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利用隱藏式馬可夫模型之棒球精彩事件短片偵測 

研究生：蔡維晉        指導教授：李素瑛 
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摘要 

近年來棒球影像分析已有相當多的研究成果，但是對於精彩內容意涵事件偵

測分類等影像處理技術的分析細膩度尚嫌不足。而這篇論文提出一個有效且有效

率的棒球影片精彩內容意涵事件偵測分類系統，利用棒球影片中特定的場地規格

及規律的場景轉換，使得此系統能夠辨識正在進行的精彩內容意涵事件。為了達

到此一目標，本論文提出的系統概述如下:首先，我們可將一部棒球影片切割成精

采短片，而每一個精彩短片開始於投手投球並結束於某些特定結束畫面，利用短

片中每張畫面出現的物件特徵及順序，進而利用擷取出來的資訊用來發展以隱藏

式馬可夫模型所建立的十二種精彩短片事件分類器。我們在此篇論文提出更精確

的特徵擷取，使得棒球精采短片在分類上有著高準確性並且多樣性。此方法在運

算上非常有效率，更重要的是，各種精采短片分類的實驗數據結果顯示相當良好

的系統效能及準確性。 

檢索詞: 精采內容意涵事件偵測分類，特徵或物件擷取，隱藏式馬可夫模型。 
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Baseball Event Semantic Exploring System Using HMM 

Abstract 

Despite a lot of research efforts in baseball video processing in recent years, little 

work has been done in analyzing the detailed semantic baseball event detection. This 

thesis presents an effective and efficient baseball event classification system for 

broadcast baseball videos. Utilizing the strictly-defined specifications of the baseball 

field and the regularity of shot transition, the system recognizes highlight in video clips 

and identifies what semantic baseball event of the baseball clips is currently proceeding. 

The semantic exploring system is proposed to achieve the objective. First, a video is 

segmented into several highlights starting with a PC (Pitcher and Catcher) shot and 

ending up with a close-up or some specific shots. Before every baseball event classifier 

is designed, several novel schemes including some specific features such as soil 

percentage and objects extraction such as first base are applied. The extracted midlevel 

cues are used to develop baseball event classifiers based on an HMM (Hidden Markov 

model). Due to specific features detection the proposed method not only improves the 

accuracy of the highlight classifier but also supports variety types of the baseball events. 

The proposed approach is very efficient. More importantly, the simulation results show 

that the classification of twelve significant baseball highlights is very promising. 

Index: highlight detection and semantic baseball event classification, features or 

objects extraction, Hidden Markov Model. 
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Chapter 1 
Introduction 

In recent years, the amount of multimedia information has grown rapidly. This 

trend leads to the development of efficient sports video analysis. Automatic sports 

video analysis has attracted considerable attention, because sport video appeals to 

large audiences. The possible applications of sports video analysis have been found 

almost in all sports, among which baseball is a quite popular one. However, a whole 

game is very long but the highlight is only a small portion of the game. In addition, 

highlight can be detected to provide a tactic for coaching. Based on these motivations, 

development of the highlight semantic exploring system for the baseball games is our 

focus. 

 Because the positions of cameras are fixed in a game and the ways of showing 

game progressing are similar in different TV channels. Each category of semantic 

baseball event usually has a similar shot transition. For example, a typical fly out can 

be composed of a pitch shot followed by an outfield left or center or right shot and 

then a play in grass shot. Based on this observation, many methods are applied on 

semantic baseball event detection such as HMM [5][6][7], temporal feature detection 

[8], BBN (Bayesian Belief Network) [11]. The existing highlight detection and 

classification systems suffer from at least one of the flaws in the following: (1) only 

few highlights or mid-level semantics (lower than highlight semantics) are detected, (2) 

the accuracy of classification is not high enough for practical usage, and (3) time 

complexity is rather high. To solve the problems of existing highlight detection or 

classification systems, high accuracy and more specific highlight especially hitting 

highlight (ball has been hit) detection and classification, is our foremost target. 

 This thesis presents an HMM-based mechanism to detect and classify baseball 

events. To improve the accuracy of baseball event classification and specific baseball 
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event classification, more features and objects (lower than highlight semantics) must 

be detected. Twelve semantic baseball event types in baseball games are defined and 

detected in the proposed system: (1) single (2) double (3) pop up (4) fly out (5) 

ground out (6) two base hit (7) right foul ball (8) left foul ball (9) foul out (10) double 

play (11) home run (12) home base out. Some mid-level semantics are introduced in 

the following section and these mid-level semantics are used to detect and classify 

baseball events. In the proposed framework, highlight detection and baseball event 

classification in broadcast baseball videos will be more powerful and practical, since 

comprehensive and detailed information about the game can be presented to users. 

 The rest of the thesis is organized as the follows. The background and related 

works are introduced in chapter 2. In chapter 3, we introduce the HMM concept used 

in our system. Chapter 4 introduces our proposed system including feature extraction, 

frame classification, baseball event classification. Chapter 5 shows the experimental 

results and discussion. Finally, conclusion and future work are made in chapter 6. 
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Chapter 2 
Background and Related Works 

In chapter 2, the baseball highlight detection in recent years will be introduced. 

First of all, we will describe the hierarchical structure of a baseball game in section 

2-1. In section 2-2, image processing of color space conversion from RGB to HSI is 

introduced to make some tasks easily such as less influence on luminosity. In the 

following sections, some related works in PC (Pitcher and Catcher) shot detection, 

and highlight detection for baseball videos are depicted. 

2.1 Hierarchical Structure of Baseball Game  

A baseball game is composed of some highlights. Highlight is a sequence of 

specific shot transition. A shot consists of several similar frames. Different frames 

have different color distribution, features, and objects (base, line, auditorium, etc.). 

Fig. 2-1 shows the concept about hierarchical structure of a baseball game. 

Fig. 2-1 Hierarchical structure of baseball game. 

2.2 Color Conversion from RGB to HSI 

 In image processing, color is an important feature. The influence on luminosity 

of HSI is less than that of RGB. To make feature extraction or objection detection 

easily, we can use the following formula as described in Fig. 2-2 to convert from 

Frame 

Baseball game 

Highlight Highlight Highlight 

Shot Shot Shot

Frame Frame Frame Frame Frame

Objects, features  Objects, features… 
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RGB to HSI. Similar skill can be found in other sports such as basketball [19]. 
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Fig. 2-2 The conversion from RGB to HSI. 

2.3 Pitcher and Catcher Shot (PC shot) Detection 

Every baseball highlight starts with PC shot and ends up with some specific 

shots or a close-up shot, so the PC shot detection plays an important role in baseball 

highlight detection. The proposed method in [1] based on feature mining can find the 

effective feature types, the location of the features and threshold values during the 

learning process.  

In general, the composition of the PC shot is auditorium, player, soil and grass. 

However, it has some unstable elements. The location and uniform of players would 

be changing. Features without influences on these changes (i.e. location of player) are 

that the PC shot is composed of ground, wall, and audience. To find the features, an 

image is divided into 12 × 8 blocks as shown in Fig. 2-3. 
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Fig. 2-3 The block types in a frame. 

Then we use mean, variance, and log variance on luminosity data to discover the 

effective blocks (effective block will be elaborated later) for PC shot discrimination in 

training data. In experiment, we use four block size as a unit, B1, B2, B3, and B4 to 

calculate the mean, variance, and log variance. Some trends are observed as follows. 

(1) The mean of the luminosity in the ground block, as shown by white dotted line in 

Fig. 2-3, is stable even if a camera shift takes place. 

(2) The variance of the luminosity in the ground block is small because the ground is 

flat in the block. 

(3) In a wall block as shown by white solid line, the variance becomes large due to the 

high texture, but the log variance can be assumed to be stable in the block.  

We assume that fusion of these three features is effective in PC shot discrimination. 

Next, desirable features should be stable at the same location in the training data set, 

so the block with small variance of the feature called effective block in the training 

data is thought of as the best location of those blocks. 

The X-axis of an image is divided into 12 blocks and the Y-axis is divided into 8 

blocks of the image as shown in Fig. 2-3. Four block types B1, B2, B3 and B4 are 

used to search for the effective blocks for PC shot discrimination. The mean Mf,t,z, the 

variance Vf,t,z, and the log variance LVf,t,z computed within the block type t and the 
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location i t
iB , is defined by Eq.(l), Eq.(2), and Eq.(3). Here, t (t = 1~4) and i (i = 

1~96, 1~48, or 1~24 depends on different block type) indicate the block type and 

block position counted from top-left corner in a frame f respectively. Let Gray(x, y) 

denote the luminosity at location (x, y) of the image and |B| denote the number of 

pixels in a block. 
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Let N be the number of PC shots in training data. The variance of the mean in the 

block t
iB  among the training data is defined in Eq. (4). 
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When all itMV ,,  for all t and i are placed in ascending order, the variance at rank n 

is defined as n
MiMtMV ,, . The block Mt

Mi
B at the rank 1 with variance 

1
,, MM itMV is 

regarded as the optimal block in mean luminosity. Max and min value (threshold) of 

block luminance mean 
MiMtfM ,, at frame f in block Mt

Mi
B  is defined by Eq. (5) and 

(6) respectively. 
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Similarly, variance of variance itVV ,,  and variance of log variance itLVV ,,  are 
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calculated respectively. The optimal block in variance and log variance are found of 

rank 1 1
,,

1
,, , itLVitV VV . Max and min value (threshold) of block luminance variance 

and log variance are
min

,
max

,
min

,
max

, ,,,,
,,,

MMMMMMMM itititit LVLVVV . Last, if a test image f’ 

meets the conditions in Eq. (7), the image f’ is viewed as a PC shot. 
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    (7) 

This method [1] showed 95.5% accuracy at F-measure score within 1/30 of real time. 

2.4 Highlight Detection and Classification 

 Highlight detection and classification is a popular issue as a result of the 

following reasons: (1) Provide coach with a guidance of tactic, (2) Make a highlight 

movie, (3) Index each highlight used for baseball event retrieval, and (4) More 

accurate in baseball event classification from baseball game. In the past few years, 

significant research [5, 6, 7, 8, 9, 10, 11] has been devoted to the content analysis of 

baseball game. [5][6][7] use the statistical model of HMM to detect and classify the 

highlights. For example, Chang et al. [5] assumes that most highlights in baseball 

games consist of certain shot types and these shots have similar transition in time. 

Each highlight is described by an HMM as shown in Fig. 2-4 and each hidden state is 

represented by its predefined shot types as shown in Fig. 2-5. Some features are used 

as observations to train the HMM model for highlight recognition. [5][6] use some 

features and shots as observations and states in HMM for highlight classification. 

Low accuracy and few highlight types are the main disadvantages because the 

information is too little to detect various highlights and to get high accuracy. [8] 

records some objects or features such as field type, speech, and camera motion start 
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time and end time to find the frequent temporal patterns as shown in Fig. 2-6 for 

highlight detection and classification. The accuracy in [8] is better than that in [5][6], 

but they use speech, caption and shot as features so that the cost of time complexity is 

high. [9][11] combine some shots such as pitch and catch, infield, outfield, and 

non-field shot with scoreboard as shown in Fig. 2-7 and Fig. 2-8 as medium-level 

cues, and then use Bayesian Belief Network (BBN) structure for highlight 

classification. [10] uses some condition rules for highlight classification. [9][11] use 

scoreboard as additional information so that the accuracy is very high, but the rough 

shot classification lead to the low variety of hitting highlight. 

In this thesis, we will emphasize the variety of baseball events and high accuracy 

via more features and objects exploration. Statistical model HMM is used for 

highlight classification and HMM concept will be elaborated in chapter 3. 

 

Fig. 2-4 Four baseball HMMs defined in [5] (a) nice hit, (b) nice catch, (c)     
         homerun, and (d) the play within the diamond (events occur in infield) 
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Pitch view Catch overview Catch close-up Running overview

Running close-up Audience view Touch base close-up

Pitch view Catch overview Catch close-up Running overview

Running close-up Audience view Touch base close-up  

Fig. 2-5 The seven pre-defined types of shots in [5]. 
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Fig. 2-6 The system overview of highlight detection and classification in [8]. 
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Fig. 2-7 Three shot transition types defined in [11]. 

 

Fig. 2-8 Twelve scoreboards defined in [11]. 
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Chapter 3 
Hidden Markov Model 

Real-world processes generally produce observable outputs which can be 

characterized as signals. Finding the regular rule in those signals is a popular issue in 

real world (e.g., the sequence of instruction in computer, the sequence of speech 

recognition, etc). It is required to build signal models to analyze the real-world signal, 

and then these signal models can be realized into applications in practical systems 

such as prediction system, recognition system, identification system, etc. 

Generally, signal models can be classified into deterministic models, and 

statistical models. In practical systems, deterministic models are used to exploit the 

specific rules of the signal such as traffic light. The current state can be determined 

easily by the previous state. The other case of signal model is statistical model which 

is modeling a wide range of time series data like Poisson process, Markov model, 

Hidden Markov Model and so on. In this case, the next state cannot be determined by 

current state, but a model is still created to estimate signal properties even if the 

model would miss some messages.  

Among statistical models, Hidden Markov model is a powerful statistical model 

for modeling the generative sequence in many fields such as biology, mathematics, 

speech recognition, signal processing. Differing from Markov model, the state is not 

observable. Because features and shot transitions can be viewed as observable outputs 

and states, a highlight can be described by a signal model such as HMM. When an 

observable signal is given, the likelihood was computed by each signal model and the 

best match is the proposed highlight. 

3.1 Element of an HMM 

A Hidden Markov model has several states, each of which has a transition 

probability from current state to next state and the next state is only dependent on the 
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current state. Each state has several output symbols but yields a symbol at one time. 

Each symbol has an output probability and the output symbol at time t is dependent 

only on the current state. Some notations are defined as follows: 

T = length of the observation sequence. 

N = the number of states in the model. 

M = the number of observation symbols. 

The set of N states: { }NqqqQ ,...,, 21=  

The set of M output symbols (observations): { }MvvvV ,...,, 21=  

State ts : Which state belongs to at time t, Qst ∈  (unobservable). For example,  

it qs =  is a representation of staying in state qi at time t. 

The state transition probability: ( ){ }NjiqsqsPaa itjtrijij ≤≤==== + ,1||| 1A  

The output symbol probability: ( ) ( ){ }MkNjqsvPkb jtkrj ≤≤≤≤=== 1,1||B  

The initial probability: ( ){ }NiqsP irii ≤≤=== 1|| 1πππ  

Parameter set of HMM model { }πB,A,λ =   

Observed symbol sequence )(,...,, 21 Tlengthooo T ==O  

A Hidden Markov model can be described by a given tuple λ as shown in Fig. 3-1. 
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Fig. 3-1 Illustration of the concept of HMM 

Figure 3-1 illustrates the HMM concept. Two states q1, q2, and three output 

symbols v1, v2, and v3 are shown. The transition probability from qi to qj is marked as 

directed line aij. Each state could produce an observation at one time and each 

observation is assigned an output probability. 

The first time to enter which state of HMM is stochastically determined by an 

initial state matrix π. The transition probability of each state to other state is 

determined by a transition probability matrix A. If there are N states, the matrix A is 

an N×N matrix. Note that the HMM can transit from a state to itself. Each state of the 

HMM stochastically outputs a symbol at a time determined by a matrix B. If there are 

M output symbols, the matrix B is an N×M matrix. Time from 1 to T, the HMM will 

output symbol Tooo ,...,, 21=O , but the state transition sequence is non-observable. 

A recognition process can be proceeded by given the tuple λ = {A, B, π} of an 

HMM model, and the matrix A, B, and π can be learned in HMM training stage. 
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In recognition process, the HMM with the highest probability will be chosen as a 

recognized result.  Recognizing time-sequential symbols is equivalent to determining 

which HMM produce the output symbols. Section 3.2 and section 3.3 will describe 

the recognition process and the learning process for an HMM signal model. 

3.2 Recognition Process in HMM 

One HMM is created for each category for recognizing time-sequential observed 

symbols. In recognition phase, we will compute the probability Pr(O| λ) for each 

category and the best matches will be chosen as the proposed answer from all HMMs 

of a given observation Tooo ,...,, 21=O . That is, 

Give an observation, Tooo ,...,, 21=O  

Each HMM has a tuple ( )i,, πBA ii
i =λ  Ci ,...,2,1=  (if there are C categories) 

Proposed answer = arg max (Pr (λi| O)) 

The probability of the observation sequence of a given model is equivalent to 

evaluating how well a model predicts a given observation sequence. So now the 

current problem is how to compute the probability Pr (O| λ) of an observation 

sequence O and a given HMM λ. 

The most straightforward way to compute the probability of the observations O 

(O = o1, o2 … oT) for a specific state sequence Q (Q=q1q2q3….qT) is: 

( ) )(...)()(),|(,| 2211
1

TqTqqtt

T

t
obobobqoPQP ×××=∏=

=
λλO                 (8) 

and the probability of the state sequence is: 

( ) qTqTqqqqqqq aaaaQP 14332211 ...| −= πλ                                    (9) 

So we can calculate the probability of the observations given the model as: 

( ) ( ) ( ) )(...)()(|,|| 1322221

...21

111 TqTqTqTqqqqq

pathallqTqq

qq
Q

obaaobaobQPQPP −

∈

∑∑ == πλλλ OO  (10) 

The problem Pr (O| λ) can be solved by the Eq. (10), but the number of operations 
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involved in the calculation is in the order of NT. This is very time consuming even if 

the length of the sequence T is moderate. 

It is observed that many redundant calculations would be made by directly 

evaluating Eq. (10), and therefore caching the intermediate calculations can result in 

time complexity reduction. The cache is implemented as a trellis of states at each time 

stage, calculating the cached value (called α) for each state as a sum over all states at 

the previous time step. α is the probability of the partial observation sequence 

o1 o2 … ot in state qi at time t. The concept is shown in Fig. 3-2 and the forward 

probability variable is defined in Eq. (11). 

( ) ( )λα |,,...,, 21 ittrt qsoooPi ==       (11) 

Eq. (11) describes the probability of the partial observation sequence from 1 to t, 

ending in state qi. 

( )21α

… t = T

( )11α

( )21α

( )31α

( )41α

( )12α

( )22α

( )32α

( )42α

( )13α

( )23α

( )33α

( )43α

( )14α

( )24α

( )34α

( )44α

( )21α
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Fig. 3-2 Illustration of the forward algorithm of variable ( )itα  

… t = T 
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In Fig. 3-2, in each time step, the partial probability αt of each state (trellis) is filled 

and the sum of the final column of the trellis will equal the probability of the 

observation sequence. The algorithm for this process is called the forward algorithm 

and is as follows: 

1. Initialization 

( ) ( ) Niobi ii ≤≤= 1,11 πα                    (12) 

2. Induction 

( ) ( ) ( ) NjTtobaij tj

N

i
ijtt ≤≤<≤⎥
⎦

⎤
⎢
⎣

⎡
= +

=
+ ∑ 1,11

1
1 αα        (13) 

3. Termination 

( ) ( )∑
=

=
N

i
T iP

1

| αλO                      (14) 

The induction step is the key to the forward algorithm as shown in Fig. 3-3. In Eq(13), 

index j and i represent the current state index and previous state index respectively. 

For each state qj, αt(j) stores the probability of arriving in that state having observed 

the observation sequence up to time T. In termination step, adding up each forward 

partial variable σT is the probability of the observation produced from the HMM 

model. It is obvious that by caching α values the forward algorithm reduces the time 

complexity of calculations involved from 2TNT to N2T. 
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qN qN

qj
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q2

q3

qN qN

qj

qi

 

Fig 3-3 The induction step of the forward algorithm 

Recognition Process also can be fast solved by backward probability variable 

similar to forward probability variable αt and the backward probability variable is 

defined in Eq. (15). 

( ) ( )λβ ,|...21 itTttt qsoooPi == ++                               (15) 

Eq. (15) describes the probability of the partial observation sequence from time t + 1 

to T, starting in state qi. The algorithm for this process is called the backward 

algorithm and is as follows: 

1. Initialization 

( ) 1=iTβ       Ni ≤≤1                 (16) 

2. Induction 

( ) ( ) ( ) NiTtobjaj tj

N

j
tijt ≤≤<≤= +

=
+∑ 1,1,1

1
1ββ      (17) 
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3. Termination 

( ) ( ) ( )∑
=

=
N

i
ii iobP

1
11| βπλO                    (18) 

The initialization step defines βT(i) to be 1 for all state i at time T. The induction step 

computes the partial probability of all states at time t from time t+1 as shown in Fig. 

3-4. All possible states qi at time t+1 account for the transition from qi to qj (the aij 

term), as well as the observation ot+1 in state j (the bj(ot+1) term), and then account for 

the remaining partial observation sequence from state j (the βt+1(i) term). In 

termination step, calculate ( ) ( )∑
=

N

i
ii iob

1
11 βπ  for all state i at time step 1. 
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Fig. 3-4 The induction step of the backward algorithm. 

We can solve the recognition process problem in time complexity N2T by using 

forward algorithm or backward algorithm. Each HMM will output a probability and 
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the best match will be chosen as a recognized result. 

3.3 HMM Training (learning) 

The most difficult problem of HMMs is to determine a method to adjust the 

model parameters λ = (A, B, π) to maximize the probability of the observation 

sequence given the model. Given any finite observation sequence as training data, 

there is no optimal method to estimate the model parameter. However, we can use an 

iterative procedure such as Segmental K-means algorithm [13] or Baum-Welch 

algorithm [18] to maximize ( )λ|, IP O  (I is the optimal state sequence) or ( )λ|OP . In 

Segmental K-means algorithm the parameters of the model λ = (A, B, π) are adjusted 

to maximize ( )λ|, IP O  where I here is the optimal state sequence as given by the 

Viterbi algorithm [14]. In Baum-Welch re-estimation, here parameter of the model λ = 

(A, B, π) are adjusted so as to increase ( )λ|OP  until a maximum value is reached. 

As seen before, calculating ( )λ|OP  involves summing up ( )λ|,QP O  over all 

possible state sequence ( )TqqqqQQ ...321= . Hence Baum-Welch algorithm dose not 

focus on a particular state sequence. The two methods will be described as follows 

respectively. 

K-means algorithm takes us from kλ  to 1+kλ (iteration k to k+1) such that 

( ) ( )1*
1

* |,|, +
+≤ k

k
k

k λIPλIP OO  where, *
kI  is the optimum state sequence for 

Tooo ...,, 21=O and kλ , found according to the Viterbi algorithm. The criterion of 

optimization is called the maximum state optimized likelihood criterion. This 

function ( ) ( )λλ |,max|, * IPIP I OO =  is called the state optimized likelihood 

function. Training the model in K-means Algorithm, a number of (training) 

observation sequences are required. Let there be w sequences available. Each 

sequence consists of T observation and each observation symbol ( )io  is assumed to 

be a vector of dimension D ( )1≥D . K-means Algorithm then consists of the following 
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steps: 

1. Randomly choose N observation symbols (map vector of dimension D to symbol 

by rule table) and assign each of the wT observation symbols to one of these N 

symbols from which its Euclidean distance is minimal. Hence we have formed N 

clusters, each of which is called a state (1 to N). We can divide those training data 

into N groups and pick one observation vector from each group. Of course this 

method is just to make the initial choice of states as widely distributed as possible. 

2. Calculate the initial probabilities and the transition probabilities. i, and j represent 

the current state index and next state index and t represents time from 1 to T-1: 

sequence ofnumber  Total

o of soccurrence ofNumber 1
⎭
⎬
⎫

⎩
⎨
⎧ ∈

=
istate

iπ , Ni ≤≤1          (19) 

⎭
⎬
⎫

⎩
⎨
⎧ ∈

⎭
⎬
⎫

⎩
⎨
⎧ ∈∈

=
+

istate

jstateoistate
a

t

ij

t

1t

o of soccurrencenumber  Total

,o of soccurrence ofNumber 
    

Ni ≤≤1 , Nj≤≤1                                           (20) 

3. Calculate the mean vector and the covariance matrix for each state: for Ni ≤≤1  

i, and j represents current and next state index, t represents time from 1 to T: 

∑
∈

=
istateo
ti

t

o
N
1μ                                      (21) 

( ) ( )∑
∈

−−=
istateo

it
T

iti

t

oo
N

V μμ1
                  (22) 

4. Calculate the symbol probability distributions for each training vector for each 

state as (assume Gaussian distribution – change the formulas below for the 

particular probability distribution that suits problem). For Ni ≤≤1 , i represents 

state index and t represents time from 1 to T 
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( )
( )

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −−−=

− T

itiit

i
Dti oVo

V
ob μμ

π

1

2/12/ 2
1exp

2

1               (23) 

5. Find the optimal state sequence *I (as given by Viterbi algorithm) for each 

training sequence using ( )πBA ,,=λ  computed in step2 to 4 above. 

πB,A, and are the new state transition, output symbol, and initial state 

probability respectively from re-estimation. Each observation symbol is 

reassigned a state if its original assignment is different from the corresponding 

estimated optimum state. 

6. If any observation symbol is reassigned a new state in step5, use the new 

assignment and repeat step2 through step6; otherwise, stop. 

It can be shown in [15] that Segmental K-means algorithm converges to the 

state-optimized likelihood function for a wide range of observation density functions 

including Gaussian density function. 

The second method is called Baum-Welch algorithm, assuming that an initial 

model can be improved upon by using the Eq. (30)-(32). An initial HMM can be 

constructed in any way such as random generation, but we may use the first five steps 

of the Segmental K-means algorithm described above to give us a reasonable initial 

estimate of the HMM and use Baum-Welch algorithm to re-estimate. Before we get 

down to the actual Eq. (30)-(32) of Baum-Welch algorithm, some concepts and 

notations should be introduced that shall be required in the final Eq. (30)-(32). 

The forward-backward variable γt is defined in Eq. (24). 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )∑
=

==== N

i
tt

tttt
Titt

ii

ii
P

ii
oooqsPi

1

21 |
,,...,|

βα

βα
λ

βα
λγ

O
            (24) 

Eq. (24) describes the probability of being at state qi in time t. To describe the 

procedure of re-estimation (iterative update and improvement) of HMM parameter, 
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the variable ( )jit ,ε was defined in Eq. (25) and Eq. (25) describes the probability of 

being at state qi in time t and at state qj in time t+1. 

( ) ( )λε ,|,, 1 Ojtit qsqsPjit === +             (25) 

The sequence of events leading to the conditions required by Eq. (25) is illustrated in 

Fig. 3-5. It should be clear, from the definitions of the forward variable αt(i) and 

backward variable βt(i), that we can re-write Eq. (25) in the following form 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )∑∑
= =

++

++++ == N

i

N

j
ttjijt

ttjijtttjijt

jobai

jobai
P

jobai
jit

1 1
11

1111

|
,

βα

βα
λ
βα

ε
O   (26) 

where the numerator term is just ( )λ,|, 1 Ojtit qsqsP == + and the division by ( )λ|OP  

gives the desired probability measure. 
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Fig. 3-5 Illustration of the sequence of operations required for the computation    

       of the joint event that the system is in state qi at time t and qj at time t+1 

If we sum up forward-backward variable γt(i) from t=1 to T at each state i, we get a 

quantity which can be viewed as the expected number of times that state qi is visited, 

or if we sum up only to T-1 then we shall get the expected number of transitions out 

of state qi (as no transition is made at t = T). Similarly if ( )jit ,ε  be summed up from 

t=1 to T-1, we shall get the expected number of transitions from state qi to state qj. 

Hence 
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( )  visited.is q state  timesofnumber  expected i
1

=∑
=

T

t
t iγ   (27) 

( ) =∑
−

=

1

1

T

t
t iγ iq fromn  transitioofnumber  expected    (28) 

( ) =∑
−

=

1

1

,
T

t
t jiε .q  toq from ns transitioofnumber  expected ji  (29) 

Using above formulas we can give a method for re-estimation of the parameter of an 

HMM. A set of reasonable re-estimation formulas for πB,A, and are 

),

(

matrixyprobabilitstateinitialnewisandmatrixondistributi

symboloutputnewismatrixyprobabilittransitionstate newis

π

B,A
 

(i).  1)at time(t q statein  being   timesofnumber  expected 1i γπ ===i          (30) 

(index i represents the state i) 
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exp
exp

a

T

t
t

T

t
t

i

ji

i

ji

qstatefromstransitionofnumberected
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=
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kb

γ

γ  (32) 

If the initial model λ = (A, B, π) is defined, we use Eq. (27)-(29) to compute the 

right hand sides of Eq. (30)-(32) for ( )π,B,A=λ . Baum and his colleagues prove 

that either (1) the initial model λ defined a critical point of the likelihood function, in 

which case λ =λ; or (2) model λ  is more likely than model λ in the sense 

that ( ) ( )λλ || OO PP > , i.e. a new model λ  has been found from which the 
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observation sequence is more likely to have been produced. We can improve the 

probability of O which is being observed from the model if we repeat the above 

procedure and use λ  to replace the λ several times until some limiting point is 

reached. The final result of re-estimation is called a maximum likelihood estimate of 

the HMM. 
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Chapter 4 
Proposed scheme for Event classification 

4.1 Overview of Proposed Scheme 

Overview of the proposed semantic baseball event classification is depicted in 

Fig. 4-1(a), and Fig. 4-1(b). The process can roughly be divided into two steps: 

training step and classification step. In training step, each type as listed in Table 4-2 

of indexed baseball event was input as training data for each highlight classifier. In 

classification step, when each observation symbol sequence of unknown clip was 

input, each highlight classifier will evaluate how well a model predicts a given 

observation sequence. 

HMM
training

1.Training Step
Several indexed baseball 
clips in each type

Color
conversion

Object
detection

Until the last key frame

Frame 
classification

Rule
table

HMM 1

HMM 2

HMM 3
.
.
.

HMM 12
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Fig. 4-1(a) Overview of the training step in proposed baseball event classification 

2.Event classification step
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Fig. 4-1(b) Overview of the classification step in proposed baseball event 

classification 

Each highlight clip as input starts with a PC shot and ends up with a close-up 

shot or a specific shot depending on different baseball event type. There are 
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considerably many uninteresting segments in a baseball game video (e.g., 

commercials). Hence, some pre-processing schemes such as PC shot [1] and close-up 

shot detection are needed to trim out these segments. 

As the section 2-1 described, a highlight is composed of some shots, each of 

which consists of several objects and features. To classify highlight, some tasks such 

as object and feature detection should be solved in the preliminary. In order to make 

the object detection easily, techniques of image processing are applied. An 

observation sequence is generated after feature extraction and object detection. 

Symbols mapped from feature vector by rule table are used as observations, and the 

number of states represented as shots are empirically determined. Then, we use 

Segmental K-means algorithm to create an initial HMM parameter λ and 

Baum-Welch algorithm to re-estimate highlight HMM parameter λ . In classification 

step, an observations sequence is generated after feature extraction and object 

detection, too. Each event of baseball highlight HMM will output a probability and 

the best match will be chosen as the proposed answer. Extracted features and detected 

objects are used for frame classification by a rule table as listed in Table 4-1 modified 

from [4] for the purpose of realizing the transition of shots. Details of the proposed 

approaches are described in the following sections. Section 4-2 introduces the color 

conversion. Section 4-3 describes object and feature detection. Section 4-4 describes 

frame classification. Section 4-5 and section 4-6 describe HMM learning and 

recognition of baseball event. 

4.2 Color Conversion from RGB to HSI for Feature Extraction 

 In image processing or analysis, color is an important feature for our proposed 

object detection and feature (the percentage of grass and soil) extraction. However, 

the color of each baseball game in frames might vary because of the different angles 

of view and lighting conditions. To obtain the color distribution of grass and soil in 
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video frames, several baseball clips from different video source composed of grass 

and soil are input to produce the color histograms including RGB and HSI color space. 

Fig. 4-2 takes two different baseball clips from different source as examples. Owing 

to the discrimination the Hue value in HSI color space is selected as the color feature, 

and the grass (green) and soil (brown) color range [Ha1,Hb1],[Ha2,Hb2] are set. 

 

H S I H S I

R G B R G B

soil grass soil grassH S I H S I

R G B R G B

H S I H S IH S IH S I H S IH S I

R G BR G B R G BR G B

soil grass soil grass

 

(a) clip 1                       (b) clip 2  

Fig. 4-2 The color space of RGB and HSI of two baseball clips. 

After the grass and soil color range are set, the dominant color of green and 

brown is found. All colors except for green and brown are mapped to black as shown 

in Fig. 4-3. 

 

Fig. 4-3 The process of finding dominant colors. 

4.3 Object (spatial) Detection 
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The baseball field is characterized by a well-defined layout of specific colors as 

described in Fig. 4-4. Furthermore, important lines and the bases are in white color, 

and auditorium (AT) is of high texture and no dominant color as shown in Fig. 4-4(b). 

L-AT R-ATL-AT R-AT
 

(a) Full view of real baseball field  (b) Illustration of baseball field 
Figure 4-4 The field objects and features. 

Each object will be elaborated as follows. 

(1) Back auditorium (AT):  

The top area which contains high texture and no dominant colors is considered as the 

auditorium, as the black area above the white horizontal line in Fig. 4-5(a). 

(2) Left auditorium (L-AT) and right auditorium (R-AT): 

The left area and right area which contains high texture and no dominant colors is 

considered as the left auditorium and right auditorium, as the left black area and the 

right black area marked with the white vertical line in Fig. 4-5 (b) and Fig. 4-5 (c). 

(a) (b) (c)(a) (b) (c)
 

Fig. 4-5 Illustration of (a) back auditorium (b) left auditorium (c) right 
auditorium 
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(3) Left line (LL) and right line (RL) : 

A Ransac algorithm, which finds the line parameter of line segments [12], is applied 

to the line pixels and then finds the left or right line. The line pixel is high intensity 

pixel greater than threshold σl excluding pixels in large white area and auditorium 

area. Either two pixels at a horizontal distance of ±τ pixels or at a vertical distance of 

±τ pixels must be darker than σd, where σd << σl. Fig. 4-6 shows the concept of 

excluding white area. The parameter τ should be set to approximately the double court 

line width. As illustrated in Fig 4-6, each square represents one pixel and the central 

one drawn in gray is a candidate pixel. Assuming that white lines are typically no 

wider than τ pixels (τ = 6 in our system), we check the four pixels, marked ‘V’ and 

‘H’, at a distance of τ pixel away from the candidate pixel on the four directions. The 

central candidate pixel is identified as a white line pixel only if both pixels marked 

‘H’ or both pixels marked ‘V’ are with lower brightness than the candidate pixel.  

 

Fig. 4-6 Line pixel detection excluding large white area. 

This process prevents that white pixels are extracted in large white areas including 

auditorium area or white uniforms. Fig. 4-7 is an example of line pixel detection.  

Fig. 4-7 (b) shows that the intensity of pixels higher than a threshold of I component 

in HSI color space and Fig. 4-7 (c) shows that the remaining high intensity pixels 

after line pixel detection. In Fig. 4-7 (c), the high intensity pixels in pitch mound and 
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auditorium area is vanished. 

 

Fig. 4-7 The result of retained high intensity pixel after line pixel detection 

algorithm: (a) original data (b) high intensity pixel before line pixel 

detection (c) high intensity data after line pixel detection 

After line pixel detection, the Ransac algorithm is applied to find line parameter as 

shown in Fig. 4-8. In Fig 4-8(a), the black point represents the high intensity pixel 

after the line pixel detection. In Fig 4-8 (b), two points are randomly chosen and the 

red line is the line passing through the two points. In a specific area (the distance 

between the point and the line is less than 2, τ = 4), the high intensity pixel will be 

accumulated denoted a score in this time. The action will repeat until the number of 

remaining high intensity pixel is less than N or the pre-defined iterative number is 

reached. Finally, the highest score and the line parameter will be stored as the 

proposed line in Fig 4-8 (c) and Fig. 4-8 (d). 

(c) (b)(a) 
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Fig. 4-8 Ransac algorithm for finding line parameter. 

(4) Pitch mound (PM):  

An ellipse soil region surrounded by a grass region would be recognized as 

pitcher’s mound as shown in Fig. 4-9. Bounding box is applied to ellipse detection. 

The procedure is described as follows. (1) stop at a brown pixel, (2) find the upper, 

lower, left, and right bound stopped at the first green pixel in upper, lower, left, and 

right direction, (3) count the brown pixel percentage in the bounding box, and (4) the 

percentage in specific range will be considered a ellipse. Some illegal ellipse could fit 

the proportion of soil in bounding box. The illegal ellipse should be deleted to 

improve the frame classification and baseball event classification. A threshold of the 

brown pixel difference will be set in diagonal lines, upper and lower region, and right 

and left region as shown in Fig. 4-10. In Fig. 4-10, only Fig. 4-10(c) is a correct 

ellipse. 

(5) First base (1B) and third base (3B): 

The square region located on right line, if detected, in soil region would be identified 

as first base as shown in Fig. 4-9. Similarly, the square region located on left line, if 

detected, in soil region would be identified as third base. 

(6) second base (2B): 
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In a soil region, a white square region on neither field line would be identified as 

second base as shown in Fig. 4-9. 

(7) home base (HB): 

Home base is located on the region of the intersection between left line and right line 

as shown in Fig. 4-9. 

2B

1B

RL
HB

LL

PM

2B

1B

RL
HB

LL

PM

 

Fig. 4-9 Shows the objects of 1B, 2B, HB, LL, RL, and PM. 

(a) (b) (c)(a) (b) (c)
 

Fig. 4-10 Deletion of illegal ellipse 

4.4 Frame Classification 

Classification is divided into two orientations in this approach, one is frame type 

classification by using rule table as listed in Table 4-1 modified from [4], and another 

is baseball event classification by using HMM. The classification of frame types can 

assist in realizing the shot transition or for other purposes. Sixteen frame types are 

defined and classified based on the position or percentage of some objects and 

features as described in section 4-3 in rule table. Sixteen typical region types is: IL 

(infield left), IC (infield center), IR (infield), B1 (first base), B2 (second base), B3 

(third base), OL (outfield left), OC (outfield center), OR (outfield right), PS (play in 
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soil), PG (play in grass), AD (audience), RAD (right audience), LAD (left audience), 

CU (close-up), and TB (touch base), as shown in Fig. 4-11. 

RAD: right audienceLAD: left audience TB: touch base CU: close-upRAD: right audienceLAD: left audience TB: touch base CU: close-up  

Fig. 4-11: Sixteen typical frame types 

The rules of frame type classification are listed in Table 4-1 modified from [4]. 

The symbols of first column are our sixteen defined frame type (IR, IC…) as shown 

in Fig. 4-11. Wf is the frame width, the function P(Area) return the percentage of the 

area Area in a frame, X(Obj) returns the x-coordinate of the center of the field object 

Obj, and W(Obj) returns true if the object Obj exists. Each field frame is classified 

into one of sixteen frame types using rule table (Table 4-1 modified from [4]). For 

example: a field frame would be classified as B1 frame type if the frame meets the 

following conditions: The percentage of AT is no more than 10%, the object of PM 

does not exist, the object of  RL and 1B must exist, the percentage of soil is more 

than 30%. 
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unknown others 

Table 4-1 Rules of frame type classification modified from [4]. 

Each frame is first recognized by the distribution of dominant color and white 
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pixels (intensity data). After object detection and looking up the rule table, we can 

know the detected objects and features in each frame and shot transition represented 

as an annotated string as shown in Fig. 4-12. The content of the sample field shot in 

Fig.4-12 says that the ball is first batted into the left infield. Then, the shortstop picks 

up the ball and throws it to the first baseman. The batting process can be appropriately 

abstracted by the output string: IL (infield left)  PS (player in soil)  B1 (first 

base). In order to filter out the misclassifications of frame types within a shot, some 

regular rules are applied. For example, the shot transition IC  IR (or PS)  B1 

appears frequently in the baseball event of ground out. When the current frame type is 

not IR or PS, but the previous frame type is IC and the next frame type is B1, the 

system will change the current type from incorrect type to IR. The regular rule is a set 

created previously from observation. 

… … …

………

Frame (play region type) classification

IL                         IL PS                          B1

LL,RL,PM,B2
Grass>60%,soil<30%

LL,PM
Grass>60%,soil>30% Grass<60%,soil>30% RL,B1

Grass<60%,soil>30%

… … …

………

Frame (play region type) classification

IL                         IL PS                          B1

LL,RL,PM,B2
Grass>60%,soil<30%

LL,PM
Grass>60%,soil>30% Grass<60%,soil>30% RL,B1

Grass<60%,soil>30%
 

Fig. 4-12 Illustration of the annotated string of ground out example after frame 

classification 

4.5 HMM Learning for Each Baseball Event 

One HMM is created for each baseball event for recognizing time-sequential 

observed symbols. In our proposed method, twelve baseball events listed in Table 4-2 
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are defined so that there are twelve HMMs. Given a set of training data from each 

type of baseball event, we want to estimate the model parameters λ = (A, B, π) that 

best describe that each baseball event. First of all, Segmental K-means algorithm is 

used to create an initial HMM parameter λ and then Baum-Welch algorithm as 

described in section 3-3 is applied to re-estimate each HMM parameters ( )πBA ,,=λ  

of baseball event. 

Single  Right foul ball 

Double  Left foul ball 

Pop up Foul out 

Fly out Double play 

Ground out Home run 

Two-base out Home base out 

Table 4-2 List of twelve baseball events 

In our proposed method, two features such as grass and soil, and ten objects as 

shown in Fig. 4-4(b) are used as observations represented as a 1×12 vector to record 

whether the object appears or not. To apply HMM to time-sequential video, the 

extracted features represented as a vector sequence must be transformed into a symbol 

sequence by rule table as listed in Table 4-1 for later baseball event recognition. This 

is a well known technique, called vector quantization [17]. For vector quantization, 

codewords n
j Rg ∈  represents an observation vector in the feature nR  space. 

Codeword jg  is assigned to symbol jv . Consequently, the size of code book equals 

the number of HMM output symbols. Sixteen shots as shown in Fig. 4-11 are viewed 

as hidden states. 

Conventional implementation issues in HMM include (1) number of states, (2) 
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initialization, and (3) distribution of observation at each state. The first problem of 

determining the number of states is determined empirically and differs from each 

baseball event. The second problem can be approached by random initialization or 

using Segmental K-mean algorithm as described in section 3-3. Finally, the last 

problem can be solved by trying several models such as Gaussian model and choose 

the best one. In our approach, we choose Gaussian distribution. The following is the 

detailed description of each essential element. 

State S: The number of states is selected empirically depending on different baseball 

event and each hidden state represents a shot type. 

Observation O: the symbol mapped from rule table. 

Observation distribution matrix B: use K-means algorithm and choose the 

Gaussian distribution at each state [15].  

Transition probability matrix A: the state transition probability, which can be 

learned by Segmental K-means algorithm. 

Initial state probability matrix π: the probability of occurrence of the first state, 

which is initialized by Segmental K-means algorithm after determining the number of 

states. 

After determining the number of states and setting the initial tuple λ, to maximize 

the probability of the observation sequence given the model, we can use the 

Baum-Welch algorithm as described in section 3-3 to re-estimate the HMM 

parameterλ . The initial probability, transition probability, output symbol distribution 

can be re-estimated by Eq. (30) (31) (32) and then replace initial tuple λwith λ . A 

detail procedure is shown in Table 4-3: 
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Input: a set of observed symbol sequences (mapped by rule table) wOOO ...21 , and 
number of states are determined as input parameter. 

Initialization: use Segmental K-means algorithm to compute initial λ and compute 

score:   Score = ( )∑
w

wOP
1

| λ  

Repeat { 
For each observed sequence wO  { 

  Using the given λ to calculate the following variable: 
( )itα  at each time t, state i using forward algorithm by Eq. (12) (13) 

  ( )itβ  at each time t, state i using backward algorithm by Eq. (16) (17) 
  ( )itγ  at each time t, state i by Eq. (24)  
  ( )itε  at each time t, state transition from i to j by Eq. (26) 

} 

Calculate ( )∑
=

T

t
t i

1
γ , ( )∑

−

=

1

1

T

t
t iγ , ( )∑

−

=

1

1
,

T

t
t jiε  by Eq. (27) (28) (29) 

Re-estimate ( )πλ ,, BA=  by Eq. (30) (31) (32) 

 Score’ = ( )∑
w

wOP
1

| λ  

 If Score’ < Score  
Jump from Repeat loop 

Else { 
     Score = Score’ 
     λλ =  
} 

} 

Table 4-3 HMM for baseball event learning 

4.6 Baseball Event Recognition 

The idea behind using the HMMs is to construct a model for each of the baseball 

event that we want to recognize. HMMs give a state based representation for each 

highlight. After training each baseball event model, we calculate the probability 

( )iP λ|O  of a given unknown symbol sequence O for each highlight model iλ . We 

can then recognize the baseball event as being the one by the highest probable 

baseball event HMM. 
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Chapter 5 
Experimental Result and Discussion 

 To test the performance of baseball event classification, we implement a system 

capable of recognizing twelve different types of baseball events. The test contains two 

parts: (1) frame type recognition (2) baseball event type recognition. The test data 

source can be divided into two groups, one is manual clips, and another is 

auto-segmented clips. In the first group, all clips are hand cut. In the second group, an 

ending point of clip is determined by detected close-up or specific shot. All video 

sources are Major League Baseball (MLB). 120 baseball clips from three different 

MLB video sources as training data and 122 baseball clips from two different MLB 

video sources as test data. The experimental result is shown in the following sections. 

5.1 Frame Classification 

The proposed frame classification system has been tested on Major League 

Baseball of broadcast baseball video. The categories to be recognized are sixteen 

frame types: ‘infield left’ (IL), ‘infield center’ (IC), ‘infield right’ (IR), ‘first base’ 

(B1), ‘second base’ (B2), ’third base’ (B3), ‘outfield left’ (OL), ‘outfield center’ (OC), 

‘outfield right’ (OR), ‘audience’ (AD), ‘left audience’ (L-AD), ‘right audience’ 

(R-AD), ‘play in soil’ (PS), ‘play in grass’ (PG), ‘touch base’ (TB). The video source 

was gotten from three different Major League Baseball games of broadcast video and 

digitized into 352×240 pixel resolution. The experimental result of frame type 

classification is in the Table 5-1 and Table 5-2. Table 5-1 shows the precision and 

recall of each frame type from clips manually clipped from broadcast video. Table 

5-2 shows the precision and recall of each frame type from clips automatically clipped 

from broadcast video. 
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Frame 
type 

total correct false Precision (%) Recall (%) 

IL 38 36 1 97.3 94.7 
IR 91 90 3 96.8 98.9 
IC 81 79 2 97.5 97.5 
OL 51 47 2 95.6 92.2 
OR 71 68 2 97.1 95.8 
OC 67 61 5 92.4 91.0 
B1 197 196 2 99.0 99.5 
B2 48 39 5 88.6 81.3 
B3 42 41 4 91.1 97.6 
AD 72 72 1 98.6 100 
TB 78 68 5 93.2 87.1 
PG 377 366 21 94.5 97.1 
PS 118 108 14 88.5 91.5 
R-AD 69 69 0 100.0 100.0 
L-AD 51 51 0 100.0 100.0 
CU 95 89 6 93.7 93.7 

Table 5-1 Recognition of frame types manually clipping 

Frame type total correct false Precision (%) Recall (%) 
IL 61 55 2 96.5 90.2 
IR 96 92 3 96.8 95.8 
IC 81 79 3 96.3 97.5 
OL 55 51 4 92.0 92.7 
OR 76 73 2 97.3 96.1 
OC 76 68 9 89.5 88.3 
B1 318 301 6 98.0 94.7 
B2 60 50 7 87.7 83.3 
B3 42 41 4 91.1 97.6 
AD 96 88 14 86.3 91.7 
TB 83 68 5 93.2 81.9 
PG 509 485 44 91.7 95.3 
PS 168 155 29 84.2 92.3 
R-AD 81 81 4 95.3 100 
L-AD 73 73 5 93.6 100 
CU 117 109 11 90.8 93.2 

Table 5-2 Recognition of frame types automatically clipping 
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The second column “total” represents the total number of field shots containing 

the frame type designated in the first column. Note that a field shot might comprise 

more than one frame type. The “correct” and “false” represent the number of correct 

detections and false alarms. Both the precision and recall are about 90% except for the 

precision of B2 (second base), AD (audience), PS (player in soil) and the recall of OC 

(outfield center), B2 (second base), TB (touch base). 

The low recall rate of frame type B2 and OC might result from the missed 

detection of field object 2B. The low recall rate of frame type TB (touch base) might 

be that TB and AD are similar because both TB and AD have large area of auditorium 

and we don’t detect the object of player in this proposed method. The low precision 

rate of frame type B2 might result from the incorrect detection of field object 2B. 

Sometimes the ball on soil is detected as a 2B (second base). The low precision rate of 

frame type AD (audience) might result from the incorrect classification between AD 

and TB. The low precision rate of frame type PS (play in soil) might result from the 

incorrect classification between PS and B2 (sometimes a frame of miss detection of 

object 2B will be classified into frame type of PS). These could be improved by 

enhancing field object detection and refining the rules of frame type classification. 

Overall, we achieve good performance about 90%. 

5.2 Baseball Event Classification 

The proposed baseball event classification system has been tested on Major 

League Baseball of broadcast baseball video. The categories to be recognized are 

twelve types of baseball events: single, double, pop up, fly out, foul out, ground out, 

two-base out, right foul ball, left foul ball, double play, home run, and home base out 

as described in Table 4-2. The video source was gotten from three different Major 

League Baseball games of broadcast video and digitized into 352×240 pixel 

resolution. The experimental result of baseball event type classification is in the 
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Table 5-3 and Table 5-4. Table 5-3 shows the precision and recall of clips manually 

clipped from broadcast videos. Table 5-4 shows the precision and recall of clips 

automatically clipped from broadcast video. 

Event type Total Correct false Precision 
(%) 

Recall 
(%) 

Single 25 20 1 95.2 80.0 
double 8 2 1 66.7 25.0 
Pop up 7 7 2 77.8 100.0 
Fly out 22 21 4 84.0 95.5 
Foul out 1 1 0 100.0 100.0 
Ground out 29 27 3 90.0 93.1 
Two-base out 4 4 0 100.0 100.0 
Right foul ball 12 12 0 100.0 100.0 
Left foul ball 6 6 2 75.0 100.0 
Double play 1 1 2 33.3 100 
Home run 6 5 1 85.7 83.3 
Home base out 1 1 0 100.0 100.0 
Total 122 106   87.3 

Table 5-3 Recognition of baseball events manually clipping 
Event type Total Correct false Precision 

(%) 
Recall 
(%) 

Single 25 20 3 87.0 80.0 
double 8 2 1 66.7 25.0 
Pop up 7 7 2 77.8 100.0 
Fly out 22 19 5 86.4 79.2 
Foul out 1 1 0 100.0 100.0 
Ground out 29 27 4 87.1 93.1 
Two-base out 4 2 0 100.0 50.0 
Right foul ball 12 12 0 100.0 100.0 
Left foul ball 6 6 2 75.0 100.0 
Double play 1 1 2 33.3 100.0 
Home run 6 5 1 85.7 83.3 
Home base out 1 1 0 100.0 100.0 
Total 122 102   84.4 

Table 5-4 Recognition of baseball events automatically clipping 
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 Both the precision and recall are about 80% except for the precision of double, 

double play and the recall of double, two-base out. The low recall rate of baseball 

event double and two-base out might result from the missed detection of field object 

2B. The low precision rate of baseball event double might be that the transitions of 

double and Home run are similar if the batter hits the ball to the audience wall. 

The low precision rate of baseball event double play might be that the transitions 

of double play and ground out are similar if the batter hits the ball around the second 

base as shown in Fig. 5-1. Fig. 5-2 shows the miss detection of right foul ball and 

home run due to the similar shot transition. Fig. 5-3 shows some ambiguities in nature 

of baseball events such as ground out and left foul ball even if those baseball events 

are judged by people. Fig. 5-4 shows miss detection between single and ground out 

because the player in first base does not catch the ball and we do not detect the ball 

object. 

The miss detection of highlights can be classified into four reasons: (1) similar 

shot transition, (2) miss object detection, (3) detected objects are not enough, and (4) 

ambiguity in nature. These could be improved by detecting the object of ball and 

players, or add additional information such as scoreboard information. Overall, we 

still achieve good performance. 

(a)

(b)

(a)

(b)  

Fig. 5-1 Comparison between (a) ground out and (b) double play 
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(a)

(b)

(a)

(b)  

Fig. 5-2 Comparison between (a) right foul ball and (b) home run 

(a)

(b)

(a)

(b)  
Fig. 5-3 Ambiguity of (a) left foul ball (b) replay of left foul ball 

 

Fig. 5-4 Ambiguity of ground out and single 

5.3 Other Discussions 

In the line detection in section 4.3, lines are detected by Ransac algorithm rather 

than Hough transform. Hough transform can detect most of lines in a frame, but the 

time complexity is too complicated. Ransac algorithm can find “apparent” lines. The 

time complexity depends on the number of line pixels. In baseball game, the most 

important lines are left line and right line. The left line or right line in each frame of 

baseball game is marked with white color. The number of lines is not too many and 
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the lines are apparent in baseball field. According to the observation, we adopt Ransac 

algorithm to do line detection. The algorithm is applied in other sports such as tennis 

[12]. 

 Second base detection in section 4.3, some conditions will be viewed as second 

base as shown in Fig. 5-5. 

 

Fig. 5-5 Ambiguity in second base 

We should set a threshold of region size of second base, but it is very difficult to set 

the boundary because the size of second base varies in each frame due to the zooming 

of the camera. It is also the main reason of poor detection in B2 frame type 

classification. 

 Determining the type of Markov model is also an important issue in our system. 

The original Hidden Markov model is shown in Fig. 5-6. At the same time, the 

complicated model can be simplified to left-to-right Hidden Markov model as shown 

in Fig. 5-7 and the model is applied extensively in speech recognition. In baseball 

game, baseball events are usually composed of several shots and each baseball event 

has specific shot transition. Take four baseball events in Fig. 2-4 [5] as an example. 

Some phenomena can be exploited such as the baseball event of Home run: The state 

of Audience View and Running Closeup are bi-directed. So, original Hidden Markov 

Model is adopted in our system for baseball event classification. 
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Fig. 5-6 3-state original Hidden Markov Model 

1 2 31 2 3
 

 Fig. 5-7 3-state left-to-right Hidden Markov Model 

All discussions above, we know the current problems in the proposed system. The 

detail of how to improve the problems will be described in chapter 6. 
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Chapter 6 
Conclusion and Future Work 

We can achieve good performance of baseball event classification due to the 

high precision in object detection and varieties of frame types. High precision in 

object detection makes the precision of frame type classification higher and increases 

varieties of frame types and baseball event types. High precision in frame type 

classification of R-AT frame type and L-AT frame type makes the precisions of foul 

ball and foul out baseball event types higher. High precision in object detection of 

bases and lines, frame type classification of infield types and outfield types makes the 

precisions of ground out and fly out baseball event types higher than those in previous 

work. All points above, some viewpoints are concluded in our system: (1) the frame 

classification achieves a high precision which is about 90%, (2) the hitting baseball 

event types are detected more than those in previous works, and (3) the precisions in 

classification of fly out, foul ball, foul out, and ground out are better than those in 

previous works.  

However, some problems as shown in Fig. 5-1, Fig. 5-2, Fig. 5-3, and Fig. 5-4 in 

section 5-2 can be improved by adding some intelligent information such as 

scoreboard information. Take double play and ground out as an example. We can 

recognize the two different baseball events from the #out information in scoreboard 

even if both shot transitions are similar. Furthermore, we hope that the baseball event 

type classification in proposed system is robust, but the current system just adapts to 

MLB video sources. All problems above, our future works are as follows. (1) Add 

scoreboard information to solve some ambiguities of baseball events, (2) Add player 

or ball tracking to raise the correctness rate of baseball event classification, and (3) 

Increase varieties of baseball video sources such as Nippon Professional Baseball 

(NPB) as training data to make the proposed system more robust. 
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