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用於共享式訊息之公開金鑰加密系統 

 

學生：簡韶瑩        指導教授：曾文貴 博士 

 

國立交通大學資訊工程學系 

 

摘要 

 

在本論文裡，我們提出一個適用於共享式訊息之公開金鑰加密系

統。在訊息被多個儲存伺服器共享的情況下，我們可以利用這個公開

金鑰加密系統將訊息加密成密文，並且保證即使一定數量的儲存伺服

器合作，仍無法得知關於共享式訊息的任何資訊。這樣的系統特別可

以運用在保護分散式儲存系統內的使用者隱私權。我們提出一個非互

動式的公開金鑰加密系統用於共享式訊息的加密，並且證明在

Decisional Diffie-Hellman assumption 底下能夠抵擋惡意的攻擊

者。本論文是第一篇適用於分享式訊息的公開金鑰加密系統，並且是

有效率的，能夠運用至大規模的系統。 

 

關鍵字： 分散式儲存系統、隱私權保護、秘密分享 
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Abstract

This paper proposed a public key encryption scheme for a shared message.

The message is shared among storage servers such that the message can

be encrypted into a ciphertext without leaking any information even if a

given threshold of storage servers cooperate. This is especially suitable for

the applications, for example, distributed storage systems. We present a non-

interactive public key encryption scheme on a shared message and prove that

it is semantically secure against malicious adversaries, under the Decisional

Diffie-Hellman assumption. This is the first public key encryption performed

on a shared plaintext. Our scheme is efficient and practical for large scale

systems.

Keywords: distributed storage system, privacy preserving, secret sharing
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Chapter 1

Introduction

Network infrastructures are well-established in recent years. People can eas-

ily access the Internet from anywhere at anytime. More and more network

services provide easy ways to access information on the Internet. For ex-

ample, a user can upload a personal schedule or a document to the service

provider, and retrieve it whenever he wants. Most of these network services

offer a storage space for users so that they don’t have to retain the data by

their own. Similarly, the trend of data out-sourcing has accelerated dramat-

ically. Many organizations and companies out-source their data to reliable

service providers, to reduce routine data management work, such as backup.

Saving data on network storage is convenient, but privacy issues come up

with it. When datum is transfered over a public channel, it needs to be as-

sured that the data can only be known to the owner or someone authorized.

In this paper, we investigate this issue of protecting the privacy of data in

distributed storage systems over public networks.

We consider the following scenario. An owner holds a message and out-
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sources it to a distributed storage system. To protect the privacy, the owner

uses a secret sharing scheme [25] to share the data into storage servers. Thus,

any collusion of less than t storage servers gets no information about the

message for a threshold t. When the owner wants to send the message to a

remote receiver, he may apply one of the following methods:

1. The owner retrieves all message shares and combines them into the orig-

inal message. Then the owner encrypts the message by the receiver’s

public key and sends the ciphertext to the receiver.

2. The owner sends a command to the distributed storage system. Then

each storage server encrypts his message share into a partial ciphertext

and sends his partial ciphertext to the receiver. The receiver decrypts

all partial ciphertexts and combine them into the original message.

3. Similar to method 2, but there is a combiner in charge of combin-

ing partial ciphertexts into a complete ciphertext. The combiner just

sends the complete ciphertext to the receiver. The receiver decrypts

the ciphertext and gets the original message.

The method 1 is inconvenient to the owner. The method 2 needs quite

a lot of communication between the distributed storage system and the re-

ceiver. We prefer the method 3, which is described in Figure 1.1. This

scenario is suitable for the receiver who has limited communication band-

width with the Internet. Also, the receiver uses less computational time. In
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Figure 1.1: A message is shared on the storage servers, and it can be dynam-
ically forwarded to different receivers.

this paper, we propose a public key encryption scheme to encrypt a message

which is shared among many storage servers.

The rest of paper is organized as follows: In Chapter 2, 3, we review some

definitions and preliminaries. In Chapter 4, we provide the main construc-

tion of the scheme against semi-honest adversary. In Chapter 5, we discuss

the construction against malicious adversary. In Chapter 6, we discuss the

implementation of our scheme. In Chapter 7, we state conclusions.

Related works. Many distributed storage systems have been developed in

the past years. Earlier schemes [10, 18] do not consider privacy protection for

user’s data. Recent schemes [19, 24, 1, 15, 17] employ encryption to protect

privacy. In such systems, proxy re-encryption schemes [20, 5, 2] are solutions

for message forwarding, as they translate the ciphertext from the owner to
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the receiver. Some distributed storage systems use secret sharing scheme

to protect the encryption keys [27, 6], and some others apply secret sharing

directly on the data [8, 21, 26].

A threshold public key encryption system [4, 9] is a public key system

with the private key shared among n decryption servers so that at least t

servers are needed to decrypt a ciphertext. On the other hand, a collusion

of less than t servers cannot decrypt the ciphertext. This setting is different

from ours, in which the message is shared.

Our contribution. Contrast to previous threshold public key encryption

systems in which the secret key is shared, a message is shared into storage

servers in our model. When the message owner wants to send the message

to a remote receiver, he just sends a command to the storage servers. Each

storage server produces a partial ciphertext to an entity, called the combiner.

If the combiner obtains partial ciphertexts from at least t storage servers, he

then combines those partial ciphertexts as a complete ciphertext and sends

the complete ciphertext to the receiver. Thus, the shared message can be

encrypted into different ciphertexts for different receivers. This helps the

owner to forward the message to different receivers dynamically, without

sharing keys between the owner and the receiver.

Sharing a message into many storage servers also provides reliable access

to the data. Since t out of n shares are sufficient to construct the original

message, the owner can retrieve the message back even some storage servers
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fails. Similarly, this scheme can produce a correct ciphertext with only t

correct partial ciphertexts even if some storage servers are malicious.

For security of our scheme, we consider both semi-honest and malicious

adversaries. We show that our basic scheme is semantically secure against a

semi-honest adversary. The message is kept secure between storage servers

since the message is shared between them. Any collusion of less than t

storage servers learns no information about the message. By adding non-

interactive zero-knowledge proof tags to the exchanged messages, we show

that the scheme is secure against malicious adversaries.

This scheme is efficient and scalable, since it can be executed in the non-

interactive setting. This scheme saves the bandwidth between the storage

system and the receiver, since only one ciphertext is transfered to the receiver.

5



Chapter 2

System Model

Let Gq denote an order-q multiplicative group and g be a generator of Gq.

In this paper, all group computations are over Gq and the corresponding

exponent arithmetic is done in Zq.

2.1 Public Key Encryption for a Shared Mes-

sage

A Public Key Encryption scheme for a Shared Message (PKESM) scheme

achieves the following properties. First, it can be applied when a message

is shared among a set of storage servers. Second, the shared message can

be dynamically forwarded to different receivers. Third, the message is kept

private during and after the forwarding process. A PKESM scheme is com-

posed of the following parts:

Setup(`, t). Given security parameters (`, t), this algorithm outputs public

encryption key pairs (y, x) for receiver.
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Deal(M). This algorithm takes a message M and outputs message shares

(m1, . . . ,mn) for n storage servers P1 . . . Pn.

PartialEnc(y,mi). With a public key y of the receiver and a message share

mi, this algorithm encrypts the message share by y and outputs a

partial ciphertext σi.

Combine(S). With a set S of at least t partial ciphertexts, this algorithm

combines the partial ciphertexts into a valid ciphertext C, which can

only be correctly decrypted by the designated receiver.

2.2 Security model

A secure PKESM scheme must satisfy the following requirements:

Correctness. For any message M , given t correct partial cipher-

texts, the function Combine(S) really outputs a valid cipher-

text C. We say that C is valid if it can be decrypted to M by

the receiver only.

Privacy. Given at most t − 1 message shares and all partial

ciphertexts, no probabilistic polynomial-time adversary can

learn any information about the message M .

Under the semantic-security notation [16], we formally define the privacy

property in the following IND-CPA game between the adversary A and the

7



challenger.

Init: Both the adversary and the challenger are given security parameters

(`, t) as input. The adversary outputs a corruption set CS of storage

servers that he wants to corrupt, where |CS| < t.

Setup: The challenger runs Setup(`, t) to construct the key pair (y, x) for

the receiver. The public key y is given to the adversary.

Challenge: The adversary chooses two different messagesM0,M1, and sends

them to the challenger. The challenger chooses a random bit b ∈ {0, 1}

and runs Deal(Mb). Then the challenger gives the message shares of

all corrupted storage server to the adversary. Next, the challenger runs

PartialEnc(y,mi) for 1 ≤ i ≤ n to produce all partial ciphertexts. The

challenger sends all partial ciphertexts to the adversary. Then chal-

lenger runs Combine(S) for a set S of t partial ciphertexts, and sends

the combined ciphertext to the adversary.

Guess: The adversary A outputs a guess b′ and wins the game if b′ = b.

We define the advantage of A as AdvPKESM
`,t (A) = |Pr[b′ = b]− 1

2
|.

Definition 1. We say that a public key encryption scheme for a shared

message is secure if for any probabilistic polynomial time Turning machine

A, sufficiently large `, and (t, n) with 0 < t ≤ n, AdvPKESM
`,t (A) is negligible.

8



2.3 Security Assumption

The security of our scheme is based on the Decisional Diffie-Hellman (DDH)

assumption [11]. Given a multiplicative group Gq of prime order q, |q| = `,

and a generator g ∈ Gq, the DDH assumption holds if the two distributions

D0 = (gα, gβ, gαβ), D1 = (gα, gβ, gγ) are computationally indistinguishable

for random α, β, γ in Zq. Given a probabilistic polynomial-time adversary

A, we define the advantage of A as AdvDDH
` (A) = |Pr[A(Db) = b]− 1

2
|

9



Chapter 3

Preliminaries

ElGamal Encryption System. ElGamal encryption is a probabilistic public

key cryptosystem [13]. The private key x is randomly chosen from Zq, and

the public key is y = gx. A message M ∈ Gq is encrypted as

(C1, C2) = (gr,M(y)r),

where r is a random element in Zq. The decryption works as following:

C2

(C1)x
=
M(yr

(gr)x
= M

Secret Sharing Scheme. A secret sharing scheme is used to share a secret

value into shares such that one can only recover the secret value with t or

more shares, where t is a threshold value. We use this technology to achieve

the data privacy in the distributed storage system. If the message owner

wants to deal a message M into a set of storage servers P1, . . . , Pn, he runs

the following algorithm:

Secret Sharing(M, t, n)

10



1. The owner chooses t random values s1, . . . , st in Zq.

2. The owner constructs a polynomial f(x) = stx
t + · · · + s1x + 1 (mod

q).

3. The owner computes message shares mi = M f(i) for 1 ≤ i ≤ n.

Let the output of Secret Sharing(M, t, n) be (m1, . . . ,mn). The owner

sends the message share mi to Pi over a secure channel for 1 ≤ i ≤ n. Note

that less than t shares give no information about M in this scheme. On

reconstruction, given t shares mi1 , . . . ,mit , the combiner computes Lagrange

coefficients

λj =
∏

1≤k≤t,k 6=j

−ik
ij − ik

mod q

And, the message M is

t∏
j=1

m
λj

ij
= M

∑t
j=1 λjf(ij)

= M

11



Chapter 4

Public Key Encryption Scheme
for a Shared Message

In this chapter, we present our public key encryption scheme for a shared

message. Basically, the owner performs Deal to share the message into a

group of storage servers in a distributed storage system. If the owner wants

to send the message to a receiver, he just sends a command to the distributed

storage system to perform the PKESM scheme. Then each storage server

performs ParitialEnc and outputs a partial ciphertext independently. t or

more partial ciphertexts can be combined into a valid ciphertext by Combine.

The message is encrypted by the receiver’s public key, and no information is

leaked. We provide a detailed description about this protocol as follows:.

Setup(`, t). Given security parameters (`, t), set a multiplicative group Gq

with |q| ≥ ` and a generator g ∈ Gq. Generate a secret key x ∈ Zq for

each receiver and set the receiver’s public key as y = gx.

Deal(M). Given a message M ∈ Gq, the owner deals M for n storage

12



servers P1, . . . , Pn. First, the owner runs Secret Sharing(M, t, n) and

gets the output (m1, . . . ,mn). Then the owner sends mi to Pi via a

secure channel.

PartialEnc(y,mi). Given a receiver’s public key y and a message share mi,

the storage server Pi randomly chooses a number ri ∈ Zq and outputs

a partial ciphertext

σi = (gri ,miy
ri).

Combine(S = {σi1 , . . . , σit}). Given a set S of t partial ciphertexts for a

receiver, with σij = (Cij ,1, Cij ,2), the combiner outputs the ciphertext

C = (
t∏

j=1

(Cij ,1)
λj ,

t∏
j=1

(Cij ,2)
λj ), where λj =

∏
1≤k≤t,k 6=j

−ik
ij − ik

mod q

To see this really produces a valid ciphertext, we have

t∏
j=1

(Cij ,1)
λj =

t∏
j=1

(grij )λj

= gr̂, for r̂ =
t∑

j=1

rijλj

t∏
j=1

(Cij ,2)
λj =

t∏
j=1

(mijy
rij )λj

= M
∑t

j=1 f(ij)λj (y)r̂

= M f(0)(y)r̂ = M · yr̂

This algorithm can be executed without any secret information. Thus,

every one can play the role of the combiner.
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4.1 Security Analysis

In this chapter we prove the semantic security of our protocol. We prove the

IND-CPA security against a static, semi-honest adversary, under the DDH

assumption.

Theorem 1. Suppose that the DDH assumption holds for Gq. Then the

public key encryption scheme for a shared message is semantically secure

against a static and semi-honest adversary.

Proof. We assume that a probabilistic polynomial time adversary A breaks

our scheme with a non-negligible advantage. We build a poly-time algorithm

R to break the DDH assumption. R acts as a challenger to A in the PKESM

game. The following is the detailed description.

Init: Both the adversary A and R are given security parameters (`, t) as

input. Algorithm R is given (Gq, g) and a DDH challenge (gα, gβ, gγ)

from the DDH challenger, where |q| = `. The adversary A outputs a

corruption set CS = {Pi1 , Pi2 , . . . , Pit−1} of t− 1 storage servers.

Setup: R sets y = gα as the receiver’s public key and sends it to A.

Challenge: The adversary A chooses two different messages M0,M1 ∈ Gq

and sends them toR. R chooses a random bit b ∈R {0, 1} and generates

the message shares (mb,1,mb,2, . . . ,mb,n) by running Deal(Mb). R sends

the message mb,i to A for Pi ∈ CS.

14



Then, R chooses n random numbers ai ∈ Zq for 1 ≤ i ≤ n, and

generates the partial ciphertext of Pi, Pi 6∈ CS

σb,i = ((gβ)ai ,mi,b(g
γ)ai)

For corrupted storage server Pi ∈ CS, R generate the partial cipher-

texts by PartialEnc and sends the random numbers used in the Partia-

lEnc to the adversary A. R sends all partial ciphertexts to the adver-

sary.

Guess: The adversary A outputs a guess b′. Then R replies the DDH chal-

lenger with γ = αβ if b′ = b. Otherwise, R replies γ =random.

We show that A cannot guess b with a non-negligible advantage from the

partial ciphertexts or the combined ciphertext. If γ = αβ, the view of A is

identical to the real execution. If γ is a random value, the view of A in the

case of R dealing M0 is identical to the case of R dealing M1, since for given

Ci,2 = (mi,b)g
γai , there exists another γ′ such that (mi,1−b)g

γ′ai = Ci,2. Thus,

we have

15



AdvDDH
` (R)

= |Pr[γ = αβ] Pr[b′ = b|γ = αβ] + Pr[γ is random] Pr[b′ 6= b|γ is random]− 1

2
|

=
1

2
|Pr[b′ = b|γ = αβ] + Pr[b′ 6= b|γ is random]− 1|

=
1

2
|Pr[b′ = b|γ = αβ]− Pr[b′ = b|γ is random]|

=
1

2
|Pr[b′ = b|γ = αβ]− 1

2
|

≥ 1

2
(AdvPKESM

`,t (A))

16



Chapter 5

Against Malicious Adversaries

We have proved that the basic scheme is secure against the semi-honest

adversary. Nevertheless, a malicious adversary may send “wrong” partial

ciphertexts from corrupted storage servers. The receiver will get the wrong

message. Therefore, the combiner has to verify each partial ciphertext. We

say a PKESM scheme is secure in the malicious adversary model, if this

scheme satisfies the previous correctness and privacy properties, and addi-

tionally the following robustness property.

Robustness. For any message M , if at least t partial ciphertexts

pass the verification performed by the combiner, the scheme

outputs a valid ciphertext of M .

The combiner is allowed to verify the partial ciphertexts, but does not

know the message shares. Otherwise, the combiner will get the message M if

he collects more than t message shares. In this chapter, we propose a scheme

of verifying the partial ciphertext without knowing the message share. To

achieve this, we need a public key pair (pki, ski) for each storage server Pi,

17



and a zero-knowledge proof for discrete logarithm.

5.1 Zero-Knowledge Proof for Discrete Log-

arithm

We present a proof of knowledge of discrete logarithm to show that z =

loggX = logh Y [7].

Let X = gz and Y = hz for two generators g, h ∈ Gq. Alice executes the

following algorithm to convince Bob that loggX = logh Y without leaking z

to Bob.

ProofDLEq(g, h,X, Y )

1. Alice chooses a random number d ∈ Zq and sends a1 = gd, a2 = hd to

Bob.

2. Bob sends a challenge c ∈ Zq to Alice.

3. Alice responds with R = d− cz mod q.

4. Bob checks that a1 = gRXc and a2 = hRY c.

This protocol is sound under the Discrete Logarithm assumption. Note

that if Alice knows the challenge c in advance, she can cheat Bob with a

random R, and outputs a1 = gRXc, a2 = hRY c.

This proof needs three rounds interactions. We can apply the Fiat-

Shamir heuristic to transform this proof into a one round, non-interactive

18



protocol NIProofDLEq [12]. In the non-interactive setting, Alice replaces a

random challenge with c = H(g||h||X||Y ||a1||a2), where H : {0, 1}∗ 7→ Zq is a

collision-resistant hash function. Bob verifies that c = H(g||h||X||Y ||gRXc||hRY c).

If yes, Bob believes that loggX = logh Y .

Let the output of NIProofDLEq(g, h,X, Y ) be (c, R). We use this zero-

knowledge proof to verify the partial ciphertext without knowing the message

share.

5.2 Main Construction

Intuitively, when a storage server Pi receives a message share mi, he commits

mi by using his secret key ski. The owner then verifies whether the commit-

ment is valid. When storage server outputs a partial ciphertext, he has to

attach a proof tag. The combiner uses the commitment and the proof tag to

verify the partial ciphertext.

The following algorithms are used to verify whether the partial ciphertexts

are valid.

Setup(`, t). Given security parameters (`, t), set a multiplicative group Gq

with |q| ≥ ` and a generator g ∈ Gq. Generate a secret key x ∈ Zq for

each receiver and set the receiver’s public key as y = gx. Generate a

key pair (pki, ski) for each storage server Pi.

Deal(M). Given a message M ∈ Gq, the owner deals M for n storage servers

P1, . . . , Pn by Secret Sharing(M, t, n).

19



Commit(ski,mi). Given a message share mi, storage server Pi commits the

message share mi as θi = mski
i with his secret key ski. In addition, Pi

sends Vi =NIProofDLEq(g,mi, pki, θi) to the owner.

ComVerify(pki,mi, θi, Vi). Given a message share mi, a commitment θi and a

proof tag Vi = NIProofDLE1 (g,mi, pki, θi), the owner verifies the proof

tag. If the commitment is correct, the owner signs on the commitment

θi.

PartialEnc(y,mi). Given a receiver’s public key y and a message share mi,

the storage server Pi randomly chooses a number ri ∈ Zq and outputs

a partial ciphertext

σi = (gri ,miy
ri).

ProofPC(y, pki, ski, ri, σi = (Ci,1, Ci,2), θi). Given the receiver’s public key y,

a key pair (pki, ski) for Pi, a random number ri used in PritialEnc(y,mi),

a partial ciphertext σi, and a commitment θi, the storage server Pi

generates a proof for the partial ciphertext σi. Pi computes two values

(y1.y2) = (gskiri , yskiri) and outputs the following proofs:

(y1, y2)

NIProofDLEq(g, Ci,1, pki, y1)

NIProofDLEq(g, y, y1, y2)

NIProofDLEq(g, Ci,2, pki, θi · y2)

20



Figure 5.1: The relationship between partial ciphertext σi, the public key pki
of storage server Pi, and the commitment θi.

Since the commitment θi has been verified by the owner, Pi just has

to prove the validity of y2 = yskiri . This can be achieved by the public

key pki = gski of Pi and Ci,1 = gri . First, Pi shows that gskiri and

pki has the same exponent ski by the first proof tag. Then Pi shows

that gskiri and yskiri has the same exponent by the second proof tag.

Finally, Pi proves the correctness of Ci,2 by the commitment θi, y2 and

the last proof tag. The relationship between these proofs are shown in

the figure 5.1.

PCVerify(σi = (Ci,1, Ci,2), θi, ZKi). Given a partial ciphertext σi, a commit-

ment θi signed by the owner and correctness proof ZKi as

(y1, y2) = (gskiri , yskiri)

(c1, R1) = NIProofDLEq(g, Ci,1, pki, y1)

(c2, R2) = NIProofDLEq(g, y, y1, y2)

(c3, R3) = NIProofDLEq(g, Ci,2, pki, θi · y2),

the combiner verifies that

c1 = H(g||Ci,1||pki||y1||gR1pkc1i ||(Ci,1)R1yc11 )
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c2 = H(g||y||y1||y2||gR2yc21 ||yR2yc22 )

c3 = H(g||Ci,2||pki||θi · y2||gR3pkc3i ||(Ci,2)R3(θi · y2)
c3)

Combine(S = {σi1 , . . . , σit}). Given a set S of t partial ciphertexts passed

the PCVerify, with σij = (Cij ,1, Cij ,2), the combiner outputs the cipher-

text

C = (
t∏

j=1

(Cij ,1)
λj ,

t∏
j=1

(Cij ,2)
λj ), where λj =

∏
1≤k≤t,k 6=j

−ik
ij − ik

mod q

5.3 Security Analysis

We give the proof of our scheme against malicious adversaries in the random

oracle model in this chapter. The proof is similar to the proof in the basic

scheme. We assume that a probabilistic polynomial time adversary A breaks

our scheme with a non-negligible advantage. We build an algorithm R to

beak the DDH assumption. R simulates the algorithms in the basic scheme,

and also simulates the three algorithms Commit, ComVerify and ProofPC.

R has to convince the adversary A in PCVerify even R does not know the

discrete logarithm (α, β, γ) of DDH challenge (gα, gβ, gγ).

In the random oracle model [3], the hash function H is modeled as a ran-

dom oracle. The adversary A makes hash queries of H at any time during

his attack. The simulator R maintains a list H-List to record the result of

all hash queries. R handles the hash queries as follows:
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On receiving a query w to H:

1. If (w, e) exists in H-List for some e, R outputs e as H(w).

2. Otherwise, R randomly chooses e ∈ Zq, adds (w, e) into H-List, and

outputs e as H(w).

The proof is described below.

Init: Both of A and R are given security parameters (`, t) as input. Al-

gorithm R is given (Gq, g) and a DDH challenge (gα, gβ, gγ) from the

DDH challenger, where |q| = `. The adversary A outputs a corruption

set CS = {Pi1 , Pi2 , . . . , Pit−1} of t− 1 storage servers.

Setup: R runs Setup(`, t) to construct the key pairs (pki, ski) for storage

servers Pi, 1 ≤ i ≤ n. R sends pki to A, 1 ≤ i ≤ n, and sends ski to A

for Pi ∈ CS. R sets y = gα as the receiver’s public key and sends y to

A. R gives the control permission of corrupted storage servers to A.

Challenge: The adversary A chooses two different messages M0,M1 ∈ Gq

and sends them to R. R chooses a random bit b ∈ {0, 1} and generates

the message shares (mb,1,mb,2, . . . ,mb,n) by running Deal(Mb). R sends

the message mb,i to A for Pi ∈ CS.

ThenR runs the algorithm Commit(ski,mb,i) normally for Pi 6∈ CS, and

output valid for this commitments in ComVeify. For the commitments

coming from corrupted storage servers, R runs ComVeify normally and

outputs valid or invalid.
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Next, for Pi 6∈ CS, R chooses a random number ai ∈ Zq. R generates

the partial ciphertext of Pi as

σb,i = ((gβ)ai ,mi,b(g
γ)ai)

Furthermore, R produces the proof tags for σb,i. SinceR does not know

the random value βai, R cannot construct the proof normally. Instead,

R inserts an entry into the H-list to decide the challenge in advance.

Then R can produce correct proof tags for σb,i = (Cb,i,1, Cb,i,2). The

following is the detailed description.

1. R sets y1 = (Cb,i,1)
ski , y2 = (gγai)ski .

2. R randomly chooses c1, R1 ∈ Zq.

3. Let w1 = (g||Cb,i,1||pki||y1||gR1pkc1i ||(Cb,i,1)R1(y1)
c1). If there exists

an entry (w, e) in H-List with that w = w1, go back to step 2.

Otherwise, R adds (w1, c1) to H-List.

4. R generates (c2, R2), (c3, R3) similar to step 2, 3 with

w2 = (g||y||y1||y2||gR2yc21 ||yR2yc22 )

w3 = (g||Cb,i,2||pki||θi · y2||gR3pkc3i ||(Cb,i,2)R3(θi · y2)
c3)

5. R outputs (y1, y2, c1, R1, c2, R2, c3, R3) as the proof .

Guess: The adversary A outputs a guess b′. Then R replies the DDH chal-

lenger with γ = αβ if b′ = b. Otherwise, R replies γ =random.
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When A queries the hash oracle in the verification, he will get the value

pre-inserted by R. Without the hash oracle, A cannot generate the hash

value and he cannot execute PCVerify. Thus, R passes the verification.

We analyze the security of privacy in the following.

Theorem 2. (Hiding of commitment). Given two message shares m0,m1,

a public key pk = gsk and a commitment θ = msk
b for a random bit b, it’s

hard to distinguish b for any probabilistic polynomial-time Turing machine

adversaries.

Proof. If there is an adversary A′ can decide b = 0 or b = 1 with non-

negligible advantage, we define the advantage as Advcommit
` (A′). We construct

a algorithm R′ to break the DDH assumption with non-advantage with A′.

Given DDH challenge (gα, gβ, gγ), R′ randomly chooses b ∈ {0, 1}. R′

sets mb = gα and randomly chooses m1−b ∈ Gq. R′ sets pk = gβ and θ = gγ.

R′ sends (m0,m1, pk, θ) to A′. If A′ returns b′ with b′ = b, R returns the

DDH challenger with γ = αβ. Otherwise, R′ returns γ =random.

If γ is random, the distribution of (m0,m1, pk, θ) for b = 0 is equal to the

distribution for b = 1. Thus we have
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AdvDDH
` (R′)

= |Pr[γ = αβ] Pr[b′ = b|γ = αβ] + Pr[γ is random] Pr[b′ 6= b|γ is random]− 1

2
|

=
1

2
|Pr[b′ = b|γ = αβ] + Pr[b′ 6= b|γ is random]− 1|

=
1

2
|Pr[b′ = b|γ = αβ]− Pr[b′ = b|γ is random]|

=
1

2
|Pr[b′ = b|γ = αβ]− 1

2
|

≥ 1

2
(Advcommit

` (A′))

Therefore, we can break the DDH assumption if an adversary can decide

b = 0 or b = 1 with non-negligible advantage.

Secondly, we prove that it’s hard to distinguish two messages M0 and M1

from the partial ciphertexts σb,i, 1 ≤ i ≤ n. This is similar to the proof in

the basic scheme. If γ = αβ, the view of A is identical to the real execution.

If γ is a random value, A cannot distinguish that R was dealing M0 or M1

since the two views are identical. Thus, we have

AdvDDH
` (R) ≥ 1

2
(AdvPKESM

`,t (A))

By Theorems 1 and 2, we have that the advantage of R breaking the

DDH assumption is bounded by:

2 · AdvDDH
` (R) ≥ 1

2
Advcommit

` (A) +
1

2
(AdvPKESM

`,t (A))
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Algorithm # of modular exponentiation Executed by

Deal n Owner
Commit 3 Storage server

ComVerify 4n Owner
PartialEnc 2 Storage server
ProofPC 8 Storage server
PCVerify 12n Combiner
Combine 2t Combiner

Table 5.1: Number of modular exponentiation performed in each algorithm.

For robustness, the security is based on the soundness of the zero-knowledge

proof. It has been shown that the proof of discrete logarithm is sound [7].

Thus, it is hard for an adversary to cheat the owner with a wrong commit-

ment with non-negligible probability, or to cheat cheating the combiner with

a wrong partial ciphertext.

5.4 Performance Analysis

We measure the performance in the number of modular exponentiations.

Generating a proof of discrete logarithm needs 2 modular exponentiations,

and verifying the proof needs 4 modular exponentiations. For n storage

servers, the following table lists the number of modular exponentiations ex-

ecuted in each algorithm.
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Chapter 6

Discussion

We construct the PKESM scheme by a secret sharing scheme and the El-

Gamel encryption scheme. It is possible to construct a PKESM scheme

by other homomorphic public key encryption schemes, such as RSA[23] or

Paillier[22]. In the RSA encryption, the order of the group is not public.

Thus, it is hard to compute the Lagrange coefficients λj in Combine since

the combiner cannot compute the inverse in a RSA group. To avoid this, we

can multiply λj with ∆ = n!. The value ∆λj is an integer and no inverse

computation is required. It can be further referenced to [14]. But there are

some other issues. In the malicious adversary mode, a zero-knowledge proof

scheme should be designed for verifying an RSA partial ciphertext.
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Chapter 7

Conclusions

We presented a non-interactive public key encryption scheme which is per-

formed on a shared plaintext. This scheme can be used to forward a shared

message to different receivers without a pre-installed key between the owner

and the receiver. We prove its IND-CPA security under the DDH assump-

tion. This paper is the first one that performs encryption in such model.
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