
would be for x; to choose x, as its.exemplar, with taking into account the

support from other points that x, should be an exemplar. The value of a(i, k)

IS updated as follows: i -+ K, then

a(i, k) = min{0,7(k, k) + Xy'sri'e i max{0,r(’, k)}} otherwise,

a(k,k) = ¥ sri'ermax{0,7(i,k)}. It should be noted that numerical
oscillations may arise in some circumstances when updating the above
messages. To avoid such oscillations, therefore, each message is set to A
times its value from the previous iteration plus 1—A times its currently
prescribed updated value, where A is a damping factor whose value is
between 0 and 1. In this study, we used a default damping factor of A = 0.9.

The above message-passing scheme is referred to as affinity propagation. At

11



any point during the affinity propagation, responsibilities and availabilities
are combined to identify exemplars. That is, for data point x;, the k that
maximizes r(i, k) + a(i, k) indicates that x, is the exemplar of x;. Finally, the
message-passing procedure may be terminated after a fixed number of
iterations (or after the changes in the messages fall below a threshold or the

local decisions stay constant for some number of iterations).

Here, we set global values to s(k, k) for all 1=k=n such that a total of

9267 non-terminal nucleotides in the #-6 plot is classified into different
numbers of conformation clusters. Finally, we.chose 23 as the number of the
clusters on the #-6 plot based on the following reasons. In this study, we
have tried the numbers from 3 t0160;-and-the 23 has a lower average error
and it will allows one to apply BLAST, the most widely used tool of
sequence homology search, for efficiently performing the structurally similar
search on the database consisting of the SA-encoded sequences of RNA 3D
structures. For our purpose of transforming RNA 3D structures into 1D
sequences, we further assigned a letter to each of 23 clusters, as named in
Table 2-1. We used the set of these 23 letters as a structural alphabet (SA)
and then encoded RNA 3D structures as 1D sequences of SA letters by
assigning each residue in the RNA molecules with the letter of the cluster
whose center is nearest to the residue being encoded, where the distance
between the residue and each center is the square root of the sum of all
squared torsion differences. Like ordinary nucleotide sequences, these

SA-encoded 1D sequences can then be aligned using classical sequence

12



alignment methods or searching similar RNA structures using BLAST

method.

Table 2-1. The structural alphabet of+23.conformational clusters classified
by the AP algorithm with= their associated - letters and the » and 6

pseudotorsion angles of their corresponding centers.

Pseudotorsional Pseudotorsional
Number | Letter angle Number | Letter angle
] 0 ] 0

1 A 168.7 | 221.4 13 M 203.8 | 307.5
2 B 169.1 | 205.7 14 N 92.5 232.2
3 C 167.3 | 235.1 15 @) 69.6 153.8
4 D 169.4 | 179.5 16 P 310.6 | 220.1
5 E 163.7 | 257.1 17 Q 162.5 1.4
6 F 139.7 | 216.6 18 R 248.7 | 218.9
7 G 194.1 | 227.2 19 S 318.9 | 127.7
8 H 173.3 | 125.9 20 T 299.4 3.2
9 I 208.5 | 167.9 21 \/ 88.3 292.5
10 J 23.1 228.9 22 W 48.3 52.5
11 K 229.4 | 104.9 23 X 5.9 314.3
12 L 179.8 71.4

13
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2.3 BLOSUM-L.ike Scoring Matrices

For the accuracy of alignment, we derived a 23 x 23 scoring matrix in

which every possible identity and substitution, say A aligned with B, is
assigned a score, denoted by score(A, B). Therefore, we constructed a
log-odds matrix for SA-letter substitution using the statistical method that
was used by Henikoff and Henikoff [13] to derive the BLOSUM family of
substitution matrices as follows. Denote by {a;, a,, ..., ax} the structural
alphabet of 23 SA letters, and let f;; be the total number of SA-letter pair (a;,
a;). Then the observed probability o -of .an, SA-letter pair (a, &) is

f;
q; = . The background-probability of occurrence of SA letter a;

PN Z_l ’

23
k=1k=i Qik

in an SA-letter pair (a;, a;) is p; =qj +'T. The expected probability

gjj for a substitution of an SA-letter pair (a;, &) is then pip; for i = j and pip; +
pipi = 2pip; for i # j. Finally, the logarithm of the odds matrix is calculated by

qu

score(a;, &) = Mogz[
ij

J where 4 is a positive scale factor.

For the purpose of constructing this BLOSUM-like matrix, a standard
training dataset is indispensable. There are two parts in our training dataset.
First, a set of structurally similar RNA motif pairs was obtained from the

SCOR database [15][23] based on the following criteria: (1) motifs must

15



belong to a structural family, (2) motifs must have length > 3 nt, (3) motifs
must have specified starting and ending positions in the chain, and (4) motif
pairs must have no 100% sequence identity. Second, another dataset was
obtained from the DARTS database [1], which selected 244 representative
structures from 1,333 high-resolution RNA 3D structures based on RNA
sequence and 3D structure resemblances and then marked each of the
remaining structures as either a highly identical structures or a highly
identical fragment of a representative structure. A highly identical structure
is defined as a structure that is globally almost identical (i.e., with at least
90% sequence or 3D structure .identity) to some other structure of similar
size (i.e., size ratio is between 1.and 1.5), while a highly identical fragment
Is defined as a structure that is almost-identical to only a small substructure
of a larger structure (i.e., size ratiojis.greater than 1.5). Note that 101 out of
244 representative structures have no highly identical structure. For our
purpose, we used only the remaining 179 representative structures and their
highly identical structures to construct our BLOSUM-like matrix. In total,
there are 6,220 RNA motif pairs from 334 motif families (426,761 RNA
structure motif pairs from 155 SCOR classes of 5,365 structural motifs and
3,867 RNA structure alignment pairs form 179 DARTS groups of 855
high-resolution RNA 3D structures), which account for 5,430,416 SA-letter
pairs. The A value used in this study was set to 1.6 for the best performance,
by testing various values ranging from 1 to 2. Finally, we derived the

BLOSUM-like scoring matrix as shown in Figure 2-4.
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Figure 2-4. BLOSUM-like scoring matrix.

2.4 Sequence Alignment Algorithms

In this study, four different types of pairwise alignments, global, semiglobal,
local and normalized local alignments were implemented in our web server
for a variety of practical applications. Recall that the Smith-Waterman
algorithm for the local alignment was originally designed to discard

non-similar initial and terminal fragments in the sequence alignment, but it
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was not able to exclude non-similar internal fragments, leading to a so-called
mosaic effect by including poor internal fragments in a local alignment [21].
As was shown in Figure 2-5 for an illustration, if a region of negative score
—X 1s sandwiched between two regions scoring more than X, then the
Smith-Waterman algorithm will join these three regions into a single
alignment that may not be biologically adequate. In fact, such a mosaic
effect can be observed in the comparison of RNA tertiary structures, as was

illustrated in our previous work [6].

Sequence 1T T T T T T T T T T I O O I
| I O I I | I I I I O O O I

Score > X t‘ﬁ Score = - X ﬁ Score = X

Sequence 2

Figure 2-5. A mosaic effect with an inclusion of a poor internal region in an

alignment (These picture is adapted from [2]).

To overcome the mosaic effect in local alignment, Arslan et al. [20]
introduced the normalized local alignment problem that aims to find the
subsequences, say | and J, of two given sequences that maximizes S(1, J)/(]1|
+ |J]) among all subsequences | and J with [I| + [J| > T, where S(1, J) is the
alignment score between | and J, and T is a threshold for the minimal overall
length of | and J. Note that the above length constraint of requiring |I|+]|J]| >

T is necessary, because length normalization favors short alignment but the

18



alignment should be sufficiently long to be biologically meaningful. It
should be noted that the long alignment has higher ordinary score, whereas
the short alignment has higher normalized score. Hence, if we use ordinary
scores as the similarity measure, then the long alignment with a non-similar
internal fragment will be chosen as an optimal local alignment. However, if
we use normalized scores instead, then the alignment to be chosen will
depend on the value of T. According to this polynomial-time algorithm, we
have implemented such an algorithm for the normalized local alignment of

the SA-encoded sequences of two RNA 3D structures.
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Chapter 3
Implementation of Software Tool

Based on the SA-based approach described in the previous chapter, we have
developed a web-based tool, called iPARTS (short for Improved Pairwise
Alignment for RNA Tertiary Structures), which provides pairwise alignment
of RNA tertiary structures. In-the following, we will describe the details of

how to use IPARTS, respectively.

3.1 Input of iPARTS

IPARTS (refer to Figure 3-1) allows the user to compare two RNA 3D
structures by performing global, semiglobal, local, and normalized local

alignments. Below, we describe the details of its usage step by step.

1. Enter the PDB/NDB id (4-/6-character code) or upload the file in the
PDB format, as well as its chain id and starting and ending residue

numbers in sequence, for RNA molecule 1. Note that PDB/NDB id or

20



uploading the file is mandatory, and others are optional but the user
has to specify a chain id, if the given RNA molecule has multiple

chains.

. Enter the PDB/NDB id (4-/6-character code) or upload the file in the
PDB format, as well as its chain id and starting and ending residue
numbers in sequence, for RNA molecule 2. Note that PDB/NDB id or
uploading the file is mandatory, and others are optional but the user
has to specify a chain id, if the given RNA molecule has multiple

chains.

. Just click "Run IPARTS" button, if the user would like to run IPARTS
with default parameters; otherwise, the user continues with the

following parameter settings.

. Select a pairwise alignment that can be either global, semiglobal, local,

or normalized local alignment.

. Key in two real values for gap open penalty and gap extension penalty,
respectively, since the iPARTS penalizes the gaps using the affine gap

penalty function.
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1PARTS: Improved Pairwise Alignment of RNA Tertiary Structures [Help, Examples]

Input RNA molecules:

+» RNA Molecule 1:

> PDB/NDBid:| or upload PDB file:
o Example: PDB id: 1IEVV, chainid: A

. chain id: |- from: | to:

o RNA Molecule 2:
o PDB/NDB id: | | or upload PDB file:
o Example: PDB id: 1ASZ, chain id: R. from 620 to 660

.chainid: |- | from: | to:

o Note: PDB/NDB id (or uploading PDB file) is mandatory and others are optional, but the user has to specifv a chain id,
if the given RNA molecule has multiple chains.

Parameters:

o Alignment: Semiglobal alignraent v
o Substitution matrix: | APnm-16 ¥| You can veiw the Scoring Matrix here!

 Gap open penalty: |-8

o Gap extension penalty: |-3

o Number of suboptimal alignment(s): |10

o Threshold of T for normalized local alignment:

Run iPARTS | Resetl

Figure 3-1. Interface of iPARTS.

7. Specify the number of suboptimal alignments (at least 1), if the user
choose semiglobal, local or normalized local alignment to run

IPARTS.

8. Specify the value of T whose default is 8, if the used alignment is a
normalized local alignment. Basically, if T is small, then obtained
normalized local alignments tend to be short; otherwise, they tend to
be long normalized local alignments, in which may contain some

non-similar internal fragments.
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3.2 Output of iPARTS

In the output page as shown in Figure 3-2, iPARTS will first show the details
of input RNA molecules, as well as user-specified parameters. Next, iPARTS
will show its alignment result(s), including alignment score based on the
pre-defined scoring matrix, RMSD (root mean square deviation), and
detailed alignment of SA-encoded sequences and its corresponding
alignment for original RNA sequences. In addition, the user can click the
"Superposition display” link to visually‘view, rotate and enlarge the 3D
structures of input RNAs and the superposition of their aligned 3D structures

in a Jmol window.

iPARTS Result(s)

Input RNA 3D Structures

e RINA molecule 1:

o 1L23CTUR0020 (PDB code:NDB code), length: 0, chain id: A, from 1 to 28 (wiew backbone torsions)
e RNA molecule 2:

o 2443:TR0066 (PDB codeNDB code), length: 0, chain id: A, from 3 to 28 (wiew backbone torsions)

Input Parameters

o Alignment: Semiglobal alignment

o Subsitution matrix: APnm-1.6

e Gap open penalty: -6

e Gap extension penalty: -1

o Specified number of suboptimal alignments: 10

>Alignment 1
Alignment score = 65.00, RMSD = 1.97, Superposition digplay
Alignment of Sh-encoded RNA sequences:

RNA 1 1 AAABBACHPFADWOACDHS -QGEDBDBCC 28
(HRRRRRN] (RRRRN
RNA 2 3 - - -AABCMPFADWOBBBIKULGEDBDBAA 28
Alignment of original RNA sequences:
RNA 1 1 GGCGCGGCACCGUCCGCGG -AACAAACGG 28
RRRRRE (RARRN
RNA 2 3 - - -GCGGCACCGUCCGCUCALACAAACGG 28

Figure 3-2. The output page of iPARTS.
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Chapter 4
Results and Discussions

In this chapter, we will discuss the features of the #-6 plot and describe some
experimental results we obtained by testing our iPARTS on representative
datasets of RNA 3D structures.: In addition;. we will compare our testing
results of pairwise global and semiglobal structural alignments to those
results obtained by using PARTS.-Unless ‘otherwise specified, all the
experiments were run using our IRARTS; as well as PARTS, with their

default parameters.

4.1 Features and Clustering of the # — @ Plot

The # and @ angles of all non-terminal nucleotides within the dataset of our
selected RNA 3D structures (see Materials and Methods) were plotted on
two dimensions as shown in Figure 2-2. On this #-0 plot, as was also
illustrated in [10], a particularly distinct grouping of nucleotides with similar

n-6 values is centered about 7 = 170° and 6 = 225, and covers an area that is
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the intersection of the two perpendicular gray bars. Notably, most
nucleotides (over 60%) found in this area are within helical structures,
indicating that a great lot of RNA crystal and NMR structures to date have
been determined on molecules that are helices or composed essentially of
helices. In addition to the helical region, there are several regions on this 1-0

plot that can be identified visually.

Here, we applied the AP clustering method (see Materials and Methods)
to all the non-terminal nucleotides on the #-6 plot to properly define regions
with greater accuracy. Finally, 9267 non=terminal nucleotides in the #-6 plot
were classified into 23 conformation cléjsters,_ as'rwas illustrated in Figure 2-3.
In our study, we have tried the d’iffere;nlpgr“nber‘; of clusters from 3 to 60. In
Figure 4-1, it shows a plot of; averégé ‘ér'ror.a;'s a function of each different
number of clusters. The average error reacvhés a plateau value for the number

of clusters =~ 46, meaning that the improvement of error is slight, when

I S NINNIND
NWAUTINNI0OONIW- A UTINIOOWOONW
OO0

OOOOOOOOOOOOOOCOOOOOOOOOO

Figure 4-1. Average error as a function of the number of clusters.
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further increasing the number of clusters. However, in this study, we chose
the 23 as the number of the clusters on the #-6 plot rather than 46. The
reason is as follows. Over 60% of nucleotides on this plot fall within the
helical region (defined by the intersection of the two perpendicular gray bars
in Figure 2-2). If we select the 46 as the number, the helical region will be
partitioned into more than 10 clusters, an overpartitioning in this region.
This overpartitioning results was actually due to the fact that the helical
region is so highly dense in the dataset of currently collected RNA structures
such that any clustering algorithm may tend to divide it into a lot of clusters.
In reality, according to our experiments (data not shown), the value of the
AUC obtained using our testing. dataset with 46 is not better than 23. In
addition, choosing 23 clusters will permits, one to apply BLAST, the most
widely used tool of sequence homelogy.search, for efficiently performing
the structurally similar search on the database consisting of the SA-encoded

sequences of RNA 3D structures.

As was shown in Figure 2-3, many clusters have either helical # or
helical @ values (that is, in the gray highlighted areas). These clusters, as was
pointed out by Wadley et al. [24], mostly contains C3'-endo nucleotides,
while others contain C2'-endo nucleotides. That is, very few C2'-endo
nucleotides resides in the helical region. Intriguingly, some of the clusters in
Figure 2-3,suchas Q, J,F, D, P, D, H, X, M, O, I and K, correspond directly
to those previously identified in [24], whereas others are new. Specifically,

the helical region was partitioned nearly four clusters (i.e., clusters A, B, C
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and D), which contrasts remarkably with the result obtained by Wadley et al.
[24] in which this helical region was considered as a single cluster because
this region could not be dissected with a high degree of confidence using the
analysis of window function. The 3D conformations of 23 exemplar

nucleotides are shown in Figure 4-2.
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Figure 4-2. The 3D conformation of 23 exemplar nucleotides: The exemplar
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A

nucleotides are shown in green, whereas the portions of the previous and

next nucleotides that affect the pseudotorsions are shown in blue.



4.2 Comparison with PARTS

After encoding two RNA 3D structures as two SA-encoded 1D sequences,
we can quickly determine their structural similarity using classical methods
of pairwise sequence alignments. In this study, based on this SA-based
approach, we have implemented a novel web server, named iPARTS
(improved Pairwise Alignment of RNA Tertiary Structures), for pairwise
alignment of RNA tertiary structures. For a variety of practical applications,
we have implemented four different typesiaf pairwise alignments in iPARTS:
(1) global alignment for comparing whole structural similarity, (2)
semiglobal alignment for detecting structural motifs, (3) local alignment for
finding locally similar substructures, and (4).normalized local alignments for
eliminating the mosaic effect of local alignment, that is, removing poor

internal fragments in a local alignment (see Materials and Methods).

To assess the accuracy of our IPARTS, we calculated its receiver
operating characteristic (ROC) curves, depicting the trade-off between true
positive rate (i.e., sensitivity) and false positive rate (i.e., 1 minus
specificity), and compared them with the ROC curves of our previous
PARTS. For this purpose, we prepared two filtered and non-redundant
datasets. One consists of 60 families and altogether 193 RNA structures.
Another consists of 27 families and altogether 86 RNA structures. Both of

them are from the SCOR database (version 2.0.3, October 2004) [15][23],
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which currently organizes many RNA structural motifs in a hierarchical
classification system similar to the SCOP database for protein domains [18].
These testing datasets were obtained from a total of 544 PDB files with 869
RNA chains that were classified into 212 families by their functions. By
only removing sequence redundancy at 95% identity, we obtained the first
testing dataset (dataset 1). In addition, we further partitioned each family in
dataset 1 into several sub-families according to the structural similarity, then
removed the sub-families with only one single RNA structure, and finally
we obtained the second dataset (dataset 2). According to these two testing
datasets, we computed the ROC curves using the global and semiglobal
alignments of IPARTS and PARTS. As illustrated in Figure 4-3(A) for
dataset 1, the ROC curve obtained.using-the global or semiglobal alignment
of iPARTS performed better than that obtained of PARTS, where the AUCs
(area under ROC curve) of the former ROCs curve are 0.84 and 0.81
respectively, while the AUCs of the latter are 0.81 and 0.78 respectively. In
figure 4-3(B) for dataset 2, the ROC curve obtained using the global
(respectively, semiglobal) alignment of iPARTS performed better than that
obtained using the global (respectively, semiglobal) alignment of PARTS,
where the AUC is 0.96 (respectively, 0.91), while the AUC of the latter is
just 0.93 (respectively, 0.86). These experimental results demonstrate that

our iPARTS indeed outperforms its previous version PARTS.
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Figure 4-3. The ROC curves when using the global and semiglobal
alignment of iPARTS and PARTS to align RNA structural from the SCOR
database . (A) The results of the testing dataset 1. (B) The results of the
testing dataset 2.
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Chapter 5
Conclusions

In this study, we have improved the accuracy of our previous structural
alphabet-based algorithm for aligning two RNA 3D structures by using the
two pseudotorsion angles of RNA nucleotide backbones, and the affinity
propagation clustering approach.for the construction of structural alphabet.
Based on this improved algorithmwe-have.implemented a novel web server
IPARTS that allows the users to perform pairwise alignment of two RNA 3D
structures. According to our experiments, this new IiPARTS indeed
outperforms its previous PARTS, which in turn has been shown previously
to outperform other existing tool DIAL, without compromising the
computational efficiency. Therefore, we believe that our iPARTS can serve

as a useful tool in the study of structural biology.

In addition, according to the results of our experiments, the new
structure alphabet we derived in this study can indeed represent the RNA
backbone structures. Therefore, we would like to develop a novel searching
tool for similar RNA 3D structure based on this structure alphabet-based

strategy as our future work. We can apply this method to transform all RNA
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structures into structural alphabet sequences and use the powerful sequence
searching tool BLAST as kernel to find out the RNAs with similar structural

alphabet sequences to that of the query RNA.
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