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On the construction of graphs with graceful labeling and a-labeling

Student : Mu-Yin Chi Advisor : Dr. Shi-Chun Tsali

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

ABSTRACT

Let G be a simple graph with-m edges and letf : V (G) — {0,1, ....m} be an
injection. The vertex labeling is called a graceful labeling if every edge (u,v)
is assigned an edge label |f (x) = f (y)|and the resulting edge labels are
mutually distinct. A graph possessing a graceful labeling is called a graceful
graph. With an additional-property that there exists.an boundary value k so
that for each edge (u,v) either f(u) <k < f (v).or f(v) <k < f (u), the graceful
labeling is called an o—labeling.

One approach about graph labeling is to construct larger graphs from
smaller graphs which have some required properties. For this, starting with a
graph that possesses a- labeling is a common approach. In this thesis, we
define new families of graphs and prove that they have graceful labelings or
a-labelings, ex : REGI +Gn) and Cj??(lf-’*l-ws'i?n) . Moreover, our results
generalize some previous results.
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Chapter 1
Introduction

Let G = (V, E) be a simple graph. A vertex labeling of G is an assignment f of labels
to the vertices which induces for each edge uv € E(G) a label, depending on the vertex
labels f(u) and f(v). Suppose that G has m edges. Let f:V(G) - {0,1,...,m} be an
injection. The vertex labeling is called a; graceful labeling (or (-labeling) if each edge wv
receives a distinct absolute value |f(w)= f(v)| as its label. A graph possessing a graceful
labeling is called a graceful graph.

The concept of graceful graphs was first studied by Ringel [20] and then by Rosa [19].
Rosa was working on Ringel’s conjecture, which says that Ks,,; (the complete graph
with 2n + 1 vertices) can be decomposed ‘into 2n + 1 subgraphs isomorphic to a tree with
n edges. Rosa showed that if every tree has a graceful labeling then Ringel’s conjecture
is true. Golomb [13] provided a precise definition of graceful graphs when he addressed
the problem of numbering a graph.

In Figure 1.1, we consider a complete graph K, with vertices labeled {0,1,4,6} and
edges labeled {1,2,3,4,5,6}. Since these edge labels are distinct and K, has six edges, this
labeling is graceful and K, is a graceful graph.

In 1966 Rosa [19] defined a-labeling to be a graceful labeling with an additional prop-
erty that there exists an integer k so that for each edge wv either f(u) < k < f(v) or
f(v) <k < f(u). Some people also named such labeling balanced labeling or interlaced
labeling. The integer k with the property that for any edge uv either f(u) < k < f(v)
or f(v) <k < f(u) is called the boundary value of f. It follows that such k£ must be



Figure 1.1: An example of graceful graph.

the smaller of the two vertex labels that yield the edge labeled 1. Also, a graph with
an a—labeling is necessarily bipartite and therefore can not contain cycles of odd length.

Figure 1.2 is an example of a-labeling with k=1.

(2)
2

Figure 1.2: An example of an a-labeling with £=1.

Graph labeling has been proved useful in the development of the theory of graph de-
compositions. Especially graphs with a-labeling.yield broader graph decomposition appli-
cations than other labelings. Let Gy, G, ..., G, be the subset of H, we say {G1,Gs,...,G,}
is a decompositions of H, if it satisfies the following three conditions: (1) V(G;) =V, ¢
V(H), forallie{1,2,...,n}; (2) E(G1)uE(G2)u...uE(G,) = E(H); (3) E(Gi)nE(G)) =
g, for 1 < i+ j <n. If {G1,Gs,...,G,} is the decomposition of H and G; 2 G, for
1=1,2,...,n, then H has G-decomposition. By a decomposition R of the complete graph
K, we say that R is an edge-disjoint decomposition, if R is a set of subgraphs such that
any edge of the graph K, belongs to exactly one of the subgraphs of R. A decomposition
R of a graph K, is said to be cyclic, if the following holds: if R contains a graph G, then
it contains also the graph G’ obtained by turning G. Rosa [19], for instance, showed that
if a graph G with n edges has an a-labeling, then there exists a cyclic decomposition of

Kopni1 into subgraphs isomorphic to GG, where k is an arbitrary natural number.



Figure 1.3: An graceful labeling on a caterpillar.

Graceful Trees. The statement ”every tree has a graceful labeling” is well known as
Graceful Tree Conjecture or Ringel-Kotzig-Rosa Conjecture, which has been conjectured
by Rosa in 1967 [19]. To date, no proof or disproof of the conjecture is found, but several
classes of trees are shown to be graceful. Caterpillars, as in Figure 1.3, defined to be
a tree such that if all leaf vertices and their incident edges are removed, the remainder
of the graph forms a path and were shown to be graceful early on by Rosa [19], it can
be labeled using a similar strategy as for paths. Balanced Trees, which is obtained if we
attach to every node of T a tree which is a copy of 77, and complete binary trees are also
proved to be graceful in 1973 by Stanton and Zarnke [23].. Chen, Lii and Yeh [8] showed
that firecrackers (one end vertex from every stars connected in a path) are graceful.
They conjectured that all banana trees, a graph obtained by connecting a vertex v to
one leaf of each of any number of:stars; are graceful.” Hrnciar and Monoszova defined
a generalized banana tree, as in Figure 1.4, which include banana trees and proved that
generalized banana trees are graceful. An Olive tree, a collection of ¢ paths joined in
a vertex, where the ith path is of length i, is also proved to be graceful by Pastel and
Raynaud [18] in 1978 as in Figure 1.5. In addition, trees of diameter at most 5 [15] and
other special classes of trees have been shown to be graceful.

The concept of joint sum of graceful trees was given by Jin et. al. [16] in 1993. Given
two trees T and R, the joint sum of T and R is denoted by (T + R) and formed by
connecting certain vertex of 1" with a proper vertex of R. They proved that the joint sum
(T'+2R) is graceful. They also defined a tree called glue tree, which was defined earlier in
1966 by Rosa [19] to be a tree with an a-labeling, and proved that given a glue tree R’

and a graceful tree T', the joint sum of this two trees (T + R’) is graceful.



Figure 1.4: A banana tree with graceful labeling.

Figure 1.5: An example of olive tree.

Graceful Graphs. Several classes of graphs other than trees have been considered,
and many of them have been proved to be graceful or not. Among graceful graph problems,
cycle-related graphs have been the major focus of attention. Rosa [19] observed that the
C,, is graceful if and only if n =0, 3 (mod 4). Abhyanker [1] brings up the idea of unicyclic
graphs, i.e. graphs with exactly one cycle. A vertex of a graph is said to be pendant if its
neighborhood contains exactly one vertex and an edge of a graph is said to be pendant if
one of its vertices is a pendant vertex. Abhyankar proved that the result of identifying one
vertex of Cy with the root of the olive tree with 2n branches and the result of attaching
any number of pendant edges to the union point are both graceful graph. Abhyankar
also proved that by identifying an adjacent vertex on C); with the end point of the path
Py, is graceful. Given a graph GG with n vertices and a graph H, a corona graph G® H

is obtained from one copy of G and n copies of H, by connecting the k* vertex of G



with every vertex in the k" copy of H. Frucht [11] proved that any cycle with a pendant
edge attached at each vertex, i.e. the corona C,, ® K, is graceful. Figure 1.6 shows the
example of Cg ® K;. Bu, Zhang and He [2] proved that C,, © K, is graceful. Barrientos [4]
also defined hairy cycle as a unicyclic graph other than a cycle in which the deletion of
any edge of the cycle results in a caterpillar and proved that all hairy cycles are graceful.
Truszezynski [24] proved that dragon, which formed by joining the end point of a path to
a cycle, is graceful and conjectured that all unicyclic graphs except C,, n =1 or 2 (mod
4), are graceful. Wu [25] proved that, if G is a bipartite graceful graph, then P%, for
any n, has a graceful labeling and if G;, for all ¢, has an a-labeling with the same edge

number and each pair of Gy-1 and Gy, for ¢ = 1,...,[ 4], has the same boundary value,

then P£G17G2 ----- Gn)‘

Figure 1.6: C3s® K.

Graphs with an a-labeling. Rosa [19] observed that cycle C,, with n= 0 (mod 4),
caterpillar and P, for all n both have a-labeling. Rosa also showed that K,,, has an
a-labeling for all positive integers m and n. Figueroa-Centeno et. al. [12] showed that
the one point union of 2, 3, or 4 copies of C,,, for m = 0 (mod 4) and the one point
union of 2 or 4 copies of C,,, for m =2 (mod 4) admits an a-labeling. They conjecture
that the one point union of n copies of C), admits an a-labeling if and only if mn =0
(mod 4). Snevily [22] defined C;}™ to be a graph formed by adding a pendant path P, to
each vertex of the cycle (), and prove that all graphs of the form Cﬂm have a-labeling.
Figure 1.7 shows an example of Cg2.

Various classes of graphs have been proved to be graceful or non-graceful. There are

only some techniques for finding graceful labeling of a given graph. First is a constraint



Figure 1.7: An example of C’éD 2.

programming approach [21], second is based on integer programming [10] and the other
uses a metaheuristic algorithm(Ant.Colony Optimization) [17] to solved the graceful la-
beling problem. Many of the results about graph dabeling are collected and updated
regularly in a survey by Gallian [14].

Our Results. One approach in graph labeling papers is to build up graphs from
smaller graphs which have desired labeling with particular properties: for instance, graph
product and join of graphs. In this situations, starting with a graph which possesses an
a-labeling is a common approach. Because of the particular properties of a-labeling, we
also give some general ideas of constructing a larger graph. We summarize our results as

follows :

1. Many trees have been proved to be graceful with root labeled zero (or maximum),
such as symmetrical tree, balanced tree and trees of diameter five. We observed that
the results of joining root of any of these trees with a vertex of C,, with n =0 (mod
4), as in Figure 2.7, is graceful. Since olive tree has also a labeling with root labeled
zero, this covers the result from Abhyanker [1], which proved that a graph formed
by identifying one vertex of Cy with the root of the olive tree with 2n branches is

graceful. The same ideas also applies to a graph formed by identifying a vertex



of C,, n =0 (mod 4), with the end point of a path P,, with any positive number
m. We also answer an open problem from Cahit [6]: ”Are there always graceful
numbering with the largest number at the root of a rooted tree?”, and prove that a
graph formed by identifying one vertex of Cy with the root the tree which does not
have a graceful labeling with the number zero (or the largest number) at the root

of it can still be gracefully labeled.

2. We generalize the results of Wu [25], which says that if graph G is a bipartite
graceful graph, then P¢ is graceful. We show that, given a graph P,gGl""’G"), if G,
1=1,...,n, is graceful bipartite with the same edge number and each pair of graphs
Gaio1 = Go;, for i = 1,...,| 5], then P,SGI""’G”), for any n, has a graceful labeling and

PG for any n, has an a-labeling.

3. Snevily [22] defined C} to be a graph formed by adding a pendant path P, to each
vertex of the cycle C,, and prove that all graphs of the form C}" have a-labeling.
We define C¢ to be a graph formed by connecting the start vertex with the end
vertex of path P, in P& with ‘an‘edge. Inother words, a deletion of any edge in the
center cycle C,, of C¢ results in a P%. We show that if G is a bipartite graceful
graph, then C§ | for any n,has an a-labeling, and CY ., for any n, has a graceful
labeling. We also show that, if each pair of graphs G;; and G, for i =1,..., | 5],
has the same boundary value; then C’,(LGI’GZ""’G”), for any n = 0 (mod 4), has an
a-labeling and C{“> %) for any n =3 (mod 4), is graceful. Since a path P, has
an a-labeling, our result covers the result proved by Snevily. One small corollary
is that, if n =0 (mod 4), C,, ®mK, for any m, has an a-labeling and if n =0, 3
(mod 4), C,, ®mK;, for any m, is a graceful graph. This covers the result proved
by Frucht [11], which says that C,, ® K7 is graceful.

Despite the large number of papers, there are relatively few general results or methods
on constructing graceful graphs or graphs with a-labeling. Indeed, most of the results
focus on particular classes of graphs or trees. In this thesis, we give some methods on
constructing graphs with graceful labeling or a-labeling. Our results not only show some
new families of graceful graphs and graphs with a-labeling but also covers some solved

problems. Furthermore, we will summarize the open problems.



Chapter 2
Preliminaries

In this chapter, we define some new families of graphs and give some constructing
methods which we will use in this thesis and also the necessary conditions of graceful

labeling and a-labeling.

2.1 Definition

Definition 1 (Graceful labeling). Let G be a simple graph with m edges and let f:V(G)
- {0,1,...,m} be an injection. The verter labeling is called a graceful labeling if every
edge (u,v) is assigned an edge label {f(w)= f(v)| and the resulting edge labels are mutually

distinct.

Definition 2 (a-labeling and boundary value). If G has a graceful labeling f and the
vertex set V(G)=X uY can be properly partitioned : E(G) ¢ {(u,v)lu € X,v € Y},
X=A{xeV(GQ)| f(z) <k} and Y ={y e V(G)| f(y) > k} for some value k, then fis called

an a-labeling or a-valuation and k is called the boundary value of graph G.

Unlike common graceful graphs, a graceful graphs which admits an a—labeling has an

special characteristic.

Fact 1. Let G be a graph with an a—labeling. Since G has an a—labeling, the vertex set
V(G)=X uY can be properly partitioned : E(G) ¢ {(u,v)lue X,veY}, X ={x e V(G)|
f(x) <k} and Y = {y e V(G)|f(y) > k} for some value k. By adding a positive integer



t to the Y part, all edge labels of G will be shifted with t and get a new graph G' with
labeling ©. Note that © is no more a graceful labeling.

Proof. Formally, the labeling ©(v) is defined as follows:

f(v), if ve X and ve V(G)
O(v) = .
f(v)+t, ifveY and veV(G)
Consider the edge label set F = {f(u) - f(v) |ueY,ve X, u, ve V(G)}. After adding
t to the Y part we have the new edge label set F’' = {f(u) +t—- f(v) |ueY, ve X, u,
veV(G)}. Every edge label was shifted by t as G’ in Figure 2.1.

O

Figure 2.1: Graph G(left) and graph G/(right) with t=3.

In this thesis, we focus on the construction of graphs. Here we define some methods

of constructing graphs and give some definitions for new families of graphs.

Definition 3 (One point union of two graphs). Given two graphs G and G', the one point
unton of G and G', G o G’' as in Figure 2.2,1s to regard one vertex v in G and another
vertex v in G' as the same vertex in G o G'. Notice that, there exist only two possible
choices of the union pairs (u,v). If G and G' have the labeling f and f respectively, these
two pairs will be either f(u) =0 and f'(v) =k or f(u) =m and f'(v) = k+1. The number
of vertices [V (G o G")| = |V(G)|+|V(G")| - 1.

Figure 2.2: Go G'.



Definition 4 (One point union between more graphs). Given graphs G, G, ...,G,, the
one point union between graphs G, Gs,...,G,, denoted by G10Gyo...0G,,, as in Figure 2.3,
is to regard one verter in G; and another vertex in G;,1 as the same vertex in the new
graph, for i=1,...,n-1. Note that, the number of vertices |V (Gyo...oGy)|=|V(G1)| + ... +
V(G- (n-1).

Figure 2.3: G10Gyo0...0G,.

)
Q
(2
5

Figure 2.4: P¢.

Definition 5. PY is a graph formed by connecting n copies of graceful graph G by using
n-1 edges as in Figure 2.4. Note that, the connecting vertex v; of each copy G;, for any

G1,Go,...,Gx
Pfg 1,250 L)

1 =1,...,n, must have vertex label ”0” in the original graph. 18 when the

graphs G1,Gs, ...,G,, are instead of copies of G but n different graphs.

Definition 6. We define CS to be a graph formed by connecting the start vertex with the
end vertex of path P, in PS with an edge. In other words, a deletion of any edge in the

center cycle C,, of C¢ results in a PS. See Figure 2.5.
Definition 7 (Corona). Assume G has n vertices. The corona of G and H, denoted by

GO H, as in Figure 2.6, is a graph obtained from one copy of G and n copies of H, by

connecting the k" vertex of G with every vertex in the k** copy of H.

10



Figure 2.5: C¢.

Figure 2.6:- GO H.

Given a tree T, Rosa [19] defined the base of 7T, a tree-obtained from T by omitting
all its end vertices and end edges.and a_snake; a tree with exactly two end vertices or the
tree consisting a unique vertex having no edges. If a/tree T is a snake or its base is a

snake, it is said to be a caterpillar. Roesa proved-that all caterpillars have a-labeling.

Theorem 1 ([19]). If a tree T is a snake or its base is a snake, then there exists an

a-labeling of T.

Rosa [19] showed that cycle C,, is graceful if and only if n = 0 or 3 (mod 4). He
observed that C), has an a-labeling if and only if n =0 (mod 4). In this thesis, we use the
graceful labeling of Figure 2.7 for a cycle C,, with n =0 (mod 4).

2.2 Necessary Conditions

Rosa [19] identified essentially three reasons why a graphs fails to be graceful: (1) G
has "too many vertices” and "not enough edges”; (2) G has "too many edges”; (3) G

11



Figure 2.7: Graceful labeling for C,, with n =0 (mod 4).

has the "wrong parity.” As an example of the third condition Rosa showed that if every
vertex has even degree and the number of edges is congruent to 1 or 2 (mod 4) then the
graph is not graceful. In particular, the eycles Cly,,.1 and Cy, .o are not graceful.

Golomb [13] also brought up some necessary conditions: for graceful graphs:

Theorem 2 ([13]). Let G be a graph with'n nodes and e edges. A necessary condition for
G to be graceful is that it be possible to partition the modes into two sets £ and O, such

that the number of edges connecting nodes in-E with nodes in O is exactly [@J

Definition 8 (Binary Labeling). If graph G has a binary labeling, then there exists a

successful partition of the nodes of G into sets £ and O with [@J interconnecting edges.

Theorem 3 ([13]). Suppose the integers, not necessarily distinct, are assigned to the nodes
of a graph G, and each edge of G is given an edge number equal to the absolute difference
of the node numbers at its end points. Then the sum of the edge numbers around any
circuit of G is even.

Theorem 4 ([13]). Let G be an Eulerian graph, that is, with an even number of edges at

each node, with e edges. A necessary condition for G to be graceful is that [@J to be

even. That is, if e=1 (mod 4) or e =2 (mod 4), then G cannot be graceful. In fact, G

cannot be binary labeled.

12



Theorem 5 ([13]). If n>4, the complete graph K, cannot be graceful.

Theorem 6 ([13]). Let T be a tree with n nodes and e =n—1 edges. Then there ezists
a binary labeling of T for which | 5] of the nodes are odd(set O) and [@J of the nodes

are even(set & ).

Given a graph H, Golomb [13] defined G(H) to be the largest integer assigned to any
vertex of H and the goal is to minimize the value G(H). If H has m edges, we have the
general lower bound G(H) >m. A graph H for which G(H) = m will be called a graceful
graph, and the labeling which achieves G(H) = m, a graceful labeling.

Theorem 7 ([13]). If H is any graph, and if H' is a subgraph of G, then G(H') < G(H).

Theorem 8 ([13]). If H is any graph with n nodes, then G(H) < G(K,). This results
adds further importance to the study of G(K, ), which is thus the least upper bound on H

for all graphs on n nodes.

13



Chapter 3

Union of Graphs

In this chapter, we summarize and generalize the results from other papers and also
answer an open problem.

Truszezynski [24] proved that If G is a graceful graph and G’ is a graph with an
a—-labeling, then the one point union of Grand G';denoted by G o G/, is a graceful graph.

Theorem 9 ([24]). Let G and H bergraphs-with disjoint sets of vertices. Assume that G has
a graceful labeling g and v € V(G )-has-labeling *0”: H has an a—labeling h with boundary
value "k” and w e V(H) has labeling "k”. Then the graph F obtained by identifying v and

w in G u H is graceful.

Let us explain the proof of Truszczynski[24] 1m our way:
Assume that G has m edges and a graceful labeling g while H has m’ edges and an
a-labeling h. Since h is an a-labeling, by Definition 2 there exists a boundary value k
satisfying that for each (u,v) € E(H), either h(u) < k < h(v) or h(v) < k < h(u). Then
we partition the vertex set of H into two parts V(H) =X uY where,

X ={veV(H):h(v) <k},
Y ={veV(H):h(v)>k}.

In other words, h(X) € {0,1,...,k} and h(Y") € {k+1,...,m'}. Let F be the graph GoH. If
G has n vertices and H has n’ vertices, then V/(F) = n+n/-1. Note that |[E(F)| =m+m/.

14



Define the vertex labeling f: V(F) - {0,1,...,m +m'} as follows:

g)+k, ifveV(G)
f(v) =1 h(v), ifveX
h(v)+m, ifveY
Notice that, if we change the vertex labeling f by adding "k + 1”7 to g(v), v e V(G),
instead of k, then f stays an injective function. By sharing a common vertex u € G' and
v e H, we get a graceful graph. There exist only two possible choices of such pairs uv. If
ue G and v € H, these two pairs will be either g(u) = 0 and h(v) = k or g(u) = m and
h(v)=k+1.

Figure 3.1: Two graceful graphs G(left)-and H (right).

Example 1. G is a complete graph with 4 vertices and. 6 edges and H is a complete
bipartite graph Ky 3. G is a graceful graph and H s a graceful graph with an a—labeling.
Figure 3.1 shows the labeling g and h for G-and H respectively. We partition graph H
into two parts and the boundary value k = 1 so that for each edge (u,v) € H' either
h(u) <k <h(v) or h(v) <k <h(u). The labeling f for the new graph F = G o H is defined

as follows:
g)+1, ifveV(G)
f(v) =1 h(v), ifveX
h(v)+6, ifveY

The new labeling f(v) is a graceful labeling and Go H is a graceful labeling as in Figure 3.2.

Given graphs Gy, G, ..., G,,, the one point union between graphs G4, Ga,...,G,,, denoted
by G1o0Gso0...0G,, is to regard one vertex in GG; and another vertex in Gy, as the same
vertex in the new graph, for ¢ = 1,...,n — 1. Since the union of a graceful graph and a

graph with an a-labeling is a graceful graph. If there exists a graceful graph G and
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Figure 3.2: Go H.

n graphs Gi,Ghs,...,G, having a-labeling, by doing n — 1 times of such union, we get
Go(GyoGyo...0G, as a graceful graph. The above observation leads us to the following

Corollary:

Corollary 1. Given a graceful graph G and n graphs G1,Gs,...,G,, which all admait
a—labeling, then GoGyoGyo...0G, is a graceful graph.

Proof. Since G is graceful and G; has an e=labeling, by Theorem 9, we get a graceful
graph H; = Go(. Since H; is graceful and G, has an @~labeling, by using the same idea,
we get another graceful graph Hy = H; 0Go, which can be considered as Go G oG5, and so
on. In other words, by considering graph G as Hy,let H;,,1 = H;oG;,1, fort=0,1,...,n—1.
We get a graceful graph H,, = Go Gy oGyo..i0G,,. 0J

Jin et. al. [16] gives the idea about-joining a graceful tree 7' and a graceful tree R
which admits an a-labeling with an edge. "Sinee Rosa [19] observed that caterpillar has
an a-labeling, we show that, a tree formed by connecting 7" with R by using a caterpillar
is graceful. Furthermore, instead of the restriction to trees, 7" and R can be any graceful

graphs and one of which admits an a—labeling.

Corollary 2. Let Gy be a graceful graph, G5 be a caterpillar and Gs be a graph with an
a—labeling. The graph obtained by using a caterpillar Gy to connect graph Gy with graph

G3s, considered as G o Gy o Gy, is also a graceful graph.

Proof. Since Gy and G5 both have a—-labeling, by Corollary 1, we obtain that G;o0Gy0G3
is graceful and G; and G35 are both connected at the two ends of the caterpillar G,.

O

16



Let GG; be a graph with an a—labeling and H; be a caterpillar. If we wish to connect G,
i =1~n, by using n—1 caterpillars H;, j =1 ~n-1, thatis Gyo HyoGyoHyo...0H,,_10G,,
then the union pair uv between every G; o H;, i = 1 ~n, will be like stepl. in Corollary 2

and between every H;oGj,q, j=1~n-1, will be like step2. in Corollary 2.

Example 2. Given graceful graphs G and H as in Figure 3.1, where H admits an a—labeling,
and a caterpillar as in Figure 3.3. By Corollary 2, we use caterpillar to connect G and

H and the result will be a graceful graph as in Figure 3.4.

O—@—F—G—06
RN

Figure 3.3: Caterpillar.

©. (9
@\?y 13
@ © U (1)

Figure 3.4: Connect two graphs with a caterpillar.

Abhyankar [1] proved that by identifying one vertex of Cy with the root of an olive
tree with 2n branches, it results a graceful graph. He also prove that by identifying an
adjacent vertex on Cy with the end point of a path P, o is graceful. Since Rosa [19]
showed that cycle C,,, with n = 0 (mod 4), has an a-labeling, we know that, given a grace-
ful rooted tree T" with root labeled zero (or maximum) and cycle Cy, with any positive
number n, a graph formed by identifying one vertex of C'y, with the root of T' results a
graceful graph. The same idea also applies to identifying a vertex on cycle C,,, with n =

0 (mod 4), with the end point of a path P,, with any positive number m.
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Corollary 3. Let T be a graceful rooted tree with root labeled zero (or mazimum). A
graph formed by identifying one vertex of cycle Cy,, for any n > 1, with the root of T is a
graceful graph.

Proof. We claim that T'oCy,, is graceful. Since Rosa [19] proved that C},, has an a-labeling,
by Theorem 9 we know that 7" o Cy,, is graceful.
O

Example 3. Given wo graphs Cy and T with graceful labeling as in Figure 3.5. Figure 3.6
s the graph formed by identifying one vertex of Cy with the root of T.

Figure 3.6: The union of Cy and tree T

Many rooted trees have been proved to be graceful with root labeled zero (or max-
imum), for example: symmetrical trees, balanced trees and trees of diameter five. By
Corollary 3, we conclude that by identifying the root of any of these trees with a vertex
on cycle Cy,, for any n > 1, results a graceful graph. Since we know the importance of
graceful trees which root can be labeled zero, the following open problem is asked.

In 1976 Cahit [6] brings up the Open Problem:

Are there always graceful numberings with the largest number at the root of a rooted tree?

We answer this question here:

18



Theorem 10. There exists a rooted tree T, which does not have a graceful labeling with

the largest number at its root.

Proof. To prove it, we give an counterexample as in Figure 3.7, a tree T" rooted in vy.

Here we prove that T" does not have such graceful labeling. Since tree 71" has 6 vertices

and 5 edges, we consider the labeling f: V(7T) - {0,1,...,5}.

@ root

Figure 3.7: A tree T rooted at vy.

First, let f(vo) = 5. Note that an edge (u,v) € E(T) with edge label f((u,v)) =5
can only be induced by f(u) =5 and f(v) = 0 and edge label f((u,v)) =4 can only be
induced by f(u) =5 and f(v) = 1l.or f(u)=4and f(v)=0. Hence we have the following

cases:

Case 1. f(v1) =0. (see the left-tree in Figure-3:8)

Case 1.1. Let f(v3) =4 and get the.edge label f((v1,v3)) = 4.
We let f(vq) =1, then f((v1,04)) =1 and we will get f((v2,v5)) =1 by
labeling either f(vy) =3 and f(vs) =2 or f(vy) =2 and f(vs) = 3, which
implies f is not a graceful labeling.
Since vy cannot be labeled as 1, we labeled f(vs) = 1. Then we let f(vy) =2
and f(vy) =3 or let f(ve) =3 and f(vy) = 2. But it both contradict the

definition of graceful labeling.

Case 1.2. Let f(vy) =1 and get the edge label f((vp,v2)) =4.
Since f(v3) and f(v4) cannot be 4, we let f(vs) = 4 and get f((ve,v5)) = 3.
One of vy and vy will be labeled by 3, so we will get f((vy,v3)) = 3 or
f((v1,v4)) = 3, which still contradicts the graceful definition.

Case 2. f(v9) =0. (see the right tree in Figure 3.8)
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Case 2.1. Let f(vs) =4 and get the edge label f((ve,vs5)) = 4.
Since f(vy) cannot be 1, we let f(v;) = 2 and get f((vo,v1)) = 3, By
labeling f(v3) =1 and f(vs) =3, we have f((vi,v3)) =1 and f((v1,v4)) =
1, which f is not a graceful labeling.
If we let f(v;) =3, we have f((vo,v1)) =2. By labeling f(v3) = 1, we get
f((v1,v3)) =2, so does f(vyg) =1. It implies f is not a graceful labeling.
Case 2.2. Let f(vy) =1 and get the edge label f((vo,v1)) =4.
Since f(vs) cannot be 4, we let f(v3) = 4 and get f((vi,v3)) = 3. If we
label f(vs) =3, then f((vg,vs)) =3, which contradicts to the definition.
If we label f(vs) =2 and f(vs) =3, then f((vq,v5)) =2 and f((v1,v4)) =2,

which still contradicts the graceful definition.

(5) (5) =
OO ) ©
ONOF(CEEE DN OO

Figure 3.8: Casel(left) and Case2(right) for Theorem 10.

Note that although the tree in Figure.3.7 do.not have a graceful labeling with root
labeled zero (or maximum), a graph G formed by identifying the root of tree in Figure 3.7

with one vertex on the cycle Cy can still be gracefully labeled:

Example 4. Given a tree T as in in Figure 3.7 and a cycle Cy. Figure 3.9 is a graph
formed by identifying the root of T with one vertex on the C\.

Figure 3.9: The union of C; and tree 7.
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Chapter 4
Graphs with a-labeling

In Chapter 3 we mention that Truszczynski [24] proved that the one point union of a
graceful graph G and a graph H with an a-labeling results in a graceful graph. Here we
prove that if G also has an a-labeling, then the result will admit an a-labeling. In other
words, given two a-labeling graphs G and H, the one point union of G and H, denoted
by G o H, is a graph with an a-labeling.

Theorem 11. If G and H both have.a-labeling, then G o H is a graph with an a-labeling.

Proof. Let F be the one point union of G and H with a graceful labeling f in Theorem 9.
We obtain that F' can be gracefully labeled. Here we prove that f is also an a-labeling.
Let G and H have a-labeling g and h'and edge number m and m/, respectively. Since G
and H both admit a-labeling, we partition the vertex sets of G and H, with boundary
value k and k', into two parts V(G) = X uY and V(G') = X' uY"’, where.

X = {0eV(G) g() <k}, Y = {0 e V(G g(v) > k),
X' ={veV(G"):h(v)<k'}, Y ={veV(G"): h(v) > k'}.

We have g(X) € {0,1,... &k}, g(Y) € {k+1,...m}, h(X') € {0,1,....k"} and h(Y") c
{k'+1,...,m'}. By Theorem 9, we add m' to every vertex in Y and add k to every
vertex in V(H). We get f(X) ¢ {0,1,...k}, f(Y)c{k+m' +1,...m' +m}, f(X')c
{kk+1,.. k+k}, f(Y)c{k+k +1,....,k+m'}. The union pair u € X and v e X' will
be f(u) = f(v) = k, where g(u) = k and h(v) = 0. We partition V(H) into two parts
V(H) = Au B, where.
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A=XuX'; f(X)u f(X")c{0,1,....k +k},
B=YUY'; f(Y)UFf(Y)C{k +k+1,...m+m').

Let r = k' + k. Since there exists no edge between X and Y’ or between X’ and Y, it
satisfies the condition of a-labeling: for each edge (u,v) € V(F), either f(u) <r < f(v)
or f(v)<r< f(u). As aresult, Go H is a graph with an a-labeling.

0

Example 5. Given two graphs Cy and Ky as in Figure 4.1, which both admit o-
labeling. We show Cy o Ky3 also has an a-labeling in Figure 4.2, with X = {0,1,2},
Y ={3,5,7,8,10}.

Figure 4.2: Cy o Ky 3.

The above observation leads us to the following Corollary:

Corollary 4. If graphs G1,...,G, all admit «-labeling, then G1 o Gy o ...o G, has an

a-labeling.

Proof. First, we obtain that Hy = G o Gy admits an a-labeling by Theorem 11. Since
Hs has an a-labeling, using the same idea, H3 = Hy o G5 considered as G o G5 o G,
and so on. In other words, by considering graph G as Hy, we have H;,; = H; o G;,1, for
1=1,2,....,.n—1. At the end, we get H,, .1 =GoG10G50...0G, and it is a graph with an
a—labeling.

0
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4.1 Generalization of Other Papers

Wu [25] proved that, if G is a bipartite graceful graph, then P&, for any n, has a
graceful labeling and if G;, for all 7, has an a-labeling with the same edge number and each
pair of Glg;_1 and Gy, for i = 1,...,| 5|, has the same boundary value, then plonG:

graceful.
Theorem 12 ([25]). If G is bipartite graceful, then PG, for any n, is a graceful graph.

Theorem 13 ([25]). If G, for alli, has an a-labeling with the same edge number and Ga;_q
and each pair of Gy, fori=1,....|%], has the same boundary value, then plerGa- is

graceful.

It is clearly that if a graph has an a-labeling then it is a bipartite graceful graph.
Notice that a bipartite graceful graph is not necessary to have an a-labeling. In Figure 4.3,

Rosa [19] showed the minimal tree, which is bipartite but not a-labeling.

Figure 4.3: A tree has no a-labeling.

By extending Wu'’s results, we prove the following theorem:

Theorem 14. If G;, for every i, is bipartite with the same edge number and each pair of

We prove it by induction. First we know that PZ , which is exactly the graph G,
is graceful. Then we show the following two claims, which we need for the proof of

Theorem 14.
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1. We prove that P{ has an a-labeling.

Gn)

2. Assume P{% ) i graceful and prove that pLl

i is graceful.

Claim 1. If G is a bipartite graceful graph, then P§ has an a-labeling.

Proof. Assume that G has m edges. Let f and f’ be the graceful labeling of graph
G and its copy G’. Notice that f = f’. Since G is bipartite, we partition the vertex
set V(@) into two parts X and Y and vertex set V(G') into X’ and Y’ respectively,
with f(X) = f/(X"), f(Y) = f/(Y"), and E(G) € {(u,v)|u € X,v € Y}. In other words,
f(X)uf(Y")c{0,1,...m} and f'(X")uf(Y)<c{0,1,...,m}. Note that |[E(PS)| =2m+1.
Define the vertex labeling fo: V(P§{) —» {0,1,...,2m + 1} as follows:

f(v), ifveX

fw)y+m+1, ifveY

ff(v)y+m+1, ifveX’
f'(v), ifveY’

f2(v) =

Next, we show that fy is a graceful labeling. First: we claim that f, is an injective
function. Since f(X)u f/(Y") € 40,1, ...;m}-and f(X)u f(Y) c {0,1,...,m}, we have
fo(X) U fo(Y) €{0,1,...,m} and fo( X)) U fo(Y)E{m +1,m+2,...,2m + 1}. Moreover,
since f and f’ are injective, the vertex labeling f5 is an injective function.

Then, we claim that the labels of edges are distinct. The edge labels of G is denoted
as |f(u) = f(v)], u,v € V(G) and the edge-labels of G’ is denoted as |f'(u) - f'(v)],
u,v € V(G"). We partition the edge set E(G) into two sets A and B and edge set E(G")
as two sets C' and D:

A={(u,v): f(u)> f(v),ue X,veY}

B={(u,v): f(v)> f(u),ue X,veY}

C={(u,v): f'(u)> f'(v),ue X' ,veY'}

D ={(u,v): f'(v)> f'(u),ue X' veY’}
Because f(X) = f/(X’) and f(Y) = f/(Y"), we know that the edge labels of Au D are
1,....m and of BuC are 1,...,m. By the definition of f;, we add m+1 to the vertex label of
every vertex in set Y and X’. Then we have that the edge labels of B u C are shifted by
m+1, that is m+2,....2m+1. As for the edge label of AuD, we get |f(u)-f(v)-(m+1)|=

m+1-(f(u)-f(v)) for every (u,v) € Aand |f'(v)—f"(u)—(m+1)| =m+1-(f"(v)-f"(u))
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for every (u,v) € D. Consider Figure 4.4, we connect vertex v € G with v’ € G, where
f(v) = f'(v"). Since v and v" will be either v € X, v € X' or v e Y, v/ € Y/ we have

|fa(u) = fo(v)| =m+ 1.

Figure 4.4: P{.

Finally, we show that the labeling f, satisfies the a—labeling condition in Definition 2.
We successfully partition the vertex set of P{’ into two parts H and I, where H = X uY”
and [ = X’0Y. Then, for any ve H, fo(v) <m and for any v € I, fo(v) >m. We get the
boundary value ky = m.

O

Example 6. Let G be a bipartite graceful graph-with the graceful labeling f as in Fir-
gure 4.3. Figure 4.5 shows PS with an a=labeling with B(PS) ¢ {(u,v) | ue X,v e Y},
X ={0,1,2,3,4,5,6} and Y ={7,8,9,10,11,12, 13} Note that, G has 6 edges and ks = 6.

0 7
(1) ©
© (8)
(10) (12 (2 ()
O @ O O

Figure 4.5: A tree with an a—labeling.

Note that, we can construct PLC" ") by connecting PS¢ with P{“ %) Let f,

be the a-labeling of P{. Since f, is an a-labeling, PY has a boundary value ko. The
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Claim 2. Assume that P is a bipartite graceful graph, then Pz(fi’G’Gl """ G"), for any n,

has a graceful labeling.

Proof. Fixed any i, let G* denote'G1, Ga;-.., Gj.

Let my be the edge number of P$¥ and m, be the edge number of PS*. P{ has an
a-labeling fo and PS* has a graceful labeling f,. Thus P{ has a boundary value ks
satisfying that for each (u,v) € E(PS), either fo(u) <ky < fa(v) or fo(v) < ko < fo(u).
We partition the vertex set V(P§) = Xy U Y5-into two parts respectively, where:

Xo={veV(PF): fo(v) <ko}
Vo= {0 e V(PS): fo(v) > k)

Note that |E(P(G’G’G*))| = mg+my,+1. We define the vertex labeling f.,, : V(Pz(f';;G’G*)) N

2+n

{0,1,...,mqa + m,, + 1} as follows:

fg(U), ifve X2
forn(v) =3 fo(v)+m, +1, ifveYy
fa(©)+ ke +1, if veV(P&)
Next, we show that f5,, is a graceful labeling.
First we claim that fy,, is an injective function. Since fo(Xs) €{0,1,...,ka2}, fo(Y2) €
{ko+1,...,mo} and f,(V(P5*)) c {0,1,...,m,}, we have that fo,,(X32) € {0,1,...,k»},
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Jorn(Y2) € {ko + my +2,...;ma + my, + 1} and fo,,,(V(PS*)) € {ko + 1,.... ko + m,, + 1}.
Moreover, since f5 and f,, are injective, we have that the vertex labeling fs,,, is an injective

function.

v G P G’ i o Gl ; ! Gn P
S e N RN
2 g . i

Figure 4.7: P{&:CC1mGn)

2+n

Then, we claim that the labels of edges are distinct. Note that E(PLS%%)) = B(PF)u
E(P$*) u {connecting edge}. Fix an‘edge (u,v)€ E(P{). Without loss of generality,
assume that u € X, and v € Ys. Then we-have | for(w) = foi, (V)] = | fo(u) - fo(v) —my,—1] =
my, + 1+ fo(v) = fa(u), where the last equality is'due to fo(u) < k < fo(v). Hence, the
new edge labels of E(P§) are {my, +2,...,ms +m, + 1}. On the other hand, for any edge
(u,v) € E(PS*), we have |forn(u) = forn(0)| = |falu) = f.(v)], so we get the new edge
labels of E(PS*) ={1,2,...,m,}. Consider Figure’4.7: By connecting vertices v’ € P{,
fo(v') = ko +1 and vy € P&, f(v1) =0, where fo,,(v") = ko + m, +2 and fo,,(v1) = ko + 1,
we get "m,, + 17 as the edge label for (v’,v1). Since every graph G; has the same edge
number m, we have m, =nm+ (n—-1) and m, +1 =n(m +1). Hence the edge labels of
E(PEY9)Y are {1,2,...,my +my, +1}. We conclude that P\ %) is a graceful graph.

0

Proof. (of Theorem 14)
We obtain that P{¢" %" is graceful for any n, since we can construct P?)(Gl’GQ’G”
by connecting ngGl’G2) with P1G3, construct PAEG“GQ’GS’G“) by connecting PZ(G“G2) with

G3,G
P2( %) and so on.
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Figure 4.8: A bipartite graceful graph G and G'.

Example 7. Given two bipartite graceful graphs G and G' as in Figure 4.8, by Theorem 14
PiG’G’G,’G’) has an a-labeling, as in Figure 4.9, with E(PiG’G’G,’G,)) c {(u,v) |ueX,ve

Y}, X c{0,1,...,13} and Y < {14, ...,27}.

)

14

—

0 (21)
(27 (©)
(D (22)

—_
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Figure 4.9: PLL(G’G’G,’G’).

Theorem 15. If G;, for every 1, is bipartite with the same edge number and each pair of

We prove it by induction. First, we know that P has an a-labeling by Lemma 1.
Then we show the following claim, which we need for the proof of Theorem 15. We assume

PQ(HG 1-G2n) has an a-labeling and prove that ng';f G1G20) hag an a-labeling.

Claim 3. If P9 has an a-labeling, then PLSSC %0 " for any n, has an a-

labeling.

Proof. Fixed any i, let G* denote Gy, Gs,...,G;.
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Since if G is a bipartite graceful graph, P¢* is graceful. We only have to show that
if n =0 (mod 2), the vertex set V(Pif’c*) can be partitioned into two parts with a
boundary value k, and satisfy the condition of a-labeling. Since P{ and PS* have an
a-labeling, we partition the vertex set V(P{) = X, UY; and V(PS*) = X, uY,, into two
parts, respectively.

Since fo(X3) € {0,1,...,ka}, fa(Ya) € {ko + 1,....ma}, fu(X,) <€ {0,1,....k,} and
fo(Yn) € {k, + 1,...,m,}, we have that fo,,(X2) € {0,1,...;ka}, forn(Y2) € {ka + m, +
2, o,y +1}, forn(Xn) € {ko+1, ..., ky+ko+1} and fo,n(Yy) € {ko+k,+2, ..., ko+m, +1}.
Then, we show that the labeling fs,,, satisfies the condition of a—labeling. We partition the
vertex set V(P{ ) into two parts X, and Ya,,, where Xo,, = Xo U X, Yo, = YoU Y,
foen(Xown) = {1,2, . kg + by + 1} and forn(Yoin) = {kp + ko +2,...,my + m,, + 1}, with
E(Pg ) c{(u,v)u€ Xospn,v € Yoy, } and boundary value koyp = ko + ky, + 1. O

Proof. (of Theorem 15)
We obtain that P{" %) is eraceful for iy n, since we can construct P4(G1’G27G3’G4)
by connecting P with P{%)and so on.

O

Wu [25] proved that, if G;, for all 7, has'an a-labeling with the same edge number
and Gy-1 and each pair of Gy, for i, = 1,...;|5], -has the same boundary value, then
A is graceful. We give a’new.proof for it and show that P{C1C2Cn)

only graceful but also has an a-labeling.

Theorem 16. If G;, for every i, has an a-labeling with the same edge number and each
pair of graphs Gy and G, i =1,...,[ %], has the same boundary value, then p{& ,

for any n, has an a-labeling.

We prove it by induction. First we know that PZ has an a-labeling. Then we show
the following two claims, which we need for the proof of Theorem 16.

1. We prove that Py’ “ has an a-labeling.

2. Assume PQ(S b2@n) has an a-labeling and prove that Pz(gf "GreG2n) has an o

labeling.
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Claim 4. If G and G' has the same boundary value and edge number m, then PZ(G’G’) has

an a-labeling.

Proof. Let f and f’ be the a-labeling of graph G and G’, respectively.

According to the boundary value, we partition the vertex set V(G) into two parts
X and Y and vertex set V(G’) into X’ and Y respectively. Since G and G’ have the
same boundary value and edge number m, we know f(X) = f/(X’) and f(Y) = f/(Y").
In other words, f(X)u f/(Y") c {0,1,...,m} and f(X")u f(Y) c{0,1,...,m}. Using a

similar proof of Lemma 1, we can prove that PZ(G’G,) has an a-labeling with the boundary

Sp o0

Figure 4.10: G (left), Ga(right).

value ks = m

O

Example 8. Given two a-labeling graphs G1, G, with the same edge number, as in
Figure 4.10. Gy and G5 has the same boundary value 2. We show that PAEG“GQ) has an
a-labeling, as in Figure 4.11, with B(P{"%Y ¢ {(u,v) |ue X,ve Y}, X c{0,1,...,8}

and Y € {9,...,16}.
aoe» o

Figure 4.11: An a-labeling for P4(G1’G2).
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Claim 5. If P9 has an a- -labeling, then Pz(fnG CrenCn) b an a-labeling.

Proof. Fixed any 17, let G* denote G1,Go,...,G;.
Let my be the edge number of P(G’G’) and m,, be the edge number of P&*. Let f, and
fn be the a-labelings of PQ(G’G) and P%*, respectively. Thus there exists an boundary

value ky for Py and k, for PS*. We partition the vertex set V(PQ(G’G’)) = X,uY, and
V(PG*) = X,,uY, into two parts respectively, with:

Xy = {ve V(PYYOY: fo(v) < ko)

Yz = {v e V(PP : fo(v) > ks

X, ={veV(P): f,(v) <k}

Yo ={veV(PF*): fu(v) > ky}
Since fo(X32) €4{0,1,....;k}, fo(Ya) € {ka+1,....ma}, fu(X,) €{0,1,....k,} and f,(Y,) S
{k,+1,...,m,}, following the proof of Theorem 14, we can proved that Pz(f;;G”G*) has an
a-labeling with a boundary value koy, = ko + k,, + 1.

O

.....

PB(G“GQ’GS) by connecting PB(G“G2 with P& construct PLL(G“GQ’GS’G‘*) by connecting PQ(G“GZ)

with P and so on. O

@<§>g

Figure 4.12: Gy, Go, G3, G4 (left to right).

Example 9. Given four a-labeling graphs Gy, Gs, Gs, Gy, with the same edge number,
as in Figure 4.12. Gy and Gy has the same boundary value 2 and G3 and G4 has the same
boundary value 3. We show that Pfl’GQ’G3’G4 has an a-labeling, as in Figure 4.13, with

E(PFrE2GsGy ¢ ((y0) |ue X,veY), X <{0,1,..,17} and Y < {18,...,35}.
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Figure 4.13: An a-labeling for P4(G1’G2’G3’G4).

4.2 New Families of Graceful Graphs

Recall that we define C¢ in Definition 6. We generalize the results of Wu [25], and

show that if G;, for every 1, is bipartite and with the same edge number and each pair

labeling, and for any n =3 (mod 4), has a graceful labeling. Note that since a graph with
an a-labeling cannot contain an odd ¢ycle, we also show that, if G;, for every i, has an

a-labeling and each pair of graphs Gaicyand Gy, ¢ = 1,5, [ 5], has the same boundary

.....

any n =3 (mod 4), has a graceful labeling:” Since a path ‘P, has an a-labeling, our results
covers the result proved by Snevily«[22].

First, we show that for both cases, C§7*, for any n, admits an a-labeling.

Theorem 17. If G;, for 1 <1 < 4n, s bipartite and with the same edge number m and

a-labeling.

Proof. Fixed any i, let G* denote Gy, Go,...,G;.
Let fy, be the labeling of PZ* as in Theorem 15. Consider Figure 4.14. We give two

proofs latter:
1. the edge label of (vo,,vopn.1) is 2n(m + 1).

2. the vertex label of vy, is 2n(m +1).
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According the labeling of P, " in Theorem 15, it satisfies the following three

conditions:
1. The edge labels of E(P'S.*) are 1,....2n(m+1) - 1.

2. Because that P{* has an a-labeling, we can successfully partition the vertex set of
V(P$*) into two parts Xo, and Ys,, satisfying that any label of the vertices in Xo,
is smaller than every vertex label in V (P’ ") and any label of the vertices in Y3, is

larger than every vertex label in V (P’S*).

G G o i b G
2n :'. E.‘ 2n+1 ; "‘ 4n
Ayl s oy LG

Figure 4.14: PO,

Since |[E(C$*)| = my, +1, we define the vertex labeling © : V(CS$*) - {0,1,...,my, +1}

as follows:
f4n(’U), 1f U€ XQn
OW) =1 fin(v)+1, fveYs,
fan(v)+1, ifve V(P’g’;;*

By the third condition which mentioned, we obtain that the labeling © is injective.
Then, we claim that the edge labels of C$* are distinct. The edge labels of C{* are
1,2,...,my, + 1. Note that, E(CC*) = E(PS*)u E(P'S)*) U (Van, Vans1) U (v1,04y). The
edge labels of E(P'S*) stay unchanged, that are 1,2, ...,2n(m+1) —1. Since the original
edge labels of E(PS*) were 2n(m +1) + 1,...,my,, the new edge labels of E(PS*) are
2n(m +1) +2,...,my, + 1. Since the path from v; to vy, is a connected path, if v; € X,
then vy, € Ya,. The edge label of (voy,, vo,11) stays 2n(m+1). Since O(vy,) =2n(m+1)+1,
the edge label of (vy,v4,) is 2n(m+1)+1. We conclude that the new edge labels of E(C{*)

are 1,2, ..., my, + 1.
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Now we prove the two assumptions are true. First, the edge label of (v, v9,41) iS
2n(m +1). The time we connect a P,EG““’G”) with a PQG, the labels of edge are settled.
In other words, edge labels will not change in pLeteCn), By the definition of f5,,, the
connecting edge between P %) and P& will be labeled m,, + 1 = n(m + 1), with m
the edge number of every graph G;. Since (vay,,v2,,1) is the edge connecting P’QGT;* and a
P& the edge label of (vay,vans1) is 2n(m +1). Second, we show that the vertex label of
Vyn 18 2n(m + 1). Since by every connection of the graph P, we add ks + 1, also said to
be ”m + 1”7, to vertices in P,SGI""’G”), the label for vy, is ”7(m +1)” in the very beggining
while we construct a PS. After we finish the construction of PLS"%™) we have the vertex
van labeled 2n(m +1).

PAES “G") has an a-labeling, by the

Finally, we show that © is an a—labeling. Since
definition of ©, the vertex set V(CAES *’Gl*)) can be partitioned into two parts X4, and
Y., and the edge (vy,v4,) € E(Cﬁf*’cl*)) satisfies that vy € X4, and vy, € Y. Cif*’gl*)
has a boundary value kg, + 1, such that the labeling ©(Xy,) € {0, ..., k4, + 1}, O(Ya,)
{kyn +2,...,my, + 1} and with no edge between vertices in X4, and between vertices in
Y4,. We conclude that CAES “G) hag an a-labeling.

O

Figure 4.15: Bipartite graceful graphs G and G'.

Example 10. Given two bipartite graceful graphs G and G’ as in Figure 4.15, we show
(G,G,G"\G") : : . . (G,G,G',G")

that C} has an a-labeling, as in Figure 4.16, with E(C, ) € {(u,v) |

ueX,veY}, X ={0,1,...,14} and Y = {15,...,28}.
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Figure 4.16: C{##¢¢),

Theorem 18. If G;, for every i, has an a-labeling and each pair of graphs Ga;—1 and G,
1 =1,...,2n, has the same boundary value and edge number m, then C’igl """ Gin) , for any

n, has an a-labeling.

Proof. In Lemma 4, we show that if G and G’ has the same boundary value and edge
number m, then P2(G’G,) has an a-labeling with the boundary value ks = m. In Theorem 16,
we show that if G;, for every i, has an a-labeling and each pair of graphs Go;_1 and G,
t =1,...,2n, has the same boundary value and edge number, then P,EGl """ , for any
n > 1, admits an a-labeling. We can follow the proof idea of Theorem 17 to prove that

-----

C’if veGan) for any n> 1, admits an aelabeling. O

B 4

Figure 4.17: Gy, G, G3, G4 (left to right).

Example 11. Giwven four a-labeling graphs G, Go, G3, G4, with the same edge number,
as in Figure 4.22. Gy and G4 has the same boundary value 2 and Gs and G4 has the same

35



C(G1,G27G3,G4)
4 .

Figure 4.18: An a-labeling for

boundary value 3. By Theorem 18, C'AEG“G%GS’G“), as in Figure 4.13, has an a-labeling
with B(C{ 02960y c {(y v) |ue X,veY}, X c{0,1,...,18} and Y c {19, ...,36}.

Theorem 19. If G;, for every i, is bipartite and with the same edge number m and each

give two proofs latter.
1. the edge label of (voni2,vV2n43) 18 (204 1) (m+1).
2. the vertex label of vg,,3 is (2n+1)(m +1).

According the previous construction of pi in Theorem 14, it satisfies the following

conditions:

1. The edge labels of E(PS*) are 1,...,(2n +1)(m +1) - 1.

2n+1

2. Because that P{*, has an a-labeling, we can successfully partition the vertex set
of V(P§*,) into two parts Xo,,2 and Ya,,9, satisfying any label of the vertices in
Xonso is smaller than every vertex label in V (PS'* ) and any label of the vertices in

2n+1

Yanso is larger than every vertex label in V(PS'%).
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ol m+2 i i m+3 i n+3

Since |E(C$¥,5)| = mans3+1, we define the vertex labeling © : V(C$* ) — {0,1, ..., myp43+

1} as follows:
f4n(v)7 if ve X2n+2
O() =1 fun(v)+1, ifveYoo
fin(0) +1, ifveV(PS)

n

By the third condition which mentioned, we claim that the labeling © is injective.

Then, we claim that the edge labels are distinet.” The edge labels of E(CSr,) is

(v1,V4ns3). The edge labels of E(PS ") stay unchanged, that is {1,2,....2n + 1(m+1)-1}

and the original edge labels of E(PS",) were (2n+1)(m+1) +1,...,m4y,3, we have that
the new edge labels of E(P$*,) are (20 +1)(m +1) +2,.:, man.3 + 1. Since the path from
V1 10 Vygny3 is @ connected path, if vy € X5 then vy, € Ys,,5. The edge label of (va,, Va,41)
stays (2n+ 1)(m +1). Since O(v4n43) = (2n+1)(m + 1) + 1, the edge label of (v1,v4,) is
(2n+1)(m+1)+1. We conclude that the new edge labels of E(CS$x,) are 1,2, ..., myp 3+1.
Now we prove the two assumptions are true, which says that the edge label of (voy12, Von+3)

is (2n+1)(m+1). The time we connect a pLe ) with a P& the labels of edge are

with m the edge number of every graph G;. Since (vg,42,V2,43) appears when we connect
PG and a PS¢, the edge label of (va,49,v9,:3) is (2n+1)(m +1). Next, we show that

2n+

the vertex label of vy,3 is (2n +1)(m + 1). Since by every connection of the graph P¢,
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?(m+1)” in the very begging while we construct a P{. After we finish the construction

of Piff?;""&*”“’), we have the vertex vy,,3 labeled (2n+1)(m+1). O

Figure 4.20: Bipartite graceful graphs G and G'.

Example 12. Given two bipartite graceful graphs G and G' as in Figure 4.15, by Theo-

rem 19, C’?EG’G’G’) is graceful, as in Figure 4.21.

Figure 4.21: CéG’G’G,).

Theorem 20. Given a graph pLer ,if Gy, 1 <1 <n, has an a-labeling and each pair

of graphs G; and Gy, i =0 (mod 2), has the same boundary value and edge number,

.....
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Since in Lemma 4, we show that if G and G’ has the same boundary value and
edge number m, then PQ(G’G’) has an a-labeling with the boundary value ks = m. By
Theorem 16, we show that if G;, 1 <7 < n, has an a-labeling and each pair of graphs G;
and Gj,1, 7 =0 (mod 2), has the same boundary value and edge number, then P,EGl ,

for any n > 1, admits an a—labeling We can follow the proof idea of Theorem 17 to prove

@<§>:

Figure 4.22: Gy, Go, G3 (left to right).

O

Example 13. Given a-labeling graphs Gy, G, Gz, and G4 with the same edge number,
as in Figure 4.12. Gy and Go has the:same boundary value 2 and Gs and G4 has the same
boundary value 3. By Theorem 20, CiGl’GQ’G:’”G“), as in Figure /.13, is graceful.

C(G1,G27G3)
3

Figure 4.23: An a-labeling for

Corona C,, @ mKj is a cycle C,, with m pendant edge attached at each vertex. Frucht [11]
proved that C),, © K; is graceful. By Theorem 17 we obtain the following corollary which
shows that if n =0 (mod 4), C,, @ mK;, for any m, is not only graceful but also a graph

with an a-labeling.
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Corollary 5. Ifn=0 (mod 4), C,, O mK;, for any m, has an a-labeling.

Proof. Since mK; is a graph with an a-labeling, by Theorem 17 we prove that if n =0
(mod 4), then C,, ®mK; has an a-labeling.
O

Example 14. Cy O 2K, as in Figure 4.24, is a graceful graph with an a-labeling, with
E(C,O2K) c{(u,v)jue X,veY}, X ={0,1,2,4,5,6} and Y ={7,8,9,10,11,12}.

@ O

O—0——0
W—0O——0

Figure 4.24:" Cy © 24
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Chapter 5

Conclusion

By extending Wu'’s results [25], we prove that if G;, for 1 <i <n, is a bipartite graceful

n

graph with the same edge number and each pair of graphs Ga;_1 = Gy, for i = 1,...,[§],

-----

n > 1, admits an a-labeling.

We also define C¢ and show.that if G;, for every 4, is bipartite and with the same
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Chapter 6

Open Problems

Various classes of graphs have been proven to be graceful or not. We summarize some

open problems here:

3. Every tree is graceful.

4. Take away one of the edge or vertex of a'complete bipartite graph, it stays a graceful

or a-labeling graph.
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