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Baseball Event Semantic Exploring System Using HMM

Abstract

Despite a lot of research efforts in baseball video processing in recent years, little
work has been done in analyzing the detailed semantic baseball event detection. This
thesis presents an effective and efficient baseball event classification system for
broadcast baseball videos. Utilizing the strictly-defined specifications of the baseball
field and the regularity of shot transition, the system recognizes highlight in video clips
and identifies what semantic baseball event of the baseball clips is currently proceeding.
The semantic exploring system is proposed to achieve the objective. First, a video is
segmented into several highlights starting with a PC (Pitcher and Catcher) shot and
ending up with a close-up or some specific shots. Before every baseball event classifier
is designed, several novel schemes including some specific features such as soil
percentage and objects extraction such as first base are applied. The extracted midlevel
cues are used to develop baseball event classifiers based on an HMM (Hidden Markov
model). Due to specific features detection the proposed method not only improves the
accuracy of the highlight classifier but also supports variety types of the baseball events.
The proposed approach is very efficient. More importantly, the simulation results show
that the classification of twelve significant baseball highlights is very promising.

Index: highlight detection and semantic baseball event classification, features or

objects extraction, Hidden Markov Model.
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Chapter 1
Introduction

In recent years, the amount of multimedia information has grown rapidly. This
trend leads to the development of efficient sports video analysis. Automatic sports
video analysis has attracted considerable attention, because sport video appeals to
large audiences. The possible applications of sports video analysis have been found
almost in all sports, among which baseball is a quite popular one. However, a whole
game is very long but the highlight is only a small portion of the game. In addition,
highlight can be detected to provide a tactic for coaching. Based on these motivations,
development of the highlight semantic exploring system for the baseball games is our
focus.

Because the positions of cameras are fixed in a game and the ways of showing
game progressing are similar in different TV channels. Each category of semantic
baseball event usually has a similar shot transition. For example, a typical fly out can
be composed of a pitch shot followed by an outfield left or center or right shot and
then a play in grass shot. Based on this observation, many methods are applied on
semantic baseball event detection such as HMM [5][6][7], temporal feature detection
[8], BBN (Bayesian Belief Network) [11]. The existing highlight detection and
classification systems suffer from at least one of the flaws in the following: (1) only
few highlights or mid-level semantics (lower than highlight semantics) are detected, (2)
the accuracy of classification is not high enough for practical usage, and (3) time
complexity is rather high. To solve the problems of existing highlight detection or
classification systems, high accuracy and more specific highlight especially hitting
highlight (ball has been hit) detection and classification, is our foremost target.

This thesis presents an HMM-based mechanism to detect and classify baseball

events. To improve the accuracy of baseball event classification and specific baseball



event classification, more features and objects (lower than highlight semantics) must
be detected. Twelve semantic baseball event types in baseball games are defined and
detected in the proposed system: (1) single (2) double (3) pop up (4) fly out (5)
ground out (6) two base hit (7) right foul ball (8) left foul ball (9) foul out (10) double
play (11) home run (12) home base out. Some mid-level semantics are introduced in
the following section and these mid-level semantics are used to detect and classify
baseball events. In the proposed framework, highlight detection and baseball event
classification in broadcast baseball videos will be more powerful and practical, since
comprehensive and detailed information about the game can be presented to users.
The rest of the thesis is organized as the follows. The background and related
works are introduced in chapter 2. In chapter 3, we introduce the HMM concept used
in our system. Chapter 4 introduces our proposed system including feature extraction,
frame classification, baseball event classification. Chapter 5 shows the experimental

results and discussion. Finally, conclusion and future work are made in chapter 6.



Chapter 2
Background and Related Works

In chapter 2, the baseball highlight detection in recent years will be introduced.
First of all, we will describe the hierarchical structure of a baseball game in section
2-1. In section 2-2, image processing of color space conversion from RGB to HSI is
introduced to make some tasks easily such as less influence on luminosity. In the
following sections, some related works in PC (Pitcher and Catcher) shot detection,
and highlight detection for baseball videos are depicted.

2.1 Hierarchical Structure of Baseball Game

A baseball game is composed of some highlights. Highlight is a sequence of
specific shot transition. A shot consists of several similar frames. Different frames
have different color distribution, features, and objects (base, line, auditorium, etc.).

Fig. 2-1 shows the concept about hierarchical structure of a baseball game.

Baseball game
SN

/ —~
Highlight Highlight Highligh
gniig A ghlight
/ —~
Shot Shot Shot
AL AL AL
e N N N
Frame Frame Frame Frame Frame Frame
A
e ~

Objects, features Objects, features...

Fig. 2-1 Hierarchical structure of baseball game.
2.2 Color Conversion from RGB to HSI
In image processing, color is an important feature. The influence on luminosity
of HSI is less than that of RGB. To make feature extraction or objection detection

easily, we can use the following formula as described in Fig. 2-2 to convert from



RGB to HSI. Similar skill can be found in other sports such as basketball [19].
R G B
y = —mM8M8M8M8M88 g = b =
R+G+B R+G+B R+G+B
| 0.5x[(r—g)x(r—-b)]

[(r—g)* +(r—b)(g-b)]?

h=cos” hel0,z],b<g

0.5x[(r—g)x(r—b)] hel0,7],b>g

1
[(r-g)’ +(r=b)(g D))
s=1-3xmin(r,g,b) s €[0,1]
. R+G+ B .
T iel0.1]
Fig. 2-2 The conversion from RGB to HSI.

h=2r—cos’

2.3 Pitcher and Catcher Shot (PC shot) Detection

Every baseball highlight starts with PC shot and ends up with some specific

shots or a close-up shot, so the PC shot detection plays an important role in baseball

highlight detection. The proposed method in{1] based on feature mining can find the

effective feature types, the location of the features and threshold values during the

learning process.

In general, the composition of the PC shot is auditorium, player, soil and grass.

However, it has some unstable elements. The location and uniform of players would

be changing. Features without influences on these changes (i.e. location of player) are

that the PC shot is composed of ground, wall, and audience. To find the features, an

image is divided into 12 x 8 blocks as shown in Fig. 2-3.
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Fig. 2-3 The block types in a frame.

Then we use mean, variance, and log variance on luminosity data to discover the
effective blocks (effective block will be elaborated later) for PC shot discrimination in
training data. In experiment, we use four block size as a unit, B1, B2, B3, and B4 to
calculate the mean, variance, and log variance. Some trends are observed as follows.
(1) The mean of the luminosity in the ground block, as shown by white dotted line in
Fig. 2-3, is stable even if a camera shift takes place.

(2) The variance of the luminosity in the ground block is small because the ground is
flat in the block.

(3) In a wall block as shown by white solid line, the variance becomes large due to the
high texture, but the log variance can be assumed to be stable in the block.

We assume that fusion of these three features is effective in PC shot discrimination.
Next, desirable features should be stable at the same location in the training data set,
so the block with small variance of the feature called effective block in the training
data is thought of as the best location of those blocks.

The X-axis of an image is divided into 12 blocks and the Y-axis is divided into 8
blocks of the image as shown in Fig. 2-3. Four block types B1, B2, B3 and B4 are
used to search for the effective blocks for PC shot discrimination. The mean Mg ,, the

variance Vs, and the log variance LV¢;, computed within the block type t and the



location i B/, is defined by Eq.(l), Eq.(2), and Eq.(3). Here, t (t = 1~4) and i (i =

1~96, 1~48, or 1~24 depends on different block type) indicate the block type and
block position counted from top-left corner in a frame f respectively. Let Gray(x, y)
denote the luminosity at location (X, y) of the image and |B| denote the number of

pixels in a block.

Mﬁ Z Gray (x y) 1)
‘ i xyeBt
1
Vi = o 2 (Gray (e.)- M 4, ) @
‘Bi x,yeBl.t
1
LVf’t’i = Z log (Gmy (x,y)—Mﬁt,i)2 3)
‘Bi x,yeBl?

Let N be the number of PC shots in training data. The variance of the mean in the

block B ,-t among the training data is defined in Eq. (4).

] ] & i
Ve :F; fiti _ﬁ; 4)

When all V,, , . for all t and i are placed in ascending order, the variance at rank n

1
: ‘ : : :
is defined asV; iy © THE blockBl-AA; at the rank 1 with variance VMJMJM is

regarded as the optimal block in mean luminosity. Max and min value (threshold) of

t
block luminance mean M 7 at frame fin block B iAA/;[ is defined by Eq. (5) and

tM,iM

(6) respectively.

max _
taripg (M Ftyoipg ) (5)
min .

MtM,iM - man (Mf,tM,iM) (6)

Similarly, variance of variance VV .t,i and variance of log variance VLV,t,i are



calculated respectively. The optimal block in variance and log variance are found of

rank 1 VV1 N 4 LIV ; ; - Max and min value (threshold) of block luminance variance

max min max min
and log variance are VfM,JM ,V;M,aiM’LVtM,aiM’LV;M,aiM' Last, if a test image f’

meets the conditions in Eq. (7), the image f” is viewed as a PC shot.

MmN oA . < ) Mmax
ZM,’IM f’tM,’lM tM,’lM
A N S
M "M ISty g "M ,'Mm (7)
Lv,™ <Ly, <LV
M .M ISty sig M ,'M

This method [1] showed 95.5% accuracy at F-measure score within 1/30 of real time.
2.4 Highlight Detection and Classification

Highlight detection and classification is a popular issue as a result of the
following reasons: (1) Provide coach with a guidance of tactic, (2) Make a highlight
movie, (3) Index each highlight-used for baseball event retrieval, and (4) More
accurate in baseball event classification from baseball game. In the past few years,
significant research [5, 6, 7, 8, 9, 10, 11] has been devoted to the content analysis of
baseball game. [5][6][7] use the statistical model of HMM to detect and classify the
highlights. For example, Chang et al. [S] assumes that most highlights in baseball
games consist of certain shot types and these shots have similar transition in time.
Each highlight is described by an HMM as shown in Fig. 2-4 and each hidden state is
represented by its predefined shot types as shown in Fig. 2-5. Some features are used
as observations to train the HMM model for highlight recognition. [5][6] use some
features and shots as observations and states in HMM for highlight classification.
Low accuracy and few highlight types are the main disadvantages because the
information is too little to detect various highlights and to get high accuracy. [8]

records some objects or features such as field type, speech, and camera motion start



time and end time to find the frequent temporal patterns as shown in Fig. 2-6 for
highlight detection and classification. The accuracy in [8] is better than that in [5][6],
but they use speech, caption and shot as features so that the cost of time complexity is
high. [9][11] combine some shots such as pitch and catch, infield, outfield, and
non-field shot with scoreboard as shown in Fig. 2-7 and Fig. 2-8 as medium-level
cues, and then use Bayesian Belief Network (BBN) structure for highlight
classification. [10] uses some condition rules for highlight classification. [9][11] use
scoreboard as additional information so that the accuracy is very high, but the rough
shot classification lead to the low variety of hitting highlight.

In this thesis, we will emphasize the variety of baseball events and high accuracy
via more features and objects exploration. Statistical model HMM is used for

highlight classification and HMM concept will be elaborated in chapter 3.

(a {b}

(©) {d)

Fig. 2-4 Four baseball HMMs defined in [5] (a) nice hit, (b) nice catch, (¢)
homerun, and (d) the play within the diamond (events occur in infield)
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Fig. 2-5 The seven pre-defined types of shots in [S].

1 : Y ’ P y - - .

e iy el < P (A
SBESEEEEEE RSN RSN NN

Data Abstraction Temporal Data Mining
Visual content stream

Pitch scene| [

— Panup N
Field scene e

Cheer I

ey LLLLLRI NI N RN LA NN TN N AN RI N NI NINNY)

Audio content stream

speech speech

Ex. home run

Fig. 2-6 The system overview of highlight detection and classification in [8].
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Chapter 3
Hidden Markov Model

Real-world processes generally produce observable outputs which can be
characterized as signals. Finding the regular rule in those signals is a popular issue in
real world (e.g., the sequence of instruction in computer, the sequence of speech
recognition, etc). It is required to build signal models to analyze the real-world signal,
and then these signal models can be realized into applications in practical systems
such as prediction system, recognition system, identification system, etc.

Generally, signal models can be classified into deterministic models, and
statistical models. In practical systems, deterministic models are used to exploit the
specific rules of the signal such as traffic light. The current state can be determined
easily by the previous state. The other case of signal model is statistical model which
is modeling a wide range of time series_data like Poisson process, Markov model,
Hidden Markov Model and so on. In this case, the next state cannot be determined by
current state, but a model is still created to_estimate signal properties even if the
model would miss some messages.

Among statistical models, Hidden Markov model is a powerful statistical model
for modeling the generative sequence in many fields such as biology, mathematics,
speech recognition, signal processing. Differing from Markov model, the state is not
observable. Because features and shot transitions can be viewed as observable outputs
and states, a highlight can be described by a signal model such as HMM. When an
observable signal is given, the likelihood was computed by each signal model and the
best match is the proposed highlight.

3.1 Element of an HMM
A Hidden Markov model has several states, each of which has a transition

probability from current state to next state and the next state is only dependent on the

11



current state. Each state has several output symbols but yields a symbol at one time.
Each symbol has an output probability and the output symbol at time t is dependent
only on the current state. Some notations are defined as follows:

T = length of the observation sequence.

N = the number of states in the model.

M = the number of observation symbols.

The set of N states: QO = {ql ,qz,...,qN}

The set of M output symbols (observations): V = {v1 VaseersVyy }
State s, : Which state belongs to at time t, §, € O (unobservable). For example,
s, =g, 1s arepresentation of staying in state g; at time t.

The state transition probability: A4 = {aij la, =P, (SH1 =q;|s, = qi)| 1<i,j< N}

The output symbol probability: B = {bj (k) S R(vk |s, = qj)| I<j<NI<Lk<Z M}‘

The initial probability: 7 = {z, | 7= B.(s;=¢;)|1<i < N}
Parameter set of HMM model 1 = {4, B, }
Observed symbol sequence O =o0,,0,,...,0,(length =T)

A Hidden Markov model can be described by a given tuple A as shown in Fig. 3-1.

12



Hidden

Observable

0O=o0, 0,, 0;...0;

Time t ——

Fig. 3-1 Illustration of the concept of HMM

Figure 3-1 illustrates the HMM concept. Two states qi, q2, and three output
symbols vi, v2, and vz are shown. The transition probability from q; to q; is marked as
directed line a;. Each state could produce an observation at one time and each
observation is assigned an output probability.

The first time to enter which state of HMM is stochastically determined by an
initial state matrix @. The transition probability of each state to other state is
determined by a transition probability matrix A. If there are N states, the matrix A is
an NxN matrix. Note that the HMM can transit from a state to itself. Each state of the
HMM stochastically outputs a symbol at a time determined by a matrix B. If there are
M output symbols, the matrix B is an NxXM matrix. Time from 1 to T, the HMM will
output symbol O =o,,0,....,0,, but the state transition sequence is non-observable.

A recognition process can be proceeded by given the tuple A = {A, B, @t} of an

HMM model, and the matrix A, B, and m can be learned in HMM training stage.

13



In recognition process, the HMM with the highest probability will be chosen as a
recognized result. Recognizing time-sequential symbols is equivalent to determining
which HMM produce the output symbols. Section 3.2 and section 3.3 will describe
the recognition process and the learning process for an HMM signal model.

3.2 Recognition Process in HMM

One HMM is created for each category for recognizing time-sequential observed
symbols. In recognition phase, we will compute the probability P(O| 1) for each
category and the best matches will be chosen as the proposed answer from all HMMs
of a given observationO =o,,0,,...,0,. That is,

Give an observation, O =o,,0,,...,0;
Each HMM has a tuple A, = (Ai ,Bi,ni> i=1,2,.,C (if there are C categories)

Proposed answer = arg max (P; (4, O))
The probability of the observation sequence of a given model is equivalent to
evaluating how well a model predicts a given observation sequence. So now the
current problem is how to compute the probability P, (O] A) of an observation
sequence O and a given HMM A.

The most straightforward way to compute the probability of the observations O

(O =01, 0, ... or) for a specific state sequence Q (Q=q:q2q3....q7) is:

P(O]Q,1)= }jp(o, 14,,A) =b,,(0,)xb,,(0,)%..xb (o) (8)
and the probability of the state sequence is:

P(Q|/1):ﬂqlaqlqzaq2q3aq3q4...aqTfqu 9)

So we can calculate the probability of the observations given the model as:

I{O| ﬂ) = ZI{O| 0 /I)I{Q| /1) = Zﬂqlbql © )aqlqzqu ©, )aq2q3 iy qu o) (10)
0

qlq2..qTeall path

The problem P, (O| A) can be solved by the Eq. (10), but the number of operations

14



involved in the calculation is in the order of N'. This is very time consuming even if
the length of the sequence 7 is moderate.

It is observed that many redundant calculations would be made by directly
evaluating Eq. (10), and therefore caching the intermediate calculations can result in
time complexity reduction. The cache is implemented as a trellis of states at each time
stage, calculating the cached value (called a) for each state as a sum over all states at
the previous time step. a is the probability of the partial observation sequence
0; 07 ... 0, 1n state q; at time t. The concept is shown in Fig. 3-2 and the forward
probability variable is defined in Eq. (11).
a,(i)zPV(ol,oz,...,ot,st =q, |/1) (11)

Eq. (11) describes the probability of the partial observation sequence from 1 to t,

ending in state q;.

al(l) 0‘2(1) a3(1) a4(1)

T\
XS XL L
“éo’ﬂ“o'ﬂé

8D 7y N 7oy SO

$ 4“‘)

=1 =2 t=3 t=4 e t=T

Fig. 3-2 Illustration of the forward algorithm of variable ¢, (z)
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In Fig. 3-2, in each time step, the partial probability o, of each state (trellis) is filled
and the sum of the final column of the trellis will equal the probability of the
observation sequence. The algorithm for this process is called the forward algorithm
and is as follows:

1. Initialization

a,(i)=7b(0) 1<i<N (12)

2. Induction

am(j):{ia,(i)a@,}bj(o,+l) 1<i<T, 1<j<N (13)
3. Termination
PO 2)=2 (i) (14)

i=1

The induction step is the key to the forward algorithm as shown in Fig. 3-3. In Eq(13),
index j and i represent the current state index and previous state index respectively.
For each state g, 04(j) stores the probability of arriving in that state having observed
the observation sequence up to time T. In termination step, adding up each forward
partial variable or is the probability of the observation produced from the HMM
model. It is obvious that by caching a values the forward algorithm reduces the time

complexity of calculations involved from 2TN" to N°T.

16



f+1

Fig 3-3 The induction step of the forward algorithm
Recognition Process also can be fast solved by backward probability variable

similar to forward probability variable o, and the backward probability variable is
defined in Eq. (15).
B (l) = P(0t+10t+2"'0T |s, = qi,/l) (15)
Eq. (15) describes the probability of the partial observation sequence from time t + 1
to T, starting in state q;. The algorithm for this process is called the backward
algorithm and is as follows:
1. Initialization

B (i)=1 1<i<N (16)

2. Induction

ﬂt(1)=§a,-,ﬂt+l(j) bilo,) 1<t<T, 1<i<N  (17)
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3. Termination

N

P(0|2)=7 7,05 i) (18)

i=1

The initialization step defines Br(i) to be 1 for all state 1 at time T. The induction step
computes the partial probability of all states at time t from time t+1 as shown in Fig.
3-4. All possible states q;at time t+1 account for the transition from q; to g; (the ajj
term), as well as the observation o, in state j (the bj(o,+;) term), and then account for

the remaining partial observation sequence from state j (the Pii(i) term). In

N
termination step, calculate Zﬂib[ (0,),(i) for all state i at time step 1.
i=1

time=1... time = ¢ time = t+1 ...time=T

Fig. 3-4 The induction step of the backward algorithm.
We can solve the recognition process problem in time complexity N”T by using

forward algorithm or backward algorithm. Each HMM will output a probability and
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the best match will be chosen as a recognized result.
3.3 HMM Training (learning)

The most difficult problem of HMMs is to determine a method to adjust the
model parameters A = (4, B, @) to maximize the probability of the observation
sequence given the model. Given any finite observation sequence as training data,
there is no optimal method to estimate the model parameter. However, we can use an
iterative procedure such as Segmental K-means algorithm [13] or Baum-Welch
algorithm [18] to maximize P(O,I | /1) (I is the optimal state sequence) or P(O | ﬂ,). In
Segmental K-means algorithm the parameters of the model A = (A, B, m) are adjusted
to maximize P(O,I | l) where I here is the optimal state sequence as given by the
Viterbi algorithm [14]. In Baum-Welch re-estimation, here parameter of the model A =
(A, B, m) are adjusted so as to increase "P(@.| 1) until a maximum value is reached.
As seen before, calculating P(Q[A) involves summing up P(Q,0|A) over all
possible state sequence Q(Q = q1q2q3...qT). Hence Baum-Welch algorithm dose not
focus on a particular state sequence. The two methods will be described as follows
respectively.

K-means algorithm takes us from A° to A*(iteration k to k+1) such that
P(O,IZ |/1k)£ P(O,I . |/1k+1) where, I, is the optimum state sequence for

0 =0,,0,..,0, and A", found according to the Viterbi algorithm. The criterion of
optimization is called the maximum state optimized likelihood criterion. This
function P(O,I " M):maxl P(O,] M) is called the state optimized likelihood
function. Training the model in K-means Algorithm, a number of (training)

observation sequences are required. Let there be w sequences available. Each

sequence consists of T observation and each observation symbol (o,) is assumed to

be a vector of dimension D(D > 1). K-means Algorithm then consists of the following
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steps:

1. Randomly choose N observation symbols (map vector of dimension D to symbol
by rule table) and assign each of the wT observation symbols to one of these N
symbols from which its Euclidean distance is minimal. Hence we have formed N
clusters, each of which is called a state (1 to N). We can divide those training data
into N groups and pick one observation vector from each group. Of course this
method is just to make the initial choice of states as widely distributed as possible.

. Calculate the initial probabilities and the transition probabilities. i, and j represent

the current state index and next state index and t represents time from 1 to T-1:

Number of occurrences of {01 € state z}

7T, = , I<i<N (19)
Total number of sequence

Number of occurrences of {ot € state 'i,o0,,, € state j}

a; =

Total number occurrences of {01 e state i}

1<i<N,I<j<N (20)

3. Calculate the mean vector and the covariance matrix for each state: for 1<i< N

1, and j represents current and next state index, t represents time from 1 to T:

— 1
Hi= N 2.0 @1)

Vi :% 2(0, _;zy (Ot —;,) (22)
o,estate i

Calculate the symbol probability distributions for each training vector for each
state as (assume Gaussian distribution — change the formulas below for the
particular probability distribution that suits problem). For 1<i < N, i represents

state index and t represents time from 1 to T
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b.(0,)= ;mexp[— LoV o, - Z)T} (23)

(27[)1)/2 ‘71‘ 2

5. Find the optimal state sequence I (as given by Viterbi algorithm) for each

training sequence using Z:(A,B,n) computed in step2 to 4 above.

Z E, and mare the new state transition, output symbol, and initial state

probability respectively from re-estimation. Each observation symbol is

reassigned a state if its original assignment is different from the corresponding

estimated optimum state.
6. If any observation symbol is reassigned a new state in step5, use the new
assignment and repeat step2 through step6; otherwise, stop.

It can be shown in [15] that Segmental K-means algorithm converges to the
state-optimized likelihood function:for-a;wide range of observation density functions
including Gaussian density function.

The second method is called Baum=Welch algorithm, assuming that an initial
model can be improved upon by using the Eq. (30)-(32). An initial HMM can be
constructed in any way such as random generation, but we may use the first five steps
of the Segmental K-means algorithm described above to give us a reasonable initial
estimate of the HMM and use Baum-Welch algorithm to re-estimate. Before we get
down to the actual Eq. (30)-(32) of Baum-Welch algorithm, some concepts and
notations should be introduced that shall be required in the final Eq. (30)-(32).

The forward-backward variable vy, is defined in Eq. (24).
7/1 (l) = P(St = ql‘ | 01 ’ 02 a"'OT > ﬂ’) = at (Z)ﬂ[ (l) = NO{[ (l)ﬂ[ (l) (24)

Po]4) ;at(z‘)ﬂt(i)

Eq. (24) describes the probability of being at state q; in time t. To describe the

procedure of re-estimation (iterative update and improvement) of HMM parameter,
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the variable &, (i, J )was defined in Eq. (25) and Eq. (25) describes the probability of

being at state g; in time t and at state g in time t+1.
gt(i’j):P(St: qi’st+1:q1“oal) (25)

The sequence of events leading to the conditions required by Eq. (25) is illustrated in
Fig. 3-5. It should be clear, from the definitions of the forward variable a,(i) and

backward variable Bt(i), that we can re-write Eq. (25) in the following form

E (i j):at() y ]( Hl) Hl( ): at() ij /( t+1) t+1( )
RO S (b (0.)8.0)

i=l j=1

(26)

where the numerator term is just P(s =455 =9, | O,E)and the division by P(0 ] 1)

gives the desired probability measure.

Ij J(Ot+1)

/8 t+1(j)

—_—

t+1 t+2

Fig. 3-5 Illustration of the sequence of operations required for the computation
of the joint event that the system is in state q; at time t and q; at time t+1

If we sum up forward-backward variable y(i) from t=1 to T at each state i, we get a
quantity which can be viewed as the expected number of times that state q; is visited,
or if we sum up only to T-1 then we shall get the expected number of transitions out
of state q; (as no transition is made at t = T). Similarly if ¢, (i, Jj ) be summed up from
t=1 to T-1, we shall get the expected number of transitions from state q; to state q;.

Hence
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7, (i ) = expected number of times state g, 1s visited. (27)

Hagh

~

7,(i) = expected number of transition from q; (28)

~
—

~

&,(i, /) = expected number of transitions from g, to q i (29

—

=

Using above formulas we can give a method for re-estimation of the parameter of an
HMM. A set of reasonable re-estimation formulas for Z E, and mare

(Z is new state transition probability matrix, B is new output symbol

distribution matrix, and m is new initial state probability matrix)
7z_l. = expected number of times being in state q; at time(t = 1) =, (1). (30)
(index 1 represents the state 1)

— expected number of transitions _firom,state q, to state q

a. =
! expected number of transitions from state g,
7-1
NAN)
_ =1
Tor-l
7,(i)
=1 31)
= (k) expectednumberof timesin stateq; and observingsymbolv, (k =1~ M)
j =

>, (i) (32)

If the initial model A = (A, B, @) is defined, we use Eq. (27)-(29) to compute the

right hand sides of Eq. (30)-(32) for A= (A,B,n'). Baum and his colleagues prove

that either (1) the initial model A defined a critical point of the likelihood function, in

which case 4 =1; or (2) model J is more likely than model A in the sense

that P(0|/_1)> P(O|2), ie. a new model A has been found from which the
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observation sequence is more likely to have been produced. We can improve the
probability of O which is being observed from the model if we repeat the above
procedure and use 2 to replace the A several times until some limiting point is
reached. The final result of re-estimation is called a maximum likelihood estimate of

the HMM.
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Chapter 4
Proposed scheme for Event classification

4.1 Overview of Proposed Scheme
Overview of the proposed semantic baseball event classification is depicted in
Fig. 4-1(a), and Fig. 4-1(b). The process can roughly be divided into two steps:
training step and classification step. In training step, each type as listed in Table 4-2
of indexed baseball event was input as training data for each highlight classifier. In
classification step, when each observation symbol sequence of unknown clip was
input, each highlight classifier will evaluate how well a model predicts a given
observation sequence.
1.Training Step

Several indexed baseball . . table
clips in each type Until the last key frame

| N

G D
G D)
Color |- Object | |- Frame | | HMM _.@

conversion ~|.detection | tlassification |training

' Rule

2.Event classification step  Until the last key framet _t? bl_e_ i

Unknown clip 1 ‘ ] @
Color Object Frame — Eventtypeis
L conversion | detection [ Elassification determined

Fig. 4-1(b) Overview of the classification step in proposed baseball event

classification

Each highlight clip as input starts with a PC shot and ends up with a close-up

shot or a specific shot depending on different baseball event type. There are
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considerably many uninteresting segments in a baseball game video (e.g.,
commercials). Hence, some pre-processing schemes such as PC shot [1] and close-up
shot detection are needed to trim out these segments.

As the section 2-1 described, a highlight is composed of some shots, each of
which consists of several objects and features. To classify highlight, some tasks such
as object and feature detection should be solved in the preliminary. In order to make
the object detection easily, techniques of image processing are applied. An
observation sequence is generated after feature extraction and object detection.
Symbols mapped from feature vector by rule table are used as observations, and the
number of states represented as shots are empirically determined. Then, we use
Segmental K-means algorithm to create an initial HMM parameter 1 and
Baum-Welch algorithm to re-estimate highlight HMM parameterz. In classification
step, an observations sequence is._generated after feature extraction and object
detection, too. Each event of baseball highlight HMM will output a probability and
the best match will be chosen as the proposed answer. Extracted features and detected
objects are used for frame classification by a rule table as listed in Table 4-1 modified
from [4] for the purpose of realizing the transition of shots. Details of the proposed
approaches are described in the following sections. Section 4-2 introduces the color
conversion. Section 4-3 describes object and feature detection. Section 4-4 describes
frame classification. Section 4-5 and section 4-6 describe HMM learning and
recognition of baseball event.

4.2 Color Conversion from RGB to HSI for Feature Extraction

In image processing or analysis, color is an important feature for our proposed
object detection and feature (the percentage of grass and soil) extraction. However,
the color of each baseball game in frames might vary because of the different angles

of view and lighting conditions. To obtain the color distribution of grass and soil in
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video frames, several baseball clips from different video source composed of grass
and soil are input to produce the color histograms including RGB and HSI color space.
Fig. 4-2 takes two different baseball clips from different source as examples. Owing
to the discrimination the Hue value in HSI color space is selected as the color feature,

and the grass (green) and soil (brown) color range [Ha1,Hyi],[Haz,Hp2] are set.
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(a)clip 1 (b) clip 2
Fig. 4-2 The color space of RGB and HSI of two baseball clips.
After the grass and soil color range are set, the dominant color of green and

brown is found. All colors except for green and brown are mapped to black as shown

in Fig. 4-3.

Fig. 4-3 The process of finding dominant colors.

4.3 Object (spatial) Detection
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The baseball field is characterized by a well-defined layout of specific colors as
described in Fig. 4-4. Furthermore, important lines and the bases are in white color,

and auditorium (AT) is of high texture and no dominant color as shown in Fig. 4-4(b).

(a) K.
(a) Full view of real baseball field (b) Illustration of baseball field
Figure 4-4 The field objects and features.

Each object will be elaborated as follows.

(1) Back auditorium (AT):

The top area which contains high texture and'no dominant colors is considered as the
auditorium, as the black area above the white horizontal line in Fig. 4-5(a).

(2) Left auditorium (L-AT) and right auditorium (R-AT):

The left area and right area which contains high texture and no dominant colors is
considered as the left auditorium and right auditorium, as the left black area and the

right black area marked with the white vertical line in Fig. 4-5 (b) and Fig. 4-5 (c).

Fig. 4-5 Illustration of (a) back auditorium (b) left auditorium (c) right
auditorium



(3) Left line (LL) and right line (RL) :

A Ransac algorithm, which finds the line parameter of line segments [12], is applied
to the line pixels and then finds the left or right line. The line pixel is high intensity
pixel greater than threshold o; excluding pixels in large white area and auditorium
area. Either two pixels at a horizontal distance of £t pixels or at a vertical distance of
+1 pixels must be darker than o4, where o4 << o). Fig. 4-6 shows the concept of
excluding white area. The parameter t should be set to approximately the double court
line width. As illustrated in Fig 4-6, each square represents one pixel and the central
one drawn in gray is a candidate pixel. Assuming that white lines are typically no
wider than t pixels (t = 6 in our system), we check the four pixels, marked ‘V’ and
‘H’, at a distance of 1 pixel away from the candidate pixel on the four directions. The
central candidate pixel is identified as a white line pixel only if both pixels marked

‘H’ or both pixels marked ‘V’ are with lower brightness than the candidate pixel.

Fig. 4-6 Line pixel detection excluding large white area.
This process prevents that white pixels are extracted in large white areas including
auditorium area or white uniforms. Fig. 4-7 is an example of line pixel detection.
Fig. 4-7 (b) shows that the intensity of pixels higher than a threshold of I component
in HSI color space and Fig. 4-7 (c¢) shows that the remaining high intensity pixels

after line pixel detection. In Fig. 4-7 (c¢), the high intensity pixels in pitch mound and
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auditorium area is vanished.

(a) (b) (c)

Fig. 4-7 The result of retained high intensity pixel after line pixel detection
algorithm: (a) original data (b) high intensity pixel before line pixel
detection (c) high intensity data after line pixel detection

After line pixel detection, the Ransac algorithm is applied to find line parameter as

shown in Fig. 4-8. In Fig 4-8(a), the black point represents the high intensity pixel

after the line pixel detection. In Fig-4-8 (b), two points are randomly chosen and the
red line is the line passing through the two points. In a specific area (the distance
between the point and the line is less.than 2, = 4), the high intensity pixel will be
accumulated denoted a score in this time. The action will repeat until the number of
remaining high intensity pixel is less than N or the pre-defined iterative number is
reached. Finally, the highest score and the line parameter will be stored as the

proposed line in Fig 4-8 (¢) and Fig. 4-8 (d).
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2.Random pick two point and

1.Line pixel data . o
count the score in specific area.

(a) L. (b) | TR .
. ol—™| 0 TS < :~\‘~\\.\o
°. Leset -2 . o 2o 25 /7 find line parameter
° as®e’ . as®*’ and score=7
3.After several iterations, _~ 4 Terminate when line pixel
find the highest score. number is less ¢ .
(c) (d)

N

N
.t / Mark the line of the
. - highest score.

Fig. 4-8 Ransac algorithm for finding line parameter.

Find line parameter and score=14

(4) Pitch mound (PM):

An ellipse soil region surrounded by a grass region would be recognized as
pitcher’s mound as shown in Fig. 4-9..Bounding box is applied to ellipse detection.
The procedure is described as follows. (1) stop at-a brown pixel, (2) find the upper,
lower, left, and right bound stopped at the first green pixel in upper, lower, left, and
right direction, (3) count the brown pixel percentage in the bounding box, and (4) the
percentage in specific range will be considered a ellipse. Some illegal ellipse could fit
the proportion of soil in bounding box. The illegal ellipse should be deleted to
improve the frame classification and baseball event classification. A threshold of the
brown pixel difference will be set in diagonal lines, upper and lower region, and right
and left region as shown in Fig. 4-10. In Fig. 4-10, only Fig. 4-10(c) is a correct
ellipse.

(5) First base (1B) and third base (3B):

The square region located on right line, if detected, in soil region would be identified
as first base as shown in Fig. 4-9. Similarly, the square region located on left line, if
detected, in soil region would be identified as third base.

(6) second base (2B):
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In a soil region, a white square region on neither field line would be identified as
second base as shown in Fig. 4-9.

(7) home base (HB):

Home base is located on the region of the intersection between left line and right line

« 2B
PM 1B
LL
T

as shown in Fig. 4-9.

A

Fig. 4-9 Shows the objects of 1B, 2B, HB, LL, RL, and PM.

(@) (b)

Fig. 4-10 Deletion of illegal ellipse

4.4 Frame Classification

Classification is divided into two orientations in this approach, one is frame type
classification by using rule table as listed in Table 4-1 modified from [4], and another
is baseball event classification by using HMM. The classification of frame types can
assist in realizing the shot transition or for other purposes. Sixteen frame types are
defined and classified based on the position or percentage of some objects and
features as described in section 4-3 in rule table. Sixteen typical region types is: IL
(infield left), IC (infield center), IR (infield), B1 (first base), B2 (second base), B3

(third base), OL (outfield left), OC (outfield center), OR (outfield right), PS (play in
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soil), PG (play in grass), AD (audience), RAD (right audience), LAD (left audience),

CU (close-up), and TB (touch base), as shown in Fig. 4-11.

‘_ e

1L infield 16

B3: third base B2: second base  Bl: first base  PG: player in grass

OL: outfield left OC: outfield center OR outfield right AD: audience

A e ne

. LAD: left audience RAD: right audiene I'B: touch base CU: close-up

Fig. 4-11: Sixteen typical frame types

The rules of frame type classification are listed in Table 4-1 modified from [4].
The symbols of first column are our sixteen defined frame type (IR, IC...) as shown
in Fig. 4-11. W¢ is the frame width, the function P(Area) return the percentage of the
area Area in a frame, X(Obj) returns the x-coordinate of the center of the field object
Obj, and W(Obj) returns true if the object Obj exists. Each field frame is classified
into one of sixteen frame types using rule table (Table 4-1 modified from [4]). For
example: a field frame would be classified as B1 frame type if the frame meets the
following conditions: The percentage of AT is no more than 10%, the object of PM
does not exist, the object of RL and 1B must exist, the percentage of soil is more

than 30%.
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IR: P(AT )<10%, E(PM ). X (PM )< W, /3]
{P(AT )< 10%, ~ P(PM ), E(RL ),~ E(1B)}||
{P(AT )< 10%, ~ E(PM ), E(RL ),E(1B), P(soil )< 30% }

IC: \P(AT )< 10%, E(PM )W, < X (PM )< W, x2/3}]|
{P(AT )<10%, ~ E(PM ),~ E(RL ),~ E(LL ),E(2B), P(s0il )< 30% }

IL: \P(AT)<10%, E(PM ), X (PM )> W, x2/3{]|
{P(AT )< 10%,~ P(PM ), E(LL),~ E(3B)}||
{P(AT )< 10%, ~ E(PM ), E(LL ), E3B), P(s0il ) < 30% }

B1: {P(AT)<10%,~ P(PM ), E(RL), E(1B), P(s0il ) > 30%}
B2: {P(AT)<10%,~ P(PM ),~ E(LL),~ E(RL), E(2B), P(s0il ) > 30%}
B3: {P(AT)<10%,~ P(PM), E(LL), E(3B), P(s0il) > 30%)}
OR: 0% < P(AT )< 75%, E(PM ), X (PM )< W, /3}||
{10% < P(AT )< 75%, ~ P(PM ), E(2B), X (2B)< W, /3}|
{10% < P(AT )< 75%,~ E(PM ),~ E(2B),E(RL),~ E(LL)}
oC: 10% < P(AT )< 75%, E(PM )W, < X (PM )< W, x2/3]]|
{0% < P(4T )< 75%, ~E(PM YEQB)W, < X(2B)<W, x2/3}
OL: {10% < P(AT )< 75%, E(PM ), X(PM)> W , x2/3{]|
{10% < P(4T )< 75%, ~ P(PM L E(2B), X (2B)> W, x2/3}]
{10% < P(AT )< 75%, ~ E(PM )~ EQB),E(LL),~ E(RL )}
PS: {P(AT)<10%,~ E(PM ),~ E(2B),~ E(RL),~ E(LL), P(soil ) > 30%}
PG: {10% < P(AT)< 75%,~ E(PM ),~ E(2B),~ E(RL),~ E(LL)}||
{P(grass )> 60%,~ E(PM ),~ EQ2B),~ E(RL),~ E(LL)}
AD: {P(AT)> 75%}

R-AD: | {10% < P(R— AT)<50%}

L-AD: | {10% < P(L — AT )<50%}

TB: 10% < P(AT)< 50%, E(RL)& &E(1B) || E(LL)& &E(3B),
P(s0il ) > 30%
CU {P(AT )< 10%,~ E(PM ),~ E(2B),~ E(RL),~ E(LL), P(black )> 50% }

unknown |others

Table 4-1 Rules of frame type classification modified from [4].

Each frame is first recognized by the distribution of dominant color and white
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pixels (intensity data). After object detection and looking up the rule table, we can
know the detected objects and features in each frame and shot transition represented
as an annotated string as shown in Fig. 4-12. The content of the sample field shot in
Fig.4-12 says that the ball is first batted into the left infield. Then, the shortstop picks
up the ball and throws it to the first baseman. The batting process can be appropriately
abstracted by the output string: IL (infield left) > PS (player in soil) = B1 (first
base). In order to filter out the misclassifications of frame types within a shot, some
regular rules are applied. For example, the shot transition IC - IR (or PS) = Bl
appears frequently in the baseball event of ground out. When the current frame type is
not IR or PS, but the previous frame type is IC and the next frame type is B1, the

system will change the current type from incorrect type to IR. The regular rule is a set

created previously from observation.

\ Frame (play region type) classification |
v ¥

v v
IL IL PS Bl
LL,RL,PM,B2 LL,PM g RL,B1
Grass>60%,50il<30% Grass>60%,50il>30% Grass<60%,s0i1>30% | | 5 ¢ <609%,50i1>30%

Fig. 4-12 Illustration of the annotated string of ground out example after frame
classification
4.5 HMM Learning for Each Baseball Event
One HMM is created for each baseball event for recognizing time-sequential

observed symbols. In our proposed method, twelve baseball events listed in Table 4-2
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are defined so that there are twelve HMMs. Given a set of training data from each
type of baseball event, we want to estimate the model parameters A = (A, B, m) that
best describe that each baseball event. First of all, Segmental K-means algorithm is

used to create an initial HMM parameter A and then Baum-Welch algorithm as
described in section 3-3 is applied to re-estimate each HMM parameters A= (Z, E,;)

of baseball event.

Single Right foul ball
Double Left foul ball
Pop up Foul out

Fly out Double play
Ground out Home run
Two-base out Home base out

Table 4-2 List of twelve baseball events
In our proposed method, two features such as grass and soil, and ten objects as
shown in Fig. 4-4(b) are used as observations represented as a 1x12 vector to record
whether the object appears or not. To apply HMM to time-sequential video, the
extracted features represented as a vector sequence must be transformed into a symbol
sequence by rule table as listed in Table 4-1 for later baseball event recognition. This

is a well known technique, called vector quantization [17]. For vector quantization,

codewords g, € R" represents an observation vector in the feature R" space.

Codeword g, is assigned to symbolv,. Consequently, the size of code book equals

the number of HMM output symbols. Sixteen shots as shown in Fig. 4-11 are viewed
as hidden states.

Conventional implementation issues in HMM include (1) number of states, (2)
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initialization, and (3) distribution of observation at each state. The first problem of
determining the number of states is determined empirically and differs from each
baseball event. The second problem can be approached by random initialization or
using Segmental K-mean algorithm as described in section 3-3. Finally, the last
problem can be solved by trying several models such as Gaussian model and choose
the best one. In our approach, we choose Gaussian distribution. The following is the
detailed description of each essential element.

State S: The number of states is selected empirically depending on different baseball
event and each hidden state represents a shot type.

Observation O: the symbol mapped from rule table.

Observation distribution matrix B: use K-means algorithm and choose the
Gaussian distribution at each state [15].

Transition probability matrix A:_the state transition probability, which can be
learned by Segmental K-means algorithm.

Initial state probability matrix m: the probability of occurrence of the first state,
which is initialized by Segmental K-means algorithm after determining the number of
states.

After determining the number of states and setting the initial tuple 4, to maximize
the probability of the observation sequence given the model, we can use the
Baum-Welch algorithm as described in section 3-3 to re-estimate the HMM
parameterz. The initial probability, transition probability, output symbol distribution
can be re-estimated by Eq. (30) (31) (32) and then replace initial tuplelwithi. A

detail procedure is shown in Table 4-3:
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Input: a set of observed symbol sequences (mapped by rule table) 0'0°...0", and
number of states are determined as input parameter.

Initialization: use Segmental K-means algorithm to compute initial A and compute
score:  Score = ZP(OW |/'t)
1

Repeat {
For each observed sequence O" {
Using the given A to calculate the following variable:
a, (i ) at each time t, state i using forward algorithm by Eq. (12) (13)
B (i ) at each time t, state i using backward algorithm by Eq. (16) (17)
(i) ateach time t, state i by Eq. (24)
g, (i ) at each time t, state transition from i to j by Eq. (26)

}
Calculate ZT:% (i), TZ_i}/t (i), TZ_l: g, (i, j) by Eq. (27) (28) (29)

= t=1 t=1

Re-estimate 4 =(d4,B,7) by Eq. (30) (31) (32)

Score’ = ZW:P(OW ]Z)
1

If Score’ < Score

Jump from Repeat loop

Else {
Score = Score’
A=A

}

Table 4-3 HMM for baseball event learning
4.6 Baseball Event Recognition
The idea behind using the HMMs is to construct a model for each of the baseball
event that we want to recognize. HMMs give a state based representation for each
highlight. After training each baseball event model, we calculate the probability
P(O | ﬂi) of a given unknown symbol sequence O for each highlight model 4,. We
can then recognize the baseball event as being the one by the highest probable

baseball event HMM.

38



Chapter 5
Experimental Result and Discussion

To test the performance of baseball event classification, we implement a system
capable of recognizing twelve different types of baseball events. The test contains two
parts: (1) frame type recognition (2) baseball event type recognition. The test data
source can be divided into two groups, one is manual clips, and another is
auto-segmented clips. In the first group, all clips are hand cut. In the second group, an
ending point of clip is determined by detected close-up or specific shot. All video
sources are Major League Baseball (MLB). 120 baseball clips from three different
MLB video sources as training data and 122 baseball clips from two different MLB
video sources as test data. The experimental result is shown in the following sections.
5.1 Frame Classification

The proposed frame classification system-has been tested on Major League
Baseball of broadcast baseball video. The categories to be recognized are sixteen
frame types: ‘infield left’ (IL), ‘infield center’ (IC), ‘infield right’ (IR), ‘first base’
(B1), ‘second base’ (B2), ’third base’ (B3), ‘outfield left’ (OL), ‘outfield center’ (OC),
‘outfield right’ (OR), ‘audience’ (AD), ‘left audience’ (L-AD), ‘right audience’
(R-AD), ‘play in soil’ (PS), ‘play in grass’ (PG), ‘touch base’ (TB). The video source
was gotten from three different Major League Baseball games of broadcast video and
digitized into 352x240 pixel resolution. The experimental result of frame type
classification is in the Table 5-1 and Table 5-2. Table 5-1 shows the precision and
recall of each frame type from clips manually clipped from broadcast video. Table
5-2 shows the precision and recall of each frame type from clips automatically clipped

from broadcast video.
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Frame total correct false Precision (%) | Recall (%)
type
IL 38 36 1 97.3 94.7
IR 91 90 3 96.8 98.9
IC 81 79 2 97.5 97.5
OL 51 47 2 95.6 92.2
OR 71 68 2 97.1 95.8
oC 67 61 5 92.4 91.0
B1 197 196 2 99.0 99.5
B2 48 39 5 88.6 81.3
B3 42 41 4 91.1 97.6
AD 72 72 1 98.6 100
TB 78 68 5 93.2 87.1
PG 377 366 21 94.5 97.1
PS 118 108 14 88.5 91.5
R-AD 69 69 0 100.0 100.0
L-AD 51 51 0 100.0 100.0
CU 95 89 93.7 93.7
Table 5-1 Recognition of frame types manually clipping
Frame type | total correct false Precision (%) | Recall (%)
IL 61 55 2 96.5 90.2
IR 96 92 3 96.8 95.8
IC 81 79 3 96.3 97.5
OL 55 51 4 92.0 92.7
OR 76 73 2 97.3 96.1
oC 76 68 9 89.5 88.3
B1 318 301 6 98.0 94.7
B2 60 50 7 87.7 83.3
B3 42 41 4 91.1 97.6
AD 96 88 14 86.3 91.7
TB 83 68 5 93.2 81.9
PG 509 485 44 91.7 95.3
PS 168 155 29 84.2 92.3
R-AD 81 81 4 95.3 100
L-AD 73 73 5 93.6 100
CU 117 109 11 90.8 93.2

Table 5-2 Recognition of frame types automatically clipping
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The second column “total” represents the total number of field shots containing
the frame type designated in the first column. Note that a field shot might comprise
more than one frame type. The “correct” and “false” represent the number of correct
detections and false alarms. Both the precision and recall are about 90% except for the
precision of B2 (second base), AD (audience), PS (player in soil) and the recall of OC
(outfield center), B2 (second base), TB (touch base).

The low recall rate of frame type B2 and OC might result from the missed
detection of field object 2B. The low recall rate of frame type TB (touch base) might
be that TB and AD are similar because both TB and AD have large area of auditorium
and we don’t detect the object of player in this proposed method. The low precision
rate of frame type B2 might result from the incorrect detection of field object 2B.
Sometimes the ball on soil is detected as'a 2B (second base). The low precision rate of
frame type AD (audience) might result from the incorrect classification between AD
and TB. The low precision rate of frame type PS (play in soil) might result from the
incorrect classification between PS and B2 (sometimes a frame of miss detection of
object 2B will be classified into frame type of PS). These could be improved by
enhancing field object detection and refining the rules of frame type classification.
Overall, we achieve good performance about 90%.

5.2 Baseball Event Classification

The proposed baseball event classification system has been tested on Major
League Baseball of broadcast baseball video. The categories to be recognized are
twelve types of baseball events: single, double, pop up, fly out, foul out, ground out,
two-base out, right foul ball, left foul ball, double play, home run, and home base out
as described in Table 4-2. The video source was gotten from three different Major
League Baseball games of broadcast video and digitized into 352x240 pixel

resolution. The experimental result of baseball event type classification is in the
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Table 5-3 and Table 5-4. Table 5-3 shows the precision and recall of clips manually
clipped from broadcast videos. Table 5-4 shows the precision and recall of clips

automatically clipped from broadcast video.

Event type Total Correct false Precision Recall
(%) (%)
Single 25 20 1 95.2 80.0
double 1 66.7 25.0
Pop up 2 77.8 100.0
Fly out 22 21 4 84.0 95.5
Foul out 1 1 0 100.0 100.0
Ground out 29 27 3 90.0 93.1
Two-base out 4 4 0 100.0 100.0
Right foul ball | 12 12 0 100.0 100.0
Left foul ball 6 6 2 75.0 100.0
Double play 2 33.3 100
Home run 6 5 1 85.7 83.3
Home base out | 1 1 0 100.0 100.0
Total 122 106 87.3
Table 5-3 Recognition of baseball events manually clipping
Event type Total Correct false Precision Recall
(%) (%)

Single 25 20 3 87.0 80.0
double 1 66.7 25.0
Pop up 7 2 77.8 100.0
Fly out 22 19 5 86.4 79.2
Foul out 1 1 0 100.0 100.0
Ground out 29 27 4 87.1 93.1
Two-base out 4 2 0 100.0 50.0
Right foul ball | 12 12 0 100.0 100.0
Left foul ball 6 6 2 75.0 100.0
Double play 2 333 100.0
Home run 6 5 1 85.7 83.3
Home base out | 1 1 0 100.0 100.0
Total 122 102 84.4

Table 5-4 Recognition of baseball events automatically clipping
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Both the precision and recall are about 80% except for the precision of double,
double play and the recall of double, two-base out. The low recall rate of baseball
event double and two-base out might result from the missed detection of field object
2B. The low precision rate of baseball event double might be that the transitions of
double and Home run are similar if the batter hits the ball to the audience wall.

The low precision rate of baseball event double play might be that the transitions
of double play and ground out are similar if the batter hits the ball around the second
base as shown in Fig. 5-1. Fig. 5-2 shows the miss detection of right foul ball and
home run due to the similar shot transition. Fig. 5-3 shows some ambiguities in nature
of baseball events such as ground out and left foul ball even if those baseball events
are judged by people. Fig. 5-4 shows miss detection between single and ground out
because the player in first base does not catch the ball and we do not detect the ball
object.

The miss detection of highlights can be classified into four reasons: (1) similar
shot transition, (2) miss object detection, (3) detected objects are not enough, and (4)
ambiguity in nature. These could be improved by detecting the object of ball and
players, or add additional information such as scoreboard information. Overall, we

still achieve good performance.

(b)

Fig. 5-1 Comparison between (a) ground out and (b) double play
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Fig. 5-2 Comparison between (a) right foul ball and (b) home run

Fig. 5-4 Ambiguity of ground out and single

5.3 Other Discussions

In the line detection in section 4.3, lines are detected by Ransac algorithm rather
than Hough transform. Hough transform can detect most of lines in a frame, but the
time complexity is too complicated. Ransac algorithm can find “apparent” lines. The
time complexity depends on the number of line pixels. In baseball game, the most
important lines are left line and right line. The left line or right line in each frame of

baseball game is marked with white color. The number of lines is not too many and
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the lines are apparent in baseball field. According to the observation, we adopt Ransac
algorithm to do line detection. The algorithm is applied in other sports such as tennis
[12].

Second base detection in section 4.3, some conditions will be viewed as second

base as shown in Fig. 5-5.

Fig. 5-5 Ambiguity in second base

We should set a threshold of region size of second base, but it is very difficult to set
the boundary because the size of second base varies in each frame due to the zooming
of the camera. It is also the main reason of poor detection in B2 frame type
classification.

Determining the type of Markov model is also an important issue in our system.
The original Hidden Markov model is shown in Fig. 5-6. At the same time, the
complicated model can be simplified to left-to-right Hidden Markov model as shown
in Fig. 5-7 and the model is applied extensively in speech recognition. In baseball
game, baseball events are usually composed of several shots and each baseball event
has specific shot transition. Take four baseball events in Fig. 2-4 [5] as an example.
Some phenomena can be exploited such as the baseball event of Home run: The state
of Audience View and Running Closeup are bi-directed. So, original Hidden Markov

Model is adopted in our system for baseball event classification.
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Fig. 5-6 3-state original Hidden Markov Model

() Q)

Fig. 5-7 3-state left-to-right Hidden Markov Model
All discussions above, we know the current problems in the proposed system. The

detail of how to improve the problems will be described in chapter 6.
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Chapter 6
Conclusion and Future Work

We can achieve good performance of baseball event classification due to the
high precision in object detection and varieties of frame types. High precision in
object detection makes the precision of frame type classification higher and increases
varieties of frame types and baseball event types. High precision in frame type
classification of R-AT frame type and L-AT frame type makes the precisions of foul
ball and foul out baseball event types higher. High precision in object detection of
bases and lines, frame type classification of infield types and outfield types makes the
precisions of ground out and fly out baseball event types higher than those in previous
work. All points above, some viewpoints are concluded in our system: (1) the frame
classification achieves a high precision which is about 90%, (2) the hitting baseball
event types are detected more than those in previous works, and (3) the precisions in
classification of fly out, foul ball; foul out, and ground out are better than those in
previous works.

However, some problems as shown in Fig. 5-1, Fig. 5-2, Fig. 5-3, and Fig. 5-4 in
section 5-2 can be improved by adding some intelligent information such as
scoreboard information. Take double play and ground out as an example. We can
recognize the two different baseball events from the #out information in scoreboard
even if both shot transitions are similar. Furthermore, we hope that the baseball event
type classification in proposed system is robust, but the current system just adapts to
MLB video sources. All problems above, our future works are as follows. (1) Add
scoreboard information to solve some ambiguities of baseball events, (2) Add player
or ball tracking to raise the correctness rate of baseball event classification, and (3)
Increase varieties of baseball video sources such as Nippon Professional Baseball

(NPB) as training data to make the proposed system more robust.
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