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            安全且快速訊息驗證的廣播認證機制 

學生 : 陳證傑                       指導教授 : 曾文貴  博士 

 

                     資訊科學與工程研究所 

                         國立交通大學 

                            摘要摘要摘要摘要    

    在網際網路上，一台伺服端想廣播大型的資料，如電影或即時新聞，給

多個使用者；使用者則希望確認所收到的資料確實是由伺服端所發出。在這

樣的情形下，為了確保整體傳輸效能，只能使用不可靠的 UDP 通訊協定，因

而導致在傳送資料的過程中，可能會有部分封包遺失，增加使用者驗證封包

的困難。由於資料亦可能遭到攻擊者的竄改，直覺的做法是伺服端對每個資

料做數位簽章，使用者以伺服端的公開金鑰對封包做認證。但是數位簽章的

簽名與驗證皆要花費相當長的計算時間，如何設計出安全且有效率的廣播認

證機制，便成為一項有趣且實際的研究議題。 

    在本篇的方法中，由於接收端的計算資源可能不夠或者不是全部用在對

資料的認證計算，對於來不及做驗證的資料會暫時存在記憶體，若是可用記

憶體不足，接收端會將接下來的封包丟棄，造成不必要的封包遺失。若是攻

擊者傳送大量偽造封包給接收端，則接收端的計算與儲存資源會更加不足，

封包的遺失也會更嚴重。我們提出的方法除了使接收端能驗證資料的正確性，

還能以花費少量的計算來對封包做驗證，進而減輕接收端的計算與儲存負

擔。 
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                            Abstract 
 

We propose two schemes for the multicast stream authentication problem. In 

this paper, we focus on the computational overhead of receiver. From the point of 

view of the receiver, receiver may execute many programs simultaneously. Thus, 

the computational resource is not totally used for packet authentication. If the 

computational resource is not sufficient, the buffer may overflow and the receiver 

drops the incoming packets. Moreover, an attacker may forge many invalid 

packets and send them to receiver to exhaust the computational resource of 

receiver. With this attack, the problem of buffer overflow becomes more serious. 

In this paper, we propose two schemes that reduce the computational cost of 

receiver. Our schemes also achieve data integrity, non-repudiation, individual 

packet authentication, robust to packet loss and reasonable storage overhead. The 

first scheme is suitable when the packet loss rate is low. However, the loss rate of 

network may be high, we the second scheme which is more efficient than the first 

scheme. Our schemes are robust against the injection attack. 

Keywords: Multicast stream authentication, injection attack  
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Chapter 1 
 
Introduction 
 
1.1 Motivation 

 

A trusted server wants to transmit a large file such as movie over the Internet 

to many receivers simultaneously. The file is divided into many small messages 

and sent out as packets. On getting a message, the receiver has to process it in 

real-time. However, the receiver doesn’t know whether the message is actually 

produced by the trusted server or forged by a malicious attacker. Thus, every 

packet is composed of original message and authentication information such as 

digital signature. It is required for a receiver to have an efficient and secure way to 

check the validity of received messages. 

Unicast is not a choice when a sender wants to transmit the same data to 

many receivers at the same time. Multicast is an efficient protocol for delivering 

packets to many receivers that belong to the same multicast group simultaneously. 

This protocol is suitable for some real-time applications such as stock quote or live 

video broadcast. In these time-sensitive applications, it is impractical to use 

reliable transmission protocol, because the packet is retransmitted whenever the 

packet loss occurs in one of these receivers. This slows down the transmission rate 

at sender side. Therefore, the UDP is used in real-time multicast. However, as the 

UDP is unreliable, some packets may lose at receiver side. The packet loss incurs 

some inconvenience when the receiver verifies the received packets. Furthermore, 
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it is well known that the Internet is insecure. The attacker can eavesdrop, inject, 

delay, replay and capture packets. The basic requirement in multicast 

authentication is that the receiver can make sure that whenever he receives a 

packet, he can decide whether this packet is produced by the trusted server or by 

the malicious attacker. 

 

1.2 Trivial solutions 

 

The packets transmitted over the Internet may be modified by the attacker. 

There are some cryptographic primitives such as MAC [10] (message 

authentication code) and digital signature scheme. The MAC provides data 

integrity and authenticity. Data integrity means a receiver can make sure the 

received data has not been changed. Authenticity means an authorized receiver can 

make sure the packet is coming from the trusted sender. The digital signature 

provides data integrity and non-repudiation. Non-repudiation means if a signer has 

signed a message, he can’t deny this signature. In MAC, two parties R and S share 

the same secret key and use it to compute the message digest. When S sends the 

message along with the digest to R, R can make sure this message is coming from 

S because only the two parties know the secret key. Besides, the MAC is a 

symmetric primitive, the computational and communication cost is low. However, 

this solution is not applicable in the multicast authentication situation. Since all 

receivers can access the same secret key, any one of the receivers can compute 

valid message digest and claim that the message is produced by the sender. 

Another naive way is that the sender uses a digital signature scheme such as RSA 

to sign each message using his private key. The receiver verifies the messages 

using the public key of the sender. Digital signature scheme is believed to be 
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secure. This solution provides adequate authentication, but the computational cost 

of digital signature is too expensive to make this solution impractical. 

 

1.3 Design issues  

 

There are many additional requirements when designing the algorithm for the 

multicast stream authentication problem. 

 

� Low computational overhead: Since the packets must be sent and 

verified as fast as possible.  

� Low communication overhead: For receivers to authenticate a message, 

a packet is composed of message and authentication information. The 

size of authentication information should be as small as possible to avoid 

network congestion.  

� Low storage overhead: The buffer or unused memory of receiver is 

limited. When the buffer is full of packets, the receiver drops the 

incoming packets, causing unnecessary packet loss.  

� Robust to packet loss: When packet loss occurs, the receiver can still 

verify the incoming packets.  

� Individual packet authentication: If the authentication of one packet P� 

depends on another packet P� received later, the receiver must keep P�. 

If P� is lost, P� is useless. Thus, if a scheme achieves individual packet 

authentication, the receiver can verify a packet immediately. 

 

Our contribution. In this paper, we focus on the computational cost of 

receiver. We propose two schemes that reduce the computational cost of receiver. 
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These schemes also achieve data integrity, non-repudiation, individual packet 

authentication, robust to packet loss and reasonable storage overhead. From the 

point of view of the receiver, receiver may execute many programs simultaneously. 

Thus, the computational resource of the receiver is not totally used for packet 

authentication. As a result, there may be some packets that can’t be checked 

immediately. These packets are temporarily stored in the buffer of receiver. If the 

computational resource is not sufficient, the buffer may overflow and the receiver 

drops the incoming packets. Moreover, a type of denial of service attack is called 

the injection attack or the pollution attack [1]. The attacker forges many invalid 

packets and sends them to receiver to exhaust the computational resource of 

receiver. With this attack, the problem of buffer overflow becomes more serious. 

From the point of view of the sender, the sender just broadcasts packets. The 

sender doesn’t receive any packet. There is no denial of service attack at sender 

side. And it is reasonable to assume that the computational power of sender is 

stronger than the receiver 

The rest of paper is organized as follows: In Chapter 2, we introduce some 

related works. In Chapter 3, we give some background information for this paper. 

In Chapter 4, we propose our two schemes. In Chapter 5, we give the simulation 

results. In Chapter 6, we give the conclusion and future work of this paper. 
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Chapter 2 
 

Related work 
 

Previous works on multicast stream authentication problem are roughly 

divided into two classes. The first class of schemes is called the signature 

amortization schemes, and the second class of schemes is called the MAC-based 

schemes. We introduce some signature amortization schemes in section 3.1 and 

then describe some MAC-based schemes in section 3.2. 

 

2.1 Signature amortization schemes 

 

The signature amortization schemes compute single signature over several 

packets and reduce the computational overhead greatly. Hash chain [2], hash tree 

[3], and SAIDA [4] are examples of signature amortization schemes. 

 

2.1.1 Hash chain 

 

Early work on signature amortization was done by Gennaro and Rohatgi [2]. 

Let || denotes string concatenation, and H(.) denotes a collision resistant hash 

function. Assume the sender knows the whole stream. The stream is finite and can 

be divided into n messages. We denote the stream as S � M�||M�|| … ||M	. Each 

packet P
  transmitted over the network is composed of the message M
 
representing the original data of stream and the hash of the next packet. The 



6 

 

construction of the packets works backwards as follow: 

 

P
 � �H
P
���||Sign���H
P
����, i � 0M
||H
P
���, 1 � i � n � 1M
, i � n � 
    If P
 is a valid packet, then the receiver has the valid hash value of P
��. 

When the receiver gets P
��, it takes just one hash operation to verify P
��. The 

computational cost of receiver is very low. 

This approach has constant communication and computational overhead. We 

use the hash chain approach as part of our scheme. However, it doesn’t achieve 

individual packet authentication. When a packet loss occurs, the receiver doesn’t 

get the hash of the next packet. The receiver can’t authenticate the remaining 

packets. 

 

2.1.2 Merkle hash tree 

 

Wong and Lam [3] used the Merkle hash tree to deal with the problem of 

multicast stream authentication. A Merkle hash tree is a binary hash tree that takes 

n leaves as input. A leaf is the hash value of a message. The internal node of a 

Merkle hash tree is defined as the hash value of the concatenation of its two 

children. The Merkle hash tree is used to compute a single hash digest over several 

messages. Figure 2-1 shows a Merkle hash tree when n=8. 
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                        Figure 2-1: Merkle hash tree. 

 

We define authentication path AP(i) as the concatenation of the log�  hash 

values needed to reconstruct the path from !
 to the root of the tree. For example, 

in Figure 2-1 we have AP(0)= !�||#�,$||#%,&  . Using AP(0), we can reconstruct the 

root as #',& � H
H
H
!'|| !��||#�,$�||#%,&�. By the property of second-preimage 

resistant of hash function, the attacker cannot change the value of any node of the 

tree. Thus, each message with its authentication path is individually verifiable. In 

Wong and Lam’s scheme, the stream can be finite or infinite and can be divided 

into blocks of n messages. The stream can be denoted as S� 
B'||B�|| … �. Each 

block consists of n messages. The i-th block is B
 � 
M
	||M
	��||. . . ||M
	�	)��. 

We focus on the first block B'. A packet P
 is composed of the message M
, the 

authentication path AP(i) and the signature of the root of Merkle hash tree. Each 

authentication path of a packet is unique and an attacker can’t change it. Thus, this 

scheme achieves individual authentication. However, assume the receiver doesn’t 

store the authentication path, it takes log�n hash operations to verify a packet. 

Even if the receiver stores the authentication path, the computational cost of 

receiver can be reduced. In our paper, we combine the hash chain scheme and the 

Merkle hash tree scheme to obtain schemes that achieve low computational cost at 
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receiver side and individual packet authentication. In our paper, we call this 

classical Merkle hash tree scheme the scheme-0. 

 

2.1.3 SAIDA 

 

SAIDA (Signature Amortization using the Information Dispersal Algorithm) 

[4] [11] is a scheme based on erasure code [12][13][14][15]. The erasure code is 

composed of an encoder and a decoder. The (n, t)-encoder takes a block of n 

messages as input and output n symbols. When the receiver get at least t of these 

symbols, the receiver can decode these symbols back to the original block of 

messages. Thus, erasure code is robust to any pattern of loss among the symbols as 

long as the receiver gets sufficient number of symbols. We describe the 

construction of SAIDA as follow. Assume the stream is also divided into blocks of 

n messages and can be finite or infinite. We also focus on the construction of the 

first block. The sender computes H' � H
M'�||H
M��||   … || H
M	)�� , the 

concatenation of the hash values of all messages of this block. In the second step, 

the sender computes the signature of the hash of H', i.e. S'=Sign
SK, H
H'��. 

Then the erasure encoder encodes H'||S'  into n symbols 
s', s�, … , s	)�� . 

Finally, the sender appends the symbols to each packet and outputs n packets such 

that P
 � M
||s
  for i=0, 1, … , n-1. This scheme is robust to packet loss. 

Unfortunately, if the attacker injects forged packets into the communication 

channel, the receiver will decode an invalid H' that can’t pass the verification 

algorithm of digital signature. If the receiver tries to reconstruct a valid H' by 

decoding all possible combinations of received symbols, it is computationally 

expensive for him to do this. 
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2.2 MAC based schemes 

 

The MAC-based schemes use the symmetric primitives to design an efficient 

scheme that achieves asymmetry. 

 

2.2.1 Timed Efficient Stream Loss-Tolerant Authentication (TESLA) 

 

    In [5], Perrig et al proposed the simplest TESLA protocol. Let F and F- be 

two pseudo random functions. Assume S � M�|| M� || M$ …   is the stream. The 

sender generates every packet as follows: 

 

P
 � M
||F
K
���||K
)�||MAC 
 K
0  , M
||F
 K
���||K
)��    
                    K
- � F0
K
� , K
 is a random number 

 

The receiver uses F- to compute the keys of MAC. To authenticate a packet P
, 
assume that the packet P
)� has been authenticated. When receiving P
��, the 

receiver checks K
 contained in P
�� using the value F
K
� contained in P
)� 

first. Then the receiver computes K
- � F0
K
� as the MAC key of P
. Finally, the 

receiver checks the validity of P
  using the MAC. If all verifications are 

successful, P
 is a valid packet. The verification process can be illustrated in 

Figure 2-2.  
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                         Figure 2-2: TESLA. 

 

The simplest TESLA scheme has two shortcomings. First, if P
�� is sent before 

the receiver gets P
. An attacker can intercept P
 and P
��, and then he can use 

K
 disclosed in P
�� to forge an invalid P
 without the detection of the receiver. 

To avoid this type of attack, when sending a packet P
, the sender must wait until 

all receivers get P
, then he sends the next packet P
��. This slows down the 

transmission rate. Second, this scheme can’t tolerate a single packet loss. If the 

receiver doesn’t get P
)�, he can’t authenticates P
 even if he get P
�� because 

he doesn’t know whether K
 is valid or not. 

 

2.2.2 Modified TESLA 

 

In order to avoid the second shortcoming described above, Perrig et al 

proposed the modified TESLA protocol. Let F�
x� � F
F
x��  denotes two 

consecutive operations of F on input x. In modified TESLA, the sender chooses a 

number n and a MAC key K	 randomly first. Then he computes a sequence of n 
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MAC keys K	)�, K	)�, … , K' where K
 � F	)

K	� for i=0, 1, … , n-1. We get 

a key chain. Figure 2-3 shows the generation of key chain and the construction of 

modified TESLA. 

 

 

                    Figure 2-3: Modified TESLA. 

 

The key chain can tolerate any pattern of packet loss because when a receiver 

gets the latest MAC key K
, he can compute all keys from K
)� to K'. Since F is 

a one way function, it is hard for an attacker to compute K
�� given K
. 
    To deal with the first problem mentioned above, the sender discloses K
 in 

P
�2  rather than P
�� . However, before the receiver gets P
�2 , he can’t 

authenticates P
. He has to store d packets in the process of verification. When the 

attacker injects many invalid packets, the problem of buffer overflow is serious. 

    From the schemes mentioned above, designing a scheme that achieves all 

requirements is hard. Although in Wong and Lam’s scheme, the communication 
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overhead is high, it has many outstanding properties:  

� Each packet is individually verifiable. 

� It is robust to any pattern to packet loss. 

� It is robust to injection attack. 

� It is robust to delay and capture attack. 

 

It is clear that only the Merkle hash tree scheme meets these properties. We think 

that the Merkle hash tree scheme is one of the best schemes for multicast scheme 

authentication. However, we can improve the computational cost of receiver. Thus, 

we design our schemes based on Wong and Lam’s scheme and the hash chain 

scheme. 
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Chapter 3 
 

Preliminaries 
 
3.1 Collision resistant hash function 

 

    A collision resistant hash function H is a function which maps a message M 

of arbitrary size to a message digest of fixed size. H has the following properties:  

� Given an input x, it is efficient to compute H(x).  

� Given a hash value y, it is computationally infeasible to find x such that 

H(x)=y.  

� Given an input x, it is computationally infeasible to find another x- such 

that x- 3 x and H
x0� � H
x�.  

� H is deterministic.  

 

Because of the collision resistant property, the modification of the message will 

result in a different hash value.  

 

3.2 Packet loss model  

 

    In our simulation, we use two different packet loss models to simulate the 

performance of scheme-0 and our two schemes. One is the uniform packet loss 

model. The other is introduced by Gillbert[6] and Elliott [7], which is called the 

two-state Markov Chain (2-MC) loss model[9][11]. According to [8, 9], Paxson 
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and Yajnik et al showed that the pattern of loss in the Internet is bursty. To 

accurately simulate the loss pattern in the Internet, we use this model as part of our 

simulation result. The 2-MC model has two possible states, one is the “good state” 

and the other is the “bad state”. If the packet is lost, the transmission channel is in 

“bad state”, otherwise the channel is in “good state”. Figure 3-1 shows the 2-MC 

model. 

Figure 3-1: 2-MC model. 

 

There are four transition probabilities (P44 , P45 , P54 and  P55). The stationary 

probabilities of good state and bad state are denoted as 89 and 8: � 1 � 89 

respectively. The probability transition matrix M is: 

 

                      M � ;1 � q qp 1 � p> 
 

The stationary probability vector is V � @89 , 8:A such that V=VM. We have 

 

 89
1 � q� B 8:p � 89    

 89 B  8: � 1     

 

Thus we get:  
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                      89 � CC�D, 8: � DC�D 

 

The average probability of packet loss can be defined as PEFG � 89P45 B 8:P55. 

    In [9], the parameter p is measured as 0.0496. The parameter 1-q is measured 

as 0.0513. If (1-q)>p, the packet loss is burstier than predicted by the uniform 

packet loss model and the 2-MC model is more accurate. 
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Chapter 4 
 

Proposed schemes 
 

We propose two schemes that are robust to packet loss and achieve lower 

computational overhead at receiver side. In section 4.1, we propose the first 

scheme called scheme-1 which is the simplest one. However, when the packet loss 

probability is not low, the computational cost of receiver also increases. In section 

4.2, we propose a scheme called scheme-2 that is more efficient than scheme-1 

when the packet loss of network is not low.  

 

4.1 Scheme-1 

 

We review some notations. The hash value of message M is H(M). The 

stream S can be divided into blocks, each block consists of n messages.  

                      S� 
B'||B�|| … � 

Each block is denoted as BH � 
MHI	||MHI	��||. . . ||MHI	�	)��. The stream can 

also be finite or infinite. Because the same construction is performed on every 

block, we focus on the construction and verification of the first block (B' �

M'||M�|| … ||M	)��). The construction of scheme-1 consists of three steps. In the 

first step, the sender constructs a hash chain as follow: 

 

M
- � JM
||H
M
��-�, 0 � i � n � 2M
, i � n � 1 � 
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In the second step, the sender uses M
- to build a Merkle hash tree. For example, 

if n=8, the tree structure of scheme-1 is shown in Figure 4-1. Note that !
 �
H
M
-�. AP(i) is the log�  hash values needed to reconstruct the path from !
 to 

the root of the tree. 

 

 

                    Figure 4-1: Tree structure of scheme-1. 

 

In the third step, the sender signs the root of the tree. The signature of the root is 

denoted as Sign. We illustrate the content of the packets of the first block in Figure 

4-2. Each packet is composed of M
-, authentication path and the signature of root. 

M
- is composed of original message M
 and H
M
��-�. When M
- is verified, 

M
 is verified. 



18 

 

 

Figure 4-2: Packet format of scheme-1. 

 

The verification is easy. Assume each packet has sequence number and block 

number. Each packet in block BH has block number b. The i-th packet of a block 

has sequence number i-1. The sequence number and block number are part of the 

original message M
 and can be used to point out the position at the stream. For 

example, in Figure 4-2, the block number of P� is 0 and the sequence number is 2. 

In the first block, when getting the first packet P', the receiver uses AP(0) and 

Sign to verify M'-. The receiver has valid H
M�-�. Whenever P
 is verified, the 

receiver records the sequence number i of P
 as the latest valid sequence number 

and updates the hash chain information as H
ML��-�. If the next received packet is 

PL��, the receiver uses H
ML��-� to verify ML��-. The receiver doesn’t have to 

verify ML��- by using AP(i+1). It takes just one hash operation to verify a 

message. In the other case, if the receiver doesn’t receive PL, he doesn’t have 

H
ML��-� and the hash chain is broken. When receiving PL��, the receiver has to 

use AP(i+1) of PL��  to verify ML��- . If the receiver doesn’t cache the 

authentication path information, it takes log�n  hash operations to verify a 
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message. Every packet can be verified individually. When the packet loss 

probability is very low, the computational cost of receiver is low.  

In scheme-1, the communicational overhead of every packet is 1+log�n hash 

values. When the packet loss probability increases, the verification time of 

scheme-1 goes up. In some situation like stock quotes, even when the packet loss 

probability is not low, the receiver still wants to receive the packet because of the 

importance of packets. We design a scheme that is also efficient and robust against 

injection attack. So we propose scheme-2 that is more efficient and robuster to 

injection attack than scheme-1. 

4.2 Scheme-2 

The construction of scheme-2 is based on scheme-1. Before the description of 

scheme-2, we define a term: sub-tree. The tree structure of scheme-1 can be 

roughly illustrated in Figure 4-3. There are many smaller Merkle hash trees TN. 
Every TN is called sub-tree. Every sub-tree has λ leaves. Note that λ �  2P and 

x is a non-zero integer. The root of TN  is  #QIN,QIN�Q)�. λ can be greater than the 

average consecutive loss length of the network. 

 

 

Figure 4-3: Tree structure of scheme-1. 

 

The construction of scheme-2 is described as follow. Assume a block is 
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composed of n messages and every sub-tree has λ leaves. In the first step, the 

sender constructs a lower hash chain: 

 

M
- � JM
||H
M
��-�, 0 � i � n � 2M
, i � n � 1 � 
 

In the second step, the sender constructs many sub-trees TN  using 

(MNIQ-, MNIQ��- , … , MNIQ�Q)�-) for j=0, 1…, (n/λ)-1. In the third step, the sender 

constructs a upper hash chain backwards:   

 

MN-- � R#QIN,QIN�Q)�||H
MN��--�,0 � j � TnλU � 2
#QIN,QIN�Q)�, j � TnλU � 1 � 

     

    In the fourth step, the sender constructs a upper Merkle hash tree using MN-- 
for j=0, 1, …, (n/λ)-1, and then signs the root of the upper Merkle hash tree. 

We illustrate an example. Assume every sub-tree has eight leaves and a block 

has 32 messages. Every root of sub-tree can be treated as an original message in 

scheme-1. We replace MN with #VIN,VIN�& for j=0, 1, 2, 3 in scheme-1 and get 

Figure 4-4. The complete tree structure of scheme-2 is illustrated in Figure 4-5. MN-- can be verified by using the authentication path for upper Merkle hash tree. 

Every original message M
 in M
- can be verified by using the authentication 

path for sub-tree. Scheme-2 achieves individual packet authentication. We can use 

the upper and lower hash chains to reduce the computational overhead of receiver. 

The packet format of scheme-2 is illustrated in Figure 4-6. 
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Figure 4-4: Upper part of tree structure of scheme-2. 

 

 

Figure 4-5: Complete tree structure of scheme-2. 
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Figure 4-6: Packet format of scheme-2. 

 

In Figure 4-6, the upper part of a packet is composed of the signature of root, 

the authentication path for upper tree and MN--. Note that packets in the same 

sub-tree have the same upper part. M
- contains the hash of M
��-, which can be 

used to verify the message of the next packet. MN-- contains the hash of MN��--, 
which can be used to verify the root of the next lower sub-tree. From scheme-1, 

we know that every MN--  in Figure 4-4 can be authenticated. So, the root 

#VIN,VIN�& of lower sub-tree TN can be authenticated. Using the root of the lower 

sub-tree, we can authenticate every message M
 as the manner of Merkle hash 

tree. Thus, each packet in the scheme-2 is individually verifiable. After 

authenticating the i-th packet, the receiver can use the lower hash chain to verify 

the message of the (i+1)-th packet just one hash operation. So, when the 

probability of packet loss is low, the scheme-2 is as efficient as the scheme-1. 

When the loss rate is not low, for example, in Figure 4-6 assume the receiver 

authenticates the fifth packet P% in the first sub-tree T' but doesn’t receive PW, 

PX and P&. When receiving a packet PY in the second lower sub-tree, the receiver 

can use the upper hash chain to verify M�-- in PY and authenticates #V,�W. After 

four hash operation, the receiver can check the validity of MY by using AP(9). 

The receiver doesn’t have to authenticate M�-- by using AP
1�-. In general case, 

the number of packets of a block ranges from 128 to 1024, in these cases, 

scheme-2 require lesser hash operation than scheme-1 at receiver side. 

    There is one additional advantage of the scheme-2. In scheme-0 and 

scheme-1 for the first packet of the block, the attacker may send many invalid first 

packet and claims that these packets are originated from the sender, we call this 

the first packet denial of service attack. When the receiver wants to verify the 
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validity of the first packet of a block, he has to conducts about log�n hash 

operations for each. If the attacker forges k first packets, the receiver has to do 

k I log�n hash operations in scheme-0 and scheme-1. In scheme-2, the receiver 

executes the packet authentication from the middle of the tree. That is, when the 

receiver gets P'  in Figure 4-5, he uses M'--  and the authentication path 

( H
M�--� and #�,$- ) for upper tree to compute #',$-- . If #',$--  is invalid, 

scheme-2 finds this error with lesser hash operations than scheme-0 and scheme-1. 
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Chapter 5 
 

Comparison and experiment results  
 
    In this section, we compare Wong and Lam’s scheme [3] to our two schemes. 

In section 5.1, we compare the verification times of different schemes under the 

uniform packet loss model. In section 5.2, we compare the verification times of 

different schemes under the 2-MC packet loss model in order to simulate the 

packet loss in real world. In section 5.3, we compare the verification times of 

different schemes under the injection attack. From section 5.1 to section 5.3, we 

assume the receiver caches the authentication path. We also assume the receiver 

just caches log�n hash values in scheme-0 where n is the number of packets per 

block. That is, the receiver doesn’t cache all internal nodes of a tree. For example, 

in Figure 2-1, after authenticating PW, the receiver stores #',&, #%,& and #%,W. In 

scheme-1 and acheme-2, the way of caching is similar. The experiments were 

performed on a Pentium IV 1.66 GHz. We implement these schemes using JAVA. 

We use SHA-1 as the hash function and 512-bit DSA as the digital signature 

scheme. The number of packets in a block is 1024 and the original message of 

each packet is 512 bytes. In scheme-2,λ � 8. 
 

5.1 Results under the uniform packet loss  

 

Assume all types of attacks don’t exist in the network. Figure 5-1 shows the 

average verification times under the uniform packet loss model. The verification 
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time of the Merkle hash tree scheme (or scheme-0) decreases when the loss 

probability increases because the number of packets needed to be checked 

decreases. When the loss probability increases, the verification time of scheme-1 

approaches that of scheme-0 but doesn’t exceed it. The verification time of 

scheme-2 is the lowest one because of the upper hash chain.  

 

                  Figure 5-1: Results under the uniform packet loss. 

 

5.2 Results under the 2-MC loss model  

 

Assume all types of attacks don’t exist in the network. Figure 5-2 shows the 

average verification times when the average length of burst loss is 8. We can see 

that the verification times of scheme-1 and scheme-2 are almost the same since the 

loss is bursty. However, scheme-2 is still the lowest one.  
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                 Figure 5-2: Results under the 2-MC loss model. 

 

5.3 Results under the injection attack 

 

    We simulate the injection attack in this section. The uniform packet loss 

probability is 10%. In Figure 5-3, when the injection factor is 2, for every packet 

the receiver gets one packet produced by the trust sender and two invalid packets 

produced by the attacker. For every packet the attacker just generates two packets 

randomly and sends them to receiver in order to lunch denial of service attack. In 

Figure 5-3, the verification time of each scheme is proportional to the injection 

factor. The slope of scheme-1 is lower than the scheme-0, and the slope of 

scheme-2 is the lowest one. It means that scheme-2 is the robustest scheme among 

these schemes against the injection attack.  
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Figure 5-3: Results under the injection attack. 

 

5.4 Comparison 

 

    Table 5.1 shows the comparison between Hash chain, Wong-Lam, SAIDA, 

TESLA and the proposed schemes. We make the following assumptions: 

 

� A block is composed of n messages and one signature is done for each 

block. For Hash chain and TESLA, n messages consist of a block. 

� The computation overhead: We only consider the computational cost at 

sender side.  

� Injection attack resistance: When a scheme is injection attack resistance, 

this scheme reduces the computational cost of receiver. 

� The communication overhead: We consider the average communication 

overhead for a single packet. For scheme-0, every packet has log�n 

hash overhead and one signature. 
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� The storage overhead: We only consider the number of hash values 

stored at receiver. 

� In SAIDA, the encoder is a (t,n)-encoder. 

 

 Hash chain Scheme-0 Scheme-1 Scheme-2 SAIDA TESLA 

Computation  n-1 2n-1  3n-2  3n-3+T�	Q U n+O(n� ) 

field OP 

n 

Communication  1 log�n,1 1+log�n,1 3+log�n,1 1 3 

Individual authentication No Yes Yes Yes No No 

Non-repudiation Yes Yes Yes Yes Yes No 

Loss resistance No Yes Yes Yes Yes No 

Injection attack resistance Yes Middle Yes Yes No No 

Storage  1 log�n 1 B log�n 3 B log�n t 2 

                 Table 5.1: Comparison of selected schemes. 
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Chapter 6 
 

Conclusions and future work 
 
    We propose two schemes for multicast stream authentication problem. Wong 

and Lam’s scheme has many outstanding features: each packet is individually 

verifiable and reasonable storage overhead at receiver side. If a multicast stream 

authentication protocol adopts a digital signature scheme, it is hard for attacker to 

forge a packet. Besides, the sender only broadcasts packet and doesn’t receive any 

packet. Thus it is highly possible that the attacker may inject many invalid packets 

to receivers in order to waste the resources of receivers such as computational 

power and storage. We combine the ideas of Merkle hash tree and hash chain to 

obtain scheme-1. We extend scheme-1 to scheme-2. Scheme-1 achieves individual 

packet authentication, lower computational overhead at receiver side and 

reasonable storage overhead at receiver side with the costs of additional 

computational cost at sender side for the hash chain. In most cases, the 

computational power of sender is strong, thus our schemes are reasonable in real 

world. From the experiment result, scheme-2 is the robustest scheme among three 

schemes against the injection attack. Scheme-2 is suitable when the packet loss is 

not low and the data is important for receivers.  

    We propose an open problem as below. Our schemes achieves individual 

packet authentication, robust to packet loss, low computational overhead at 

receiver side and reasonable storage overhead at receiver side. Is it possible to 

design a scheme that also achieves low communication overhead? 
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