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中文摘要 

  近年來我們越來越了解 RNA 分子，尤其是非編碼 RNA，在細胞中

的許多調節過程都扮演了非常重要的關鍵，譬如在轉錄後的調節、轉錄

轉譯的基因調節、核醣體移碼與化學修飾等調節功能。如同蛋白質，RNA

的功能也取決於它的三級結構並非其一級序列，這代表偵測 RNA 三級

結構間的相似度能讓我們更深入的了解其功能甚至是演化上的關係。除

此之外，近年來被解析出來的 RNA 結構不論是數量或是大小都快速的

增加，使得我們若要使用人工的方式去比較或分析這些 RNA 的三級結

構將會是困難且耗時的。因此，發展一個有效又準確去比較 RNA 三級

結構的方法是相當重要的。 

在這個研究中我們提出了一個改良結構字元式的 RNA 三級結構比

對演算法。藉由採用兩個假扭轉角來取代四個真實的扭轉角與使用親合

性互動式 (affinity propagation) 分群方法取代向量量子化 (vector 

quantization) 的分群方法來建構出新的結構字元集，這個新的結構字元

集確實改善了先前研究中演算法的準確性。特別的是我們達成上述的改

善時並沒有犧牲演算法的計算效率。除此之外我們也在實驗中證實了我

們應用這個演算法所發展的程式工具 iPARTS 的確比起我們先前的版本

PARTS 有較好的表現，而 PARTS 已被證明是要比 DIAL 要有較好的準

確性。因此，我們認為在結構生物學的研究上 iPARTS 可做為一個有用

的工具，目前可連結到以下網址使用
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http://bioalgorithm .life.nctu.edu.tw/iPARTS/
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Abstract 

In recent years, it is more and more clear that RNA molecules, especially the 

non-coding RNAs, play important roles in several regulatory processes, such 

as post-transcriptional regulation, transcriptional and translational gene 

regulation and chemical modification. Similar to proteins, the functions of 

these non-coding RNAs depend on their three-dimensional (3D) structures, 

rather than their primary sequences, suggesting that detecting structural 

similarities among RNA 3D structures can bring more significant insights 

into their functional and even evolutionary relationships. Moreover, the 

number and the size of solved RNA 3D structures have rapidly increased in 

past few years, making it difficult and time-consuming to manually compare 

and analyze these RNA 3D structures. Therefore, developing an effective 

and accurate method for RNA 3D structure comparison is imperative. 

    In this study, we have proposed an improved structural alphabet-based 

algorithm for RNA 3D structure comparison. It improves the accuracy of our 

previous algorithm by replacing four standard torsion angles with two 

pseudotorsion angles and by using a recently introduced affinity propagation 

clustering approach for constructing of structural alphabet. Particularly, we 

achieve the above improvement without compromising the computational 

efficiency of the algorithm. We also demonstrate that the new version of the 

implemented program, called iPARTS, indeed outperforms its previous 

version, named PARTS, which in turn has been shown previously to 

outperform other existing tool DIAL. The iPARTS web server is available 

online at http://bioalgorithm .life.nctu.edu.tw/iPARTS/ that can serve as an 

useful tool in the study of structure biology.
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Chapter 1  

Introduction 

In recent years, it is more and more clear that RNA molecules are not only 

the carriers of genetic information, but also play important roles in several 

regulatory processes, such as protein synthesis (e.g., mRNA, rRNAs and 

tRNAs), post-transcriptional regulation (e.g., micro RNAs and small 

interfering RNAs), transcriptional and translational gene (e.g., allosteric 

conformational changes in riboswitches), and chemical modification of 

specific nucleotides in the ribosome, and so on  [11][22][17][3]. Similar to 

proteins, the functions of these non-coding RNAs depend on their 

three-dimensional (3D) structures, rather than their primary sequences, 

suggesting that detecting structural similarities among RNA 3D structures 

can bring more significant insights into their functional and even 

evolutionary relationships that would not be detected by sequence 

information alone. Moreover, the number and the size of solved RNA 3D 

structures in the Protein Data Bank (PDB) [4] have rapidly increased in past 

few years, making it difficult and time-consuming to manually compare and 

analyze these RNA 3D structures. Therefore, developing an effective and 

accurate method for RNA 3D structure comparison is imperative. 
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Basically, detecting structural similarities in two RNA molecules at the 

tertiary structure level is a difficult problem, since it has been shown to be 

NP-hard to find a constant ratio approximation algorithm for computing a 

pair of maximal substructures from two RNA 3D structures with exhibiting 

the highest degree of similarity [16]. Due to this reason, currently available 

tool for comparing two RNA 3D structures are all based on heuristic 

approaches. 

Recently, several methods have been developed for RNA 3D structure 

comparison. ATRS proceeds by a seed match followed by a greedy 

extension to approximately compute the largest common point set between 

two RNA molecules [8][9], where a seed is composed by four phosphate 

atoms of two consecutive base-pairs. DIAL performs an alignment of two 

RNA molecules based on a quadratic time dynamic programming algorithm 

by taking into account sequence similarity, torsion and pseudo-torsion 

angles and base-pair information [12]. It also provides three alignment 

methods, including global, local and semi-global alignments for different 

applications. SARSA is based on a structural alphabet-based algorithm that 

reduces input RNA 3D structures to 1D sequences of structural alphabet 

letters and uses classical sequence alignment algorithms to compare these 

1D SA-encoded sequences for determining their structural similarities. It 

contains PARTS for aligning two RNA structures and MARTS for aligning 

two or more RNA structures [6]. Like DIAL, it also provides three 

alignment methods and particularly it implements normalized local 
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alignment for eliminating the mosaic effect of local alignment. SARA aligns 

two RNA structures based on a unit-vector alignments strategy [5]. It 

calculates user-defined atoms’ trace (unit-vector) of input RNA structure, 

and a set of consecutive atoms’ unit-vectors will be turn into a unit-spheres. 

The structure alignment can be achieved by dynamic programming 

procedure using an all-against-all score matrix calculated with the 

unit-vector root mean square distance between all pairs of unit-spheres from 

each structure. 

Although the ARTS, DIAL, PARTS and SARA generally result in 

accurate RNA structure alignments, they have some limitations and 

deficiencies: (1) ARTS requires the existence of secondary structure 

elements in both structures to compute the final alignment, and it can’t deal 

with the RNA loop structures only. Due to its cubic time complexity 

algorithm, it is still a little time-consuming job for ARTS to compare large 

RNA molecules and sometimes the results of ARTS may be incorrect, as 

were demonstrated in [12]. (2) DIAL only calculates an alignment score in 

its default version and requires substantial computational time to return a 

statistical evaluation of its significance. However, it may still be incorrect 

for some pairs of RNA 3D structures, as were demonstrated in [6]. (3) 

PARTS uses torsion angles to deduce the structure alphabet. But it is not so 

perfect to use these standard torsions for classifying RNA structure motifs, 

because of the “crankshaft effect”, in which large changes in one torsion 

angle are compensated by others [24]. Therefore, it may lose the accuracy of 
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the structure alphabet in some case (see the Experimental Results chapter). 

(4) SARA is a new tool for RNA structure alignment, but it can not specify 

the region of the input RNA molecular. 

In this study, we have proposed an improved structural alphabet-based 

algorithm for RNA 3D structure comparison. Instead of using the four 

standard torsion angles (α, γ, δ and δ) of RNA and the VQ clustering 

approach as done in our previous work [6], we adopt the two pseudotorsion 

angles (ε and ζ) of RNA and utilize a recently introduced clustering 

algorithm, called affinity propagation [13], to classify the nucleotides in the 

2-dimensional ε-ζ plot. Like k-means clustering approaches, the VQ 

methods suffer from local optimality and are sensitive to outlines and noise 

[25]. Another limitation of the VQ clustering is that the identified centers in 

the cluster may not be virtual nucleotides that cannot be evaluated visually. 

Basically, the AP algorithm is an exemplar-based clustering method by 

simultaneously considering all data points as potential exemplars and 

exchanging messages between data points until a good set of exemplars and 

clusters emerges. In particular, Fray and Dueck [13] have shown that the AP 

algorithm can obtain better solutions than other frequently used methods, 

such as K-centers clustering and hierarchical agglomerative clustering. After 

obtaining this novel structural alphabet using the AP algorithm, we derive a 

log-odds matrix for SA-letter substitutions using the statistical method that 

was used by Henikoff and Henikoff [14] to derive the BLOSUM family of 

substitution matrices for amino acid sequences. Moreover, using this 
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structural alphabet (SA), we reduce RNA 3D structures to 1D sequences of 

SA letters and then use classical and efficient sequence alignment algorithms, 

such as global [19], semiglobal [20], local [21] and normalized local [2] 

alignments, to compare these 1D SA-encoded sequences and determine their 

structural similarities. Based on the above modifications, we have 

reimplemented our previous tool PARTS as a new web server named 

iPARTS and have also evaluated its accuracies of pairwise RNA structural 

alignments on a testing dataset of RNA 3D structures. Our experimental 

results have finally shown that our current iPARTS indeed outperforms its 

previous version PARTS, which in turn have been shown previously to 

outperform other existing web server DIAL, without compromising the 

computational efficiency. 
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Chapter 2  

Materials and Methods 

The basic idea we used in this study is as follows. We first use the affinity 

propagation approach, an excellent method for clustering with much lower 

error than other methods [13], to derive an RNA structural alphabet of 23 

letters that represent distinct and most common backbone conformations. 

According to this structural alphabet, we transform RNA 3D structures to 

1D sequence of SA-encoded letters. Then we utilize classical and efficient 

sequence alignment algorithms to compare these 1D SA-encoded sequences 

and determine their structural similarities. In this chapter, we will describe 

the details of (1) how to use the affinity propagation approach to derive the 

structural alphabet and transform RNA 3D structures into 1D sequences, and 

(2) how to derive the substitution scoring matrices for aligning 1D 

SA-encoded sequences, and (3) how to utilize normalized local alignment in 

RNA 3D structural comparison. 
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2.1 Pseudotorsional Angles and Ramachandran-like η – θ Plot 

For protein backbones, two torsion (or dihedral) angles (φ and ψ) are 

sufficient to describe the backbone conformation of each amino acid residue. 

In contrast, RNA molecules have much higher dimensionality, since for each 

nucleotide residue there are six backbone torsion angles (α, β, γ, δ, ε and δ) 

(see Figure 2-1a) and a torsion angle of the bond between base and ribose 

ring (χ). This leads the analysis and classification of nucleotide conformation 

to be a high-dimensional problem that is computationally intractable and 

cannot be evaluated visually. In addition, it is difficult to use these standard  

Figure 2-1. (a) Diagram of a nucleotide showing the standard backbone 

torsional angles. (b) Diagram depicting the definitions of pseudotorsions, ε 

and ζ. The red lines indicate the pseudo-bonds that connect successive P and 

C4’ atoms. (These pictures are adapted from [24].) 
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torsion angles to distinguish nucleotide conformations, because the so-called 

crankshaft effect usually results in that different combinations of stand 

torsion angles can describe identical nucleotide conformations. Recently, 

Duarte and Pyle [10][24] have introduced an approach for defining and 

describing RNA structure in a simple, mathematically consistent, and 

computationally accessible manner which involves the of two 

pseudotorsions, ε and ζ. Like φ and ψ for proteins, ε and ζ can be used to 

describe RNA conformation in much the same way. Base on this approach, 

we reduce the nucleotide backbone to two imaginary torsion angles that 

result from pseudobonds connecting C4’ to P atoms: ε (C4’n-1, Pn, C4’n, Pn+1) 

and ζ (Pn, C4’n, Pn+1, C4’n+1) (see Figure 2-1b). By plotting ζ versus ε values 

for nucleotides of a representative RNA structural dataset, we can obtain a 

Ramachandran-like scatter plot that displays clustering of nucleotides with 

similar comformation.  

In this study, we select an RNA dataset from PDB. It includes 

non-redundant medium to high-resolution (minimum resolution of 3.0 Å ) 

X-ray crystal structures from PDB that were deposited before 1 November 

2008. Finally, we obtain a dataset with 117 PDB files, particularly including 

74 structures that were used by Wadley et al. [24], containing 130 RNA 

chains and 9,527 nucleotides in total. We then used the AMIGOS program 

to calculate the ε and ζ pseudotorsion angles for all non-terminal nucleotides 

(9,267 nt) from all RNA molecules in the above dataset and plotted these 

calculated pseudotorsion angles on the axes of a two-dimensional plot, as 
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was illustrated in Figure 2-2. This two-dimensional representation provides 

an intuitively accessible, graphic representation of quantitatively distinct 

structural features. 

 

Figure 2-2. An ε-ζ scatter plot of all nucleotides from our dataset. 
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2.2 Affinity Propagation and Structural Alphabet 

As mentioned in [10], clusters in this plot of nucleotides with similar ε and ζ 

torsional angles have similar conformational properties. For this reason, we 

utilized a new clustering approach, called affinity propagation (AP) 

proposed by Fery and Dueuk [13], to classify all the nucleotides on the plot. 

Basically, the AP algorithm is an exemplar-based clustering method for 

approximately solving the exemplar learning problem that aims to identify a 

set of data points as exemplars and assign every data point to an exemplar so 

as to maximize a fitness function, where the exemplar learning problem has 

been show to be NP-hard [7].Denote the input data points by x1, x2,…, xn, the 

exemplar assigned to xi by ci, and the similarity between xi and ci by s(xi, ci). 

Then the fitness function mentioned above is defined to be   𝑠(𝑥𝑖 , 𝑐𝑖)
𝑛
𝑖=1 . 

Notably, if xi is an exemplar (i.e., ci = xi), then the fitness function includes 

the term s(xi, ci). 

Currently, most existing approaches for the exemplar learning problem 

(e.g., k-centers clustering) take as input an initial and fixed set of exemplars 

that are often randomly selected and then iteratively refine the exemplar set 

while changing the clusters to match the set of exemplars. In fact, the 

k-centers (also known as k-medians) clustering is very similar to the widely 

used k-means clustering, except that its identified centers have to on data 

points. The AP algorithm identifies exemplars among data points and forms 
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clusters of data points around these exemplars. It operates by simultaneously 

considering all data point as potential exemplars and exchanging messages 

between data points until a good set of exemplars and clusters emerges. For 

simplicity, the similarity s(xi, xj) between two points xi and xj is also denoted 

as s(i, j). In each iteration, two kinds of messages (i.e., responsibility and 

availability) were exchanged between data points. The responsibility r(i, k) 

that is sent  from point xi to point xk indicates the accumulated evidence for 

how proper it would be for xk to serve as the exemplar of xi, with taking into 

account other potential exemplars for xi. Before being sent, the value of r(i, k) 

is updated according to the following rule: r(i, k) = s(i, 

k) –max𝑘 ′ :𝑘′≠𝑘 a 𝑖, 𝑘′ + s 𝑖, 𝑘′  . The availability a(i, k) that is sent from 

point xk to point xi indicates the accumulated evidence for how proper it 

would be for xi to choose xk as its exemplar, with taking into account the 

support from other points that xk should be an exemplar. The value of a(i, k) 

is updated as follows: i ≠  k, then 

𝑎(𝑖, 𝑘) = min 0, 𝑟 𝑘, 𝑘 +  max 0, 𝑟 𝑖′ , 𝑘   𝑖 ′ s.t.𝑖 ′ ∉ 𝑖,𝑘  ; otherwise, 

𝑎(𝑘, 𝑘) =  max 0, 𝑟 𝑖′ , 𝑘  𝑖 ′ s.t.𝑖 ′ ∉ 𝑘 . It should be noted that numerical 

oscillations may arise in some circumstances when updating the above 

messages. To avoid such oscillations, therefore, each message is set to λ 

times its value from the previous iteration plus 1−λ times its currently 

prescribed updated value, where λ is a damping factor whose value is 

between 0 and 1. In this study, we used a default damping factor of λ = 0.9. 

The above message-passing scheme is referred to as affinity propagation. At 
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any point during the affinity propagation, responsibilities and availabilities 

are combined to identify exemplars. That is, for data point xi, the k that 

maximizes r(i, k) + a(i, k) indicates that xk is the exemplar of xi. Finally, the 

message-passing procedure may be terminated after a fixed number of 

iterations (or after the changes in the messages fall below a threshold or the 

local decisions stay constant for some number of iterations). 

Here, we set global values to s(k, k) for all 1≦k≦n such that a total of 

9267 non-terminal nucleotides in the ε-ζ plot is classified into different 

numbers of conformation clusters. Finally, we chose 23 as the number of the 

clusters on the ε-ζ plot based on the following reasons. In this study, we 

have tried the numbers from 3 to 60, and the 23 has a lower average error 

and it will allows one to apply BLAST, the most widely used tool of 

sequence homology search, for efficiently performing the structurally similar 

search on the database consisting of the SA-encoded sequences of RNA 3D 

structures. For our purpose of transforming RNA 3D structures into 1D 

sequences, we further assigned a letter to each of 23 clusters, as named in 

Table 2-1. We used the set of these 23 letters as a structural alphabet (SA) 

and then encoded RNA 3D structures as 1D sequences of SA letters by 

assigning each residue in the RNA molecules with the letter of the cluster 

whose center is nearest to the residue being encoded, where the distance 

between the residue and each center is the square root of the sum of all 

squared torsion differences. Like ordinary nucleotide sequences, these 

SA-encoded 1D sequences can then be aligned using classical sequence 
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alignment methods or searching similar RNA structures using BLAST 

method. 

 

 

 

 

Table 2-1. The structural alphabet of 23 conformational clusters classified 

by the AP algorithm with their associated letters and the ε and ζ 

pseudotorsion angles of their corresponding centers. 

Number Letter 

Pseudotorsional 

angle Number Letter 

Pseudotorsional 

angle 

η θ η θ 

1 A 168.7 221.4 13 M 203.8 307.5 

2 B 169.1 205.7 14 N 92.5 232.2 

3 C 167.3 235.1 15 O 69.6 153.8 

4 D 169.4 179.5 16 P 310.6 220.1 

5 E 163.7 257.1 17 Q 162.5 1.4 

6 F 139.7 216.6 18 R 248.7 218.9 

7 G 194.1 227.2 19 S 318.9 127.7 

8 H 173.3 125.9 20 T 299.4 3.2 

9 I 208.5 167.9 21 V 88.3 292.5 

10 J 23.1 228.9 22 W 48.3 52.5 

11 K 229.4 104.9 23 X 5.9 314.3 

12 L 179.8 71.4  
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Figure 2-3. The ε-ζ scatter plot with 23 clusters differentiated by different 

colors. 
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2.3 BLOSUM-Like Scoring Matrices 

For the accuracy of alignment, we derived a 23 × 23 scoring matrix in 

which every possible identity and substitution, say A aligned with B, is 

assigned a score, denoted by score(A, B). Therefore, we constructed a 

log-odds matrix for SA-letter substitution using the statistical method that 

was used by Henikoff and Henikoff [13] to derive the BLOSUM family of 

substitution matrices as follows. Denote by {a1, a2, …, a23} the structural 

alphabet of 23 SA letters, and let fij be the total number of SA-letter pair (ai, 

aj). Then the observed probability qij of an SA-letter pair (ai, aj) is 

  


23

1 1k

k

l kl

ij

ij

f

f
q . The background probability of occurrence of SA letter ai 

in an SA-letter pair (ai, aj) is 
2

23

,1 


ikk ik

iiij

q
qp . The expected probability 

eij for a substitution of an SA-letter pair (ai, aj) is then pipj for i = j and pipj + 

pjpi = 2pipj for i ≠ j. Finally, the logarithm of the odds matrix is calculated by 

score(ai, aj) = 














ij

ij

e

q
2log , where λ is a positive scale factor.  

For the purpose of constructing this BLOSUM-like matrix, a standard 

training dataset is indispensable. There are two parts in our training dataset. 

First, a set of structurally similar RNA motif pairs was obtained from the 

SCOR database [15][23] based on the following criteria: (1) motifs must 
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belong to a structural family, (2) motifs must have length > 3 nt, (3) motifs 

must have specified starting and ending positions in the chain, and (4) motif 

pairs must have no 100% sequence identity. Second, another dataset was 

obtained from the DARTS database [1], which selected 244 representative 

structures from 1,333 high-resolution RNA 3D structures based on RNA 

sequence and 3D structure resemblances and then marked each of the 

remaining structures as either a highly identical structures or a highly 

identical fragment of a representative structure. A highly identical structure 

is defined as a structure that is globally almost identical (i.e., with at least 

90% sequence or 3D structure identity) to some other structure of similar 

size (i.e., size ratio is between 1 and 1.5), while a highly identical fragment 

is defined as a structure that is almost identical to only a small substructure 

of a larger structure (i.e., size ratio is greater than 1.5). Note that 101 out of 

244 representative structures have no highly identical structure. For our 

purpose, we used only the remaining 179 representative structures and their 

highly identical structures to construct our BLOSUM-like matrix. In total, 

there are 6,220 RNA motif pairs from 334 motif families (426,761 RNA 

structure motif pairs from 155 SCOR classes of 5,365 structural motifs and 

3,867 RNA structure alignment pairs form 179 DARTS groups of 855 

high-resolution RNA 3D structures), which account for 5,430,416 SA-letter 

pairs. The λ value used in this study was set to 1.6 for the best performance, 

by testing various values ranging from 1 to 2. Finally, we derived the 

BLOSUM-like scoring matrix as shown in Figure 2-4. 
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Figure 2-4. BLOSUM-like scoring matrix.  

2.4 Sequence Alignment Algorithms 

In this study, four different types of pairwise alignments, global, semiglobal, 

local and normalized local alignments were implemented in our web server 

for a variety of practical applications. Recall that the Smith-Waterman 

algorithm for the local alignment was originally designed to discard 

non-similar initial and terminal fragments in the sequence alignment, but it 
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was not able to exclude non-similar internal fragments, leading to a so-called 

mosaic effect by including poor internal fragments in a local alignment [21]. 

As was shown in Figure 2-5 for an illustration, if a region of negative score 

−X is sandwiched between two regions scoring more than X, then the 

Smith-Waterman algorithm will join these three regions into a single 

alignment that may not be biologically adequate. In fact, such a mosaic 

effect can be observed in the comparison of RNA tertiary structures, as was 

illustrated in our previous work [6].  

 

Figure 2-5. A mosaic effect with an inclusion of a poor internal region in an 

alignment (These picture is adapted from [2]). 

 

To overcome the mosaic effect in local alignment, Arslan et al. [20] 

introduced the normalized local alignment problem that aims to find the 

subsequences, say I and J, of two given sequences that maximizes S(I, J)/(|I| 

+ |J|) among all subsequences I and J with |I| + |J| ≥ T, where S(I, J) is the 

alignment score between I and J, and T is a threshold for the minimal overall 

length of I and J. Note that the above length constraint of requiring |I|+|J| ≥ 

T is necessary, because length normalization favors short alignment but the 
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alignment should be sufficiently long to be biologically meaningful. It 

should be noted that the long alignment has higher ordinary score, whereas 

the short alignment has higher normalized score. Hence, if we use ordinary 

scores as the similarity measure, then the long alignment with a non-similar 

internal fragment will be chosen as an optimal local alignment. However, if 

we use normalized scores instead, then the alignment to be chosen will 

depend on the value of T. According to this polynomial-time algorithm, we 

have implemented such an algorithm for the normalized local alignment of 

the SA-encoded sequences of two RNA 3D structures. 
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Chapter 3  

Implementation of Software Tool 

Based on the SA-based approach described in the previous chapter, we have 

developed a web-based tool, called iPARTS (short for Improved Pairwise 

Alignment for RNA Tertiary Structures), which provides pairwise alignment 

of RNA tertiary structures. In the following, we will describe the details of 

how to use iPARTS, respectively. 

3.1 Input of iPARTS 

iPARTS (refer to Figure 3-1) allows the user to compare two RNA 3D 

structures by performing global, semiglobal, local, and normalized local 

alignments. Below, we describe the details of its usage step by step. 

1. Enter the PDB/NDB id (4-/6-character code) or upload the file in the 

PDB format, as well as its chain id and starting and ending residue 

numbers in sequence, for RNA molecule 1. Note that PDB/NDB id or 
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uploading the file is mandatory, and others are optional but the user 

has to specify a chain id, if the given RNA molecule has multiple 

chains.  

2. Enter the PDB/NDB id (4-/6-character code) or upload the file in the 

PDB format, as well as its chain id and starting and ending residue 

numbers in sequence, for RNA molecule 2. Note that PDB/NDB id or 

uploading the file is mandatory, and others are optional but the user 

has to specify a chain id, if the given RNA molecule has multiple 

chains.  

3. Just click "Run iPARTS" button, if the user would like to run iPARTS 

with default parameters; otherwise, the user continues with the 

following parameter settings.  

4. Select a pairwise alignment that can be either global, semiglobal, local, 

or normalized local alignment. 

5. Key in two real values for gap open penalty and gap extension penalty, 

respectively, since the iPARTS penalizes the gaps using the affine gap 

penalty function. 
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Figure 3-1. Interface of iPARTS. 

7. Specify the number of suboptimal alignments (at least 1), if the user 

choose semiglobal, local or normalized local alignment to run 

iPARTS.  

8. Specify the value of T whose default is 8, if the used alignment is a 

normalized local alignment. Basically, if T is small, then obtained 

normalized local alignments tend to be short; otherwise, they tend to 

be long normalized local alignments, in which may contain some 

non-similar internal fragments. 
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3.2 Output of iPARTS 

In the output page as shown in Figure 3-2, iPARTS will first show the details 

of input RNA molecules, as well as user-specified parameters. Next, iPARTS 

will show its alignment result(s), including alignment score based on the 

pre-defined scoring matrix, RMSD (root mean square deviation), and 

detailed alignment of SA-encoded sequences and its corresponding 

alignment for original RNA sequences. In addition, the user can click the 

"Superposition display" link to visually view, rotate and enlarge the 3D 

structures of input RNAs and the superposition of their aligned 3D structures 

in a Jmol window.  

 

Figure 3-2. The output page of iPARTS. 
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Chapter 4  

Results and Discussions 

In this chapter, we will discuss the features of the ε-ζ plot and describe some 

experimental results we obtained by testing our iPARTS on representative 

datasets of RNA 3D structures. In addition, we will compare our testing 

results of pairwise global and semiglobal structural alignments to those 

results obtained by using PARTS. Unless otherwise specified, all the 

experiments were run using our iPARTS, as well as PARTS, with their 

default parameters.  

4.1 Features and Clustering of the η – θ Plot 

The ε and ζ angles of all non-terminal nucleotides within the dataset of our 

selected RNA 3D structures (see Materials and Methods) were plotted on 

two dimensions as shown in Figure 2-2. On this ε-ζ plot, as was also 

illustrated in [10], a particularly distinct grouping of nucleotides with similar 

ε-ζ values is centered about ε = 170◦ and ζ = 225◦, and covers an area that is 
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the intersection of the two perpendicular gray bars. Notably, most 

nucleotides (over 60%) found in this area are within helical structures, 

indicating that a great lot of RNA crystal and NMR structures to date have 

been determined on molecules that are helices or composed essentially of 

helices. In addition to the helical region, there are several regions on this η-θ 

plot that can be identified visually.  

Here, we applied the AP clustering method (see Materials and Methods) 

to all the non-terminal nucleotides on the ε-ζ plot to properly define regions 

with greater accuracy. Finally, 9267 non-terminal nucleotides in the ε-ζ plot 

were classified into 23 conformation clusters, as was illustrated in Figure 2-3. 

In our study, we have tried the different numbers of clusters from 3 to 60. In 

Figure 4-1, it shows a plot of average error as a function of each different 

number of clusters. The average error reaches a plateau value for the number 

of clusters ≈ 46, meaning that the improvement of error is slight, when 

 

Figure 4-1. Average error as a function of the number of clusters. 
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further increasing the number of clusters. However, in this study, we chose 

the 23 as the number of the clusters on the ε-ζ plot rather than 46. The 

reason is as follows. Over 60% of nucleotides on this plot fall within the 

helical region (defined by the intersection of the two perpendicular gray bars 

in Figure 2-2). If we select the 46 as the number, the helical region will be 

partitioned into more than 10 clusters, an overpartitioning in this region. 

This overpartitioning results was actually due to the fact that the helical 

region is so highly dense in the dataset of currently collected RNA structures 

such that any clustering algorithm may tend to divide it into a lot of clusters. 

In reality, according to our experiments (data not shown), the value of the 

AUC obtained using our testing dataset with 46 is not better than 23. In 

addition, choosing 23 clusters will permits one to apply BLAST, the most 

widely used tool of sequence homology search, for efficiently performing 

the structurally similar search on the database consisting of the SA-encoded 

sequences of RNA 3D structures. 

As was shown in Figure 2-3, many clusters have either helical ε or 

helical ζ values (that is, in the gray highlighted areas). These clusters, as was 

pointed out by Wadley et al. [24], mostly contains C3'-endo nucleotides, 

while others contain C2'-endo nucleotides. That is, very few C2'-endo 

nucleotides resides in the helical region. Intriguingly, some of the clusters in 

Figure 2-3, such as Q, J, F, D, P, D, H, X, M, O, I and K, correspond directly 

to those previously identified in [24], whereas others are new. Specifically, 

the helical region was partitioned nearly four clusters (i.e., clusters A, B, C 



 

 27 

and D), which contrasts remarkably with the result obtained by Wadley et al. 

[24] in which this helical region was considered as a single cluster because 

this region could not be dissected with a high degree of confidence using the 

analysis of window function. The 3D conformations of 23 exemplar 

nucleotides are shown in Figure 4-2. 

 

Figure 4-2. The 3D conformation of 23 exemplar nucleotides: The exemplar 

nucleotides are shown in green, whereas the portions of the previous and 

next nucleotides that affect the pseudotorsions are shown in blue. 
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4.2 Comparison with PARTS 

After encoding two RNA 3D structures as two SA-encoded 1D sequences, 

we can quickly determine their structural similarity using classical methods 

of pairwise sequence alignments. In this study, based on this SA-based 

approach, we have implemented a novel web server, named iPARTS 

(improved Pairwise Alignment of RNA Tertiary Structures), for pairwise 

alignment of RNA tertiary structures. For a variety of practical applications, 

we have implemented four different types of pairwise alignments in iPARTS: 

(1) global alignment for comparing whole structural similarity, (2) 

semiglobal alignment for detecting structural motifs, (3) local alignment for 

finding locally similar substructures, and (4) normalized local alignments for 

eliminating the mosaic effect of local alignment, that is, removing poor 

internal fragments in a local alignment (see Materials and Methods). 

To assess the accuracy of our iPARTS, we calculated its receiver 

operating characteristic (ROC) curves, depicting the trade-off between true 

positive rate (i.e., sensitivity) and false positive rate (i.e., 1 minus 

specificity), and compared them with the ROC curves of our previous 

PARTS. For this purpose, we prepared two filtered and non-redundant 

datasets. One consists of 60 families and altogether 193 RNA structures. 

Another consists of 27 families and altogether 86 RNA structures. Both of 

them are from the SCOR database (version 2.0.3, October 2004) [15][23], 
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which currently organizes many RNA structural motifs in a hierarchical 

classification system similar to the SCOP database for protein domains [18]. 

These testing datasets were obtained from a total of 544 PDB files with 869 

RNA chains that were classified into 212 families by their functions. By 

only removing sequence redundancy at 95% identity, we obtained the first 

testing dataset (dataset 1). In addition, we further partitioned each family in 

dataset 1 into several sub-families according to the structural similarity, then 

removed the sub-families with only one single RNA structure, and finally 

we obtained the second dataset (dataset 2). According to these two testing 

datasets, we computed the ROC curves using the global and semiglobal 

alignments of iPARTS and PARTS. As illustrated in Figure 4-3(A) for 

dataset 1, the ROC curve obtained using the global or semiglobal alignment 

of iPARTS performed better than that obtained of PARTS, where the AUCs 

(area under ROC curve) of the former ROCs curve are 0.84 and 0.81 

respectively, while the AUCs of the latter are 0.81 and 0.78 respectively. In 

figure 4-3(B) for dataset 2, the ROC curve obtained using the global 

(respectively, semiglobal) alignment of iPARTS performed better than that 

obtained using the global (respectively, semiglobal) alignment of PARTS, 

where the AUC is 0.96 (respectively, 0.91), while the AUC of the latter is 

just 0.93 (respectively, 0.86). These experimental results demonstrate that 

our iPARTS indeed outperforms its previous version PARTS. 
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Figure 4-3. The ROC curves when using the global and semiglobal 

alignment of iPARTS and PARTS to align RNA structural from the SCOR 

database . (A) The results of the testing dataset 1. (B) The results of the 

testing dataset 2. 
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Chapter 5   

Conclusions 

In this study, we have improved the accuracy of our previous structural 

alphabet-based algorithm for aligning two RNA 3D structures by using the 

two pseudotorsion angles of RNA nucleotide backbones, and the affinity 

propagation clustering approach for the construction of structural alphabet. 

Based on this improved algorithm, we have implemented a novel web server 

iPARTS that allows the users to perform pairwise alignment of two RNA 3D 

structures. According to our experiments, this new iPARTS indeed 

outperforms its previous PARTS, which in turn has been shown previously 

to outperform other existing tool DIAL, without compromising the 

computational efficiency. Therefore, we believe that our iPARTS can serve 

as a useful tool in the study of structural biology.  

In addition, according to the results of our experiments, the new 

structure alphabet we derived in this study can indeed represent the RNA 

backbone structures. Therefore, we would like to develop a novel searching 

tool for similar RNA 3D structure based on this structure alphabet-based 

strategy as our future work. We can apply this method to transform all RNA 
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structures into structural alphabet sequences and use the powerful sequence 

searching tool BLAST as kernel to find out the RNAs with similar structural 

alphabet sequences to that of the query RNA. 
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