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Abstract

Coloured Petri nets and related analysis techniques can be applied to help find
the defects in workflows. One or more errors may exist in a coloured Petri net, but
current algorithms can not detect them completely. In this thesis, three kinds of faults
are defined, namely place faults, amount transition faults and colour transition faults,
not analyzed before. A methodology providéd in this thesis translating a coloured
Petri net into a separate one, in.which all;the-markings will keep the same encoding
rule with all the markings in the original.celoured Petri net. If the coloured Petri net
results in faulty states, they can be identified and corrected via parity checks. After
adding 2k places and their relative arcs, the coloured Petri net can be identified and

corrected at most: & place faults, x amount transition faults and k& - x colour transition
faults concurrently, where 0 < x < k. The time complexity of the fault identification

and correction method provided in this thesis is O(ky(a+p)), where a, f and y are the

number of transitions, places and colour types in a coloured Petri net, respectively.

Keywords: coloured Petri net, fault identification, fault detection, parity check.
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Chapter 1. Introduction

High-level applications such as SOA usually contain workflow, and workflow
applications can be analyzed with coloured Petri nets (CPNs) and their associated
techniques. One important issue in correcting the applications is how to deal with
faulty states, and this is also an issue in CPNs. When faulty states occur, they may
firstly be detected, after that the reasons which induce the system into faulty states
may be determined, and finally these faulty states may be adjusted back to correct

states.

The intuitive method on how to identify faulty states is firstly computing out the
state which will be reached from initial states under recorded information of state
transition and then check if these two states are identical. If these two states are
different then the given state is a faulty state. In the case of CPNs, an occurrence
graph [1] can firstly be constructed and then the markings are checked if they are
identical with the markings in occurrence graph under the recorded firing sequences
[1]. In this thesis, the proposed method can identify and correct the faulty markings in
CPNs by algebraic operations without constructing an occurrence graph and recording

firing sequences.

The CPNs considered in this thesis only have the marking information at a
specific time point without firing sequence information, which is similar with the

assumption in [3]. The faults considered in this thesis may occur in places or



transitions [3] and fault types may be colour or amount. The purpose of this thesis is

to identify and correct these based on the marking information.

The purposed method will firstly construct a separate [4] CPN which is
bisimilar to the given CPN. While the state evolves, the marking on the redundant
CPN will keep the encoding relation with the marking on the given CPN. Finally, the
marking on the redundant CPN can be checked if it satisfies the encoding relation by
algebraic operations on the marking matrix. If it violates the encoding relation, it can
be identified where the faults occur and adjusted back to a correct state by algebraic
operations on the marking matrix. However, since the purposed method is based on
algebraic approach, matrices must be used to describe the markings and state
evolution of CPNs before implementing the method. We will also describe how to

construct a matrix for a CPN.

As the result, If there are k addition places in the redundant CPN compare with

given one, it will have capability to simultaneously detect and correct & place faults, x
amount transition faults and & - x colour transition faults concurrently, where 0 < x <

k. We will prove this capability in this thesis and also prove the separate CPN will be

bisimilar to the given one.

The remainder of this thesis is organized as follows. Chapter 2 introduces CPNs
presents the notations and definitions of CPN, which will be used in the rest of this
thesis, and show the related works. Chapter 3 describes how to use matrices to
describe the markings of CPN and the state evolution of CPN. Chapter 4 proposes the

methods on how to detect and correct these four kinds of fault and also give an



example in each case. Chapter 5 gives a conclusion of this thesis and show future

works.




Chapter 2. Notations and Background Overview

This chapter briefly introduces some background knowledge and gives the
notations and definitions to be used in this thesis. In section 2.1, multi-set is
introduced. Section 2.2 introduces CPN which uses multi-set widely. Section 2.3
describes the definition of bisimilation equivalence. Section 2.4 discusses the faults
considered in the thesis and gives the corresponding definitions. And, the relate works

of fault detection are presented in section 2.5.

2.1 Multi-sets

A multi-set is similar to a set,” except that it can own one or more common
elements. That a multi-set 4 is defined over a set B indicates all the elements in the 4
are the elements in B. The basic formal definitions of multi-set are described in [1]

and some extended definitions are described in this section.

Definition 2.1: Let S be a non-empty set.

B A multi-set ms, over S, is a function ms: § — N where N = {0, 1, 2, ...}.

B Vs € S, the ms(s) is the number of appearances of s in the multi-set ms, which is

called the coefficient of s. A multi-set ms is usually represented by a formal sum:

st(s)’s .

seS




An empty multi-set is a multi-set where all the coefficients are zero, which can

be denoted by 2.

An element s € S belongs to a multi-set ms iff ms(s) # 0, which can be written as

S € ms.

Sus 1s defined as the set of all multi-sets over S.

For example, if there is a multi-set {a, b, b, c, ¢, c}, it can be represented by a

formal sum: 1'a + 2'b + 3'c. Since the associated computations for an unlimited

number is meaningless, the coefficients and the nonnegative integers in N applied in

the thesis are assumed to be finite.

Definition 2.2: Let ms;, ms> € Sys, and n € N

Addition of multi-sets is defined as

ms;+ms; = Z(msl(s)+msz(s))'s.

seS
Comparison between multi-sets is defined as
ms; #ms; = 3dseS:ms (s)#ms,(s),
ms;<ms; = VseS§:ms (s)<ms,(s),
> and = are defined analogously to <.

Subtraction of multi-sets is defined as

ms;-ms; = Z(msl(s)—msz(s))'s.

A subtraction is meaningless when ds € S, ms;(s) > ms(s).

Inner product of multi-sets is defined as

ms; - ms; = Z:(ms1 (s)*ms,(s))'s.

seS




B Scalar multiplication of multi-sets is defined as

n*ms; = Z(n*msl(s))'s.
seS

Definition 2.2 defines the operations on multi-sets. And two additional

properties which will be applied as the basis include: commutative' and associative'.

2.2 Colored Petri Nets

The graphical and mathematical model of Petri nets are created by Carl Adam
Petri in 1962 [6]. CPNs are one kind;of, extensions from Petri nets, which are
completely backward compatible with ofiginal Petti nets [1, 2]. More specifically, an
original Petri net can be treated as'a CPN.with single colour. CPNs can help design,
specify, simulate, validate and. implement systems (e.g., workflow systems,
distributed systems, control systems). “There' are various types of definition of CPN
(e.g., [1, 2, 7, 8]), and the contributions with different definitions may be different. In
this thesis, the definition of CPN is based on [7, 8]. Besides, to make this discussion

easier, we adopt some notions from [1, 2, 9].

I
1

ms; +ms, =ms, +ms;
ms; + (ms, + ms;) = (ms; + ms,) + ms;
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Figure 2.1 A CPN with a colour set which has four colours.

A CPN structure is a directed bipartite graph. There are two kinds of nodes in a
CPN structure, called place and transition. The arcs in a CPN only connect between
two different kinds of nodes. There are two functions, input and output assigning a
colour and a weight to an arc. A place may,be put fokens of which each has a colour. A
marking describes the assignment of tokens toplaces. In general, transitions represent
activities and markings represent states in a system.-As in Figure 2.1 shows a CPN,
where circles denote places, rectangles.denote-transitions and dots denote tokens. The
marking of this figure is p; has one ¢3 token, p, has one ¢, token and p; has one ¢,

token and two ¢, tokens.

Definition 2.3: A CPN structure is a 6-tuple N= (P, T, 4, C, I, O)

B Pis a finite set of places.

B Tis a finite set of transitions such that P N 7= 2.

B 4 is a finite set of directed arcs,4 & (P U T)x (P U T), satisfying
AN (PxP)y=4 N (T'x1D)= 2.

B (s a finite set of token colours.

B /isan input function with domain (P x 7)), I: P X T — C ys.

B Ois an output function with domain (P x T), O: P X T — C ys.




Definition 2.3 is a formal description of the CPN structure. Based on a transition,
an input/output function describes the input/output with some connected place
respectively. In Figure 2.1, the I(p;, t;) = 1'c; + 0'c; + 1'c3 + 0'cy and O(p», t;) = 0'c; +
I'c; + 0'c; + 1'cy. To simplify the discussion, the P, T, and C are assumed to follow
rules correspondingly from now on: (1) P = {p;, p2, ..., ps}, >0, (2) T = {11, t2, ...,

tu},a>0and (3) C={ci, s ..., ¢;}, 7> 0.

Definition 2.4:
B A marking of a set of places P is a mapping m: P — C ys.
B myis the initial marking, mg: P — C ys.

B A CPN G=<N, mp>is a CPNistructure N with an initial marking m.

A place may have tokens<of differenteolours.”A marking expresses the colour
elements and the token number of these.colours in each place, which can be defined
as a function from a set of places in a CPN to the set of pair sequence where a pair is a
nonnegative integer and a colour element. For example, in Figure 2.1, the marking of
p3is l'c; + 2'c; + 0'cs + 0'cy. An initial marking represent the initial state of a system.

A CPN should have both a CPN structure and an initial marking.

Definition 2.5: Let N= (P, T, 4, C, I, O) be a CPN structure.

B Foranelementx € P U T, its pre-set °x is defined as
x={yePUT|(yx) €A}

B and its post-set x° is defined as
xX*={pePUT|(x,y) €A}

The pre-set or post-set of a place is a set of transitions. The pre-set or post-set of




a transition is a set of places. If t € T and p & °t, the I(p, f) must be an empty

multi-set. If 1 € T'and p & ¢°, the O(p, t) must be an empty multi-set.

Definition 2.6: Let G = <N, mp>be a CPN and N= (P, T, 4, C, I, O), and a marking is

m.

A transition ¢ € T'is enabled iff Vp € °*t: m(p) > I(p, ?).

If a transition ¢+ € T is enabled by a marking m, it may fire and yield a new
marking m', which can be denoted by m [£> m', where
Vp € P:m'(p)=m(p)-1(p, 1) + O(p, 1).

A finite occurrence sequence is ‘a ‘finite sequence of firings and its

corresponding markings:
m [tg> my [to>m; ... [te>m', where'ty € T forall 1 <i<gq.

This sequence can be denoted by.m _[6>m" and o is called firing vector. The

final marking m' can be calculated by following equation
Vp e r m'(p) = m(p) - ](p> tS]) + O(pa tSI) - 1(17, tSz) + O(pa tS2) T e T ](p7 tSQ) +

O, tsy).

The sequence of transitions in firing vector ¢ is called firing transition

sequence. As a short hand, V¢ € T, the o(¢) is the number of appearances of ¢ in

the firing vector o, where o(f) € N. Hence, the above equation can be rewrite as

Vp € P:m'(p) =m(p) + o(tr) * (- Lp, 1) + O(p, 11) ) + o(t2) * (- I(p, 12) + O(p,

)+ ... to(ty) * (- L(p, t.) + O(p, 1)),

where t, to t, are the all elements in T.




B A marking m'is reachable from another marking m if there exists a firing vector

o such that m [¢> m'. The set of markings which are reachable from m is denoted

by [m>. As a short hand, a set M= my U [my> is called all markings of CPN G.

Definition 2.6 defines the state transition of a Petri net, which is called firing.
When a transition fires, it will take the tokens from its pre-set by the rule described in
the input function and put the tokens to its post-set by the rule described in the output
function. For example, the transition t, is the only transition which is enabled in
Figure 2.1. When transition t, fires, the new marking will be p; and p, has no token

and p; has two ¢; tokens and two c; tokens.

2.3 Related Works

C. N. Hadjicostis [3, 4, 11], G- C."Verghese [11], Y. Wu [3], L. Li and R. S.
Sreenivas [4] proposed a series of algebraic methods to identify and correct the place
and transition faults which may occur in Petri nets or Petri net controllers. The
method in [11] can deal with place faults and transition faults individually. An
extended method in [3] can deal with place and transition faults simultaneously. In [4],
the authors extend the methods proposed in [3] and [11] to the Petri net controller.
They also prove that the proposed methods could construct redundant Petri nets and

analyze the complexity of proposed methods.

P. Jancar [5, 10] proves the decidability on bisimilarity of Petri nets. In [5], the

author proves that the bisimilarity of free-labeled Petri nets is decidable and it can be

10




mapped to language equivalence and reachability equivalence problems. In [10], the

author proves that the bisimilarity of labeled Petri nets is undecidable.

V. K. Belikov [13, 14] and Y. F. Rutner [13] proposed methods to describe input
and output functions in CPNs by algebraic matrices. In [14], the author proposes a
method describing an input and an output function of a CPN by two
three-dimensional matrices. In [8, 13], the authors propose a method using a
four-dimensional matrix to describe an input and an output function of a CPN at the

same time.

This thesis adopts the idea from [3, 4, 11] to CPNs. The methods in [3, 4, 11]
should firstly use algebraic matrices to describe state transformation of Petri nets, so
this thesis firstly proposes a method describing the state transformation of CPNs by
algebraic matrices such matrices ‘are:different-from that in [8, 13, 14] for the reason
that the method proposed in this thesis-ean distinguish more faults. Second, this thesis
use a method extended from [3, 4, 11] to code the matrices come from previous
method into matrices that have fault detection and correction capabilities. Finally,
these matrices with fault detection and correction capabilities can be mapped back to
new CPNs with fault detection and correction capabilities. Since the CPNs discussed
in this thesis is free-labeled, it can be proved that the CPNs constructed by the
methods proposed in this thesis are bisimilar to the given ones, or more specifically

the constructed CPNs are redundant CPNs.

11



Chapter 3. Matrix Approaches on CPNs

This chapter proposes a method describing the state transformation of CPNs in
matrix approaches. In previous [3, 4, 7, 11], the algebraic matrix representations for
input and output functions of CPNs are dimensions of three at least. The method
proposed in this chapter using two-dimensional matrices to describe input and output
functions of CPNs. By using this method, the pre-condition and post-condition colour
transition faults can be distinguished. In section 3.1, the method to express CPNs by
two-dimensional matrix approaches is introduced. Formal algorithms of this method
are given in section 3.2. Section 3.,3.gives an'example and shows how this method

works.

3.1 Two-dimensional Matrix Method

The proposed method is a concept of flattening. The information in matrices of
three dimensions expressing input and output functions are flattened into the ones of

two dimensions respectively. In Definition 2.6, it can be seen that the firing equation
of a CPN is Vp € P: m'(p) = m(p) - I(p, t) + O(p, t). Hence, there are four matrices

that need to be designed for describing the states and state transitions of a CPN. They

are input matrix, output matrix, marking matrix and firing matrix.

Definition 3.1: Let G = <N, my> be a CPN where N = (P, T, 4, C, I, O), a marking is

m, |P| = f and |C] =y.

12




B A marking matrix Q is a f x y matrix describes the marking m. The entries in

matrix Q are
qii = m(pi)(c)), where 1 <i<p, 1<j<y,pi €P, c; €C, and g; represents the

entry in ith row and jth column of Q.

Definition 3.1 describes the format and content of a marking matrix of a CPN.
Each row in Q represents the tokens of each colour in a place, and each column in O
represents the token distribution of a colour on each place. In Definition 3.1, m(p;)
represents the tokens on place p;, which is a multi-set over colour set C, hence m(p;)(c;)
is the coefficient of colour element ¢; of m(p;), which means the number of tokens

with colour ¢; on place p;.

Definition 3.2: Let G = <N, mp>be'a CPN.-where N =(P, T, 4, C, I, O), |P| =5, |T| = a

and |C| = y.

B Aninput matrix B is a f X n matrix describes the input function /, where n = ay.
The entries in matrix B™ are b ; = I(p;, t,)(cs), where r = |_ j/ 7/—‘, s=(j-1)mody
+L,1<i<p l<j<axypl<r<al<s<yp€Pt,e€Tl,c,€C,and by

represents the entry in ith row and jth column of B
M Anoutput matrix B" is a f# x n matrix describes the output function O, where n

= ay. The entries in matrix B" are b*;; = O(pi, t,)(c;), where r=[j/y],s=(-1)
mody+ 1L, 1<i<p 1<j<axyl1<r<a,l<s<y,p,€ P, t,€T,c € C,and

b"; represents the entry in ith row and jth column of B".

In Definition 3.2, the input and output matrix of a CPN is defined. Each row in

B/B" represents the token number of each colour that would be removed/deposited

13




from/into a place while each transition fires. Each column in B7/B" represents the

number of tokens with a colour that would be removed/deposited from/into each place

while a transition fires. The operator “mod” in Definition 3.2 represents the modular

arithmetic.

Definition 3.3: Let G = <N, mp> be a CPN where N=(P, T, 4, C, I, O), |[T| = a, |C| =

v, t, € T, and two markings are m; and m; such that m; [¢,> m..

A transition firing matrix X, is an n x y matrix describes the firing transition

t., where n = ay. The entries in matrix X, are

{1 ifts=trandj=(i—1)mod7+1,wheres=!_i/;/_|
X, = ,

0 otherwise

and x, represents the entry in ithirow and jth column of X;.

Definition 3.3 describes how to-indieatesa firing transition of a CPN. On the

other hand, a transition firing matrix X, can ' be deemed as a column of a square

sub-matrices, and each sub-matrix is a y x y matrix. The rth sub-matrix is an identity

matrix, where ¢, is the firing transition, and the entries of others entries are all zero.

Lemma 3.1: Let G = <N, mp> be a CPN where N= (P, T, 4, C, I, O), |P| = p, |T| = o,

|C| = v, t. € T, two markings are m; and m;, such that m; [¢,> m>, Q; and Q, are the

matrix representation of m; and m, respectively, B and B' are the matrix

representation of / and O respectively, and X, is the matrix representation of firing

transition #,.

The state transformation between Q; and O, would satisfy

0.=0Q;-BX,+B'X.

14




In other words,

Q2 = Q[ - B_)(r + B+)(r iff Vp, e P MQ(p,') = m;(pi) - I(pl', tr) + O(pi, fr).

Proof:
Xy
Iy r —1square matrices
(—) Since, by Definition 3.3, X, = | [, , where 0,x,
oy a — r square matrices
e

represents a y X y matrix whose entries are all zero, and /,«, represents a y x y identity
matrix, B°X, will be a f x y matrix, where (BX,); = b5, s = (r - 1)y +j, and (B'X,);
represents the entry in ith row and jth column of B'X,. Likewise, (B+Xr),»j =p";. Since

0:=0,-BX,+B'X,, 1<i<pB,1<j<y 4= 4y~ (BX)y+ (B"X,);. Hence, 1 < i

<B1<j<y q,= q,-bis+ b, wheres = (r - 1)y + j. By Definition 3.1 and 3.2,

Vp, € P, V¢, € C: mxpi)c) = mi(pi)(c)) - L(pi, t:)(c;)) + Op;, t.)(c)). Hence,

Wp, € P: Zm (p)c, Ve, =2 m(p)e,)e, ~1(pyot, e, Ve, + O(pot, e, Ve, By
= J=

Definition 22, Vpl e P: I’I’lz(pi) = m;(p,-) - ](pl', tr) + O(pl', fr).

(«) Since m; [t,> m,, by Definition 2.6, they satisfy Vp; € P: mx(p;) = m(p;) -

I(p;, t,) + O(p;, t,). Hence, by Definition 2.2, Vp;, € P, V¢; € C: mx(p:)(cj) = mi(p:))(c))
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- I(pi, t)(cj) + O(pi, t,)(c;). By Definition 3.1 and 3.2, 1 <i< B, 1 <j<y: 95,= 4, -

biis+b'is, where s = (r— 1) x y + . By Definition 3.3, 1 <i< 8, 1<j<y: ¢, = ¢, -

axy axy

Zb_m XX, + Zb+i“ XX, IV, and therefore 0> =Q; - BX, + B'X.
u=l1 u=l

The arithmetic in a state transformation equation, O, = Q; - BX, + B'X, only
contains the operations of matrix: addition, subtraction and multiplication. Lemma 3.1
proves that state transformation equation, Q> = Q; - BX, + B'X,, conforms to the
firing equation in Definition 2.6 by applying the matrix representations in Definition

3.1to3.3.

Definition 3.4: Let G = <N, my>be'a CPN where N= (P, T, 4, C, I, O), |T| = a, |C| =y,
two markings are m and m’, and'there exists a firing vector o such that m [¢> m'.
B A firing matrix X is an n X y mattix-deseribes the firing vector o, where n = ay.

The entries in matrix X are

o(t,) if j=(@-1l)mody +1,wheres=[(i—1)/y]
X. = R
v 0 otherwise

and x;; represents the entry in ith row and jth column of X.

Definition 3.4 describes a sequence of state transformations and can be deemed
as a generalization of Definition 3.3. A firing matrix X can be deemed as a column of
o square sub-matrices. The sth square sub-matrix is an identical matrix scalar

multiplied by o(z,).

' By Definition 3.2, it should satisfy 7 = ’_S / 7/—‘ andj=(s-1)mody+1.
V' By Definition 3.3, X, is 1 only when u = (r— 1) x y +j, otherwise X is 0.
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Lemma 3.2: Let G = <N, my> be a CPN where N= (P, T, 4, C, I, O), |T| = a, |C| =y,
two markings are m and m’', and there exists a firing vector ¢ such that m [¢> m', O
and Q' are matrix representation of m and m' respectively, B~ and B" are matrix
representation of / and O respectively, and X is the matrix representation of firing
vector o.

B The state transformation between Q and Q' would satisfy

0'=0-BX+B'X.

Proof:

Assume the firing vector ¢ represents a finite occurrence sequence such that m
[t> my [t> ma ... [ty> m'. Hence, Q) = QO - B Xy + B' Xy, 0> = Q1 - BX;x +
B X, ..., O'=0,;-BX; + B X, where X;; tepresents a transition firing matrix
describing t,;. Hence, Q'= O - BXg+ B Xy -B Xy +B X5 - ... - B Xy, + B'X,,. Since
all the operations in previous equation-are-matrix operations, it will obey the left

distributive law" in matrix operations;.and hence Q'=Q - B(X;; + X2 + ... + X)) +

rxy

ey si — 1 square matrices

B'(Xy + Xi2 + ... + X,,). Since X;; = |1 , (X1 + X2

rxy

yxy o — sisquare matrices

rxy
+ ... + Xy 1s an n X y matrix, where jth square matrix counted from the top of (X;; +
X2+ ... T X;,) 1s an identity matrix multiply by the number of appearance of X; in (Xj;
+ X;» + ... + X,,). Since each transition firing matrix in (Xy; + X2 + ... + Xj,)

represents a transition, the number of appearance of X; in (X;; + Xp» + ... + Xj,)

V' A(B + C)=AB +AC, where A, B and C are matrices.
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represents the number of appearances of # in the firing vector o, i.e. o(¢). Therefore,

the firing matrix X=X, + X + ... + Xy, and Q'= Q0 - B X+ B'X.

Lemma 3.2 proves that the state transformation equation of a finite occurrence
sequence is Q' = Q - BX + B'X by derived from Lemma 3.1. By the matrix
representations proposed in Definition 3.1, Definition 3.2 and Definition 3.4 and the

equation in Lemma 3.2, a CPN can be presented.

3.2 Matrix Constructing Algorithms for CPN

This section presents four constructing algorithms for above matrices:
MARKING-MATRIX, FUNCTION-MATRIX, FIRING-MATRIX and
NEXT-MARKING.  Algorithm« MARKING-MATRIX  constructs  matrix
representations for markings: of CPNs+ as.in Definition 3.1. Algorithm
FUNCTION-MATRIX constructs matrix-representations for input functions or output
functions of CPNs as in Definition*3.2:.Algerithm FUNCTION-MATRIX constructs
matrix representations for firing vectors of CPNs as in Definition 3.4. Since there can
be only one firing transitions in a firing vector, hence the concept presented in
Definition 3.3 is also contained in this algorithm. Algorithm NEXT-MARKING
computes the marking after firing a certain transition under another marking by matrix

operations.

Algorithm 3.1: MARKING-MATRIX(P, C, m)
1 B |P
2 y<|C

3 QO <« af xymatrix initialized by 0
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4 fori—1top

5 doforj<— 1toy

6 do g; < m(pi)(c;,) > pi € P,c; € C,and g;;is an entry in Q
7  return Q

The inputs of Algorithm 3.1 are a set of places, a set of colours and a marking
function, and the output of Algorithm 3.1 is a marking matrix. The algorithm contains
loops nested two deep. The outer for loop at line 4 iterates f times after initialization,
and each time it constructs a row of marking matrix which represents the tokens on a
place. The inner for loop at line 5 iterates y times, and each time it assigns an entry of
marking matrix by the number of tokems,with a colour on a place. Hence, the
assignment at line 6 within loops totally/tuns fystimes. Besides initialization and
return, Algorithm 3.1 contains the computation of-these nested loops, and hence

MARKING-MATRIX runs in time ®(fy).

Algorithm 3.2: FUNCTION-MATRIX(P, C, T, F)

1 o« |T|
2 p—|P
3 y<|C

4 B« af x oy matrix initialized by 0

5 fori—1top

6 do forj < 1toay

7 d0r<—|_j/]/—|

8 s« (G-1)mody+1

9 bj<— F(pi, t,)(c5) >pi€P,t. €T, ¢, €C,and byis an entry in B
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10 return B

The inputs of Algorithm 3.2 are a set of places, a set of colours, a set of
transitions and an input function (or an output function), and the output of Algorithm
3.2 is an input or output matrix. Similarly, Algorithm 3.2 contains loops nested two
deep. The outer for loop at line 5 iterates f times after initialization, and each time it
constructs a row of input or output matrix which represents the tokens to be removed
from or deposited into a place while firings occur. The inner for loop at line 6 iterates
oy times when outer loop iterates once, and each time it assigns an entry of input or
output matrix by the number of tokens with a colour to be removed from or deposited
into a place during a transition fires. The assignments in lines 7-9 totally run foy
times, and each time they firstly compute the transition and the colour that an entry of
input or output matrix refers to; and then assign the-value retrieved from an input or
output function to this entry. Algorithm.-3-2-has a similar structure as Algorithm 3.1,
but there are only three assignments which.run fay times in these nested loops. Thus,

FUNCTION-MATRIX takes @(fay) time.

Algorithm 3.3: FIRING-MATRIX(C, T, o)
I a7

2 y<|C

3 X« aoay X ymatrix initialized by 0

4 fors—1toa

5 doforj« 1toy
6 doi«—(s-l)yy+jy
7 xj<«o(ty) >t €T, andx;isanentry in X
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8 return X

The inputs of Algorithm 3.3 are a set of colours, a set of transitions and a firing
vector, and the output of Algorithm 3.3 is a firing matrix. The outer for loop at line 4
iterates a times, and each time it constructs the values of a y X y square sub-matrix in a
firing matrix, which corresponds to a transition in firing vector. The inner for loop at
line 5 iterates y times when outer loop iterates once, and each time it assigns the
values to diagonal entries on a y x y square matrix by the number of appearances of a
transition in firing vector. Algorithm 3.3 also has a similar structure as Algorithm 3.2,
except there are only two assignments which run ay times in these nested loops. In
general case, the initialization is considered to runs in constant time, and hence lines

1-3 takes constant time. Thus, FIRING-MATRIX takes O(ay) time.

Algorithm 3.4: NEXT-MARKING(Q; B585X)
1 U« MATRIX-MULTIPLY (B, X)

2 V< MATRIX-MULTIPLY(B", X)

3  fori«1torows[U] > rows[U] is the number of rows of U
4 do forj < 1 to columns[U] > columns[U] is the number of columns of U
5 dOifqij<l/l,'j—Vij

> gy, uj and v;; is an entry in Q, U and V respectively

6 then return Q

7 return MATRIX-ADD(MATRIX-SUBTRACT(Q, U), V)

8  MATRIX-MULTIPLY (4, B)
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C «— arows[A4] x columns[B] matrix initialized by 0
for i < 1 to rows[A]
do for j < 1 to columns[B]
do for k < 1 to columns[A]
do ¢;j « ¢+ ai - by

return C

MATRIX-ADD(4, B)
C «— arows[A4] x columns[A] matrix initialized by 0
for i < 1 to rows[A]
do for j < 1 to columns[A]
do cj <« a; + b;

return C

MATRIX- SUBTRACT(4, B)
C «— arows[A4] x columns[A] matrix initialized by 0
for i < 1 to rows[A4]
do for j < 1 to columns[A]
do ¢j «— a; - by

return C

function and a firing matrix, and the output of Algorithm 3.4 is a marking matrix. In
lines 3-6 it firstly checks if the sequence of firing is valid, i.e., if it would not cause a
negative number of tokens in some places. Then, it computes the next marking by the

state transformation equation in Lemma 3.2. In line 1-2, it contains two matrix

The inputs of Algorithm 3.4 are a marking matrix, an input matrix, an output
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multiplications defined in line 8-14, and each of them takes ®(Bay’) time obviously.
In line 3-6, it contains loops nested two deep, and there has only a conditional return
in these loops, hence they run in O(fy). The return at line 7 contains a matrix addition
and a matrix subtraction, and each of them takes ®(fy) time. Thus, NEXT-MARKING

takes O(fay’) time.

3.3 Example for Matrix Representation of CPN

Colour set:
c:red
1" cs Cy: green
c3: blue
) D , cy: yellow
! ¢,
1'cs ' ¢y
D3
/'O 1g)
2 b
vz R
<
I3

Figure 3.1 A CPN with enable transitions.

Consider the CPN in Figure 3.1, where the place set P = {p;, p», p3}, transition
set T= {t,, t2, t3}, and colour set C = {c;, ¢z, ¢3, c4}. The input function 7 satisfies /(p;,
t1)=1l'cy, l(p, t2) = 1'c3, I(p1, t3) = 1'c; + 1'cy, and I(p;, t;) = 2'c4. The output function
O satisfies O(p2, t;) = l'cy, O(p3, t2) = 1'c;, and O(p3, t3) = 1'c;. The marking m in

Figure 3.1 satisfies m(p;) = 2'c; + 2'c; + 1'c3 + 2'cy, m(p2) = l'c; + 1'cy, and m(p;) =
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I'c;. There is an occurrence sequence m [t3> m; [t3> my [t;> m3 [t;> m', and
corresponding firing vector is ¢. The marking m' after the firing vector is o satisfies
m'(p;) = 1'c;, m'(p;) = 1'c3, and m'(p3) = 1'c; + 1'c; + 2'c3. According to Definition 3.1,

the marking matrix which represents marking m is

Q:

S O N
— O N
s J S
S = N

According to Definition 3.2, the input matrix which represents input function / is

ool
I
S o =
S O O
S O O
oS o O
oS O O
oS O O
(e R
S NN O
o O O
oS O =
oS O O
oS O =

and the output matrix which represents input function O is

B =

oS o O
oS o O
oS O O
S~ O
— O O
S O O
S O O
QI o
o o O
S || ©

0
0
1

ST =

According to Definition 3.4, the firingmatrix-which represents firing vector o is

1000
0100
0010
000 1
1000

JU (O
0010
000 1
200 0
0200
0020
00 0 2

The marking matrix after the firing matrix X is

Q'=0-BX+B'X
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0 0 O

1

1

0 0 0

0 0 O
0
1

1
0
0

1
0
0 0 0

2 0 00
02 00

00 20

0 0 0 2

ll

0

1 0 0 1

0 00 0O
00 0O0O0OOOO0OO0OO0OO0OTO0

000O0O0OOO0OZ2U0O0UO00O0

1

||

—— O

N O

N O O

0 0 0

1

1

0 0 0

0 0 0
0
1

A

1
0
0

0 00

270 0 O
0.2+0 0

0 0 20
0 0 0 2

:

1

0 00 0 00 040
0 0 0 020

1

000 0O0OO0OOTUO0OO 0 0400
0 0 0 1
0 00O

|

S — O

S O A

oS o O

S O -

2
0
1

0 0 0

1

, which satisfies the matrix representation of marking m".
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Chapter 4. Fault Detection and Correction Scheme

This chapter presents a scheme detecting and correcting the faults in CPNs. The
presented scheme firstly encodes a CPN into a redundant CPN for detection and
correction of faults later. The detection and correction in the redundant CPN is done
via parity check. Since all the encoding and parity check need to operate upon linear
algebra, the scheme works based on the matrix representations of CPNs in chapter 3
and shows the faults with matrix representations too. The definition of redundant
CPNs is given in section 4.1. Section 4.2 discusses the faults considered in the thesis
and gives the corresponding definitionis: From section 4.3 to section 4.5, each section
discusses the methodology dealing with akind of faults defined in section 4.2. Section

4.6 proves the correctness of the proposed scheme.

4.1 Bisimilar and Redundant CPNs

Bisimulation equivalence is also called bisimilarity [10]. Bisimulations play an
important role in the theory of parallelism and concurrency [5]. The techniques apply
to language equivalence and reachability set equivalence can also apply to
bisimulation equivalence of Petri nets. Several kinds of notations applied to
bisimulation equivalence, such as based on markings [4, 5] and based on places [12].
The notations adopted in this thesis are the former with some modifications in order to

suit for CPNs.
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The redundancy (3, 4] is stricter than bisimulation equivalence, i.e., it contains
all the conditions in bisimulation equivalence. If a Petri net is the redundant net of
another Petri net, these two Petri nets can have a common firing sequence. The

redundant CPNs discussed here are the notations based on the extensions of those in

[4].

Definition 4.1: Let G = <N, my> and G'= <N', my"™> be two CPNs where N = (P, T, A,

C,[,O)and N'= (P, T, A", C", I', O"), M and M" be the sets which are all markings of

G and G'respectively, R & M x M'be a relation between marking m and m' where m
€ M and m' € M', and mRm' denote the relation.
B Ris abisimulation iff for all #iy' € M and ni;’ € M’ such that m;Rm;’".

(1) For each enabled transition ¢ € 7 and m,~€ M such that m; [£> m,, there

exists an enabled transition ' € T"andm,’ € M’ such that m;' [t m," with
m ngg '

(2) For each enabled transition ¢’ € 7" and m," € M’ such that m;'[t™> m,’, there

exists an enabled transition ¢+ € T and m, € M such that m; [£> m, with

moRm;'.
B For a bisimulation R, CPNs <N, my> and <N’, my"> are called bisimilar"' and

are denoted by <N, mg> ~ <N', my"™>.

Y1 Tt can also call that there is bisimulation equivalence between <N, m,> and <N, m,">.
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o~

u

Figure 4.1 Occurrence graphs of two bisimilar CPNs.

The example in Figure 4.1 contains the Occurrence graphs of two CPNs which
are G = <N, mp> and G' = <N', my">+The CPN:structures of these two CPNs are N =
(P, T,A,C, 1, O)and N'= (P, T, Al C,1'; O} The markings m;, m,, m; and m, are
reachable from initial marking my in G, and the markings m;’, m,’, m;', m," and ms' are
reachable from initial marking mj’in G'. There is a relation R = {(mg, my"), (m;, m;"),
(m;, ms"), (my, my"), (mz, my), (m3, m3", (my, my"), (my, my")} which satisfies the

conditions in definition 4.1, hence R is a bisimulation'" and G ~ G'.

Definition 4.2: Let m be a marking of a set of place P where |P| = f and m' be a
marking of a set of places P’ where |P'| = /"

B A linear transformation function set F of a marking m is defined by
F=1{fi|i=1...q, where q > 0; fi(m(p;), m(p>), ..., m(pg)) = 0;, where p;, p>, ...,
pp € P, o; € Cys, and f; is a function only contains addition, subtraction, and

inner product on input multi-sets}.

VI Tt can be checked one by one in relation R.
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B ' is linearly related to m if and only if there exists a linear transformation
function set F' of m which satisfies following two conditions.
(1) |F1=p"
() film(pr), m(p2), ..., m(pp)) = m'(pi").

It is denoted by F(m) =m'.

The linear relation of two markings in Definition 4.2 is one kind of relation in
Definition 4.1. The relation defined in Definition 4.2 is stricter than that in Definition

4.1 since the latter can be nonlinear.

Definition 4.3: Let G = <N, my> and G' = <N', my"™> be two CPNs where N = (P, T, A,

C,I,O)and N'= (P, T, A", C', I';0", M and M"be sets which are all markings of G
and G' respectively, m;, my; & M, m;', my' € M',t € T, and F and H be linear

transformation function sets.
B G and G'have redundant relation iff'the following conditions are true.
(1) T=T.
(2) F(mg) =my"and H(my") = my.
(3) If F(m;)=m,', Him;") = m; and m; [£> m;, then m;' [£> m," such that F(m;)
=m;,"and H(my") = m;.
4) If F(m;)=m;', Him;")y = m; and m;' [t> m;', then m; [t> m; such that F(m,)

=m;,"and H(my") = mo.

It is denoted by <N, my> = <N', my™>.

It is obvious that bisimilarity in Definition 4.1 doesn’t constrain the relation of

firing transitions between two bisimilar CPNs. They can have different sequences of
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firing transitions, as long as they satisfy the conditions in Definition 4.1. However, the

definition of redundancy in Definition 4.3 gives stricter constrains that also define the
sequences of firing transitions should be the same. If <N, my> =~ <N', my">, then <N,

mop> ~ <N', my™> will also be true, since the condition 3 and 4 in Definition 4.3 are
stricter than the condition 1 and 2 in Definition 4.1 respectively and the condition 1
and 2 in Definition 4.3 should be satisfied in addition. Redundancy has an additional
property with respect to bisimilarity, which redundancy has a property of activity

equivalence since sequences of firing transitions should be same.

Definition 4.4: Let G = <N, my> and G'= <N', my"™> be two CPNs where N = (P, T, A,
C, I, O)and N'= (P, T, A", C', I', O));and [my> and [my™> be sets of reachable
markings from m in G and m,' in'G’ respectively.

B (G'is aseparate CPN of Giiftf'the following conditions are true.
(1) G=G"
2) P=2P.
3) Cc=cC.
(4) Vp e P:my(p)=mo(p).
5) Vp e P, Vm € [mp>, Vm' € [my™>: if the sequences of firing transitions
from my to m is the same as that from m,' to m’, then m(p) = m'(p).

B G'is a nonseparate CPN of G iff G = G'and P 2 P'but G'is not a separate

CPN of G.

The redundant relation can be classified into two classes, which are separate and

nonseparate relations. If G’ is a separate CPN of G, the markings of G can be
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identified from the markings on the subset of places in G’ under the same sequences
of firing transitions, however the markings of G can be identified by linear operations
on the markings of G' in a nonseparate case. In addition, a separate CPN has a
property of sub-marking equivalence which means the markings of a CPN is retained
in the markings of another CPN on the subset of places. In this thesis, we mainly
discuss separate CPNs since this case is more meaningful than a nonseparate case,

though the method proposed in this thesis can be applied in a nonseparate case.

4.2 Fault Models

There are several kinds of faults that-a CPN may suffer. In [11], two kinds of
fault models in Petri nets, whichtare place faults-and'transition faults, are proposed. A
place fault is caused by the cortuption on‘a place, and a transition fault is caused by a
firing problem. This thesis extends the fault models in CPNs, where fault model on
transition faults is divided into two classes: amount and colour. The amount transition
faults are similar to the transition faults in [11]. Since the tokens in CPNs are coloured,
there is an additional fault on transition introduced: colour transition fault. The place
faults in CPNs are extended the place faults in [11], where the place faults in CPNs

would be caused by faulty colours or faulty amount.

Definition 4.5: Let G = <N, my> be a CPN where N=(P, T, A, C, I, O), At € T, M be

the all marking of G, and m, m' € M where there exists a firing vector ¢ such that m

[6>m'.

B Ifmyis a marking with a pre-condition amount transition fault,
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Vp € Pimfp)=m(p) + o(t;) * (- L(p, 1) + Op, 1) ) + o(t2) * (- L(p, 12) + O(p,
L)+ ... t+o(t,) *(-1p,t,) + O, t,) +i*I(p,t)y=m'(p) +i* I(p, t), where i €
N/ {0} and i < o(?).

B Ifmyis a marking with a post-condition amount transition fault,
Vp € P:mfp) = m(p) + o(t;) * (- I(p, 1) + O(p, 11) ) + o(t2) * (- I(p, 12) + O(p,
L)+ oo+ 0(te) * (- I(p, 1) + O, t2)) - i * O(p, £) = m'(p) - i * O(p, f), where i €

N/ {0} and i < o(?).

There are two types of amount transition faults which are pre-condition and
post-condition amount transition faults. A pre-condition amount transition fault occurs
when the tokens are not removed. from the' pre-set of transition ¢ being fired. A
post-condition amount transition fault-oeeursrwhen the tokens are not deposited into
the post-set of transition ¢ being fired. In.Definition 4.5, the marking m' is reached by

firing a sequence of transitions from marking m; under fault-free conditions, and its
firing vector is o, hence they satisfy Vp € P: m'(p) = m(p) + o(t;) * (- I(p, t1) + O(p,

t)) + o) * (- Ip, t2) + Op, t2)) + ... + o(t,) * (- I(p, t,) + O, t,)). Thus, if a
pre-condition amount transition fault, which causes i times of not removing tokens
from the pre-set of transition ¢ in these o(¢) times of transition ¢ being fired, occurs
during this firing sequence, the CPN will get into a faulty marking m,and the
difference between myand a fault-free marking is i * I(p, f). If a post-condition amount
transition fault, which causes i times of not depositing tokens into the post-set of
transition ¢ in these o(f) times of transition ¢ being fired, occurs during this firing

sequence, the CPN will get into a faulty marking myand the difference between m,and
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a fault-free marking is - i * O(p, f). An amount transition fault can be deemed as a

fault cause by choking.

Definition 4.6: Let G = <N, my> be a CPN where N = (P, T, 4, C, I, O), M be the all

marking of G, m € M be a fault-free marking, and m be a marking with accumulated

amount transition faults in respect of m, such that
Aoty €T30, 1, €T, VpePl:
m,(p)=m(p)+i, *I(p,t,)+i, *I(p,t, )+ +i, *I(p,t, )

_jl *0(p7tqfi)_j2 *0(patqf2)_'“_js *0(p’t0./§)'

B |mj, is the amount of amount transition faults in my and |m{,, = |}, where Tris a

set of transitions that have experienced amount transition faults, such

that Ve, -+t 1,0 o1, € T

The amount of amount transition faults-in_a faulty marking is defined on the
amount of transitions that have suffered amount transition faults, rather than the
amount of firings with amount transition faults. Hence, if there is only one transition
that has suffered several times of an amount transition fault in a firing sequence, it is

still defined as an amount transition fault in this firing sequence.

Definition 4.7: Let G = <N, my> be a CPN where N= (P, T, 4, C, I, O), A, € T, dc,

€ C, M be the all marking of G, and m, m'€ M where there exists a firing vector ¢

such that m [o> m'.

B Ifmyis a marking with a pre-condition colour transition fault,

Vp € P:mfp) = m(p) + o(t)) * (- I(p, 1) + O(p, 11) ) + o(t2) * (- I(p, 12) + O(p,

33




L)+ ...+t * (- 1(p, t.) + Op, 1)) - I{p)= m'(p) - I{p),

where Iy is a input faulty function which satisfies

v v
[_f(pk):_i*](pk’tj)(cr)'cr + Zih *I(pkatj)(cr)‘ch 5 Zih =i,1€ N/ {0},

h=1,h#r h=1,h#r
i < o(t), and i, € N. The pre-condition colour transition fault denoted by I is
defined as the pre-condition colour transition fault occurring on the colour ¢, of

transition ¢;.

If myis a marking with a post-condition colour transition fault,

Vp € Prm(p) +o(tr) * (- Lp, t) + Op, 11) ) + o(t2) * (- L(p, 12) + Op, 12)) + ... +
o(te) * (- I(p, 1a) + O, 1)) - OAp)=m'(p) - OAp),

where O is a  output  faulty  function  which  satisfies

4 4
O, (p)=i*O(p,t))e, ) eu= D iy Oty e, ) e, Db, =i, i € N/ {0},

h=1,h#r h=1,h#r

i < o(t), and i, € N. The ‘post-condition colour-transition fault denoted by Oy is

defined as the post-condition-colour transition fault occurring on the colour ¢, of

transition ¢;.

Colour transition faults also have two types, named as pre-condition and

post-condition colour transition faults. A pre-condition colour transition fault occurs

when the tokens removed are of wrong colours from the pre-set of transition # being

fired. A post-condition colour transition fault occurs when the tokens deposited are of

wrong colours into the post-set of transition ¢ being fired. Similar to the explanation

in Definition 4.5, m(p) + o(t;) * (- I(p, t;) + O(p, t1) ) + o(t2) * (- I(p, t2) + O(p, t2))

+ ... to(ty) * (- I(p, t,) + O(p, t,)) in Definition 4.6 describes a fault-free process. In

pre-condition case, Ir indicates that the faulty firing removes the tokens of wrong
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4
colour, here ¢, is correct and Zih *I(p,»t;)(c,)'c, describes the wrong colours,
h=1,h#r

from the pre-set of transition #. It is similar in post-condition case where Oy indicates

the faulty process deposits the wrong tokens, which should be with the color element

4
¢, but with the color elements Zi » FO(py,t;)(c,) ¢, , to the post-set of transition .
h=1,h#r

In both pre-condition and post-condition case, the multiplier 7 indicates that i times of
colour transition faults occur on transition # in these o(#) times of transition ¢ being
fired. A colour transition fault can be deemed as a fault cause by noise during

transmitting.

Definition 4.8: Let G = <N, my> be a CPN where N = (P, T, 4, C, I, O), M be the all

marking of G, m € M be a fault-free marking, and m be a marking with accumulated

colour transition faults in respect of m, such that
Elt,fI ~--t,fq eT,EIchl il € C,Eltaf1 - By eT,EIchfl Gy € C,NpeP:
mf(p) =m(p)+1i *Ifl (p)+1i, *If2 (p) + iy *Ifq(p) >

- *Of1 (P)—J, *sz (p)—-—J, *Ofs(p)

where/, ,---,1, are input faulty functions denote the pre-condition colour faults on
the colour ¢, of transition 7, ..., the colour ¢, of transition 7, respectively,
andO,,---,0, are output faulty functions denote the post-condition colour faults on

the colour ¢, of transition 7, , ..., the colour ¢, of transition 7, respectively.

B |mj. is the amount of colour transition faults in my and |m/. = the amount of

distinct pairs in (¢, ,¢,, ,---,(t,fq Cy, )s (o 5 Crp )55 (B 5Chp ) -

The amount of colour transition faults in a faulty marking is defined on the sum
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of colours with colour transition faults on each transition, rather than the amount of
firings with colour transition faults. Hence, if the colour transition fault only occurs
on one colour of transition in a firing sequence, it is still defined as a colour transition

fault in this firing sequence.

Definition 4.9: Let G = <N, my> be a CPN where N=(P, T, 4, C, 1, O), dp;€ P, ¢

€ C, M be the all marking of G, and m € M.
B If msis a marking with a place fault on place pyin respect of marking m,

mApy) =m(py) +a—s and V p. € P/{ps}: mAp.) = m(p.), where a, s € Cys, and a

* S.

Token corruption in CPN inay cause place faults which occur when the amounts
of tokens on places are suddenly increased-or-decreased, or the colours of tokens on
places are suddenly changed without firing."Formally, as in Definition 4.7, a and s are
both multi-sets over C, and a — s indicates the incorrect tokens on place p,with respect
to the fault-free marking m. Practically, an place fault can represent a fault caused by
data missing, appearing of fake data or data errors. In [11], there is another fault,
additive faults, indicating simultaneous occurrence(s) of place faults and transition
faults. In this thesis, the additive faults indicate simultaneous occurrences of place

faults, amount transition faults, and colour transition faults.

Definition 4.10: Let G = <N, my> be a CPN where N= (P, T, A, C, I, O), M be the all

marking of G, m € M be a fault-free marking, and msbe a marking with accumulated
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place faults in respect of m, such that 1<i< f:m (p,)=m(p,)+a, —s,, where a;, s;

€ Cys.

B |my, is the amount of place faults in m and |m/j, = the amount of 1 <i < f: a; +

Si.

The amount of place faults in a faulty marking is defined on the amount of
places that have suffered place faults, rather than the times of occurrence of place
faults. Hence, if there is only one place that has suffered several times of a place fault,
it is still defined as a place fault. In [11], there is another fault, additive faults,
indicating simultaneous occurrence(s) of place faults and transition faults. In this
thesis, the additive faults indicate. simultaneous occurrences of place faults, amount

transition faults, and colour transitien faults.

4.3 Place Faults

According to Definition 4.9, this section firstly gives the problem formulation of
place faults in matrix representations. Next, based on the problem formulation, this
section presents a methodology encoding a CPN into a separate CPN with detection
and correction capabilities on place faults. Then, this section gives the syndromes of
place faults while they occur in CPNs. Finally, this section describes how to compute

the correction markings via these syndromes.

4.3.1 Problem Formulation for Place Faults
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Lemma 4.1: Let Q be a fault-free marking matrix of a CPN G.

B [f Oris a marking matrix containing a place fault on place p; corresponding to Q,

3F;, a f x y matrix,

Qr=0+F,,

and all the entries in F ; satisfy
Vi<j<yf, € Z,31<h<y.f, #0,

and V1<k<pB 1<I<y k+i: ﬁM:U

Proof:
Assume Q is the matrix representation-of-a fault-free marking m, and Oy is the

matrix representation of m, which 1s a.marking with a place fault on place p; with

respect to m. The entries in matrix 0 and Oy are g,- = m(py)(cz) and g, = m(p,)(c2),
respectively. By Definition 4.9, mAp;) = m(p;) + a — s and V p; € P/{p;}: mApr) =

m(px), where a, s € Cys, and a # s. Hence, by Definition 2.2, V p;, € P/{p:},V ¢ €

C: mApi)(c)) = m(pi)(c)) + a(c)) — s(c;) and mypr)(c;) = m(pr)(c;). Consider mApi)(c)) =

m(pr)(cy) part, it would have

VIi<I<y,1<k<B,k+i q,=qu (1)
Since a # s, by Definition 2.2, 3¢, € C: a(c;) # s(cp). By Definition 2.1, V ¢; € C:

a(c)) € N and s(c;) € N. Hence, consider mAp;)(c;) = m(p;)(c;) + a(c;) — s(c;) part, it
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would have

V1<I<y: qfllzqiﬁe;,whereelel, and 2)
d1<h<y. e, #0. (3)
By combining (1), (2) and (3), V1 </<y,1<k<B,k+#i: q, =qu+0,VI<I<y
qﬁlzqi,vtel,and 31 <h <y: e, # 0. Hence, there exista,b’Xymatrix,F]j,the entries
inF) satisnylSij:f;”e Z,A1<h<y: f}fm;tO,andVlSlSy,lSkSﬂ,ki

i: f, =0, and the relation between Q and Qyis Oy= Q0 +F,.

Lemma 4.1 formulates the problem of a place fault in linear algebra. The

matrix F }’, in the equation is an indicator matrix of‘a place fault, where it has only one

row containing nonzero entries= If the nonzero entries exist in the ith row, it indicates
that a place fault occurs on the place p;-If the-jth column in this row is a nonzero entry,
the colour ¢; tokens on place p; are incorrect. ' The consistency between the description
of place fault in Lemma 4.1 and the definition of place fault in Definition 4.9 is also

proved.

Lemma 4.2: Let Q be a fault-free marking matrix of a CPN G.

B If Oris a marking matrix representing Q with n place faults, 3F), a f x y matrix,
Qf: Q + Fp:
and all the entries in the place fault indicator matrix F), satisfy

Ellfi],iz,...,inﬁﬁ,ij Fi)F ... iin,VISijlpr

Sy ik, € LY1<k

Sﬂ,lf[ﬁy,kiljilji...iinifpk[=0,andzllfh1,h2, ...,hnfyi

39




fpi1h1 ’fp m’fp,v,,;,,, #0.

il °

Proof:

By Definition 4.10, n place faults denote that there are n places with place faults.

Hence, by Lemma 4.1, there are n matrices, F,',F*,---,F,", indicate these place

faults, where i; # i # ... # iy, and Qy=Q+F, + F,* +---+ F,"= O + F,. Therefore,

the entries in F), should satisfy 31 < i, is, ..., i < B, i1 Fir # ... ¥ iy, VI <j <

ViSp o S5 S0, € L, N1<sl<yp 1<k<pk+ip#i>*..#*i:f, =0,and 31

Sh[’ hz’ ""h”Sy: fpilhlbfp “.’fpi,,hn io.

il °

A matrix F), which indicates 7 place-faults would have n rows with nonzero
entries, and the other rows have only entries.of zero. Each row with nonzero entries in
F, represents a place fault. The relation equation, Oy = Q + F),, could be proved by

deriving from Lemma 4.1.

4.3.2 Separate CPNs with Place Faults Detection and

Correction Capabilities

In order to detect and correct place faults, the strategy in this thesis encodes a
CPN with additional tokens as a separate CPN firstly. Definitely, Let G be a CPN with
no more than k place faults, the separate CPN with place faults detection and

correction capabilities is constructed by adding 2k additional places to G and the
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colour sets of both CPNs are the same. Assume that G has a transitions, f places, y

. o R - : .
colours, input matrix B, , output matrix B, and initial marking matrix Qog. The

separate CPN H with place faults detection and correction capabilities in respect to G

would have a transitions, § + 2k places, y colours, input matrix B, , output matrix B,
L . . . D73 I
and initial marking matrix Q, . Besides, B, = D B, , B, = D B, and
1, . . o .
Q, = D Qog , where D is a 2k x f matrix, and Iz denotes a f x f identity matrix.

After H is constructed, the place faults occurring on H can be identified and corrected

from the syndromes. These properties are proved in Lemma 4.3 and 4.4.

Lemma 4.3: Let G be a CPN which has ¢ transitions, f places, y colours, the input
matrix B, , the output matrix B, ,:and the imitial marking matrix Qog .

If the CPN H, constructed by adding d additional places to G, has the same colour

set with G, a transitions, f + d plaees, .y colours, input matrix

1)

output matrix

5[]

and initial marking matrix

Qoh = {Il; :|Qog

, where D is a d x f matrix, all the entries in D are nonnegative, d € N, and Iy

denotes a f x f identity matrix, A has following two properties.
B/ is aseparate CPN with respect to G.

B If a reachable marking matrix O, of G has the same firing transition sequence
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1
with a reachable marking matrix O, of H, Q, = { 5 }Qg .

Proof:
First, Let P, and P, be the place sets of G and H respectively. Consider

conditions 2 and 3 in Definition 4.4, CPN H is composed of CPN G and d additional
places, and thus P, 2 P). Since H and G have the same colour set, C, = Cj, where C,

and C,, are the colour sets of G and H respectively.

Next, let i and j be two integers, where 1 < i < f and 1 < j < y.

I 1,0 0
_ B _ =0, _ 0, _ - . .
0, —{ D }Qog —{ » 20g } _{E on, thus 9, =49, > for all possible i and j. By

Definition 3.1, ¢, =m, (p;)(c;) |and Yo, =M, (p)(c;) , and hence
Vp, e P,,Vc, eC, :m, (p)c)= g, (p)ey)r By Definition 2.2, since Cg = G,
Vp; € P, imy (p;) =m, (p;). Therefore, condition 4 in Definition 4.4 is satisfied.

Next, since A has no additional transition compared to G,
Ty =T, (1)

where 7T, and 7, are the transition sets of G and H respectively. Since
1
O, ={ 5 }Qog =009, . there 1s a matrix Vzll P O/MJ such that
1, . . .
Vo, =vug, :[I s Op4 J Q, =, » where Ogxq 1S a f*d matrix with all
entries of Zero. By Definition 3.1,
B Vi
m, (p;)(c;)=q,, :Zuﬂqo :Z:uﬂm0 (p,)(c;) . Hence, there is a linear
Ta YA ¢

transformation set F, such that
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m,, = F(m, ). ©)
and in the same way,

m,, = H(m,). 3)
Assume there are two markings m and m, in G and H respectively. The
marking matrices of m and m, are ng and O, respectively. Assume that
0, = Ung , and hence ng =VQ, . Similar to the derivation in previous,
m =F(m ) and m_=H(m, ). By Definition 3.1 and 2.6, a transition ¢ is

8is 2

enabled by marking m if and only if VI<i<pB]1<j<y:q, =b, , where s =

(r — )y + j. Hence, VI<i<p+di<j<y: 4, = Zﬁ:uﬂqlmj > iuﬂbg_h =b, .
I=1 I=1

Therefore, transition ¢ is also enabled by marking m; in H. 4)
The marking after firing transition ‘¢ -byrmarking m is m, and the marking
matrix ~ of  m, is Q,, . ""The entries in QO satisfy
VISi<pIl<j<y: G, =, -b, + b;é . The marking after firing transition #, by
marking m, is m, , and the marking matrix of m, 1is @, . Hence, the entries in
Q, satisfy

VISi<f+dl<j<y:q, =gq, —b, +b,

j B l] | ﬂl B
= ;uﬂqlw - ;ui,bg_h + ;u”ng

B
_ - +
- lzuﬂ (qlg]j - bg/s + bg[x )
=1

B
= zuﬂ‘bmj .
I=1
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Therefore, m, =F (ng) ®)]
and m, =H(m,,). (6)
In the same way, if m =F (mlg) . om =H(m, ) and m, [t, >m, , then
my [t, >m, such that m, :F(ng) and my =H(m, ). (7)

By (1), condition 1 in Definition 4.3, the definition of redundant relation, is
satisfied. By (2) and (3), condition 2 in Definition 4.3 is satisfied. By (4), (5) and

(6), condition 3 in Definition 4.3 is satisfied. By (7), condition 4 in Definition 4.3 is
satisfied. Therefore, G ~ H which satisfies condition 1 in Definition 4.4.

Finally, since Q, and Q) are reachable marking matrices of G and H

respectively, and O, and Q) have:'the same  firing transition sequence, Q, =

Q, ~B, X, +B, X, and Oy = Oy =B X, +B8,;X, , where X, = X, . Since

1 I /
- _ ﬂ _ _ ﬂ B ﬂ ~
Bh _|:D:|Bg s B;— _|:Dj|B;— and Qoh _|:D:|QO?" . Qh =
s B - g + _ B _ _ B .
|:D:|Qog —[D}Bg)(h J{D}B‘g){h —[D}(Qog -B, X, +B;Xg)_[D}Qg . Since
1
0, = {Dﬁ}Qg, it can be proved that Vp, Pé cm,(p,) = mg(pi) by the same way

proving Vp, € P, :m, (p;) =m, (p;). Hence, condition 5 in Definition 4.4 is

satisfied. Therefore two properties in Lemma 4.3 are proved.

1
In Lemma 4.3, A CPN H with input matrix B, :[ g }Bg_, output matrix
A . | 7. .
B, = D B, and initial marking matrix Q, = D Qog is proved to be a separate
1
CPN of G. It is also derived that the marking matrix, O, in H would be [ ’ }Q all
D 4

along, where Q,, the marking matrix in G, has the same firing transition sequence as
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Lemma 4.4: Let G be a CPN which has « transitions, f places, y colours, and H be a
separate CPN with d additional places with respect to G. Besides, if a reachable

marking matrix , of G has the same firing transition sequence with a reachable

marking matrix O, of H, O, =UQ, = [II; }Qg.

B [f there are place faults on A, it can be detected by a d x (§ + d) check matrix W,
such that WU = Qgxp, where Ogxp 1s a d x f matrix with all entries of zero. The
syndrome S = WF, iff the place fault indicator matrix is F),.

B [ place faults on H can be identified and corrected if any 2k columns of the check

matrix W are linearly dependent.

Proof:

Assume QO is a fault-free marking'matrix of H, then WQ, = WUQ, = 04x,. If
there are place faults on A, by Lemma 4.2, the faulty marking matrix Qy satisfies Oy =
Oy + F, = UQ, + F,. Hence, The syndrome S = WQ;= WUQ, + WF, = WF,. By the
same way, if the syndrome is WF), it will be S = WF, = WF, + 04x, = WF, + WUQ, =
WF, + WO, = W(F, + Oy), where Oy is a fault-free marking matrix of /, and F, is a
place fault indicator matrix. Therefore, a marking matrix of H could be examined if it
is a faulty marking matrix by multiplying the marking matrix with the check matrix
w.

If Oris a faulty marking matrix of H, which states k place faults on H, by
Lemma 4.2, Oy = Oy + F,, where k rows of F}, have nonzero entries. In other words,

each column in F), has at most k& nonzero entries, and hence each column in Oy has at
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most k incorrect entries. Thus, the syndrome § = lsl S, e syj = WOy
- W[‘l_/i qp q./;J:[W‘I/i Wa,, - qu,J - W, -
wlf, 1. - f, |=Wr, wr, oo W, |, where s, g, and f,
represent the nth column in S, Orand F), respectively, and 1 < n < y. A column in Oy,

q, ,can be deemed as a linear code which is of length . There are two theorems [15]

in error control coding: (1) If a linear code with a check matrix, such that any 2k
columns of the check matrix are linearly dependent, the linear code has minimum
distance 2k + 1. (2) A code with minimum distance 2k + 1 can identify and correct £
errors. Since each column in Oy has at most & incorrect entries, the faults in Orcan be
identified and corrected by the cheek matrix 4/ inside which any 2k columns are

linearly dependent. After getting the syndrome by W(Qy the place fault indicator

matrix F), can be found by solving equations W/, ==, ,wherel <n <.

Lemma 4.4 shows that if there are at most k place faults, it needs to find out a
check matrix which has any 2k columns are linearly dependent, and the result of
multiplying the check matrix with a fault-free marking matrix is a matrix with all
entries of zero. By applying the method of Reed-Solomon codes [15], it would find a
check matrix of 2k rows and any 2k columns are linearly dependent. Hence, d = 2k. In
other word, if there are at most k place faults, 2k additional places is needed in the
separate CPN by applying the method of Reed-Solomon codes in order to derive the
detection and correction capabilities of place faults. Lemma 4.4 also shows that the

place faults can be identified and corrected from the syndrome.

Let G be a CPN which has a transitions, j places, y colours, the input matrix B, ,
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the output matrix B; and the initial marking matrix O, . From Lemmas 4.3 and 4.4,

constructing a separate CPN H which can detect and correct at most & place faults is
concluded as following steps: (1) First, constructing a 2k x (f + 2k) check matrix W

from the check matrix of Reed-Solomon codes. (2) Second, solving the equation

1
W{ Dﬂ } =0,, and getting the entries of D. (3) Finally, deriving the separate CPN H

1 1
containing input matrix B, = { Dﬂ }B; , output matrix B, = { Dﬁ }B; and initial
. . I, | .
marking matrix @, = D O, - A marking Q) in the separate CPN H can be

examined if it is a correct marking by the check matrix W. If the marking QO is a
faulty marking, it can be corrected by solving the place fault indicator matrix £, from

the equation S = WF,, where S is the syndrome from WQ,.

4.3.3 An Example of ldentifying and Correcting Place

Faults

This section uses the example in Figure 3.1 as the given CPN G and sets the

marking in this figure as the initial marking. Let B,, B, and Q, represent the

input matrix, the output matrix and the initial marking matrix of G respectively.

Hence, the given CPN G has a = 3 transitions, = 3 places, y = 4 colours,

0000OT1TO0OO0OTIO
B, =10 0000002000 0],
0000OO0OOO0OOO0O0OO

B, =10 001 000 0O0O0O0 Of,and
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g

Il
S O
—_— O N
[ S S —
S = N

Assume there are at most £k = 3 place faults, a 6 x 9 check matrix W can be

constructed by the method of Reed-Solomon codes. The followings are the steps of
constructing check matrix W: (1) Choosing a prime number ¢ which satisfies a > f +

2k =9, and hence it can take a = 11. (2) Second, finding a nature number » which is a

s VIII
primitive root mod a

, it can choose 7 = 2. (3)Third, giving a polynomial of degree a
-1 -2k=10 - 6 = 4 used to construct check matrix, such that w(x) = (x - ¥ * mod a)(x
-7 mod a)(x - ¥ * mod a)(x - 1) = (x — 2° mod 11)(x — 2* mod 11)(x — 2" mod 11)(x

-1 = S 2+ 5= b4x4 + ng3 + ng2 + b;x + by. (4) Finally, constructing

the check matrix W from by, b3, b>s'b; and by, such:that

b, b, b b, 0 020 0 O
b, by b, b b, 0+ 0 10270
W= 0 b, by b, b b, “0 700

0 0 b, b, b, b by 700

0 0 0 b, b b, b b, O

0 0 0 0 b, by b, b b]

5925000 0 0]

1 59250000
1015925000
oo 1592500

000159250

00 00159 2 5]

Next, the matrix [Ilﬂ is obtained by solving the equation

Iﬂ
0. =W D mod 11

VI If - is a primitive root mod a, it would satisfy {#' mod a, ” mod a, ..., ' moda } = {1,2, ...,
a-1}.
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mod 11, and hence
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1,d,=7,ds=5,dy=9,dip=4,d;;=4,d;>
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Finally, the separate CPN H is constructed, where

<+ — O o ¢ O
SO —~— O ™~ w1 S N o N
1
— oo S o~ < 2 . <~
L ] |
Il I

1
= Q .
[ Q

|

0
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0000OO0OOO0OO0OT OO

10 5 3
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1 00
0 1 0
0 0 1
10 7 42 2 1 2

=19 5 1{0 0 1 1
7 590 1 0 0
4 4 8
10 5 3
2 9 6
(2 2 1 2]
0 0
0 1 0 0
20 24 17 27

= |18 19 14 23|.
14 23 12 19
8§ 16 8 12
20 23 15 25
4 10 11 13]

The CPN H with its initial marking is illustrated in Figure 4.2, where, in each place,
the number above each token denotes:the-amount of that token.

Since H is the separate CPN ‘of G, G and H can have the same firing transition
sequence. As in section 3.3, G has a firing transition sequence: f3, f3, t;, t;. Hence,

consider the same firing transition sequence in H and assume the corresponding

fault-free firing sequence is m, [t> m, [t5> m, [t;> my [t> m',. The

markings m, , m, , m, , my, and m', are the fault-free marking in H, and it is
0,> My, » My, » MM h >

assumed @, , O, , O, , O; and (@', are the marking matrices of m, , m, , m, ,

h h

m; and m', respectively. Assume there are amount transition faults inside the firing
F[’l FPZ
sequence, such that m, ——> my [t:> my, [t5> my o —Em, [t,>

F, F Ly . .
ms  —=— mg  [> m, —*— m', whichisan informal representation and

,
means that the place faults occur (1) before the first firing, (2) after the second firing
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and before the third firing, (3) after the third firing and before the last firing, and (4)

after the last firing. F,, F, , F, and F, are place fault indicator matrices, where

|
—
[e)

and

S O O O O O

S O O O O O o o O
1
I
S O b~ O O O O O O
S O O O O o o o O
S O O O O O v O O
T
I
S O O O O o o o O
S O O O O O o O 0

S O O O O o o o O

S O O O O O

b, . From Lemma 4.2, F “tepresents that there is lack of one red

©S O O O O O o0 00 o o o o

|
[S—
S OO O O O O O WO oo o o o o o o

S O O O O O OO N &0 0000 o o o

S O O O O O o o O

o O

token in p;, F, represents that there are five extra yellow tokens in p;, four extra
green tokens in p7, and lack of four red tokens in p;, F, represents that there are

nine extra green tokens in p;, and lack of one blue token in p;, and F, represents

that there are two extra red tokens and three extra blue tokens in p;, and lack of one

green tokens in p;. Hence, the marking matrices represent m , m, , my , m, ,

'
ms , mg , m, and m', are

f
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0,

’
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f
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25
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1
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6 21

\O'—‘-';’_‘O\Oo\w

Ju—
[\

S O O O O O wn O O

O L A W L 9 W — O

. 0,

and O',

. 0,

e
o

[\

14
10
16
12
13

—_
o w =

15
7
23
20
11
21

o

S O O O O L O O

’

O —= h~ = O O

AN W 0 O — K=~ = O O

25
16
30
24
21
23

LN DO oL A i i 9 © — ©

p— —_—
o ® o o

—
o0

The following steps identify and correct these three place faults from the

marking matrix (', and the check matrix . First, since
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592500000
1 59250000
01 5925000
WQ'fmod11=

001592500
000159250
000015925
5 1 2 10

1 9 5 1
:0063¢06x4,
2 410 5
36 0 0

8 5 0 0]

there are place faults in Q' . Second, since

51 _2_10]
1 EO =] %
00 6 3
WF,mod 11 =W(Q', mod 11= , n .
36 0 O
18 57700 |

the following sets of equations are figured out:

&f,, +9/1,, +2f,, +5/,, )modll=5
(f,, +5f, +9f, +2f, +5f, ymodll=1
(f,, +51,, +91,, +2f,, +5f, )modl1=0
(f,, +5/,, +91,, +2f, +5f, )modl1=2
(fp;u +5f,, +9f, +2f, +5f, )modll=3
(f,, +5f, +9f, +2f, +5f, )ymodl1=8

(S, +9f, +2f, +5f, )modll=5
(f,, +5f,, +9f, +2f, +5f, )modll=1
(f,, +5f,, +9f, +2f, +5f, )Ymodl1=0
(fy, +5f, +91,, +2f,, +5f,, )modl1=2
(f,, +5f,. +9f, +2f, +5f, )modl1=3
(fyo +5f5, +9f,, +2f,, +5f,, )modl1=8
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5/, +9f, +2f, +5f, )modll=5
(fyo +5f,, +9F,. +2f,, +5f, Jmodl1=1
(f,, +5/,,+9f, +2f,, +5f, )modl1=0
(f,, +5f,. +9f, +2f, +5f, Ymodll1=2
(fo, +5/,, +91,, +2f,, +5f,,)modl1=3
(fo, +5/,, +91,, +2f,, +5/,,)modl1=8

and there are two more restrictions: (1) each set of equations has at most three

nonzero variables and (2) V1 <i<9,1<,<3: —% < f, < —%. Therefore,

f]’ll - 1’ fP71 :-4’ fPlz :9’ fP72 :3’ fPls :3’ fP33 :-1’ fP34 :5’ and the

other entries in F), are zero. It can be inferred from F), that three place faults occur in
p1, p3 and p7, and the colours of fault for these places are: red, green and blue in p;,

blue and yellow in p3, red and green in pz,The correct marking matrix with respect to

Q'_/is
(2 9 3 o 1 9 3 0] 1 0 0 O]
0 1 0 000 0 0 0 1 0
1 1 5 0 0 —1-5 1 1 2 0
14 4 15 0 0°"0"0 o0 14 4 15 0
Q,-F={10 1 7 0/ -{0 0 0 0/=/101 7 0f, which is
16 9 23 0 0 0 0 0 16 9 23 0
8§ 11 20 0 -4 3 0 0 12 8 20 0
13 3 11 0 0 0 0 0 13 3 11 0
'8 6 210/ |0 0 O O] [8 6 21 0]
equalto Q',.
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Colour set:
cp:red
Ccy: green
c3: blue
cy: yellow

Figure 4.2 A CPN with place faults detection and correction capabilities.

4.4 Amount Transition Faults

The organization of this section is similar to the one of previous section. This
section firstly gives the problem formulation of amount transition faults in matrix
representations according to Definition 4.5. Based on the problem formulation, a

methodology encoding a CPN into a separecate CPN with detection and correction
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capabilities on amount transition faults is presented, but the encoding matrix adopted

is different from the one in previous section. Then, this section gives the syndromes of

amount transition faults while they occur in CPNs, where a new check matrix is

applied. Finally, it describes how to compute the correction markings via these

syndromes.

4.4.1 Problem Formulation for Amount Transition Faults

Lemma 4.5: Let Q be a fault-free marking matrix of a CPN G.

If Oris a marking matrix containing,a pre-condition amount transition fault on
transition # corresponding to O, 3F ,.a nx y matrix, where n = ay,
O=Q+BF,,

and all the entries in F|” satisfy

V(i-1)y + 1 <h<iy,j=(h-1) mod y +1 :f;h; e N/{0}

and V1<k<n 1<I<ypk+horl+j: f, =0.

If Oy is a marking matrix containing a post-condition amount transition fault on

transition ¢ corresponding to Q, 3F'", a n x y matrix, where n = ay,
O=0-B'F",

and all the entries in F|* satisfy

V(i-1)y+1<h<iy,j=(h-1) mod y +1 fa’; e N/{0}

and V1 <k<n 1<I<yp,k+horl+j: fai;:O-
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Proof:
Assume Q is the matrix representation of a fault-free marking m, and Oy is the

matrix representation of m, which is a marking with a pre-condition amount transition

fault on transition # with respect to m. By Definition 4.5, Vp, € P: m{py) = m(p,) + z
* I(pg, t;), where z € N/ {0} and z < a(#;). Hence, by Definition 2.2, Vp, € P, V ¢, €
C: mApy)(c,) = m(pg)(c,) + z * I(pg, t:)(c,). By Definition 3.1 and 3.2, V1 <g<p 1<r

<y: q&,_:qgrﬁLZ*ng:qngFZ*bgsﬁL zo*b_ where s = (i - 1)y +r.

gk °
k=1,k#s

Hence,VngSﬁ,lgrgy; qur :qgr+2fa:*bg_k:
k=1

4 z ifx=00-1Dy+
where f~ = v ( 0 i —Smmce I <'r < y, the previous equation is
v 0 otherwise

equivalentto V1 <g<p 1<r<y e +Zfi— *p-
k=1

iy gk

. if (i—1)y+1< x Liyandy=(x—1)mody +1
where fu’: ={Zolf(l 4 * STpamgmet—1) 4 . Therefore, there is an

otherwise

n x y matrix and all the entries in F/~ satisfy V(i-1)y + 1 < h < iy, j = (h-1) mod y
+1 fa’; e NA{O}and V1 <k<n, 1 <I<yk+horl+j: fa’; =0, such that Q=

Q — B F*. The case of post-condition amount transition fault can be proved by the

same way.

Lemma 4.5 formulates the problem of an amount transition fault in linear

algebra. The matrix F!~ and F.* in the equation indicate the transition suffering a

pre-condition and post-condition amount transition fault respectively. Both F/~ and
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F!" have similar structures to transition firing matrix, where all of them can be
deemed as a column of o square sub-matrices, and each sub-matrix is a y X y matrix.
There is only one sub-matrix in F,” and F,* with non-zero entries, which is an
identity matrix scalar multiplied by a positive integer, and all the other sub-matrices

are matrices with all entries of zero. If the ith sub-matrix in F,~ (F.") is an identity

matrix scalar multiplied by z, it denotes that transition # suffers a pre-condition
(post-condition) amount transition fault z times. In this thesis, it is assumed that a
transition wouldn’t suffer both a pre-condition and a post-condition amount transition
fault, since it would seem like the transition without firings in this case, and the
effects are cancelled [3]. The consistency between the description of amount
transition fault in Lemma 4.5 and the defmition of amount transition fault in

Definition 4.5 is also proved.

Lemma 4.6: Let Q be a fault-free marking matrix of a CPN G.

B [f Oris a marking matrix representing O with z amount transition faults, where x
of z are pre-condition amount transition faults, and y of z are post-condition
amount transition faults, 3 F, and F,", n x y matrices, where n = ay,
Q;=Q+BF -B'F',

, all the entries in the pre-condition amount transition fault indicator matrix
F satisfy

315 i1_7i2_7”"ix Sﬂ’ ll_;él;?&;élv_a

Vi —Dy+1<h <ijy,(i, -Dy+1<h, <ijy,--,(i, -Dy+1<h_<i y,
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Ji = =Dhmody +1,j; = (h; =Dmody +1,---,j; =(h; ~)mod y +1:

fo o fi e fs e N/{0},and

h h2j2 ¥ Jx

km#h #h #---#h_ or I"#j #j, #-#]_:

X °

and all the entries in the post-condition amount transition fault indicator
matrix F, satisfy

VS 0y ,niy SB, B #L #Ee £ FA £ E e E

V@ =Dy +1<h" <ify,(i; = Dytlghy<iyy, -, Dy +1<h; <ijy,

Ji = =lmody +1, j; =(h, =hmody+1,-++j; =(h; —l)mody +1:

.fa-iﬂr ’fa++,+ ’.“7\](‘;—%+ € N/{O}B and

VIi<k <n 1<[ <y,

k™ #h #hy #--#h; or I"#j #j #-# ]

Proof:

By Definition 4.6, z amount transition faults denote that there are z transitions

have suffered amount transition faults, and x of these z transitions have suffered

pre-condition amount transition faults, y of these z transitions have suffered

post-condition amount transition faults. In previous assumption, a transition wouldn’t
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suffer both a pre-condition amount transition fault and a post-condition amount

transition fault, thus z = x + ». Hence, By Lemma 4.6, there are x

matrices, F',F>",---,F,*", indicate these pre-condition amount transition faults and

a a

. i+ i+ i+ . . .. ..
y matrices, F" *,F",--- ,F"" indicate these post-condition amount transition faults,

where i #iy #--#i #i; #i, #---#1i_,and the marking Orwould be

Q, =Q+B Fi +B F: +-+B F" —BF'* B F* —..-B°F""
=Q+B (F' +F" 4+ F* )= B (F'* + F** 4.4 F')
=Q+BF -B'F’

From the previous equation, it would have the relations that
F =F"" +F> 4..+F" and F'=F""+F" 4+..+F"" . Therefore, the
entries in F, should satisfy

V(i -Dy+1<h <iy,(i; -Dy+1<hy Ly, G, —Dy+1<h. <i_y,

Ji = =Dmody+1,j, =(h, “T)mody +1,--5,5 =(h, —1)mody +1:

fo o f. e f. € N/{0},and

11 haj2 hx Jx

km#h #h) #---#h_or ["#j #j, ## ] :
and the entries in F, should satisfy

V@ =Dy +1<h’ <ify,(i; =Dy +1<h) <ijy,,(; -Dy+1<h; <ijy,
Ji = =Dmody +1,j; =(hy —mody +1,---, j; = (h; —1)mody +1:

£ e fh e N/{0}, and
WA hy iy hyj

yIy
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V1<k <n 1< <y,

+ + + + + . . .+,
kK #h #h) #--#h, or I #j #j #-#]:

Both pre-condition and post-condition amount transition fault indicator matrices,

F, and F,, have similar structures to firing matrices. There are x (y) sub-matrices

in F, (F,), which indicates x (y) pre-condition (post-condition) amount transition

faults, have nonzero entries, each of x (y) sub-matrices is an identity matrix scalar

multiplied by a positive integer, and all the other sub-matrices in F, (F,) are

matrices with all entries of zero. Since the assumption in previous that pre-condition

and post-condition amount transition fault can’t bothzappear in a transition, there is a

constrain between F, and F %, such thattherth sub-matrix in F, is a matrix with

all entries of zero if the rth sub-matrix in" F, is a matrix with nonzero entries. The

poof at here is similar to the one in Lemma 4.2. It proves the consistency between

Lemma 4.6 and Definition 4.6 by deriving from Lemma 4.5.

4.4.2 Separate CPNs with Amount Transition Faults

Detection and Correction Capabilities

The strategy in this section is used to detect and correct amount transition faults,

which has the same steps with the strategy in section 4.3.2 but with different encoding
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matrices on input and output matrices. Let G be a CPN with no more than £ amount
transition faults, the separate CPN with amount transition faults detection and
correction capabilities is constructed by adding 2k additional places to G and the

colour sets of both CPNs are the same. Assume that G has a transitions, £ places, y
. o ot - . .

colours, input matrix B, , output matrix B, and initial marking matrix Qog. The

separate CPN H with amount transition faults detection and correction capabilities in

respect to G would have a transitions, f + 2k places, y colours, input matrix B, ,

B
output matrix B, and initial marking matrix O, . Besides, B, :{DBg E} )
o

B’ I
B = £ and =7 , where D is a 2k x B matrix, E is a 2k X «
h {DB; —E:| Qo,, {D}Qog p Y

matrix, and Iz denotes a f x fridentity matrix: After / is constructed, the amount
transition faults occurring on H can be identified and corrected from the syndromes.

These properties are proved in Lemma 4.7 and 4.8.

Lemma 4.7: Let G be a CPN which has a transitions, S places, y colours, input

oo . . . .
matrix B, , output matrix B, and initial marking matrix Qog .

If the CPN H, constructed by adding d additional places to G, has the same colour set

with G, a transitions, § + d places, y colours, input matrix

_ B,
By=| & |,
DB; -E

output matrix

. B,
Bh = +
DB -E
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and initial marking matrix

]ﬂ
Qoh = D Qog
, where D is a d x f matrix, E is a d X ay matrix, all the entries in D and E are

nonnegative, d € N, I denotes a f x f identity matrix, and all the entries in DB, — E

and DB, —E are nonnegative, / has following two properties.
B His aseparate CPN with respect to G.

B [f a reachable marking matrix O, of G has the same firing transition sequence

1
with a reachable marking matrix O, of H, Q, = [ 5 }Qg .

Proof:

The satisfaction of conditions 2, 3 and 4 in Definition 4.4 can be proved as the
proof in Lemma 4.3, and thus-it is omitted here. Next, consider condition 1 in
Definition 4.4, the satisfaction of conditions“l and 2 in Definition 4.3 can also be

proved as the proof in Lemma 4.3, thus it only needs to be proved the satisfaction of

conditions 3 and 4 in Definition 4.3 at here. Assume there are two markings m, and
m, in G and H respectively. The marking matrices of m, and m, are 0O, and
. I, . .
Q, respectively. Assume that O, = s 0, =09, , and hence there is a matrix
1, ]
V= [Iﬂ Oﬁde such that VQ, =VUQ, = [Iﬁ 0.4 s O, =0, , where Opxq is a
p*d matrix with all entries of zero. By Definition 3.1, V1 <i < f, 1 <j <y

s B
mlh(p,.)(cj):qlh_:Z:uﬂq1 :Z:uﬂm1 (p,)(c;) . Hence, there is a linear
Y I=1 A ¢

transformation set F, such that m, = F(m, ), and in the same way, m, =H(m, ).
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0
Assume  that Rz{ ”2 v } , thus input matrix of H would be

B, 1
B, = ¢ =| 7 1B, —| " |=UB; —R and output matrix of H would be

B, =| ¢ _|=|7|B;-| " |=UB;-R. By Definition 3.1 and 2.6, a
DB;-E| |D]* | E ¢

transition ¢, is enabled by marking m, ifand only if VI<i<p1<j<y: q, 2 b, ,
where s = (r — 1)y + j. Since all the entries in £ are nonnegative, all the entries in R

have constrains which are V1 < i < f + d, 1 <j < ay: r; = 0. Hence,

)

B B
VISi<B+dI<j<y:q =Y u,q_ =Y ub, 2> ub, —r, =b, .
ij pa 8l a Is is

=1

Therefore, transition ¢ is also enabled by marking m, in H. (1)
The marking after firing transition # by -marking- m, is m, , and the marking

matrix  of  m, is 0, c-7rthe /entries in 0, satisfy

4 g

VISi<pIl<j<y: %, =, -b, +b;m .~ The marking after firing transition ¢ by
marking m, is m, , and the marking matrix of m, is Q, . Hence, The entries
in Q, satisfy

VIi<f+dl<j<y:q, =q, —b, +b,

is

B B B
= Z U, (Z uilb‘;,l\, — I+ (Z uilb;,l\, — 1)
— 1=1 =1

; ), ),
Z Ui, Z”ilbg;s + Z”ilb;v
=1 =1

: _
Z ll (ql - bgz.\- + b;[.v )

Il
Mm ||

zqum/. .

~
Il
—_
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Therefore, m, =F (ng) (2)
and m, =H(m,,). 3)
In the same way, if m =F (mlg) . omy =H (m; ) and m, [t >m, , then
my [t, >m, such that m, = F(ng) and m, = H(m, ). 4)
By (1), (2) and (3), condition 3 in Definition 4.3 is satisfied. By (4), condition 4 in

Definition 4.3 is satisfied. Therefore, G =~ H which satisfies condition 1 in Definition

4.4.
Finally, Since Q, and (), are reachable marking matrices of G and H

respectively, and O, and Q) have the same firing transition sequence, Q, =

Q, ~B, X, +B, X, and Oy = @5 =B, X, %B,X, , where X; = X . Since

s =| B | p-| B4 W g =", .
DB, -E|" " | DB =E " | p

4

Q—IﬁQ B x| By
"“|p[™ |DB,-E| " |DB;-E|"’

QOg _Bg;Xh-i_B;’th Q
DQ, —DB X, +EX,+DB; X, ~EX, | "
| O, B X,+B.X,

DQ, —~DB,X,+DB; X, [~

_| % (Q, -B,X,+BX,)= s 0
D 0, g8 g8 D g’

1
Since Q, = LﬂQg, it can be proved that Vp, € P, :m,(p,)=m,(p;) asin Lemma

4.3. Hence, condition 5 in Definition 4.4 is satisfied. Therefore two properties in

Lemma 4.7 are proved.
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B
In Lemma 4.7, A CPN H with input matrix B, = {DB‘g E} output matrix
-

B 1
B = € and initial marking matrix =7 also has two properties
h { DB - E} g 0, { D:|Qog prop

in Lemma 4.3. Most parts of the proof of Lemma 4.7 are the same as the proof of

Lemma 4.3, thus these parts are omitted here.

Lemma 4.8: Let G be a CPN which has a transitions, S places, y colours, input

matrix B, output matrix B; and initial marking matrix Q, , and H be a separate CPN

B
with d additional places with respect to G, input matrix B, = l:DB‘g E}’ output
-

B’ 1
matrix B = 8 and initial marking matrix =7 =UQ, .
h {DB; _ E} g Qo,, [D}Qog Qog

B [f there are amount transition faults on H, it can be detected by a d % (f + d)

check matrix W, such that WU = 0, x g, where Oyx g 1s a d x £ matrix with all
entries of zero. The syndrome S = WB, F, - WB, F,, iff the pre-condition and
post-condition amount transition fault indicator matrices are F, and F,

respectively.
B [ amount transition faults on H can be identified and corrected if W =

[— D 1, ] , and any 2k columns of the matrix E are linearly dependent.

Proof:
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Assume Q, and Oy, are fault-free marking matrices of G and H respectively, and

they have the same firing transition sequence. Hence, by Lemma 4.7, O, = { 5 }Qg ,
and Oy, multiplied by W would be WQ;, = WUQ, = 04x,. If there are amount transition
faults on H, by Lemma 4.6, the faulty marking matrix Oy satisfies O;= O, + B, F, -
B,F' = UQ; + B,F, - B,F/. Hence, The syndrome S = WQ; = WUQ, +
WB,F, - WB,F = WB,F, - WB,F, . By the same way, if the syndrome is
WB,F,  -WB,F  itwillbeS=WB,F, -WB,F  =WB,F, -WB,F  +04x,
=WB,F, -WB,F  +WUQ,=WB,F, -WB,F ' +WQ,=W(B,F, - B/F/
+ On), where Qy is a fault-free marking matrix of H, and F, and F, are

pre-condition and post-condition.amount'fransition fault indicator matrix respectively.
Therefore, a marking matrix of /{ could be ‘examined if it is a faulty marking matrix
by multiplying the marking matrix with the-check matrix .

Assume (O is a faulty marking matrix' of H, which states & amount transition

faults on H. Besides, x of k are pre-condition amount transition faults, and (kK — x) of £

are post-condition amount transition faults. By Lemma 4.6, Oy = O, + B, F, -
B, F, where x sub-matrices in F, are identity matrices scalar multiplied by
positive integers, and (k — x) sub-matrices in F,° are identity matrices scalar
multiplied by positive integers. Hence, each column in F, has x nonzero entries,

and each column in F, has (k — x) nonzero entries. If the check matrix W =
[-D 1,], the syndrome will be

S= lsl Sy, e syJ
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= WQ/,

= WUQ,+ WB,F, - WB/F,

B B’
-D I £ F —-|-D I £ F
S0 W RS I

(-DB; + DB; - E)F, —(-DB; + DB} - E)F,

= E(F, -F,)
=EF,
= Ef, £, o S ]

|.Efa1 Efaz o Efay J’
where s, and f, represent the nthyeolumn in'S-and F,, respectively, and 1 < n < y.

Hence, it can be deem as the problem of correcting the faults, f,,f, .-, f, , from

linear codes with length ay by multiplied with the matrix E. Since F, = F, - F,,
each column in F,, fan, has k& nonzero entries. From the theorems in error control
coding, each code word with a fault indicator f, can be corrected by E if any 2k
columns of E are linearly dependent. After getting the syndrome by W(Qy, the amount
transition fault indicator matrix F, can be found by solving equations Ef, =s

n b

where 1 < n <.

Lemma 4.8 shows that if there are at most £ amount transition faults, it needs to
design the matrix £ with any 2k columns are linearly dependent, and the result of
multiplying the check matrix W with a fault-free marking matrix is a matrix with all

entries of zero. Same as previous section, the matrix £ can have 2k rows and any 2k
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columns of E are linearly dependent if it is designed by the method of Reed-Solomon
codes. Since E is a d X ay matrix, it would have d = 2k. In other word, if there are at
most £ amount transition faults, 2k additional places is needed in the separate CPN by
applying the method of Reed-Solomon codes in order to derive the detection and
correction capabilities of amount transition faults. Lemma 4.8 also shows that the

amount transition faults can be identified and corrected from the syndrome.

Let G be a CPN which has « transitions, 8 places, y colours, the input matrix B, ,

the output matrix B; and the initial marking matrix O, . From Lemmas 4.7 and 4.8,

constructing a separate CPN H which can detect and correct at most £ amount
transition faults is concluded as following steps: (1) First, designing a d X ay matrix £

from the check matrix of Reed-Solomon codesi(2) Second, choosing a d x f matrix D

which satisfies all the entries in- DB, —£ land DB; — E are nonnegative. (3) Third,
constructing the check matrix "W from W = [—D 1 ﬁJ. (4) Finally, deriving the

B

g

B , output matrix
DB, —E

separate  CPN H containing input matrix B, ={

+
+ Bg

1
B = and initial marking matrix =7 . A markin in the
h |:DB; _ E} g QOh |:D:|QOg g Ql’l

separate CPN H can be examined if it is a correct marking by the check matrix W. If

the marking Q is a faulty marking, it can be corrected by solving the pre-condition

and post-condition amount transition fault indicator matrix, F, and F,", from the

equation S=EF,= E(F, —F, ), where S is the syndrome from WQ,.
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4.4.3 An Example of lIdentifying and

Transition Faults

Correcting Amount

2'ci+2'cr+2 i+ 2 ¢y

Zertl'et1e+2 g
I

Colour set:
c: red
Cy: green
c3: blue
cy: yellow

1)

1'04

[ pZ

Figure 4.3 A CPN with:nested loops.

Colour set:
cp:red
¢y: green
¢;: blue
cy: yellow

Figure 4.4 A separate CPN of the CPN in Figure 4.3.

This section uses the example in Figure 4.3 as the given CPN G and sets the
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marking in this figure as the initial marking. Let B,, B, and Q, represent the

input matrix, the output matrix and the initial marking matrix of G respectively.

Hence, the given CPN G has a = 2 transitions, f = 2 places, y = 4 colours,

) 22220000
B, = ,

g[00002332}

. 21120110
B’ = , and

g[00012331}
Q_2222

0 33 4 1|

Assume there are at most £ = 2 amount transition faults, a 4 x 8 matrix £ can be

constructed by the method of Reed-Solomon codes as following steps: (1) Choosing a
prime number a which satisfies a > ay = 8, and hence it can take a = 11. (2) Second,

finding a nature number » which is‘a primitive root mod a, it can choose r = 2.
(3)Third, giving a polynomial of degree a1 -2k = 10 - 4 = 6 used to construct check
matrix, such that e(x) = (x - 7 % mod @) = #* > 'mod a)(x - 7 * mod a)(x - #~> mod
a)(x - " * mod a)(x - 1) = (x — 2°mod 11)(x — 28 mod 11)(x — 27 mod 11)(x — 2° mod
1D(x—2°mod 11)(x - 1) = x® + 8x° + 4x" + 6x° + 7x? + 8x + 10 = bex® + bsx” + b +
b3x3 + ng2 + bix + by. (4) Finally, constructing the matrix £ from bg, bs, by, b3, by, b,

and by, such that

b b, b, b, b, b b, 0
oo |0 b b by by bbb,
0 0 b, b, b, b b, b
0 0 0 b, b b, b b,
1 8 46 7 8 10 0
018467 8 10
o018 46 7 8|
000184 6 7

Next, the matrix D can be chose as
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8 4
D= i 1; which satisfies all the entries in
1 7
8 4 1 8
DB;—E=810[22220000}-01
4 00002332 0 0
1 7 0 0
16 16 16 16 8 12 12 8 1 8
|16 16 16 16 20 30 30 20 0 1
|8 8 8 8 16 24 24 16| |0 0
2 2 2 2 14 21 21 14 0 0
(15 8 12 10 1 4 2 8
16 15 8 12 14 23 22 10
“ls 8 7 0 12 18 17 8| ™™
2 2 2 1 6 17 15 7
8 4 1 8
DB;—EZSIOFIIZOIIO}-OI
4 8(/0 0 051 2 331 0 0
1 7 0 0
16 8 8 20 8 20204 1 8 4
|16 8 8 26 2038 38 10 0 1 8
|8 4 4 16 16 28°28°%%| |0 0 1
2 11 9 14 22 22 7 0 0 0
(15 0 4 14 1 12 10 4
{16 7 0 22 14 31 30 0
(8 4 3 12 22 21 0
2 11 6 18 16 0

are nonnegative. Finally, the check matrix W is obtained from

w=[p 1] -

-8 -4 1000
-8 —-10 0 1 0 O
-4 -8 0 0 1 Of
-1 -7 0 0 0 1

and the separate CPN H is constructed, where

_ B,
By =|
DB, -E
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S — 0 b~

—_— 00 A~ O

—_— 00 A~ N —~ o0 ~h O

—_— 00 L~ O

o A~ O

0 A N N 0 A SN

o K~ N

A O 9 0O NN O

B N e )



(2 2 2 2 0 0 0 O
0O 0 0 0 2 3 3
15 8 12 10 1 4 2 8
16 15 8 12 14 23 22 10
8 8 7 0 12 18 17 8
2 2 2 1 6 17 15

1 2 0 1 1
o 1 2 3 3
4 14 1 12 10

, and
0 22 14 31 30
3

1

& 12 22 21

S O O bk~ = O

1
0

L 2222

_810{3341}
4
1

28 28 32 20
46 46 56 26|
32 32 40 16
23 23 30 9

The CPN H with its initial marking is illustrated in Figure 4.4.

There is a firing sequence in G, which is m, [t> m, [t>> m, [t> m,
g g g g
[£> my (> m',, and Mo o My, My o, My, My and m', are the fault-free

marking in G. Since H is the separate CPN of G, G and H can have the same firing

transition sequence. Hence, consider the same firing transition sequence in H and
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assume the corresponding fault-free firing sequence is m, [t;> my [&2> m, [t/>

1 1 1
my  [t> m, [t> m',. The markings m, , m , m, , my , m, and m', are the

h

fault-free marking in CPN 4, and it is assumed Q, , O, , O, , O, O, and O,

are the marking matrices of m, , m, , m, , my , m, and m', respectively.

h

Assume there are place faults inside the firing sequence, such that m, [t,> m, [z,

a a

F, > my [t> my |6, F,> m, [t, F, > m', which is an informal

representation and means that a post-condition amount transition fault occur when the

last time firing #;, and a pre-condition amount transition fault occur when firing #,.

a

F, and F, are pre-condition amount transition fault indicator matrices, and F,’

is a post-condition amount transition, faultindic¢ator' matrix, where

[0 0 0 0
0000
0000
Fa‘=Fa’=0000,and
! 2 1 00 0
0100
0010
00 0 1
1 0 0 0]
0100
0010
. oo o0 1
“ o0 o0 of
0000
0000
00 0 0

. . \

Hence, the marking matrices represent m, -, My, My o, My and m', are
_ - +

Q1h - Qo,, - Bh X+ Bth
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15
16

—_— kN O O =

28
46
32
23

—_— W O B~ O =

0,

sz

0,

1
2 2 2] [2 2 2 2 0 0 0 o]|0
3 4 1 0 0 0 0 2 3 3 21/l0
28 32 20 15 8 12 10 1 4 2 8/|0
46 56 26| |16 15 8 12 14 23 22 10||0
32 40 16 § 8 7 0 12 18 17 8|0
23 30 9 2 2 2 1 6 17 15 7]|0
0
1 0 0 0]
2 0 1 1 olflo 1 00/ [2 1 1 2]
1 2 3 3 1|0 010 3 3 4 2
14 1 12 10 4[|0 0 O 1| |28 20 24 24
22 14 31 30 0/|0 0 0 0| |46 38 48 36
8 12 22 21 0[|0 0 0 O 32 28 36 24
8 6 18 16 0]/|0 0 0 O 123 22 29 16
0 0 0 O]
[ 2un10ias.2 i
5 _6..77+:3
B Opst B Ko 29 32 34 28’
60 69 78 36
445057 24
129 40 4516 |
2 TR 2]
5 6 7 4
B X+ B X 29 24 26 32,
60 61 70 46
44 46 53 32
129 39 44 23
(2 2 2 2]
7 9 10 5
- B, Ogxq4+ B Xo= 303636 36,and
74 92 100 46
56 68 74 32
135 57 60 23

S O O O O o = O

S O O O O = O O

S O O O = O O O
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Q'f = Q4_/.

Following steps are identifying and correcting these two amount transition faults

- B, X;+ B Ogxy=

7
15
58
48
33

0
9
28
77
60
55

0
10
24
92
67
58

5
26

34|

32
22

from the marking matrix (', and the check matrix . First, Since

0 0 0
-8 -4 1 0 0 0|7 10 5
-8 —-10 0 1 0 Of|15 28 24 26
WQ', modll= mod 11
-4 -8 0 0 1 0|58 77 92 34
-1 =7 0 0 0 1[[48 60 67 32
133 55 58 22]
9 3 6 6
_ 109 3 6 - Opns,
3 10 9 3
6 3 109
there are amount transition faults in Q" z=Second, since
EF,mod 11
_fa” 0 0 0 |
0 f., O 0
1 8 4 6 7 8 10 0 0 0 f., O
01 8 46 7 8 10|| 0 0 0 f
= “ | mod 11
001846 7 8|f, O 0 0
0001 8 4 6 7 0 f., O 0
0 0 f., O
0 0 0 f.
9 3 6 6
10 9 3 6
=WQ', modll= 310 9 30
6 3 10 9

the following sets of equations are figured out:
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(f,, +7f,)modll1=9 ((8f, +8f, Jmodll=3
6/, )modl1=10 | (f, +7f, ymodl1=9
(4fp5])m0d11:3 ° (6f;,62)m0d11:10 D
8/, )modl1=6 (4f, )modll=3
(4f,, 10/, )modl1=6 (6, )modll=6
8/, +8/,,)modl1=3 (4f, +10f, ymodll=6
(f,, +7/,)modl1=9 ") 81 +8f ymodl1=3"
(6f,,)modl1=10 (f,, +7/,,)modl1=9
and there are three more restrictions: (1) f, = f, = f,. = f,, and f, =
Jo, = Ju, = Ja,» (2) each set of equations has at most two nonzero variables and

() VI<is8 1<j<& -1l < [, < L Therefore, /, = f,, = f,, =

Jo =land f, = f = [f =Ff, ==2F and F can be derived from

F,that F, = and"F, = . By Lemma 4.6, it can be

S O O N O O O O
S O N O O O O O
S b O O O O O O
N O O O O O O O

S O O O O O O
S O O O Lo =IO
S O O O O MDD
S O O O = O O O

inferred from F, and F, that a pre-condition amount transition fault occurs in 7,
two times, and a post-condition amount transition fault occurs in #; one time. The

. . ,
correct marking matrix with respectto Q ;18

Q' - B, F, + B, F/

a

78



0 000
[0 0 0 0] (2 2 2 2 0 0 0 0]|0 0 00O
7 9 10 5 0 0 0 0 2 3 3 0000
_ (1528 24 26) |15 8 1210 1 4 2 8|10 00 0
58 77 92 34 16 15 8 12 14 23 22 10| (2 0 0 O
48 60 67 32 § 8 7 0 12 18 17 8|0 2 0 0
133 55 58 22 2 2 2 1 6 17 15 7/]0 0 2 0
10 0 0 2]
[1 0 0 O]
(211 2 0 1 1 0]j01 00
0 00 1 2 3 3 1/|l0 010
15 0 4 14 1 12 10 4{|0 0 0 1
16 7 0 22 14 31 30 0/|0 0 0 O
8 4 3 8 12 22 21 0/|0 0 0 O
2 11 8 6 18 16 0/|0 0 0 0
0 0 0 0]
[ 1 1 2]
3 3 4 2
28 20 24 24 o
= , which iSequal to O';:
46 38 48 36
32 28 36 24
123 22 29 16

4.5 Colour Transition Faults

The organization of this section is similar to the one of previous section. This
section firstly gives the problem formulation of colour transition faults in matrix
representations according to Definition 4.7. Next, based on the problem formulation, a
methodology encoding a CPN into a separeate CPN with detection and correction
capabilities on amount transition faults is presented, and the encoding matrix is the

same as it in previous section. Then, this section gives the syndromes of colour
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transition faults while they occur in CPNs, where the check matrix is also the same as
it in previous section. Finally, this section describes how to compute the correction

markings via these syndromes.

45.1 Problem Formulation for Colour Transition Faults

Lemma 4.9: Let Q be a fault-free marking matrix of a CPN G.

B If Oris a marking matrix containing a pre-condition colour transition fault on

transition # and colour ¢; corresponding to Q, EIFC” ~, an Xy matrix, where n =
ay,
O=Q0+BF,
and all the entries in F/~  satisfy
dh=(- 1)y+j:fc"z/_ e N/ {0},
Vi<g<y,g#+j fi‘e Z /' N U {0}, Zy:ﬁz{jzo,and
=
Vi<k<n1<I<yk=+h fI" =0.

B [f Oris a marking matrix containing a post-condition colour transition fault on

transition # and colour ¢; corresponding to Q, EIFC” ", an x y matrix, where n =
oy,
Qf: Q_B+Fcij+:

and all the entries in F/*

c

satisfy

Jh=(i-y+j: 2" e N/{0},
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}/ .e
Visgsp.g#j fi € Z/NU{0}, > /] =0, and
o=l

Vi<k<n 1<I<yk+h f’" =0.

Cri

Proof:
Assume Q is the matrix representation of a fault-free marking m, and Oy is the
matrix representation of m, which is a marking with a pre-condition colour transition

on transition ¢; and colour ¢; with respect to m. By Definition 4.7,
Vp. € P: mApy) = m(px) - I{px), Where

4
1,(p) ==2*I(put)c) e, + D0, *I(pyt)e,)e,

g=1.g#]
V4
Zig =z, (1)
g=1,g#r
z€ N/ {0},z<0(t),and iy € N, )

Hence, by Definition 2.2, Vp, € P, Vg€ C:'mAp,)(c,) = m (px)(cr) + I(px)(c,). First,

consider the colour ¢;, it would have Vp, € P: mAp:)(cj)) = m(p:)(c) - I{px)(c) =
m(p:)(c)) + z * I(px, t:)(cj). By Definition 3.1 and 3.2,

VISx<p g, =q,+2%b, =q,+2%b, + D 0%b_, )

s=1,s#h

where 4 = (i - 1)y + . Next, consider all the colour ¢, # ¢;, it would have Vp, € P:

mpx)(ce) = m(ps)(c) - I(p)(ce) = m(ps)(ce) - ig * I(ps, 1)(c;). By Definition 3.1 and

3.2,

VIsx<p1<g<pg#j q, =i, *by=q, i, *b,+ > 0*by, 4)

s=1,s#h

where 4 = (i - 1)y +j. By combining (3) and (4), it could have a n x y matrix, F'",
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the entries in F'~ are

z ifk=handA=j
[ =i, ifx=hand A+ j,

Cxa

0 otherwise
and Qy=Q + B F"" . From (1) and (2), it would have
fcif e N/{0},
Vi<g<y,g#+j fc’ge Z /N U {0}, Zy:fcfn‘=0,and
o=1
V1i<k<n 1<I<y k=+h fcif = 0. The case of post-condition colour transition

fault can be proved by the same way.

Lemma 4.9 formulates the probleni of a'colour transition fault in linear algebra.
The matrix F”~ and F’* in the equation indicate the jth colour in the ith transition
suffering a pre-condition and post<condition colour transition fault respectively. There
is only one row in F’~ (F/") containing nonzero entries, which is ((i - 1)y + j)th
row, and the jth column in this row is positive (negative), and all the other entries in
this row are negative (positive) or zero. The sum of all the entries in ((7 - 1)y + j)th
row of F’" and F* are zero. In this thesis, it is assumed that a transition wouldn’t

suffer both a pre-condition and a post-condition colour transition fault on the same
colour. The consistency between the description of amount transition fault in Lemma

4.9 and the definition of amount transition fault in Definition 4.7 is also proved.

Lemma 4.10: Let Q be a fault-free marking matrix of a CPN G.

B [f Oris a marking matrix representing Q with z colour transition faults, where x
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of z are pre-condition colour transition faults, and y of z are post-condition colour
transition faults, 3 F and F.", n x y matrices, where n = ay,

Or=Q+BF -B'F,

, all the entries in the pre-condition colour transition fault indicator matrix
F_ satisfy

1< h by, h, <n, hy #h, #---#h_,

Ji = =Dmody+1,j, =(h;, —)mody +1,---,j =(h, —1)mody +1:

f;;fif ’f;szf ’.“’f;@; < N / {O}’

V1<k<n 1<l <y,

km#h #h #---#h_ or I #j #J,# %] :

f. e Z/NU {0}, and
7

Vi<g<nm Zf(,i =0,
o=1 %7

and all the entries in the post-condition colour transition fault indicator

matrix F satisfy
A< S hy k) <, b #hy £t R E R E by £ D,
Ji = =mody +1, j; =(hy —mody +1,---, j; = (h; —=l)mod y +1:

fo oo et e NTH{OS,

hJy yJy

k™ #h' #hy #--#h; or I"#j #j #-# ]

f e Z/NuU {0}, and

k*1
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Proof:

By Definition 4.8, z colour transition faults denote that the faults occur on z
colour and transition pairs, and x of these z pairs suffer pre-condition colour transition
faults, y of these z pairs suffer post-condition colour transition faults. In previous
assumption, a transition wouldn’t suffer both a pre-condition and a post-condition

colour transition fault on the same colour, thus z = x + y. Hence, By Lemma 4.9, there

are x matrices, F' "' 7, F*/27 ... F'*”*~ indicate these pre-condition colour transition

c c

. ot R s S8 . . L.
faults and y matrices, F," "' ¥, F> 25 F*"" lindicate these post-condition colour

c
transition faults, where Iy £y #ont i) £ £, ## 1, or
Ji #Js 2 # J, £ J) # j, #-+# ] and the marking Oy would be

Qf — Q+B—F;ifjf* +B—FCI'£J'£* +.,,+B-Ej§j¥* —B+F:" Ji + _B+F;iz.iz+ _,,._B+F;’y/y+
:Q+B*(Ftifjf- +F;i£J£—+,,,+Fci,2.i§*)_B+(F;iljl + +F;i2jz+ +“‘+F;zyfy+)
=Q+BF -B'F,

From the previous equation, it would have the relations that
F =F'"/""4F*h 4y F*'" and F' =F"* £ F%%% 4.+ F*"" By Lemma
4.9, the rows with nonzero entries of FC"”T_,Fc’m_,---,Fc’;-";’,FC"'+"'++,Fc";jzw,---,FC’;";+
are h =, —Dy+j, th, h, =G -Dy+j, th, ..., h_ =G -Dy+j_  th,

=G =Dy+j th, h =G -Dy+j th, ..., & =G -Dy+j, th rows

respectively. Since A N A I N R or
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ot o+ .t . . . —_
W ZFLFF ], L FlFF ]

hi #hy #--#h  #h #h, #-#h

X

Therefore, the entries in F, should satisty

km#h #h #---#h_ or I"#j #j, ##]_:

X °

f. e Z/NuU {0},

v
Vi<g<nm Zf(,i =0,
o=1 €
and the entries in F," should satisfy

](‘CJr ,J(;Jr ’...’f;:++ (S N/{O},

+ o+ + o+
) hy iy 'y Jy

VI<k <n 1<[ <y,
k™ #h #h) #--#h; or I"#jizj3# %]

f' e Z/NU {0,

Kt

Vi<g<m > f" =0.

There are x (y) rows in F (F.") have nonzero entries, each of which indicates
a pre-condition (post-condition) amount transition fault. The summation of the entries

in each row of F, (F.")is zero. The poof at here is similar to the one in Lemma 4.6.

It proves the consistency between Lemma 4.10 and Definition 4.8 by deriving from

Lemma 4.9.
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45.2 Separate  CPNs with Colour Transition Faults

Detection and Correction Capabilities

The strategy in this section is used to detect and correct colour transition faults.
As it is mentioned in the beginning of this section, the encoding method in section
4.4.2 could also applied to encode a CPN into a separate CPN with colour transition
faults detection and correction capabilities. Therefore, let G be a CPN with no more
than & colour transition faults, the separate CPN H with colour transition faults
detection and correction capabilities is constructed by adding 24 additional places to

G and the colour sets of both CPNs are the same. The input matrix, output matrix,

— : . _ B, N B,
initial marking matrix of G4are B, = # , B, = & and
DB —E DB, —-E

1
O, ={ 5 }Qog respectively. After A -is” constructed, the colour transition faults

occurring on H can be identified’ and. corrected from the syndromes which are
different from the syndromes in section 4.4.2. These properties are proved in Lemma

4.11.

Lemma 4.11: Let G be a CPN which has a transitions, f places, y colours, input

matrix B, , output matrix B; and initial marking matrix 9, , and H be a separate CPN

B
with d additional places with respect to G, input matrix B, = l:DB_g E}’ output
-

+

B I
matrix B, = € and initial marking matrix =7 =UQ, .
' L)Bg+ - E} s O, { D }Qog O,
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B [fthere are colour transition faults on A, it can be detected by a d x (f + d) check

matrix W, such that WU = Qg x 3, where Ogxp 1s a d X ff matrix with all entries of
zero. The syndrome S = WB,F. - WB,F,, iff the pre-condition and
post-condition colour transition fault indicator matrices are F, and F'

respectively.

W % colour transition faults on H can be identified and corrected if W= [-D 1],

and any 2k columns of the matrix E are linearly dependent.

Proof:

Assume Q, and O, are fault-free marking matrices of G and H respectively, and

they have the same firing transition sequence. Hence, by Lemma 4.7, O, = { 5 }Qg ,

and Oy, multiplied by W would be WQ;, =WEtQ, =04« ,. If there are colour transition

faults on H, by Lemma 4.10, the faulty marking matrix Oy satisfies Q= O, + B, F,
- B/F” = UQ, + B,F, - B,F' . Hence, The syndrome S = WQ, = WUQ, +
WB,F. - WB,F. = WB,F. - WB,F,. By the same way, if the syndrome is
WB,F  -WB,F',itwillbeS=WB,F_ -WB,F' =WB,F_ -WB,F' +04x,
=WB,F, -WB,F' +WUQ,=WB,F, -WB,F' +WQ,=WB,F - B,F’
+ On), where Qy is a fault-free marking matrix of H, and F, and F are

pre-condition and post-condition colour transition fault indicator matrices
respectively. Therefore, a marking matrix of H could be examined if it is a faulty

marking matrix by multiplying the marking matrix with the check matrix W.
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Assume Oy is a faulty marking matrix of H, which states k colour transition

faults on H. Besides, x of k are pre-condition colour transition faults, and (k — x) of k

are post-condition colour transition faults. By Lemma 4.6, Or = O, + B, F, -

B, F, where x rows in F,_ with nonzero entries, and (k — x) rows in F,” with

nonzero entries. If the check matrix W= [-D I,], the syndrome will be

S= |_S1 S, e SyJ
=WQr
B, . B
b zdl[ L }FC o zd{ < }F;
DB, -E DB} -E
= E(F/-F])
= EF.

- [Efq Ef, - Efcha
where s, and f. represent the nth ¢olumn in.S'and F., respectively, and 1 < n <y.
Hence, it can be deem as the problem of correcting the faults, f,,f. .-, fcy , from
linear codes with length ay by multiplied with the matrix £. From Lemma 4.10, F_~

and F. wouldn’t have nonzero entries on the same row, and hence there are k rows

in F. with nonzero entries. In other words, each column in F,, f

., has at most k
nonzero entries. From the theorems in error control coding, each code word with a

fault indicator f, can be corrected by E if any 2k columns of E are linearly

dependent. After getting the syndrome by W(Qy, the colour transition fault indicator

matrix F. can be found by solving equations Ef, =s, ,wherel <n <y.

n 3
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Lemma 4.11 shows that if there are at most £ amount transition faults, it needs to
design the matrix £ with any 2k columns are linearly dependent. Thus, the separate
CPN designed for detecting and correcting amount transition faults can also applied
for detecting and correcting colour transition faults. The pre-condition and
post-condition colour transition fault indicator matrices can also be solved out by the
method in 4.4.2. The only difference at here is how to analyze the colours and the
transitions which have suffered colour transition faults from the pre-condition and
post-condition colour transition fault indicator matrices. From Lemma 4.10, the rows
with nonzero entries denote the colour transition faults. If ith row in a pre-condition
(post-condition) colour transition fault indicator matrix has nonzero entries, a
pre-condition (post-condition) colour transition fault is on transition # and colour c;,
where [ = !—i/ ;/_| and s = (i -1) mod y +1. If jth-.eolumn in this ith row is a negative

entry, it denotes the faulty phenoemenon is the colour ¢, changing into colour c;.

4.5.3 An Example of Identifying and Correcting Colour

Transition Faults

This section also uses the example in Figure 4.3 as the given CPN G but the

4 2 5 2

initial marking matrix is changed into Qog = {3 3 4 J which adds two red

tokens and two blue tokens in to place p;. As it proved in section 4.5.2, the separate
CPN designed for detecting and correcting amount transition faults can also be
applied for detecting and correcting colour transition faults. Thus, the CPN in Figure
4.4 can be used for detecting and correcting colour transition faults, but the initial

marking matrix is changed into
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25

ol

23

4 2 4 2

3 3 4

56
80
52
33

20

26|

16
9

1

|

Unless otherwise specified, the assumptions and variables used at here are the same as

they in section 4.4.3. Assume there are,.colour transition faults inside the firing

sequence m, [t> my [t> my o [t>p m', s which are

0

|
—_

S O O O o O

S O O O O O o O

S O O O O O = O

S O O O O O

o |
—

S P O O O O O O O o o o o o o <o

S O O O O O O O O o o o o o o o

and
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+

pre-condition colour transition fault which occurs when the last time firing #;, and

they can be represented as m, [t;, F_ >

S O O O O O O O

S O O O o o = O

S O O O o O

S O O O O O o O

c

+ _
mlf» [tg, F;2> m2,» [tla F.3> m'f.

c

Hence, the marking matrices represent jm50am, and m', are
S A

- B, (X;- F)+:B, X

Q1,»=Q0,1
(4 2 5
3 3 4
|44 28 56
|62 46 80
40 32 52
125 23 33

(2 11 2 0
000 1 2

15 0 4 14 1

16 7 0 22 14
8 4 3 8 12

2 11 8 6

0, =

f

20
26
16

10
30
21
16

23
31
16

S O O = O

S O O O O O o =

S O O O o o

S O O O O O = O

= 0, - BiXo+ B (Xo- F))

2
0

8
7
2

2

S O O O O = O O
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2 0 0
02 3
10 1 4
12 14 23
0 12 18
1 6 17
.

0 [ 2
0 3
1l |36
0| |47
0 32
o |23
0_

0

3

2
22
17
15

28
53
36
24

0
2
8
10

48
72
48
32

S O O O O o o =

24
36
24
16

S O O O o o = O

is a post-condition colour transition fault which occurs when firing #, F,

S O O O o = O O

~ 1s a pre-condition colour transition fault which occurs when the first time firing #;,

S O O O = O O O




0000
2 4 21 [2 2 2 2 0 0 0 0]/l0 0 00O
3 4 2 0 0 0 0 2 3 3 2(l0 000
|36 28 48 24 15 8 12 10 1 4 2 8[/0 0 0 O
147 53 72 36| |16 15 8 12 14 23 22 10[[1 0 0 0
32 36 48 24 8 8 7 0 12 18 17 8|[0 1 0 0O
123 24 32 16/ [2 2 2 1 6 17 15 7[(0 0 1 O
0 0 0 1]
[0 0 0 O]
(211 2 0 2 0 0|[0 0 0O 2 5 4 2]
0 00 1 2 6 0T1[[0 000 36 1 1
150414122040000236464620and
16 7 0 22 14 61 0 Of|1 0 0 O 47 91 50 26
8 4 3 8 12 43 0 0f|0 1 0 0 32 61 31 16
2 1 1 8 6 34 0 0/]|0 010 23 41 17 9|
0 0 0 1]
0, =0, - B (Xi- F)+ B,Xi
1 0 0 0]
(2 5 4 2] 4270 4 2 00 0 O0]|01 0 O
36 1 1] [0 90002 3 3 2/|00 1 0
_ |36 46 46 20 150 20 1001 4 2 8|[0 0 0 1
147 91 50 26| |16 02312 14 23 22 10[|0 0 0 O
32 61 31 16 8 0 15 0 12 18 17 8|0 0 0 O
123 41 17 9 2 0 4 1 6 17 15 7]{0 0 0 O
0 0 0 0]
1 0 0 0]
211 2 0 1 1 o0]jo 1 00f [2 6 1 2
0 00 1 2 3 3 1/|0 010 36 1 2
15 0 4 14 1 12 10 4[|0 0 0 1| (36 46 30 24
16 7 0 22 14 31 30 0[[0 0 0 O |47 98 27 36|
8 4 3 8 12 22 21 0/|0 0 0 O 32 65 19 24
2 11 8 6 18 16 0/|0 0 0 0 123 42 14 16|
0 0 0 0]

Following steps are identifying and correcting these two colour transition faults

from the marking matrix (', and the check matrix . First, Since
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wo',

S O =
[, T N |

there are colour transition faults in Q' .

EF,.mod 11

1 8 4 6 7 8

|01 8 4 6 7

0 01 8 4 6

0 001 8 4
8
1

=WQ'fmod11=4
0

O I N

S o o O

S O o =

10 0
8 10
7 8
6 7
7 7 0
1 90
4 70
5 60

S o = O

S = O O

- o o O

+* O4x4,

x o N o I~ =

=

W o il RS T S

o3

Second, since

=1 o o s I 9 Jax
& be) ¢} s} b [N} ~

o> BORANELE - I -

o
S

36
47
32
23

" N ix
e b @

s
poes

o
7}

-
>

- B R i s

o
&

the following sets of equations are figured out:
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46
98
65
42

S o S o o X
R IS kS r = S

)
=

SH o oRIARIEN Sh SN SN S

3
z

30
27
19
14

24
36
24
16

mod 11

mod 11

(f, +8/., +4f, +6f, +7f. +8f, +10f )modll=8
(f., +8f. +4f., +6f. +7f +8f. +10f )modll=1
(f., +8f., +4f. +6f, +7f. +8f, )modll=0
(f., +8f., +4f. +6f. +7f, )modll=0

b

(f., +8f., +4f. +6/. +7f +8f, +10f_ )modll=7
(f., +8/. +4f. +6f._ +7f +8f +10f )modll=I
(f., 81, +4f. +6f +7f. +8f )modll=4
(f., +8/., +4f, +6f. +7f, )modll=5

b



(f., +8f., +4f. +6f. +7f. +8f. +10f )modll=7
(f., +8f., +4f. +6f_ +T7f +8f. +10f )modll=9
(f., +8f., +4f. +6/. +7f. +8f, )modll=7
(f., +8f. +4/f, +6/. +7f, )modll=6

and

(f,, +8f., +4f. +6f. +7f.  +8f., +10f_ )modll=0

(f., +8/. +4f., +6f. +7f, +8f +10f, )modll1=0

(f., +8f., +4f., +6f +7f. +8f, )modll=0 ~
(f., 81, +4f, +6/f.  +7f, )modll=0

and there are three more restrictions: (1) each set of equations has at most two

nonzero variables and (2) V1 <i<8,1<;<4: —% < f, < % Therefore, f,

= f.. = [, =L f., =-2, f., =-1and all the other entries in F are zero. By

0
-1

Lemma 4.11, F. = F. —F, ,and hence it can have F = and

c

S O O O o O
S O O O O O b O
S O O O O O
S O O O O o o O

F' = . By Lemma 4.10, it can be inferred from /£ that a

S O O O O o o O
S O O O o O

S R O O O O o O
S O O O O o O

0

pre-condition colour transition fault occurs on #; two times, where one time is c;

changing into ¢;, and one time is ¢, changing into ¢3, and it can be inferred from F.

that a post-condition colour transition fault occurs on ¢, one times, where it is c;

changing into c;. The correct marking matrix with respect to Q' is

94



0 0 0 0
(2 6 1 2] (2 2 2 2 0 0 O O][-12 -10
36 1 2 0 0 0 0 2 3 3 0 0 0 0

_ |36 46 30 24) 15 8 1210 1 4 2 8110 0 0 0|
47 98 27 36 16 15 8 12 14 23 22 10/|0 0 0 O
32 65 19 24 8 8 7 0 12 18 17 0 0 0 0
123 42 14 16] 2 2 2 1 6 17 15 7/{0 0 0 0

0 0 0 0
0 0 0 O]

(211 2 0 1 1 0]j0 0 0 O
0 00 1 2 3 3 1/[0 0 00
150 4 14 1 12 10 4/|0 0 0 0
16 7 0 22 14 31 30 0[{0 O 0 O
8 4 3 8 12 22 21 0/|0 0 0 O

12 11 8 6 18 16 0|0, «=lusds 0

0 0.0.0]
(4 1 4 2]
3 3 4 2
44 20 48 24 o

= , which is equal to Q'
62 38 72 36
40 28 48 24
125 22 32 16

4.6 Additive Faults

From Lemma 4.1, 4.5 and 4.9, the problem formulation of additive faults in
matrix representations can be concluded. Thus, based on the problem formulation, this
section gives the methodology encoding a CPN into a separeate CPN, and the place
faults, amount treansition faults and colour transition faults in the separeate CPN can
be extracted from the syndromes. This section also describes how to compute the

correction markings via these syndromes and gives an example which shows how the
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methodology works.

4.6.1 Separate CPNs with Additive Faults Detection and

Correction Capabilities

The strategy in this section is used to detect and correct additive faults. The
encoded input matrix, encoded output matrix and encoded initial marking matrix here
would have the same forms as those in the previous section, but with stricter

restrictions. Therefore, let G be a CPN with no more than k place faults, x amount
transition faults and & - x colour transition faults, where 0 < x < £, the separate CPN

H with additive faults detection and correction capabilities is constructed by adding 2k

additional places to G and the-colour sets of both-CPNs are the same. The input

B
matrix, output matrix and initial ‘marking matrix of G are B, = {DBg E:I ,
-

B I
B = g and =7’ respectively, where all the entries in D are
h |:DB; —E} Qoh {D}Qog P Y

coprime with a prime number, and all the entries in £ are multiples of the same prime
number. After H is constructed, the place faults, amount treansition faults and colour
transition faults occurring on H can be extracted from the syndromes, and the correct

marking can be obtained. These properties are proved in Lemma 4.12.

Lemma 4.12: Let G be a CPN which has a transitions, f places, y colours, input

matrix B, , output matrix B; and initial marking matrix 9, , and H be a separate CPN
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with d additional places with respect to G, input matrix B, = l:DB‘g E}’ output
-
N 1
matrix B, = £ and initial marking matrix =7 =UQ, .
h {DB; —E} g Qo,, [D}Qog Qog

If there are additive faults on H, it can be detected by a d x (8 + d) check matrix

W, such that WU = Qgx g, where Oy« g 15 a d * S matrix with all entries of zero.

The syndrome S = WF, + WB; (F +F_) - WB; (F +F.) = WF,+ WB;, F_
- WB, F;", iff the place fault, pre-condition and post-condition amount transition

fault, pre-condition and post-condition colour transition fault indicator matrices

F , F , F’

are F), and 2 F" respectively. F, and F,° are named as

pre-condition transition fault ‘indicator matrix and post-condition transition
fault indicator matrix respectivelyrFi'= F, -+ F, - Fis named as fault
indicator matrix.

k place faults, x amount transition faults and k& - x colour transition faults on H
can be identified and corrected if W = [— D 1, ] ,wWhere 0 < x < k,E=j*E'.D
=j *i *l4xp- D', j is a prime number lager than all the entries in £'and D', i is a
positive integer lager than all the entries in D', 14xp is a d X f matrix with all

entries of one, any 2k columns of the d % ay matrix £’ are linearly dependent, and

any 2k columns of the d x 2 matrix [D' 1 d] are linearly dependent.

Proof:

Assume Q, and O, are fault-free marking matrices of G and H respectively, and
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1
they have the same firing transition sequence. Hence, by Lemma 4.7, O, = { 5 }Qg ,

and Oy, multiplied by W would be WO, = WUQ, = 04x,. By Lemma 4.1, 4.5 and 4.9, if

there are additive faults on H, the faulty marking matrix Oy satisfies Oy= O, + F, +
B,F. - BJ/F" +BF -B'F' =UQ,+F,+ B,F. - B'F +BF, -B'F’.
Hence, The syndrome S = WQ,= WUQ, + WF, + WB,F_ - WB,F + WB'F, -
WB'F' = WFE, + WB, (F] +F,) - WB;(F +F]). By the same way, if the
syndrome is WF, + WB,(F, +F.) - WB,(F, +F), it will be S = WF, +
WB,(F, +F ) - WB,(F, +F') = WF, + WB,(F, +F.) - WB,(F/+F.) +
WUQ, = WF,+ WB,F. -WB/F' + WBF  -WB' F' +WQ,=WZF,+ B, F~

- BfF' +BF, -B'F + Qj), where Q) is:a fault-free marking matrix of H, and

F,, F , F', F  and F,/-are place fault, pre-condition and post-condition

a a

amount transition fault, pre-condition. and post-condition colour transition fault
indicator matrices respectively. Therefore, a marking matrix of A could be examined
if it is a faulty marking matrix by multiplying the marking matrix with the check
matrix W.

Assume Qris a faulty marking matrix of /, which states & place faults, K amount

transition faults and & colour transition faults on /. By Lemma 4.1, 4.5 and 4.9, Oy =
On+F,+ B,F, - B/F' +BF, -B"F . If the check matrix W= [-D 1I,],
the syndrome will be

S= |_S1 S, e SyJ

=WQr
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- 1LJF,+[-D Id{ s }(F;+F;)—[—D Id{ 5 E}(F;+F:>

DB, -E DB; -

[-D 1,JF,+E(F +F -F -F))

= [D=j*i*1,, L, + B F 4 F - F - F)
= [pjrir,, 1), +j*E@FE -F)

= |p-j*i*1,, I1,JF, +j*E'F,.

From S mod j,

=Smod;

= [D—j*i*1,, I,|F, modj +j*E(F %F' —F —F )mod,
= [p 1,JF,

=o' s, 5 o £

is obtained, which contains only place fault part. Since any 2k columns of the matrix

[D' 1,] are linearly dependent and each column of F,, has at most & nonzero entries,

the place fault indicator matrix F, can be be found by solving equations

[D' 1, ]fp” =s, ,wherel < n < y. After F), is solved out, it can have

S, = ls,l S, s,yJ
=S- [_D Id]Fp
= EF,
= E|f, f - fzJ

4

which contains only amount and colour transition fault part. Since any 2k columns of
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the matrix £’ are linearly dependent, any 2k columns of the matrix £ = * E' are

linearly dependent. Since each column of F; has at most k£ nonzero entries, the
transition fault indicator matrix F; can be be found by solving equations Ef, =s,
where 1 < n < y. By Lemma 4.6 and 4.10, the F, would not have nonzero entries on j

# (i-1) mod y +1: fai]_, but F. would have nonzero entries on j # (i-1) mod y +1:

Jf. - Hence, if an entry on j # (i-1) mod y +1: f, is an nonzero entry, this nonzero

value is belong to F.. By Lemma 4.10, the sum of all the entries in each row is zero,

all the entries onj = (i-1) mod y +1: f_ can be solved out from this conditions, and

all the remining entries in F, are zero. After F, is obtained, F, can be obtained from F,

:F[-Fc.

Let G be a CPN which has a transitions, B plages, y colours, the input matrix B, ,

the output matrix B, and the initial;ymarking matrix 0, . From Lemma 4.12,

constructing a separate CPN H which can detect and correct at most k place faults, k&
amount transition faults and & colour transition faults is concluded as following steps:
(1) designing a d x ay matrix £’ from the check matrix of Reed-Solomon codes, (2)
choosing a d x f matrix D' which satisfies any 2k columns of [D' 1 d] are linearly
dependent, (3) choosing a prime number j lager than all the entries in £’ and D', (4)
choosing a positive integer i lager than all the entries in D', (5) constructing matrices

E=j*E'and D=j *i *1;x4 - D', (6) constructing the check matrix W from W =

B
[-D 1,], and finally (7) deriving H containing input matrix B, :{DB_g E:I,
-
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+

B 1
output matrix B = € and initial marking matrix . . B
p h {DB; _ E:I g Qo,, [D}Qog y

applying the method of Reed-Solomon codes, it would have d = 2k. Whether a
marking O, in H is correct can be examined with the check matrix W, and the faults

can be distinguished from the following steps: (1) obtaining the syndrome S from S =

WQy, (2) obtaining part of syndrome S, containing only place fault part from S, = §

mod j, (3) solving the equation S, = [D' 1, ]Fp to obtain the place fault indicator

matrix F),, and the place faults can be interpreted from F),, (4) obtaining part of

syndrome S; containing only amount and colour transition fault part from S; = S -

[— D 1, ]F ,» (5) solving the equation S, = EF;, to obtain the transition fault indicator
matrix F,, (6) obtaining the entries Vj # (7-1)meod y +1: fC,_/_ in the colour transition
fault indicator matrix F,. from fcﬁ = ftj , (7)7obtaining the entries Vj = (i-1) mod y

e
+1: f, in the colour transition. fault'indicator matrix F, from f, =- Z S, » (8)
! h=Lhzj

obtaining the pre-condition and post-condition colour transition fault indicator

matrices, F, and F., from F, as the steps in section 4.5.2, and the pre-condition

and post-condition colour transition faults can be interpreted from F and F.

respectively, (9) obtaining the amount transition fault indicator matrix F, from F, = F;

- F,, and (10) obtaining the pre-condition and post-condition colour transition fault

indicator matrices, F, and F,, from F, as the steps in section 4.4.2, and the
pre-condition and post-condition amount transition faults can be interpreted from F,

and F, respectively.
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4.6.2 An Example of ldentifying and Correcting Additive

Faults

This section adopts the same given CPN G in section 4.5.3 to show how to
identify and correct additive faults. Assume there are at most k£ = 2 place faults, x = 1
amount transition faults and & - x = 1 colour transition faults. As described in section
4.6.1, it need design a 4 x § matrix £’ from the check matrix of Reed-Solomon codes
in order to design the separate CPN H first. The matrix £ in section 4.4.3 isa 4 x 8
matrix designed from the check matrix of Reed-Solomon codes, thus the matrix £ in

section 4.4.3 can adopted as the matrix below:

1 8 4 6 7 8 10 0
Be 01 8 4 6 7 8 210
0 01 8 46 7 =8
00018 4 6 7

Next, choosing a 4 x 2 matrix D' which satisfies any 4 columns of [D' 1,] are

linearly dependent. D’ can be declared as

4
10

— N o0 o

7

which is the same as D in section 4.4.3, and any 4 columns of [D' I,] are linearly

dependent. Then, a prime number j lager than all the entries in £' and D' is chosen,

j=11.
Then, a positive integer i lager than all the entries in D' is chosen, e.g.,
i=11.
Thus,
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11 88 44 66 77 88 110 0
0 11 88 44 66 77 88 110
E=j*E'=
0 0 11 8 44 66 77 88
0 0 0 11 8 44 66 77
113 117
Dejrity,.pie |13 111
117 113
120 114

are obtained. Next, computing out

DB, ~E
113 117
- 113 111
- 117 113
120 114
11 88 44 66 77 88
0 11 88 44 66 77
0 0 11 88 44 66
0 0 0 11 88 44
215 138 182 160
226 215 138 182
© 1234 234 223 146
240 240 240 229
DB! —E
113 117
- 113 111
- 117 113
120 114

11 88 44 66 77 88
0 11 88 44 66 77
0 0 11 838 44 66
0 0 O 11 88 44

110
88
T
66

157
156
182
140

110
88
77
66

215 25 69 277 157
226 102 25 293 156
234 117 106 259 182
240 120 120 343 140

Therefore, input matrix

0

110
38
7

263
256
273
298

0

110
88
77

376
369
390
418

and

22220000
0 00 0 2 3 3 2

241
245
262
276

354
358
379
396
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234
112
138
151

1

117

25
37

1

2
0 0 0

and

2
1

0 11
2 33

0
1

|



2 2 2 2 0 0 0 0]
o 0 o0 0 2 3 3 2
5 :{ B; }_ 215 138 182 160 157 263 241 234
! DB, —E 226 215 138 182 156 256 245 112
234 234 223 146 182 273 262 138
240 240 240 229 140 298 276 151

output matrix

226 102 25 293 156 369 358 1
234 117 106 259 182 390 379 25
240 120 120 343 140 418 396 37

. { B; }_ 215 25 69 277 157 376 354 117

and initial marking

1 0] 4 2 4 2]
0 1 33 4 1
A 113 117402 4 2] 4803 577 920 343
o, = {D}Qog 113 111{3 3 4 1} o (785 559 896 337
117 113 807 573 920 347
1120 114] 1822 582 936 354
of separate CPN H are obtained, and the check-matrix is
~113 =117 1 0 0 0
w-[p 1] - ~113 —-111 0 1 0 0.
~117 =113 0 0 1 0
120 —114 0 0 0 1

The H can be construct from B,, B, and Q, , which is illustrated in

Figure 4.5.

Assume there are place faults, amount transition faults and colour transition

. . . . . F
faults inside the firing sequence, which is represented as m, —*— m [z,

_ F F,,
F>m, —2—> m, [t F'> m, —2—> m',,K where
a 2/ 3/ ] 4/ f

C,

104



I
S}

S O O O O

S O O O O O o =

S O O O O

S O O O o o = O
S O O O O = O O

S O O O o O

S O O o = O O O

S O O O O W

Hence, the matrix representations of m, ,

Ql./' - QO,, + FP] -
0, ;o Ql_r + B, X, =
QS/ = QZ_/- + )2 =

0 -1 0 0
0 0 0 0
100 00
En T 0 0 of B
0 1 40
0 0 0 0
0 0 0 O]
0 0 00
0 0 00
andszOOOO.
! 0 0 00
0 0 00
-1 010
0 0 0 0]
mzf,m3,
2 2 A

30 34 4 1
803 577 920 -343
785 559 896 337|
807 577. 920347
1822 58201936 354

[ 4 3 5 7]

3 3 4 2

1018 602 989 620

1011 661 921 630|

1041 694 1026 606

11062 702 1056 697 |

[ 4 2 5 7]

3 3 4 2
1018 602 989 620
1011 661 921 630|
1041 695 1030 606

11062 702 1056 697 |
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m
4y

S W O O O O

S O O O o O

S O O O O

S b O O O =

and m' , are




5 35 7]
6 3 1 1
. . L |1372 715 748 503
T Oy - BT B EO= 36 774 676 s19] ™™
1420 812 768 493
1458 822 780 583
5 3 2 8]
6 3 1 1
1372 715 748 503 ,
o, =0, T F, = 1369 774 676 519 respectively.
1423 812 768 495

1458 822 780 583

Following steps are identifying and correcting these faults from the marking matrix

Q' and the check matrix W. First,

5 3 2 8 |
-113 -117 1 04200 6 3 1 1
S=wo, - -113 —-111 021 04 0[}1372° 715 748 503
/ -117 =113 O 0 1 O}}1369 774 676 519
-120 -114 0.0 _0.“1}{1423 /812 768 495
[ 1458..822 780 583 ]

105 25 405 "=518
138 102 339 -496
160 122 421 -554
174 120 426 -491

is obtained. Second, since

105 25 405 -518

138 102 339 -496
S,=8mod 11 = mod 11

160 122 421 -554

174 120 426 -491

6 9 10

_ 6 9 10 - Oy
6 1 3 7
9 10 8

there are place faults in Q', . Third, since
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fPll fPlz fP13 fP14
8 4 1 0 O 0 fp21 fp‘>2 an fp24
8 10 01 0 O
[ 1,]F, mod11= Toi o Soa o] gy
4 0 01 0 fp41 fp42 fP43 fP44
1 0 0 01 fP51 fPsz fPSS fp54
_me fPez fP63 fP64 n
6 9 10
6 9 10
= Sp = s
6 1 3 7
9 10 8 4

the following sets of equations are figured out:

(=81, —4f, +f,)modll=6 ((=8f, —4f, +f, )modll=3
(-8, —10f, +f, ymodl1=6 [(-8f, —10f, +f, Ymodll=3
(-4f, —8f, +f, )modll=6" | (-4f, —8f, +f, Jmodll=1"
Sy, =TS, + Sy, )modl1=9 | (sfons=T7f, +f, Jmodl1=10

(=81, —4f, +f, )modl1=9 (=81, =4f, +f, )modl1=10

(81, =10/, +/,, )ymod 11205 FHERS, —10f, +/,,)modl1=10
(-4f, —8f, +f, )modl1=3 (4, ~8f,, +f, ) )modll=7"
/., =71, +f,,)modl1=8 (—fi0 =71, +f, )modll=4

and there are two more restrictions: (1) each set of equations has at most two nonzero

variables and (2) V1 <i<6, 1 <j<4 —% < fp < % Therefore, f, = -2,

fplz - -1’ fp13 - _3’ fpm - fp53 - 4’ fPSI - 3’ fpsz =35 ? fp54 =2 and all the
other entries in F), are zero. Fourth, S; can be obtained from

Si=S- [-D L]JF,

—2 -1 -3 4
105 25 405 -518] [-113 —117 1 0 0 0][ 0 0 0 O
138 102 339 —-496| [-113 -111 0 1 0 0[| 0 0 0 O
160 122 421 -554| =117 =113 0 0 1 0[O0 O 0 0
174 120 426 —-491| [-120 —-114 0 0 0 1]/ 3 5 4 2
0 0 0 0

107



~121 —-88 66 —66
-88 —11 0 -44
-77 0 66 —88]
-66 0 66 -11

By Lemma 4.2, it can be interpreted from F), that there are two place faults, where one
is on p,, which denotes lack of two red tokens, one green token and three blue tokens,
and appearing four extra yellow tokens, and the other place fault is on ps, which
denotes appearing three extra red tokens, five extra green tokens, four extra blue

tokens and two extra yellow tokens. Fifth, since

S S S S
Joo S S
1 8 46 7 810 0]|f, fi. fi 1.
EF,/ 11 mod 11 = 0 1 8467 810 ft‘” ft“ ft‘“ ft“" mod 11

0 01 8 4 6mTw8||f., f. f. [
000 1.8 4 6 7L, /fi. f. 1.
L, 1., Lo, T
S S S S

04376 5

=S§;/11 mod 11 = T ,
4 0 6 3
5 0 6 10

the following sets of equations are figured out:

(f, +8f, +A4f +6f +7f_ +8f +10f )modl1=0

(ft21 +8f,31 +4f;4, +6ft5] +7ft(,1 +8ft71 +10f,81)m0dll:3

(f,, +8f, +4f, +6f, +7f +8f )ymodll=4 ~
(f,, 81, +4f, +6f. +7f, )modll=5

(ft12 +8ﬁ22 +4ft32 +6f,42 +7ﬁ52 +8f,62 +10f[72)m0d11:3
(f,, +8f, +4f, +6f_ +7f_ +8f +10f, )modl1=10
(f,, +8f, +4f, +6f, +7f +8f, )modll=0 ’
(]‘,42 +8f,52 +4ft62 +6ft72 +7ft82)mod11:0
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(ftm +8f,23 +4f[33 +6f,43 +7f,53 +8f,63 +10f,73)m0d11:6
(f,, +8f, +4f, +6f +7f_ +8f +10f )modll=0
(fi, +8f, +4f, +6f +7f. +8f )modll=6
(f, +8f, +4f, +6f +7f )modll=6

and

(f,, +8f,, +4f, +6f, +7f +8f +10f, )modll=5

(f,, +8f, +4f,, +6f_ +7f +8f +10f, )modll=7

(f,, +8f, +4f, +6f, +7f +8f, )modll=3 ’
(f,44 +8ft54 +4ft64 +6f,74 +7ft84)m0d11=10

and there are two more restrictions: (1) each set of equations has at most two nonzero

variables and (2) V1 <i<8,1<;<4: —% < ft,, < % Therefore, f, = =

t 1y
Jo, = fi, =-1L [, =-1, f,, =1 and all the other entries in F; are zero. Sixth,

from V1 <i<8 1<j<4,j#(-l)meds +1: f = f ., f, =-1andallthe

other V1<i<8,1<;<4,j +# (i-1) mod 5+ I; fc[/ are zero. Seventh, from V1 <i <

4
8,1<j<4,j=(-hmod5+ 1 fle==rdfy f, =land f, = f. = [,

h=Lh#j
0 0 0 O]
0 0 0O
0 0 0 O
= fo. = Jo, = Jo = Jo, =0.Since Fe = 8 g g g + Ogx 4 , there is a
0 0 0 O
-1 0 1 0
0 0 0 0]
[0 0 0 O]
0 0 0 O
0 0 0 O
colour transition fault in Q',. Eighth, Since F. = F-F , F = 8 g g g
0 0 0 O
-1 01 0
10 0 0 0
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and F_

S O O O O O o O

S O O O O O o O

S O O O O O o O

S O O O O O o O

are obtained. By Lemma 4.10, F and F, can be

interpreted as: There is a post-condition colour transition fault on #,, which denotes c;

changing into c¢;. Ninth, F, =

-1

S O O O O O O

0

-1

SO O O O O

0

1s obtained from F, = F; - F..

Since F, # Og x 4 , there is a-amount |transition fault in Q' i Tenth, Since F, =

F'—-F , F'

a a ?’

a

S O O O O O o o

S O O O O O o O

S O O O O O o O

S O O O O O OoO.@

and F,

S O O O O oo =

S O O O O o —io

S O O O o = O O

S O O O = O O O

. By Lemma 4.6, F

and F, can be interpreted as: There is a pre-condition amount transition fault on ¢,

and it occurs one time. The correct marking matrix with respectto Q', is

Q' -F,- B, (F, + F )+ B, (F + F))
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[ 2
0
215
226
234
240

215
226
234
240

which is equal to the matrix representation of m', in m, [t> m, [&> m',.

5

6
1372
1369
1423

2
0
138
215
234
240

0
25
102
117
120

1458

2
0
182
138
223
240

69
25
106
120

3
3
715
774
812
822

160
182
146
229

277
293
259
343

2

1
748
676
768
780

157
156
182
140

157
156
182
140

4

3
803
785
807
822

2
3
577
559
573
582

4
4
920
896
920
936

5
1
343
337
347
354

g

1
503
519
495
583

0
3
263
256
273
298

376
369
390
418

0
3
241
245
262
276

1
3
354
358
379
396

-
2
234
112
138
151

0
1
117

25
&7
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Figure 4.5 A CPN with Additive Faults detection and correction capabilities.
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Chapter 5. Conclusion and Future Works

This thesis proposed a methodology to determine whether a marking in a
coloured Petri net is a faulty marking which can be mapped to a faulty state in a
system modeled by a coloured Petri net. The main idea of the methodology is
applying the methods of error control coding on coloured Petri nets. In [3], the authors
present the methods detecting the faults on Petri nets only. There are more issues to be
studied on coloured Petri nets. Since a Petri net can be deem as a coloured Petri net
with only single colour, the method for this special case would be the same as [3] in
this thesis. Thus, the methods presented in thissthesis are more general than those in
[3]. If the applied error control coding is Reed-Selomon code, the methodology in this

thesis can simultaneously detect and correct k£ place faults, x amount transition faults
and & - x colour transition faults after.adding 2k places, where 0 < x < k. There is a

corresponding code correction algorithm in Reed-Solomon code, which is
Berlekamp-Massey algorithm [16]. By appling Berlekamp-Massey algorithm on the
syndrome of a faulty marking, the equation sets obtained from the syndrome can be
solved out in time complexity O(ky(a+f)), and hence the marking can be corrected in
time complexity O(ky(a+p)), where a, f and y are the number of transitions, places
and colour types in a coloured Petri net, respectively.

There are two further research topics which can be extended from this thesis.
First, from the marking, input and output matrices of the CPN with fault detection and
correction capability, it can be seen that the values in these matrices are large. The
reason is that the Reed-Solomon code has only minimized the length of a code but

hasn’t minimized the value of a code word. Thus, one of the future works is to come

113



out the encoding matrices which can also minimize the values in these matrices.
Second, there are several kinds of high level CPNs extended from basic CPN
discussed in this thesis. Thus, the other future work is to extend the methodology in

this thesis to these high level CPNs.
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