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ABSTRACT

The concept of "one-drug, one-target, one-disease” has been dominant to drug development
strategy in the past decades. This strategy induces researchers to develop inhibitors with high
specificity. However, the strategy is increasingly becoming inappropriate. One of the major
reasons is that single-target inhibitors often lose potency because of even one residue mutation,
leading to drug resistance. Therefore, developing a new strategy to discover multitarget
inhibitors, which decrease probability of drug resistances and enhance therapeutic potency by
inhibiting multiple targets, provides a great value for drug design.

To address the issue, we proposed a new concept "pharmapathlog” to discover multitarget
inhibitors. Pharmapathlog are a group of proteins.that satisfy the following properties: (1) they
are protein orthologs in the same, pathway; (2)“they share comparable core binding
environments; (3) they can be inhibited by-the :same compounds. Proteins in the same pathway
may share similarities in physical-chemical properties and shapes in their binding sites because
a product of one enzyme is a substrate of the next.enzyme.in a series of catalytic reactions.
Furthermore, orthologous proteins.often share conserved.core binding environments during
evolution, providing an opportunity to develop multitarget inhibitors to target these conserved
regions for reducing the probability of ‘drug ‘resistance. Based on the new concept, we
developed a "pharmapathlog-based screening strategy” to identify pharmapathlogs in the same
pathways across multiple species and their core binding environments by using site-moiety
maps. A compound highly agreeing with the core binding environments of pharmapathlogs
could simultaneously inhibit the multiple proteins of pharmapathlogs.

To verify the utility of the pharmapathlog-based screening strategy, we applied this
strategy to identify new inhibitors for bacteria and virus, including Helicobacter pylori,
Mycobacterium tuberculosis, and influenza virus. Based on the strategy, three multitarget
inhibitors simultaneously inhibiting shikimate dehydrogenase and shikimate kinase of
Helicobacter pylori with low 1Csy values (<10.0 uM) were discovered. The three inhibitors
also showed inhibitory effects (ICsp <10 uM) for shikimate kinase of Mycobacterium
tuberculosis. Subsequently, the strategy was successfully used to discover three new inhibitors
with low 1Csy values (4~20 puM) for HIN1 and H5N1 neuraminidases, and design five
zanamivir derivatives located at the 150-cavity with ICsy values in the <10 nanomolar range.
Our experimental results showed that the three inhibitors may overcome the drug resistances

introduced by H274Y and 1222R for H1N1 neuraminidase without causing apparent
ii



cytotoxicity, suggesting a starting point to combat drug-resistant strains. In addition, we found
that core binding environments of pharmapathlogs are highly conserved, suggesting that
targeting the core binding environments is useful to avoid drug-resistance. These experimental
results show that the concept of pharmapathlogs is useful to discover multitarget inhibitors. We
believe that the new strategy is useful to design new drugs toward human diseases.
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Chapter 1. Introduction

1.1Background

The concept of "one-disease, one-target, one-drug"” has been the dominating drug development
strategy in the past decades 2. This strategy induces researchers to develop inhibitors with
high specificity. For example, in anti-influenza drug development, neuraminidase is considered
a valid target, and two drugs, zanamivir and oseltamivir, have been reported®™. However, these
single-target inhibitors may easily lose their effectiveness due to even one amino acid mutation
in binding sites of target proteins, leading to drug resistance. For instance, some influenza
strains that are resistant to oseltamivir-have been reported since a single residue mutates °.
Another example is tetracycline, which is-a broad spectrum antibiotic. Tetracycline loses its
potency in Helicobacter pylori (H. pylori) because of a single triple-base-pair substitution’.
Particularly in antibiotics, the increasing emergence of multiple-antibiotic-resistant superbugs
causes a great concern in the world®™°, fevealing the ‘insufficiency of the single-target strategy.
Therefore, developing a new strategy to discover multitarget inhibitors, which decrease
probability of drug resistances by inhibiting multiple targets, provides a great value for drug

design.

Proteins may share many similarities in physical-chemical properties and shapes in their
binding sites despite low sequence or structural homology. For example, proteins in the same
pathways contain comparable core binding environments because a product of one enzyme is a
substrate of the next enzyme in a series of catalytic reactions. Hence, it is possible to design a
multitarget inhibitor to simultaneously inhibit proteins in the same pathways by targeting their
core binding environments. Furthermore, orthologous proteins often share conserved core

binding environments during evolution, providing an opportunity to develop inhibitors to target
1



these conserved regions for reducing the probability of drug resistance and increasing hit rate.
Recently, the concept of polypharmacology, which means that a drug binds multiple target
proteins, has been proposed to design drugs**™®3. In general, proteins with high sequence or
structure similarity could be considered to be bound by the same compounds. However,
designing these multitarget inhibitors is still a challenging task since these proteins often lack

structural and sequence homology***®

, resulting in a difficulty for extracting core binding
environments among these proteins. Therefore, a new strategy for extracting core binding
environments without relying on sequences of structures will be useful for discovering

multitarget inhibitors.

To address these issues, we propose a new strategy, called pharmapathlog-based screening
strategy, to discover multitarget inhibitors-(Fig.-1.1)..Pharmapathlogs are a group of proteins
that satisfy the following properties: (1)-they are protein ©rthologs in the same pathway; (2)
they share comparable core binding environments; (3) they can be inhibited by the same
compounds. To extract core binding environments:-of protein binding sites, we developed the
SiMMap server for generation of site-moiety.maps‘®,A site-moiety map consists of anchors for
a protein binding site. An anchor, presenting a key binding environment, includes three
essential elements: (1) binding pockets, which are parts of the binding site, with conserved
interacting residues; (2) moiety preferences; (3) interaction type (electrostatic, hydrogen-
bonding, or van der Waals). A site-moiety map is able to present the relationship between the
moiety preferences and the physico-chemical properties of the binding site through anchors.
Hence, protein orthologs sharing comparable core anchors (core binding environments) in the
same pathway could be considered pharmapathlogs, and the core anchors of pharmapathlogs
can be used to identify multitarget inhibitors. A compound that agrees with the core anchors is
often able to simultaneously inhibit the multiple targets. In addition, the moiety preferences of

the core anchors can guide lead optimization processes.
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Figure 1.1. Concept of pharmapathlogs using protein orthologs in the shikimate pathways as
the example. Orthologous proteins.sharing similar binding environments in the same pathways
can be considered pharmapathlogs.”For-example; shikimate dehydrogenase (SDH) and
shikimate kinase (SK) are adjacent proteins in the shikimate pathway. The two proteins share
two key hydrogen binding environments (green sphere) and two van der Waals binding
environments (grey sphere), and can be regarded as pharmapathlogs in the pathway. In addition,
orthologous SKs in Helicobacter pylori (H. pylori) and Mycobacterium tuberculosis (M.
tuberculosis) are regarded as pharmapathlogs in multiple species because of their comparable
binding environments. The consensus binding environments among pharmapathlogs are core
binding environments and can be used to find multitarget inhibitors agreeing with the core
regions. Multitarget inhibitors have good therapeutic effectiveness and reduce probability of
resistant mutations, whereas single target inhibitors often lose effectiveness when target

residues mutate.



To verify the utility of the pharmapathlog-based screening strategy, at first, we applied
this strategy to identify new multitarget inhibitors for shikimate pathway of H. pylori and
Mycobacterium tuberculosis (M. tuberculosis), which are human pathogens and causes peptic

ulcer disease and chronic infectious disease, respectively’™*

. The shikimate pathway
containing seven proteins is an attractive target pathway for drug development because the
pathway is absent in human %°. By use of this strategy, we successfully discovered three
multitarget inhibitors with low ICsy values (<10.0 uM) for simultaneously inhibiting shikimate
dehydrogenase and shikimate kinase by collaborating with Dr. Wen-Ching Wang and Dr. Wen-
Chi Cheng of National Tsing Hua University (NTHU). Subsequently, we applied the strategy to
discover three new inhibitors with low ICsy values (4~20 pM) for HIN1 and H5N1
neuraminidases, and design five zanamivir, derivatives with 1Csy values in the <10 nanomolar
range by collaborating with Dr. John T.A. Hsu-and. Dr.-Hui-Chen Hung of National Health
Research Institutes, and Dr. Chun-€heng Lin-and Mr. Chien-Hung Lin of NTHU. Our
experimental results showed that the three<inhibitors may overcome the drug resistances
introduced by H274Y and 1222R< for HIN1 neuraminidase without causing apparent
cytotoxicity, suggesting a starting point to combat drug-resistant strains. The experimental
results showed that the concept of pharmapathlogs is useful to discover multitarget inhibitors.

We believe that the new strategy is useful to discover and optimize new lines of inhibitors

toward human diseases.

The pharmapathlog-based screening is a general strategy for drug development, and can
be extend to other human diseases and drug-resistant pathogens. A study showed that
developing a drug costs 15 years and US$800 million on average®'. The high cost and lengthy
development time reveals the insufficiency of the traditional strategy in developing drugs for
combating rapidly emerging diseases, such as malaria, tuberculosis, cholera, and avian flu.

Once drug-resistant pathogens emerge, current drug treatments may be ineffective. As a result,



the pharmapathlog-based screening, which is different to currently used single-target
approaches, has great potential because of the following advantages: 1) High success rate. The
new strategy simultaneously considers multiple target proteins for discovering inhibitors,
providing an additive opportunity to discover true hits against diseases. 2) Reduction of drug
resistance. The probability of drug resistant mutations arising in all targets is extremely low. 3)
High treatment efficiency. Multitarget inhibitors inhibit multiple targets; therefore, these drugs
increase the efficiency of therapy and are useful to treat complexity of diseases. 4) Reduction
of cost and time. Based on above reasons, we believe our research results are helpful for the

drug development process.

1.2 Current state of computational drug design

22223 | virtual

Virtual screening is an efficient andspromising strategy in drug discovery
screening, thousands of compounds aresranked according 1o their binding affinities predicted
by scoring functions, and top-ranked cempounds are’then tested by experiments. There are

24,25

three general classes of scoring functions, including force-field-based methods= >, empirical

26,27 28,29

methods™<", and knowledge-based methods“™<”. Force-field-based scoring functions are
derived from molecular mechanics force-fields such as van der Waals potentials and Columbic
interactions. Empirical scoring functions measure binding affinities by summing up terms that
describe physical contributions, such as hydrogen bonding, van der Waals forces, and
hydrophobic contacts. Generally, empirical scoring functions have simplified energy
descriptors based on physical properties and then reduce computational cost in virtual
screening. Knowledge-based scoring functions are derived from energy-like functions by
considering the distributions of interatomic distances in a set of crystal structures of protein—

ligand complexes. Furthermore, regression techniques are often applied to scoring functions,

and coefficients of descriptors are derived from a set of protein-ligand complexes with
5



experimental binding affinities. As a result, these scoring functions (e.g., X-SCORE®,
ChemScore?’, SCORE®, DrugScore?, and PLD*") usually perform well in the prediction of
binding affinity.

As the number of protein structures increases rapidly, virtual screening approaches is

2222332 Based on the various scoring

becoming important and helpful in lead discovery
functions, many popular programs (e.g., GEMDOCK *, DOCK *, AutoDock **, and GOLD?)
were designed for virtual screening, and were successfully applied to identify lead compounds
for target proteins. However, hit rates of these programs remained intensive because of the
incomplete understandings of ligand binding mechanisms in protein-ligand interactions®??,
For example, most of the scoring functions often lack consideration for key binding
environments, such as pharmacophore -~spots, <metal ions, and conserved residues.
Pharmacophore spots are the spatial'arrangement of compound moieties that are responsible for
biological activity®™®. Metal-ligafid interactions stabilize “ligands to facilitate catalysis®’.
Conserved residues interacting with bound compaounds often. play important roles for biological
functions. For instance, catalytic residues;-which~polarize substrates and thereby stabilize
transition states®, are evolutionarily conserved. These key binding environments are essential
for ligand binding and biological functions but ignored in most computational methods. In

25,34,39

addition, most of these docking programs use energy-based scoring methods, which are

often biased toward both the selection of high molecular weight compounds and charged polar

compounds*®**,

Recently, some approaches have been proposed to derive key binding environments of
protein-ligand interfaces (e.g., pharmacophore spots) from known compounds*#?*®, These
approaches apparently increase the chance to identify active compounds. However, they are
often unable to be applied for new targets, which have no known active compounds. Currently,

some approaches used the scoring functions to discover multitarget inhibitors by virtual

6



screening **. Wei et al. discovered multitarget inhibitors for the human leukotriene A4
hydrolase and the human nonpancreatic secretory phospholipase A2 by a pharmacophore-based
method***®. These approaches also contained the disadvantages as we mentioned in the
previous part, leading low prediction accuracy or limiting discovery of new target inhibitors.
Therefore, the more powerful techniques for identifying these key binding environments and

multitarget inhibitors provide a great potential value for drug design.

In this thesis, we presented the SiMMap server to infer the key binding environments by a
site-moiety map in protein-ligand interfaces. The server provides pocket-moiety interaction
preferences (anchors) including binding pockets with conserved interacting residues, moiety
preferences, and interaction type. We verified the site-moiety map on three therapeutic targets,
including thymidine kinase, and estrogen receptors-of antagonists and agonists. Experimental
results showed that an anchor is often a hot spot.and the site-moiety map is useful to identify
active compounds for these targets. In-addition, we applied. site-moiety maps to extract core
binding environments (core anchers) of pharmapathlogs for shikimate pathway and
neuraminidases of influenza A, and Several.inhibitors:were identified. We believe that site-
moiety maps are able to provide biological insights and are useful for drug discovery and lead

optimization.

1.3 Thesis overview

The thesis is organized as follows. In Chapter 2, to identify pharmapathlogs, which are
ortholog proteins sharing comparable binding environments in the same pathways, we
developed the SiMMap server to infer key binding environments of binding sites via site-
moiety maps. A site-moiety map describes the relationship between the moiety preferences and

the physico-chemical properties of the binding site through anchors. An anchor includes three



essential elements including binding pockets with conserved interacting residues; moiety
preferences; and interaction type. We provided initial validation of the site-moiety map on
three targets, thymidine kinase, and estrogen receptors of antagonists and agonists.
Experimental results show that an anchor is often a hot spot and the site-moiety map can help
to assemble potential leads by optimal steric, hydrogen-bonding, and electronic moieties.
When a compound highly agrees with anchors of site-moiety map, this compound often

activates or inhibits the target protein.

In Chapter 3, we presented the pharmapathlog-based screening strategy by combing site-
moiety maps. The concept of strategy is to simultaneously screen multiple protein orthologs in
the same pathways cross pathogens, and extract conserved binding environments (core anchors)
of these proteins for discovering multitarget-inhibitors. Proteins sharing similar binding
environments (core anchors) are considered pharmapathlogs, and could be inhibited by the
same inhibitors. In this study, we applied site-moiety, maps to describe the core binding
environments, called core anchors, which present conserved binding pockets with specific
physico-chemical properties, similar moieties.of ligands; and consensus interaction types, all of
which are essential to perform biological functions during species evolution. Hence, the
proteins with comparable core anchors can be regarded as pharmapathlogs, and the core
anchors of pharmapathlogs can be used to identify multitarget inhibitors. Then this strategy
was applied to identify multitarget inhibitors of shikimate pathways for M. tuberculosis and H.
pylori, which are human pathogens and causes peptic ulcer disease and chronic infectious
disease, respectively'’°. By use of the strategy, we successfully discovered three multitarget
inhibitors with low 1Csy values (<10.0 uM) for simultaneously inhibiting shikimate
dehydrogenase and shikimate kinase of in the shikimate pathway. The preliminary results show

that the pharmapathlog-based screening strategy is useful to discover multitarget inhibitors.

In Chapter 4, we applied the pharmapathlog-based screening strategy to identify and
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optimize inhibitors of neuraminidases. The neuraminidase has been considered an attractive
target for the treatment of influenza infection®*. By use of the strategy, we designed five
derivatives simultaneously inhibiting HIN1 and H5N1 neuraminidases with 1Cso values in the
<10 nanomolar range. The derivatives could be new type inhibitors located at the 150-cavity,
which is adjacent to the sialic acid binding site. Moreover, we found three novel inhibitors with
ICso values <10 pM through the strategy. Our experimental results reveals the three inhibitors
may overcome the drug resistances introduced by H274Y and 1222R for HIN1 NAs without

causing apparent cytotoxicity, suggesting a starting point to combat drug-resistant strains.

In the final chapter, we summarized the results of this thesis, and then discuss the future
works. Currently, we propose a new concept of "pharmacologs"” by extending the concept of
"pharmapathlogs”. Pharmacologs are, @ - group--of proteins sharing comparable binding
environments in multiple pathways, and=can be bound the same compounds. The major
difference between pharmapathlogs ‘and pharmacologs is that pharmacologs could be
constituted by targets of multiple  disease-related 'pathways, whereas pharmapathlogs only
contain targets in a pathway. We believe that.this-new:concept is able to identify multitarget
inhibitors of multiple disease-related pathways, and then enhance therapeutic efficacy for

human diseases.



Chapter 2. Site-moiety map to recognize interaction

preferences between protein pockets and compound

moieties

Identifying pharmapathlogs, which are protein orthologs sharing similar core binding
environments in the same pathway and can be inhibited by the same compounds, is a
challenging task. Because proteins in the same pathways often lack structural and sequence

homology™*’

, it is inapplicable to use sequence or structure alignment methods to find the core
binding environments within these proteins. For-example, in the shikimate pathway, the
sequence identity between shikimate dehydrogenase (SDH)“and shikimate kinase (SK) is 8.3%,
and the root mean square deviation between SD and SK! structures is 4.8A. To address this
issue, we developed a new server, called SiMMap®; to describe key binding environments of
protein binding sites. Based on the SiMMap-Server, pharmapathlogs could be identified
through comparing key binding environments of proteins binding sites without considering
sequence and structure similarities. In addition, consensus binding environment among these

proteins are regarded as core binding environments, which can be applied to find multitarget

inhibitors.

In this chapter, I cooperated with our laboratory members, including Dr. Yang, Yen-Fu
Chen, Shen-Rong Lin, and Yu-Chi Huang, to develop the SiMMap server. The SiMMap server
statistically derives site-moiety map with several anchors, which describe the relationship
between the moiety preferences and physico-chemical properties of the binding site, from the
interaction profiles between query target protein and its docked (or co-crystallized) compounds.

Each anchor includes three basic elements: a binding pocket with conserved interacting
10



residues, the moiety composition of query compounds, and pocket-moiety interaction type
(electrostatic, hydrogen-bonding, or van der Waals). We provide initial validation of the site-
moiety map on three targets, thymidine kinase, and estrogen receptors of antagonists and
agonists. Experimental results show that an anchor is often a hot spot and the site-moiety map
can help to assemble potential leads by optimal steric, hydrogen-bonding, and electronic
moieties. When a compound highly agrees with anchors of site-moiety map, this compound
often activates or inhibits the target protein. We believe that the site-moiety map is useful to
extract the core binding environments (core anchors) and find pharmapathlogs. The SiMMap

web server is available at http://simfam.life.nctu.edu.tw/. The results were published in Nucleic

Acids Research.

2.1 Introduction

As the number of protein structureS-increases rapidly, structure-based drug design and virtual
screening approaches are becoming important-and helpful in lead discovery>?%32 A number
of docking and virtual screening methods®>**%**% have been utilized to identify lead
compounds, and some success stories have been reported*®®*. However, identifying lead
compounds by exploiting thousands of docked protein-compound complexes is still a
challenging task. The major weakness of virtual screenings is likely due to incomplete
understandings of ligand binding mechanisms and the subsequently imprecise scoring

algorithms®?2*,

25,34,39

Most docking programs use energy-based scoring methods which are often biased

toward both the selection of high molecular weight compounds and charged polar

40,41

compounds These approaches generally cannot identify the key features (e.g.,

pharmacophore spots) that are essential to trigger or block the biological responses of the target
11
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protein. Although pharmacophore techniques** have been applied to derive the key features,
these methods require a set of known active ligands that were acquired experimentally.
Therefore, the more powerful techniques for post-screening analysis to identify the key
features through docked compounds and to understand the binding mechanisms provide a great

potential value for drug design.

To address these issues, we presented the SiMMap server to infer the key features by a
site-moiety map describing the relationship between the moiety preferences and the physico-
chemical properties of the binding site. According to our knowledge, SiMMap is the first
public server that identifies the site-moiety map from a query protein structure and its docked
(or co-crystallized) compounds. The server provides pocket-moiety interaction preferences
(anchors) including binding pockets with conserved. interacting residues; moiety preferences;
and interaction type. We verified the ‘site=moiety. map, on three targets, thymidine kinase, and
estrogen receptors of antagonists-and agonists.-Experimental results show that an anchor is
often a hot spot and the site-moiety-map is usefulto identify.active compounds for these targets.
We believe that the site-moiety map is able-to.provide biological insights and is useful for drug

discovery and lead optimization.

2.2 Methods and Materials

Figure 2.1 presents an overview of the SiMMap server for identifying the site-moiety map with
anchors, describing moiety preferences and physico-chemical properties of the binding site,
from a query protein structure and docked compounds. The server first uses checkmol
(http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm) to recognize the compound moieties
and utilizes GEMDOCK?® to generate a merged protein-compound interaction profile (Fig.

2.1B), including electrostatic (E), hydrogen-bonding (H) and van der Waals (V) interactions.
12



According to this profile, we infer anchor candidates by identifying the pockets with
significant interacting residues and moieties with Z-score > 1.645. The neighbor anchor
candidates, which are the same interaction type and the distances between their centers are less
than 3.51&, are grouped into one anchor. These anchors form the site-moiety map describing
interaction preferences between compound moieties and the binding site of the query (Figs.
2.1C and 2.1D). Finally, this server provides graphic visualization for the site-moiety map;
anchors with moiety structures and compositions; pocket-moiety interactions; and the

relationship between anchors and moieties of query compounds.
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Step 1: Query a target protein
structure and its docked (co-
crystallized) compounds

v

Step 2: Generate protein-
compound interaction profiles
and identify compound moieties

!

Step 3: Derive an anchor
candidate by identifying a
pocket with significant
interacting residues and
moieties with Z-score > 1.645

!

Step 4: Determine anchors by
grouping neighbor anchor
candidates with same type. For
each anchor, identify its binding
pocket, top-significant
interacting residues, moiety
preferences, and anchor type

Y

Step 5: Determine site-moiety
map with anchors and rescore
compounds

Jr

Step 6: Output graphically site-
moiety map; anchors with
moiety structures and
compositions; and pocket-moiety
interactions.
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Figure 2.1. Overview of the SiMMap server for the site-moiety map using herpes simplex virus
type-1 thymidine kinase (TK) and 1000 docked compounds as the query. (A) Main procedure.
The Z-score cutoff was set to 1.645, which was commonly used in statistics (95% confidence
level). (B) The merged protein-compound interaction profile. A cell is colored by green if there
is an interaction (e.g., electrostatic, hydrogen-bonding, or van der Waals interaction) between a

compound and a residue (C) The pocket-moiety interaction preferences of three anchors: E1
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(electrostatic), H2 (hydrogen-bonding), and V1 (van der Waals). Each anchor consists of a
binding pocket with conserved interacting residues, the moiety composition and anchor type;

(D) The site-moiety map with four anchors.

2.2.1 Site-moiety map, anchor and pocket

The anchor (pocket-moiety interaction preference) is the core of a site-moiety map. An anchor
possesses three essential elements: (1) a binding pocket with conserved interacting residues and
specific physico-chemical properties; (2) moiety preferences of the pocket; (3) pocket-moiety
interaction type (E, H, or V). An anchor can be considered as "key features™ for representing
the conserved binding environment element or a "hot spot” which involves biological functions.
In addition, we regard a binding pecket,”which~consists of several residues significantly
interacting to compound moieties, as a-part ‘of:the binding site. The binding pocket often
possesses specific physico-chemical properties-and geometric shape to bind preferred moieties.
The site-moiety map, which can help\to.assemble potential leads by optimal steric, hydrogen-
bonding, and electronic moieties, is useful for-drug discovery and understanding biological

mechanisms.

2.2.2 Data sets

To describe and evaluate the utility of the SiMMap server, we tested the server on three target
proteins for virtual screening. These proteins are herpes simplex virus type-1 thymidine kinase
(TK, PDB code 1kim®?), estrogen receptor o for antagonists (ER, PDB code 3ert™), and
estrogen receptor o for agonists (ERA, PDB code 1gwr™"). Each compound set consists of 10

known active ligands and 990 compounds selected randomly from Available Chemical
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Directory (ACD) proposed by Bissantz et al.®. Currently, the docked conformations of these
1000 compounds were generated by the in-house developed GEMDOCK program*® which is
comparable to some docking methods (e.g., DOCK, FlexX, and GOLD) on the 100 protein-
ligand complexes and some screening targets®**°. In addition, GEMDOCK has been

successfully applied to identify inhibitors and binding sites for some targets®*®*".

2.2.3 Main procedure of constructing a site-moiety map

The SiMMap server performs six main steps for a query (Fig. 2.1A). Here, we used TK as an
example for describing these steps. First, users input a protein structure and its docked
compounds. The server used checkmol to.identify- moieties of docked compounds and
GEMDOCK to generate E, H and \.interaction- profiles. For each profile, the matrix size is
Nx K where N and K are the numbers of compounds.and interacting residues of query protein,

respectively. An interaction profile matrix P(l) with type I.(E, H, or V) is represented as

P11 P1. Pik
P(I): P21 p?,z P2k
pN,l pN,z Pk

, Where p;jjis a binary value for the compound i interacting to the residue j (Fig. 2.1B). For H
and E profiles, pij is set to 1 (green) if an atom pair between the compound i and the residue j
forms hydrogen-bonding or electrostatic interactions, respectively; conversely, the interaction
is set to O (black). For van der Waals (vdW) interaction, an interaction is set to 1 when the

energy is less than -4 (kcal/mol).

SiMMap identified consensus interactions between residues and compound moieties with

similar physical-chemical properties through the profiles. For each interacting residue (a
16



column of the matrix P(l)) (Fig. 2.1B), we used Z-score value to measure the interacting
conservation between this residue and moieties. Z-score values are often used to evaluate
statistical significances. Here, we used to measure how significant the consensus interactions
are in the protein-compound interaction profiles. High Z-score values indicate that the
interactions are highly consensus. The standard deviation (o) and mean («) were derived by

random shuffling 1,000 times in a profile. The Z-score of the residue j is defined as

2, ==t f.:Z_Nh
J &, where fj is the interaction frequency and given as . =N |

Spatially neighbor interacting residues and moieties with statistically significant Z-score >
1.645 were referred as an anchor candidate. The Z-score threshold is set to 1.645 (95%
confidence level) using Student's t-test. Neighbor anchor candidates, which are spatially
overlapped and the same anchor type,‘were clustered-as‘an anchor and the anchor center is the
weighted geometric center of their interacting compound -moieties. Here, two anchors were
merged if the distance of two anchor centers 1§ less than-3.5 A. Tn each anchor, top three
residues with the highest Z-score“values were regarded as key residues forming a binding
pocket. For each anchor, we identified" its moteties' of docked compounds according to the
moiety library derived from checkmol, and calculated the moiety composition (Fig. 2.1C).

These anchors form the site-moiety map (Fig. 2.1D) of the query.

SiMMap can be applied to identify active compounds for structure-based virtual screening.
One of weaknesses of virtual screening is likely incomplete understanding of the chemistry
involved in ligand binding and the subsequently imprecise scoring algorithms. When a
compound highly agrees with the anchors of the site-moiety map, this compound often
activates or inhibits the target. The SiMMap server scores a compound by combining predicted
binding energy of GEMDOCK and the anchor score between the map and the compound. The

SiMMap score, S(i), for a compound i is defined as
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E(i)

S@i)=Y. _ AS,(i)+(-0.001) G -

, Where AS4(i) is the anchor score of compound i in the anchor a, n is the number of anchors,
E(i) is the docked energy of compound i, and M is the atom number of compound i. The anchor
score is set to 1 when the compound i agrees the moiety preference of the anchor a. Here, the
anchor score and the term M®° are useful to reduce the deleterious effects of selecting high
molecular weight compounds®®. Based on SiMMap scores, we can obtain new ranks of query

compounds.

2.2.4 Input and output of the, SIMMap server

SiMMap is an easy-to-use web server (Fig-2.2). Users input.a protein structure without ligands
in PDB format and its docked or-co-crystallized ‘compounds in MDL mol, SYBYL mol2, or
PDB format (Fig. 2.2A). These docked .compounds should be generated by any external
docking methods (e.g., DOCK, FlexX, GOLD:-and  GEMDOCK) before users uploaded these
compounds. Typically, the SiMMap server yields a site-moiety map within 5 minutes if the
number of query compounds is less than 100. This server provides the graphic visualization of
the site-moiety map and anchors elements, including a binding pocket with interacting residues,
moiety compositions and structures, numbers of involved compounds, and anchor types (Fig.
2.2B). For each anchor, this server shows docked conformations of compounds and the detailed
atomic interactions between pocket residues and moieties (Fig. 2.2C). In addition, SiMMap
shows the new rank and compound moiety structures fitting the anchors for each query
compound (Fig. 2.2D). SiMMap uses two open source tools for graphic visualization: Jmol
(http://www.jmol.org/) for displaying three-dimensional protein and compound structures with

anchors and OASA (http://bkchem.zirael.org/oasa_en.html) for visualizing compound
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structures. The server allows users to download the anchor coordinates in the PDB format;

interaction profiles; new ranks and anchor scores of query compounds.
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Figure 2.2. The SiMMap server analysis results using estrogen receptor (ER) and 1000 docked
compounds as the query. (A) The user interface for uploading target protein structure and
docked compounds. (B) The site-moiety map has one hydrogen-bonding and three van der
Waals anchors for ER. Each anchor contains the moiety structures and composition, anchor
type, and key residues in the binding pocket. (C) The details of moiety structures and residue-
moiety interactions in the H1 anchor. (D) The SiMMap scores, ranks and the relationships

between anchors and moieties of query compounds.
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2.3Results and Discussion

2.3.1 Thymidine kinase

The SiMMap server inferred the site-moiety map of TK. This map consisted of four anchors
(i.e., E1, H1, H2, and V1 (Fig. 2.1D) and the moiety composition and conserved interacting
residues of each anchor (Fig. 2.1C). The E1 anchor possesses a binding pocket with residue
R222, and three moiety types (i.e., sulfuric acid monoester (40%), carboxylic group (35%) and
phosphoric acid monoester (25%)) derived from 57 compounds. The E1 includes the phosphate
moiety of ATP and its residue R222 playing a major role to interact with the substrate®*.
Furthermore, the H1 anchor is a polar pocket with three residues (H58, R222, and E225) which
often form hydrogen bonds with polar-moiety types among 308 compounds, for example,
hydroxyl group (22%), carboxyli¢ acid (8%), ketone (8%), ether (7%), and carboxylic amide
(7%). The H2 anchor consists of ‘the residue:Q125rand 157 moieties divided into five major
moiety types, including hydroxyl group.(38%), carboxylic amide (14%), ketone (9%), amine
(8%) and sulfuric acid monoester (6%). Finally, the V1 anchor has a binding pocket with

residues W88, R163, Y172 and bulky moieties, such as aromatic ring (42%), heterocyclic

group (23%), phenol (9%), and oxohetarene (5%).

The preferred moiety types of an anchor are suitable groups interacting to conserved
residues of the binding pocket. The moiety preference is able to guide the suggestion of
functional group substitutions for lead structures. For example, the moiety preferences of these
four anchors (Fig. 2.1D) cover the moiety types derived from 15 TK co-crystal ligands (Table
2.1). In addition, these compounds contain carboxylic amide or amine groups in the H1 anchor.
This result shows that the pocket-moiety interactions of these 15 complexes are highly

consistent with the pocket-moiety interaction preferences.
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Table 2.1. The relationship between the anchors and moieties of 15 co-crystallized ligands for

TK
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2.3.2 Estrogen receptor

We used estrogen receptor (ER), a therapeutic target for osteoporosis and breast cancer®, as the
second example. Based on 1000 docked compounds and ER, the SiMMap server identifies four
anchors (H1, V1, V2, and V3) and provides moiety preferences and compositions in these
anchors (Fig. 2.2B). The H1 anchor comprises three residues (E353, L387, and R394) and five
main moiety types: hydroxyl group (36%), carboxylic acid (16%), amine (7%), ketone (7%),
and sulfuric acid monoester (6%) summarized from 319 compounds. Furthermore, three
residues (L346, T347, and L525) and 839 compounds are involved in the V1 anchor, preferring
five moiety types (i.e., aromatic ring (49%), heterocyclic group (22%), alkenes (11%), phenol
(8%), and oxohetarene (4%)). The anchar V2 is‘a hydrophobic pocket containing L346, F404,
and L387, and the former two residues-are highly conserved®. These hydrophobic residues
interact with aromatic ring (52%);-heterocyclic group (23%); phenol (12%), alkenes (5%), and
oxohetarene (3%). Finally, aromatic rings (55%);-heterocyclic groups (17%), alkenes (11%),
and phenols (9%) summarized from 560-compounds-often form vdW contacts with the long
side chains of M343, M421, and L525 in the anchor V3. The ring groups of antagonists are
often stabilized by the side chains of M343, L346, T347, L387, M421, and L525. In this case,
most selective estrogen receptor modulators of ER (e.g., EST_01 (raloxifene), EST_06 (LY-

326315,) and EST_05 (EM-343)) agree with these four anchors (Fig. 2.2D).

2.3.3 Discussion

Anchors identified by the SiMMap server often contain key pockets and moieties. To initially
validate the anchors for biological mechanisms (e.g., ligand binding and catalysis mechanisms),

we selected 15 TK and 22 ER co-crystallized ligands (Fig. 2.3, Fig. 2.4, and Table 2.1). The
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corresponding moieties of these co-crystallized ligands were highly matched the anchors
derived from 1000 docked compounds (10 known active ligands and 990 randomly selected
compounds described in Data sets). The site-directed mutagenesis shows that the conserved
interacting residues of the anchors are often essential for ligand binding and catalysis
mechanisms. For example, the positive charged residue R222 in E1 interacts with the
phosphate group of TK substrates for phosphorylation® (Figs. 2.3A and 2.3B). The site-
directed mutagenesis indicates that Q125 in H2 is essential for the substrate specificity> and
the triple mutant ,H58L/M128F/Y172F (H1 and V1), shows the drug resistance to the
compound acyclovir®. In addition, the hydrogen-bonding interaction between E225 and the
hydroxyl group of the substrates is able to help stabilize the LID region for the catalytic
reaction®. For ER target, 22 ER co-crystallizedsligands contain three consistent moieties that
are hydroxyl group and aromatic rings (Fig. 2:4). The hydroxyl group forms hydrogen bonds
with R394 and E353 in H1, and the arematic ring-yields-vdW contacts with L346, L387, and
F404 in V2. The other consistent.aromatic ring forms vdW contacts with L346, T347, and
L525 in V1. These results show that'an.anchor is often'a hot spot and involved in biological

functions.
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Figure 2.3. The relationships between the site-moiety-map-and 15 co-crystallized ligands of TK.

(A) The mapping between four inferred ahchors V(bvinding pocket with conserved interacting

residues) and these 15 ligands in the active site. (B) The moieties of these 15 ligands in each

anchor. (C) The moiety compositions of 1000 docked compounds (SiMMap) and these 15

ligands.
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Figure 2.4. The relationships between"the sitie-moiiet"y'_ ‘fnap énd 22 co-crystallized ligands of ER.
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residues) and these 22 ligands in the;a}ct‘ivé site. (B) Thgm‘(})ieties of these 22 ligands in each
anchor. Black cell presents that the mndi’é'ty‘ 61? the cdrhpbund does not agree with the anchor H1.

(C) The moiety compositions of 1000 docked compounds (SiMMap) and these 22 ligands.

To provide initial validation of the SiMMap server for virtual screening, we selected TK,
ER, and ERA with 1000 compounds as test sets. First, we compared the accuracies of SiMMap
with those of GEMDOCK on these three targets based on true positive rates (Fig. 2.5).
SiMMap, combining anchor scores and docking energies (Equation (3.1)), outperforms
GEMDOCK on these cases. We then compared SiMMap with other three programs (DOCK,
FlexX, and GOLD) on TK and ER sets. All approaches were tested using the same proteins and
compound sets (Table 2.2). When the true positive rate was 90%, the false positive rates were
6.8% (SiMMap), 25.5% (DOCK), 13.3% (FlexX), and 9.1% (GOLD) for TK and were 1.1%

(SiMMap), 17.4% (DOCK), 70.9% (FlexX), and 8.3% (GOLD) for ER.
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Figure 2.5. Comparison of SiMMap with.GEMBPOCK. The SiMMap server (solid lines)
consistently outperforms GEMDOCK (dash lines) on three targets: TK (red), ER (blue) and
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Table 2.2. Comparing SiMMap with other methods on thymidine kinase and estrogen receptor

by false-positive rates

. Thymidine kinase (TK) Estrogen receptor (ER)
True positive rate (%)—; -
SiMMap DOCK?* FlexX®* GOLD® SiMMap DOCK® FlexX* GOLD®*
80 6.3 23.4 8.8 8.3 1.1 13.3 57.8 5.3
90 6.8 25.5 13.3 9.1 1.1 17.4 70.9 8.3
100 6.8 27 19.4 9.3 7.5 18.9 NA 23.4

a Summarized from Bissantz et al. *°

® The false-positive rate (%) is obtained based on 1000 compounds.

The compound, which agrees with anchors of the site-moiety map, is often able to activate
or inhibit the target protein (Tables 2.1,.2.3"and 2:4).. In addition, the anchor score (i.e. AS(i)
defined in Equation (3.1)) of SiMMap can-he used to. reduce the ill-effect of the energy-based
scoring methods which are often-biased toward both the selection of high molecular weight
compounds and charged polar compounids®®**.-For-example; according to the SiMMap scores
(Equation (3.1)), the ranks of MFCDO005750 (adenylic acid), MFCD0005753 (deoxyadenylic
acid) and MFCDO0005763 (3'-guanylic acid) are 1, 3, and 9, respectively. These three
compounds are thymidine analogs and agree with the four anchors of TK (Fig. 2.1 and Table
2.1). For the top ranks of ER, MFCD0002206 (masoprocol) and MFCD00012748 were also the
analogs of the active compounds (Table 2.4). The anchor score of SiMMap was helpful to
reduce the highly polar compounds (e.g., MFCDO00011393 and MFCDO00003569 in TK;
MFCDO00004690 and MFCDO00013089 in ER) whose anchor scores are low. The anchor score

of SiMMap can easily combine with other energy-based scoring functions.
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Table 2.3. The mapping between the anchors and active and typical compounds for TK
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Table 2.4. The mapping between the anchors and active and typical compounds for ER

GEMDOCK SiMMap SiMMap
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2.4  Conclusions

This work demonstrates the utility and feasibility of the SiMMap server for statistically
inferring the site-moiety map describing the relationship between the moiety preferences and
physico-chemical properties of the binding site. Our experimental results show that the site-
moiety map is useful to reflect biological functions and identify active compounds from
thousands of compounds. In addition, the site-moiety map can guide to assemble potential
leads by optimal steric, hydrogen-bonding, and electronic moieties. We believe that the
SiMMap serve is able to provide the biological insights of protein-ligand binding models,

enrich the screening accuracy, and guide the processes,of lead optimization.
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Chapter 3. Pharmapathlogs for discovering multitarget

inhibitors of shikimate pathways using site-moiety maps

Multitarget inhibitors of pharmapathlogs can enhance therapeutic treatments by inhibiting
several disease-related proteins in the same pathways, and reduce probabilities of drug-
resistances. However, identifying pharmapathlogs and their multitarget inhibitors are still
challenging tasks since these proteins often lack structural and sequence homology. In this
chapter, we used site-moiety map developed in the previous chapter to infer pharmapathlogs.
Subsequently, we proposed a pharmapathlog-based screening strategy to identify multitarget
inhibitors of pharmapathlogs. This strategy-was: initially tested in discovering multitarget
inhibitors of Helicobacter pylori (H:pylori)-and Mycobacterium tuberculosis (M. tuberculosis),
which are human pathogens and causes peptic ulcer disease and chronic infectious disease. By
uses of the strategy, three inhibitors that simultaneously showed good inhibition abilities (ICso
values <10 puM) to shikimate dehydrogenase.and-shikimate kinase in the shikimate pathway
were discovered with collaborations with Dr. Wen-Ching Wang and Dr. Wen-Chi Cheng of
National Tsing Hua University. Furthermore, we found that residues of core anchors are more
conserved than those of the other regions, revealing that core anchors of pharmapathlogs are
often essential for catalysis or substrate binding during evolution. This suggests that designing
inhibitors targeting the core anchors could decrease probabilities of drug-resistances. These
experimental results reveal that the pharmapathlog-based strategy could be useful to infer
pharmapathlogs and their multitarget inhibitors. We believe that the strategy can be further

applied for drug design of human diseases.
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3.1Introduction

Pharmapathlogs, which are a group of protein orthologs in the same pathway that share similar
binding environments and can be inhibited by the same compounds, provide clues to discover
multitarget inhibitors. Therapeutics using multitarget inhibitors are more effective and less
vulnerable to drug-resistances than those using single-target inhibitors. For example, cosalane,
an antiretroviral drug, has potent antiviral activity by simultaneously inhibit multiple targets of
HIV-1 proteins, including gp120, integrase, protease, and reverse transcriptase®®’. However,
current processes of discovering multitarget inhibitors are often serendipitous, and binding
mechanisms of these inhibitors may be retrospectively understood ®®. One of the main reasons
is that target proteins of multitarget inhibitors often lack structural and sequence homology™.
In addition, the low sequence similarity of proteins in the same pathway makes discovering
pharmapathlogs difficult as well°>.As a result;a new strategy for inferring pharmapathlogs and

their multitarget inhibitors will be.valuable for-drug design.

Here, we proposed the pharmapathleg-based sereening strategy to infer pharmapathlogs
and discover their multitarget inhibitors by applying site-moiety maps described in the previous
chapter'®. A site-moiety map can present and characterize key binding environments of a
protein binding site by using anchors. An anchor contains three crucial elements, including
conserved interacting residues constituting a binding pocket (i.e., a part of the binding site), the
preference of moieties (i.e., functional groups), and pocket-moiety interaction type
[electrostatic (E), hydrogen-bonding (H), or van der Waals (V)]. Therefore, we are able to infer
pharmapathlogs by identifying proteins sharing consensus binding environments (core anchors)
instead of using structure or sequence similarities. Furthermore, core anchors of

pharmapathlogs could be used to find multitarget inhibitors by screening compounds.

Current emergence of antibiotic-resistant bacteria causes a great concern in the world®*°.
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For example, heavy antibiotic use generates drug-resistant M. tuberculosis strains. M.
tuberculosis is one of the most persistent human disease and has a high death toll between 1.6
and 2 million fatalities per year ®*"°. Another example is drug-resistant H. pylori strains, which
were resulted from overuse and misuse of antibiotics’*. H. pylori is a human pathogen that
causes peptic ulcer disease and gastric cancer, and infects about half the human population in
the world*"*3"2, Therefore, discovering new antibiotics for M. tuberculosis and H. pylori is an

urgent need.

To verify the utility of the pharmapathlog-based screening strategy, we applied this
strategy to identify new antibiotics for shikimate pathway of H. pylori and M. tuberculosis. The
shikimate pathway containing seven proteins is an attractive target pathway for drug
development because the pathway is absént in-human *°. By use of the strategy, we identified
pharmapathlogs in the pathway, and successfully discovered three new multitarget inhibitors
with low ICsp values (<10.0 uM) for simultaneously inhibiting shikimate dehydrogenase (SDH)
and shikimate kinase (SK) in the'shikimate pathway: The-experimental results show that the
pharmapathlog-based screening strategy 1S:useful.tozinfer pharmapathlogs and their multitarget
inhibitors. We believe that the new strategy is useful to discover new lines of antibiotics toward

drug-resistant bacteria and enhance human health.

3.2Methods and Materials

3.2.1 Overview of pharmapathlog-based screening strategy

The concept of the pharmapathlog-based screening strategy is to simultaneously screen
multiple orthologous proteins in the same pathway and extract core binding environments

among these proteins. In this study, we applied anchors of site-moiety maps to describe the key
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binding environments of protein binding sites. Consensus anchors (core anchors) of multiple
binding sites present conserved binding pockets with specific physico-chemical properties,
similar moieties of ligands, and consensus interaction types, all of which are essential to
perform pathway functions during evolution. The following criteria are considered: (1) the
screening targets are protein orthologs in the same pathway; (2) they share comparable core
binding environments (core anchors). Compounds agreeing with core anchors could

simultaneously inhibit these screening targets.

Figure 3.1 presented the main steps of the pharmapathlog-based screening strategy to
discover multitarget inhibitors of the shikimate pathway for H. pylori and M. tuberculosis. The
pathway contains seven proteins for biosynthesis of aromatic compounds ?° and four structures
of them are available. In this study, we. initially-selected two adjacent proteins in the pathway,
SDH and SK, as the screening targets=tolverify the strategy (Fig. 3.1A). For the targets,
including H. pylori SDH (HpSDH), H. pylori SK(HpSK),.and M. tuberculosis SK (MtSK),
their site-moiety maps were generated ,by<screening compounds from public databases. The
site-moiety maps revealed these targets shared.comparable core anchors and can be considered
pharmapathlogs (Fig. 3.1B). Subsequently, the core anchors were applied to select potential
multitarget inhibitors from public compound databases (Fig. 3.1C). Finally, compounds that
simultaneously agreed with the core anchors in the targets were selected for bioassay (Fig.

3.1D).
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Figure 3.1. Overview of pharmapathlog-based screening strategy for identifying multitarget
inhibitors. (A) Shikimate pathways of Helicobacter pylori (H. pylori) and Mycobacterium
tuberculosis (M. tuberculosis). In this study, we used shikimate dehydrogenase (SDH) and
shikimate kinase (SK) as the screening targets. (B) Pharmapathlogs and their core anchors.
SDH and SK shared comparable core anchors despite of low sequence identity. Hydrogen-
bonding and van der Waals anchors are colored green and grey, respectively. (C) Multitarget
inhibitor selection from public compound databases. Inhibitors matching these core anchors of
these targets were selected. (D) Identified multitarget inhibitors that simultaneously inhibited

multiple targets in the shikimate pathways of H. pylori and M. tuberculosis.

Proteins in the same pathway may share many similarities in physical-chemical properties
and shapes to interact similar ligands for a series of catalytic reactions. Because a product of

one enzyme is a substrate of the next enzyme, it is possible to design multitarget inhibitors to
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simultaneously inhibit several targets. For example, in the shikimate pathway, seven proteins
catalyze several metabolites to synthesizes chorismate’. SDH and SK are the fourth and fifth
enzymes (Fig. 3.2A). SDH converts 3-dehydroshikimate to shikimate, and SK subsequently
converts shikimate to shikimate 3-phosphate "™ (Fig. 3.2B). Although the sequence identity
between SDH and SK is 8.3% and the root mean square deviation (RMSD) between SDH and
SK structures is 4.8A, some binding environments of the two proteins are conserved for the
binding of these metabolites. Therefore, their core binding environments provide an

opportunity to design multitarget inhibitors to simultaneously inhibit them (Fig. 3.2C).
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Figure 3.2. Discovery of multitarget inhibitors for inhibiting multiple proteins in a pathway. (A)
Shikimate pathway that contains seven proteins. Shikimate dehydrogenase (SDH) and
shikimate kinase (SK) are the fourth and fifth enzymes in the pathway. (B) Chemical reactions

of SDH and SK. The two enzymes could share many similarities (core anchors) in their binding
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environments because of catalyzing similar metabolites. (C) A multitarget inhibitor agrees with

the core anchors and simultaneously inhibits SDH and SK.

3.2.2 Preparations of protein structures and screening

databases

Apo-form structures of SDH and SK were selected for virtual screening because closed-form
structures induced by bound ligands may limit the diversity of identified inhibitors. The apo-
form structures of SDH were kindly provided by Dr. Wen-Chi Cheng (National Tsing Hua
University, Hsinchu, Taiwan). The SK sstructures of H. pylori and M. tuberculosis were
downloaded from Protein Data Bank (PDB), and their-PDB codes are 1zuh™ and 2iyt™,
respectively. Subsequently, to define binding sites; these three structures were aligned to a
closed-form SK structure (PDB code 1zui’*)-in-complex with shikimate and PO, by using a
structural alignment tool”®. Then, the bound ligands“(i‘e., shikimate and PO,) were used to
determine the binding sites of the three structures. The binding sites of these structures were

defined by considering the protein residues located <10 A from the bound ligands.

Table 3.1 showed properties of five compound databases, including Maybridge, National
Cancer Institute (NCI), Sigma, NCGC Pharmaceutical Collection (NPC)’’, and ZINC natural
products’®™. Most compounds of these databases obey Lipinski's rule of five®® (Table 3.1), and
these compounds could be regarded as drug-like compounds. Therefore, the drug-like
compounds have a high probability of good absorption, distribution, metabolism, and excretion.
Maybridge and Sigma contain ~83% and ~84% drug-like compounds, respectively.
Compounds of the two databases are high quality and can be directly purchased from the

suppliers. NCI contains > 200,000 compounds, and the most advantage of using this database
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is that most compounds only charge a nominal fee. However, the supplier of NCI compounds
does not guarantee the purity of most compounds. NPC provides a comprehensive collection of
approved and investigational drugs, providing an opportunity to discover new uses for old
drugs. The library of ZINC natural products contains a comprehensive collection of natural
products. In history, natural products are the majority of developing new drugs®, and thereby

natural products are promising sources for drug discovery.

In this study, we selected Maybridge and NCI to generate the site-moiety maps and
discover multitarget inhibitors because of their rapid availability and low cost. The compound
structures were obtained by CORINA®?, and the compounds were filtered if their compound
molecular weights are < 200 or > 650 dalton. In total, the number of the compounds selected

for screening is 302,909.

Table 3.1. Properties of compound-databases.

Percentage of
Database Cﬂ[ﬂgggpd drug-like Availability Description
compounds?
Provision of high-quality
Maybridge 56,515 ~83% Easy” and drug-like
compounds
National
Based on Most compounds only
Cancer 283,908 ~85% ) )
. inventory charge a nominal fee
Institute
. Provision of high-purity
Sigma 115,507 ~84% Easy i
and diverse compounds
NCGC ) A comprehensive
i Slightly i
Pharmaceutical 14,814 ~86% difficultc collection of approved
Collection and investigational drugs
A comprehensive
ZINC natural :
89,425 ~75% Easy collection of natural
products
products

% Drug-like compounds obey Lipinski's Rule of five.
® Compounds can be directly purchased from the suppliers. ZINC natural products include the
purchasing information (53 suppliers) of natural products
¢ This database only includes suppliers of parts of compounds. For those compounds whose
suppliers were unavailable, users have to rely on their own to find suppliers.
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3.2.3 Computational screening and establishment of site-

moiety maps

To establish site-moiety maps, docked poses of compounds in the target proteins were required.
The 302,909 compounds were docked into the binding sites of the targets by using
GEMDOCK?® (Fig. 3.3A), which is an in-house developed docking program. GEMDOCK is
compared to some docking methods (e.g., DOCK?*®, FlexX**, and GOLD®) in the binding pose
prediction of the 100 protein-ligand complexes and the inhibitor identification of two virtual
screening targets *“°. Furthermore, we have successfully used GEMDOCK to identify novel
inhibitors and binding sites for some targefs'®2**”/For each compound, the binding energy of
the compound was predicted by thepiecewise linear- potential (PLP) of GEMDOCK.
Subsequently, 1,000 top-ranked compounds and- their respective binding sites were summited

to the SiMMap server for establishment of Site-moietysmaps*°.

The SiMMap server inferred site-moiety--maps consisting of anchors to recognize
interaction preferences between protein pockets and moieties of the top-ranked compounds.
First, the SiMMap server derived protein-compound interaction profiles of the compounds by
applying the PLP of GEMDOCK for each target (Fig. 3.3B). The profiles described the
interactions (i.e., electrostatic (E), hydrogen-bonding (H), and van der Waals (V) interactions)
between the compounds and the protein residues. For the E or H profile, a profile entry
between a compound and a protein residue was set to 1 if the compound forms electrostatic or
hydrogen-bonding interactions with the residue (green regions in Fig. 3.3B); conversely the
entry was set to O (black regions in Fig. 3.3B). For the V profile, a profile entry was set 1 if the

V energy was less than -4 kcal/mol (green regions in Fig. 3.3B).

Consensus interactions of the profiles were recognized through Z-score, which is often
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used to measure the statistical significance. For each profile, the Z-score value (Z;) of the

A-n

protein residue i was computed by Z, =———, where A; is the interaction average of the
(o}

residue i, and x and o are the mean and the standard deviation derived by 1,000 randomly
shuffled profiles. Here, we regarded the interactions of the residue i as consensus interactions if
its Z-score value was greater than 1.645 (95% confidence level). Consecutively, spatially
neighbor residues with consensus interactions were regarded as anchor candidates, and the
centers of these candidates were defined as the geometric centers of the interacting moieties of
the compounds. Then, neighbor anchor candidates with the same interaction type were merged
as an anchor if the distance between the centers of the anchor candidates was less than 3.5 A.
The interacting residues with the high Z-score values (=1.645) of an anchor were regarded as
key residues. For each anchor, we statistically-recognized compositions of the interacting
moieties of the compounds’ ‘based’ ~on * the' “moiety library of checkmol

(http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm). (Fig. 3.3C). Finally, the site-moiety

map of each target was generated (Fig. 3.3D).
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Figure 3.3. Establishment of a Site-meiety-map for a target binding site using shikimate
dehydrogenase (SDH) of Helicobacter. pylori (H. pylori) as the example. (A) Molecular
docking for the screening target. (B) Merged protein-compound interaction profiles including
electrostatic, hydrogen-bonding, and van der Waals profiles. A cell is colored by green if there
is interaction between a compound moiety and a residue; conversely, the region is colored by
black. (C) An anchor of the site-moiety map shown as the example. An anchor included
conserved interacting residues, moiety preferences, and interaction type. (D) Site-moiety map
of H. pylori SDH. The map consisted of four hydrogen-bonding anchors (H1-H4), and five van

der Waals anchors (V1-V5).
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3.2.4 ldentification of core anchors, pharmapathlogs, and

multitarget inhibitors

Core anchors, which are conserved anchors among the proteins, present key features including
consensus interacting moieties of compounds, binding pockets of a binding site, and conserved
interactions between the moieties and the pockets during the process of chemical reactions in a
pathway. However, identifying the core anchors is a challenging task because of the low
sequence identity (8.3%) and structure similarity (RMSD: 4.8A) between HpSDH and HpSK,
revealing that sequence or structure alignment methods are inapplicable to align the site-moiety
maps of the two proteins for extracting the'core-anchors. Therefore, we aligned the site-moiety
maps of the two proteins based on.thegspatial arrangements and the interaction types of the
anchors (Figs. 3.4A and 3.4B). The alignment was achieved by maximizing the similarity score

(S) between the site-moiety maps. The similarity:scoresis defined as
S =max(D] AS(i))
i=1

, Where AS(i) is the alignment score of the aligned anchor pair i, and n is the number of the
aligned anchors. Here, the alignment score is set to 1 if the distance between the centers of the
aligned anchors is less than 2A | and the aligned anchors share the same interaction types. For
those with different interaction types, the alignment score is set to 0.5 if their center distances
< 2A. The alignment score is also set to 1 if an E anchor is aligned to an H anchor because the
moieties of the E anchor are able to form hydrogen-bonding interactions with residues as the
same as those of the H anchor. For the other aligned anchors, their alignment scores are set to 0.
By exhaustively superimposing the anchors, the alignment of the three site-moiety maps with
the highest similarity score was obtained. The aligned anchors with =0.5 alignment score

were regarded as the core anchors, and these proteins sharing comparable core anchors were
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considered pharmapathlogs (Fig. 3.4C).

Compounds that simultaneously matched the core anchors of HpSDH, HpSK, and MtSK
were considered potential multitarget inhibitors for the shikimate pathway of H. pylori and M.
tuberculosis. For compound j, the pharmapathlog score (PS), which is a measure of the

capability of the multitarget inhibition, was calculated by
. T < .
PS(j)=>_,> CAS.(J)
c=1

, Where CAS¢(j) is the core anchor score of compound j in the core anchor c of the target t, C is
the number of the core anchors, and T is the number of the targets. CAS«(j) is set to 1 if
compound j matches the core anchor c of the target t; conversely, it is set to 0. Here, T is 3, and
C is 4 for all of the targets. Finally, the screening compounds were ranked based on their
pharmapathlog scores, and top-ranked-=compounds \that"are commercially available were
selected for bioassay. In addition,-for each target, the top-ranked compounds derived from the

anchor scores of the respective sité=moiety maps Were selected for bioassay™®.
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Figure 3.4. Identification of core anchors through alignment of site-moiety maps. (A) Site-

moiety maps of the three screening targets. (B) Alignmentprocess for identifying core anchors.

(C) Pharmapathlogs with core anchors.

3.3Results and Discussion

3.3.1 Site-moiety map of shikimate dehydrogenase

The site-moiety map of HpSDH contained five H anchors (H1, H2, H3, H4, and H5) and four
V anchors (V1, V2, V3, and V4) (Fig. 3.5). For each anchor, several residues comprising a

binding pocket with specific chemical-physical properties, moiety compositions, and the
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interaction type were identified from the top-ranked 1,000 screening compounds. The H1
anchor, consisting of residues T65, K69, and D105, preferred polar moieties (e.g., carbonyl,
amide, and nitro groups). The hydroxyl moieties of shikimate, one of which is involved the
dehydrogenase reaction (Fig. 3.2B), consistently form hydrogen bonds with the three residues
of the H1 anchor (Fig. 3.6A), indicating that the anchor is essential for catalysis and substrate
binding. Furthermore, a previous study showed that the two residues of the anchor, LYS and
ASP, are highly conserved and are responsible for transferring hydride ion between NADP(H)
and shikimate in SDH of Thermus thermophilus®™. Three residues, H15, T65, and Y210,
constituted the H2 anchor, and 258 compounds yielded hydrogen bonds with the residues by
amide, carbonyl, sulfuric acid diester, amide, and carboxylic acid, which is the moiety of
shikimate used to stable the binding. The H4 (S129, A179, and T180) and H5 (K69 and S129)
anchors composed two polar binding,pockets and-may play important roles for nicotine adenine
dinucleotide phosphate (NADPH)"binding (Fig: 3.6). The H3 anchor, which was far from the
shikimate and NADPH binding_sites;. contained three residues T180, D207, and L208,

presenting an additional binding pocket for designing_inhibitors.

Ring moieties were the major moiety types of the V1, V2, V3, and V4 anchors. For
example, 536, 233, 168, and 252 compounds yielded van der Waals (vdW) contact with the
residues of the V1, V2, V3, and V4 anchors, respectively, by aromatic moieties. The number of
the interacting compounds (800 of 1,000 compounds) of the V1 anchor was higher than those
of the other V anchors because this anchor was composed by three hydrophobic residues, L66,
L208, and A209 (Fig. 3.5). The ribose of NADPH is located in the V1 anchor when the
substrate binds SDH (Fig. 3.6), suggesting the importance of the V1 anchor for maintaining the
function of the protein. Although the V2 anchor only included one hydrophobic residue (L208),
the long side chains of the other residues (Y210 and Q237) provides additional vdW contacts

by the bulky moieties, such as aromatic and heterocyclic moieties, and this anchor had 496

45



interacting compounds. Furthermore, this anchor occupied as the same space as the pyridine
ring of NADPH (Fig. 3.6). The V3 and V4 anchors possessed relatively small numbers of the
interacting compounds because of polar or short side chains of the anchor residues. The V4
anchor was situated in the groove of the NADPH binding site, whereas the V3 anchor was
positioned close to the entrance of the binding site. These V anchors can be combined with the

H anchors to design inhibitors that block the binding of the shikimate or NADPH.
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Figure 3.5. Site-moiety map of shikimate “dehydrogenase. (A) Anchors with conserved
interacting residues. Hydrogen-bonding ‘and van der'Waals anchors are colored green and grey,

respectively. (B) Moiety preferences of anchors:
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Figure 3.6. Importance of anchors in biological functions. (A) Binding modes and hydrogen
bonds of the substrates, including NADPH and shikimate.+(B) Binding modes of the substrates.

The protein is present by surface. (C) Roles of anchors in biological functions.

3.3.2 Site-moiety maps of shikimate kinases

Shikimate kinases of HpSK and MtSK contained six (E1, H1-H3, V1, and V2) and seven
anchors (E1, H1-H3, and V1-V3), respectively (Fig. 3.7). For each anchor, the relationships
between residues of pockets and moieties of the docked compounds were analyzed, and moiety
preferences of the anchors were then identified (Fig. 3.7B and 3.7D). The H1, H2, V1, and V3
anchors sat at the ATP site, while the H3, V2, and E1 anchors were situated at the shikimate site

(Fig. 3.8A and 3.8B). Of the six consensus anchors (Fig. 3.7), the E1 anchor was a negatively
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charged pocket containing R57 (R58 in MtSK), and R132 in HpSK (R136 in MtSK); these
arginines are highly conserved in shikimate kinases and are critical for binding to shikimate ".
The moiety compositions of the E1 anchor consisted of carboxyl, sulfonate, and phosphate
groups. The H1 anchor was enclosed with a tight turn (Walker A motif) that binds the -
phosphate of ATP ™ (Fig. 3.8). The preferred moieties of this anchor were carboxylic amide,
sulfonate ester, carboxyl acid, and ketone. The H2 anchor was situated between the H1 anchor
and the H3 anchor and possesses a hydrogen bonding environment from Walker A motif (K14
and S15 in HpSK; K15 and S16 in MtSK) and a DT/SD motif (D31 and D33 in HpSK; D32
and D34 in MtSK). Amide, ketone, sulfonate ester, and azine-contained compounds were the
main moieties in this anchor. The H3 was situated above the central sheet including two
conserved residues (D33, and G80 in HpSK;rD34, G80 in MtSK), and preferred amide,

sulfonate ester, and ester groups.

The V1 anchor was located .at the" ATP site, whereas the V2 anchor was in the shikimate
site. V1 formed a vdW-binding ‘environment for-the phosphate groups and also contained
residues from Walker A motif. The V2 ancher.was-situated at the border between shikimate and
the nucleotide binding regions. In addition, The V2 anchor interacted with the ring of shikimate
via vdW interactions (Fig. 3.8). The V1 anchor and V2 anchor, allowing the interactions with

large chemical groups, preferred aromatic groups.
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Figure 3.7. Site-moiety maps of shikimate Kinases of Helicobacter pylori and Mycobacterium
tuberculosis. Anchors with conserved, interacting residues for Helicobacter pylori (A) and
Mycobacterium tuberculosis (C). Negativelyicharged, hydrogen-bonding, and van der Waals

anchors are colored red, green, and grey, respectively. Moiety preferences of anchors for

Helicobacter pylori (B) and Mycobacterium tuberculosis (D).
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Figure 3.8. Importance of anchors in biological functions using shikimate kinase of
Helicobacter pylori as the example.” (A) Binding .modes and hydrogen bonds of the
phosphomethylphosphonic acid adenylate ester (ACP), an ATP analogue, and shikimate. ACP
and shikimate obtained from shikimate kinase of Mycobacterium tuberculosis (PDB code 1zyu)
are superimposed into the shikimate kinase of Helicobacter pylori. (B) Binding modes of the

compounds. The protein is present by surface. (C) Roles of anchors in biological functions.

3.3.3 Core anchors of pharmapathlogs

HpSDH, HpSK, and MtSK shared four core anchors (CH1, CH2, CV1, and CV2) derived from
the alignment of site-moiety maps despite of the low sequence and structure similarity (Fig.

3.9). Core hydrogen-bonding anchor 1 (CH1) contained H1 of HpSDH, E1 of HpSK, and E1 of
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MtSk. The interaction type of the CH1 was assigned by hydrogen-bonding type because the
preferred moieties of E1 were able to yield hydrogen bonds as the same as those of H1. Core
hydrogen-bonding anchor 2 (CH2) consisted of H4 of HpSDH, H3 of HpSK, and H3 of MtSK.
V4 of HpSDH, V1 of HpSK, and V1 of MtSK were consensus, and constituted core vdW
anchor 1 (CV1). In addition, H5 of HpSDH, V2 of HpSK, and V2 of MtSK were spatially
closed, and they were merged as the core vdW anchor (CV2) because two of three anchors
were vdW types. The alignment of the site-moiety maps revealed that HpSDH, HpSK, and
MtSK shared the four comparable core anchors (Fig. 3.4). As a result, the three targets were

considered pharmapathlogs, and may be inhibited by the same compounds.

The CH1 anchor consisted of T65, K69, and D105 for HpSDH, R57 and R132 for HpSK,
and R58 and R136 for MtSK (Fig. 3:9). The-CHZI .anchor preferred polar moieties (e.g.,
carbonyl and sulfonate groups), and are -involved in the dehydrogenase reaction for SDH and
are critical for binding to shikimate " (Figs. 3.6 and 3.8). Intérestingly, shikimates of SDH and
SK are both occupied at the location of the CHI-anchor,«indicating that the CH1 anchor is
essential for catalysis and substrate binding-in.the.shikimate pathway. For HpSDH, the residues
(5129, A179, and T180) of the CH2 anchor interacted with nicotine adenine dinucleotide
phosphate (NADPH); similarly, the residues (K14, D33, and G80 in HpSK; K14, D34, and
G80 in MtSK) of CH2s are involved in Walker A motif and DT/SD motif, both of which are
essential for shikimate and ATP binding in SK™, suggesting that the CH2 anchor may play

important roles for both substrate binding in SDH and SK.

In the meantime, the residues of the CV1 anchor (L66, G127, and G128 in HpSDH; M10,
G11, S12, G13, K14, and S15 in HpSK; P11, G12, S13, G14, and K15 in MtSK) constituted
hydrophobic binding pockets, and favored aromatic moieties, such as aromatic and
heterocyclic moieties. The CV1 anchor accommodates phosphate groups of ATP and NADPH
for all HpSDH, HpSK and MtSK (Figs. 3.7, 3.8, and 3.9), revealing the importance of this core
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anchor for transferring phosphate groups during catalytic reactions. The final core anchor, CV2,
shared the similar positions in HpSDH, HpSK, and MtSK. The long side chains of the residues
(K69 and S129 for HpSDH; D33 and F48 for HpSK; D34 for MtSK ) provided additional van
der Waals contacts with the bulky moieties, such as pyridine ring of NADPH for SDH, and the

cyclohexene group of shikimate for both HpSK and MtSK (Figs. 3.7, 3.8, and 3.9).
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—
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14 81
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D33 F48 G80 G81

MtSK
- D34 G79 G80

Figure 3.9. Core anchors of HpSDH, HpSK, and MtSK. HpSDH, HpSK, and MtSK are

presented as yellow, slate, and orange sticks, respectively.

We further examined the core anchors through residue conservations. The residues of
HpSDH and HpSK were divided into four groups: (1) core anchor residues; (2) anchor residues;
(3) binding site residues; (4) other residues. The division process was described as the

following (Fig. 3.10): (1) the residues of HpSDH and HpSK belonging to the core anchors
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were selected as the "core anchor residues"; (2) the "anchor residues"” were selected from the
remaining residues; (3) the remaining residues were classified as "binding site residues” if they
were the residues of the defined binding sites; (4) the remaining residues were classified as the
"other residues". Each residue was only categorized once, and was assigned an evolutionary
conservation score derived from the Consurf server®. Residues with high values (e.g., 9) mean
highly conserved positions. The statistics results revealed that the core anchor residues were
higher conserved than anchor residues, binding site residues, and other residues (Fig. 3.11). For
those residues with 9 conserved scores, they contained 81% core anchor residues, 63% anchor
residues, 30% binding site residues, and 5% other residues. The core anchor residues were
clearly more conserved than the rest residues of the proteins. For example, in the CH1 anchor,
the conserved scores of the core anchor residues (169, K69, and D105 for HpSDH; R57 and
R132 for HpSK) were all 9. The structures (SDH-shikimate complex was provided by Dr. Wen-
Ching Wang and Dr. Wen-Chi Cheng)sin-complex-with.shikimate reveals these residues play
important roles for shikimate bindings . The-fesultshighlighted the strong selection pressures
on the core anchor residues compared.with the rest“residues in the proteins, revealing the

importance of the core anchors for maintaining biological functions during evolution.
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Figure 3.11. Conserved score distribution of core anchor residues, anchor residues, binding site
residues, and other residues. The conserved scores are from 1 (least conserved) to 9 (most

conserved).
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3.3.4 New multitarget inhibitors

Following the pharmapathlog analysis, compounds were rescored using the rank-based
consensus scoring (RCS *°). Our previous demonstrated that combining multiple scoring
functions improves enrichment of true positives only if (a) each of the individual scoring
functions has relatively high performance, and (b) the individual scoring functions are
distinctive *®. As a result, we combined energy-based and pharmapathlog scores as the RCS.
The top-ranked compounds that simultaneously agreed with the core anchors of HpSDH,
HpSK, and MtSK, and interacted the three targets with low binding energies were thereby
considered potential multitarget inhibitors. Then, we selected 30 compounds for subsequent

bioassays.

Three multitarget inhibitors_that 'simultaneously inhibited HpSDH and HpSK were
identified. The three inhibitors were also able to-inhibit'MtSK. Two of them (NSC45174 and
NSC45611) agreed with the four the core anchors-in the three targets (Fig. 3.12), and their 1Cs
values were consistently <10 uM. The‘other-one (RH00037) did not contain a polar moiety
nearby the CH1 anchor, resulting higher 1Cs values (24.8 uM in HpSDH; 23.8 uM in HpSK;
<100 uM in MtSK) than those of NSC45174 and NSC45611 (Fig. 3.12). The sulfonate group
of NSC45174 and the carboxyl group of NSC45611 formed hydrogen bonds with the residues
of the CH1 anchor as like as the hydroxyl group of shikimate in HpSDH and the carboxyl
groups of shikimates in HpSK and MtSK (Figs. 3.6, 3.8, and 3.12). The elimination of polar
moieties in RHO0037 caused about 10-fold reduction in inhibitory ability, revealing the

importance of the CH1 anchor for design multitarget inhibitors.

Although the urea moiety of NSC45174 was different from the azo moieties of NSC45611
and RH00037, these moieties formed consistently hydrogen-bonding interactions with the

pocket of the CH2 anchor. NSC45174, NSC45611, and RHO0037 used the naphthalene, the
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aromatic, and the aromatic moieties to interact the residues of the CV1 anchor via vdW
interactions, respectively; similarly, NSC45174, NSC45611, and RHO0037 use the aromatic,
the aromatic, and the 9H-xanthene made vdW contact with the residues of the CV2 anchor.
These ring moieties were able to consistently yield vdW interactions with residues of CV1 and
CV2 despite of their different moieties. In these inhibitors, the different moieties with similar
physico-chemical properties revealed the advantage of the pharmapathlog-based screening

strategy in identifying multitarget inhibitors and an opportunity for further application in lead

optimization.
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Figure 3.12. New multitarget inhibitors identified by the pharmapathlog-based screening
strategy. In addition, the compound structures and their docking poses in HpSDH, HpSK, and

MtSK are shown.
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3.3.5 Specific site and inhibitors for shikimate

dehydrogenase

The alignment of the site-moiety maps of HpSDH, HpSK, and MtSK revealed a specific site
for SDH despite of many similarities shared in the three targets (Fig. 3.13A). The specific site
includes the H3, V1, and V3 anchors, and was not involved in the NADPH and shikimate
binding sites (Fig. 3.6), suggesting an opportunity to discover specific inhibitors for HpSDH.
Subsequently, we selected compounds that agreed with any of the three anchors located in the

specific site. Two specific inhibitors were then identified (Fig. 3.13).

NRBO03174 and HTS02873 inhibited  HpSDH: with ICs, values 9.7uM and 4.9 uM,
respectively, whereas the two compounds-showed no inhibitory effect at 100 uM for HpSK
(Fig. 3.13D). NRB03174 used 4,5-dihydro-1H-tetrazole,'chain, and bromobenzene moieties to
interact with the residues of the H3; V1, and. V3 anchors (Fig. 3.13B); on the other hand,
HTS02873 made vdW contacts with the residues-of the V1 anchor via the 4,5-dihydro-1H-
tetrazole moiety (Fig. 3.13C). These results showed that the H3, V1, and V3 anchors are useful

to design specific inhibitors for HpSDH.

58



N 3’"@“"2

N
" NRB03174

HTS02873

HpSDH

HpSK

Compound

IC50 (uM)  1C50 (kM)

NRB03174
HTS02873

9.7
4.9

>100
>100
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specific inhibitors, including NR803174M(B) and HTSOZ873 (C). (D) Bioassays of the

compounds for HpSDH and HpSK.

3.4 Conclusions

The study developed a new strategy, namely pharmapathlog-based screening strategy, to
discover pharmapathlogs and multitarget inhibitors. We applied this strategy to identify
multitarget inhibitors of shikimate pathways. By use of the strategy, the four core anchors
consistently shared in HpSDH, HpSK, and MtSK were identified despite of the low sequence

and structure similarity among these targets. The three proteins were thereby considered
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pharmapathlogs, and three multitarget inhibitors were identified. Two of the multitarget
inhibitors simultaneously inhibited HpSDH and HpSK with ICsy values <10.0 uM. The three
inhibitors also inhibited MtSK with 1Csy values <10.0 uM. In addition, our analyzed results
showed that a core anchor often play important roles in catalysis or substrate binding, and is
highly conserved. The above experimental results indicate that the pharmapathlog-based
screening strategy is able to identify pharmapathlogs and then discovery multitarget inhibitors
with novel scaffolds. We believe that the new strategy will be useful to discover new line drugs

for the treatment of human diseases.

3.5 Acknowledgments

We thank to Dr. Wen-Ching Wang,and Br-Wen-Chi Cheng' of National Tsing Hua University

for kindly providing the results of-bioassays.

60



Chapter 4. Pharmapathlogs for optimizing and identifying

neuraminidase inhibitors

Influenza is an annual seasonal epidemic around the world and has continually drawing the
public attentions because of the huge death toll and drug resistance. Neuraminidase, which is
essential for the spread of influenza virus, has been regarded as a valid target for the treatment
of influenza infection. In this chapter, we applied the pharmapathlog-based screening strategy
to find and design new inhibitors for HIN1 and H5N1 neuraminidases by collaborating with Dr.
John T.A. Hsu and Dr. Hui-Chen Hung of National Health Research Institutes, and Dr. Chun-
Cheng Lin and Mr. Chien-Hung Lin oftNational-Tsing Hua University. First, we applied the
SiMMap server to infer site-moiety maps of HIN1, H5N1, and H3N2 neuraminidases.
Subsequently, the core binding .environments (core anchors) of the neuraminidases were
extracted by comparing their maps., Based onthe-core ‘anchors, we discovered three new
inhibitors with ICs values <10 uM. The experiment-results revealed that the inhibitors could
overcome the drug resistance introduced by H274Y and 1222R for N1 neuraminidases without
causing apparent cytotoxicity, suggesting a starting point to combat drug-resistant strains. In
addition, five zanamivir derivatives were designed and their ICso values were in the <10
nanomolar range. Our experimental results show that the pharmapathlog-based screening
strategy is useful to identify and optimize novel inhibitors. We believe that the pharmapathlog-

based screening strategy provides a great help for drug development and human health.
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4.1 Introduction

Influenza virus causes severe respiratory illness and death each year. In recent years, outbreaks
of avian influenza H5N1 virus have attracted the public attentions %*®’. In addition, a new
strain of influenza HIN1 virus that originated in swine has rapidly spread to many countries®.
Although vaccination is the primary strategy to prevent influenza infection, vaccines are often
inadequate because of the high mutation rate of influenza viral antigens®®. Currently, the viral
enzyme neuraminidase (NA) has been regarded as a valid target for the treatment of influenza
infection®*, and two successful drugs, zanamivir and oseltamivir, were reported . These two
drugs were designed based on the transition state of sialic acid®*®, and are generally used for
the therapy of influenza virus infections®™. However, several drug-resistant mutations of NAs
have been reported for oseltamivirsand zanamivir ‘dufing treatment®*®. Therefore, it is

apparent that developing new antiviral inhibitors to treat influenza virus infections is required.

NA cleaves the glycosidic linkage of.sialic-acid, and facilitates the release of newly
formed virus from infected cells®. “The-process is-éssential for the spread of virus in the
respiratory tract. Therefore, NA is recognized as a suitable target protein for anti-influenza drug
design. Subtypes of NAs can be classified into two group-1 (N1, N4, N5 and N8) and group-2
(N2, N3, N6, N7 and N9) according to their phylogenetic distances™. Recently, the crystal
structures of group-1 NAs reveal that 150-loop of the group-1 NAs is able to maintain an open
form and makes 150-cavity adjacent to the sialic acid binding site but not for that of group-2
NAs™®. However, 150-loop of group-2 NAs may be induced to be an open form by inhibitors
because the two groups have high sequence similarity in 150-loops, and energy difference
between open-form and closed-form conformations is not large®™. The 150-cavity suggests new
opportunities to design new type NA inhibitors, which extend to the 150-cavity. The new type
inhibitors may be useful to inhibit drug-resistant influenza viruses introduced by the treatment

of zanamivir or oseltamivir because drug-resistant mutations of these viruses often occur in the
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sialic acid binding site®®. Although several inhibitors designed to be located at the 150-cavity

have been reported*®®*'% the potency of these inhibitors is low (micromolar range).

Core binding environments (core anchors) of pharmapathlogs often play important roles
in biological functions because they are highly conserved during evolution to maintain
structures or functions of proteins. In the previous chapter, we demonstrated that a site-moiety
map, which contains several anchors, presents key binding environments of a protein binding
site '°. In addition, our experimental results show that an anchor is often a hot spot and the site-
moiety map can help to assemble potential leads by optimal steric, hydrogen-bonding, and
electronic moieties'®. By uses of site-moiety maps, we are able to infer pharmapathlogs and
their core binding environments presented as core anchors. Here, we applied the
pharmapathlog-based screening strategy:to identify and optimize inhibitors of HIN1, H5N1,
and H3N2 NAs. Based on the core anchors of the site-moiety maps, we designed five
zanamivir derivatives, which extend to the 150-cavity, with.1Cs values in the <10 nanomolar
range. Moreover, the potent inhibitions of the=zanamivir derivatives suggest that these
inhibitors may interact with the residues of-the 150-cavity of HIN1 and H3NZ2, revealing these
derivatives were able to induce H3N2 NA to form the 150-cavity. Next, we found three novel
inhibitors (ICso values <10 uM) predicted to be located in the 150-cavity. The three inhibitors
may overcome the drug resistances introduced by H274Y and 1222R for HIN1 NAs without
causing apparent cytotoxicity, suggesting a starting point to combat drug-resistant strains. The
experimental results demonstrate that the pharmapathlog-based screening strategy is useful to
identify and optimize novel inhibitors for drug-resistant strains. We believe that this strategy is

helpful to design new drugs for diseases.
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4.2 Methods and Materials

4.2.1 Overview of pharmapathlog-based screening strategy

Figure 4.1 presents the overview of the pharmapathlog-based screening strategy for optimizing
lead compounds and identifying novel inhibitors. First, we performed large scale molecular
docking to construct site-moiety maps (Fig. 4.2A). Approximately 420,000 compounds were
docked to HIN1, H5N1, and H3N2 NAs by using GEMDOCK, which is an in-house

developed docking program 33,40,58,101

and has been successfully applied to identify inhibitors
and binding sites for some targets"**>’. Based on the docking energies, top-ranked 1,000
compounds (~0.2%) were selected to the. SiMMap.server for constructing site-moiety maps of
the NAs (Fig. 4.2A). The SiMMap‘“server_appliedGEMDOCK program to generate protein-
compound interaction profiles (Fig. 4:2B). Consensus Interactions between compound moieties
and binding pockets consisted of conserved interacting residues were identified based on these
profiles. Moiety preferences of the binding pocketswere also identified from the 1,000
compounds (Fig. 4.2C). The binding pockets, the moiety preferences of the pockets, and
pocket-moiety interaction type [electrostatic (E), hydrogen-bonding (H), or van der Waals (V)
interactions] comprised anchors of the site-moiety maps (Figs. 4.1B and 4.2D). The NAs

sharing similar site-moiety maps were thereby considered pharmapathlogs, and their consensus

anchors were treated as the core binding environments (core anchors).

The core anchors of the site-moiety maps can be used for optimization and identification
of inhibitors (Figs. 4.1C and 4.1D). For lead optimization, we first found unmatched core
anchors of a lead compound, and then modified the compound structure by adding moieties
based on moiety preferences of the unmatched anchors (Fig. 4.1C). For inhibitor identification,

the docked compounds were re-ranked by using the rank-based consensus scoring (RCS). RCS
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obtained the new ranks of each compound through the pharmapathlog score ranks and energy-
based ranks (Fig. 4.1D). Finally, the modified compounds and the predicated potential

inhibitors were verified by bioassays (Figs. 4.1E and 4.1F)
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Figure 4.1. Overview of the pharmapathlog-based screening strategy for optimizing lead
compounds and identifying novel inhibitors. The strategy includes five major steps, including
(A) virtual screening for HIN1, H5N1, and H3N2 NAs, (B) construction of site-moiety maps
for inferring core anchors of pharmapathlogs, (C) lead optimization, (D) inhibitor identification,

and bioassays for identified inhibitors (E) and optimized inhibitors (F).
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Figure 4.2. Main steps for constructing a site-moiety. map. (A) Top-ranked compounds selected
by GEMDOCK. (B) Protein-compound interaction  profile for identifying consensus
interactions between moieties of screening compounds and residues of pockets. (C) Examples
of moieties that consistently interacted with residues of pockets. (D) Site-moiety map of NA
using HIN1 NA as the example. The map consisted of eight anchors including conserved
interacting residues, moiety preferences, and interaction types. Negatively charged, hydrogen-

bonding, and van der Waals anchors are colored red, green, and grey, respectively.

4.2.2 Dataset preparation

To design zanamivir derivatives and to identify new type inhibitors that could bind the 150-

cavity, we selected 150-open form structures of NAs including HIN1(PDB code 3beq™) and

66



H5N1 (PDB code 2hty®®) for constructing site-moiety maps. In addition, a 150-closed form
structure of H3N2 NA (PDB code 2aep*®) was selected. For the 150-open form of HIN1 NA,
the binding site comprising the 150-cavity and the sialic acid binding site was defined to
include the residues within a 10 A radius sphere centered around the 150-loop (residues 147—
152%Y) and zanamivir by superimposing a crystal structure of HIN1 NA (PDB code 3b7e%).
This binding site was then applied to derive binding sites of HSN1 and H3N2 NAs using a

structural alignment tool®.

H3N2 NA may maintain an open 150-open form because the 150-loop sequences of
HIN1 and H3N2 NAs share a high sequence similarity (Fig. 4.3). Therefore, the 150-open
form of H3N2 NA was modeled for further analysis. We selected a structure (PDB code 2hty*®)
with the 150-open form as the templateto- model the150-open form of H3N2 NA by using a
homology modeling approach®. Interestingly, the homology modeling results showed that the
structure of H3N2 NA could be stable when its"150-loop was the open form (Fig. 4.4). The
binding site of the modeled structure was prepared by:the same steps as described above for the

construction of site-moiety map.

The compounds used for virtual screening were collected from three compound libraries
including Maybridge, NCI, and Sigma because of their rapid availability (Table 3.1). 3D
structures of these compounds were obtained by CORINA®. The compounds were filtered if
their compound molecular weights are < 200 or > 650 dalton. The number of the compounds

selected for screening was 414,977.
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Figure 4.3. Sequence comparison between H1IN1 and H3N2 NA 150-loops. Four residues were

conserved between HIN1 and H3N ing H3N2 NA may contain a 150-

open form.
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Green: H3N2 NA
Blue: HIN1 NA
Yellow: modeled H3N2 NA

Figure 4.4. Modeled structure of H3

4.2.3 Main procedure for identifying new type inhibitors

and lead optimization

The main steps of the pharmapathlog-based screening strategy for identifying new type

inhibitors and lead optimization were described as the following (Fig. 4.1):

(1) Virtual screening of NAs. We docked the compounds of the databases into NAs of HIN1,
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H5N1, and H3N2 by using in-house developed GEMDOCK program 334%°810% (Fig 4 1A),
which has been successfully applied to identify inhibitors and binding sites for some

51,56,57

targets . Top-ranked 1,000 compounds (~0.2%) of each NA were selected for

constructing respective site-moiety maps.

(2) Site-moiety map construction of NAs. The top-ranked compounds and their corresponding
binding sites were submitted to the SiMMap server (Fig. 4.2A). Subsequently, the server
applied the GEMDOCK program to generate protein-compound interaction profiles (Fig.
4.2B). Based on these profiles, consensus interactions between compound moieties and
binding pockets consisted of conserved interacting residues were identified. In addition,
moiety preferences of the binding pockets were identified from the 1,000 compounds (Fig.
4.2C). The binding pockets, the moiety preferences of the pockets, and pocket-moiety
interaction type [electrostatic (E); hydrogen-bonding (H), or van der Waals (V) interactions]

comprised anchors of the site-moiety maps (Figs.4.2B and 4.2D).

(3) Identification of pharmapathlogs.and.core.anchors. In this study, we used site-moiety map
similarity to infer pharmapathlogs:of-NAs. Here;Z/NAs that shared more 50% core anchors
were regarded as pharmapathlogs. Two anchors between two site-moiety maps were
defined as core anchors (core binding environments) if they had (1) similar positions in
space (the distance of two anchor centers was less than 2.0A .); and (2) the same interaction
type. Core anchors were extracted through site-moiety map alignment that maximized the

number of core anchors.

(4) Lead optimization process. Moiety preferences of a core anchor are able to guide to
assemble leads by optimal steric, hydrogen-bonding, and electronic moieties. For a lead, a
near core anchor that was not matched by the lead can be identified on the site-moiety map.
According to the moiety composition of the anchor, we are able to modify the lead structure

by replacing or adding additional moieties (Fig. 4.1C). The moiety energy, which was used
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to measure how well an added moiety sterically and physicochemically fit the anchor, was

defined as

moi Pro

Emoiety = ZZ Eij

i=1 j=1

,.where Ej; is the interaction energy between atom i and j. The interaction energy was
generated by GEMDOCK according to the interaction type of the anchor. The moi and pro
indicate the numbers of the heavy atoms in the added moiety and the protein, respectively.

Therefore, we can acquire ranks of all modified lead structures based on the moiety energy.

(5) Identification of new type inhibitors. The core anchors of the site-moiety maps can be
divided into 150-cavity group and sialic acid group based on their locations. The core
anchors of the 150-cavity group weré then-used to identify new type inhibitors. For each
compound, we obtained a pharmapathlog score, which was described in the previous
chapter, by using the core anchors in the 150-cavity. Based on the scores, we can obtain

ranks of all compounds in the 150-cavity:

(6) Selection of top-ranked compounds.‘Combining different scoring methods is often useful to
improve hit rate in identifying active compounds®®. Here, we used rank-based consensus
scoring (RCS) to combine pharmapathlog-based and GEMDOCK scoring functions (Fig.

4.1D). For a compound x, we calculated its RCS by combining the ranks of pharmapathlog-

based and GEMDOCK scoring functions as follows: CS(x) =R, (X)+R;(x), where Rp(X) is

the rank of compound x based on its pharmapathlog score, and Rg(X) is the rank of
compound x using GEMDOCK scoring function. Finally, the RCS rank of the compound x

was derived based on ascending order of CS(x).

(7) Bioassay. To discover new types of inhibitors, we selected top-ranked compounds occupied

at the 150-cavity. In addition, we selected the modified zanamivir derivatives for bioassays
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(Figs. 4.1E and 4.1F). The bioassays, including inhibition assay, cytopathic effect test, and
cytotoxicity assay, were used to evaluate the utility for identification and optimization of

lead compounds.
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4.3Results and Discussion

4.3.1 Site-moiety maps of HIN1, H5N1, and H3N2 NAs

The site-moiety maps of HIN1 and H5N1 NAs contained eight core anchors (E1, H1-H3, and
V1-V4), whereas H3N2 NA had five core anchors (E1, H1, and V1-V3) in its site-moiety map
because lacking the 150-cavity (Fig. 4.5). The E1, H1, V1, V2, and V3 were located in the
sialic acid binding site and consistent in the site-moiety maps of the three NAs, implying the
sites of the different NA subtypes share conserved physical-chemical features for the sialic acid
binding. However, the site-moiety map of the modeled H3N2 NA was similar to those of HIN1
and H5N1, suggesting that the three NAs are pharmapathlogs and could be inhibited by new
type inhibitors occupied in the 150-cavity (Fig. 4.5C).
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Figure 4.5. Site-moiety maps of NA pharmapathlogs (A-E). (F) The moiety preferences of the
core anchors. Red, green, and gray anchors presents the electrostatic, hydrogen-bonding, and
van der Waals interaction types, respectively. HIN1, H5N1, and H3N2 NAs are colored by

slate, yellow, and green sticks.
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The E1 core anchor was a positively charged pocket with three residues (R118, R292, and
R371) which often formed electrostatic or hydrogen-bonding interactions with negatively
charged or polar moieties among the docked compounds. These residues are highly conserved
in all NAs and interact with the carboxylate moiety of the substrate sialic acid®. Except for the
carboxylate moiety, sulfuric acid monoester and phosphoric acid monoester, which were
physicochemically similar to the carboxylate moiety, were also identified from the docked
compounds (Fig. 4.5F). The H1 core anchor possessed a polar binding pocket with residues,
E119, W178, and E227, and the pockets preferred polar moieties (e.g., hydroxyl group,
carboxylic amide, ketone, and amine) (Fig. 4.5F). In addition, sialic acid, zanamivir, and

oseltamivir consistently form hydrogen bonds with the pocket of the H1 core anchor® 1% A

study also indicates the E119G mutation sreduces, zanamivir susceptibility (1,400-fold)'%,
suggesting this core anchor could play an impertant role for designing NA inhibitors in the

sialic acid binding site.

The hydrophobic moieties of the docked campounds often formed van der Waals contacts
with the long side chains of R224, E276, and.E277-in the V1 core anchor. The van der Waals
interactions between the hydrophobic pocket and oseltamivir are required for the binding
process of oseltamivir'®. However, the H274Y mutation, which is the principal and frequent

for the oseltamivir treatment*®1%

, could alter the hydrophobic pocket. As a result, the mutation
reduces the binding affinity of oseltamivir. Currently, a dual mutation (H274Y and 1222R)
causes ~20, ~12,000, and ~7,500 fold reduction in NA inhibition for zanamivir, oseltamivir,
and peramivir, respectively®™. This suggests that the NA inhibitors located in the V1 core
anchor may lose their potency when the H274 or 1222R mutants. Furthermore, three residues
(E277, R292, and Y406) were involved in the V2 core anchor (Fig. 4.5F). Y406 is supposed to

107

be the catalytic residue for cleavage of the substrate™', and the study of Ghate and Air also

showed that the mutation of Y406 has a drastic effect on NA activity'®®. Subsequently, the V3
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core anchor, preferring hydrophobic moieties (e.g., aromatic ring, heterocyclic group, alkenes,
phenol, and oxohetarene) contained R152, W178, and R224 (Fig. 4.5F). The crystal structures
(PDB codes 3b7e%, 2hu4®™, and 1mwe'™ ) reveals that the acetamido moieties of sialic acid,
zanamivir, and oseltamivir are located in this pocket, and interact with W178. Based on the
above analysis and results, it may be concluded that the core anchors of NA pharmapathlogs
often play important roles in catalysis or substrate binding, and the moiety preferences could be

useful for drug design.
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Figure 4.6. Relationship between core anchors and moieties of known inhibitors. The known
inhibitors include GS4071, zanamivir, GS4071, and zanamivir analogues obtained from
structure-activity relationship studies, and ATA. The cells are colored by yellow if the moieties

of the inhibitors agree with the core anchors.
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To validate the core anchors, we collected other known inhibitors including GS4071,
zanamivir, GS4071, and zanamivir analogues obtained from structure-activity relationship
studies, and ATA since these compounds contain various moieties in the core anchors (Fig. 4.6)
109114 ' The moiety compositions of these compounds revealed that the moiety preferences of
the core anchors may provide clues for lead optimization. For example, the compound 3a,
which is an analogue of GS4071, has a phosphonate substitution at the E1 core anchor slightly
enhance the 1Cso value from 1nM to 0.3nM. Another example is carbocyclic analogue 53,

which contains an aromatic moiety to increase the inhibitory activity.

The open-form conformation of the 150-loop gave rise to three extra core anchors (H2,
H3, and V4) (Fig. 4.5). The first core anchor (H2) was located in the passage between the sialic
acid binding site and the 150-cavity, and was-consisted of R118, D151, and R156. The major
moiety types of the H2 core anchar were-hydroxyl group; carboxylic amide, carboxylic acid,
nitro group, and ketone (Fig. 4.5F). Most of these moieties.yielded hydrogen bonds with this
polar pocket, which suggested that-compounds designed to-occupy the 150-cavity may contain
a polar moiety in this pocket to enhance the.binding-affinity. Moreover, 150-closed form NA
structures collected from PDB showed that a conserved water atom forms a hydrogen-bonding
network with E119, D151, and R156 (Fig. 4.7A), revealing the importance of the H2 core

anchor.

The other extra two core anchors (H3 and VV4) were in the 150-cavity (Fig. 4.5). The H2
core anchor, which contained G147, V149, and D151, was situated in the middle of the 150-
loop (Fig. 4.5E). Furthermore, the 150-open form structures indicated that several water atoms
often yield hydrogen-bonding interactions with G147, S145, and N146 in the H3 core anchor
(Fig. 4.7B). The V4 core anchor was located in the center of the 150-cavity with Q136, D151,
and T439, and preferred bulky moieties, such as aromatic ring, heterocyclic group, phenol, and
oxohetarene. Based on the locations and moiety preferences of the H3 and V4 core anchors, it
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revealed that an aromatic ring with polar moieties (e.g., aniline and phenol moieties) may be

sterically and physicochemically complementary to the 150-cavity.

Above results reveal that the core anchors of the sialic acid binding site are often involved
in catalysis process or essential to the binding of the substrate and the inhibitors (e.g.,
zanamivir and oseltamivir). However, there are already reports of drug-resistant mutations for

9115 “and most of the mutations are involved in the core anchors of the sialic acid

these drugs
binding site, such as R292K (E1 and V2) and E119V (H1)®. Therefore, developing drugs with a

different action mechanism is required for the treatment of drug-resistant NAs.

Conserved water (Closed form) ‘ ‘ Hydrogen-bonding network (open form)

Figure 4.7. Conserved hydrogen-bonding interactions between water atoms and pockets of the
H2 and H3 core anchors. (A) Conserved water atoms observed from the 150-closed form
structures in the H2 core anchor. (B) Hydrogen-bonding networks observed from the 150-open
form structures in the H3 core anchor. The red spheres indicate the water atoms. The hydrogen

bonds are presented by green dash.
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4.3.2 Optimization process of zanamivir derivatives

We first verified the pharmapathlog-based screening strategy on the lead optimization
processes of NA drugs, including zanamivir, oseltamivir, and peramivir (Fig. 4.8). For instance,
the initial inhibitor of zanamivir is DANA™®, which inhibits NA with a K; value ~ 4.0 uM (Fig.
4.8A). Based on the binding mode of DANA and the site-moiety map of HIN1 NA, we were
able to measure how well a compound moiety match a core anchor by using moiety energy,
which is intermolecular energy between residues of a binding pocket and the moiety. Because
the hydroxyl moiety of DANA had the highest moiety energy (-2.5 kcal/mol) in the H1 core
anchor, we selected this anchor as the starting point to modify the compound structure of
DANA to enhance binding affinity. The hydroxyl® moiety was replaced by each preferred
moiety (i.e., amine, guanidine, ketone, amide; and azide moeities), and the replaced compounds
were docked into the binding site-of HIN1 NA-to-measure their moiety energies. We found
that the two compounds modified“by the‘amine-maotety (4-amino-Neu5Ac2en, -3.5 kcal/mol)
and the guanidine moiety (zanamivir; -14.2 kcal/mol)‘had lower moiety energies than that of
DANA, suggesting the two moiety substitutions may increase the inhibitory ability of DANA.
A previous study showed that the ICsy values of 4-amino-Neu5Ac2en and zanamivir were 150
and 1 nM, respectively, agreeing with our prediction for the lead optimization process of
DANA. The same procedure was then applied to the optimization processes of oseltamivir and

peramivir (Figs. 4.8B and 4.8C).

In addition, we collected zanamivir, oseltamivir, and peramivir analogues with
experimental 1Cso values from literatures for further analysis®>'%*1¢118 (Fig. 4.9). These
analogues were classified to five groups: (1) Zanamivir_H1; (2) Oseltamivir_H1; (3)
Oseltamivir_V1; (4) Oseltamivir_E1; (5) Peramivir_V1 according to their structures and

locations of modified moieties. For example, DANA, 4-amino-Neu5Ac2en, and zanamivir
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were classified to Zanamivir_H1 because their modified moieties (e.g., hydroxyl moiety of
DANA, amine moiety of 4-amino-Neu5Ac2en, and guanidine moiety of zanamivir) (Fig. 4.9).
Then, we generated the moiety energies for each compound of the five groups. The Pearson’s
correlation coefficient between the moiety energies of the analogues and the ICs, values was
0.76 (Fig. 4.10), showing the moiety preferences and moiety energies of core anchors are able

to guide to assemble leads by optimal steric, hydrogen-bonding, and electronic moieties.
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Figure 4.8. Core anchors of NA pharmapathlogs for lead optimization processes of (A)
zanamivir, (B) oseltamivir, and (C) peramivir. The moieties in the circles present the preferred
moieties of the core anchors. In this study, we selected zanamivir for further optimization

process.
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Figure 4.9. Zanamivir, oseltamivir, and 'peramivir analogues for verifying core anchors of
pharmapathlogs on lead optimization/processes. These-analogues were classified to five groups:
(1) Zanamivir_H1; (2) Oseltamivir_H1; (3) Oseltamivir_V1; (4) Oseltamivir_E1; (5)

Peramivir_V1 for verification of moiety energy.
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Figure 4.10. Pearson’s correlation coefficient-between moiety energies and ICsy values of
compounds. The moiety energies were derived from-the five groups of compounds. The high
correlation (0.76) revealed that those compounds yielding strong interactions with pockets of

anchors could have high antiviral potency.

The core anchors (i.e., H2, V4, and H3) located in the 150-caivty were further applied to
design zanamivir derivatives extending into the 150-cavity because zanamivir is less affected
by a frequently drug-resistant mutation (H274Y) than oseltamivir®'®. The site-moiety map
showed that the closest mismatched anchor to zanamivir was the H2 core anchor (Fig. 4.11A),
which was located at the midway between the 150-cavity and the sialic acid binding site, and
preferred hydroxyl, carboxylic amide, carboxylic acid, nitro group, and ketone moieties (Fig.
4.5F). Then, 3-aminopropanal containing the ketone moiety was designed to be attached to the

guanidine moiety of zanamivir because of the simple synthesis procedure (Fig. 4.11B). The
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zanamivir derivative was synthesized by Dr. Chun-Cheng Lin and Mr. Chien-Hung Lin of
NTHU. The inhibitory assay showed that the modified compound (compound 645) inhibited
NA with a low ICso value (25 nM). Furthermore, the docked conformation revealed that
compound 645 was occupied at the 150-cavity and its ketone moiety yielded three hydrogen
bonds with R118 and D151 of the H2 core anchor (Fig. 4.11G). To further study the importance
of the H2 core anchor in designing the new type inhibitors, a 645 analogue (compound 636)
without the ketone moiety was synthesized (Fig. 4.11C). The elimination of the ketone moiety
caused at least 160-fold reduction in NA inhibitory ability. Moreover, both of the zanamivir
derivatives reported by the previous studies do not contain the ketone moiety in the H2 core
anchor and inhibit NA with less potency (ICsp or Ki > 1,000 nM)**%, revealing that polar
moieties are required to enhance inhibitory potency of the new type inhibitors by yielding
hydrogen-bonding interactions withsthe polar-pocket of .the H2 core anchor. The conserved
hydrogen-bonding network formed by.a water atom-and the residues of the H2 core anchor also
suggest that attaching polar moigties is a“good starting ‘point for design of the new type

inhibitors (Fig. 4.7A).
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Figure 4.11. Lead optimization process of zanamivir derivatives for extending to the 150-cavity.

(A) Zanamivir in the site-moiety map. (B) Design of zanamivir derivatives through matching

the core anchors in the 150-cavity. Zanamivir derivatives mismatching the core anchors often

show poor potency (C). (D) Enzyme-based assays of zanamivir derivatives. The core anchors

matched by the derivatives are labeled. The zanamivir derivatives were synthesized by Dr.

Chun-Cheng Lin and Mr. Chien-Hung Lin of NTHU. The purity and quality of the zanamivir

derivatives will be further analyzed. Relationships between ICso values and docking energies

including moiety energies (E) and compound energies (F). Docked poses of compound 645 (G)

and compound 608 (H).
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To further enhance the binding affinity of the compound 645, this compound was
subsequently attached an aromatic moiety, which was the most preferred moiety in the V4 core
anchor (a series of aromatic moieties with different chain length were attached to study
structure-activity relationship (Fig. 4.11D), and these compounds were docked into the binding
site of HIN1 NA. The moiety energies of benzene (compound 338), toluene (compound 64),
ethylbenzene (compound 65), and propylbenzene (compound 66) were -11.0, -6.9, -12.8, and -
11.6 kcal/mol, respectively. This suggests that adding the ethylbenzene moiety could increase
the binding affinity of the compound 645 by providing additional van der Waals contacts with
the residues of the 150-cavity. Next, the compounds with the aromatic moieties were
synthesized and verified by NA inhibitory assays. In addition, a compound (compound 55)
without aromatic moieties was synthesized: ito, compare with the aromatic containing
compounds (Fig. 4.11C). Among these compounds, compound 65 containing ethylbenzene
moiety had the lowest ICs value*(2.7:nM): (Fig. 4+11D).-The addition of the aromatic moiety
increased the binding affinity of the compound 65 by approximately 10-fold, which reveals that
the van der Waals interactions between, Q136, D151; T439 of the V1 core anchor and the

aromatic moieties could enhance the inhibitory ability of the new type inhibitors.

We tried to attach polar moieties to the ethylbenzene moiety of the compound 65 for
increasing moiety energy in the H3 core anchor. Two 65 derivatives with benzene-1,3-diamine
and aniline (compound 608) moieties were synthesized. However, the former compound was
not tested because of instability. Although the docked conformation of compound 608 showed
the amine of the aniline was not located in the H3 core anchor, compound 608 was able to form
a hydrogen bond with N146 (Fig. 4.11H). The ICs value of compound 608 was 0.53 nM,
which was approximately 5-fold potency than that of compound 65 in NA inhibition.
Furthermore, the Pearson’s correlation coefficient between moiety energies and the ICsg values
was -0.91, whereas using the compound energies showed a poor correlation coefficient (-0.69)

(Figs. 4.11E and 4.11F). In the future, the purity and quality of the zanamivir derivatives will
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be further analyzed. These experimental results revealed that the core anchors of the site-

moiety map, and moiety energies are useful for guiding lead optimization process.

4.3.3 ldentified novel inhibitors

Based on the RCS, which combined pharmapathlog-based ranks and energy-based ranks, we
obtained ranks of each compound. Subsequently, 24 top-ranked compounds located in the 150-
cavity were selected for bioassays. Of these 24 compounds, three new type inhibitors with low

ICs values for HIN1 (<10.0 uM) and H5N1 (<20.0 uM) NAs were identified (Fig. 4.12).
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Figure 4.12. Discovered new type inhibitors. (A-C) Compound structures. (D-F) Docked
conformations of the inhibitors. (I) Enzyme-based assays of the inhibitors. (J) The fold change

in 1Csq values of the inhibitors for H274Y, 1222R, and H274&1222R.
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NSC45609, NSC45174, and NSC162535 agreed with 5, 4, 5 anchors, respectively. The
three new type inhibitors consistently contained sulfuric acid monoester moieties interacting
with R118, R292, and R371 of the E1 core anchor, and aromatic moieties interacting with
Q136, D151, and T439 of the V4 core anchor (Fig. 4.12). The sulfuric acid monoester was a
negative charged moiety, which was similar to the carboxyl groups of zanamivir, oseltamivir,
and the substrate sialic acid. Although the urea moiety of NSC45174 was different from the
azo moieties of the other two inhibitors, these moieties formed consistently hydrogen-bonding
interactions with the pocket of the H2 core anchor. Similarly, the sulfuric acid monoester
moiety of NSC162535, and the hydroxyl moieties of NSC45609 and NSC45174 vyielded
consistently hydrogen bonds with the pocket of the H3 core anchor despite of their different
moieties. It should be noted that the three newstype .inhibitors were not located within the V1
core anchor, which was nearby 1222 and H274. This suggests that these inhibitors may be

affected by the two drug-resistant'mutations.

We subsequently tested the inhibitory activities of these inhibitors on the HIN1 and H5N1
NAs with H274Y (NA™2#Y), 1222R (NA%??Y),_and H274Y &I222R (NAT274Y&222Ry ‘The NA
inhibition assays showed that the new type inhibitors were not affect by these mutations (Fig.
4.121), whereas zanamivir and oseltamivir highly reduce their potency (Fig. 4.12J). The
experimental results supported our modeling predictions and indicated that designing new type
inhibitors should avoid yielding van der Waals interactions with the residues of the V1 core

anchor.

We further tested the inhibition ability of the three inhibitors on the cytopathic effect of
cells infected by influenza viruses. They inhibited >50% of the cytopathic effect without
causing apparent cytotoxicity for HIN1 NA (Fig. 4.13). The ICs, values of NSC45609,
NSC162535, and NSC45174 were 16.5, 61.5, and 36.5 uM, respectively, for HIN1 NA. These
results indicate that the three inhibitors may be a good starting point for designing new
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inhibitors to overcome the drug resistance introduced by H274Y and 1222R for N1 NAs

without causing apparent cytotoxicity.
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Figure 4.13. Effects of influenza virus in.cytopathic effect/inhibition assays of novel inhibitors.
(A) Cytopathic effect inhibition assays for, HLIN1 virus:(B) The ICs, values of the inhibitors for
H1N1 and H3N2 viruses. This figure was obtained from the works of Dr. John T.A. Hsu and Dr.

Hui-Chen Hung.

4.3.4 Proposed binding mechanism of novel inhibitors

The 150-loop of group-2 NAs might maintain an open form conformation as well as the 150-
loop of group-1 NAs. Russell et al. indicated that the 150-loop sequences of the two group
NAs share a high sequence similarity (Fig. 4.14), and the energy of the 150-loop open form
and closed form conformations may be similar **. In addition, two H1N1 structures (PDB code

309k* and 3nss®) were solved. One of them was locked in the open form conformation by 3-
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(p-tolylallyl-Neu5Ac2en extending to the 150-cavity, and the other remained the closed form
conformation without compound binding. Moreover, the 150-loop of the strain
A/Paris/2590/2009 may be a closed form conformation because a structure
(A/California/04/2009, PDB code 309k) with 100% sequence identify to A/Paris/2590/2009
has a closed form conformation without ligand binding (Fig. 4.14). However, the strain
A/Paris/2590/2009 can be inhibited by 3-(p-tolyl)allyl-Neu5Ac2en (Fig. 4.14). The above
analyses implied that the closed form conformation could be induced by a zanamivir derivative.
Interestingly, our designed zanamivir derivatives extending to the 150-cavity inhibited the
H3N2 NA with low ICsy values (3.1nM ~97.2nM) (Fig. 4.11D), which also suggested the
possibility that H3N2 NA may maintain a 150-loop open form. However, the ICsy values
obtained from H3N2 NA were about 10-foldsthigher than those obtained from HIN1 NA (Fig.
4.11D), implying that there was an energy barrier-between-the two conformations in H3N2 NA.
On the basis of the intra-molecular interactions of the H3N2 NA, we found that the energy

barrier may be formed by a salt bridge between D147-and H150.
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Group 2 H11N6 Alduck/England/1/195

Figure 4.14. Multiple sequence alignment of NAs. In 150-form column, “closed” or “open”

indicate that 150-closed form or 150-open form structures have been solved for the strain, and
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“unknown” indicates that no structures are available for the strain. The strains annotated by

“NHRI” (National Health Research Institutes) are the strains used for bioassays in this study.

Based on the above observations, we thus proposed that the binding mechanism of the
compound 608 for inhibiting H3N2 NA (Fig. 4.15). Firstly, the 150-loop was in the close form
and remained slightly flexible (Figs. 4.15A and 4.15D), which was observed from the 150-loop
B-factor of a H3N2 NA structure (PDB code 2aep’®?). Subsequently, the compound 608
interacted with the NA, and the ketone moiety of the compound substituted the position of a
water atom that formed a hydrogen-bonding network consisted of a water atom, E119, D151,
and R156 in the H2 core anchor. Next, the ketone moiety formed a new hydrogen-bonding
network with R118 and D151, providing the energy to break the salt bridge between D147 and
H150 (Figs. 4.15B and 4.15E). Finally, the 150-loop hecame an open form conformation, and
the compound 608 made additional’interactions with the residues of the 150-cavity to stable the
complex (Figs. 4.15C and 4.15F). In addition, the compound structure and binding mode of
compound 348 are similar to those of 3-(p-tolyl)allyl-NeubAc2en obtained from a structure
(PDB code 309k™) (Figs. 4.16A and 4.16B),.implyifig compound 348 may extend to the 150-
cavity as same as 3-(p-tolylallyl-Neu5Ac2en. Based on the observation, compound 608 could
also interact with the 150-cavity because the compound structures of compound 608 and

compound 348 are similar (Fig. 4.16).
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A. ETT (nature commutation 2010) Ki: 1.7uM B. compound 348 IC,: 13.1nM
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Figure 4.16. Binding mode comparison of new-type inhibitors. (A) Binding mode of 3-(p-
tolyl)allyl-Neu5Ac2en obtained from a Structure (PDB code 309K). (B) Docked conformation
of compound 348, which is structurally similar to 3-(p-tolyl)allyl-Neu5Ac2en. Compound 348
extends to the 150-cavity as same as 3-(p-tolyl)allyl-Neu5Ac2en. (C) Docked conformation of
compound 608, which is similar to compound 343. Compound 608 interacts with residues of

the 150-cavity. (D) Structure alignment of the three inhibitors.
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4.3.5 Advantages of pharmapathlog-based screening

strategy

One of the great advantages of using the pharmapathlog-based screening strategy is that core
anchors of site-moiety maps could guide to optimize potency of lead compounds by various
key moieties. Generally, a group of lead compound derivatives are synthesized to find
compounds with better inhibitory ability, which is time-consuming and high cost procedure.
Although some computational approaches have been reported, these approaches remained
problematic because of the inaccurate predictions, poor synthesizability of the suggested
moieties, and low moiety diversity'****' As'a result;the lead optimization process takes a long
time to complete. For example, it«took-about 20 years from the appearance of the first NA
inhibitor (DANA) to the discovery of the first drug (zanamivir). The pharmapathlog-based
screening strategy proposed here“thus'showed-the-value in the optimization process. The
moiety compositions of anchors provide. chemists-“iumerous options to select a simple
synthesis process for the lead optimization. Through this strategy, we successfully designed
several potent zanamivir derivatives (<10 nM). Comparing the results with other reported

zanamivir derivatives®'®

, compound 608 had a significantly improved inhibitory potency to
NA. These results reveal that the pharmapathlog-based screening strategy is useful to guide the

lead optimization process.

The pharmapathlog-based screening strategy could be used to discover novel compounds
with different scaffolds. When this strategy was applied to identify NA inhibitors, we
performed high-throughput screening on an in-house compound library of about 10,000
compounds in parallel. However, all of the compounds showed no inhibitory effect at 40 uM

on the NA assays, whereas three potent inhibitors with novel scaffolds were identified by the
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pharmapathlog-based screening strategy. Moreover, core anchors of site-moiety maps showed
the possibility of designing new type inhibitors for combating drug-resistant pathogens. For
instance, our experimental results showed that the three inhibitors overcame the drug
resistances introduced by H274Y and 1222R for HIN1 NA, and the cell-based assays showed
that the three inhibitors inhibited the cytopathic effect of cells infected with influenza viruses
without causing apparent cytotoxicity. Therefore, we believe that the pharmapathlog-based
screening strategy is useful to identify lead inhibitors efficiently and can be extend to other

human diseases and drug-resistant pathogens.

4.4  Conclusions

The study demonstrated the utility” and—feasibility ofthe pharmapathlog-based screening
strategy for identifying new type inhibitors and optimizing lead compounds. Three new
inhibitors were identified, and ‘these Inhibitors showed the inhibitory abilities for an
oseltamivir-resistant NA with H274Y and 1222R-mutations. The results reveal the advantages
to of the pharmapathlog-based screening strategy to find new types of inhibitor for combating
drug-resistant strains. Furthermore, five zanamivir derivatives were designed, and showed
potent inhibitory effects for NAs. Based on the experimental results, we believe that the
pharmapathlog-based screening strategy and these inhibitors are useful to design a novel class

of inhibitors that may overcome the drug resistance.

94



4.5  Acknowledgments

We thank to Dr. John T.A. Hsu and Dr. Hui-Chen Hung of National Health Research Institutes
for kindly providing the experimental results including enzyme inhibition assays and
cytopathic effect inhibition assays. We also thank to Dr. Chun-Cheng Lin and Mr. Chien-Hung

Lin of National Tsing Hua University for compound synthesis.

95



Chapter 5. Conclusions

5.1Summary

The concept of "one-disease, one-target, one-drug” induces researchers to develop inhibitors
with high specificity. Many drugs (e.g., zanamivir and oseltamivir) have been reported by
using this strategy. Currently, inhibitors designed by the single target concept often become less
effective because of mutations during treatments. As a result, designing multitarget inhibitor is
becoming a promising strategy for drug design. However, it is still a challenging task since
many target proteins are not similar in their sequences or structures. Here, we proposed a hew
strategy, namely pharmapathlog-based screening-strategy, to discover multitarget inhibitors by
using site-moiety maps. The main’ concept of ‘this ‘strategy is to extract core binding
environments (core anchors) among orthologs in the same pathways. For those orthologs that
share comparable core anchors, these proteins can be considered pharmapathlogs. Then, we

found compounds that agree with the Core anchors-of the pharmapathlogs for bioassays.

To verify the utility of the pharmapathlog-based screening strategy, we firstly applied
this strategy to discover multitarget inhibitors of shikimate pathways in Helicobacter pylori
and Mycobacterium tuberculosis. By use of this strategy, four core anchors consistently shared
in shikimate dehydrogenase and shikimate kinase of Helicobacter pylori, and shikimate kinase
of Mycobacterium tuberculosis were discovered. Three novel multitarget inhibitors that
simultaneously inhibited shikimate dehydrogenase and shikimate kinase of Helicobacter pylori
were also identified. The three inhibitors were also able to inhibit shikimate kinase of
Mycobacterium tuberculosis. Subsequently, we applied this strategy to design and discover
new type inhibitors of neuraminidases. Five zanamivir derivatives inhibiting HIN1 and H5N1
neuraminidases with 1Cso values in the <10 nanomolar range were discovered. To our
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knowledge, this was the first inhibitors that were predicted to be occupied in the 150-cavity
with nanomolar inhibition. In addition, we found three novel inhibitors (ICsy <10 pM)
predicted to be located in the 150-cavity instead of the sialic acid binding site. Our
experimental results revealed that the three inhibitors may overcome the drug resistances
introduced by H274Y and 1222R for HIN1 NAs without causing apparent cytotoxicity,
suggesting a starting point to combat drug-resistant strains. The experimental results
demonstrate that the pharmapathlog-based screening strategy is useful to identify and optimize
inhibitors. We believe that this strategy is helpful to design new drugs for enhancing public

health.

5.2  Major contributions

In summary, the major contributions of this study were listed-as the following:

® \\e proposed a new strategy, namely pharmapathlog-based screening strategy, to find
pharmapathlogs, core anchors of pharmapathlogs, and multitarget inhibitors. A group
of proteins are regarded as pharmapathlogs when they meet the following criteria: (1)
they are orthologs in the same pathway; (2) they share similar binding environments

in their binding sites; and (3) they can be bound or inhibited by the same compounds.

® \We developed a web server, namely SiMMap, for inferring site-moiety map to
recognize interaction preferences between protein pockets and compound moieties. A
site-moiety map of a protein binding site can present key binding environments
(anchors). Therefore, alignment of site-moiety maps of multiple proteins can extract
core binding environments (core anchors) instead of using sequence or structure

alignments. It is useful to discover pharmapathlogs sharing comparable core anchors
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when proteins are dissimilar in sequences or structures.

® We discovered three multitarget inhibitors (ICso values <10 uM) for shikimate
dehydrogenase and shikimate kinase of Helicobacter pylori. The three inhibitors also
showed inhibitory effects (ICso values <10 pM) for shikimate kinase of
Mycobacterium tuberculosis. In addition, two specific inhibitors (1Cso values <10 puM)
for shikimate dehydrogenase of Helicobacter pylori were identified. These inhibitors

are useful to develop new line antibiotics.

® \\e designed five zanamivir derivatives inhibiting neuraminidase with ICsq values in
the <10 nanomolar range. In addition, three compounds with novel scaffolds were
discovered with ICs values <10 uM. These inhibitors were predicted to be located as
the 150-cavity, which is a new cavity to design new type neuraminidase inhibitors.
Our experimental results’ reveals the three inhibitors may overcome the drug
resistances introduced by H274Y and 1222R for HEN1 NAs without causing apparent

cytotoxicity, suggesting a‘starting point-to-combat drug-resistant strains.

5.3  Future works

A large number of crystal structures reveals that proteins performing diverse functions may
share similar binding sites®. Furthermore, some recent studies reveal that proteins sharing
consistently key binding environments are able to be activated or inhibited by the same
compounds despite of dissimilar whole protein structures***?. For example, an antiretroviral
drug Cosalane is able to simultaneously inhibit multiple targets of HIV-1 proteins, including
gp120, integrase, protease, and reverse transcriptase®®. Additional examples are isozymes,

which catalyze identical chemical reactions but have different molecular structures or
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sequences’®. The binding sites of these proteins are often similar in physico-chemical
properties and geometric shapes for bindings of the same compounds. Therefore, it is possible
to extend the pharmapathlog-based screening strategy to develop multitarget inhibitors for
targets in multiple pathways. These multitarget inhibitors can enhance the efficiency of

treatment by targeting several proteins in a disease for clinical use®?*,

To address the issue, currently, we propose a new concept of "pharmacologs".
Pharmacologs are a group of proteins sharing comparable binding environments at the protein-
ligand interfaces, and can be bound the same compounds. Here, we described this new concept
by using KDR (PDB code 3b8q'?), KIT (PDB code 1t46'%%), and ABL1 (PDB code 2hyy*?"),
which are targets in acute myeloid leukemia, as the example (Fig. 5.1). Although KDR, KIT,
and ABL1 are located at different pathways-that-are proliferation and antiapoptosis, these
proteins share comparable core anchors=derived by comparing their site-moiety maps (Fig.
5.1B). Therefore, the proteins are regarded as pharmacologs, and may be inhibited the same
compounds. As expected, a cancer-drug, imatinib, has been.reported to inhibit KDR, KIT, and
ABL1™7 (Fig. 5.1C), suggesting the opportunity for designing multitarget inhibitors via

pharmacologs.

The major difference between pharmapathlogs and pharmacologs is that pharmacologs
could be constituted be targets of multiple disease-related pathways (Fig. 5.1A), whereas
pharmapathlogs only contain targets in a pathway. The experience of studying pharmapathlogs
can provide an opportunity to develop the new concept. In the future, we will identify
pharmacologs according to the following steps: (1) we will perform large scale constructions of
site-moiety maps of multiple disease-related targets; (2) pharmacologs with comparable core
anchors will be discovered comparing the site-moiety maps of multiple targets (Fig. 5.1B); (3)
we will screen compound databases to identify potential multiple targets that agree with the

core anchors for bioassays (Fig. 5.1C). We believe that this new concept is useful for drug
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development and understanding the mechanisms of drug actions.

PIPs

PI3K

Antiapoptosis

o AR @ -

ALGDS MAPK8

Mouse N .
|7 /@‘mn N N L] Multiple-target
. g CL\,E/\ inhibitors

Compound
library

Figure 5.1. Pharmacologs using KDR, KIT, and ABL1 as the example. (A) Acute myeloid
leukemia associated proteins. (B) Pharmacologs with the comparable core anchors derived
from site-moiety maps. (C) Imatinib, a cancer drug, can inhibit the proteins of the

pharmacologs.
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