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Abstract 

When modeling objects in presence of scatterers or enclosures 
with the method of momeuts (MOM), the use of specialized (as 
an  alternative to free space) Green’s functions reduces the num- 
ber of problem unknowns significantly. This advantage, how- 
ever, is often lost with the increased complexity in the evaluation 
of these Green’s functions. 

This paper discusses using a Model-Based Parameter Esti- 
mation (MBPE)  technique to  efficiently evaluate the Green’s 
functions associated with parallel plates, rectangular waveguides 
and cavities. The numerical model uses a novel approach to 
break the dyadic Green’s function into simpler functions such 
that  a set of regressed polynomials would reconstruct the func- 
tion. Examples of method of moments calculations incorporat- 
ing MBPE are presented that  show the computational advantage 
as compared to the direct approach. 

Introduction 

When the fields of known or impressed currents on an object in 
the presence of an enclosure (or any other scatterer) are sought, 
the use of specialized Green’s functions as an alternative to the 
free space Green’s function have been shown to reduce the vol- 
ume of computations for many scatterers and enclosures [ I ] .  The 
tradeoff for this alternative is replacing a high number of un- 
knowns with a much more complex kernel (as opposed to its 
free space counterpart in the integral equation). 

In spite of the complexity of the closed-form expressions of 
many specialized Green’s functions, in many instances an ap- 
proximate and simpler model, based on a set of adjustable con- 
stant parameters computed from numerical samples of the rig- 
orous and complex function, can be developed to estimate the 
true function closely. This process has been termed Model- 
Based Parameter Estimation (MBPE)  [2]. MBPE can yield 
significant computational advantages since it strives to model 
observed interactions rather than the underlying physics. This 
paper presents an application of MBPE for the evaluation of 
the specialized Green’s functions associated with scatterers in- 
side rectangular guided-wave structures and cavities. 

In the following sections, the evaluation of Green’s function 
for rectangular guided structures based on image theory is devel- 
oped. This development includes a novel approarh to reduce the 
number of independent variables of the problem, thereby mak- 
ing it hest suited for MBPE. The development starts with the 
one-dimensional case and is then generalized to two and three 
dimensions. Second, the MBPE model is formulated and the 
techniques used in its numerical implementation are described. 
Finally, the results section shows the accuracy and efficiency of 
the model as compared to the direct method when used with a 
method of moments (MOM) code. 
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Figure I: Parallel plate waveguide with wire scatterer (a )  and 
images (h) .  

Green’s Function 

The electric field of a current distribution, j ( F ) ,  inside an enclo- 
sure can always he represented as 

- - 

E ( ? )  = ~ , , u , ,  GJT, f’) .J(F’)dv’,  (1) 

where G e ( T , ? )  is the dyadic Green’s function of the electric 
type. Equation(1) is valid when ??c(FrF’) takes into account all 
the scattering characteristics of the enclosure and the radiation 
of the source current distribution itself. 

Figure l (a)  shows a one-dimensional rectangular guided wave 
structure with a wire scatterer. This structure can be used as a 
simple scatterering range, sometimes called a rail-line range. In 
order to calculate the scattering characteristics of any scatterer 
inside the rail-line, the Green’s function of the parallel plate 
stucture must be known. Expressions for the various compo- 
nents of the dyadic Green’s function associated with the parallel 
plate ran he developed tising snrressive applicatinns of image 
theory [3]. Starting with the single source current in the pres- 
ence of the infinite conducting sheets, the plates can be removed 
and replaced by an infinite number of images as shown in Figure 
l ( b ) .  The fields at any point within the waveguide can easily he 
expressed as an infinite sum of all the image fields produced by 
the induced current distribution on the wire: 

- 

m 

E J T )  = J E o ( f , : ) . q ? : ) d V ’ ,  (2) 
1z-m 

- 
where CO(?,?:) is the free space dyadic Green’s function and 
j , ( F : )  is the it’’ current image inside the guide. 

In order to identify simplifications of this analysis, the infi- 
nite sequence of images of Figure l ( b )  can he split into two even 
and odd subarrays for each z and z component, resulting in four 
separate subarrays. Here, the even and odd labels refer to the 
number of times that  the source current has been imaged into 
the ground planes to produce each image. The normal (z)  com- 
ponents of these even and odd subarrays are shown in Figure 
2(a-c). 
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Figure 2: Total x-directed images (a) and even (b )  and odd (c)  
su bar  rays. 

Model-Based Parameter Estimation 

The analysis of the preceding sect.iou has  shown tliat 1 he C:reeri's 
function for a. rectangular guided wave enclosure can be ex- 
pressed in terms of the fields o f  two similar infinite arrays o f  
equally spaced source elements. A most important. part  of this 
analysis is that  each component of the dyadic Green's function is 
calculated by twice evaluating a single function o f  one argument. 

T h e  reason for splitting the infinitr images i r i t , o  even and 
odd subarrays is that  each subarray is made up o f  an infinite 
number of snurces spa.ced hy the sanic dist,anre, 2d. Thus,  the 
only thing different about each of  these subarrays is its relative 
position (along the x dimension) wi th  respect t,o t,hc firlrl point 
3. ' lhus,  if the fnnctiotia.1 variatiutis ( i f  t l i v  l ic. lt ls  tluc t o  either I lie 

even or odd subarrays are known, the appropriate component of 
the dyad can be reconstructed. 

Using this framework, any of the components of the dyadic 
Green's function can be written in terms of the fields of a sin- 
gle infinite subarray of equally spaced source elements. As an  
example, consider the component Gzx.  Using the perspective of 
Figure 2, G,, at  any arbitary point 3 can be written as  

G,,(3) = F ( 3 )  + F ( s ' ) ,  (3)  

where F ( 3 )  is a function that  represents the field of an  infinite 
even array of x-directed elements, equally spaced by distance 2d, 
and 3' is the equivalent point for the even subarray that  gives 
the field of the odd subarray a t  point 3. 

Notice in Equation (3)  that  since the even and odd subarrays 
differ only in polarity and orientation relative to  the observer, 
the function F ( 3 )  is used twice with different arguments to ob- 
tain the desired dyad component. Thus, although the Green's 
function itself is a function of the two arguments ( the positions 
of the source and observer), the use of even and odd arrary 
analysis results in twice evaluating a vector function of a single 
variable. 

T h e  extension of this method of expressing the Green's func- 
tion to  two- and three-dimensional rectangular guided structures 
is straightforward. In each case, the Green's function can still 
be  expressed as an  infinite array of images. This, in turn,  can be 
divided into even and odd order arrays that  consist of elemrnts 
spaced by the distances dictated by opposite condutor walls. 

In spite o f  the attractiveness o f  writing each component of 
the Green's function as  in Equation (2), it must be remembered 
that  the function F ( 3 )  is, a t  this point, still a slowely converging 
infinite sum (single, double, or triple for one-, two- and three- 
dimensional problems, respectively) associated with the fields of 
each of the images in the even subarray. However, it can be 
noticed that  F ( 3 )  itself is riot a particularly ill-behaved function 
when the field of the source element itself is subtracted from 
F ( 3 ) .  This suggests better methods of calculating F ( s )  than 
merely summing the infinite series. 

One efficient method of evaluating F ( 3 )  is t o  use polynomial 
regression. Here, F ( 3 )  is evaluated by brute force (i.e., using the 
actual infinite series expression) over a rectangular grid o f  points 
large enough to adequately describe F ( 3 )  so that  G,, can he 
approximated over a sufficiently large volume of the waveguide. 
In order to determine this polynomial, the region of interest 
where the scatterer is likely to fall is gridded uniformely and the 
actual value of F(3)  (minus the source contribution) for a fixed 
source location is calciilated a t  all the grid (observation) points 
t o  the highest degree of precision possible via brute forcing the 
infinite sum. The  values of G,, thus obtained are regressed in a 
two- or three-dimensional sense with the lowest order polynomial 
that  best fits the data.  The  result is a polynomial of degree m 
in x: 

F ( s )  2z Pm(x ,y ,  2 )  = no + a1z + a 2 2  + ....... i a m P ,  ( 1) 

where each coefficient a,  is itself a pnlynomial of degree m' in z: 

a , ( z , y )  : bo i b l z  + b2z2  + ..... t b,,zm'. 

b,(y) = co + cIy + c2y2 t ..... . + c,,ry"'". 

( 5 )  
Again b, coefficints are polynomials of degree in" in y: 

(6 )  

Therefore, by storing the a,'s, 6,'s and c,'s in proper manner 
and supplying the coordinates of the sniircc observer, the value of 
F (  3) is readily computed, from which the entire Green's function 
can be determined. 

Several points need to be mentioned regarding the above 
model: 

1. A polynomial regression of data  points is used instead of 
a polynomial interpolation. The  reason interpolation is 
not a good choice is twofold. First, a pnlynomial passing 
through all the da t a  points exactly is not called for since 
the da t a  maybe contaminated in the first place. Second, 
polynomials of high degrees resulting from interpolating 
at  all the  grid points have inherent oscillatory behavior 
between da ta  p i n t s  not compatible with the true nature 
of the fields inside the guided structure. In this context, 
our purpose is better served by lower degree polynomials 
that  fit the data  approximately in a least square sense 
(curvilinear regression). 

2. Since the fields are predominately due to  source and "near- 
neighbor" images, the field of these sources can be removed 
from the regression and added back later in order to min- 
imize the modeling error. 

3. Near the edge points of the grided region of interest, the 
polynomials will approximate the function poorly due  t o  
lack of information on how the function behaves past those 
points. Therefore, the mesh of grids should be extended a 
few points farther than the region of interest t o  compen- 
sate for this. 
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4 .  T h e  regression analysis should be repeated for both real 
and imaginary parts of F ( s )  rather than magnitude and 
phase, because phase variations are very abrupt  in some in- 
stances causing considerable error in regressing polynomi- 
als, whereas real and imaginary parts of F ( s )  are smooth 
functions of position. 
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Figure 3: Real part of G,, (source effect excluded) using brute 
force calculation (a) and MBPE (b) .  

1 2 3 4 5 6 
SEGMENT NUMBER 

Figure 4: Current distribution on a A/2 dipole using brute force 
and  MBPE.  

Results 

This MBPE analysis has been done to  evaluate the Green’s 
function associated with a parallel plate waveguide for both the 
source and observer in a plane ( z - z )  perpendicular to the plates. 
A mesh of l l x l l = 1 2 1  points extending from t = 0 to z = 0.7X 
inside a rail-line range with a plate separation of d = 0.7X was 
examined. The  regression was done on individual rows result- 
ing in 11 polynomials of order 3 in x .  The rrgression was then 
repeated on coefficients of zo,z1,z2,z3 with z as the variable. 
Here again, a third order polynomial fits the da t a  points in a 
least square sense. The  procedure was repeated for real and 
imaginary components of G,,, resulting in a polynomial in rz: and 
z with a total of 16 coefficients to be stored. Single precision 
calculation was used throughout, although added precision for 
evaluation of polynomial coefficients could be justified. Using 
these coefficients, the field values due to  arbitary source loca- 
tions were computed over many observation points inside the 
waveguide and were compared with brute force computations. 

The  results turnrd o i i t  t n  I)r rlosr for most soiirrc-o1,srvatioii 
pairs. A worst case cornparisoil i s  shonn in Figiire 3 ( a - b )  for 
the real part  of G,, (sourre effert exrliidrd) The resiilts for 
other components of the (:reen’s function are similar or better 

To examine the propagation oF errors onrr  the integral eq i i a -  

tion operator is used, t h r  niodvl des(ribe.tl was iised in a h l O M  
code to  compute th r  riirrrnt tli.;trihiition on a wire scatterer 
placed inside the rail-line range with different orientations. Fig- 
ure 4 compares the current on this wire uhen brute force and 
b lRPE Green’s functions are used. l h e  results obtained would 
be improved if double precision or a finer grid were used in  coin- 
puting the polyno~nial roeficients. 

As far as computation time is roncernrd. the h lBPG of Green’ 
function is most efficient, especially for larger number of seg- 
ments on a given scatterer According to our timings on a VAX 
8650, the  computation of the current on a A/2 wire with 6 seg 
ments was 20 times faster with our M O h I  rode inrorporating 
MBPE as compared to  the brute force Green’s function. Signif 
icantly greater time savings would I)? eupected for 2- and 3-D 
enclosures since the MRI’E numeriral grid vnulcl lie relatively 
unchanged, whereas the “brute fnrre” Green’s functions rontaiii 
double, and triple infinte sums, rcspertivelj. 
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