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A Public-Key Encryption Scheme for a Shared Message

Student: Shao-Yin Chien Advisor: Dr. Wen-Guey Tzeng

Department of Computer Science

National Chiao Tung University

Abstract

This paper proposed a public key encryption scheme for a shared message.
The message is shared among storage servers such that the message can
be encrypted into a ciphertextywithout leaking any information even if a
given threshold of storage servers cooperate. TFhis is especially suitable for
the applications, for example, distributed storage systems. We present a non-
interactive public key encryption.scheme on a-shared message and prove that
it is semantically secure against malicious adversaries, under the Decisional
Diffie-Hellman assumption. This is the first public key encryption performed
on a shared plaintext. Our scheme is efficient and practical for large scale
systems.

Keywords: distributed storage system, privacy preserving, secret sharing
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Chapter 1

Introduction

Network infrastructures are well-established in recent years. People can eas-
ily access the Internet from anywhere at anytime. More and more network
services provide easy ways tojaccess information on the Internet. For ex-
ample, a user can upload a-personal schedule or a document to the service
provider, and retrieve it whenever-he wants. Meost of these network services
offer a storage space for users so that they don’t have to retain the data by
their own. Similarly, the trend of data out-sourcing has accelerated dramat-
ically. Many organizations and companies out-source their data to reliable
service providers, to reduce routine data management work, such as backup.
Saving data on network storage is convenient, but privacy issues come up
with it. When datum is transfered over a public channel, it needs to be as-
sured that the data can only be known to the owner or someone authorized.
In this paper, we investigate this issue of protecting the privacy of data in
distributed storage systems over public networks.

We consider the following scenario. An owner holds a message and out-



sources it to a distributed storage system. To protect the privacy, the owner
uses a secret sharing scheme [25] to share the data into storage servers. Thus,
any collusion of less than ¢ storage servers gets no information about the
message for a threshold . When the owner wants to send the message to a

remote receiver, he may apply one of the following methods:

1. The owner retrieves all message shares and combines them into the orig-
inal message. Then the owner encrypts the message by the receiver’s

public key and sends the ciphertext to the receiver.

2. The owner sends a command to: the distributed storage system. Then
each storage server encrypts his'message share into a partial ciphertext
and sends his partial ciphertext to the receiver. The receiver decrypts

all partial ciphertexts ‘and «combine -them-into the original message.

3. Similar to method 2, but there is a combiner in charge of combin-
ing partial ciphertexts into a complete ciphertext. The combiner just
sends the complete ciphertext to the receiver. The receiver decrypts

the ciphertext and gets the original message.

The method 1 is inconvenient to the owner. The method 2 needs quite
a lot of communication between the distributed storage system and the re-
ceiver. We prefer the method 3, which is described in Figure 1.1. This
scenario is suitable for the receiver who has limited communication band-

width with the Internet. Also, the receiver uses less computational time. In
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Figure 1.1: A message is shared on the storage servers, and it can be dynam-
ically forwarded to different receivers.

this paper, we propose a publiekey encryption scheme to encrypt a message
which is shared among many storage-seryers.

The rest of paper is organized as follows: ‘In Chapter 2, 3, we review some
definitions and preliminaries. In Chapter 4, we provide the main construc-
tion of the scheme against semi-honest adversary. In Chapter 5, we discuss
the construction against malicious adversary. In Chapter 6, we discuss the
implementation of our scheme. In Chapter 7, we state conclusions.

Related works. Many distributed storage systems have been developed in
the past years. Earlier schemes [10, 18] do not consider privacy protection for
user’s data. Recent schemes [19, 24, 1, 15, 17] employ encryption to protect
privacy. In such systems, proxy re-encryption schemes [20, 5, 2] are solutions

for message forwarding, as they translate the ciphertext from the owner to



the receiver. Some distributed storage systems use secret sharing scheme
to protect the encryption keys [27, 6], and some others apply secret sharing
directly on the data [8, 21, 26].

A threshold public key encryption system [4, 9] is a public key system
with the private key shared among n decryption servers so that at least ¢
servers are needed to decrypt a ciphertext. On the other hand, a collusion
of less than t servers cannot decrypt the ciphertext. This setting is different
from ours, in which the message is shared.

Our contribution. Contrast to previous threshold public key encryption
systems in which the secret key,is'shared;,a message is shared into storage
servers in our model. When thé message owner wants to send the message
to a remote receiver, he just sends a-¢ommand to the storage servers. Each
storage server produces a partial ciphertext to.an entity, called the combiner.
If the combiner obtains partial ciphertexts from at least t storage servers, he
then combines those partial ciphertexts as a complete ciphertext and sends
the complete ciphertext to the receiver. Thus, the shared message can be
encrypted into different ciphertexts for different receivers. This helps the
owner to forward the message to different receivers dynamically, without
sharing keys between the owner and the receiver.

Sharing a message into many storage servers also provides reliable access
to the data. Since ¢ out of n shares are sufficient to construct the original

message, the owner can retrieve the message back even some storage servers



fails. Similarly, this scheme can produce a correct ciphertext with only ¢
correct partial ciphertexts even if some storage servers are malicious.

For security of our scheme, we consider both semi-honest and malicious
adversaries. We show that our basic scheme is semantically secure against a
semi-honest adversary. The message is kept secure between storage servers
since the message is shared between them. Any collusion of less than ¢
storage servers learns no information about the message. By adding non-
interactive zero-knowledge proof tags to the exchanged messages, we show
that the scheme is secure against malicious adversaries.

This scheme is efficient and scalable, 8imce it can be executed in the non-
interactive setting. This scheme saves-the.bandwidth between the storage

system and the receiver, sinee only one'ciphertext is transfered to the receiver.



Chapter 2

System Model

Let G, denote an order-¢ multiplicative group and g be a generator of G,.
In this paper, all group computations are over G, and the corresponding

exponent arithmetic is done in'Z;.

2.1 Public Key:Encryption for a Shared Mes-
sage

A Public Key Encryption scheme for a Shared Message (PKESM) scheme
achieves the following properties. First, it can be applied when a message
is shared among a set of storage servers. Second, the shared message can
be dynamically forwarded to different receivers. Third, the message is kept
private during and after the forwarding process. A PKESM scheme is com-

posed of the following parts:

Setup(¥,t). Given security parameters (¢,t), this algorithm outputs public

encryption key pairs (y, z) for receiver.



Deal(M). This algorithm takes a message M and outputs message shares

(mq,...,my) for n storage servers P ...PF,.

PartialEnc(y, m;). With a public key y of the receiver and a message share
m;, this algorithm encrypts the message share by y and outputs a

partial ciphertext o;.

Combine(S). With a set S of at least ¢ partial ciphertexts, this algorithm
combines the partial ciphertexts into a valid ciphertext C'; which can

only be correctly decrypted by the designated receiver.

2.2 Security model

A secure PKESM scheme must satisfy. the following requirements:

Correctness. For any message M, given t correct partial cipher-
texts, the function Combine(S) really outputs a valid cipher-
text C'. We say that C' is valid if it can be decrypted to M by

the receiver only.

Privacy. Given at most ¢t — 1 message shares and all partial
ciphertexts, no probabilistic polynomial-time adversary can

learn any information about the message M.

Under the semantic-security notation [16], we formally define the privacy

property in the following IND-CPA game between the adversary A and the

7



challenger.

Init: Both the adversary and the challenger are given security parameters
(¢,t) as input. The adversary outputs a corruption set CS of storage

servers that he wants to corrupt, where |CS| < t.

Setup: The challenger runs Setup(¥,t) to construct the key pair (y,z) for

the receiver. The public key y is given to the adversary.

Challenge: The adversary chooses two different messages My, M7, and sends
them to the challenger. The,challénger chooses a random bit b € {0,1}
and runs Deal(M,). Then the challenget. gives the message shares of
all corrupted storage server to the adversary. Next, the challenger runs
PartialEnc(y, m;) for 1 <4 <#n to produce all partial ciphertexts. The
challenger sends all partial ciphertexts to the adversary. Then chal-
lenger runs Combine(S) for a set S of ¢ partial ciphertexts, and sends

the combined ciphertext to the adversary.

Guess: The adversary A outputs a guess b’ and wins the game if &' = b.

We define the advantage of A as Advy s =M(A) = | Pr[b) = b] — 3.

Definition 1. We say that a public key encryption scheme for a shared
message is secure if for any probabilistic polynomial time Turning machine

A, sufficiently large £, and (t,n) with 0 <t <n, AdefESM(A) is negligible.



2.3 Security Assumption

The security of our scheme is based on the Decisional Diffie-Hellman (DDH)
assumption [11]. Given a multiplicative group G, of prime order ¢, |¢| = ¢,
and a generator g € G,, the DDH assumption holds if the two distributions
Dy = (g%, ¢% ¢°%), D, = (g%, ¢°,¢”) are computationally indistinguishable
for random «, 3,7 in Z,. Given a probabilistic polynomial-time adversary

A, we define the advantage of A as AdvPPH(A) = | Pr[A(Dy) = b] — %]

2



Chapter 3

Preliminaries

ElGamal Encryption System. ElGamal encryption is a probabilistic public
key cryptosystem [13]. The private key z is randomly chosen from Z,, and

the public key is y = ¢*. A message M € Gglis encrypted as

(C1:Ca) = (g"s M(y)"),

where r is a random elementin.Z,. The decryption works as following:

02 M(yr

Gy - M

Secret Sharing Scheme. A secret sharing scheme is used to share a secret
value into shares such that one can only recover the secret value with ¢ or
more shares, where t is a threshold value. We use this technology to achieve
the data privacy in the distributed storage system. If the message owner
wants to deal a message M into a set of storage servers Py, ..., P,, he runs

the following algorithm:

Secret_Sharing(M, t,n)

10



1. The owner chooses ¢t random values s1,...,s; in Z,.

2. The owner constructs a polynomial f(z) = s;z* + -+ + syx + 1 (mod

q)-
3. The owner computes message shares m; = M/ @ for 1 <i<n.

Let the output of Secret_Sharing(M,t,n) be (mq,...,my). The owner
sends the message share m; to P; over a secure channel for 1 < i < n. Note
that less than t shares give no information about M in this scheme. On
reconstruction, given ¢ shares m;,, ..., m;,, the combiner computes Lagrange

coefficients

Aj = H ; _ik_ mod ¢

o 00
I<k<thk4j 3 K

And, the message M is

Hm?\j T = M)

= M

11



Chapter 4

Public Key Encryption Scheme
for a Shared Message

In this chapter, we present our public key encryption scheme for a shared
message. Basically, the ownér performs.Deal to share the message into a
group of storage servers in a distributed storagé. system. If the owner wants
to send the message to a recéiver, hejust-sends'a command to the distributed
storage system to perform the PKESM-scheme. Then each storage server
performs ParitialEnc and outputs a partial ciphertext independently. ¢ or
more partial ciphertexts can be combined into a valid ciphertext by Combine.
The message is encrypted by the receiver’s public key, and no information is

leaked. We provide a detailed description about this protocol as follows:.

Setup(/,t). Given security parameters (¢,t), set a multiplicative group G,
with |¢| > ¢ and a generator g € G,. Generate a secret key x € Z, for

each receiver and set the receiver’s public key as y = ¢g*.

Deal(M). Given a message M € G,, the owner deals M for n storage

12



servers Pp,...,P,. First, the owner runs Secret_Sharing(M,t,n) and

gets the output (mq,...,m,). Then the owner sends m; to P; via a

secure channel.

PartialEnc(y, m;). Given a receiver’s public key y and a message share m,,

the storage server P; randomly chooses a number r; € Z, and outputs

a partial ciphertext

o; = (g",myy").

Combine(S = {oy,,...,0,}). Given a set S of ¢ partial ciphertexts for a

receiver, with o;; = (Cj, 1, Ggd)s the: combiner outputs the ciphertext

t

t .
C = ([T(Cou )V TI(Coe) ) whete X = [ —2- mod g

1, — 1
=1 =1 1<k<th#j 4 K

To see this really produces-asvalid-eiphertext, we have

t t

(C)™ = JJm)™

1 j=1

t

—  4F n_

= g,forr—g Ti;Aj
=1

J

t t

H(Cijﬂ))\j = H(mijyrij)Aj
j=1 j=1

N VoS N (Y (y)"

= MOy =M.y

This algorithm can be executed without any secret information. Thus,

every one can play the role of the combiner.

13



4.1 Security Analysis

In this chapter we prove the semantic security of our protocol. We prove the
IND-CPA security against a static, semi-honest adversary, under the DDH

assumption.

Theorem 1. Suppose that the DDH assumption holds for G,. Then the
public key encryption scheme for a shared message is semantically secure

against a static and semi-honest adversary.

Proof. We assume that a probabilistic polynomial time adversary A breaks
our scheme with a non-negligible advantage. We build a poly-time algorithm
R to break the DDH assumption. R acts as a ¢hallenger to A in the PKESM

game. The following is the:detailed description.

Init: Both the adversary A and R are given security parameters (¢,t) as
input. Algorithm R is given (G,,g) and a DDH challenge (g%, ¢°, g7)
from the DDH challenger, where |¢q| = ¢. The adversary A outputs a

corruption set CS = {P,,, P,,,..., P,_,} of t — 1 storage servers.
Setup: R sets y = g“ as the receiver’s public key and sends it to A.

Challenge: The adversary A chooses two different messages My, My € G,
and sends them to R. R chooses a random bit b € {0, 1} and generates
the message shares (mp1, Mp2, - . ., M) by running Deal(M,). R sends

the message my,; to A for P, € CS.

14



Then, R chooses n random numbers a;, € Z, for 1 < i < n, and

generates the partial ciphertext of P;, P; ¢ CS

Opi = ((Qﬁ)ai, mi,b(gv)ai)

For corrupted storage server P; € CS, R generate the partial cipher-
texts by PartialEnc and sends the random numbers used in the Partia-
IEnc to the adversary A. R sends all partial ciphertexts to the adver-

sary.

Guess: The adversary A outputs’a-guess:b’. Then R replies the DDH chal-

lenger with v = o if & =b. Otherwise, ‘R replies v =random.

We show that A cannot ‘guessb with-a-nonsniegligible advantage from the
partial ciphertexts or the combined. ciphertext. If v = a3, the view of A is
identical to the real execution. If v is a random value, the view of A in the
case of R dealing M, is identical to the case of R dealing M, since for given
Cia = (m;p)g"™, there exists another 7/ such that (miﬁl_b)gV'“i = C; 2. Thus,

we have

15



AdvPPH(R)

| Pr[y = af] Pr[b’ = bly = af] + Pr[y is random] Pr[b’ # by is random| — %|
%| Pr[t’ = b|y = af] + Pr[b’ # by is random| — 1|

%| Pr[t) = b|y = af] — Pr[b' = b|y is random)|

1 b 1
SIP = by = ) — |
1

S (AdVEEES ()

16



Chapter 5

Against Malicious Adversaries

We have proved that the basic scheme is secure against the semi-honest
adversary. Nevertheless, a malicious adversary may send “wrong” partial
ciphertexts from corrupted sterage servers. The receiver will get the wrong
message. Therefore, the combiner has to:verify-each partial ciphertext. We
say a PKESM scheme is secure.in-the-nalicious adversary model, if this
scheme satisfies the previous cerrectness-and privacy properties, and addi-

tionally the following robustness property.

Robustness. For any message M, if at least t partial ciphertexts
pass the verification performed by the combiner, the scheme

outputs a valid ciphertext of M.

The combiner is allowed to verify the partial ciphertexts, but does not
know the message shares. Otherwise, the combiner will get the message M if
he collects more than ¢ message shares. In this chapter, we propose a scheme
of verifying the partial ciphertext without knowing the message share. To

achieve this, we need a public key pair (pk;, sk;) for each storage server P,

17



and a zero-knowledge proof for discrete logarithm.

5.1 Zero-Knowledge Proof for Discrete Log-
arithm

We present a proof of knowledge of discrete logarithm to show that z =
log, X =log, Y [7].

Let X = ¢* and Y = h® for two generators g, h € G,. Alice executes the
following algorithm to convince Bob that log, X = log;, ¥ without leaking z

to Bob.

ProofDLEq(g, h, X,Y)

1. Alice chooses a random number'd € Z, and sends a; = g%, as = h? to

Bob.
2. Bob sends a challenge c € Z, to Alice.
3. Alice responds with R = d — ¢z mod gq.
4. Bob checks that a; = ¢"X¢ and ay = h*Y°.

This protocol is sound under the Discrete Logarithm assumption. Note
that if Alice knows the challenge ¢ in advance, she can cheat Bob with a
random R, and outputs a; = ¢®X¢, ay = hY®.

This proof needs three rounds interactions. We can apply the Fiat-

Shamir heuristic to transform this proof into a one round, non-interactive

18



protocol NIProofDLEq [12]. In the non-interactive setting, Alice replaces a
random challenge with ¢ = H(g||h||X||Y ||a1||az), where H : {0,1}* +— Z, is a
collision-resistant hash function. Bob verifies that ¢ = H(g||h|| X||Y || X ¢||RTY¢).
If yes, Bob believes that log, X = log, Y.

Let the output of NIProofDLEq(g, h, X,Y) be (¢, R). We use this zero-
knowledge proof to verify the partial ciphertext without knowing the message

share.

5.2 Main Construction

Intuitively, when a storage server, #%'rec¢éives a message share m;, he commits
m,; by using his secret key skj. Thelowner then-verifies whether the commit-
ment is valid. When storage server outputs a partial ciphertext, he has to
attach a proof tag. The combiner 1ises the commitment and the proof tag to
verify the partial ciphertext.

The following algorithms are used to verify whether the partial ciphertexts

are valid.

Setup(/,t). Given security parameters (¢,t), set a multiplicative group G,
with |¢| > ¢ and a generator g € G,. Generate a secret key = € Z, for
each receiver and set the receiver’s public key as y = g*. Generate a

key pair (pk;, sk;) for each storage server P;.

Deal(M). Given a message M € G,, the owner deals M for n storage servers

Py, ..., P, by Secret_Sharing(M,t,n).

19



Commit(sk;, m;). Given a message share m;, storage server P; commits the

message share m; as 6; = mfk"

with his secret key sk;. In addition, P;

sends V; =NIProofDLEq(g, m;, pki,0;) to the owner.

ComVerify(pk;, m;, 0;, V;). Given a message share m;, a commitment #; and a
proof tag V; = NIProofDLE1 (g, m;, pk;, 0;), the owner verifies the proof
tag. If the commitment is correct, the owner signs on the commitment

0;.

PartialEnc(y, m;). Given a receiver’s public key y and a message share m,,
the storage server P; randomly; chooses a number r; € Z, and outputs

a partial ciphertext

g0 ey .

ProofPC(y, pki, ski, ri, 0; = (€53, Ci2), 0;).-Given the receiver’s public key y,
a key pair (pk;, sk;) for P;, a random number r; used in PritialEnc(y, m;),
a partial ciphertext o;, and a commitment 6;, the storage server P,
generates a proof for the partial ciphertext o;. P; computes two values

(y1.42) = (g%, y**i) and outputs the following proofs:

(yh y2)

NIProofDLEq(g, Ci1, ki, y1)
NIProofDLEq(g,y, y1,ys)

NIProofDLEq(g, C;.a, pks, 0; - U2)

20
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Figure 5.1: The relationship between partial ciphertext o;, the public key pk;
of storage server P;, and the commitment 6;.

Since the commitment ; has been verified by the owner, P; just has
to prove the validity of y, = y**"i. This can be achieved by the public
key pk; = g*% of P, and C;; = g"i. First, P; shows that ¢g**" and
pk; has the same exponent sk; by the first proof tag. Then P; shows
that ¢**" and y**" has the same exponent by the second proof tag.
Finally, P; proves the correctness of ;o by the commitment 6;, y» and
the last proof tag. The relationship:between these proofs are shown in

the figure 5.1.

PCVerify(o; = (C;1,Ci2), 0;, ZK;)."Given a partial ciphertext o;, a commit-

ment 6; signed by the owner and correctness proof ZK; as

skﬂ“z‘ Sk‘ﬂ‘i )

(Y1, 92) = (67", y
(017 Rl) = NIPIOOfDLEq(g, Ci,la pkla yl)
(027 R?) = NIPrOOfDLECl(Q) Y, Y1, y2)

(c3, R3) = NIProofDLEq(g, C; 2, pki, 0; - y2),

the combiner verifies that

c1 = H(g||Ciallpkil || lg™ pks ] (Cia) Byt

21



co = H(gllyllnllyallg™yi ||y =y5*)
cs = H(g||Cy2l[pkil16; - ol |g™ ki ||(Ci2) ™ (0 - y2)*)
Combine(S = {o4,,...,0;}). Given a set S of ¢ partial ciphertexts passed

the PCVerify, with o;, = (C}, 1, Cj; 2), the combiner outputs the cipher-

text

(Ci,2)%), where \; = H % od q

1; — 1
1 1<k<thj 0 K

C=(I@,,

t
J=1 J=

5.3 Security Analysis

We give the proof of our schente against malicious adversaries in the random
oracle model in this chapter. The proof.s similar to the proof in the basic
scheme. We assume that a probabilistic polynomial time adversary A breaks
our scheme with a non-negligible.advantage: We build an algorithm R to
beak the DDH assumption. R simulates the algorithms in the basic scheme,
and also simulates the three algorithms Commit, ComVerify and ProofPC.
R has to convince the adversary A in PCVerify even R does not know the
discrete logarithm (a, 3,v) of DDH challenge (g%, ¢°, g7).

In the random oracle model [3], the hash function H is modeled as a ran-
dom oracle. The adversary A makes hash queries of H at any time during
his attack. The simulator R maintains a list H-List to record the result of

all hash queries. R handles the hash queries as follows:

22



On receiving a query w to H:

1. If (w,e) exists in H-List for some e, R outputs e as H(w).

2. Otherwise, R randomly chooses e € Z,, adds (w,e) into H-List, and

outputs e as H(w).

The proof is described below.

Init: Both of A and R are given security parameters (¢,t) as input. Al-
gorithm R is given (G,,g) and a DDH challenge (g2, ¢”, g7) from the
DDH challenger, where |q| = ¢. The adversary A outputs a corruption

set CS ={P,,, P,,..., P,.1} of t = listorage servers.

Setup: R runs Setup(/,t)-to construct the key pairs (pk;, sk;) for storage
servers P, 1 < i < n. R sends pk; to. A, 1-< i < n, and sends sk; to A
for P, € CS. R sets y = g% as the receiver’s public key and sends y to

A. R gives the control permission of corrupted storage servers to A.

Challenge: The adversary A chooses two different messages My, My € G,
and sends them to R. R chooses a random bit b € {0, 1} and generates
the message shares (mp1, Mp2, - . ., M) by running Deal(M,). R sends

the message my,; to A for P, € CS.

Then R runs the algorithm Commit(sk;, m; ;) normally for P, ¢ CS, and
output valid for this commitments in ComVeify. For the commitments
coming from corrupted storage servers, R runs ComVeify normally and

outputs valid or invalid.
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Next, for P; ¢ CS, R chooses a random number a; € Z,. R generates

the partial ciphertext of P; as

ovi = ((9")", mip(g")™)

Furthermore, R produces the proof tags for o3,;. Since R does not know
the random value (Ba;, R cannot construct the proof normally. Instead,
R inserts an entry into the H-list to decide the challenge in advance.
Then R can produce correct proof tags for o,; = (Cp;1,Chi2). The

following is the detailed description.
1. R sets y1 = (Cpa)* yd = (g1%) %

2. 'R randomly chooses cy, I8y € Z,.

3. Let wy = (g||Chin I[Pkl [l g™ pEEH (Chin) ¥ (y1)). If there exists
an entry (w,e) in H-List with that w = wy, go back to step 2.

Otherwise, R adds (wy, ¢;) to H-List.
4. R generates (cq, R2), (c3, R3) similar to step 2, 3 with
wa = (gllyllwllyallg™y* |1y 2y5°)
wy = (9||Chi2l[pkill0: - yollg™ (| (Coi2) ™ (0 - y2)*)

5. R outputs (y1, ¥z, c1, Ry, ¢a, Ro, c3, R3) as the proof .

Guess: The adversary A outputs a guess b'. Then R replies the DDH chal-

lenger with v = af if ¥’ = b. Otherwise, R replies v =random.
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When A queries the hash oracle in the verification, he will get the value
pre-inserted by R. Without the hash oracle, A cannot generate the hash
value and he cannot execute PCVerify. Thus, R passes the verification.

We analyze the security of privacy in the following.

Theorem 2. (Hiding of commitment). Given two message shares mg, my,
a public key pk = ¢** and a commitment § = m* for a random bit b, it’s
hard to distinguish b for any probabilistic polynomial-time Turing machine

adversaries.

Proof. 1f there is an adversary A/ ¢an. decide b = 0 or b = 1 with non-
negligible advantage, we defiie the advantage ds Advse™™*(A’). We construct
a algorithm R’ to break the DDH assumption with non-advantage with A’.

Given DDH challenge (§%:.¢% ¢%),-RErandomly chooses b € {0,1}. R/
sets m, = ¢ and randomly chooses' i € G,. R’ sets pk = ¢ and 0 = ¢7.
R’ sends (mg, mq,pk,0) to A'. If A" returns b’ with ¥ = b, R returns the
DDH challenger with v = a3. Otherwise, R’ returns v =random.

If v is random, the distribution of (mg, mq, pk, @) for b = 0 is equal to the

distribution for b = 1. Thus we have
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AdvPPH(R)
= | Pr[y = af] Pr[b’ = bly = af] + Pr|y is random| Pr[b’ # b|~ is random| — %|
_ %y Prllf = bly = a] + Prll # bl is randon] — 1|
= %| Pr[b = by = af] — Pr[b’ = bl is randomn)|

1 1
= — P / = = _ =
5| Prlt' =bly = aff] - 5|

v

1 i /
5 (AdV;Ommlt(A ))

Therefore, we can break the DDH assumption if an adversary can decide
b= 0 or b =1 with non-negligible advantage.

]

Secondly, we prove that it’s hard to-distingnish two messages M, and M;
from the partial ciphertexts oy ;, 7' <t < n. This is similar to the proof in
the basic scheme. If v = af, the view of A is identical to the real execution.
If 7 is a random value, A cannot distinguish that R was dealing M, or M,
since the two views are identical. Thus, we have

AV (R) > - (AdVERESM (4))

DN | —

By Theorems 1 and 2, we have that the advantage of R breaking the

DDH assumption is bounded by:
1 - 1
2. AdvPPH(R) > §Adv§°mm't(,4) + §(AdVZFESM(A))
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’ Algorithm \ # of modular exponentiation \ Executed by ‘

Deal n Owner
Commit 3 Storage server
ComVerify 4n Owner
PartialEnc 2 Storage server
ProofPC 8 Storage server
PCVerify 12n Combiner
Combine 2t Combiner

Table 5.1: Number of modular exponentiation performed in each algorithm.

For robustness, the security is based on the soundness of the zero-knowledge
proof. It has been shown that the proof of discrete logarithm is sound [7].
Thus, it is hard for an adversary tg cheat the owner with a wrong commit-
ment with non-negligible probabilityzorte cheat cheating the combiner with

a wrong partial ciphertext.

5.4 Performance Analysis

We measure the performance in the number of modular exponentiations.
Generating a proof of discrete logarithm needs 2 modular exponentiations,
and verifying the proof needs 4 modular exponentiations. For n storage
servers, the following table lists the number of modular exponentiations ex-

ecuted in each algorithm.
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Chapter 6

Discussion

We construct the PKESM scheme by a secret sharing scheme and the El-
Gamel encryption scheme. It is possible to construct a PKESM scheme
by other homomorphic publicikey encryption schemes, such as RSA[23] or
Paillier[22]. In the RSA encryption, the order-of the group is not public.
Thus, it is hard to compute the Tagrange coefficients \; in Combine since
the combiner cannot compute the-inversesin‘a RSA group. To avoid this, we
can multiply A\; with A = n!l. The value A); is an integer and no inverse
computation is required. It can be further referenced to [14]. But there are
some other issues. In the malicious adversary mode, a zero-knowledge proof

scheme should be designed for verifying an RSA partial ciphertext.
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Chapter 7

Conclusions

We presented a non-interactive public key encryption scheme which is per-
formed on a shared plaintext. This scheme can be used to forward a shared
message to different receivers swithout a pre-installed key between the owner
and the receiver. We prove-its IND-CPA security under the DDH assump-

tion. This paper is the first-one that-performs’encryption in such model.
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