Contents

Abstract (Chinese) i			
Abstract (English) ii			
Acknowled	gement (Chinese)	iii	
Contents		iv	
Table Capti	ons	vi	
Figure Cap	tions	vii	
Chapter 1	Introduction		
1.1 General Background			
1.2 Why Cu-CVD			
1.3 Thesis Organization2			
Chapter 2	Multi-Chamber CVD System and Cu Precursor		
2.1 Multi-Chamber Cu CVD System			
2.2 Automatic Monitor and Controller System			
2.3 Reaction of Cu Precursor			
Chapter 3 Cu CVD on TaN and TaSiN Substrates			
3.1 Intro	duction	20	
3.2 Experimental Procedures		20	
3.3 Basic	c Characteristics of CVD-Cu Films	22	
3.3.1	Growth Rate of Cu Film	22	
3.3.2	Effects of Deposition Temperature	23	
3.3.3	Surface Roughness of Cu Films	24	
3.3.4	Crystal Structure of Cu Films	25	
3.4 Effect of Post-Deposition Thermal Annealing		25	
3.5 Sumr	nary	26	

Chapter 4 Cu Nucleation on Plasma-Treated TaN and TaSiN Substrates

4.1 Introduction		
4.2 Experimental Details		
4.3 Properties of Plasma-Treated Substrates		
4.4 Cu Nucleation		
4.4.1 Nucleation on TaN Substrate	48	
4.4.2 Nucleation on TaSiN Substrate	50	
4.5 Summary	51	
Chapter 5 Effects of Substrate Plasma Treatment and Post-		
Deposition Thermal Annealing on CVD-Cu Films		
5.1 Introduction	67	
5.2 Experimental Details		
5.3 Cu Films on Ar-Plasma-Treated Substrate		
5.4 Cu Films on H ₂ -Plasma-Treated Substrate		
5.5 Effect of Post-Deposition Thermal Annealing		
5.6 Summary	71	
Chapter 6 Conclusions and Suggestions for Future Work		
6.1 Conclusion	87	
6.2 Suggestions for Future Work		
References	89	

Table Captions

Chapter 3

 Table 3-1 Major parameters and processing conditions of Cu CVD used in this study.

Chapter 4

- Table 4-1 Major plasma processing conditions used in this study.
- Table 4-2 Film resistivity of TaN and TaSiN layers as-deposited and after various plasma treatments.
- **Table 4-3** Wetting angle of Cu grains nucleated on various plasma-treatedTaN and TaSiN substrates.
- Chapter 5 Surface roughness (RMS, in unit of nm) for the as-deposited and Table 5-1 400°C -annealed Cu films deposited on TaN and TaSiN substrates with and without plasma treatment.
 - **Table 5-2** Film resistivity (in unit of $\mu\Omega$ -cm) for the as-deposited and 400 °C-annealed Cu films deposited on TaN and TaSiN substrates with and without plasma treatment.
 - **Table 5-3** Intensity peak ratio of Cu(111) to Cu(200) reflections for the as-deposited and 400°C-annealed Cu films deposited on TaN and TaSiN substrates with and without plasma treatment.

Figure Captions

Chapter 1

Fig.1-1 Intrinsic gate delay vs. interconnect RC delay at minimum design rules of each technology node.

Chapter 2

- Fig.2-1 Schematic diagram of multi-chamber Cu CVD system used in this thesis study.
- Fig.2-2 The panorama photograph of the multi-chamber Cu CVD apparatus.
- **Fig.2-3** Photograph showing the cluster-chamber, DLI system, and gas piping system.
- Fig.2-4 Photograph showing the robot arm in the transfer chamber.
- Fig.2-5 Schematic diagram of the pretreatment chamber.
- **Fig.2-6** Schematic diagram of the reaction chamber (copper deposition chamber) and gas injector.
- Fig.2-7 Schematic diagram of direct liquid injection (DLI) precursor delivery system.
- Fig.2-8 Schematic diagram of catalyst storage and injection system.
- **Fig.2-9** Schematic diagram of automatic remote monitor and controller system, which is composed of a host computer, a subsidiary controller, and unit controller of the Cu CVD apparatus.
- **Fig.2-10** The friendly monitor and control program displays in the host computer screen.
- Fig.2-11 The deposition mechanism of Cu CVD by Cu(hfac)TMVS precursor.

Chapter 3

Fig.3-1 Effective deposition rate vs. substrate temperature (Arrhenius plot) for Cu films deposited on TaN and TaSiN substrates at a deposition pressure of 150mtorr.

- Fig.3-2 SEM micrographs showing surface morphology of Cu films deposited on TaN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 200°C, (e) 220°C, and (f) 240°C with a deposition pressure of 150mtorr for a deposition time of 10min.
- Fig.3-3 SEM micrographs showing surface morphology of Cu films deposited on TaSiN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 200°C, (e) 220°C, and (f) 240°C with a deposition pressure of 150mtorr for a deposition time of 10min.
- **Fig.3-4** Resistivity vs. deposition temperature for Cu films deposited on TaN and TaSiN substrates at a pressure of 150mtorr for a deposition time of 10 min.
- Fig.3-5 AFM 3D images showing the surface roughness of Cu Films deposited for 10min on TaN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 200°C, (e) 220°C, and (f) 240°C.
- Fig.3-6 AFM 3D images showing the surface roughness of Cu Films deposited for 10min on TaSiN substrate at (a) 140°C, (b) 160°C, (c)180°C, (d) 200°C, (e) 220°C, and (f) 240°C.
- Fig.3-7 Average surface roughness (determined by AFM) vs. deposition temperature for the Cu films deposited on TaN and TaSiN substrates. The Cu films were deposited at a pressure of 150mtorr for 10min.
- **Fig.3-8** AFM 3D images showing the surface roughness of (a) TaN and (b)TaSiN substrates.
- **Fig.3-9** XRD spectra for Cu films deposited on (a)TaN and (b)TaSiN substrate at various deposition temperatures.
- **Fig.3-10** XRD intensity peak ratio of Cu(111) to Cu(200) reflections vs. deposition temperature for Cu films deposited on TaN and TaSiN substrates at a pressure of 150mtorr for 10min.
- **Fig.3-11** SEM micrographs showing surface morphology of Cu films deposited on TaN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 200°C, (e) 220°C, and

(f) 240° C for 10min with a pressure of 150 mtorr and then thermally annealed at 400°C for 30min in N₂ ambient.

- Fig.3-12 SEM micrographs showing surface morphology of Cu films deposited on TaSiN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 200°C, (e) 220°C, and (f) 240°C for 10min with a pressure of 150mtorr and then thermally annealed at 400°C for 30min in N₂ ambient.
- **Fig.3-13** Film resistivity vs. deposition temperature for Cu films deposited on (a) TaN and (b) TaSiN substrates with and without (as-deposited) a furnace annealing at 400°C for 30min in N₂ ambient.
- Fig.3-14 AFM 3D images showing the surface roughness of Cu Films deposited for 10min on TaN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 220°C, and (e) 240°C thermally annealed at 400°C for 30min in N₂ ambient.
- Fig.3-15 AFM 3D images showing the surface roughness of Cu Films deposited for 10min on TaSiN substrate at (a) 140°C, (b) 160°C, (c) 180°C, (d) 220°C, and (e) 240°C thermally annealed at 400°C for 30min in N₂ ambient.
- **Fig.3-16** Average surface roughness (determined by AFM) vs. deposition temperature for the Cu films deposited on TaN and TaSiN substrates thermally annealed at 400°C for 30min in N₂ ambient.
- **Fig.3-17** XRD spectra for as deposited and 400° C -annealed Cu films deposited at 200° C on (a) TaN and (b) TaSiN substrates.

Chapter 4

- Fig.4-1 AFM images showing the surface roughness of TaN substrate (a) as-deposited, (b) Ar-plasma-treated, (c) H₂-plasma-treated, and (d) N₂-plasma-treated.
- Fig.4-2 AFM images showing the surface roughness of TaSiN substrate (a) as-deposited, (b) Ar-plasma-treated, (c) H₂-plasma-treated, and (d) N₂-plasma-treated.

- Fig.4-3 SEM micrographs showing surface morphology of Cu nucleation on the as-deposited TaN substrate with the Cu CVD performed at 160°C for (a) 1min, (b) 2min, (c) 3min, and (d) 6min.
- **Fig.4-4** SEM micrographs showing surface morphology of Cu nucleation on (a) Ar-plasma-treated and (b) H₂-plasma-treated TaN substrates for 1 to 3 min with the Cu CVD performed at 160° C.
- Fig.4-5 SEM micrographs showing surface morphology of Cu nucleation on N₂-plasma-treated TaN substrate with the Cu CVD performed at 160°C for (a) 1min, (b) 2min, (c) 3min, (d) 6min, and (e) 7min.
- Fig.4-6 Schematic illustration of Young's equation.
- **Fig.4-7** Oblique view SEM micrographs showing the nucleated Cu grains on (a) as-deposited, (b) Ar-plasma-treated, (c) H₂-plasma-terated, and (d) N_2 -plasma-treated TaN substrates with the Cu CVD performed at 160°C.
- Fig.4-8 SEM micrographs showing surface morphology of Cu nucleation on the as-deposited TaSiN substrate with the Cu CVD performed at 160°C for (a) 1min, (b) 2min, (c) 3min, and (d) 6min.
- Fig.4-9 SEM micrographs showing surface morphology of Cu nucleation on (a) Ar-plasma-treated and (b) H₂-plasma-treated TaSiN substrate for 1 to 3 min with the Cu CVD performed at 160° C.
- Fig.4-10 SEM micrographs showing surface morphology of Cu nucleation on N₂-plasma-treated TaSiN substrate with the Cu CVD performed at 160°C for (a) 1min, (b) 2min, (c) 3min, (d) 6min, and (e) 7min.
- **Fig.4-11** Oblique view SEM micrographs showing the nucleated Cu grains on (a) as-deposited, (b) Ar-plasma-treated, (c)H₂- plasma-terated, and (d) N₂-plasma-treated TaSiN substrates with the Cu CVD performed at 160° C.

Chapter 5

Fig.5-1 SEM micrographs showing surface morphology of Cu films deposited on (a) as-deposited and (b) Ar-plasma-treated TaN substrate. The Cu films were

deposited at 160° C and 150mtorr for 10 min.

- Fig.5-2 SEM micrographs showing surface morphology of Cu films deposited on (a) as-deposited and (b) Ar-plasma-treated TaSiN substrate. The Cu films were deposited at 160°C and 150mtorr for 10 min.
- **Fig.5-3** AFM images showing surface roughness of Cu films deposited on (a) as-deposited and (b) Ar-plasma-treated TaN substrate.
- **Fig.5-4** AFM images showing surface roughness of Cu films deposited on (a) as-deposited and (b) Ar-plasma-treated TaSiN substrate.
- **Fig.5-5** XRD spectra of Cu films deposited on as-deposited and Ar-plasma-treated (a) TaN and (b) TaSiN Substrates.
- Fig.5-6 SEM micrographs showing surface morphology of Cu films deposited on H₂-plasma-treated (a) TaN and (b) TaSiN substrates. The Cu films were deposited at 160°C and 150mtorr for 10 min.
- **Fig.5-7** AFM images showing surface roughness of Cu films deposited on H₂-plasma-treated (a) TaN and (b) TaSiN substrates.
- **Fig.5-8** XRD spectra of Cu films deposited on as-deposited and H₂-plasma-treated (a) TaN and (b) TaSiN substrates.
- Fig.5-9 SEM micrographs showing surface morphology of post-deposition thermal annealed (400 $^{\circ}$ C for 30min in N₂ ambient) Cu films deposited on (a) as-deposited, (b) Ar-plasma-treated, and (c) H₂-plasma-treated TaN substrates.
- Fig.5-10 SEM micrographs showing surface morphology of post- deposition thermal annealed (400°C for 30min in N₂ ambient) Cu films deposited on (a) as-deposited, (b) Ar-plasma-treated, and (c) H₂-plasma-treated TaSiN substrates.
- Fig.5-11 AFM images showing surface roughness of post-deposition thermal annealed (400°C for 30min in N₂ ambient) Cu films deposited on (a) as-deposited, (b) Ar-plasma-treated, and (c) H₂-plasma-treated TaN substrates.

Fig.5-12 AFM images showing surface roughness of post-deposition thermal annealed

(400°C for 30min in N₂ ambient) Cu films deposited on (a) as-deposited, (b) Ar-plasma-treated, and (c) H₂-plasma-treated TaSiN substrates.

