

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

導 航 系 統 路 徑 搜 尋 之 研 究

On the Routing Problems of Navigation System

研 究 生：林志晏

指導教授：蔡錫鈞 教授

中 華 民 國 九 十 八 年 七 月

導航系統路徑搜尋之研究
On the Routing Problems of Navigation System

研 究 生：林志晏 Student：Jhih-Yian Lin

指導教授：蔡錫鈞 Advisor：Shi-Chun Tsai

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

i

導 航 系 統 路 徑 搜 尋 之 研 究

學生：林志晏

指導教授：蔡錫鈞

國立交通大學資訊科學與工程研究所碩士班

摘 要

路徑規劃問題是這幾年來被廣泛地討論的一個問題，有許多基於 Dijkstra 演算法的方法已

被一一提出；其中優先權佇列是在 Dijkstra 演算法的計算上非常重要的一個資料結構。我們針

對一般平面道路圖來加以觀察，發現一般平面道路圖的節點分支度是相當地低。根據此特性我

們提出一個 Lazy Heap 的資料結構。跟傳統常使用的 Binary Heap 來做比較，我們的方法能

夠改進效能 30%至 50%。除此之外，我們針對台北大眾運輸系統，提出圖的模型和路徑規劃

的系統架構；在基於不同使用者的偏好之下，我們設計不同評斷路徑好壞的方法。我們也嚐試

許多不同的參數組合，來討論路徑規劃結果和運算效能上的改進的議題。

ii

On the Routing Problems of Navigation System

student：Jhih-Yan Lin

Advisors：Dr. Shi-Chun Tsai

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

 The shortest path problem has been studied for decades, and many efficient

algorithms based on Dijkstra's algorithm have been developed. In this thesis, we

focus on the road network graphs. Priority queue is an important data structure used

in Dijkstra's algorithm. Since the road network graph has low degree, we propose a

lazy binary heap as the priority queue. According to our experiments, we reduce 30%

to 50% running time on this kind of sparse graphs. Moreover, our implementation

has better space efficiency than standard binary heap. Based on the road network, we

also study the public transportation system of Taipei City. In this work, we first

model it as a graph, then propose a system architecture. Because of the preference of

different users, we design different metric functions for different preference. In our

experiments, we have tried different metrics and parameters setting.

Acknowledgements

I am grateful to my advisor, Dr. Shi-Chun Tsai, for his guidance and

encouragement. I also thank my family and friends for their spiritual support.

Also, I am obliged to all members in CCIS lab for their help during my study.

Specially, thank truck, Chun-Yen and tomos’ help and discussion.

iii

Contents

Abstract in Chinese i

Abstract in English ii

Acknowledgement iii

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1

2 Preliminaries 6

3 Efficient Priority Queue Implementation 11

3.1 Space Issue for Lazy Heap . 13

3.2 Time Analysis . 16

3.3 Experimental Results . 18

4 Public Transportation Navigation System 22

4.1 Public Transportation System Model 23

4.2 Public Transportation Routing System 24

4.3 Public Transportation Routing Experiments 27

4.4 Experiments with Heuristic Functions 34

iv

5 Conclusion 44

A Some Implementation Issues for PTS 48

v

List of Figures

2.1 Dijkstra’s algorithm . 7

2.2 A∗ search algorithm . 10

3.1 Modified A∗ search algorithm with lazy heap 12

3.2 An example shows that lazy heap cannot complete the route

if update is not used for lazy heap. 15

3.3 The Implementations of Lazy Heap and Standard Binary Heap 20

4.1 The diagram for solving itinerary problem. 25

4.2 Algorithm for Path Finding 28

4.3 Path Extension . 29

4.4 Algorithm for Path Extension 30

4.5 The result with walking distance limit as 400m. 31

4.6 The result with walking distance limit as 600m. This matches

the result of Google Maps. 32

4.7 The second result with walking distance limit as 600m. This

result is not found in the search of Google Maps. 33

4.8 Measure by (transfer, price) order. 35

4.9 Measure by (transfer, time) order. 36

4.10 The Speedup between Dijkstra’s Algorithm and A* search

with heuristic function Fare by applying preprocessing tech-

nique of kd-tree . 39

vi

4.11 The Speedup between Dijkstra’s Algorithm and A* search

with heuristic function Transfer by applying preprocessing tech-

nique of kd-tree . 40

4.12 The Speedup between Dijkstra’s Algorithm and A* search

with heuristic function Time 41

4.13 Comparison between Dijkstra’s algorithm and heuristic func-

tion Fare Bus . 41

4.14 Comparison between Dijkstra’s algorithm and heuristic func-

tion Fare MRT . 42

4.15 Comparison between Dijkstra’s algorithm and heuristic func-

tion Fare Manhattan MRT . 42

4.16 Comparison between Dijkstra’s algorithm and heuristic func-

tion Transfer Bus . 43

4.17 Comparison between Dijkstra’s algorithm and heuristic func-

tion Transfer MRT . 43

A.1 The data structures in C++ for PTS 49

vii

List of Tables

2.1 The Comparison among Different Priority Queue Implemen-

tations [21] . 8

3.1 Experimental Data Set . 19

3.2 The Experimental Results . 21

4.1 A table for heuristic functions whose #paths are different from

those of Dijkstra’s. We test 1000 cases for each heuristic func-

tion. 40

viii

Chapter 1

Introduction

The Shortest path problem (SPP for short) appears in many fields, network

routing, transportation system, operations research, schedule planning and

so on. Especially, since Global Position System (GPS) is open for every-

one, there is a related industry whose business is to develop the service for

finding the optimal route in a road network. There is one good example: a

traveler probably uses his/her personal navigation device (PND) to find out

how to reach destination as soon as possible in a city that he/she has never

been. Therefore, SPP for optimal route becomes important in recent years.

Although there are many algorithms for the shortest path problem, e.g. Di-

jkstra’s algorithm [20], but the calculating time is still unacceptable for road

network route application. For example, the number of vertices of a graph

can be over 10 millions in the USA. If we apply Dijkstra’s algorithm which

costs O(m+n log n) time for n vertices and m edges, it might take too much

time for route planning. Dijkstra’s algorithm [20] is a classical algorithm for

route planning and the size of the search space is O(n). In order to speedup

the performance, bi-directional search simultaneously performs forward and

backward search. Moreover, the generalization of Dijkstra’s algorithm, A∗

search [19], is proposed and its bi-directional version [22] is also studied.

While computing the shortest path, a priority queue is needed. RAM (Ran-

dom Access Memory) model, is a abstract machine whose memory is broken

1

into W words each, and the machine accesses each memory word in one step.

Based on RAM model, Mikkel Thorup implemented a queue supporting find-

min operation in constant time, delete-min operation in O(n log log n) [27].

Then he implemented a priority queue in linear space with n integer keys in

the range [0, N) supports find-min, insert and dec-key in constant time,

and delete in O(log log min{n, N}) [28]. From his work, the immediate re-

sult is that we can solve the single source shortest path problem (SSSP) for a

directed graph G with n vertices and m edges with weights in a range [0,C)

in O(m + n log log min{n, C}) time and in linear space.

People may plan their trips using various devices, such as PNDs, smart

phones, laptops, desktops, and remote servers like Google Maps. We can

classify them into two routing models: thin client model and off-line com-

puting model. The major difference between thin client model and off-line

computing model is web access. For thin client model, users can connect to

a web service provider which supports online path query service, e.g. UrMap

and Google Maps. Then user queries the path from a place to another from

the service provider for road network routing and finally the route path in-

formation is shown on the web page. In this case, the computing power is

from the remote server and the remote server is very powerful. When there

are many users use the service at the same time, the calculating time for each

query is a challenge.

The other model is off-line computing model. Many corporations, for

example, Garmin, Mio, and TomTom, sell their personal navigation devices

equipped with slower CPU (500MHz), limited fast memory space (64Mb) and

larger slow storage (4Gb Flash memory or Disk). The road network graph

data is stored in the slow storage of PND. When users have problems about

the path information, they can use their PND to route the path and then

PND will navigate to the destination. Because of slow computing power and

limited memory space on this kind of small device, the system efficiency is

a challenge. In order to achieve hardware optimization, the cache oblivious

algorithm is introduced. Cache oblivious model is vary similar to RAM

2

model; in addition, cache is also introduced. The major difference between

RAM and cache oblivious model is that a load or a store between main

memory and a CPU register is serviced by cache. In [8, 9], they studied the

characteristic of a cache and proposed the optimized priority queue. Since

the graph representation cannot be loaded into main memory entirely, for

example, the USA road networking data consists of over 10 million vertices,

the data is divided into several blocks. These divided blocks are stored on

the external storage initially. If some block is needed while routing the path,

the block is then loaded into main memory. CPU’s speed is very fast, but

the speed of auxiliary memory is still slow. Because of a speed gap between

CPU and the external storages, the I/O access is the bottleneck of computing.

How to store the graph representation becomes one of critical issue recently,

especially on small devices. There are many related works [5, 6, 7, 10, 11]

based on discussing I/O complexity to handle SSSP and related problems.

To avoid reading map data for each query from slow secondary storage,

developers might choose a method with small preprocessed data in order to

load all map data in the memory. Laptops and desktop PCs are designed for

one user with a powerful processor and plenty of storage. Developers might

choose to minimize the data read from the hard disc for one query. Compared

with the other platforms, PNDs and smart phones have slower processors,

less memory and less space of secondary storage to keep higher portability

and lower cost. A good implementation for these platforms requires not

only time efficiency but also space efficiency since the spaces of memory and

secondary storage are unable to hold large preprocessed data. Developers

need to adjust parameters carefully to meet space and time requirements.

One approach to speedup the search is preprocessing. The main idea

is that since the graph is static (this means the weight is unchanged), we

can make some pre-computing and these results are attached to the original

graph data. While routing a path, the additional information can help to

reduce the search space; hence, the computing time is saved. Obviously,

different preprocessing technique will cost different extra space and have

3

different speedup. This is a tradeoff. A naive way is to pre-compute all

pairs of shortest paths and take O(n2) extra space, where n is the number

of vertices. This may be practical for small graph; however, in real road

network, we cope with a large graph which consists of at least one million

vertices. This becomes impractical. The road network graph is planer and

a lot of preprocessing techniques are based on dividing planer graph into

hierarchical overlay graph. Highway hierarchy [18], Node Contraction [15]

and Transit Node Routing [17] belong to this kind of technique. The Reach

[16] and edge labeling [13, 12] techniques pre-compute the information of

shortest path and then store it on edges or vertices. In order to take the

advantages of these techniques, the hybrid technique is used in recent years,

e.g. SHARC [14] hybrids hierarchy method and edge labeling technique.

An extension of road network is public transportation system routing.

The new application focuses on travelers rather than vehicle drivers. Com-

paring to road networking routing, public transportation system or time table

graph is more complicated because different issues are considered, including

time table information. There is an example: a foreign traveler, Bob, arrives

to Taipei City and he wants to visit the National Palace Museum. Since he

does not have a driving license, a possible solution is to take public trans-

portation system. He again can use personal navigation device for public

transportation system to find out how to reach the National Palace Museum.

In this model the itinerary planning constitutes a set of line transfers and

walking information. Since different traveler will have different concerned

criteria on routing, the public transportation system might answer different

route paths that depend on the user’s preference. In [24], Pyrga et. al.

studied the time table information and modeled the time table system into

time-depended and time-expanded graphs. The fare for public transporta-

tion system is studied in [25], Tan and Leong proved path depend shortest

path (PDSP) is an NP-hard problem, but suffix-k PDSP is not NP-hard and

proposed a solvable algorithm. To solve the itinerary problem for an ur-

ban public transport system, Konstantinos et al. [26] proposed the dynamic

4

programming based algorithm.

Our motivation is that since Global Position System is extensively used

on path routing, there are many critical issues and applications under devel-

opment. In this thesis, we study a critical data structure used for routing

and the public transportation navigation system. The rest of this thesis is

organized as follows. We first introduce the preliminaries and related work

in chapter 2. In chapter 3, we study the data structure “lazy heap” and state

its efficiency. Based on the same memory limitation, we describe a solution

and experimental results. In chapter 4, we extend the road network to public

transportation system. We also model the public transportation system of

Taipei City and propose the architecture of public transportation system.

Due to different user’s preferences, we use different heuristic measure meth-

ods. In the last section of chapter 4, we compare them with the results from

Google. In the last chapter we makes a conclusion and discuss the future

work.

5

Chapter 2

Preliminaries

In this chapter, we review some background for path routing. Consider the

road network as a directed graph G = (V, E), where |V | = n vertices and |E|

= m edges. In general, m = O(n) edges for the road network graph. Each

edge e = (u, v) ∈ E associated with a nonnegative cost c(e). A path is a

sequence of vertices (v0,v1,...,vk) such that (vi−1, vi) ∈ E for 1 ≤ i ≤ k. The

cost of a path (v0,v1,...,vk) is defined as
∑

k

i=1
c(vi−1, vi). A path (v0,v1,...,vk)

is an s-t path if v0 = s and vn = t. The shortest s-t path is the least cost

one among all s-t paths. The point-to-point shortest path problem on graph

G = (V, E) with cost function c is to find the shortest s-t path from a given

source s ∈ V to a given target t ∈ V .

The classical algorithm for shortest path is Dijkstra’s algorithm [20], see

figure 2.1. Dijkstra’s algorithm maintains three tables: tentative distance

table d[v], parent vertex table p[v], and status table S[v] ∈ {unreached,

labeled, scanned} for each vertex v. Initially d[v] = ∞, p[v] = nil and S[v]

= unreached for each unvisited vertex v ∈ V \{s}; for the start vertex s, d[s]

= 0, p[s] = nil and S[s] = labeled. If there is any labeled vertex in S, select

the labeled vertex u with minimum tentative cost. If a labeled vertex u is

selected, S[u] = scanned and then relaxes these edges which are out from

vertex u. For each relaxed edge (u, w), S[w] = labeled; update the d[w] to

d[u] + c(u, w) and p[w] = u if d[w] > d[u] + c(u, w). Algorithm terminates

6

when there is no labeled vertex in S, and the tentative distance d[v] is the

shortest path from s to v. Dijkstra’s algorithm computes all pair paths from

vertex s; however, our shortest path problem is only a query of shortest path

from vertex s to vertex t. Therefore, we can modify the termination condition

of Dijkstra’s algorithm when S[t] of the target vertex t is set as scanned.

Algorithm Dijkstra(G,c,s)

Input: G = 〈V, E〉 //the graph.

c //the cost function.

s //the source vertex.

Output: d //a table contains the cost of shortest paths where d[t] is

the least cost of s-t paths.

Variable: d //tentative distance table.

p //parent table.

S //status table.

begin

1. d[s] := 0, p[s] := nil, S[s] := labeled;

2. for all v ∈ V − {s} do p[v] := nil, d[v] := ∞, S[v] := unreached;

3. while (there is a labeled vertex) do

4. u := the labeled vertex with minimum cost in S;

5. S[u] := scanned;

6. for all (u, v) ∈ E do

7. d′ := d[u] + c(u, v);

8. if (d′< d[v]) then

9. d[v] := d′, p[v] := u, S[v] := labeled;

end

Figure 2.1: Dijkstra’s algorithm

To efficiently implement the algorithm, there are many data structures we

can use. We additionally maintain a priority queue to collect these labeled

vertices; we also call this priority queue as “open set”. A priority queue is a

collection of elements which are associated with priorities. The key of prior-

ity queue for shortest path algorithm is the tentative distance d. A priority

queue supports following operations:

7

Extract-Minimum(Q): Returns an element of Q with minimum prior-

ity.

Insertion(Q,e): Adds the element e into Q.

Remove(Q,e): Delete the element e from Q.

Update(Q,e,k): Update the element e with priority value k.

In many application, for example, the shortest path problem, we only do the

update operation if the priority value k is less than the value of element e in

Q. In this case, the update operation is also called decrease-key operation.

Different data structure used for open set will lead to different computing

efficiency. Table 2.1 is the comparison of different data structure. Besides

“open set”, we call the other data structure which is used to collect these

scanned vertices as “closed set”. Because open set and closed set are applied,

we can automatically classify the status of all vertices into three different sets

and the status table S can be removed. If a vertex v in open set (closed set),

the status of v represents labeled (scanned). If a vertex v is not in open set

and in closed set, the vertex is unreached.

List Binary Tree Binary Heap Fibonacci Heap
Insertion O(1) O(log n) O(log n) O(1)

Extract Min O(n) O(log n) O(log n) O(log n) amortized
Update O(1) O(log n) O(log n) O(1) amortized
Delete O(n) O(n) O(log n) O(log n) amortized

Table 2.1: The Comparison among Different Priority Queue Implementations
[21]

The A∗ search algorithm [19], see figure 2.2, is a generalization of Dijk-

stra’s algorithm for point-to-point shortest path. The main difference be-

tween Dijkstra’s algorithm and A∗ search algorithm is the priority. The A∗

search needs an additional heuristic function h(v) to evaluate the priority

of vertex v while Dijkstra’s algorithm only uses tentative distance d(v), the

cost of s-v shortest path. The heuristic function h(v) is an estimation of

the cost of v-t shortest path and the heuristic function is admissible only if

it never over-estimates the actual cost. The optimality of the A∗ search is

8

guaranteed with admissible heuristic function, otherwise the output of the A∗

search algorithm might not be optimal. For computing path length between

two locations in the real-world road network, the geometric distance is an

admissible heuristic function. It is clear that Dijkstra’s algorithm is the A∗

search with heuristic function h(v) = 0 for all v ∈ V , and the search space

decreases when the accuracy of heuristic function increases.

9

Algorithm Astar(G,c,h,s,t)

Input: G = 〈V, E〉, //the graph.

c //the cost function.

h //the heuristic function.

s //the source vertex.

t //the target vertex.

Output: opt //the least cost of s-t paths.

Variable: Q //open set, an initially empty priority queue.

closed //closed set, an empty set.

d //a table holds the cost of shortest paths.

p //a table holds the parent vertex for each vertex.

begin

1.d[s] := 0, p[s] := nil;

2.for all v ∈ V \ {s} do p[v] := nil, d[v] :=∞;

3.Insert s with priority h(s) into Q;

4.while (Q is not empty) do

5. Extract minimum vertex in Q as u;

6. if (u ∈ closed) then continue;

7. Add u to closed;

8. if (u=t) then return opt := d[t];

9. for all (u, v) ∈ E do

10. d′ := d[u] + c(u, v);

11. if (d′< d[v]) then

12. if (v /∈ Q) then

13. Insert v with priority d′ + h(v) into Q;

14. else

15. Update the priority of v in Q to d′ + h(v) ;

16. d[v] := d′, p[v] := u;

end

Figure 2.2: A∗ search algorithm

10

Chapter 3

Efficient Priority Queue

Implementation

Different implementations of the priority queue used in Dijkstra’s algorithm

lead to different time and space performance [28, 27, 9, 8, 23]. For example,

it takes O(n2) time while using an array, but it only takes O(n logn) time

with Ω(n) extra space while using a Fibonacci heap [23]. One might think

that using binary heap as priority queue will not cause extra space usage

because it is an in-space data structure. However, binary heaps are in-space

only if they do not support any sub-linear time decrease-key operation, since

finding an element without extra space needs Ω(n) time for an n-element

binary heap. Typically, we use a hash map or a binary search tree to store

the indices of element in the binary heap. Therefore, there is also Ω(n) extra

space for standard binary heap implementation. In this thesis, we use binary

heap as one of our experimental data structures. For standard binary heap,

operations of extracted minimum, insertion, and remove all cost O(log n). In

addition, we apply a hash map to record the stored position of an element

in the heap; thus, the decrease-key operation has cost O(log n).

We propose a data structure called “Lazy Heap”. Our basic idea to

improve the time efficiency is to use the binary heap in a lazy manner:

avoid using the decrease-key operation. In the lazy heap implementation,

11

Algorithm ModifiedAStar (G,c,s,t)

Input: G = 〈V, E〉 //the graph.

c //the cost function.

s //the source vertex.

t //the target vertex.

Output: opt //the least cost of s-t paths.

Variable: Q //open set, an initially empty priority queue.

closed //closed set, an empty set.

d //a table holds the cost of shortest paths.

p //a table holds the parent vertex for each vertex.

begin

1. d[s] := 0, p[v] := nil;

2. for all v ∈ V \ {s} do p[v] := nil, d[v] := ∞;

3. Insert s with priority h(s) into Q;

4. while (Q is not empty) do

5. Extract minimum element u from Q;

6. if (u ∈closed) then continue;

7. Add u to closed;

8. if (u=t) then return opt := d[t];

9. for all (u, v) ∈ E do

10. d′ := d[u] + c(u, v);

11. if (d′< d[v]) then

12. Insert v with priority d′ + h(v) into Q;

13. d[v] := d′, p[v] := u;

end

Figure 3.1: Modified A∗ search algorithm with lazy heap

12

the decrease-key operation is not used. Therefore, lazy heap only supports

insertion and extract minimum operation. Because of no decrease-key oper-

ation used, we do not need to check whether any vertex is in open set and

thus the hash map or search tree is not used. Consequently, the running

time for searching an element is saved. However, a problem occurs: a lot of

insertions are needed. According to our observation, this modification brings

the benefit on road network graphs. The reason is that the average degree of

road network graphs is less than 4 and the extra insertion operations does not

happen frequently. The algorithm ModifiedAStar, figure 3.1, is the modified

A∗ algorithm applies lazy heap as open set. We may have duplicated vertices

in the open set when we apply lazy heap implementation. Thus, when a

vertex u is extracted from open set, we should check whether u is already in

closed set. If yes, this means the relaxation of vertex u is redundant and we

can directly do the next extract minimum operation.

While inserting a vertex, there are two possible operations if standard

binary heap used: decrease-key if the id of the vertex already exists and

the priority is less; otherwise, insert it into open set. But lazy heap only

does insertion operation no matter whether the vertex is already in open

set. Since both methods relax the same vertices and extract the same vertex

with minimum cost, the search scenario between standard binary heap and

lazy heap are the same. However, lazy heap can speedup the search when

the graph is sparse and in general road network is a sparse graph. The

experimental results will be discussed later.

3.1 Space Issue for Lazy Heap

Now, we discuss a space issue between lazy heap and standard binary heap.

As so far we known, because lazy heap only support insertion operation

instead of using decrease-key operation, in general the lazy heap needs more

space than that of standard binary heap (we can use more space because

of the extra space for this case). In order to use the same space size as

13

the standard binary heap does, we propose a new approach. Let variable

“capacity” be the maximum vertex size we can use while computing the

shortest path. Every inserting operation event occurs, we first check whether

the size used in heap is equivalent to capacity. If so, we do the following

operations:

1. Sort the elements in heap by (id, cost) lexicographical order.

2. Eliminate duplicated vertices.

3. Insert the new vertex into heap.

4. Do minimum heapify.

At setp 1, since there are many duplications with the same id, we can

order the elements in heap by (id, cost) lexicographical order. At step 2,

we remove the redundant vertices; that is, for each vertex is in heap and is

not in closed set, only keep one copy with minimum cost. After step 2, the

heap structure may not satisfy the minimum heap property. Thus, we do the

minimum heapify operation to achieve the requirement at step 3. Finally, we

can insert the new vertex into heap if heap capacity is not full.

The above approach may cover many possible cases, but not all. We give

a scenario that standard binary heap can complete the routing with limited

space, but lazy heap cannot. Consider the graph of figure 3.2, and suppose

for each edge e ∈ E \ (0, 4), c(e) = 1 and c(0, 4) = 3. Let the capacity of

our open set be 3 and suppose the SPP is a query from vertex 0 to vertex 3.

Initially, vertex 0 is inserted into open set and then is extracted. After the

relaxation of vertex 0, the vertices in heap are 1, 2, 4 and all are not in closed

set. Now, suppose vertex 1 is extracted and relaxes its neighbors vertex 3

and vertex 4. If we apply standard binary heap, vertex 3 can be inserted into

the heap and vertex 4 can be updated if the cost is less. Therefore, we can

complete this relaxation and continue the route. Finally, the shortest path is

found. However, if lazy heap is used, we cannot successfully route the path.

After extracting vertex 1, and then relaxes vertex 3 and vertex 4 respectively,

14

vertex 3 can be successfully inserted into heap and the vertices in open set

are 2, 3, 4. When vertex 4 is inserted, because the heap is full, we must

do the above steps to eliminate these duplicated vertices. After completing

elimination operation, the vertices in open set are still 2, 3, 4. The heap size

is still full; therefore the insertion operation fails. In above case, we know the

capacity needed for lazy heap is more than that for standard binary heap.

However, if the decrease key operation is allowed to use when the above

situation occurs, the space used can be reduced.

2

0 4

1 3

1

3

1 1

1

Figure 3.2: An example shows that lazy heap cannot complete the route if
update is not used for lazy heap.

We must modify the algorithm as follows:

1. Sort the elements in heap by (id, cost) lexicographical order.

2. Eliminate duplicated vertices.

3. If still full, do the update operation for the vertex and build the heap

structure.

15

4. Else, insert vertex into heap.

5. Do minimum heapify for these vertices.

When we insert vertex 4, the vertex is updated at step 3. Therefore, the

route path is also completed. We claim the above algorithm can complete

the relaxation when it is also completed for standard binary heap. Since the

update operation is used for standard binary heap, there is only one copy

for each labeled vertices in it and there is at least one copy for these labeled

vertices in lazy heap. After step 1 and step 2, there are only one copy for each

labeled vertices with minimum cost in lazy heap and these scanned vertices

will be removed from it. These elements in standard binary heap will also

have one copy in lazy heap, and vice versa. At step 3, if the capacity size of

lazy heap is still full, then the standard binary heap is also full. Suppose we

can complete relaxation for the vertex in standard binary heap, this means

the operation must be updated; otherwise, this vertex cannot be relaxed by

insertion in a full standard heap. Now the update operation is allowed for

lazy heap, the capacity of lazy heap will not be over-sized. Thus, we can

complete this relaxation. Finally, we do the minimum heapify to meet the

requirement. After these operations, the structure of two heaps are the same.

3.2 Time Analysis

In this section, we discuss the time efficiency of the modified priority queue(lazy

heap). Since we are coping with a sparse graph with limited memory re-

sources, we assume the following:

• The maximum degree of the graph is a constant d.

• The size of memory allocated for implementing heap is s.

• The capacities of the standard binary heap and the modified one are n

and m copies, respectively.

16

• While executing the algorithm, the number of distinct nodes in the

priority queue is no more than n.

Now we give some analysis of the modified priority queue. Since linear space

data structure such as search trees and hash tables are usually used for the

standard binary heap implementation to support sub-linear time decrease

key operation, the lazy heap can hold more copies of node. Therefore, we

assume m = cn where c > 1 is a constant.

In the lazy heap implementation, there are only two operations insertion

and deletion(extract minimum operation). The running time of extract min-

imum operation is clearly O(log m) = O(log n). When the priority queue is

full, removing unnecessary copies takes O(m log m) time. But there are at

least m−n = (c−1)n = Θ(m) insertion operations invoked between any two

insertions making the priority queue full. Hence the modified insertion has

an amortized running time O(log m) + O(m log m)/Θ(m) = O(log n) under

this setting. This analysis actually works for any constant c > 1. This allows

us to adjust the actual space usage to fit the graph input and system re-

sources. Hence the implementation have a space efficiency almost as efficient

as an array, and a time efficiency near using a standard binary heap with a

sub-linear time decrease-key operation.

We continue to analyze the time efficiency of the whole algorithm. The

modification does not change the search space, therefore the vertices which

have been inserted into the priority queue are the same. Consider an inserted

vertex v in the standard version, assume that v has been inserted only once,

extracted at most once and decreased dv times. Since we replace the decrease-

key operation with insertion, v is inserted 1+dv times and extracted at most

1 + dv times in the modified version. Note that the amortized costs of these

operations are all O(log k) where k is the number of copies in the priority

queue, and there is at most d copies. Since the time complexity of heap

operations of both versions are the same, the running time of the whole

modified algorithm has the same order as that of standard version.

17

3.3 Experimental Results

We implemented the algorithms by using C++ language and GNU C++

STL. These programs were compiled by the GNU compiler 4.2.3. Our exper-

imental platform is a machine equipped Intel Core2 1.86GHz CPU, system

RAM 2G on an Ubuntu Linux distribution with kernel version 2.6.24. Our

test instances are from [1] and the random test cases are planner graphs

which are generated from LEDA [2]. For the DIMACS test instances, the

average degree of the graphs are less than 3 and the average degree of the

random planner graphs are larger than 5. Our classes declaration of lazy

heap and standard binary heap are listed in figure 3.3. While inserting an

vertex into a fully heap, the function removeRedundant of class LazyHeap

removes the redundant vertices. The function pointer cmp points to a func-

tion for measuring a vertex priority in the heap. We apply the hash map

for mapping stored position of labeled vertices in standard binary heap. We

set the heuristic function h(v) = 0. This means all shortest paths are com-

puted by Dijkstra’s algorithm. For the detail information of test instances

and experiment results please refer to table 3.1 and table 3.2, respectively.

Compare with the standard binary heap implementation, the experimen-

tal result shows that Lazy Heap can speedup by 30% and 50% on DIMACS

test instances and random graphs, respectively. For the case of space con-

sideration, the bounded lazy heap still has better performance than that of

standard binary heap implementation. In general, the average degree of road

network graph model is less than 4; thus, we believe routing data structure

can apply lazy heap implementation as open set.

Since the road network becomes lager, the computing time of Dijkstra’s

algorithm increases significantly. The preprocessing technique is more and

more important. An important application of lazy heap is in preprocessing

[12, 13, 15, 16]. If the lazy heap is used, the preprocessing time may be

reduced for different preprocessing methods. For example, the preprocessing

technique arc flag needs to compute the shortest path and stores the shortest

18

path information on edges. From our experiments, the computing time is

saved if lazy heap is applied. This is very useful to update the graph data

online. According to our experiments for limited size lazy heap and standard

binary heap, the execution time of our implementation is better. When

remote server needs many simultaneously queries, we can save the query

time without any extra space if use our implementation.

Test Case Description #Vertices #Edges

NY New York City 264,346 733,846

BAY San Francisco Bay Area 321,270 800,172

COL Colorado 435,666 1,057,066

FLA Florida 1,070,376 2,712,798

NW Northwest USA 1,207,945 2,840,208

NE Northeast USA 1,524,453 3,897,636

CAL California and Nevada 1,890,815 4,657,742

Random 1 Random Planer Graph 1 1,000,000 >5,000,000

Random 2 Random Planer Graph 2 1,000,000 >5,000,000

Table 3.1: Experimental Data Set

19

class LazyHeap{
private:

unsigned int size;
unsigned int capacity;
Elem** array;

public:
LazyHeap(int (*c)(Elem*, Elem*));
∼LazyHeap();
void removeRedundant();
Elem* extractMin();
void insert(Elem* e);
int (*comp)(Elem* e1, Elem* e2);
bool isEmpty();

};

class StdHeap{
private:

unsigned int size;
unsigned int capacity;
Elem** array;
hash map<unsigned int, unsigned int> heapMap;

public:
StdHeap(int (*c)(Elem*, Elem*));
∼StdHeap();
void decreaseKey(unsigned int id, double cost);
Elem* extractMin();
void insert(Elem* e);
int (*comp)(Elem* e1, Elem* e2);
bool isEmpty();
bool find(unsigned int id);

};

Figure 3.3: The Implementations of Lazy Heap and Standard Binary Heap

20

Test Case Method #seconds per 1000 Queries Speedup

Heap with decrease-key 476 -

NY Bounded Lazy Heap 334 1.42

Lazy Heap 325 1.46

Heap with decrease-key 542 -

BAY Bounded Lazy Heap 354 1.53

Lazy Heap 353 1.53

Heap with decrease-key 751 -

COL Bounded Lazy Heap 490 1.53

Lazy Heap 488 1.53

Heap with decrease-key 1989 -

FLA Bounded Lazy Heap 1316 1.51

Lazy Heap 1314 1.51

Heap with decrease-key 2203 -

NW Bounded Lazy Heap 1414 1.55

Lazy Heap 1410 1.56

Heap with Update 2940 -

NE Bounded Lazy Heap 1939 1.51

Lazy Heap 1939 1.51

Heap with decrease-key 3620 -

CAL Bounded Lazy Heap 2382 1.51

Lazy Heap 2377 1.52

Random 1 Heap with decrease-key 5571 -

Lazy Heap 4040 1.37

Random 2 Heap with decrease-key 5760 -

Lazy Heap 4123 1.39

Table 3.2: The Experimental Results

21

Chapter 4

Public Transportation

Navigation System

In recent years, public transportation system (PTS for short) routing be-

comes an important issue. Comparing with road networking routing, PTS

is more complicated because the route path not only depends on the road

information but also the transfer information (time, line and so on..). In PTS

routing, the least fare problem, earliest arrival problem and minimum num-

ber of transfers problem are the most frequent problems encountered. The

least fare problem is a query of the connection departure from a location to

another with least fare. In the earliest arrival problem, our goal is to search

the least time used from a to b. There are two variations: constant transfer

time and dynamic transfer time. In order to achieve the earliest arrival goal,

we may need transfer many times. However, some users may prefer fewer

transfers. Comparing with earliest arrival problem, the minimum number of

transfers problem requires the minimum number of transfers but may take

more time. In this chapter, we describe the PTS model for Taipei city and

propose some approaches for routing.

22

4.1 Public Transportation System Model

In this section, we first model the Taipei City public transportation system

as a graph. Let S be the set of stops of the public transportation system and

N be the set of nodes. Each node v represents a service line that passes a

specific stop s. A stop consists of the position at the map, its stop name and

different service lines going through. We define the function Stop : N → S

to map the corresponding stop information of a node. A service line can be

represented as a sequence of nodes (n1, n2, ..., nk). In general, the transfer

time for taking a service line from one node to its next node is dynamic

(depends on the level of traffic congestion). In this thesis, we simplify the

transfer time in minutes of its travel distance in meter divided by the average

speed of this transportation service. In Taipei City, there are two major

public transportation systems: bus and Mass Rapid Transit (MRT). The

average speed of bus and MRT are 15 km and 35 km per hour, respectively.

We denote E the set of transfer edges. For each e = (n, n′) ∈ E, n and

n′ ∈ N , let transCost(e) be the cost function. Depending on user’s setting,

the transfer cost function will calculate the fare, the number of transfer and

transfer time. In addition, we define the walk time w(s1, s2) to represent the

walking time from stop s1 to stop s2. Let W be the set of walking edges.

In our setting, the walking time in minutes is the travel distance divided by

the walking speed (6km/h). The parameter walking distance limit, LW , is

the maximum walking distance that a traveler allows for each service line

transfer. The public transportation system can be modeled as a network,

G(S, N, E, W). Since different travelers may care about different issues, for

example, a business traveler cares more about travel time but a student may

care more about the travel price. We additionally define the measure function

M for measuring two paths. An itinerary planning can be represented by

a sequence (ls, s1, ..., sk, lt), where ls and lt represent the start location and

target location, respectively.

23

4.2 Public Transportation Routing System

Figure 4.1 is our system architecture for public transportation routing. Ini-

tially, user can specify the parameters: start location, target location, max-

imum walking distance per transfer. The function main is a control flow

function. We introduce the details about the interaction between the main

function and other modules as follows.

The first module invoked is data reading module. This module has the

functionalities: processing data and loading data. We first parse the raw

data and write it into binary files. When main function invokes load map

module, the binary files are directly loaded into corresponding data struc-

tures. The detailed preprocessing technique refers to [29]. Neighbor finding

module will respectively return the set of neighbor stops whin walking dis-

tance set by user of start location and that of target location. For the set of

neighbor stops of start location, we can consider these stops as the candidates

of starting transfer positions. User can walk to one of these stops from the

start location, then taking the transportation lines going through these stops

towards destination. Similarly, for the neighbor stops of target location, a

user arrives to one of them; then walks to the destination within a distance

which is set by the user. In order to efficiently search the neighbor stops,

range tree [4] may be a choice. It takes O(logn) search time, but use extra

O(n log n) space. Due to the space issue, we do not apply this method. In

our method, we first sort the stops information by (longitude, latitude) lexi-

cographical order while processing the transportation data. When neighbor

finding module is invoked with parameters: geometric location and walking

distance limit, it can calculate the ranges which we may need to take into

consideration. In this implementation, it may take linear time to collect these

stops. The implementation without extra space for graph data is acceptable

because we only need to do neighbor finding two times (for start location

and target location). The route paths are generated by the path computing

module which applies Dijkstra’s algorithm or A∗ search. While each time we

24

Start Location,
Target Location,

Parameters

< 2 > Neighbor
Finding Module

Given a position,
return its neighbor

stops

Main Function

1. Load Map
2. Find Neighbor
3. Calculate Path

4. Build Path

< 1 > Data Reading
Module

1. Read Map Data
2. Preprocess Data

< 3 > Path Computing Module

Route the Path
(Modified Dijkstra’s Algorithm

or A∗ search

< 4 > Path Building
Module

1. Build the Path
2. Show the Path

Position

Neighbor Stops

Read Data

Query Relaxation Info

Return Info

Start and Target Neighbor Sets

Path

Build Path

Figure 4.1: The diagram for solving itinerary problem.

25

arrive a stop and getting off is allowed, there is a possibility for changing lines

toward the destination with less cost. Thus, while arriving to a stop each

time, we must check the stop candidates that we can walk to. One solution

is that we apply the “on the fly” search, which again applies neighbor finding

module. For this method, there is no extra space needed if use our neighbor

search method. However, this may spend more time on search. In order to

reduce the search time, a possible solution is use the range tree implemen-

tation. Time complexity can be reduced to sub-linear time for each search.

However, the search is frequent; the performance is still not good enough.

The other method, we can pre-calculate the neighbors of each stop which

are within a range of distance, then store on a set of lists. For each stop s,

it has a neighbor list which represents the neighbor stops near s in a range.

For each s, we sort its neighbor list by the distance from s. This method

may take O(n2) extra space, but we do not need to search its neighbor when

arrive to a stop each time. When the corresponding stop of extracted node

belongs to the target set, there is a path we can go from start location to

destination. This path will be passed to the path building module. Finally,

the main function invokes the path building module to build the route path.

Figure 4.2 is the path finding algorithm. The input is the modeled graph

G, parameters and functions. At first step, we calculate the cost for each

node n whose corresponding stop belongs to the neighbor set NeigS. Dijk-

stra’s algorithm is applied from line 4 to line 20. At line 5, we measure the

priority of nodes in open set by the specific metric function M , then extract

the the minimum weight node from the open set. From line 6 to line 10,

we check whether the corresponding stop of this extracted node belongs to

target set NiegT . If yes, this means that we already arrive to a stop whose

distance from it to the destination is less than the preferred walking distance.

Therefore, we can build this path and then report the transfer information

from the source location to the destination. Before building the route path,

we first check whether there is a better stop which is much closer to des-

tination at line 7. Our main idea is that since we arrive to a stop which

26

belongs to target set NeigT , traveler may need to walk to destination. In

general, we must avoid walking a long distance. Therefore, we should check

if there is any better stop which is closer to the destination. In figure 4.3,

suppose a traveler arrives to stop 1 by taking line A. The distance between

stop 1 and destination is less than WL (we suppose that these stops enclosed

in a rectangle are all in NeigT). In this case, we may walk to destination

in 500m; however, there is a better stop, stop 2, which is closer to destina-

tion(only 200m). Usually, the speed of walking is very slow(6km/h for our

setting) and the speed of transportation tool is much faster. Although there

is a better stop to get off, we need to check some property of this stop. We

must ensure that the price charged to this stop is unchanged and this stop

allows travelers to get off. Figure 4.4 is the algorithm to get the best stop.

If the corresponding stop of the extracted node is not in target set, first we

can directly relax its next point at line 11. This means we continue taking

the same line. If we can get off at current stop, according to the above de-

scription, we can consider the neighbor stops and relax them from line 12 to

line 20. The algorithm continue the search until a path is found or priority

queue is empty (i.e., there is no path).

4.3 Public Transportation Routing Experiments

In this section, we experiment with different measure functions, walking dis-

tance limit for PTS of Taipei City. Because of the incompleteness of some

information, we make up some data for the incomplete information. For

each test case, the results are compared with those of Google Maps. We im-

plemented the algorithms with C++ language and GNU C++ STL. Those

programs were compiled by the GNU compiler 4.2.4. Our experimental plat-

form is a machine equipped with Intel Core 2 Duo 2.20GHz CPU and system

RAM 2G on an Ubuntu Linux distribution with kernel version 2.6.24. In

order to easily observe the route path, we also build a web service version for

experiments. The web service is builded by using Google Maps API, PHP,

27

Path Finding Algorithm
Input: G〈S, N, E, W 〉 //the graph where

S is the set of stops, N is the set of nodes,
E is the set of edges and W is the set of walking edges.
transCost //the cost function.
w //the walking time function.
s //the source location.
t //the target location.
LW //the walking distance limit.
M //the measure function.
Stop //mapping function from N to S.
NeigS //the neighbor stops of source location.
NeigT //the neighbor stops of target location.

Output: The s-t path which consists of the line information.

1: for each st ∈ NeigS do
2: Calculate the cost of the corresponding node p ∈ N which belongs to

stop st, then insert it into open set Q.
3: end for
4: while Q is not empty do
5: Extract minimum node u from Q by using measure function M .
6: cs := Stop(u)
7: if cs ∈ NeigT then
8: curLine:= current taking line.
9: Path Extension(cs,curLine,NeigT).

10: Build the path from s to t with transfer information.
11: return s-t path.
12: end if
13: Relax the next node v that is reachable by taking the line of current

extracted node u without any transfer.
14: if we can get off at cs then
15: Find the neighbor stops of cs, denote NiegCS.
16: for each st ∈ NeigCS do
17: if we can get on at st then
18: Relax node p, such that Stop(p) = st.
19: Update the cost of p and insert p into Q.
20: end if
21: end for
22: end if
23: end while

Figure 4.2: Algorithm for Path Finding

28

Stop 4

Stop 1

Stop 2

Stop 3

DestinationLine B

Line C

Line A

Line A

Walk 500m Walk 200m

Figure 4.3: Path Extension

29

Path Extension Algorithm
Input: curStop //the current stop we arrive.

curLine //current line we are taking.
NeigT //the neighbor stops of target location.

Output: best //the best stop we will get off.

1: bestStop := curStop
2: for each st ∈ NeigT\s do
3: if curLine pass to st then
4: if st is closer to destination and the fare is unchanged and we can

get off at st then
5: bestStop := st
6: end if
7: end if
8: end for
9: return bestStop

Figure 4.4: Algorithm for Path Extension

JQuery and the detail implementation we refer to [29].

First, we show the different paths caused by different walking distance

limit setting. In figure 4.5, we query the path from Sanchong city to Song-

shan District, Taipei. If we set the walking distance as 400m, measuring

by (transfer, time) lexicographical order, the route paths need at least one

transfer. However, Google Maps finds the two similar paths (taking the same

bus 306) without any transfer. Now we relax the walking distance to 600m

and the measure function is unchanged. In this experiment, we have three

paths without any transfer: not only the bus 306 which is also the path

found by Google Maps, but also a different path, which takes bus 622 to

destination; see figure 4.6 and figure 4.7. In this experiment, we observe the

importance of walking distance limit setting. Google Maps does not support

the parameter of walking distance limit; therefore, while routing the path,

Google Maps can consider more paths.

In the other case, we test the path from Banciao City to Da-an District,

Taipei. We apply two different metrics, (transfer, time) lexicographical or-

30

Figure 4.5: The result with walking distance limit as 400m.

31

Figure 4.6: The result with walking distance limit as 600m. This matches
the result of Google Maps.

32

Figure 4.7: The second result with walking distance limit as 600m. This
result is not found in the search of Google Maps.

33

der and (transfer, price) lexicographical order. The walking distance limit is

500m. Figure 4.8 is a list of the route paths by using (transfer, price) order.

Since the fare is asked as cheap as possible, these paths all consider taking bus

with one transfer (in general, the fare for MRT is more expensive). However,

this might not match the results generated by Google Maps. In Figure 4.9,

we can have two paths which match the paths generating by Google Maps,

both take MRT first, then have a transfer to bus. For some other paths that

we do not match that of Google Maps, we explain the possible reasons:

1. Our PTS data and that of Google Maps are different. Especially, a lot

of our bus information is made up, which may not match the data of

Google Maps. In most of the cases that our results are different from

Google Maps’ by taking different buses line.

2. The measure methods between ours and Google Maps’ are not the

same. This will cause different route results.

3. Different walking distance limit leads to different paths. In figure 4.9,

the last paths is to take bus line 245 without any transfer; however,

according to our observation, this path suggests traveler to walk over

1 km. For our setting of this experiment, we only allow walking at

most 500m for each transfer. Therefore, bus line 245 is ignored by our

routing algorithm.

4.4 Experiments with Heuristic Functions

Now, we discuss different metric methods concerned with travelers. There

are many possible criteria that we can discuss, e.g. the number of stops we

pass. However, the major issue is fare, travel time, walking distance and

the number of transfer times. For walking distance criterion, we already

have a parameter LW for this criterion. Based on these criteria, we generate

different measure functions in lexicographical order. We design many lexico-

graphical order functions for comparison. For lexicographical order, we focus

34

Figure 4.8: Measure by (transfer, price) order.

35

Figure 4.9: Measure by (transfer, time) order.

36

on three major criteria: travel time, the number of transfer and fare. We try

several combinations.

Different heuristic functions setting may result in different route paths.

The optimality of the A∗ search is guaranteed with an admissible heuristic

function, otherwise the output of the A∗ search algorithm might not be opti-

mal. Therefore, we must decide the admissible heuristic functions for travel

time, fare and the number of transfers. For the travel time criterion, it de-

pends on the transfer time, walking time and waiting time. In the optimal

case, we can directly take this transportation carrier to the target location.

In this case, no walking time and waiting time are needed. This leaves the

transfer time undecided. In computing path between two locations in the

real-world road network, the geometric distance is an admissible heuristic

function. Our idea is that assume taking the highest speed transportation

carrier to the target location (denote HS); therefore the value of geometric

distance divided by HS is also under-estimated. For fare criterion, because

the fare for bus depends on not only geometric distance; thus, the heuristic

function for fare is much complicated. In order to complete the heuristic

function, we apply the idea of preprocessing. Our idea is that first divide

stops information into several regions, then preprocess the lowest fare from

one region to other region. After completing preprocessing for fare, we record

the data as a table. While query the fare from one stop to target location,

according to the table, we can have the cheapest price to the target location,

which is an under-estimation. In order to efficiently retrieve the correspond-

ing region of a stop, we use kd-tree [3] to divide the regions. The time

complexity to get the region of a stop is O(l), where l is the level of the

kd-tree. For the number of transfer issue, we also apply the preprocessing

technique of kd-tree to pre-compute the minimum number of transfers from

each region to other regions. Because of some engineering issue, we may not

always need the optimal path. Thus, we can try some over-estimating heuris-

tic functions. We additionally design over-estimating heuristic functions for

fare and transfer criteria. For these heuristic functions, first we calculate

37

the distance between current position and target position by min(Δx, Δy)

distance or Manhattan method. For fare criterion, we calculate the fare by

MRT price or bus price. For the transfer issue we set parameters αbus=25

and αMRT =15. Besides, denote speedMRT and speedbus the speed of MRT

and bus, respectively. The heuristic transfer cost for MRT is the value of

distance/(speedMRT * αMRT). Similarly, the heuristic transfer cost for bus

is the value of distance/(αbus *speedbus).

Finally, we experiment with the heuristic functions for A∗ search. For

each heuristic function, we randomly experiment with 1000 test instances

and compare the speedup between Dijkstra’s algorithm and our A∗ search.

For these over-estimate heuristic functions, we also list the number of dif-

ferent paths which are different from those of Dijkstra’s, see table 4.1. Ac-

cording to our experiment, the fare and transfer heuristic functions which

apply preprocessing technique of kd-tree do not outperform Dijkstra’s(the

speedup of most test instances are less than 1); the time heuristic func-

tion has a better performance. For details please refer to figure 4.10, figure

4.11 and figure 4.12. In our opinion, we suggest A∗ search if we require the

optimal solution and the major concerned is time. For these over-estimate

fare functions, Fare Manhattan MRT (figure 4.15) and Fare Bus (figure 4.13)

obtaining different paths are both less than 10 percent. For the perfor-

mance issue, function Fare Bus does not outperform Dijkstra’s but function

Fare Manhattan MRT does. If we use Fare MRT function (figure 4.14), it

has better performance but might have more different paths (about 20 per-

cent). According to our observation, most cases cost more 15 dollars than

that of Dijkstra’s algorithm. We suggest that if the price is acceptable, we

can apply the heuristic functions Fare MRT or Fare Manhattan MRT. For

these over-estimate transfer functions, Transfer Bus (figure 4.16) and Trans-

fer MRT (figure 4.17) both outperform Dijkstra’s algorithm and Transfer Bus

has a better performance. Consider the path issue, these paths calculated

by function Transfer MRT almost matches that of Dijkstra’s algorithm. We

suggest A∗ search with Transfer MRT if user prefers optimal solution or use

38

Transfer MRT function if the routing time is a major concerned.

0

100

200

300

400

500

600

700

800

900

1000

Speedup Ratio Interval

#
In

st
an

ce
s

950

67

0 0 0 0

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.10: The Speedup between Dijkstra’s Algorithm and A* search with
heuristic function Fare by applying preprocessing technique of kd-tree

39

0

100

200

300

400

500

600

700

800

Speedup Ratio Interval

#
In

st
an

ce
s

720

239

32 10 1 0

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.11: The Speedup between Dijkstra’s Algorithm and A* search with
heuristic function Transfer by applying preprocessing technique of kd-tree

#DifferentCases Error

Heuristic Function Description per 1000 cases Percentage

min(Δx, Δy) Distance

Fare MRT and MRT Fare 214 21%

min(Δx, Δy) Distance

Fare Bus and Bus Fare 83 8%

Manhattan Distance

Fare Manhattan MRT and MRT Fare 94 9%

min(Δx, Δy) Distance

Transfer MRT and MRT Speed 9 1%

min(Δx, Δy) Distance

Transfer Bus and Bus Speed 93 9%

Table 4.1: A table for heuristic functions whose #paths are different from
those of Dijkstra’s. We test 1000 cases for each heuristic function.

40

0

100

200

300

400

500

600

700

800

Speedup Ratio Interval

#
In

st
an

ce
s

487

739

124

58
21 14

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.12: The Speedup between Dijkstra’s Algorithm and A* search with
heuristic function Time

0

100

200

300

400

500

600

Speedup Ratio Interval

#
In

st
an

ce
s

667

200

35 22 13
42

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.13: Comparison between Dijkstra’s algorithm and heuristic function
Fare Bus

41

0

100

200

300

400

500

600

Speedup Ratio Interval

#
In

st
an

ce
s

453

164 183

64
36

85

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.14: Comparison between Dijkstra’s algorithm and heuristic function
Fare MRT

0

100

200

300

400

500

600

Speedup Ratio Interval

#
In

st
an

ce
s

413

226

152

59 44
94

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.15: Comparison between Dijkstra’s algorithm and heuristic function
Fare Manhattan MRT

42

0

100

200

300

400

Speedup Ratio Interval

#
In

st
an

ce
s

306
277

143
87

49

127

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.16: Comparison between Dijkstra’s algorithm and heuristic function
Transfer Bus

0

100

200

300

400

500

Speedup Ratio Interval

#
In

st
an

ce
s

449
416

49
19 9 12

(0,1) (1,2] (2,3] (3,4] (4,5] (5,∞)

Figure 4.17: Comparison between Dijkstra’s algorithm and heuristic function
Transfer MRT

43

Chapter 5

Conclusion

We summarize the work in this thesis. In real road network which is a

sparse graphs model, we study and present a data structure “lazy heap”.

According to our experiments, lazy heap can speedup the computing time

about 50% over standard binary heap. In the other work, we study the

public transportation system of Taipei City, and propose a route method

with various metric methods. There are several unsolved problems:

• There is incomplete information in our data. Because of this, our route

path may not match the real world scenario. How to get real world

transportation data is a problem.

• Speedup the computing time: the bottleneck of system performance

is path finding algorithm. Our idea is try to use the preprocessing

technique to reduce the search time.

• Porting to small device: although our system works efficiently on the

server, several critical issues are under consideration on small devices,

for example, data representation or no floating point computing. How

to find an efficient solution for small devices is still undergoing.

44

Bibliography

[1] 9th DIMACS Implementation Challenge: Shortest Paths, http://www.

dis.uniroma1.it/~challenge9/.

[2] LEDA Algorithmic Solution, http://www.algorithmic-solutions.

com/.

[3] Kd-tree, http://en.wikipedia.org/wiki/Kd-tree.

[4] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry, Second Revised Edition. Springer-Verlag 2000. Section 5.3:

Range Trees, pp.105-110.

[5] D. K. Blandford, G. E. Blelloch and I. A. Kash, An Experimental Anal-

ysis of a Compact Graph Representation, Proceedings of the Workshop

on Algorithm Engineering and Experiments, 49-61, 2004

[6] A. V. Goldberg and R. F. Werneck, Computing Point-to-Point Shortest

Paths from External Memory,Proceedings of the Workshop on Algorithm

Engineering and Experiments, 26-40, 2005

[7] P. Sanders, D. Schultes and C. Vetter, Mobile Route Planning, Proceed-

ings of the 16th annual European symposium on Algorithms, 732-743,

2008.

[8] L. Arge, M. A. Bender, E. D. Demaine, Holland-Minkley Bryan and I.

J. Munro, Cache-oblivious priority queue and graph algorithm applica-

tions, Proceedings of the thiry-fourth annual ACM symposium on Theory

of computing, 268-276, 2002.

[9] P. Sanders, Fast priority queues for cached memory, J. Exp. Algorithmics

vol. 5, 2000.

45

[10] U. Meyer and V. Osipov, Design and Implementation of a Practical

I/O-efficient Shortest Paths Algorithm, Proceedings of the Workshop on

Algorithm Engineering and Experiments, 85-96, 2009.

[11] D. Ajwani, U. Meyer and V. Osipov, Improved External Memory BFS

Implementation, Proceedings of the Workshop on Algorithm Engineering

and Experiments, 2007.

[12] D. Wagner, T. Willhalm and C. Zaroliagis, Geometric containers for

efficient shortest-path computation, J. Exp. Algorithmics vol. 10, 1-30,

2005.

[13] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner and T. Willhalm,

Partitioning graphs to speedup Dijkstra’s algorithm, J. Exp. Algorith-

mics vol. 11, 2006.

[14] R. Bauer and D. Delling, SHARC: Fast and Robust Unidirectional Rout-

ing, Proceedings of the Workshop on Algorithm Engineering and Exper-

iments, 13-26, 2008.

[15] R. Geisberger, P. Sanders, D. Schultes and D. Delling, Contraction Hi-

erarchies: Faster and Simpler Hierarchical Routing in Road Networks,

6th Workshop on Experimental Algorithms, 319-333, 2008.

[16] A. V. Goldberg, H. Kaplan, and R. F. Werneck, Reach for A*: Efficient

Point-to-Point Shortest Path Algorithms, Proceedings of the Workshop

on Algorithm Engineering and Experiments, 129-143, 2006.

[17] H. Bast, S. Funke, D. Matijevic, P. Sanders and D. Schultes, In Transit

to Constant Time Shortest-Path Queries in Road Networks, Proceedings

of the Workshop on Algorithm Engineering and Experiments, 2007.

[18] P. Sanders and D. Schultes, Engineering highway hierarchies. In Pro-

ceedings of the 14th Conference on Annual European Symposium vol 14,

2006.

[19] P. E. Hart, N. J. Nilsson, B. Rapheal, A formal basis for the heuristic

determination of minimum cost paths, IEEE transactions on Systems

Science and Cybernetics 4, 100-107, 1968.

46

[20] E. W. Dijkstra, A note on two problems in connexion with graphs,

Numerische Mathematik 1, 269-271, 1959.

[21] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms, The

MIT Press, 1990.

[22] C. Dennis, Bidirectional Heuristic Search Again, J. ACM vol 30, 22-32,

1983.

[23] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. Journal of the ACM vol 34,

596-615, 1987.

[24] E. Pyrga, F. Schulz, D. Wanger and C. Zaroliagis, Efficient models for

timetable information in public transportation systems, J. Exp. Algo-

rithmics vol 12, 1-39, 2008.

[25] J. Tan and H. W. Leong, Least-cost path in public transportation sys-

tems with fare rebates that are path- and time-dependent, The 7th Inter-

national IEEE Conference on Intelligent Transportation Systems, 1000-

1005, 2004.

[26] K. G. Zografos and K. N. Androutsopoulos, Algorithms for Itinerary

Planning in Multimodal Transportation Networks, IEEE Transactions

on Intelligent Transportation Systems vol. 9, 2008.

[27] M. Thorup, On RAM Priority Queues, SIAM J. Comput. vol 30, 2000.

[28] M. Thrup, Interger priority queues with decrease key in constant time

and the single source shortest paths problem, Journal of Computer and

System Sceinces vol. 69, 2004.

[29] C. Yu, A Design Platform of Personal Navigation System, Master The-

sis, College of Computer Science, National Chiao Tung University, 2009.

47

Appendix A

Some Implementation Issues

for PTS

We describe the data structure used for public transportation navigation

system. We allocate arrays stop, transport and neighbor, to store the data.

The information of nodes and edges are stored on array transport. Array

transport is sorted by its corresponding stop id. In order to conveniently

use array neighbor to do relaxation starting from a specific stop, we sort

the array neighbor by (stop id, the distance to this stop) in lexicographical

order. Given an index i, stop[i] indicates a stop information. For index j,

stop[i].nodeStartIndex ≤ j < stop[i].nodeStartIndex + stop[i].nodeCount,

transport[j] indicates a transport path of stop i. Similarly, for index k,

stop[i].nbrStartIndex ≤ k < stop[i].nbrStartIndex + stop[i].nbrCount,

neighbor[k] indicates a neighbor stop of stop i. Function findNeighbors

helps find the neighbor stops of current position. This is used to search start

neighbor set and target neighbor set when initially user queries the route

path. Function pathF ind is used to find the transfer information; the re-

turned value indicates whether there is any route path. Function updateCost

calculates the cost from the current node to next node. The detail informa-

tion please refer to figure A.1.

48

typedef struct TPos{
int x;
int y;

}TPos;

typedef struct TStop{
TPos pos; // Position: longitude and latitude
unsigned int transStartIndex; // the start index of corresponding transport paths
unsigned int transCount; // the number of transport paths
unsigned int nbrStartIndex; // its neighbors start index of neighbor list
unsigned int nbrCount; // the number of neighbors
char name[128]; // stop name
unsigned char getOnOff ; // only get on:0, only get off:1, both:2

} TStop;

typedef struct TStopNbr{
unsigned int stop; // stop id
unsigned short distance; // the distance

} TStopNbr;

typedef struct TTransport {
unsigned int line; // pass line
unsigned int stop; // The corresponding stop id
unsigned int next; // its next node id
unsigned short distance; // the distance from current node to its next node
unsigned char time; // the travel time from current node to its next node

} TTransport;

typedef struct TValue{
unsigned int backID; // the parent node
unsigned int line; // by taking line to this node
unsigned int cost; // the cost value

} TValue;

vector< unsigned int > findNeighbors(TPos* pos);
void updateCost(TValue val, unsigned int cur, unsigned int next);
BOOL8 pathFind(TPos* from, TPos* to);

Figure A.1: The data structures in C++ for PTS

49

	論文封面
	論文內頁
	thesis_all
	abstract_chi
	abstract
	binder1

