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一在 Coloured Petri Nets 中的錯誤找尋與校正之方法 

 
研究生: 黃培書                        指導教授: 王豐堅 博士 

國立交通大學 
資訊科學與工程研究所 
新竹市大學路 1001 號 

碩士論文 

 

 

摘要 
 

Coloured Petri nets 及其分析技術可應用於協助尋找工作流程的缺陷，而於

一 coloured Petri net 中可能存在一個或多個錯誤，但目前的存在的演算法並無法

完全地檢測出這些錯誤。於本論文中，定義了三種尚未被分析過的錯誤，分別為

place faults、amount transition faults 及 colour transition faults。本文所提出之方法

為將一 coloured Petri net 轉為另一 separate 的 coloured Petri net，並且在 separate

的 coloured Petri net 上之所有 marking 將維持某相同的編碼規則相對於原始的

coloured Petri net 上之所有 marking。而後，若 coloured Petri net 進入錯誤狀態時

便可透過 parity check 之方式將其找尋出來並校正。在加入 2k places 與其相對應

的 arcs 後，最多可同時在一 coloured Petri net 上找尋並校正 k place faults、x amount 

transition faults 及 k - x colour transition faults，其中 0 ≤ x ≤ k。此錯誤找尋與校

正之方法的時間複雜度為 O(kγ(α+β))，其中 α、β 及 γ 分別代表於一 coloured Petri 

net 中 transitions、places 及 colours 的數量。 

 

 

關鍵字: coloured Petri net、錯誤找尋、錯誤校正、parity check。 
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A Methodology to Identify and Correct Faults in Coloured 
Petri Nets 

 
Student: Pei-Shu Huang                   Advisor: Feng-Jian Wang 

Institutes of Computer Science and Engineering 
National Chiao Tung University 

1001 University Road, Hsinchu, Taiwan 300, ROC 
 

 
Abstract 

 
Coloured Petri nets and related analysis techniques can be applied to help find 

the defects in workflows. One or more errors may exist in a coloured Petri net, but 

current algorithms can not detect them completely. In this thesis, three kinds of faults 

are defined, namely place faults, amount transition faults and colour transition faults, 

not analyzed before. A methodology provided in this thesis translating a coloured 

Petri net into a separate one, in which all the markings will keep the same encoding 

rule with all the markings in the original coloured Petri net. If the coloured Petri net 

results in faulty states, they can be identified and corrected via parity checks. After 

adding 2k places and their relative arcs, the coloured Petri net can be identified and 

corrected at most: k place faults, x amount transition faults and k - x colour transition 

faults concurrently, where 0 ≤ x ≤ k. The time complexity of the fault identification 

and correction method provided in this thesis is O(kγ(α+β)), where α, β and γ are the 

number of transitions, places and colour types in a coloured Petri net, respectively. 

 

 

 

Keywords: coloured Petri net, fault identification, fault detection, parity check. 
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Chapter 1. Introduction 

 

High-level applications such as SOA usually contain workflow, and workflow 

applications can be analyzed with coloured Petri nets (CPNs) and their associated 

techniques. One important issue in correcting the applications is how to deal with 

faulty states, and this is also an issue in CPNs. When faulty states occur, they may 

firstly be detected, after that the reasons which induce the system into faulty states 

may be determined, and finally these faulty states may be adjusted back to correct 

states. 

 

The intuitive method on how to identify faulty states is firstly computing out the 

state which will be reached from initial states under recorded information of state 

transition and then check if these two states are identical. If these two states are 

different then the given state is a faulty state. In the case of CPNs, an occurrence 

graph [1] can firstly be constructed and then the markings are checked if they are 

identical with the markings in occurrence graph under the recorded firing sequences 

[1]. In this thesis, the proposed method can identify and correct the faulty markings in 

CPNs by algebraic operations without constructing an occurrence graph and recording 

firing sequences. 

 

The CPNs considered in this thesis only have the marking information at a 

specific time point without firing sequence information, which is similar with the 

assumption in [3]. The faults considered in this thesis may occur in places or 
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transitions [3] and fault types may be colour or amount. The purpose of this thesis is 

to identify and correct these based on the marking information. 

 

The purposed method will firstly construct a separate [4] CPN which is 

bisimilar to the given CPN. While the state evolves, the marking on the redundant 

CPN will keep the encoding relation with the marking on the given CPN. Finally, the 

marking on the redundant CPN can be checked if it satisfies the encoding relation by 

algebraic operations on the marking matrix. If it violates the encoding relation, it can 

be identified where the faults occur and adjusted back to a correct state by algebraic 

operations on the marking matrix. However, since the purposed method is based on 

algebraic approach, matrices must be used to describe the markings and state 

evolution of CPNs before implementing the method. We will also describe how to 

construct a matrix for a CPN. 

 

As the result, If there are k addition places in the redundant CPN compare with 

given one, it will have capability to simultaneously detect and correct k place faults, x 

amount transition faults and k - x colour transition faults concurrently, where 0 ≤ x ≤ 

k. We will prove this capability in this thesis and also prove the separate CPN will be 

bisimilar to the given one. 

 

The remainder of this thesis is organized as follows. Chapter 2 introduces CPNs , 

presents the notations and definitions of CPN, which will be used in the rest of this 

thesis, and show the related works. Chapter 3 describes how to use matrices to 

describe the markings of CPN and the state evolution of CPN. Chapter 4 proposes the 

methods on how to detect and correct these four kinds of fault and also give an 
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example in each case. Chapter 5 gives a conclusion of this thesis and show future 

works. 
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Chapter 2. Notations and Background Overview 

 

This chapter briefly introduces some background knowledge and gives the 

notations and definitions to be used in this thesis. In section 2.1, multi-set is 

introduced. Section 2.2 introduces CPN which uses multi-set widely. Section 2.3 

describes the definition of bisimilation equivalence. Section 2.4 discusses the faults 

considered in the thesis and gives the corresponding definitions. And, the relate works 

of fault detection are presented in section 2.5. 

 

2.1 Multi-sets 

 

A multi-set is similar to a set, except that it can own one or more common 

elements. That a multi-set A is defined over a set B indicates all the elements in the A 

are the elements in B. The basic formal definitions of multi-set are described in [1] 

and some extended definitions are described in this section. 

 

Definition 2.1: Let S be a non-empty set. 

 A multi-set ms, over S, is a function ms: S → ℕ where ℕ = {0, 1, 2, …}. 

 ∀s ∈ S, the ms(s) is the number of appearances of s in the multi-set ms, which is 

called the coefficient of s. A multi-set ms is usually represented by a formal sum: 

∑
∈Ss

ssms )'( . 
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 An empty multi-set is a multi-set where all the coefficients are zero, which can 

be denoted by ∅. 

 An element s ∈ S belongs to a multi-set ms iff ms(s) ≠ 0, which can be written as 

s ∈ ms. 

 SMS is defined as the set of all multi-sets over S. 

 

For example, if there is a multi-set {a, b, b, c, c, c}, it can be represented by a 

formal sum: 1'a + 2'b + 3'c. Since the associated computations for an unlimited 

number is meaningless, the coefficients and the nonnegative integers in ℕ applied in 

the thesis are assumed to be finite. 

 

Definition 2.2: Let ms1, ms2 ∈ SMS, and n ∈ ℕ. 

 Addition of multi-sets is defined as  

ms1 + ms2 ≣ ∑
∈

+
Ss

ssmssms ))'()(( 21 . 

 Comparison between multi-sets is defined as 

ms1 ≠ ms2 ≣ )()(: 21 smssmsSs ≠∈∃ ,  

ms1 ≤ ms2 ≣ )()(: 21 smssmsSs ≤∈∀ ,  

≥ and = are defined analogously to ≤. 

 Subtraction of multi-sets is defined as 

ms1 - ms2 ≣ ∑
∈

−
Ss

ssmssms ))'()(( 21 .  

A subtraction is meaningless when ∃s ∈ S, ms1(s) ≥ ms2(s). 

 Inner product of multi-sets is defined as 

ms1 · ms2 ≣ ∑
∈Ss

ssmssms ))'(*)(( 21 . 
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 Scalar multiplication of multi-sets is defined as 

n * ms1 ≣ ∑
∈Ss

ssmsn ))'(*( 1 . 

 

Definition 2.2 defines the operations on multi-sets. And two additional 

properties which will be applied as the basis include: commutativeI and associativeII. 

 

2.2 Colored Petri Nets 

 

The graphical and mathematical model of Petri nets are created by Carl Adam 

Petri in 1962 [6]. CPNs are one kind of extensions from Petri nets, which are 

completely backward compatible with original Petri nets [1, 2]. More specifically, an 

original Petri net can be treated as a CPN with single colour. CPNs can help design, 

specify, simulate, validate and implement systems (e.g., workflow systems, 

distributed systems, control systems). There are various types of definition of CPN 

(e.g., [1, 2, 7, 8]), and the contributions with different definitions may be different. In 

this thesis, the definition of CPN is based on [7, 8]. Besides, to make this discussion 

easier, we adopt some notions from [1, 2, 9]. 

 

                                                 
I ms1 + ms2 = ms2 + ms1 
II ms1 + (ms2 + ms3) = (ms1 + ms2) + ms3 
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Figure 2.1 A CPN with a colour set which has four colours. 

 

A CPN structure is a directed bipartite graph. There are two kinds of nodes in a 

CPN structure, called place and transition. The arcs in a CPN only connect between 

two different kinds of nodes. There are two functions, input and output assigning a 

colour and a weight to an arc. A place may be put tokens of which each has a colour. A 

marking describes the assignment of tokens to places. In general, transitions represent 

activities and markings represent states in a system. As in Figure 2.1 shows a CPN, 

where circles denote places, rectangles denote transitions and dots denote tokens. The 

marking of this figure is p1 has one c3 token, p2 has one c4 token and p3 has one c1 

token and two c2 tokens. 

 

Definition 2.3: A CPN structure is a 6-tuple N = (P, T, A, C, I, O) 

 P is a finite set of places. 

 T is a finite set of transitions such that P ∩ T = ∅. 

 A is a finite set of directed arcs, A ⊆ (P ∪ T) × (P ∪ T), satisfying  

A ∩ (P × P) = A ∩ (T × T) = ∅. 

 C is a finite set of token colours. 

 I is an input function with domain (P × T), I: P × T → C MS. 

 O is an output function with domain (P × T), O: P × T → C MS. 
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Definition 2.3 is a formal description of the CPN structure. Based on a transition, 

an input/output function describes the input/output with some connected place 

respectively. In Figure 2.1, the I(p1, t1) = 1'c1 + 0'c2 + 1'c3 + 0'c4 and O(p2, t1) = 0'c1 + 

1'c2 + 0'c3 + 1'c4. To simplify the discussion, the P, T, and C are assumed to follow 

rules correspondingly from now on: (1) P = {p1, p2, …, pβ}, β > 0, (2) T = {t1, t2, …, 

tα}, α > 0 and (3) C = {c1, c2, …, cγ}, γ > 0. 

 

Definition 2.4:  

 A marking of a set of places P is a mapping m: P → C MS. 

 m0 is the initial marking, m0: P → C MS. 

 A CPN G = <N, m0> is a CPN structure N with an initial marking m0. 

 

A place may have tokens of different colours. A marking expresses the colour 

elements and the token number of these colours in each place, which can be defined 

as a function from a set of places in a CPN to the set of pair sequence where a pair is a 

nonnegative integer and a colour element. For example, in Figure 2.1, the marking of 

p3 is 1'c1 + 2'c2 + 0'c3 + 0'c4. An initial marking represent the initial state of a system. 

A CPN should have both a CPN structure and an initial marking. 

 

Definition 2.5: Let N = (P, T, A, C, I, O) be a CPN structure. 

 For an element x ∈ P ∪ T, its pre-set ●x is defined as 
●x = {y ∈ P ∪ T | (y, x) ∈ A} 

 and its post-set x● is defined as 
x● = {y ∈ P ∪ T | (x, y) ∈ A}. 

 

The pre-set or post-set of a place is a set of transitions. The pre-set or post-set of 
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a transition is a set of places. If t ∈ T and p ∉ ●t, the I(p, t) must be an empty 

multi-set. If t ∈ T and p ∉ t●, the O(p, t) must be an empty multi-set. 

 

Definition 2.6: Let G = <N, m0> be a CPN and N = (P, T, A, C, I, O), and a marking is 

m. 

 A transition t ∈ T is enabled iff ∀p ∈ ●t: m(p) ≥ I(p, t). 

 If a transition t ∈ T is enabled by a marking m, it may fire and yield a new 

marking m', which can be denoted by m [t> m', where  

∀p ∈ P: m'(p) = m(p) - I(p, t) + O(p, t). 

 A finite occurrence sequence is a finite sequence of firings and its 

corresponding markings:  

m [ts1> m1 [ts2> m2 … [tsq> m', where tsi ∈ T for all 1 ≤ i ≤ q. 

This sequence can be denoted by m [σ> m' and σ is called firing vector. The 

final marking m' can be calculated by following equation  

∀p ∈ P: m'(p) = m(p) - I(p, ts1) + O(p, ts1) - I(p, ts2) + O(p, ts2) - … - I(p, tsq) + 

O(p, tsq).  

The sequence of transitions in firing vector σ is called firing transition 

sequence. As a short hand, ∀t ∈ T, the σ(t) is the number of appearances of t in 

the firing vector σ, where σ(t) ∈ ℕ. Hence, the above equation can be rewrite as 

∀p ∈ P: m'(p) = m(p) + σ(t1) * (- I(p, t1) + O(p, t1) ) + σ(t2) * (- I(p, t2) + O(p, 

t2)) + … + σ(tα) * (- I(p, tα) + O(p, tα)),  

where t1 to tα are the all elements in T. 
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 A marking m' is reachable from another marking m if there exists a firing vector 

σ such that m [σ> m'. The set of markings which are reachable from m is denoted 

by [m>. As a short hand, a set M = m0 ∪ [m0> is called all markings of CPN G. 

 

Definition 2.6 defines the state transition of a Petri net, which is called firing. 

When a transition fires, it will take the tokens from its pre-set by the rule described in 

the input function and put the tokens to its post-set by the rule described in the output 

function. For example, the transition t2 is the only transition which is enabled in 

Figure 2.1. When transition t2 fires, the new marking will be p1 and p2 has no token 

and p3 has two c1 tokens and two c2 tokens. 

 

2.3 Related Works 

 

C. N. Hadjicostis [3, 4, 11], G. C. Verghese [11], Y. Wu [3], L. Li and R. S. 

Sreenivas [4] proposed a series of algebraic methods to identify and correct the place 

and transition faults which may occur in Petri nets or Petri net controllers. The 

method in [11] can deal with place faults and transition faults individually. An 

extended method in [3] can deal with place and transition faults simultaneously. In [4], 

the authors extend the methods proposed in [3] and [11] to the Petri net controller. 

They also prove that the proposed methods could construct redundant Petri nets and 

analyze the complexity of proposed methods. 

 

P. Jancar [5, 10] proves the decidability on bisimilarity of Petri nets. In [5], the 

author proves that the bisimilarity of free-labeled Petri nets is decidable and it can be 
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mapped to language equivalence and reachability equivalence problems. In [10], the 

author proves that the bisimilarity of labeled Petri nets is undecidable. 

 

V. K. Belikov [13, 14] and Y. F. Rutner [13] proposed methods to describe input 

and output functions in CPNs by algebraic matrices. In [14], the author proposes a 

method describing an input and an output function of a CPN by two 

three-dimensional matrices. In [8, 13], the authors propose a method using a 

four-dimensional matrix to describe an input and an output function of a CPN at the 

same time. 

 

This thesis adopts the idea from [3, 4, 11] to CPNs. The methods in [3, 4, 11] 

should firstly use algebraic matrices to describe state transformation of Petri nets, so 

this thesis firstly proposes a method describing the state transformation of CPNs by 

algebraic matrices such matrices are different from that in [8, 13, 14] for the reason 

that the method proposed in this thesis can distinguish more faults. Second, this thesis 

use a method extended from [3, 4, 11] to code the matrices come from previous 

method into matrices that have fault detection and correction capabilities. Finally, 

these matrices with fault detection and correction capabilities can be mapped back to 

new CPNs with fault detection and correction capabilities. Since the CPNs discussed 

in this thesis is free-labeled, it can be proved that the CPNs constructed by the 

methods proposed in this thesis are bisimilar to the given ones, or more specifically 

the constructed CPNs are redundant CPNs. 
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Chapter 3. Matrix Approaches on CPNs 

This chapter proposes a method describing the state transformation of CPNs in 

matrix approaches. In previous [3, 4, 7, 11], the algebraic matrix representations for 

input and output functions of CPNs are dimensions of three at least. The method 

proposed in this chapter using two-dimensional matrices to describe input and output 

functions of CPNs. By using this method, the pre-condition and post-condition colour 

transition faults can be distinguished. In section 3.1, the method to express CPNs by 

two-dimensional matrix approaches is introduced. Formal algorithms of this method 

are given in section 3.2. Section 3.3 gives an example and shows how this method 

works. 

 

3.1 Two-dimensional Matrix Method 

 

The proposed method is a concept of flattening. The information in matrices of 

three dimensions expressing input and output functions are flattened into the ones of 

two dimensions respectively. In Definition 2.6, it can be seen that the firing equation 

of a CPN is ∀p ∈ P: m'(p) = m(p) - I(p, t) + O(p, t). Hence, there are four matrices 

that need to be designed for describing the states and state transitions of a CPN. They 

are input matrix, output matrix, marking matrix and firing matrix.  

 

Definition 3.1: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), a marking is 

m, |P| = β and |C| = γ. 
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 A marking matrix Q is a β × γ matrix describes the marking m. The entries in 

matrix Q are  

qij = m(pi)(cj), where 1 ≤ i ≤ β, 1 ≤ j ≤ γ, pi ∈ P, cj ∈ C, and qij represents the 

entry in ith row and jth column of Q. 

 

Definition 3.1 describes the format and content of a marking matrix of a CPN. 

Each row in Q represents the tokens of each colour in a place, and each column in Q 

represents the token distribution of a colour on each place. In Definition 3.1, m(pi) 

represents the tokens on place pi, which is a multi-set over colour set C, hence m(pi)(cj) 

is the coefficient of colour element cj of m(pi), which means the number of tokens 

with colour cj on place pi. 

 

Definition 3.2: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), |P| = β, |T| = α 

and |C| = γ. 

 An input matrix B- is a β × n matrix describes the input function I, where n = αγ. 

The entries in matrix B- are b-
ij = I(pi, tr)(cs), where ⎡ ⎤γ/jr = , s = (j - 1) mod γ 

+ 1, 1 ≤ i ≤ β, 1 ≤ j ≤ α × γ, 1 ≤ r ≤ α, 1 ≤ s ≤ γ, pi ∈ P, tr ∈ T, cs ∈ C, and b-
ij 

represents the entry in ith row and jth column of B-. 

 An output matrix B+ is a β × n matrix describes the output function O, where n 

= αγ. The entries in matrix B+ are b+
ij = O(pi, tr)(cs), where ⎡ ⎤γ/jr = , s = (j - 1) 

mod γ + 1, 1 ≤ i ≤ β, 1 ≤ j ≤ α × γ, 1 ≤ r ≤ α, 1 ≤ s ≤ γ, pi ∈ P, tr ∈ T, cs ∈ C, and 

b+
ij represents the entry in ith row and jth column of B+. 

 

In Definition 3.2, the input and output matrix of a CPN is defined. Each row in 

B-/B+ represents the token number of each colour that would be removed/deposited 
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from/into a place while each transition fires. Each column in B-/B+ represents the 

number of tokens with a colour that would be removed/deposited from/into each place 

while a transition fires. The operator “mod” in Definition 3.2 represents the modular 

arithmetic. 

 

Definition 3.3: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), |T| = α, |C| = 

γ, tr ∈ T, and two markings are m1 and m2 such that m1 [tr> m2. 

 A transition firing matrix Xr is an n × γ matrix describes the firing transition 

tr, where n = αγ. The entries in matrix Xr are 

⎡ ⎤
⎩
⎨
⎧ =+−==

=
otherwise

iswhereijandttif
x rs

rij 0
/,1mod)1(1 γγ

, 

and
ijrx represents the entry in ith row and jth column of Xr. 

 

Definition 3.3 describes how to indicate a firing transition of a CPN. On the 

other hand, a transition firing matrix Xr can be deemed as a column of α square 

sub-matrices, and each sub-matrix is a γ × γ matrix. The rth sub-matrix is an identity 

matrix, where tr is the firing transition, and the entries of others entries are all zero.  

 

Lemma 3.1: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), |P| = β, |T| = α, 

|C| = γ, tr ∈ T, two markings are m1 and m2 such that m1 [tr> m2, Q1 and Q2 are the 

matrix representation of m1 and m2 respectively, B- and B+ are the matrix 

representation of I and O respectively, and Xr is the matrix representation of firing 

transition tr. 

 The state transformation between Q1 and Q2 would satisfy  

Q2 = Q1 - B-Xr + B+Xr. 
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In other words,  

Q2 = Q1 - B-Xr + B+Xr iff ∀pi ∈ P: m2(pi) = m1(pi) - I(pi, tr) + O(pi, tr). 

 

Proof:  

(→) Since, by Definition 3.3, Xr = 

matricessquarera

matricessquarer

I

−

−

⎪
⎭

⎪
⎬

⎫

⎪
⎭

⎪
⎬

⎫

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

×

×

×

×

1

0
0

0
0

γγ

γγ

γγ

γγ

γγ

M

M

, where 0γ×γ 

represents a γ × γ matrix whose entries are all zero, and Iγ×γ represents a γ × γ identity 

matrix, B-Xr will be a β × γ matrix, where (B-Xr)ij = b-
is, s = (r - 1)γ + j, and (B-Xr)ij 

represents the entry in ith row and jth column of B-Xr. Likewise, (B+Xr)ij = b+
is. Since 

Q2 = Q1 - B-Xr + B+Xr, 1 ≤ i ≤ β, 1 ≤ j ≤ γ: 
ij

q2 = 
ij

q1 - (B-Xr)ij + (B+Xr)ij. Hence, 1 ≤ i 

≤ β, 1 ≤ j ≤ γ: 
ij

q2 = 
ij

q1 - b-
is + b+

is, where s = (r - 1)γ + j. By Definition 3.1 and 3.2, 

∀pi ∈ P, ∀cj ∈ C: m2(pi)(cj) = m1(pi)(cj) - I(pi, tr)(cj) + O(pi, tr)(cj). Hence, 

∑∑
==

+−=∈∀
γγ

1
1

1
2 )')(,()')(,()')(()')((:

j
jjrijjrijji

j
jjii cctpOcctpIccpmccpmPp .By 

Definition 2.2, ∀pi ∈ P: m2(pi) = m1(pi) - I(pi, tr) + O(pi, tr). 

 

(←) Since m1 [tr> m2, by Definition 2.6, they satisfy ∀pi ∈ P: m2(pi) = m1(pi) - 

I(pi, tr) + O(pi, tr). Hence, by Definition 2.2, ∀pi ∈ P, ∀cj ∈ C: m2(pi)(cj) = m1(pi)(cj) 
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- I(pi, tr)(cj) + O(pi, tr)(cj). By Definition 3.1 and 3.2, 1 ≤ i ≤ β, 1 ≤ j ≤ γ: 
ij

q2 = 
ij

q1 - 

b-
is + b+

is, where s = (r – 1) × γ + jIII. By Definition 3.3, 1 ≤ i ≤ β, 1 ≤ j ≤ γ: 
ij

q2 = 
ij

q1 -

∑
×

=

− ×
γα

1u
riu
uj

xb  + ∑
×

=

+ ×
γα

1u
riu
uj

xb IV, and therefore Q2 = Q1 - B-Xr + B+Xr. 

 

The arithmetic in a state transformation equation, Q2 = Q1 - B-Xr + B+Xr, only 

contains the operations of matrix: addition, subtraction and multiplication. Lemma 3.1 

proves that state transformation equation, Q2 = Q1 - B-Xr + B+Xr, conforms to the 

firing equation in Definition 2.6 by applying the matrix representations in Definition 

3.1 to 3.3. 

 

Definition 3.4: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), |T| = α, |C| = γ, 

two markings are m and m', and there exists a firing vector σ such that m [σ> m'. 

 A firing matrix X is an n × γ matrix describes the firing vector σ, where n = αγ. 

The entries in matrix X are 

⎡ ⎤
⎩
⎨
⎧ −=+−=

=
otherwise

iswhereijift
x s

ij 0
/)1(,1mod)1()( γγσ

,  

and xij represents the entry in ith row and jth column of X. 

 

Definition 3.4 describes a sequence of state transformations and can be deemed 

as a generalization of Definition 3.3. A firing matrix X can be deemed as a column of 

α square sub-matrices. The sth square sub-matrix is an identical matrix scalar 

multiplied by σ(ts). 

 

                                                 
III By Definition 3.2, it should satisfy ⎡ ⎤γ/sr =  and j = (s - 1) mod γ + 1. 
IV By Definition 3.3, ujrx is 1 only when u = (r – 1) × γ + j, otherwise ujrx is 0. 
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Lemma 3.2: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), |T| = α, |C| = γ, 

two markings are m and m', and there exists a firing vector σ such that m [σ> m', Q 

and Q' are matrix representation of m and m' respectively, B- and B+ are matrix 

representation of I and O respectively, and X is the matrix representation of firing 

vector σ.  

 The state transformation between Q and Q' would satisfy  

Q' = Q - B-X + B+X. 

 

Proof:  

Assume the firing vector σ represents a finite occurrence sequence such that m 

[ts1> m1 [ts2> m2 … [tsn> m'. Hence, Q1 = Q - B-Xs1 + B+Xs1, Q2 = Q1 - B-Xs2 + 

B+Xs2, …, Q' = Qn-1 - B-Xsn + B+Xsn, where Xsi represents a transition firing matrix 

describing tsi. Hence, Q' = Q - B-Xs1 + B+Xs1 - B-Xs2 + B+Xs2 - … - B-Xsn + B+Xsn. Since 

all the operations in previous equation are matrix operations, it will obey the left 

distributive lawV in matrix operations, and hence Q' = Q - B-(Xs1 + Xs2 + … + Xsn) + 

B+(Xs1 + Xs2 + … + Xsn). Since Xsi = 

matricessquaresi

matricessquaresi

I

−

−

⎪
⎭

⎪
⎬

⎫

⎪
⎭

⎪
⎬

⎫

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

×

×

×

×

α

γγ

γγ

γγ

γγ

γγ

1

0
0

0
0

M

M

 , (Xs1 + Xs2 

+ … + Xsn) is an n × γ matrix, where jth square matrix counted from the top of (Xs1 + 

Xs2 + … + Xsn) is an identity matrix multiply by the number of appearance of Xj in (Xs1 

+ Xs2 + … + Xsn). Since each transition firing matrix in (Xs1 + Xs2 + … + Xsn) 

represents a transition, the number of appearance of Xj in (Xs1 + Xs2 + … + Xsn) 

                                                 
V A(B + C) = AB + AC, where A, B and C are matrices. 
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represents the number of appearances of tj in the firing vector σ, i.e. σ(tj). Therefore, 

the firing matrix X = Xs1 + Xs2 + … + Xsn and Q' = Q - B-X + B+X. 

 

Lemma 3.2 proves that the state transformation equation of a finite occurrence 

sequence is Q' = Q - B-X + B+X by derived from Lemma 3.1. By the matrix 

representations proposed in Definition 3.1, Definition 3.2 and Definition 3.4 and the 

equation in Lemma 3.2, a CPN can be presented. 

3.2 Matrix Constructing Algorithms for CPN 

This section presents four constructing algorithms for above matrices: 

MARKING-MATRIX, FUNCTION-MATRIX, FIRING-MATRIX and 

NEXT-MARKING. Algorithm MARKING-MATRIX constructs matrix 

representations for markings of CPNs as in Definition 3.1. Algorithm 

FUNCTION-MATRIX constructs matrix representations for input functions or output 

functions of CPNs as in Definition 3.2. Algorithm FUNCTION-MATRIX constructs 

matrix representations for firing vectors of CPNs as in Definition 3.4. Since there can 

be only one firing transitions in a firing vector, hence the concept presented in 

Definition 3.3 is also contained in this algorithm. Algorithm NEXT-MARKING 

computes the marking after firing a certain transition under another marking by matrix 

operations. 

 

Algorithm 3.1: MARKING-MATRIX(P, C, m) 

1 β ← |P| 

2 γ ← |C| 

3 Q ← a β × γ matrix initialized by 0 
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4 for i ← 1 to β 

5    do for j ← 1 to γ 

6          do qij ← m(pi)(cj)   ▷ pi ∈ P, cj ∈ C, and qij is an entry in Q 

7 return Q 

 

The inputs of Algorithm 3.1 are a set of places, a set of colours and a marking 

function, and the output of Algorithm 3.1 is a marking matrix. The algorithm contains 

loops nested two deep. The outer for loop at line 4 iterates β times after initialization, 

and each time it constructs a row of marking matrix which represents the tokens on a 

place. The inner for loop at line 5 iterates γ times, and each time it assigns an entry of 

marking matrix by the number of tokens with a colour on a place. Hence, the 

assignment at line 6 within loops totally runs βγ times. Besides initialization and 

return, Algorithm 3.1 contains the computation of these nested loops, and hence 

MARKING-MATRIX runs in time Θ(βγ). 

 

Algorithm 3.2: FUNCTION-MATRIX(P, C, T, F) 

1 α ← |T| 

2 β ← |P| 

3 γ ← |C| 

4 B ← a β × αγ matrix initialized by 0 

5 for i ← 1 to β 

6    do for j ← 1 to αγ 

7         do r ← ⎡ ⎤γ/j  

8            s ← (j - 1) mod γ + 1 

9            bij ← F(pi, tr)(cs)  ▷ pi ∈ P, tr ∈ T, cs ∈ C, and bij is an entry in B
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10 return B 

 

The inputs of Algorithm 3.2 are a set of places, a set of colours, a set of 

transitions and an input function (or an output function), and the output of Algorithm 

3.2 is an input or output matrix. Similarly, Algorithm 3.2 contains loops nested two 

deep. The outer for loop at line 5 iterates β times after initialization, and each time it 

constructs a row of input or output matrix which represents the tokens to be removed 

from or deposited into a place while firings occur. The inner for loop at line 6 iterates 

αγ times when outer loop iterates once, and each time it assigns an entry of input or 

output matrix by the number of tokens with a colour to be removed from or deposited 

into a place during a transition fires. The assignments in lines 7-9 totally run βαγ 

times, and each time they firstly compute the transition and the colour that an entry of 

input or output matrix refers to, and then assign the value retrieved from an input or 

output function to this entry. Algorithm 3.2 has a similar structure as Algorithm 3.1, 

but there are only three assignments which run βαγ times in these nested loops. Thus, 

FUNCTION-MATRIX takes Θ(βαγ) time. 

 

Algorithm 3.3: FIRING-MATRIX(C, T, σ) 

1 α ← |T| 

2 γ ← |C| 

3 X ← a αγ × γ matrix initialized by 0 

4 for s ← 1 to α 

5    do for j ← 1 to γ 

6          do i ← (s -1)γ + j 

7             xij ← σ(ts)   ▷ ts ∈ T, and xij is an entry in X 
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8 return X 

 

The inputs of Algorithm 3.3 are a set of colours, a set of transitions and a firing 

vector, and the output of Algorithm 3.3 is a firing matrix. The outer for loop at line 4 

iterates α times, and each time it constructs the values of a γ × γ square sub-matrix in a 

firing matrix, which corresponds to a transition in firing vector. The inner for loop at 

line 5 iterates γ times when outer loop iterates once, and each time it assigns the 

values to diagonal entries on a γ × γ square matrix by the number of appearances of a 

transition in firing vector. Algorithm 3.3 also has a similar structure as Algorithm 3.2, 

except there are only two assignments which run αγ times in these nested loops. In 

general case, the initialization is considered to runs in constant time, and hence lines 

1-3 takes constant time. Thus, FIRING-MATRIX takes Θ(αγ) time. 

 

Algorithm 3.4: NEXT-MARKING(Q, B-, B+, X) 

1 U ← MATRIX-MULTIPLY(B-, X) 

2 V ← MATRIX-MULTIPLY(B+, X) 

3 for i ← 1 to rows[U]           ▷ rows[U] is the number of rows of U 

4    do for j ← 1 to columns[U]   ▷ columns[U] is the number of columns of U

5          do if qij < uij - vij      

▷ qij, uij and vij is an entry in Q, U and V respectively 

6               then return Q 

7 return MATRIX-ADD(MATRIX-SUBTRACT(Q, U), V) 

 

8 MATRIX-MULTIPLY(A, B) 



 22

9 C ← a rows[A] × columns[B] matrix initialized by 0 

10 for i ← 1 to rows[A] 

11    do for j ← 1 to columns[B] 

12         do for k ← 1 to columns[A] 

13               do cij ← cij + aik · bkj 

14 return C 

 

15 MATRIX-ADD(A, B) 

16 C ← a rows[A] × columns[A] matrix initialized by 0 

17 for i ← 1 to rows[A] 

18    do for j ← 1 to columns[A] 

19         do cij ← aij + bij 

20 return C 

 

21 MATRIX- SUBTRACT(A, B) 

22 C ← a rows[A] × columns[A] matrix initialized by 0 

23 for i ← 1 to rows[A] 

24    do for j ← 1 to columns[A] 

25         do cij ← aij - bij 

26 return C 

 

The inputs of Algorithm 3.4 are a marking matrix, an input matrix, an output 

function and a firing matrix, and the output of Algorithm 3.4 is a marking matrix. In 

lines 3-6 it firstly checks if the sequence of firing is valid, i.e., if it would not cause a 

negative number of tokens in some places. Then, it computes the next marking by the 

state transformation equation in Lemma 3.2. In line 1-2, it contains two matrix 
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multiplications defined in line 8-14, and each of them takes Θ(βαγ2) time obviously. 

In line 3-6, it contains loops nested two deep, and there has only a conditional return 

in these loops, hence they run in O(βγ). The return at line 7 contains a matrix addition 

and a matrix subtraction, and each of them takes Θ(βγ) time. Thus, NEXT-MARKING 

takes O(βαγ2) time. 

 

3.3 Example for Matrix Representation of CPN 

 
Figure 3.1 A CPN with enable transitions. 

 

Consider the CPN in Figure 3.1, where the place set P = {p1, p2, p3}, transition 

set T = {t1, t2, t3}, and colour set C = {c1, c2, c3, c4}. The input function I satisfies I(p1, 

t1) = 1'c1, I(p1, t2) = 1'c3, I(p1, t3) = 1'c2 + 1'c4, and I(p2, t2) = 2'c4. The output function 

O satisfies O(p2, t1) = 1'c4, O(p3, t2) = 1'c1, and O(p3, t3) = 1'c3. The marking m in 

Figure 3.1 satisfies m(p1) = 2'c1 + 2'c2 + 1'c3 + 2'c4, m(p2) = 1'c3 + 1'c4, and m(p3) = 
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1'c2. There is an occurrence sequence m [t3> m1 [t3> m2 [t1> m3 [t2> m', and 

corresponding firing vector is σ. The marking m' after the firing vector is σ satisfies 

m'(p1) = 1'c1, m'(p2) = 1'c3, and m'(p3) = 1'c1 + 1'c2 + 2'c3. According to Definition 3.1, 

the marking matrix which represents marking m is  

Q =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0010
1100
2122

. 

According to Definition 3.2, the input matrix which represents input function I is  

B- =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000000000000
000020000000
101001000001

,  

and the output matrix which represents input function O is  

B+ =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010000010000
000000001000
000000000000

. 

According to Definition 3.4, the firing matrix which represents firing vector σ is 

X =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2000
0200
0020
0002
1000
0100
0010
0001
1000
0100
0010
0001

. 

The marking matrix after the firing matrix X is 

Q' = Q - B-X + B+X  
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=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0010
1100
2122

-
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000000000000
000020000000
101001000001

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2000
0200
0020
0002
1000
0100
0010
0001
1000
0100
0010
0001

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010000010000
000000001000
000000000000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2000
0200
0020
0002
1000
0100
0010
0001
1000
0100
0010
0001

 

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0010
1100
2122

-
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0000
2000
2121

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0201
1000
0000

 

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0211
0100
0001

  

, which satisfies the matrix representation of marking m'. 
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Chapter 4. Fault Detection and Correction Scheme 

This chapter presents a scheme detecting and correcting the faults in CPNs. The 

presented scheme firstly encodes a CPN into a redundant CPN for detection and 

correction of faults later. The detection and correction in the redundant CPN is done 

via parity check. Since all the encoding and parity check need to operate upon linear 

algebra, the scheme works based on the matrix representations of CPNs in chapter 3 

and shows the faults with matrix representations too. The definition of redundant 

CPNs is given in section 4.1. Section 4.2 discusses the faults considered in the thesis 

and gives the corresponding definitions. From section 4.3 to section 4.5, each section 

discusses the methodology dealing with a kind of faults defined in section 4.2. Section 

4.6 proves the correctness of the proposed scheme. 

 

4.1 Bisimilar and Redundant CPNs 

 

Bisimulation equivalence is also called bisimilarity [10]. Bisimulations play an 

important role in the theory of parallelism and concurrency [5]. The techniques apply 

to language equivalence and reachability set equivalence can also apply to 

bisimulation equivalence of Petri nets. Several kinds of notations applied to 

bisimulation equivalence, such as based on markings [4, 5] and based on places [12]. 

The notations adopted in this thesis are the former with some modifications in order to 

suit for CPNs. 
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The redundancy [3, 4] is stricter than bisimulation equivalence, i.e., it contains 

all the conditions in bisimulation equivalence. If a Petri net is the redundant net of 

another Petri net, these two Petri nets can have a common firing sequence. The 

redundant CPNs discussed here are the notations based on the extensions of those in 

[4]. 

 

Definition 4.1: Let G = <N, m0> and G' = <N', m0'> be two CPNs where N = (P, T, A, 

C, I, O) and N' = (P', T', A', C', I', O'), M and M' be the sets which are all markings of 

G and G' respectively, R ⊆ M × M' be a relation between marking m and m' where m 

∈ M and m' ∈ M', and mRm' denote the relation. 

 R is a bisimulation iff for all m1 ∈ M and m1' ∈ M' such that m1Rm1'. 

(1) For each enabled transition t ∈ T and m2 ∈ M such that m1 [t> m2, there 

exists an enabled transition t' ∈ T' and m2' ∈ M' such that m1' [t'> m2' with 

m2Rm2'. 

(2) For each enabled transition t' ∈ T' and m2' ∈ M' such that m1' [t'> m2', there 

exists an enabled transition t ∈ T and m2 ∈ M such that m1 [t> m2 with 

m2Rm2'. 

 For a bisimulation R, CPNs <N, m0> and <N', m0'> are called bisimilarVI and 

are denoted by <N, m0> ~ <N', m0'>. 

 

                                                 
VI It can also call that there is bisimulation equivalence between <N, m0> and <N', m0'>. 



 28

G G'

 
Figure 4.1 Occurrence graphs of two bisimilar CPNs. 

 

The example in Figure 4.1 contains the Occurrence graphs of two CPNs which 

are G = <N, m0> and G' = <N', m0'>. The CPN structures of these two CPNs are N = 

(P, T, A, C, I, O) and N' = (P', T', A', C', I', O'). The markings m1, m2, m3 and m4 are 

reachable from initial marking m0 in G, and the markings m1', m2', m3', m4' and m5' are 

reachable from initial marking m0' in G'. There is a relation R = {(m0, m0'), (m1, m1'), 

(m1, m5'), (m2, m2'), (m2, m4'), (m3, m3'), (m4, m2'), (m4, m4')} which satisfies the 

conditions in definition 4.1, hence R is a bisimulationVII and G ~ G'. 

 

Definition 4.2: Let m be a marking of a set of place P where |P| = β and m' be a 

marking of a set of places P' where |P'| = β'. 

 A linear transformation function set F of a marking m is defined by  

F = {fi | i = 1…q, where q > 0; fi(m(p1), m(p2), …, m(pβ)) = oi, where p1, p2, …, 

pβ ∈ P, oi ∈ C MS, and fi is a function only contains addition, subtraction, and 

inner product on input multi-sets}. 

                                                 
VII It can be checked one by one in relation R. 
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 m' is linearly related to m if and only if there exists a linear transformation 

function set F of m which satisfies following two conditions.  

(1) |F| = β'. 

(2) fi(m(p1), m(p2), …, m(pβ)) = m'(pi'). 

It is denoted by F(m) = m'. 

 

The linear relation of two markings in Definition 4.2 is one kind of relation in 

Definition 4.1. The relation defined in Definition 4.2 is stricter than that in Definition 

4.1 since the latter can be nonlinear. 

 

Definition 4.3: Let G = <N, m0> and G' = <N', m0'> be two CPNs where N = (P, T, A, 

C, I, O) and N' = (P', T', A', C', I', O'), M and M' be sets which are all markings of G 

and G' respectively, m1, m2 ∈ M, m1', m2' ∈ M', t ∈ T, and F and H be linear 

transformation function sets. 

 G and G' have redundant relation iff the following conditions are true. 

(1) T = T'. 

(2) F(m0) = m0' and H(m0') = m0. 

(3) If F(m1) = m1', H(m1') = m1 and m1 [t> m2, then m1' [t> m2' such that F(m2) 

= m2' and H(m2') = m2. 

(4) If F(m1) = m1', H(m1') = m1 and m1' [t> m2', then m1 [t> m2 such that F(m2) 

= m2' and H(m2') = m2. 

It is denoted by <N, m0> ≃ <N', m0'>. 

 

It is obvious that bisimilarity in Definition 4.1 doesn’t constrain the relation of 

firing transitions between two bisimilar CPNs. They can have different sequences of 
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firing transitions, as long as they satisfy the conditions in Definition 4.1. However, the 

definition of redundancy in Definition 4.3 gives stricter constrains that also define the 

sequences of firing transitions should be the same. If <N, m0> ≃ <N', m0'>, then <N, 

m0> ~ <N', m0'> will also be true, since the condition 3 and 4 in Definition 4.3 are 

stricter than the condition 1 and 2 in Definition 4.1 respectively and the condition 1 

and 2 in Definition 4.3 should be satisfied in addition. Redundancy has an additional 

property with respect to bisimilarity, which redundancy has a property of activity 

equivalence since sequences of firing transitions should be same. 

 

Definition 4.4: Let G = <N, m0> and G' = <N', m0'> be two CPNs where N = (P, T, A, 

C, I, O) and N' = (P', T', A', C', I', O'), and [m0> and [m0'> be sets of reachable 

markings from m0 in G and m0' in G' respectively. 

 G' is a separate CPN of G iff the following conditions are true.  

(1) G ≃ G'. 

(2) P ⊇ P'. 

(3) C = C'. 

(4) ∀p ∈ P: m0(p) = m0'(p). 

(5) ∀p ∈ P, ∀m ∈ [m0>, ∀m' ∈ [m0'>: if the sequences of firing transitions 

from m0 to m is the same as that from m0' to m', then m(p) = m'(p). 

 G' is a nonseparate CPN of G iff G ≃ G' and P ⊇ P' but G' is not a separate 

CPN of G. 

 

The redundant relation can be classified into two classes, which are separate and 

nonseparate relations. If G' is a separate CPN of G, the markings of G can be 
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identified from the markings on the subset of places in G' under the same sequences 

of firing transitions, however the markings of G can be identified by linear operations 

on the markings of G' in a nonseparate case. In addition, a separate CPN has a 

property of sub-marking equivalence which means the markings of a CPN is retained 

in the markings of another CPN on the subset of places. In this thesis, we mainly 

discuss separate CPNs since this case is more meaningful than a nonseparate case, 

though the method proposed in this thesis can be applied in a nonseparate case. 

 

4.2 Fault Models 

 

There are several kinds of faults that a CPN may suffer. In [11], two kinds of 

fault models in Petri nets, which are place faults and transition faults, are proposed. A 

place fault is caused by the corruption on a place, and a transition fault is caused by a 

firing problem. This thesis extends the fault models in CPNs, where fault model on 

transition faults is divided into two classes: amount and colour. The amount transition 

faults are similar to the transition faults in [11]. Since the tokens in CPNs are coloured, 

there is an additional fault on transition introduced: colour transition fault. The place 

faults in CPNs are extended the place faults in [11], where the place faults in CPNs 

would be caused by faulty colours or faulty amount. 

 

Definition 4.5: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), ∃t ∈ T, M be 

the all marking of G, and m, m' ∈ M where there exists a firing vector σ such that m 

[σ> m'. 

 If mf is a marking with a pre-condition amount transition fault,  
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∀p ∈ P: mf(p) = m(p) + σ(t1) * (- I(p, t1) + O(p, t1) ) + σ(t2) * (- I(p, t2) + O(p, 

t2)) + … + σ(tα) * (- I(p, tα) + O(p, tα)) + i * I(p, t) = m' (p) + i * I(p, t), where i ∈ 

ℕ / {0} and i ≤ σ(t).  

 If mf is a marking with a post-condition amount transition fault,  

∀p ∈ P: mf(p) = m(p) + σ(t1) * (- I(p, t1) + O(p, t1) ) + σ(t2) * (- I(p, t2) + O(p, 

t2)) + … + σ(tα) * (- I(p, tα) + O(p, tα)) - i * O(p, t) = m' (p) - i * O(p, t), where i ∈ 

ℕ / {0} and i ≤ σ(t). 

 

There are two types of amount transition faults which are pre-condition and 

post-condition amount transition faults. A pre-condition amount transition fault occurs 

when the tokens are not removed from the pre-set of transition t being fired. A 

post-condition amount transition fault occurs when the tokens are not deposited into 

the post-set of transition t being fired. In Definition 4.5, the marking m' is reached by 

firing a sequence of transitions from marking m1 under fault-free conditions, and its 

firing vector is σ, hence they satisfy ∀p ∈ P: m'(p) = m(p) + σ(t1) * (- I(p, t1) + O(p, 

t1) ) + σ(t2) * (- I(p, t2) + O(p, t2)) + … + σ(tα) * (- I(p, tα) + O(p, tα)). Thus, if a 

pre-condition amount transition fault, which causes i times of not removing tokens 

from the pre-set of transition t in these σ(t) times of transition t being fired, occurs 

during this firing sequence, the CPN will get into a faulty marking mf and the 

difference between mf and a fault-free marking is i * I(p, t). If a post-condition amount 

transition fault, which causes i times of not depositing tokens into the post-set of 

transition t in these σ(t) times of transition t being fired, occurs during this firing 

sequence, the CPN will get into a faulty marking mf and the difference between mf and 
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a fault-free marking is - i * O(p, t). An amount transition fault can be deemed as a 

fault cause by choking. 

 

Definition 4.6: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), M be the all 

marking of G, m ∈ M be a fault-free marking, and mf be a marking with accumulated 

amount transition faults in respect of m, such that

).,(*),(*),(*

),(*),(*),(*)()(
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21

21
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21

21
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sq

ofsofof

rfqrfrff

ofofrfrf
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tpIitpIitpIipmpm
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−−−−

++++=
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L

L

LL

 

 |mf|at is the amount of amount transition faults in mf, and |mf|at = |Tf|, where Tf is a 

set of transitions that have experienced amount transition faults, such 

that fofofrfrf Ttttt
sq
∈∀ LL ,,,,

11
. 

 

The amount of amount transition faults in a faulty marking is defined on the 

amount of transitions that have suffered amount transition faults, rather than the 

amount of firings with amount transition faults. Hence, if there is only one transition 

that has suffered several times of an amount transition fault in a firing sequence, it is 

still defined as an amount transition fault in this firing sequence. 

 

Definition 4.7: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), ∃tj ∈ T, ∃cr 

∈ C, M be the all marking of G, and m, m' ∈ M where there exists a firing vector σ 

such that m [σ> m'. 

 If mf is a marking with a pre-condition colour transition fault,  

∀p ∈ P: mf(p) = m(p) + σ(t1) * (- I(p, t1) + O(p, t1) ) + σ(t2) * (- I(p, t2) + O(p, 
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t2)) + … + σ(tα) * (- I(p, tα) + O(p, tα)) - If(p)= m'(p) - If(p),  

where If is a input faulty function which satisfies 

∑
≠=

+−=
γ

rhh
hrjkhrrjkkf cctpIicctpIipI

,1
)')(,(*)')(,(*)( , ii

rhh
h =∑

≠=

γ

,1
, i ∈ ℕ / {0}, 

i ≤ σ(tj), and ih ∈ ℕ. The pre-condition colour transition fault denoted by If is 

defined as the pre-condition colour transition fault occurring on the colour cr of 

transition tj. 

 If mf is a marking with a post-condition colour transition fault,  

∀p ∈ P: m(p) + σ(t1) * (- I(p, t1) + O(p, t1) ) + σ(t2) * (- I(p, t2) + O(p, t2)) + … + 

σ(tα) * (- I(p, tα) + O(p, tα)) - Of(p)= m'(p) - Of(p),  

where Of is a output faulty function which satisfies 

∑
≠=

−=
γ

rhh
hrjkhrrjkkf cctpOicctpOipO

,1
)')(,(*)')(,(*)( , ii

rhh
h =∑

≠=

γ

,1
, i ∈ ℕ / {0}, 

i ≤ σ(tj), and ih ∈ ℕ. The post-condition colour transition fault denoted by Of is 

defined as the post-condition colour transition fault occurring on the colour cr of 

transition tj. 

 

Colour transition faults also have two types, named as pre-condition and 

post-condition colour transition faults. A pre-condition colour transition fault occurs 

when the tokens removed are of wrong colours from the pre-set of transition tj being 

fired. A post-condition colour transition fault occurs when the tokens deposited are of 

wrong colours into the post-set of transition tj being fired. Similar to the explanation 

in Definition 4.5, m(p) + σ(t1) * (- I(p, t1) + O(p, t1) ) + σ(t2) * (- I(p, t2) + O(p, t2)) 

+ … + σ(tα) * (- I(p, tα) + O(p, tα)) in Definition 4.6 describes a fault-free process. In 

pre-condition case, If indicates that the faulty firing removes the tokens of wrong 



 35

colour, here cr is correct and ∑
≠=

γ

rhh
hrjkh cctpIi

,1
)')(,(*  describes the wrong colours, 

from the pre-set of transition tj. It is similar in post-condition case where Of indicates 

the faulty process deposits the wrong tokens, which should be with the color element 

cr but with the color elements ∑
≠=

γ

rhh
hrjkh cctpOi

,1
)')(,(* , to the post-set of transition tj. 

In both pre-condition and post-condition case, the multiplier i indicates that i times of 

colour transition faults occur on transition tj in these σ(tj) times of transition tj being 

fired. A colour transition fault can be deemed as a fault cause by noise during 

transmitting. 

 

Definition 4.8: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), M be the all 

marking of G, m ∈ M be a fault-free marking, and mf be a marking with accumulated 

colour transition faults in respect of m, such that
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,  

where
qff II ,,

1
L are input faulty functions denote the pre-condition colour faults on 

the colour 
1sfc  of transition 

1rft , …, the colour 
qsfc  of transition 

qrft  respectively, 

and
sff OO ,,

1
L are output faulty functions denote the post-condition colour faults on 

the colour 
1hfc  of transition 

1oft , …, the colour 
shfc  of transition 

soft  respectively. 

 |mf|ct is the amount of colour transition faults in mf, and |mf|ct = the amount of 

distinct pairs in ),(,),,(),,(,),,(
1111 ssqq hfofhfofsfrfsfrf ctctctct LL . 

 

The amount of colour transition faults in a faulty marking is defined on the sum 
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of colours with colour transition faults on each transition, rather than the amount of 

firings with colour transition faults. Hence, if the colour transition fault only occurs 

on one colour of transition in a firing sequence, it is still defined as a colour transition 

fault in this firing sequence. 

 

Definition 4.9: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), ∃pf ∈ P, ∃ c 

∈ C, M be the all marking of G, and m ∈ M. 

 If mf is a marking with a place fault on place pf in respect of marking m,  

mf(pf) = m(pf) + a – s and ∀ pc ∈ P/{pf}: mf(pc) = m(pc), where a, s ∈ CMS, and a 

≠ s. 

 

Token corruption in CPN may cause place faults which occur when the amounts 

of tokens on places are suddenly increased or decreased, or the colours of tokens on 

places are suddenly changed without firing. Formally, as in Definition 4.7, a and s are 

both multi-sets over C, and a – s indicates the incorrect tokens on place pf with respect 

to the fault-free marking m. Practically, an place fault can represent a fault caused by 

data missing, appearing of fake data or data errors. In [11], there is another fault, 

additive faults, indicating simultaneous occurrence(s) of place faults and transition 

faults. In this thesis, the additive faults indicate simultaneous occurrences of place 

faults, amount transition faults, and colour transition faults. 

 

Definition 4.10: Let G = <N, m0> be a CPN where N = (P, T, A, C, I, O), M be the all 

marking of G, m ∈ M be a fault-free marking, and mf be a marking with accumulated 
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place faults in respect of m, such that iiiif sapmpmi −+=≤≤ )()(:1 β , where ai, si 

∈ CMS. 

 |mf|p is the amount of place faults in mf, and |mf|p = the amount of 1 ≤ i ≤ β: ai ≠ 

si. 

 

The amount of place faults in a faulty marking is defined on the amount of 

places that have suffered place faults, rather than the times of occurrence of place 

faults. Hence, if there is only one place that has suffered several times of a place fault, 

it is still defined as a place fault. In [11], there is another fault, additive faults, 

indicating simultaneous occurrence(s) of place faults and transition faults. In this 

thesis, the additive faults indicate simultaneous occurrences of place faults, amount 

transition faults, and colour transition faults. 

 

4.3 Place Faults 

 

According to Definition 4.9, this section firstly gives the problem formulation of 

place faults in matrix representations. Next, based on the problem formulation, this 

section presents a methodology encoding a CPN into a separate CPN with detection 

and correction capabilities on place faults. Then, this section gives the syndromes of 

place faults while they occur in CPNs. Finally, this section describes how to compute 

the correction markings via these syndromes. 

 

4.3.1 Problem Formulation for Place Faults 
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Lemma 4.1: Let Q be a fault-free marking matrix of a CPN G.  

 If Qf is a marking matrix containing a place fault on place pi corresponding to Q,

i
pF∃ , a β × γ matrix,  

Qf = Q + i
pF ,  

and all the entries in i
pF  satisfy 

∀1 ≤ j ≤ γ: ∈i
pij

f  ℤ, ∃1 ≤ h ≤ γ: 0≠i
pih

f ,  

and ∀1 ≤ k ≤ β, 1 ≤ l ≤ γ, k ≠ i: 0=i
pkl

f . 

 

 

Proof:  

Assume Q is the matrix representation of a fault-free marking m, and Qf is the 

matrix representation of mf which is a marking with a place fault on place pi with 

respect to m. The entries in matrix Q and Qf are qyz = m(py)(cz) and 
yzfq = mf(py)(cz), 

respectively. By Definition 4.9, mf(pi) = m(pi) + a – s and ∀ pk ∈ P/{pi}: mf(pk) = 

m(pk), where a, s ∈ CMS, and a ≠ s. Hence, by Definition 2.2, ∀ pk ∈ P/{pi},∀ cl ∈ 

C: mf(pi)(cl) = m(pi)(cl) + a(cl) – s(cl) and mf(pk)(cl) = m(pk)(cl). Consider mf(pk)(cl) = 

m(pk)(cl) part, it would have  

∀1 ≤ l ≤ γ, 1 ≤ k ≤ β, k ≠ i: 
klfq = qkl.                                 (1) 

Since a ≠ s, by Definition 2.2, ∃ch ∈ C: a(ch) ≠ s(ch). By Definition 2.1, ∀ cl ∈ C: 

a(cl) ∈ ℕ and s(cl) ∈ ℕ. Hence, consider mf(pi)(cl) = m(pi)(cl) + a(cl) – s(cl) part, it 
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would have 

∀1 ≤ l ≤ γ: 
ilfq = qil + el, where el ∈ ℤ,  and                              (2)

∃1 ≤ h ≤ γ: eh ≠ 0.                                                   (3) 

By combining (1), (2) and (3), ∀1 ≤ l ≤ γ, 1 ≤ k ≤ β, k ≠ i: 
klfq = qkl + 0, ∀1 ≤ l ≤ γ: 

ilfq = qil + el , and ∃1 ≤ h ≤ γ: eh ≠ 0. Hence, there exist a β × γ matrix, i
pF , the entries 

in i
pF  satisfy ∀1 ≤ j ≤ γ: ∈i

pij
f  ℤ, ∃1 ≤ h ≤ γ: 0≠i

pih
f , and ∀1 ≤ l ≤ γ, 1 ≤ k ≤ β, k ≠ 

i: 0=i
pkl

f , and the relation between Q and Qf is Qf = Q + i
pF . 

 

Lemma 4.1 formulates the problem of a place fault in linear algebra. The 

matrix i
pF  in the equation is an indicator matrix of a place fault, where it has only one 

row containing nonzero entries. If the nonzero entries exist in the ith row, it indicates 

that a place fault occurs on the place pi. If the jth column in this row is a nonzero entry, 

the colour cj tokens on place pi are incorrect. The consistency between the description 

of place fault in Lemma 4.1 and the definition of place fault in Definition 4.9 is also 

proved. 

 

Lemma 4.2: Let Q be a fault-free marking matrix of a CPN G.  

 If Qf is a marking matrix representing Q with n place faults, ∃Fp, a β × γ matrix, 

Qf = Q + Fp,  

and all the entries in the place fault indicator matrix Fp satisfy 

∃1 ≤ i1, i2, …, in ≤ β, i1 ≠ i2 ≠ … ≠ in, ∀1 ≤ j ≤ γ: ∈
jnijiji ppp fff ,,,

21
L  ℤ, ∀1 ≤ k 

≤ β, 1 ≤ l ≤ γ, k ≠ i1 ≠ i2 ≠ … ≠ in: 0=
klpf , and ∃1 ≤ h1, h2, …, hn ≤ γ:
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0,,,
2211

≠
nhnihihi ppp fff L . 

 

 

Proof:  

By Definition 4.10, n place faults denote that there are n places with place faults. 

Hence, by Lemma 4.1, there are n matrices, ni
p

i
p

i
p FFF ,,, 21 L , indicate these place 

faults, where i1 ≠ i2 ≠ … ≠ in, and Qf = ni
p

i
p

i
p FFFQ ++++ L21 = Q + Fp. Therefore, 

the entries in Fp should satisfy ∃1 ≤ i1, i2, …, in ≤ β, i1 ≠ i2 ≠ … ≠ in, ∀1 ≤ j ≤ 

γ: ∈
jnijiji ppp fff ,,,

21
L  ℤ, ∀1 ≤ l ≤ γ, 1 ≤ k ≤ β, k ≠ i1 ≠ i2 ≠ … ≠ in: 0=

klpf , and ∃1 

≤ h1, h2, …, hn ≤ γ: 0,,,
2211

≠
nhnihihi ppp fff L . 

 

A matrix Fp which indicates n place faults would have n rows with nonzero 

entries, and the other rows have only entries of zero. Each row with nonzero entries in 

Fp represents a place fault. The relation equation, Qf = Q + Fp, could be proved by 

deriving from Lemma 4.1. 

 

4.3.2 Separate CPNs with Place Faults Detection and 

Correction Capabilities 

 

In order to detect and correct place faults, the strategy in this thesis encodes a 

CPN with additional tokens as a separate CPN firstly. Definitely, Let G be a CPN with 

no more than k place faults, the separate CPN with place faults detection and 

correction capabilities is constructed by adding 2k additional places to G and the 
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colour sets of both CPNs are the same. Assume that G has α transitions, β places, γ 

colours, input matrix −
gB , output matrix +

gB  and initial marking matrix 
g

Q0 . The 

separate CPN H with place faults detection and correction capabilities in respect to G 

would have α transitions, β + 2k places, γ colours, input matrix −
hB , output matrix +

hB  

and initial marking matrix
h

Q0 . Besides, −−
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β , ++
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β  and 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β , where D is a 2k × β matrix, and Iβ denotes a β × β identity matrix. 

After H is constructed, the place faults occurring on H can be identified and corrected 

from the syndromes. These properties are proved in Lemma 4.3 and 4.4. 

 

Lemma 4.3: Let G be a CPN which has α transitions, β places, γ colours, the input 

matrix −
gB , the output matrix +

gB  and the initial marking matrix
g

Q0 . 

If the CPN H, constructed by adding d additional places to G, has the same colour 

set with G, α transitions, β + d places, γ colours, input matrix  

−−
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β ,  

output matrix  

++
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β   

and initial marking matrix  

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β   

, where D is a d × β matrix, all the entries in D are nonnegative, d ∈ ℕ, and Iβ 

denotes a β × β identity matrix, H has following two properties. 

 H is a separate CPN with respect to G. 

 If a reachable marking matrix Qg of G has the same firing transition sequence 
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with a reachable marking matrix Qh of H, gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β . 

 

 

Proof:  

First, Let Pg and Ph be the place sets of G and H respectively. Consider 

conditions 2 and 3 in Definition 4.4, CPN H is composed of CPN G and d additional 

places, and thus Pg ⊇ Ph. Since H and G have the same colour set, Cg = Ch where Cg 

and Ch are the colour sets of G and H respectively. 

Next, let i and j be two integers, where 1 ≤ i ≤ β and 1 ≤ j ≤ γ. 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

g

g

g

g

gh DQ
Q

DQ
QI

Q
D
I

Q
0

0

0

0
00

ββ , thus 
ijgijh

qq 00 = , for all possible i and j. By 

Definition 3.1, ))((00 ji cpmq
hijh

=  and ))((00 ji cpmq
gijg

= , and hence 

))(())((:, 00 jijigjgi cpmcpmCcPp
gh

=∈∀∈∀ . By Definition 2.2, since Cg = Ch, 

)()(: 00 iigi pmpmPp
gh

=∈∀ . Therefore, condition 4 in Definition 4.4 is satisfied. 

Next, since H has no additional transition compared to G,  

Tg = Th,                                                           (1)

where Tg and Th are the transition sets of G and H respectively. Since 

ggh
UQQ

D
I

Q 000 =⎥
⎦

⎤
⎢
⎣

⎡
= β , there is a matrix [ ]dIV ×= ββ 0  such that 

[ ]
gggh

QQ
D
I

IVUQVQ d 0000 0 =⎥
⎦

⎤
⎢
⎣

⎡
== ×

β
ββ , where 0β×d is a β×d matrix with all 

entries of zero. By Definition 3.1, 

∑∑
==

===
ββ

1
0

1
000 ))(())((

l
jlil

l
ilji cpmuquqcpm

gljgijhh
. Hence, there is a linear 

transformation set F, such that  



 43

)( 00 gh
mFm = ,                                                     (2)

and in the same way,  

)( 00 hg
mHm = .                                                     (3)

Assume there are two markings 
g

m1  and 
h

m1  in G and H respectively. The 

marking matrices of 
g

m1  and 
h

m1  are 
g

Q1  and 
h

Q1  respectively. Assume that

gh
UQQ 11 = , and hence 

hg
VQQ 11 = . Similar to the derivation in previous, 

)( 11 gh
mFm =  and )( 11 hg

mHm = . By Definition 3.1 and 2.6, a transition tr is 

enabled by marking 
g

m1  if and only if −≥≤≤≤≤∀
isijg gbqji 1:1,1 γβ , where s = 

(r – 1)γ + j. Hence, −−

==

=≥=≤≤+≤≤∀ ∑∑ islsljgijh hg
l

il
l

il bbuquqjdi
ββ

γβ
11

11:1,1 . 

Therefore, transition tr is also enabled by marking 
h

m1  in H.                (4)

The marking after firing transition tr by marking 
g

m1  is 
g

m2 , and the marking 

matrix of 
g

m2  is 
g

Q2 . The entries in 
g

Q2  satisfy 

+− +−=≤≤≤≤∀
isisijgijg gg bbqqji 12:1,1 γβ . The marking after firing transition tr by 

marking 
h

m1  is 
h

m2 , and the marking matrix of 
h

m2  is 
h

Q2 . Hence, the entries in 

h
Q2  satisfy  

.

)(

:1,1

1
2

1
1

111
1

12

∑

∑

∑∑∑

=

+−

=

=

+

=

−
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+−

=

+−=

+−=

+−=≤≤+≤≤∀

β

β

βββ

γβ

l
il

gg
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il

l
gil
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gil

l
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hh

ljg

lslsljg

lslsljg

isisijhijh

qu

bbqu

bubuqu

bbqqjdi
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Therefore, )( 22 gh
mFm =                                             (5)

and )( 22 hg
mHm = .                                                 (6)

In the same way, if )( 11 gh
mFm = , )( 11 hg

mHm =  and 
hh

mtm r 21 [ > , then 

gg
mtm r 21 [ >  such that )( 22 gh

mFm =  and )( 22 hg
mHm = .                (7) 

By (1), condition 1 in Definition 4.3, the definition of redundant relation, is 

satisfied. By (2) and (3), condition 2 in Definition 4.3 is satisfied. By (4), (5) and 

(6), condition 3 in Definition 4.3 is satisfied. By (7), condition 4 in Definition 4.3 is 

satisfied. Therefore, G ≃ H which satisfies condition 1 in Definition 4.4. 

Finally, since Qg and Qh are reachable marking matrices of G and H 

respectively, and Qg and Qh have the same firing transition sequence, Qg = 

gggg XBXBQ
g

+− +−0  and Qh = hhhh XBXBQ
h

+− +−0  , where Xg = Xh . Since 

−−
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β , ++
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β  and 
gh

Q
D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β , Qh = 

ggggghghg Q
D
I

XBXBQ
D
I

XB
D
I

XB
D
I

Q
D
I

gg ⎥
⎦

⎤
⎢
⎣

⎡
=+−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡ +−+− βββββ )( 00 . Since 

gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β , it can be proved that )()(: igihgi pmpmPp =∈∀  by the same way 

proving )()(: 00 iigi pmpmPp
gh

=∈∀ . Hence, condition 5 in Definition 4.4 is 

satisfied. Therefore two properties in Lemma 4.3 are proved. 

 

In Lemma 4.3, A CPN H with input matrix −−
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β , output matrix 

++
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β  and initial marking matrix 
gh

Q
D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β  is proved to be a separate 

CPN of G. It is also derived that the marking matrix, Qh, in H would be gQ
D
I
⎥
⎦

⎤
⎢
⎣

⎡ β  all 

along, where Qg, the marking matrix in G, has the same firing transition sequence as 
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Qh. 

 

Lemma 4.4: Let G be a CPN which has α transitions, β places, γ colours, and H be a 

separate CPN with d additional places with respect to G. Besides, if a reachable 

marking matrix Qg of G has the same firing transition sequence with a reachable 

marking matrix Qh of H, ggh Q
D
I

UQQ ⎥
⎦

⎤
⎢
⎣

⎡
== β . 

 If there are place faults on H, it can be detected by a d × (β + d) check matrix W, 

such that WU = 0d × β, where 0d × β is a d × β matrix with all entries of zero. The 

syndrome S = WFp iff the place fault indicator matrix is Fp. 

 k place faults on H can be identified and corrected if any 2k columns of the check 

matrix W are linearly dependent. 

 

 

Proof:  

Assume Qh is a fault-free marking matrix of H, then WQh = WUQg = 0d × γ. If 

there are place faults on H, by Lemma 4.2, the faulty marking matrix Qf satisfies Qf = 

Qh + Fp = UQg + Fp. Hence, The syndrome S = WQf = WUQg + WFp = WFp. By the 

same way, if the syndrome is WFp, it will be S = WFp = WFp + 0d × γ = WFp + WUQg = 

WFp + WQh = W(Fp + Qh), where Qh is a fault-free marking matrix of H, and Fp is a 

place fault indicator matrix. Therefore, a marking matrix of H could be examined if it 

is a faulty marking matrix by multiplying the marking matrix with the check matrix 

W. 

If Qf is a faulty marking matrix of H, which states k place faults on H, by 

Lemma 4.2, Qf = Qh + Fp, where k rows of Fp have nonzero entries. In other words, 

each column in Fp has at most k nonzero entries, and hence each column in Qf has at 
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most k incorrect entries. Thus, the syndrome S = [ ]γsss L21 = WQf 

= [ ] [ ]
γγ ffffff WqWqWqqqqW LL

2121
=  = WFp = 

[ ] [ ]
γγ pppppp WfWfWffffW LL

2121
= , where sn,  

nfq  and 
npf

represent the nth column in S, Qf and Fp, respectively, and 1 ≤ n ≤ γ. A column in Qf, 

nfq , can be deemed as a linear code which is of length β. There are two theorems [15] 

in error control coding: (1) If a linear code with a check matrix, such that any 2k 

columns of the check matrix are linearly dependent, the linear code has minimum 

distance 2k + 1. (2) A code with minimum distance 2k + 1 can identify and correct k 

errors. Since each column in Qf has at most k incorrect entries, the faults in Qf can be 

identified and corrected by the check matrix W inside which any 2k columns are 

linearly dependent. After getting the syndrome by WQf, the place fault indicator 

matrix Fp can be found by solving equations np sWf
n
=  , where 1 ≤ n ≤ γ. 

 

Lemma 4.4 shows that if there are at most k place faults, it needs to find out a 

check matrix which has any 2k columns are linearly dependent, and the result of 

multiplying the check matrix with a fault-free marking matrix is a matrix with all 

entries of zero. By applying the method of Reed-Solomon codes [15], it would find a 

check matrix of 2k rows and any 2k columns are linearly dependent. Hence, d = 2k. In 

other word, if there are at most k place faults, 2k additional places is needed in the 

separate CPN by applying the method of Reed-Solomon codes in order to derive the 

detection and correction capabilities of place faults. Lemma 4.4 also shows that the 

place faults can be identified and corrected from the syndrome. 

Let G be a CPN which has α transitions, β places, γ colours, the input matrix −
gB , 
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the output matrix +
gB  and the initial marking matrix

g
Q0 . From Lemmas 4.3 and 4.4, 

constructing a separate CPN H which can detect and correct at most k place faults is 

concluded as following steps: (1) First, constructing a 2k × (β + 2k) check matrix W 

from the check matrix of Reed-Solomon codes. (2) Second, solving the equation 

β
β

×=⎥
⎦

⎤
⎢
⎣

⎡
dD

I
W 0  and getting the entries of D. (3) Finally, deriving the separate CPN H 

containing input matrix −−
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β , output matrix ++
⎥
⎦

⎤
⎢
⎣

⎡
= gh B

D
I

B β  and initial 

marking matrix 
gh

Q
D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β . A marking Qh in the separate CPN H can be 

examined if it is a correct marking by the check matrix W. If the marking Qh is a 

faulty marking, it can be corrected by solving the place fault indicator matrix Fp from 

the equation S = WFp, where S is the syndrome from WQh. 

 

4.3.3 An Example of Identifying and Correcting Place 

Faults 

 

This section uses the example in Figure 3.1 as the given CPN G and sets the 

marking in this figure as the initial marking. Let −
gB , +

gB  and 
g

Q0 represent the 

input matrix, the output matrix and the initial marking matrix of G respectively. 

Hence, the given CPN G has α = 3 transitions, β = 3 places, γ = 4 colours,  

−
gB  = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000000000000
000020000000
101001000001

,  

+
gB  = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010000010000
000000001000
000000000000

, and 
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g
Q0  = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0010
1100
2122

. 

Assume there are at most k = 3 place faults, a 6 × 9 check matrix W can be 

constructed by the method of Reed-Solomon codes. The followings are the steps of 

constructing check matrix W: (1) Choosing a prime number a which satisfies a ≥ β + 

2k = 9, and hence it can take a = 11. (2) Second, finding a nature number r which is a 

primitive root mod aVIII, it can choose r = 2. (3)Third, giving a polynomial of degree a 

-1 - 2k = 10 - 6 = 4 used to construct check matrix, such that w(x) = (x - ra - 2 mod a)(x 

- ra - 3 mod a)(x - ra - 4 mod a)(x - 1) = (x – 29 mod 11)(x – 28 mod 11)(x – 27 mod 11)(x 

- 1) = x4 + 5x3 + 9x2 + 2x + 5 = b4x4 + b3x3 + b2x2 + b1x + b0. (4) Finally, constructing 

the check matrix W from b4, b3, b2, b1 and b0, such that  

W = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

01234

01234

01234

01234

01234

0123

0000
0000
0000
0000
0000
00000

bbbbb
bbbbb

bbbbb
bbbbb

bbbbb
bbbb

  

  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

529510000
052951000
005295100
000529510
000052951
000005295

. 

Next, the matrix ⎥
⎦

⎤
⎢
⎣

⎡
D
I β  is obtained by solving the equation 

 β×d0  = ⎥
⎦

⎤
⎢
⎣

⎡
D
I

W β  mod 11  

                                                 
VIII If r is a primitive root mod a, it would satisfy {r1 mod a, r2 mod a, …, ra-1 mod a } = {1, 2, …, 
a-1}. 
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      = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

181716

151413

121110

987

654

321

100
010
001

529510000
052951000
005295100
000529510
000052951
000005295

ddd
ddd
ddd
ddd
ddd
ddd

 mod 11, and hence  

d1 = 10, d2 = 7, d3 = 4, d4 = 9, d5 = 5, d6 = 1, d7 = 7, d8 = 5, d9 = 9, d10 = 4, d11 = 4, d12 

= 8, d13 = 10, d14 = 5, d15 = 3, d16 = 2, d17 = 9, d18 = 6,  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

692
3510
844
957
159
4710
100
010
001

D
I β .  

Finally, the separate CPN H is constructed, where  

−
hB  = −

⎥
⎦

⎤
⎢
⎣

⎡
gB

D
I β   

    = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

000000000000
000020000000
101001000001

692
3510
844
957
159
4710
100
010
001
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    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2020182000002
10010010100000010
404084000004
7070107000007
9090109000009

10010014100000010
000000000000
000020000000
101001000001

,  

+
hB  = +

⎥
⎦

⎤
⎢
⎣

⎡
gB

D
I β   

    = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

010000010000
000000001000
000000000000

692
3510
844
957
159
4710
100
010
001

  

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

060000069000
030000035000
080000084000
090000095000
010000015000
040000047000
010000010000
000000001000
000000000000

, and  

h
Q0  = 

g
Q

D
I

0⎥
⎦

⎤
⎢
⎣

⎡ β   
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    = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0010
1100
2122

692
3510
844
957
159
4710
100
010
001

  

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1311104
25152320
128168
19122314
23141918
27172420
0010
1100
2122

.  

The CPN H with its initial marking is illustrated in Figure 4.2, where, in each place, 

the number above each token denotes the amount of that token. 

Since H is the separate CPN of G, G and H can have the same firing transition 

sequence. As in section 3.3, G has a firing transition sequence: t3, t3, t1, t2. Hence, 

consider the same firing transition sequence in H and assume the corresponding 

fault-free firing sequence is 
h

m0  [t3> 
h

m1  [t3> 
h

m2  [t1> 
h

m3  [t2> hm' . The 

markings 
h

m0 , 
h

m1 , 
h

m2 , 
h

m3 and hm'  are the fault-free marking in H, and it is 

assumed 
h

Q0 , 
h

Q1 , 
h

Q2 , 
h

Q3 and hQ'  are the marking matrices of 
h

m0 , 
h

m1 , 
h

m2 , 

h
m3 and hm'  respectively. Assume there are amount transition faults inside the firing 

sequence, such that 
h

m0  ⎯→⎯ 1pF  
f

m1  [t3> 
f

m2  [t3> 
f

m3  ⎯→⎯ 2pF  
f

m4  [t1> 

f
m5  ⎯→⎯ 3pF  

f
m6  [t2> 

f
m7  ⎯→⎯ 4pF  fm'  which is an informal representation and 

means that the place faults occur (1) before the first firing, (2) after the second firing 
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and before the third firing, (3) after the third firing and before the last firing, and (4) 

after the last firing. 
1pF , 

2pF , 
3pF and 

4pF  are place fault indicator matrices, where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

=

0000
0000
0000
0000
0000
0000
0000
0000
0001

1pF , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0000
0000
0044
0000
0000
0000
5000
0000
0000

2pF , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0000
0000
0000
0000
0000
0000
0100
0000
0090

3pF , and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0000
0000
0010
0000
0000
0000
0000
0000
0302

4pF . From Lemma 4.2, 
1pF  represents that there is lack of one red 

token in p1, 2pF  represents that there are five extra yellow tokens in p3, four extra 

green tokens in p7, and lack of four red tokens in p7, 3pF  represents that there are 

nine extra green tokens in p1, and lack of one blue token in p3, and 
4pF  represents 

that there are two extra red tokens and three extra blue tokens in p1, and lack of one 

green tokens in p7. Hence, the marking matrices represent 
f

m1 , 
f

m2 , 
f

m3 , 
f

m4 , 

f
m5 , 

f
m6 , 

f
m7  and fm'  are  
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f
Q1  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1311104
25152320
128168
19122314
23141918
27172420
0010
1100
2121

, 
f

Q2  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

111784
15181320
816128

12211614
14151018
17211420
0110
1100
1111

, 
f

Q3  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

92364
521320
42488
530914
516118
725420
0210
1100
0101

, 

f
Q4  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

92364
521320
424151
530914
516118
725420
5210
1100
0101

, 
f

Q5  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

182362
1021310
824120

103097
101619
1425410
5210
2100
0100

, 
f

Q6  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

182362
1021310
824120

103097
101619
1425410
5110
2100
0190

, 

f
Q7  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02168
011313
020128
023916
07110
015414
5111
0100
0090

 and fQ'  =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02168
011313
020118
023916
07110
015414
5111
0100
0392

. 

The following steps identify and correct these three place faults from the 

marking matrix fQ'  and the check matrix W. First, since  
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W fQ'  mod 11 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

529510000
052951000
005295100
000529510
000052951
000005295

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02168
011313
020118
023916
07110
015414
5111
0100
0392

 mod 11 

            = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0058
0063
51042
3600
1591

10215

 ≠ 06 × 4,  

there are place faults in fQ' . Second, since  

WFp mod 11 = W fQ'  mod 11 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0058
0063
51042
3600
1591

10215

,  

the following sets of equations are figured out:  

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=++++
=++++
=++++
=++++
=++++

=+++

811mod)5295(
311mod)5295(
211mod)5295(
011mod)5295(
111mod)5295(

511mod)5295(

9181716151

8171615141

7161514131

6151413121

5141312111

41312111

ppppp

ppppp

ppppp

ppppp

ppppp

pppp

fffff
fffff
fffff
fffff
fffff

ffff

, 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=++++
=++++
=++++
=++++
=++++

=+++

811mod)5295(
311mod)5295(
211mod)5295(
011mod)5295(
111mod)5295(

511mod)5295(

9282726252

8272625242

7262524232

6252423222

5242322212

42322212

ppppp

ppppp

ppppp

ppppp

ppppp

pppp

fffff
fffff
fffff
fffff
fffff

ffff

 and 
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⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=++++
=++++
=++++
=++++
=++++

=+++

811mod)5295(
311mod)5295(
211mod)5295(
011mod)5295(
111mod)5295(

511mod)5295(

9383736353

8373635343

7363534333

6353433323

5343332313

43332313

ppppp

ppppp

ppppp

ppppp

ppppp

pppp

fffff
fffff
fffff
fffff
fffff

ffff

,  

and there are two more restrictions: (1) each set of equations has at most three 

nonzero variables and (2) ∀1 ≤ i ≤ 9, 1 ≤ j ≤ 3: 
2

11
−  < 

ijpf  < 
2

11
− . Therefore, 

11pf  = 1, 
71pf  = -4, 

12pf  = 9, 
72pf  = 3, 

13pf  = 3, 
33pf  = -1, 

34pf  = 5, and the 

other entries in Fp are zero. It can be inferred from Fp that three place faults occur in 

p1, p3 and p7, and the colours of fault for these places are: red, green and blue in p1, 

blue and yellow in p3, red and green in p7. The correct marking matrix with respect to 

fQ'  is  

fQ'  - Fp = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02168
011313
020118
023916
07110
015414
5111
0100
0392

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

0000
0000
0034
0000
0000
0000
5100
0000
0391

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02168
011313
020812
023916
07110
015414
0211
0100
0001

, which is 

equal to hQ' . 
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Figure 4.2 A CPN with place faults detection and correction capabilities. 

 

4.4 Amount Transition Faults 

 

The organization of this section is similar to the one of previous section. This 

section firstly gives the problem formulation of amount transition faults in matrix 

representations according to Definition 4.5. Based on the problem formulation, a 

methodology encoding a CPN into a separeate CPN with detection and correction 
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capabilities on amount transition faults is presented, but the encoding matrix adopted 

is different from the one in previous section. Then, this section gives the syndromes of 

amount transition faults while they occur in CPNs, where a new check matrix is 

applied. Finally, it describes how to compute the correction markings via these 

syndromes. 

 

 

4.4.1 Problem Formulation for Amount Transition Faults 

 

Lemma 4.5: Let Q be a fault-free marking matrix of a CPN G.  

 If Qf is a marking matrix containing a pre-condition amount transition fault on 

transition ti corresponding to Q, −∃ i
aF , a n × γ matrix, where n = αγ,  

Qf = Q + B- −i
aF ,  

and all the entries in −i
aF  satisfy 

∀(i-1)γ + 1 ≤ h ≤ iγ, j = (h-1) mod γ +1 : ∈−i
ahj

f  ℕ/{0}   

and ∀1 ≤ k ≤ n, 1 ≤ l ≤ γ, k ≠ h or l ≠ j : 0=−i
akl

f . 

 If Qf is a marking matrix containing a post-condition amount transition fault on 

transition ti corresponding to Q, +∃ i
aF , a n × γ matrix, where n = αγ,  

Qf = Q – B+ +i
aF ,  

and all the entries in +i
aF  satisfy 

∀(i-1)γ + 1 ≤ h ≤ iγ, j = (h-1) mod γ +1 : ∈+i
ahj

f  ℕ/{0}   

and ∀1 ≤ k ≤ n, 1 ≤ l ≤ γ, k ≠ h or l ≠ j : 0=+i
akl

f . 
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Proof:  

Assume Q is the matrix representation of a fault-free marking m, and Qf is the 

matrix representation of mf which is a marking with a pre-condition amount transition 

fault on transition ti with respect to m. By Definition 4.5, ∀pg ∈ P: mf(pg) = m(pg) + z 

* I(pg, ti), where z ∈ ℕ / {0} and z ≤ σ(ti). Hence, by Definition 2.2, ∀pg ∈ P, ∀ cr ∈ 

C: mf(pg)(cr) = m (pg)(cr) + z * I(pg, ti)(cr). By Definition 3.1 and 3.2, ∀1 ≤ g ≤ β, 1 ≤ r 

≤ γ: ∑
≠=

−−− ++=+=
n

skk
gkgsgrgsgrf bbzqbzqq

gr
,1

*0** , where s = (i - 1)γ + r.  

Hence, ∀1 ≤ g ≤ β, 1 ≤ r ≤ γ: ∑
=

−−+=
n

k
gk

i
agrf bfqq

krgr
1

* ,  

where 
⎩
⎨
⎧ +−=

=−

otherwise
yixifz

f i
axy 0

)1( γ
. Since 1 ≤ r ≤ γ, the previous equation is 

equivalent to ∀1 ≤ g ≤ β, 1 ≤ r ≤ γ: ∑
=

−−+=
n

k
gk

i
agrf bfqq

krgr
1

* ,  

where 
⎩
⎨
⎧ +−=≤≤+−

=−

otherwise
xyandixiifz

f i
axy 0

1mod)1(1)1( γγγ
. Therefore, there is an 

n × γ matrix and all the entries in −i
aF  satisfy ∀(i-1)γ + 1 ≤ h ≤ iγ, j = (h-1) mod γ 

+1 : ∈−i
ahj

f  ℕ/{0} and ∀1 ≤ k ≤ n, 1 ≤ l ≤ γ, k ≠ h or l ≠ j : 0=−i
akl

f , such that Qf = 

Q – B+ +i
aF . The case of post-condition amount transition fault can be proved by the 

same way. 

 

Lemma 4.5 formulates the problem of an amount transition fault in linear 

algebra. The matrix −i
aF  and +i

aF  in the equation indicate the transition suffering a 

pre-condition and post-condition amount transition fault respectively. Both −i
aF  and 
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+i
aF  have similar structures to transition firing matrix, where all of them can be 

deemed as a column of α square sub-matrices, and each sub-matrix is a γ × γ matrix. 

There is only one sub-matrix in −i
aF  and +i

aF  with non-zero entries, which is an 

identity matrix scalar multiplied by a positive integer, and all the other sub-matrices 

are matrices with all entries of zero. If the ith sub-matrix in −i
aF  ( +i

aF ) is an identity 

matrix scalar multiplied by z, it denotes that transition ti suffers a pre-condition 

(post-condition) amount transition fault z times. In this thesis, it is assumed that a 

transition wouldn’t suffer both a pre-condition and a post-condition amount transition 

fault, since it would seem like the transition without firings in this case, and the 

effects are cancelled [3]. The consistency between the description of amount 

transition fault in Lemma 4.5 and the definition of amount transition fault in 

Definition 4.5 is also proved. 

 

Lemma 4.6: Let Q be a fault-free marking matrix of a CPN G.  

 If Qf is a marking matrix representing Q with z amount transition faults, where x 

of z are pre-condition amount transition faults, and y of z are post-condition 

amount transition faults, ∃ −
aF  and +

aF , n × γ matrices, where n = αγ, 

Qf = Q + B- −
aF  - B+ +

aF ,  

, all the entries in the pre-condition amount transition fault indicator matrix

−
aF  satisfy 

∃1 ≤ −−−
xiii ,,, 21 L  ≤ β, −−− ≠≠≠ xiii L21 ,  

∀ γγγγγγ −−−−−−−−− ≤≤+−≤≤+−≤≤+− xxx ihiihiihi 1)1(,,1)1(,1)1( 222111 L , 
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1mod)1(,,1mod)1(,1mod)1( 2211 +−=+−=+−= −−−−−− γγγ xx hjhjhj L : 

∈−−−
−−−−−−
xjxhjhjh

aaa fff ,,,
2211

L  ℕ/{0}, and  

∀1 ≤ k- ≤ n, 1 ≤ l- ≤ γ,  

−−−− ≠≠≠≠ xhhhk L21  or −−−− ≠≠≠≠ xjjjl L21 :  

0=−
−−lk

af ,  

and all the entries in the post-condition amount transition fault indicator 

matrix +
aF  satisfy 

∃1 ≤ +++
yiii ,,, 21 L  ≤ β, −−−+++ ≠≠≠≠≠≠≠ xy iiiiii LL 2121 ,  

∀ γγγγγγ +++++++++ ≤≤+−≤≤+−≤≤+− yyy ihiihiihi 1)1(,,1)1(,1)1( 222111 L , 

1mod)1(,,1mod)1(,1mod)1( 2211 +−=+−=+−= ++++++ γγγ yy hjhjhj L : 

∈+++
++++++
yjyhjhjh

aaa fff ,,,
2211

L  ℕ/{0}, and  

∀1 ≤ k+ ≤ n, 1 ≤ l+ ≤ γ,  

++++ ≠≠≠≠ yhhhk L21  or ++++ ≠≠≠≠ yjjjl L21 :  

0=+
++ lk

af . 

 

 

Proof:  

By Definition 4.6, z amount transition faults denote that there are z transitions 

have suffered amount transition faults, and x of these z transitions have suffered 

pre-condition amount transition faults, y of these z transitions have suffered 

post-condition amount transition faults. In previous assumption, a transition wouldn’t 
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suffer both a pre-condition amount transition fault and a post-condition amount 

transition fault, thus z = x + y. Hence, By Lemma 4.6, there are x 

matrices, −−− −−−
xi

a
i

a
i

a FFF ,,, 21 L , indicate these pre-condition amount transition faults and 

y matrices, +++ +++
yi

a
i

a
i

a FFF ,,, 21 L , indicate these post-condition amount transition faults, 

where −−−+++ ≠≠≠≠≠≠≠ xy iiiiii LL 2121 , and the marking Qf would be 

++−−

++++−−−−

++++++−−−−−−

−+=

+++−++++=

−−−−++++=
+++−−−

+++−−−

aa

i
a

i
a

i
a

i
a

i
a

i
a

i
a

i
a

i
a

i
a

i
a

i
af

FBFBQ

FFFBFFFBQ

FBFBFBFBFBFBQQ
yx

yx

)()( 2121

2121

LL

LL

.  

From the previous equation, it would have the relations that 

−−−− −−−

+++= xi
a

i
a

i
aa FFFF L21  and ++++

+++

+++= yi
a

i
a

i
aa FFFF L21 . Therefore, the 

entries in −
aF  should satisfy  

∀ γγγγγγ −−−−−−−−− ≤≤+−≤≤+−≤≤+− xxx ihiihiihi 1)1(,,1)1(,1)1( 222111 L , 

1mod)1(,,1mod)1(,1mod)1( 2211 +−=+−=+−= −−−−−− γγγ xx hjhjhj L : 

∈−−−
−−−−−−
xjxhjhjh

aaa fff ,,,
2211

L  ℕ/{0}, and  

∀1 ≤ k- ≤ n, 1 ≤ l- ≤ γ,  

−−−− ≠≠≠≠ xhhhk L21  or −−−− ≠≠≠≠ xjjjl L21 :  

0=−
−−lk

af ,  

and the entries in +
aF  should satisfy  

∀ γγγγγγ +++++++++ ≤≤+−≤≤+−≤≤+− yyy ihiihiihi 1)1(,,1)1(,1)1( 222111 L , 

1mod)1(,,1mod)1(,1mod)1( 2211 +−=+−=+−= ++++++ γγγ yy hjhjhj L : 

∈+++
++++++
yjyhjhjh

aaa fff ,,,
2211

L  ℕ/{0}, and  
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∀1 ≤ k+ ≤ n, 1 ≤ l+ ≤ γ,  

++++ ≠≠≠≠ yhhhk L21  or ++++ ≠≠≠≠ yjjjl L21 :  

0=+
++ lk

af . 

 

Both pre-condition and post-condition amount transition fault indicator matrices, 

−
aF  and +

aF , have similar structures to firing matrices. There are x (y) sub-matrices 

in −
aF  ( +

aF ), which indicates x (y) pre-condition (post-condition) amount transition 

faults, have nonzero entries, each of x (y) sub-matrices is an identity matrix scalar 

multiplied by a positive integer, and all the other sub-matrices in −
aF  ( +

aF ) are 

matrices with all entries of zero. Since the assumption in previous that pre-condition 

and post-condition amount transition fault can’t both appear in a transition, there is a 

constrain between −
aF  and +

aF , such that the rth sub-matrix in −
aF  is a matrix with 

all entries of zero if the rth sub-matrix in +
aF  is a matrix with nonzero entries. The 

poof at here is similar to the one in Lemma 4.2. It proves the consistency between 

Lemma 4.6 and Definition 4.6 by deriving from Lemma 4.5. 

 

 

4.4.2 Separate CPNs with Amount Transition Faults 

Detection and Correction Capabilities 

 

The strategy in this section is used to detect and correct amount transition faults, 

which has the same steps with the strategy in section 4.3.2 but with different encoding 
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matrices on input and output matrices. Let G be a CPN with no more than k amount 

transition faults, the separate CPN with amount transition faults detection and 

correction capabilities is constructed by adding 2k additional places to G and the 

colour sets of both CPNs are the same. Assume that G has α transitions, β places, γ 

colours, input matrix −
gB , output matrix +

gB  and initial marking matrix 
g

Q0 . The 

separate CPN H with amount transition faults detection and correction capabilities in 

respect to G would have α transitions, β + 2k places, γ colours, input matrix −
hB , 

output matrix +
hB  and initial marking matrix

h
Q0 . Besides, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β , where D is a 2k × β matrix, E is a 2k × αγ 

matrix, and Iβ denotes a β × β identity matrix. After H is constructed, the amount 

transition faults occurring on H can be identified and corrected from the syndromes. 

These properties are proved in Lemma 4.7 and 4.8. 

 

Lemma 4.7: Let G be a CPN which has α transitions, β places, γ colours, input 

matrix −
gB , output matrix +

gB  and initial marking matrix
g

Q0 . 

If the CPN H, constructed by adding d additional places to G, has the same colour set 

with G, α transitions, β + d places, γ colours, input matrix  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h ,  

output matrix  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h   
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and initial marking matrix  

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β   

, where D is a d × β matrix, E is a d × αγ matrix, all the entries in D and E are 

nonnegative, d ∈ ℕ, Iβ denotes a β × β identity matrix, and all the entries in EDBg −
−

and EDBg −
+  are nonnegative, H has following two properties. 

 H is a separate CPN with respect to G. 

 If a reachable marking matrix Qg of G has the same firing transition sequence 

with a reachable marking matrix Qh of H, gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β . 

 

 

Proof:  

The satisfaction of conditions 2, 3 and 4 in Definition 4.4 can be proved as the 

proof in Lemma 4.3, and thus it is omitted here. Next, consider condition 1 in 

Definition 4.4, the satisfaction of conditions 1 and 2 in Definition 4.3 can also be 

proved as the proof in Lemma 4.3, thus it only needs to be proved the satisfaction of 

conditions 3 and 4 in Definition 4.3 at here. Assume there are two markings 
g

m1  and 

h
m1  in G and H respectively. The marking matrices of 

g
m1  and 

h
m1  are 

g
Q1  and 

h
Q1  respectively. Assume that 

ggh
UQQ

D
I

Q 111 =⎥
⎦

⎤
⎢
⎣

⎡
= β , and hence there is a matrix 

[ ]dIV ×= ββ 0  such that [ ]
gggh

QQ
D
I

IVUQVQ d 1111 0 =⎥
⎦

⎤
⎢
⎣

⎡
== ×

β
ββ , where 0β×d is a 

β×d matrix with all entries of zero. By Definition 3.1, ∀1 ≤ i ≤ β, 1 ≤ j ≤ γ: 

∑∑
==

===
ββ

1
1

1
111 ))(())((

l
jlil

l
ilji cpmuquqcpm

gljgijhh
. Hence, there is a linear 

transformation set F, such that )( 00 gh
mFm = , and in the same way, )( 00 hg

mHm = . 
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Assume that ⎥
⎦

⎤
⎢
⎣

⎡
= ×

E
R αγβ0

, thus input matrix of H would be

RUB
E

B
D
I

EDB
B

B gg
g

g
h −=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −×−

−

−
− αγββ 0

 and output matrix of H would be

RUB
E

B
D
I

EDB
B

B gg
g

g
h −=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +×+

+

+
+ αγββ 0

. By Definition 3.1 and 2.6, a 

transition tr is enabled by marking 
g

m1  if and only if −≥≤≤≤≤∀
isijg gbqji 1:1,1 γβ , 

where s = (r – 1)γ + j. Since all the entries in E are nonnegative, all the entries in R 

have constrains which are ∀1 ≤ i ≤ β + d, 1 ≤ j ≤ αγ: rij ≥ 0. Hence, 

−−

=

−

==

=−≥≥=≤≤+≤≤∀ ∑∑∑ islslsljgijh hisg
l

ilg
l

il
l

il brbubuquqjdi
βββ

γβ
111

11:1,1 .  

Therefore, transition tr is also enabled by marking 
h

m1  in H.                 (1) 

The marking after firing transition tr by marking 
g

m1  is 
g

m2 , and the marking 

matrix of 
g

m2  is 
g

Q2 . The entries in 
g

Q2  satisfy 

+− +−=≤≤≤≤∀
isisijgijg gg bbqqji 12:1,1 γβ . The marking after firing transition tr by 

marking 
h

m1  is 
h

m2 , and the marking matrix of 
h

m2  is 
h

Q2 . Hence,  The entries 

in 
h

Q2  satisfy  

.

)(

)()(

:1,1

1
2

1
1

111
1

111
1

12

∑

∑

∑∑∑

∑∑∑

=

+−

=

=

+

=

−

=

=

+

=

−

=

+−

=

+−=

+−=

−+−−=

+−=≤≤+≤≤∀

β

β

βββ

βββ

γβ

l
il
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Therefore, )( 22 gh
mFm =                                              (2) 

and )( 22 hg
mHm = .                                                  (3)

In the same way, if )( 11 gh
mFm = , )( 11 hg

mHm =  and 
hh

mtm r 21 [ > , then 

gg
mtm r 21 [ >  such that )( 22 gh

mFm =  and )( 22 hg
mHm = .                  (4)

By (1), (2) and (3), condition 3 in Definition 4.3 is satisfied. By (4), condition 4 in 

Definition 4.3 is satisfied. Therefore, G ≃ H which satisfies condition 1 in Definition 

4.4. 

Finally, Since Qg and Qh are reachable marking matrices of G and H 

respectively, and Qg and Qh have the same firing transition sequence, Qg = 

gggg XBXBQ
g

+− +−0  and Qh = hhhh XBXBQ
h

+− +−0  , where Xg = Xh . Since 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β , 

 

.)( 0

0
0

0

0
0

0

0

ggggg

gggg

gggg

hhghhg

hghg

h
g

g
h

g

g
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Q
D
I

XBXBQ
D
I

Q
XDBXDBDQ

XBXBQ

Q
EXXDBEXXDBDQ

XBXBQ

X
EDB

B
X

EDB
B

Q
D
I

Q

g

g

g

g

g

g

g

g

⎥
⎦

⎤
⎢
⎣

⎡
=+−⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

+−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−++−

+−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−⎥

⎦

⎤
⎢
⎣

⎡
=

+−

+−

+−

+−

+−

+

+

−

−

ββ

β

 

Since gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β , it can be proved that )()(: igihgi pmpmPp =∈∀  as in Lemma 

4.3. Hence, condition 5 in Definition 4.4 is satisfied. Therefore two properties in 

Lemma 4.7 are proved. 
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In Lemma 4.7, A CPN H with input matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , output matrix 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and initial marking matrix 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β  also has two properties 

in Lemma 4.3. Most parts of the proof of Lemma 4.7 are the same as the proof of 

Lemma 4.3, thus these parts are omitted here. 

 

Lemma 4.8: Let G be a CPN which has α transitions, β places, γ colours, input 

matrix −
gB , output matrix +

gB  and initial marking matrix
g

Q0 , and H be a separate CPN 

with d additional places with respect to G, input matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , output 

matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and initial marking matrix 

ggh
UQQ

D
I

Q 000 =⎥
⎦

⎤
⎢
⎣

⎡
= β . 

 

 If there are amount transition faults on H, it can be detected by a d × (β + d) 

check matrix W, such that WU = 0d × β, where 0d × β is a d × β matrix with all 

entries of zero. The syndrome S = W −−
ah FB  - W ++

ah FB , iff the pre-condition and 

post-condition amount transition fault indicator matrices are −
aF  and +

aF

respectively. 

 k amount transition faults on H can be identified and corrected if W = 

[ ]dID− , and any 2k columns of the matrix E are linearly dependent. 

 

 

Proof:  
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Assume Qg and Qh are fault-free marking matrices of G and H respectively, and 

they have the same firing transition sequence. Hence, by Lemma 4.7, gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β , 

and Qh multiplied by W would be WQh = WUQg = 0d × γ. If there are amount transition 

faults on H, by Lemma 4.6, the faulty marking matrix Qf satisfies Qf = Qh + −−
ah FB  -

++
ah FB  = UQg + −−

ah FB  - ++
ah FB . Hence, The syndrome S = WQf = WUQg + 

W −−
ah FB  - W ++

ah FB  = W −−
ah FB  - W ++

ah FB . By the same way, if the syndrome is 

W −−
ah FB  - W ++

ah FB , it will be S = W −−
ah FB  - W ++

ah FB  = W −−
ah FB  - W ++

ah FB  + 0d × γ 

= W −−
ah FB  - W ++

ah FB  + WUQg = W −−
ah FB  - W ++

ah FB  + WQh = W( −−
ah FB  - ++

ah FB

+ Qh), where Qh is a fault-free marking matrix of H, and −
aF  and +

aF  are 

pre-condition and post-condition amount transition fault indicator matrix respectively. 

Therefore, a marking matrix of H could be examined if it is a faulty marking matrix 

by multiplying the marking matrix with the check matrix W. 

Assume Qf is a faulty marking matrix of H, which states k amount transition 

faults on H. Besides, x of k are pre-condition amount transition faults, and (k – x) of k 

are post-condition amount transition faults. By Lemma 4.6, Qf = Qh + −−
ah FB  -

++
ah FB , where x sub-matrices in −

aF  are identity matrices scalar multiplied by 

positive integers, and (k – x) sub-matrices in +
aF  are identity matrices scalar 

multiplied by positive integers. Hence, each column in −
aF  has x nonzero entries, 

and each column in +
aF  has (k – x) nonzero entries. If the check matrix W = 

[ ]dID− , the syndrome will be  

S = [ ]γsss L21  
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  = WQf  

  = WUQg + W −−
ah FB  - W ++

ah FB   

  = [ ] [ ] +
+

+
−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
− a

g

g
da

g

g
d F

EDB
B

IDF
EDB

B
ID   

  = +++−−− −+−−−+− aggagg FEDBDBFEDBDB )()(   

  = )( −+ − aa FFE  

  = EFa  

  = [ ]
γaaa fffE L

21
  

  = [ ]
γaaa EfEfEf L

21
,  

where sn and 
naf  represent the nth column in S and Fa, respectively, and 1 ≤ n ≤ γ. 

Hence, it can be deem as the problem of correcting the faults, 
γaaa fff ,,,

21
L , from 

linear codes with length αγ by multiplied with the matrix E. Since Fa = −+ − aa FF , 

each column in Fa, naf , has k nonzero entries. From the theorems in error control 

coding, each code word with a fault indicator 
naf  can be corrected by E if any 2k 

columns of E are linearly dependent. After getting the syndrome by WQf, the amount 

transition fault indicator matrix Fa can be found by solving equations na sEf
n
=  , 

where 1 ≤ n ≤ γ. 

 

Lemma 4.8 shows that if there are at most k amount transition faults, it needs to 

design the matrix E with any 2k columns are linearly dependent, and the result of 

multiplying the check matrix W with a fault-free marking matrix is a matrix with all 

entries of zero. Same as previous section, the matrix E can have 2k rows and any 2k 
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columns of E are linearly dependent if it is designed by the method of Reed-Solomon 

codes. Since E is a d × αγ matrix, it would have d = 2k. In other word, if there are at 

most k amount transition faults, 2k additional places is needed in the separate CPN by 

applying the method of Reed-Solomon codes in order to derive the detection and 

correction capabilities of amount transition faults. Lemma 4.8 also shows that the 

amount transition faults can be identified and corrected from the syndrome. 

Let G be a CPN which has α transitions, β places, γ colours, the input matrix −
gB , 

the output matrix +
gB  and the initial marking matrix

g
Q0 . From Lemmas 4.7 and 4.8, 

constructing a separate CPN H which can detect and correct at most k amount 

transition faults is concluded as following steps: (1) First, designing a d × αγ matrix E 

from the check matrix of Reed-Solomon codes. (2) Second, choosing a d × β matrix D 

which satisfies all the entries in EDBg −
−  and EDBg −

+  are nonnegative. (3) Third, 

constructing the check matrix W from W = [ ]βID− . (4) Finally, deriving the 

separate CPN H containing input matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , output matrix 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and initial marking matrix 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β . A marking Qh in the 

separate CPN H can be examined if it is a correct marking by the check matrix W. If 

the marking Qh is a faulty marking, it can be corrected by solving the pre-condition 

and post-condition amount transition fault indicator matrix, −
aF  and +

aF , from the 

equation S = EFa = )( −+ − aa FFE , where S is the syndrome from WQh. 
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4.4.3 An Example of Identifying and Correcting Amount 

Transition Faults 

 

2' c1 + 2' c2 + 2' c3 + 2' c4 1' c4

Colour set:
c1: red

c2: green
c3: blue

c4: yellow

2 2

2 2

2' c1 + 1' c2 + 1' c3 + 2' c4

3 3

4 1

2' 
c 1

+ 3'
 c 2

+ 3'
 c 3

+ 2'
 c 4

2' 
c 1

+ 3'
 c 2

+ 3'
 c 3

+ 1'
 c 4

1' c
2 + 1' c

3

 
Figure 4.3 A CPN with nested loops. 

 

 

Figure 4.4 A separate CPN of the CPN in Figure 4.3. 

 

This section uses the example in Figure 4.3 as the given CPN G and sets the 
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marking in this figure as the initial marking. Let −
gB , +

gB  and 
g

Q0 represent the 

input matrix, the output matrix and the initial marking matrix of G respectively. 

Hence, the given CPN G has α = 2 transitions, β = 2 places, γ = 4 colours,  

−
gB  = ⎥

⎦

⎤
⎢
⎣

⎡
23320000
00002222

,  

+
gB  = ⎥

⎦

⎤
⎢
⎣

⎡
13321000
01102112

, and 

g
Q0  = ⎥

⎦

⎤
⎢
⎣

⎡
1433
2222

. 

Assume there are at most k = 2 amount transition faults, a 4 × 8 matrix E can be 

constructed by the method of Reed-Solomon codes as following steps: (1) Choosing a 

prime number a which satisfies a ≥ αγ = 8, and hence it can take a = 11. (2) Second, 

finding a nature number r which is a primitive root mod a, it can choose r = 2. 

(3)Third, giving a polynomial of degree a -1 - 2k = 10 - 4 = 6 used to construct check 

matrix, such that e(x) = (x - ra - 2 mod a)(x - ra - 3 mod a)(x - ra - 4 mod a)(x - ra - 5 mod 

a)(x - ra - 6 mod a)(x - 1) = (x – 29 mod 11)(x – 28 mod 11)(x – 27 mod 11)(x – 26 mod 

11)(x – 25 mod 11)(x - 1) = x6 + 8x5 + 4x4 + 6x3 + 7x2 + 8x + 10 = b6x6 + b5x5 + b4x4 + 

b3x3 + b2x2 + b1x + b0. (4) Finally, constructing the matrix E from b6, b5, b4, b3, b2, b1 

and b0, such that  

E = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

23456

123456

0123456

0123456

000
00

0
0

bbbbb
bbbbbb
bbbbbbb

bbbbbbb

  

  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

. 

Next, the matrix D can be chose as  
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 D = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

71
84

108
48

 which satisfies all the entries in  

EDBg −
−  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

71
84

108
48

⎥
⎦

⎤
⎢
⎣

⎡
23320000
00002222

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

 

        = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

142121142222
162424168888
2030302016161616
81212816161616

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

 

        = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

7151761222
81718120788

102223141281516
82411012815

 and  

EDBg −
+  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

71
84

108
48

⎥
⎦

⎤
⎢
⎣

⎡
13321000
01102112

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

 

        = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

72222149112
828281616448

10383820268816
420208208816

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

 

        = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015

  

are nonnegative. Finally, the check matrix W is obtained from  

W = [ ]dID−  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−

100071
010084
0010108
000148

,  

and the separate CPN H is constructed, where  

−
hB  = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−

EDB
B

g

g   
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    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761222
81718120788

102223141281516
82411012815
23320000
00002222

,  

+
hB  = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

+

EDB
B

g

g   

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015
13321000
01102112

, and  

h
Q0  = 

g
Q

D
I

0⎥
⎦

⎤
⎢
⎣

⎡ β   

    = ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1433
2222

71
84

108
48
10
01

  

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9302323
16403232
26564646
20322828
1433
2222

.  

The CPN H with its initial marking is illustrated in Figure 4.4. 

There is a firing sequence in G, which is 
g

m0  [t1> 
g

m1  [t2> 
g

m2  [t1> 
g

m3  

[t2> 
g

m4  [t1> gm' , and 
g

m0 , 
g

m1 , 
g

m2 , 
g

m3 , 
g

m4 and gm'  are the fault-free 

marking in G. Since H is the separate CPN of G, G and H can have the same firing 

transition sequence. Hence, consider the same firing transition sequence in H and 
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assume the corresponding fault-free firing sequence is 
h

m0  [t1> 
h

m1  [t2> 
h

m2  [t1> 

h
m3  [t2> 

h
m4  [t1> hm' . The markings 

h
m0 , 

h
m1 , 

h
m2 , 

h
m3 , 

h
m4 and hm'  are the 

fault-free marking in CPN H, and it is assumed 
h

Q0 , 
h

Q1 , 
h

Q2 , 
h

Q3 , 
h

Q4  and hQ'  

are the marking matrices of 
h

m0 , 
h

m1 , 
h

m2 , 
h

m3 , 
h

m4 and hm'  respectively. 

Assume there are place faults inside the firing sequence, such that 
h

m0  [t1>  
h

m1  [t2, 

−
1aF > 

f
m2  [t1> 

f
m3  [t2, −

2aF > 
f

m4  [t1, +
3aF > fm'  which is an informal 

representation and means that a post-condition amount transition fault occur when the 

last time firing t1, and a pre-condition amount transition fault occur when firing t2. 

−
1aF  and −

2aF  are pre-condition amount transition fault indicator matrices, and +
3aF  

is a post-condition amount transition fault indicator matrix, where  

−
1aF  = −

2aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0010
0001
0000
0000
0000
0000

, and  

+
3aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

.  

Hence, the marking matrices represent 
h

m1 , 
f

m2 , 
f

m3 , 
f

m4  and fm'  are  

h
Q1  = 

h
Q0  - −

hB X1 + +
hB X1  
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    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9302323
16403232
26564646
20322828
1433
2222

 -  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761222
81718120788

102223141281516
82411012815
23320000
00002222

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

+ 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015
13321000
01102112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16292223
24362832
36483846
24242028
2433
2112

,  

f
Q2  = 

h
Q1  - −

hB 08 × 4 + +
hB X2 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16454029
24575044
36786960
28343229
3765
2222

,  

f
Q3  = 

f
Q2  - −

hB X1 + +
hB X1 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

23443929
32534644
46706160
32262429
4765
2112

,  

f
Q4  = 

f
Q3  - −

hB 08 × 4 + +
hB X2 =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

23605735
32746856
461009274
36363630
51097
2222

, and  
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fQ'  = 
f

Q4  - −
hB X1 + +

hB 08 × 4 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

22585533
32676048
34927758
26242815
51097
0000

. 

Following steps are identifying and correcting these two amount transition faults 

from the marking matrix fQ'  and the check matrix W. First, Since  

W fQ'  mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−

100071
010084
0010108
000148

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

22585533
32676048
34927758
26242815
51097
0000

 mod 11 

            = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

91036
39103
63910
6639

 ≠ 04 × 4,  

there are amount transition faults in fQ' . Second, since  

EFa mod 11  

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

84

73

62

51

44

33

22

11

000
000
000
000

000
000
000
000

a

a

a

a

a

a

a

a

f
f

f
f

f
f

f
f

 mod 11  

= W fQ'  mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

91036
39103
63910
6639

,  

the following sets of equations are figured out:  
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=

=+

611mod)8(
311mod)4(

1011mod)6(
911mod)7(

51

51

51

5111

p

p

p

aa

f
f
f

ff

, 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=

=+
=+

311mod)4(
1011mod)6(

911mod)7(
311mod)88(

62

62

6222

6222

a

a

aa

aa

f
f

ff
ff

,  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=+
=+
=+

1011mod)6(
911mod)7(
311mod)88(
611mod)104(

73

7333

7333

7333

a

aa

aa

aa

f
ff
ff
ff

 and 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+
=+
=+

=

911mod)7(
311mod)88(
611mod)104(

611mod)6(

8444

8444

8444

44

aa

aa

aa

a

ff
ff
ff

f

,  

and there are three more restrictions: (1) 
11af  = 

22af  = 
33af  = 

44af  and 
51af  = 

62af  = 
73af  = 

84af , (2) each set of equations has at most two nonzero variables and 

(3) ∀1 ≤ i ≤ 8, 1 ≤ j ≤ 4: 
2

11
−  < 

ijaf  < 
2

11 . Therefore, 
11af  = 

22af  = 
33af  = 

44af  = 1 and 
51af  = 

62af  = 
73af  = 

84af  = -2. −
aF  and +

aF  can be derived from 

Fa that −
aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2000
0200
0020
0002
0000
0000
0000
0000

 and +
aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

. By Lemma 4.6, it can be 

inferred from −
aF  and +

aF  that a pre-condition amount transition fault occurs in t2 

two times, and a post-condition amount transition fault occurs in t1 one time. The 

correct marking matrix with respect to fQ'  is  

fQ'  - −
hB −

aF  + +
hB +

aF   
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= 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

22585533
32676048
34927758
26242815
51097
0000

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761222
81718120788

102223141281516
82411012815
23320000
00002222

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2000
0200
0020
0002
0000
0000
0000
0000

 + 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015
13321000
01102112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 

= 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16292223
24362832
36483846
24242028
2433
2112

, which is equal to hQ' . 

 

 

4.5 Colour Transition Faults 

 

The organization of this section is similar to the one of previous section. This 

section firstly gives the problem formulation of colour transition faults in matrix 

representations according to Definition 4.7. Next, based on the problem formulation, a 

methodology encoding a CPN into a separeate CPN with detection and correction 

capabilities on amount transition faults is presented, and the encoding matrix is the 

same as it in previous section. Then, this section gives the syndromes of colour 
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transition faults while they occur in CPNs, where the check matrix is also the same as 

it in previous section. Finally, this section describes how to compute the correction 

markings via these syndromes. 

 

 

4.5.1 Problem Formulation for Colour Transition Faults 

 

Lemma 4.9: Let Q be a fault-free marking matrix of a CPN G.  

 If Qf is a marking matrix containing a pre-condition colour transition fault on 

transition ti and colour cj corresponding to Q, −∃ ij
cF , a n × γ matrix, where n = 

αγ,  

Qf = Q + B- −ij
cF ,  

and all the entries in −ij
cF  satisfy  

∃h = (i - 1)γ + j : ∈−ij
chj

f  ℕ / {0},  

∀1 ≤ g ≤ γ, g ≠ j: ∈−ij
chg

f  ℤ / ℕ ∪ {0}, 0
1

=∑
=

−
γ

o

ij
cho

f , and  

∀1 ≤ k ≤ n, 1 ≤ l ≤ γ, k ≠ h: −ij
ckl

f  = 0 . 

 If Qf is a marking matrix containing a post-condition colour transition fault on 

transition ti and colour cj corresponding to Q, +∃ ij
cF , a n × γ matrix, where n = 

αγ,  

Qf = Q – B+ +ij
cF ,  

and all the entries in +ij
cF  satisfy  

∃h = (i - 1)γ + j : ∈+ij
chj

f  ℕ / {0},  
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∀1 ≤ g ≤ γ, g ≠ j: ∈+ij
chg

f  ℤ / ℕ ∪ {0}, 0
1

=∑
=

+
γ

o

ij
cho

f , and  

∀1 ≤ k ≤ n, 1 ≤ l ≤ γ, k ≠ h: +ij
ckl

f  = 0 . 

 

 

Proof:  

Assume Q is the matrix representation of a fault-free marking m, and Qf is the 

matrix representation of mf which is a marking with a pre-condition colour transition 

on transition ti and colour cj with respect to m. By Definition 4.7,  

∀px ∈ P: mf(px) = m(px) - If(px), where  

∑
≠=

+−=
γ

jgg
gjiygjjiyyf cctpIicctpIzpI

,1
)')(,(*)')(,(*)( ,  

zi
rgg
g =∑

≠=

γ

,1
,                                                         (1)

z ∈ ℕ / {0}, z ≤ σ(ti), and ig ∈ ℕ.                                       (2) 

Hence, by Definition 2.2, ∀px ∈ P, ∀ cr ∈ C: mf(px)(cr) = m (px)(cr) + If(px)(cr). First, 

consider the colour cj, it would have ∀px ∈ P: mf(px)(cj) = m(px)(cj) - If(px)(cj) = 

m(px)(cj) + z * I(px, ti)(cj). By Definition 3.1 and 3.2,  

∀1 ≤ x ≤ β: ∑
≠=

−−− ++=+=
n

hss
xsxhxjxhxjf bbzqbzqq

xj
,1

*0** ,                    (3)

where h = (i - 1)γ + j. Next, consider all the colour cg ≠ cj, it would have ∀px ∈ P: 

mf(px)(cg) = m(px)(cg) - If(px)(cg) = m(px)(cg) - ig * I(px, ti)(cj). By Definition 3.1 and 

3.2,  

∀1 ≤ x ≤ β, 1 ≤ g ≤ γ, g ≠ j: ∑
≠=

−−− +−=−=
n

hss
xsxhgxgxhgxgf bbiqbiqq

xg
,1

*0** ,     (4)

where h = (i - 1)γ + j. By combining (3) and (4), it could have a n × γ matrix, −ij
cF , 
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the entries in −ij
cF  are  

⎪
⎩

⎪
⎨

⎧
≠=
==

=+

otherwise
jandhifi
jandhifz

f ij
c

0
λκ
λκ

λκλ
,  

and Qf = Q + B- −ij
cF . From (1) and (2), it would have  

∈−ij
chj

f  ℕ / {0},  

∀1 ≤ g ≤ γ, g ≠ j: ∈−ij
chg

f  ℤ / ℕ ∪ {0}, 0
1

=∑
=

−
γ

o

ij
cho

f , and  

∀1 ≤ k ≤ n, 1 ≤ l ≤ γ, k ≠ h: −ij
ckl

f  = 0. The case of post-condition colour transition 

fault can be proved by the same way. 

 

Lemma 4.9 formulates the problem of a colour transition fault in linear algebra. 

The matrix −ij
cF  and +ij

cF  in the equation indicate the jth colour in the ith transition 

suffering a pre-condition and post-condition colour transition fault respectively. There 

is only one row in −ij
cF  ( +ij

cF ) containing nonzero entries, which is ((i - 1)γ + j)th 

row, and the jth column in this row is positive (negative), and all the other entries in  

this row are negative (positive) or zero. The sum of all the entries in ((i - 1)γ + j)th 

row of −ij
cF  and +ij

cF  are zero. In this thesis, it is assumed that a transition wouldn’t 

suffer both a pre-condition and a post-condition colour transition fault on the same 

colour. The consistency between the description of amount transition fault in Lemma 

4.9 and the definition of amount transition fault in Definition 4.7 is also proved. 

 

Lemma 4.10: Let Q be a fault-free marking matrix of a CPN G.  

 If Qf is a marking matrix representing Q with z colour transition faults, where x 
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of z are pre-condition colour transition faults, and y of z are post-condition colour 

transition faults, ∃ −
cF  and +

cF , n × γ matrices, where n = αγ, 

Qf = Q + B- −
cF  - B+ +

cF ,  

, all the entries in the pre-condition colour transition fault indicator matrix

−
cF  satisfy 

∃1 ≤ −−−
xhhh ,,, 21 L  ≤ n, −−− ≠≠≠ xhhh L21 ,  

1mod)1(,,1mod)1(,1mod)1( 2211 +−=+−=+−= −−−−−− γγγ xx hjhjhj L : 

∈−−−
−−−−−−
xjxhjhjh

ccc fff ,,,
2211

L  ℕ / {0},  

∀1 ≤ k- ≤ n, 1 ≤ l- ≤ γ,  

−−−− ≠≠≠≠ xhhhk L21  or −−−− ≠≠≠≠ xjjjl L21 :  

∈−
−−lk

cf  ℤ / ℕ ∪ {0}, and  

∀1 ≤ g- ≤ n: 0
1

=∑
=

−
−

γ

o
c

og
f ,  

and all the entries in the post-condition colour transition fault indicator 

matrix +
cF  satisfy 

∃1 ≤ +++
yhhh ,,, 21 L  ≤ n, −−−+++ ≠≠≠≠≠≠≠ xy hhhhhh LL 2121 ,  

1mod)1(,,1mod)1(,1mod)1( 2211 +−=+−=+−= ++++++ γγγ yy hjhjhj L : 

∈+++
++++++
yjyhjhjh

ccc fff ,,,
2211

L  ℕ / {0},  

∀1 ≤ k+ ≤ n, 1 ≤ l+ ≤ γ,  

++++ ≠≠≠≠ yhhhk L21  or ++++ ≠≠≠≠ yjjjl L21 :  

∈+
++lk

cf  ℤ / ℕ ∪ {0}, and  
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∀1 ≤ g+ ≤ n: 0
1

=∑
=

+
+

γ

o
c

og
f . 

 

 

Proof:  

By Definition 4.8, z colour transition faults denote that the faults occur on z 

colour and transition pairs, and x of these z pairs suffer pre-condition colour transition 

faults, y of these z pairs suffer post-condition colour transition faults. In previous 

assumption, a transition wouldn’t suffer both a pre-condition and a post-condition 

colour transition fault on the same colour, thus z = x + y. Hence, By Lemma 4.9, there 

are x matrices, −−− −−−−−−
xx ji

c
ji

c
ji

c FFF ,,, 2211 L , indicate these pre-condition colour transition 

faults and y matrices, +++ ++++++
yy ji

c
ji

c
ji

c FFF ,,, 2211 L , indicate these post-condition colour 

transition faults, where −−−+++ ≠≠≠≠≠≠≠ xy iiiiii LL 2121  or 

−−−+++ ≠≠≠≠≠≠≠ xy jjjjjj LL 2121 , and the marking Qf would be 

++−−

++++−−−−

++++++−−−−−−

−+=

+++−++++=

−−−−++++=
++++++−−−−−−

++++++−−−−−−

cc

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

ji
c

ji
cf

FBFBQ

FFFBFFFBQ

FBFBFBFBFBFBQQ
yyxx

yyxx

)()( 22112211

22112211

LL

LL

.  

From the previous equation, it would have the relations that 

−−−− −−−−−−

+++= xx ji
c

ji
c

ji
cc FFFF L2211  and ++++

++++++

+++= yy ji
c

ji
c

ji
cc FFFF L2211 . By Lemma 

4.9, the rows with nonzero entries of +++−−− ++++++−−−−−−
yyxx ji

c
ji

c
ji

c
ji

c
ji

c
ji

c FFFFFF ,,,,,,, 22112211 LL

are −−− +−= 111 )1( jih γ th, −−− +−= 222 )1( jih γ th, …, −−− +−= xxx jih γ)1( th,

+++ +−= 111 )1( jih γ th, +++ +−= 222 )1( jih γ th, …, +++ +−= yyy jih γ)1( th rows 

respectively. Since −−−+++ ≠≠≠≠≠≠≠ xy iiiiii LL 2121  or 
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−−−+++ ≠≠≠≠≠≠≠ xy jjjjjj LL 2121 , −−−+++ ≠≠≠≠≠≠≠ xy hhhhhh LL 2121 . 

Therefore, the entries in −
cF  should satisfy  

∈−−−
−−−−−−
xjxhjhjh

ccc fff ,,,
2211

L  ℕ / {0},  

∀1 ≤ k- ≤ n, 1 ≤ l- ≤ γ,  

−−−− ≠≠≠≠ xhhhk L21  or −−−− ≠≠≠≠ xjjjl L21 :  

∈−
−−lk

cf  ℤ / ℕ ∪ {0},  

∀1 ≤ g- ≤ n: 0
1

=∑
=

−
−

γ

o
c

og
f , 

and the entries in +
cF  should satisfy  

∈+++
++++++
yjyhjhjh

ccc fff ,,,
2211

L  ℕ / {0},  

∀1 ≤ k+ ≤ n, 1 ≤ l+ ≤ γ,  

++++ ≠≠≠≠ yhhhk L21  or ++++ ≠≠≠≠ yjjjl L21 :  

∈+
++lk

cf  ℤ / ℕ ∪ {0},  

∀1 ≤ g+ ≤ n: 0
1

=∑
=

+
+

γ

o
c

og
f . 

 

There are x (y) rows in −
cF  ( +

cF ) have nonzero entries, each of which indicates 

a pre-condition (post-condition) amount transition fault. The summation of the entries 

in each row of −
cF  ( +

cF ) is zero. The poof at here is similar to the one in Lemma 4.6. 

It proves the consistency between Lemma 4.10 and Definition 4.8 by deriving from 

Lemma 4.9. 
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4.5.2 Separate CPNs with Colour Transition Faults 

Detection and Correction Capabilities 

 

The strategy in this section is used to detect and correct colour transition faults. 

As it is mentioned in the beginning of this section, the encoding method in section 

4.4.2 could also applied to encode a CPN into a separate CPN with colour transition 

faults detection and correction capabilities. Therefore, let G be a CPN with no more 

than k colour transition faults, the separate CPN H with colour transition faults 

detection and correction capabilities is constructed by adding 2k additional places to 

G and the colour sets of both CPNs are the same. The input matrix, output matrix, 

initial marking matrix of G are 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β  respectively. After H is constructed, the colour transition faults 

occurring on H can be identified and corrected from the syndromes which are 

different from the syndromes in section 4.4.2. These properties are proved in Lemma 

4.11. 

 

Lemma 4.11: Let G be a CPN which has α transitions, β places, γ colours, input 

matrix −
gB , output matrix +

gB  and initial marking matrix
g

Q0 , and H be a separate CPN 

with d additional places with respect to G, input matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , output 

matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and initial marking matrix 

ggh
UQQ

D
I

Q 000 =⎥
⎦

⎤
⎢
⎣

⎡
= β . 
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 If there are colour transition faults on H, it can be detected by a d × (β + d) check 

matrix W, such that WU = 0d × β, where 0d × β is a d × β matrix with all entries of 

zero. The syndrome S = W −−
ch FB  - W ++

ch FB , iff the pre-condition and 

post-condition colour transition fault indicator matrices are −
cF  and +

cF

respectively. 

 k colour transition faults on H can be identified and corrected if W = [ ]dID− , 

and any 2k columns of the matrix E are linearly dependent. 

 

 

Proof:  

Assume Qg and Qh are fault-free marking matrices of G and H respectively, and 

they have the same firing transition sequence. Hence, by Lemma 4.7, gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β , 

and Qh multiplied by W would be WQh = WUQg = 0d × γ. If there are colour transition 

faults on H, by Lemma 4.10, the faulty marking matrix Qf satisfies Qf = Qh + −−
ch FB

- ++
ch FB  = UQg + −−

ch FB  - ++
ch FB . Hence, The syndrome S = WQf = WUQg + 

W −−
ch FB  - W ++

ch FB  = W −−
ch FB  - W ++

ch FB . By the same way, if the syndrome is 

W −−
ch FB  - W ++

ch FB , it will be S = W −−
ch FB  - W ++

ch FB  = W −−
ch FB  - W ++

ch FB  + 0d × γ 

= W −−
ch FB  - W ++

ch FB  + WUQg = W −−
ch FB  - W ++

ch FB  + WQh = W( −−
ch FB  - ++

ch FB

+ Qh), where Qh is a fault-free marking matrix of H, and −
cF  and +

cF  are 

pre-condition and post-condition colour transition fault indicator matrices 

respectively. Therefore, a marking matrix of H could be examined if it is a faulty 

marking matrix by multiplying the marking matrix with the check matrix W. 
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Assume Qf is a faulty marking matrix of H, which states k colour transition 

faults on H. Besides, x of k are pre-condition colour transition faults, and (k – x) of k 

are post-condition colour transition faults. By Lemma 4.6, Qf = Qh + −−
ch FB  -

++
ch FB , where x rows in −

cF  with nonzero entries, and (k – x) rows in +
cF  with 

nonzero entries. If the check matrix W = [ ]dID− , the syndrome will be  

S = [ ]γsss L21  

  = WQf  

  = [ ] [ ] +
+

+
−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
− c

g

g
dc

g

g
d F

EDB
B

IDF
EDB

B
ID   

  = )( −+ − cc FFE  

  = EFc  

  = [ ]
γccc EfEfEf L

21
,  

where sn and 
ncf  represent the nth column in S and Fc, respectively, and 1 ≤ n ≤ γ. 

Hence, it can be deem as the problem of correcting the faults, 
γccc fff ,,,

21
L , from 

linear codes with length αγ by multiplied with the matrix E. From Lemma 4.10, −
cF

and +
cF  wouldn’t have nonzero entries on the same row, and hence there are k rows 

in Fc with nonzero entries. In other words, each column in Fc, ncf , has at most k 

nonzero entries. From the theorems in error control coding, each code word with a 

fault indicator 
ncf  can be corrected by E if any 2k columns of E are linearly 

dependent. After getting the syndrome by WQf, the colour transition fault indicator 

matrix Fc can be found by solving equations nc sEf
n
=  , where 1 ≤ n ≤ γ. 
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Lemma 4.11 shows that if there are at most k amount transition faults, it needs to 

design the matrix E with any 2k columns are linearly dependent. Thus, the separate 

CPN designed for detecting and correcting amount transition faults can also applied 

for detecting and correcting colour transition faults. The pre-condition and 

post-condition colour transition fault indicator matrices can also be solved out by the 

method in 4.4.2. The only difference at here is how to analyze the colours and the 

transitions which have suffered colour transition faults from the pre-condition and 

post-condition colour transition fault indicator matrices. From Lemma 4.10, the rows 

with nonzero entries denote the colour transition faults. If ith row in a pre-condition 

(post-condition) colour transition fault indicator matrix has nonzero entries, a 

pre-condition (post-condition) colour transition fault is on transition tl and colour cs, 

where l = ⎡ ⎤γ/i  and s = (i -1) mod γ +1. If jth column in this ith row is a negative 

entry, it denotes the faulty phenomenon is the colour cs changing into colour cj.  

 

4.5.3 An Example of Identifying and Correcting Colour 

Transition Faults 

 

This section also uses the example in Figure 4.3 as the given CPN G but the 

initial marking matrix is changed into 
g

Q0  = ⎥
⎦

⎤
⎢
⎣

⎡
1433
2524

 which adds two red 

tokens and two blue tokens in to place p1. As it proved in section 4.5.2, the separate 

CPN designed for detecting and correcting amount transition faults can also be 

applied for detecting and correcting colour transition faults. Thus, the CPN in Figure 

4.4 can be used for detecting and correcting colour transition faults, but the initial 

marking matrix is changed into  
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h
Q0  = 

g
Q

D
I

0⎥
⎦

⎤
⎢
⎣

⎡ β   

    = ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1433
2424

71
84

108
48
10
01

  

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9332325
16523240
26804662
20562844
1433
2524

.  

Unless otherwise specified, the assumptions and variables used at here are the same as 

they in section 4.4.3. Assume there are colour transition faults inside the firing 

sequence 
h

m0  [t1> 
h

m1  [t2> 
h

m2  [t1> hm' , which are  

−
1cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

0000
0000
0000
0000
0000
0000
0011
0000

,  

+
2cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0110
0000
0000
0000
0000
0000
0000

 and  
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−
3cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

0000
0000
0000
0000
0000
0000
0110
0000

.  

−
1cF  is a pre-condition colour transition fault which occurs when the first time firing t1, 

+
2cF  is a post-condition colour transition fault which occurs when firing t2, −

3cF  is a 

pre-condition colour transition fault which occurs when the last time firing t1, and 

they can be represented as 
h

m0  [t1, −
1cF >  

f
m1  [t2, +

2cF > 
f

m2  [t1, −
3cF > fm' . 

Hence, the marking matrices represent 
f

m1 , 
f

m2  and fm'  are  

f
Q1  = 

h
Q0  - −

hB (X1 - −
1cF ) + +

hB X1  

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9332325
16523240
26804662
20562844
1433
2524

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761204
817181207016

10222314128031
82411012023
23320000
00002204

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 + 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015
13321000
01102112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16322423
24483632
36725347
24482836
2433
2432

,  

f
Q2  = 

f
Q1  - −

hB X2 + +
hB (X2 - +

2cF )  



 92

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16322423
24483632
36725347
24482836
2433
2432

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761222
81718120788

102223141281516
82411012815
23320000
00002222

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0010
0001
0000
0000
0000
0000

 + 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

003468112
0043128348
006114220716
40221144015
10621000
00202112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0010
0001
0000
0000
0000
0000

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9174123
16316132
26509147
20464636
1163
2452

, and  

fQ'  = 
f

Q2  - −
hB (X1 - −

3cF ) + +
hB X1  

    = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9174123
16316132
26509147
20464636
1163
2452

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761402
817181201508

102223141223016
82411020015
23320000
00002402

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 + 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015
13321000
01102112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16144223
24196532
36279847
24304636
2163
2162

.  

Following steps are identifying and correcting these two colour transition faults 

from the marking matrix fQ'  and the check matrix W. First, Since  
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W fQ'  mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−

100071
010084
0010108
000148

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16144223
24196532
36279847
24304636
2163
2162

 mod 11 

            = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0650
0740
0911
0778

 ≠ 04 × 4,  

there are colour transition faults in fQ' . Second, since  

EFc mod 11  

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

84838281

74737271

64636261

54535251

44434241

34333231

24232221

14131211

cccc

cccc

cccc

cccc

cccc

cccc

cccc

cccc

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

 mod 11  

= W fQ'  mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0650
0744
0911
0778

,  

the following sets of equations are figured out:  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

011mod)7648(
011mod)87648(

111mod)1087648(
811mod)1087648(

8171615141

817161514131

81716151413121

71615141312111

ccccc

cccccc

ccccccc

ccccccc

fffff
ffffff

fffffff
fffffff

,  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

511mod)7648(
411mod)87648(

111mod)1087648(
711mod)1087648(

8272625242

827262524232

82726252423222

72625242322212

ccccc

cccccc

ccccccc

ccccccc

fffff
ffffff

fffffff
fffffff

,  
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

611mod)7648(
711mod)87648(

911mod)1087648(
711mod)1087648(

8373635343

837363534333

83736353433323

73635343332313

ccccc

cccccc

ccccccc

ccccccc

fffff
ffffff

fffffff
fffffff

 and  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

011mod)7648(
011mod)87648(

011mod)1087648(
011mod)1087648(

8474645444

847464544434

84746454443424

74645444342414

ccccc

cccccc

ccccccc

ccccccc

fffff
ffffff

fffffff
fffffff

,  

and there are three more restrictions: (1) each set of equations has at most two 

nonzero variables and (2) ∀1 ≤ i ≤ 8, 1 ≤ j ≤ 4: 
2

11
−  < 

ijcf  < 
2

11 . Therefore, 
21cf  

= 
73cf  = 

23cf  = 1, 
22cf  = -2, 

72cf  = -1 and all the other entries in Fc are zero. By 

Lemma 4.11, Fc = −+ − cc FF , and hence it can have −
cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−−

0000
0000
0000
0000
0000
0000
0121
0000

 and 

+
cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0110
0000
0000
0000
0000
0000
0000

. By Lemma 4.10, it can be inferred from −
cF  that a 

pre-condition colour transition fault occurs on t1 two times, where one time is c2 

changing into c1, and one time is c2 changing into c3, and it can be inferred from +
cF  

that a post-condition colour transition fault occurs on t2 one times, where it is c3 

changing into c2. The correct marking matrix with respect to fQ'  is  
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fQ'  - −
hB −

cF  + +
hB +

cF   

= 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16144223
24196532
36279847
24304636
2163
2162

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7151761222
81718120788

102223141281516
82411012815
23320000
00002222

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−−

0000
0000
0000
0000
0000
0000
0121
0000

 + 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0161868112
02122128348
0303114220716
410121144015
13321000
01102112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0110
0000
0000
0000
0000
0000
0000

 

= 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

16322225
24482840
36723862
24482044
2433
2414

, which is equal to hQ' .  

 

4.6 Additive Faults 

 

From Lemma 4.1, 4.5 and 4.9, the problem formulation of additive faults in 

matrix representations can be concluded. Thus, based on the problem formulation, this 

section gives the methodology encoding a CPN into a separeate CPN, and the place 

faults, amount treansition faults and colour transition faults in the separeate CPN can 

be extracted from the syndromes. This section also describes how to compute the 

correction markings via these syndromes and gives an example which shows how the 
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methodology works. 

 

4.6.1 Separate CPNs with Additive Faults Detection and 

Correction Capabilities 

 

The strategy in this section is used to detect and correct additive faults. The 

encoded input matrix, encoded output matrix and encoded initial marking matrix here 

would have the same forms as those in the previous section, but with stricter 

restrictions. Therefore, let G be a CPN with no more than k place faults, x amount 

transition faults and k - x colour transition faults, where 0 ≤ x ≤ k, the separate CPN 

H with additive faults detection and correction capabilities is constructed by adding 2k 

additional places to G and the colour sets of both CPNs are the same. The input 

matrix, output matrix and initial marking matrix of G are 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β  respectively, where all the entries in D are 

coprime with a prime number, and all the entries in E are multiples of the same prime 

number. After H is constructed, the place faults, amount treansition faults and colour 

transition faults occurring on H can be extracted from the syndromes, and the correct 

marking can be obtained. These properties are proved in Lemma 4.12. 

 

Lemma 4.12: Let G be a CPN which has α transitions, β places, γ colours, input 

matrix −
gB , output matrix +

gB  and initial marking matrix
g

Q0 , and H be a separate CPN 
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with d additional places with respect to G, input matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , output 

matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and initial marking matrix 

ggh
UQQ

D
I

Q 000 =⎥
⎦

⎤
⎢
⎣

⎡
= β . 

 

 If there are additive faults on H, it can be detected by a d × (β + d) check matrix 

W, such that WU = 0d × β, where 0d × β is a d × β matrix with all entries of zero. 

The syndrome S = WFp + W )( −−− + cah FFB  - W )( +++ + cah FFB  = WFp + W −−
th FB

- W ++
th FB , iff the place fault, pre-condition and post-condition amount transition 

fault, pre-condition and post-condition colour transition fault indicator matrices 

are Fp, −
aF , +

aF , −
cF  and +

cF  respectively. −
tF  and +

tF  are named as 

pre-condition transition fault indicator matrix and post-condition transition 

fault indicator matrix respectively. F = Fp + −
tF  - +

tF is named as fault 

indicator matrix. 

 k place faults, x amount transition faults and k - x colour transition faults on H 

can be identified and corrected if W = [ ]dID− , where 0 ≤ x ≤ k, E = j * E', D 

= j * i * 1d × β - D', j is a prime number lager than all the entries in E' and D', i is a 

positive integer lager than all the entries in D', 1d × β is a d × β matrix with all 

entries of one, any 2k columns of the d × αγ matrix E' are linearly dependent, and 

any 2k columns of the d × 2β matrix [ ]dID'  are linearly dependent. 

 

 

Proof:  

Assume Qg and Qh are fault-free marking matrices of G and H respectively, and 
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they have the same firing transition sequence. Hence, by Lemma 4.7, gh Q
D
I

Q ⎥
⎦

⎤
⎢
⎣

⎡
= β , 

and Qh multiplied by W would be WQh = WUQg = 0d × γ. By Lemma 4.1, 4.5 and 4.9, if 

there are additive faults on H, the faulty marking matrix Qf satisfies Qf = Qh + Fp + 

−−
ch FB  - ++

ch FB  + B- −
aF  - B+ +

aF  = UQg + Fp + −−
ch FB  - ++

ch FB  + B- −
aF  - B+ +

aF . 

Hence, The syndrome S = WQf = WUQg + WFp + W −−
ch FB  - W ++

ch FB  + WB- −
aF  - 

WB+ +
aF  = WFp + W )( −−− + cah FFB  - W )( +++ + cah FFB . By the same way, if the 

syndrome is WFp + W )( −−− + cah FFB  - W )( +++ + cah FFB , it will be S = WFp + 

W )( −−− + cah FFB  - W )( +++ + cah FFB  = WFp + W )( −−− + cah FFB  - W )( +++ + cah FFB  + 

WUQg = WFp + W −−
ch FB  - W ++

ch FB  + WB- −
aF  - WB+ +

aF  + WQh = W(Fp + −−
ch FB

- ++
ch FB  + B- −

aF  - B+ +
aF  + Qh), where Qh is a fault-free marking matrix of H, and 

Fp, −
aF , +

aF , −
cF  and +

cF  are place fault, pre-condition and post-condition 

amount transition fault, pre-condition and post-condition colour transition fault 

indicator matrices respectively. Therefore, a marking matrix of H could be examined 

if it is a faulty marking matrix by multiplying the marking matrix with the check 

matrix W. 

Assume Qf is a faulty marking matrix of H, which states k place faults, k amount 

transition faults and k colour transition faults on H. By Lemma 4.1, 4.5 and 4.9, Qf = 

Qh + Fp + −−
ch FB  - ++

ch FB  + B- −
aF  - B+ +

aF . If the check matrix W = [ ]dID− , 

the syndrome will be  

S = [ ]γsss L21  

  = WQf  
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  = [ ] [ ] [ ] )()( ++
+

+
−−

−

−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−+− ca

g

g
dca

g

g
dpd FF

EDB
B

IDFF
EDB

B
IDFID

  = [ ] )( −−++ −−++− cacapd FFFFEFID   

  = [ ] )('*1**' −−++
× −−++− cacapdd FFFFEjFIijD β  

  = [ ] )('*1**' −+
× −+− ttpdd FFEjFIijD β  

  = [ ] tpdd FEjFIijD '*1**' +− ×β .  

From S mod j,  

Sp = [ ]
γppp sss L

21
  

  = S mod j  

  = [ ] jFFFFEjjFIijD cacapdd mod)('*mod1**' −−++
× −−++− β  

  = [ ] pd FID'  

  = [ ][ ]
γpppd fffID L

21
'  

is obtained, which contains only place fault part. Since any 2k columns of the matrix 

[ ]dID'  are linearly dependent and each column of Fp has at most k nonzero entries, 

the place fault indicator matrix Fp can be be found by solving equations 

[ ]
nn ppd sfID ='  , where 1 ≤ n ≤ γ. After Fp is solved out, it can have  

St = [ ]
γttt sss L

21
  

  = S - [ ] pd FID−   

  = tEF  

  = [ ]
γttt fffE L

21
  

which contains only amount and colour transition fault part. Since any 2k columns of 
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the matrix E' are linearly dependent, any 2k columns of the matrix E = j * E' are 

linearly dependent. Since each column of Ft has at most k nonzero entries, the 

transition fault indicator matrix Ft can be be found by solving equations 
nn tt sEf =  , 

where 1 ≤ n ≤ γ. By Lemma 4.6 and 4.10, the Fa would not have nonzero entries on j 

≠ (i-1) mod γ +1: 
ijaf , but Fc would have nonzero entries on j ≠ (i-1) mod γ +1: 

ijcf . Hence, if an entry on j ≠ (i-1) mod γ +1: 
ijtf  is an nonzero entry, this nonzero 

value is belong to Fc. By Lemma 4.10, the sum of all the entries in each row is zero, 

all the entries on j = (i-1) mod γ +1: 
ijcf can be solved out from this conditions, and 

all the remining entries in Fc are zero. After Fc is obtained, Fa can be obtained from Fa 

= Ft - Fc. 

 

Let G be a CPN which has α transitions, β places, γ colours, the input matrix −
gB , 

the output matrix +
gB  and the initial marking matrix

g
Q0 . From Lemma 4.12, 

constructing a separate CPN H which can detect and correct at most k place faults, k 

amount transition faults and k colour transition faults is concluded as following steps: 

(1) designing a d × αγ matrix E' from the check matrix of Reed-Solomon codes, (2) 

choosing a d × β matrix D' which satisfies any 2k columns of [ ]dID'  are linearly 

dependent, (3) choosing a prime number j lager than all the entries in E' and D', (4) 

choosing a positive integer i lager than all the entries in D', (5) constructing matrices 

E = j * E' and D = j * i * 1d × β - D', (6) constructing the check matrix W from W = 

[ ]dID− , and finally (7) deriving H containing input matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

−
−

EDB
B

B
g

g
h , 
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output matrix 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= +

+
+

EDB
B

B
g

g
h  and initial marking matrix 

gh
Q

D
I

Q 00 ⎥
⎦

⎤
⎢
⎣

⎡
= β . By 

applying the method of Reed-Solomon codes, it would have d = 2k. Whether a 

marking Qh in H is correct can be examined with the check matrix W, and the faults 

can be distinguished from the following steps: (1) obtaining the syndrome S from S = 

WQh, (2) obtaining part of syndrome Sp containing only place fault part from Sp = S 

mod j, (3) solving the equation Sp = [ ] pd FID'  to obtain the place fault indicator 

matrix Fp, and the place faults can be interpreted from Fp, (4) obtaining part of 

syndrome St containing only amount and colour transition fault part from St = S - 

[ ] pd FID− , (5) solving the equation St = tEF  to obtain the transition fault indicator 

matrix Ft, (6) obtaining the entries ∀j ≠ (i-1) mod γ +1: 
ijcf  in the colour transition 

fault indicator matrix Fc from 
ijij tc ff = , (7) obtaining the entries ∀j = (i-1) mod γ 

+1: 
ijcf  in the colour transition fault indicator matrix Fc from ∑

≠=

−=
γ

jhh
cc ihij

ff
,1

, (8) 

obtaining the pre-condition and post-condition colour transition fault indicator 

matrices, −
cF  and +

cF , from Fc as the steps in section 4.5.2, and the pre-condition 

and post-condition colour transition faults can be interpreted from −
cF  and +

cF  

respectively, (9) obtaining the amount transition fault indicator matrix Fa from Fa = Ft 

- Fc, and (10) obtaining the pre-condition and post-condition colour transition fault 

indicator matrices, −
aF  and +

aF , from Fa as the steps in section 4.4.2, and the 

pre-condition and post-condition amount transition faults can be interpreted from −
aF  

and +
aF  respectively. 
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4.6.2 An Example of Identifying and Correcting Additive 

Faults 

 

This section adopts the same given CPN G in section 4.5.3 to show how to 

identify and correct additive faults. Assume there are at most k = 2 place faults, x = 1 

amount transition faults and k - x = 1 colour transition faults. As described in section 

4.6.1, it need design a 4 × 8 matrix E' from the check matrix of Reed-Solomon codes 

in order to design the separate CPN H first. The matrix E in section 4.4.3 is a 4 × 8 

matrix designed from the check matrix of Reed-Solomon codes, thus the matrix E in 

section 4.4.3 can adopted as the matrix below  

E' = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

.  

Next, choosing a 4 × 2 matrix D' which satisfies any 4 columns of [ ]4' ID  are 

linearly dependent. D' can be declared as 

D' = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

71
84

108
48

   

which is the same as D in section 4.4.3, and any 4 columns of [ ]4' ID  are linearly 

dependent. Then, a prime number j lager than all the entries in E' and D' is chosen, 

e.g.,  

j = 11.  

Then, a positive integer i lager than all the entries in D' is chosen, e.g.,  

i = 11. 

Thus,  



 103

E = j * E' = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

7766448811000
88776644881100

1108877664488110
0110887766448811

 and  

D = j * i * 14 × 2 - D' = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

114120
113117
111113
117113

  

are obtained. Next, computing out  

EDBg −
−   

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

114120
113117
111113
117113

⎥
⎦

⎤
⎢
⎣

⎡
23320000
00002222

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

7766448811000
88776644881100

1108877664488110
0110887766448811

  

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

151276298140229240240240
138262273182146223234234
112245256156182138215226
234241263157160182138215

 and  

EDBg −+   

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

114120
113117
111113
117113

⎥
⎦

⎤
⎢
⎣

⎡
13321000
01102112

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

7766448811000
88776644881100

1108877664488110
0110887766448811

  

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

37396418140343120120240
25379390182259106117234
135836915629325102226

1173543761572776925215

.  

Therefore, input matrix  
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−
hB  = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−

EDB
B

g

g  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

151276298140229240240240
138262273182146223234234
112245256156182138215226
234241263157160182138215
23320000
00002222

, 

output matrix  

+
hB  = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+

+

EDB
B

g

g  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

37396418140343120120240
25379390182259106117234
135836915629325102226

1173543761572776925215
13321000
01102112

  

and initial marking  

h
Q0  = 

g
Q

D
I

0
2
⎥
⎦

⎤
⎢
⎣

⎡
 = ⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1433
2424

114120
113117
111113
117113

10
01

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

354936582822
347920573807
337896559785
343920577803
1433
2424

  

of separate CPN H are obtained, and the check matrix is  

W = [ ]4ID−  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−

1000114120
0100113117
0010111113
0001117113

.  

The H can be construct from −
hB , +

hB  and 
h

Q0 , which is illustrated in  

Figure 4.5. 

Assume there are place faults, amount transition faults and colour transition 

faults inside the firing sequence, which is represented as 
h

m0  ⎯→⎯ 1pF  
f

m1  [t1, 

−
1aF > 

f
m2  ⎯→⎯ 2pF  

f
m3  [t2, +

1cF > 
f

m4  ⎯→⎯ 3pF  fm' , where  
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1pF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

0000
0040
0000
0000
0000
3002

, 
2pF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

0000
0410
0000
0000
0000
0010

, 
3pF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

0000
2003
0000
0000
0000
1300

,  

−
1aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 and +
1cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0101
0000
0000
0000
0000
0000
0000

.  

Hence, the matrix representations of 
f

m1 , 
f

m2 , 
f

m3 , 
f

m4  and fm'  are  

f
Q1  = 

h
Q0  + 

1pF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

354936582822
347920577807
337896559785
343920577803
1433
5422

,  

f
Q2  = 

f
Q1  + +

hB X1 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

69710567021062
60610266941041
6309216611011
6209896021018

2433
7534

,  

f
Q3 = 

f
Q2  + 

2pF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

69710567021062
60610306951041
6309216611011
6209896021018

2433
7524

,  
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f
Q4  = 

f
Q3  - −

hB X2 + +
hB (X2 - +

1cF ) = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5837808221458
4937688121420
5196767741369
5037487151372
1136
7535

 and  

fQ'  = 
f

Q4  + 
3pF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5837808221458
4957688121423
5196767741369
5037487151372
1136
8235

 respectively. 

 Following steps are identifying and correcting these faults from the marking matrix 

fQ'  and the check matrix W. First,  

S = W fQ'  = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−

1000114120
0100113117
0010111113
0001117113

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5837808221458
4957688121423
5196767741369
5037487151372
1136
8235

 

            = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

491426120174
554421122160
496339102138
51840525105

  

is obtained. Second, since 

Sp = S mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

491426120174
554421122160
496339102138
51840525105

 mod 11  

   = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

48109
7316

10936
10936

 ≠ 04 × 4,  

there are place faults in fQ' . Third, since  
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 [ ] pd FID'  mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100071
010084
0010108
000148

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

64636261

54535251

44434241

34333231

24232221

14131211

pppp

pppp

pppp

pppp

pppp

pppp

ffff
ffff
ffff
ffff
ffff
ffff

 mod 11 

                  = Sp = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

48109
7316

10936
10936

,  

the following sets of equations are figured out:  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+−−
=+−−
=+−−
=+−−

911mod)7(
611mod)84(
611mod)108(
611mod)48(

612111

512111

412111

312111

ppp

ppp

ppp

ppp

fff
fff
fff
fff

, 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+−−
=+−−
=+−−
=+−−

1011mod)7(
111mod)84(
311mod)108(
311mod)48(

622212

522212

422212

322212

ppp

ppp

ppp

ppp

fff
fff
fff
fff

,  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+−−
=+−−
=+−−
=+−−

811mod)7(
311mod)84(
911mod)108(
911mod)48(

632313

532313

432313

332313

ppp

ppp

ppp

ppp

fff
fff
fff
fff

 and 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+−−
=+−−
=+−−
=+−−

411mod)7(
711mod)84(
1011mod)108(
1011mod)48(

642414

542414

442414

342414

ppp

ppp

ppp

ppp

fff
fff
fff
fff

,  

and there are two more restrictions: (1) each set of equations has at most two nonzero 

variables and (2) ∀1 ≤ i ≤ 6, 1 ≤ j ≤ 4: 
2

11
−  < 

ijpf  < 
2

11 . Therefore, 
11pf  = -2, 

12pf  = -1, 
13pf  = -3, 

14pf  = 
53pf  = 4, 

51pf  = 3, 
52pf  = 5 , 

54pf  = 2 and all the 

other entries in Fp are zero. Fourth, St can be obtained from  

St = S - [ ] pFID 4−   

= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

491426120174
554421122160
496339102138
51840525105

 - 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−

1000114120
0100113117
0010111113
0001117113

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−−

0000
2453
0000
0000
0000
4312
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= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−−
−−−

1166066
8866077
4401188
666688121

.  

By Lemma 4.2, it can be interpreted from Fp that there are two place faults, where one 

is on p1, which denotes lack of two red tokens, one green token and three blue tokens, 

and appearing four extra yellow tokens, and the other place fault is on p5, which 

denotes appearing three extra red tokens, five extra green tokens, four extra blue 

tokens and two extra yellow tokens. Fifth, since  

EFt / 11 mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

76481000
87648100

108764810
010876481

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

84838281

74737271

64636261

54535251

44434241

34333231

24232221

14131211

tttt

tttt

tttt

tttt

tttt

tttt

tttt

tttt

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

 mod 11  

             = St / 11 mod 11 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10605
3604
70103
5630

,  

the following sets of equations are figured out:  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

511mod)7648(
411mod)87648(

311mod)1087648(
011mod)1087648(

8171615141

817161514131

81716151413121

71615141312111

ttttt

tttttt

ttttttt

ttttttt

fffff
ffffff

fffffff
fffffff

,  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

011mod)7648(
011mod)87648(

1011mod)1087648(
311mod)1087648(

8272625242

827262524232

82726252423222

72625242322212

ttttt

tttttt

ttttttt

ttttttt

fffff
ffffff

fffffff
fffffff

,  
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

611mod)7648(
611mod)87648(

011mod)1087648(
611mod)1087648(

8373635343

837363534333

83736353433323

73635343332313

ttttt

tttttt

ttttttt

ttttttt

fffff
ffffff

fffffff
fffffff

 and  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
=+++++

=++++++
=++++++

1011mod)7648(
311mod)87648(

711mod)1087648(
511mod)1087648(

8474645444

847464544434

84746454443424

74645444342414

ttttt

tttttt

ttttttt

ttttttt

fffff
ffffff

fffffff
fffffff

,  

and there are two more restrictions: (1) each set of equations has at most two nonzero 

variables and (2) ∀1 ≤ i ≤ 8, 1 ≤ j ≤ 4: 
2

11
−  < 

ijtf  < 
2

11 . Therefore, 
11tf  = 

22tf  = 

33tf  = 
44tf  = -1, 

71tf  = -1, 
73tf  = 1 and all the other entries in Ft are zero. Sixth, 

from ∀1 ≤ i ≤ 8, 1 ≤ j ≤ 4, j ≠ (i-1) mod 5 + 1: 
ijcf  = 

ijtf , 
71cf  = -1 and all the 

other ∀1 ≤ i ≤ 8, 1 ≤ j ≤ 4, j ≠ (i-1) mod 5 + 1: 
ijcf  are zero. Seventh, from ∀1 ≤ i ≤ 

8, 1 ≤ j ≤ 4, j = (i-1) mod 5 + 1: ∑
≠=

−=
4

,1 jhh
cc ihij

ff , 
73cf  = 1 and 

11cf  = 
22cf  = 

33cf  

= 
44cf  = 

51cf  = 
62cf  = 

84cf  = 0. Since Fc = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0101
0000
0000
0000
0000
0000
0000

 ≠ 08 × 4 , there is a 

colour transition fault in fQ' . Eighth, Since Fc = −+ − cc FF , +
cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0101
0000
0000
0000
0000
0000
0000
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and −
cF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
0000
0000
0000
0000

 are obtained. By Lemma 4.10, +
cF  and −

cF  can be 

interpreted as: There is a post-condition colour transition fault on t2, which denotes c3 

changing into c1. Ninth, Fa = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

0000
0000
0000
0000
1000

0100
0010
0001

 is obtained from Fa = Ft - Fc. 

Since Fa ≠ 08 × 4 , there is a amount transition fault in fQ' . Tenth, Since Fa = 

−+ − aa FF , +
aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
0000
0000
0000
0000

 and −
aF  = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

. By Lemma 4.6, +
aF  

and −
aF  can be interpreted as: There is a pre-condition amount transition fault on t1, 

and it occurs one time. The correct marking matrix with respect to fQ'  is  

fQ'  - Fp - −
hB ( −

aF  + −
cF ) + +

hB ( +
aF  + +

cF )  
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= 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5837808221458
4957688121423
5196767741369
5037487151372
1136
8235

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−−

0000
2453
0000
0000
0000
4312

 - 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

151276298140229240240240
138262273182146223234234
112245256156182138215226
234241263157160182138215
23320000
00002222

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000
0000
0000
1000
0100
0010
0001

 + 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

37396418140343120120240
25379390182259106117234
135836915629325102226

1173543761572776925215
13321000
01102112

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
0000
0101
0000
0000
0000
0000
0000
0000

  

= 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

354936582822
347920573807
337896559785
343920577803
1433
2424

,  

which is equal to the matrix representation of hm'  in 
h

m0  [t1> 
h

m1  [t2> hm' . 
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Figure 4.5 A CPN with Additive Faults detection and correction capabilities. 
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Chapter 5. Conclusion and Future Works 

This thesis proposed a methodology to determine whether a marking in a 

coloured Petri net is a faulty marking which can be mapped to a faulty state in a 

system modeled by a coloured Petri net. The main idea of the methodology is 

applying the methods of error control coding on coloured Petri nets. In [3], the authors 

present the methods detecting the faults on Petri nets only. There are more issues to be 

studied on coloured Petri nets. Since a Petri net can be deem as a coloured Petri net 

with only single colour, the method for this special case would be the same as [3] in 

this thesis. Thus, the methods presented in this thesis are more general than those in 

[3]. If the applied error control coding is Reed-Solomon code, the methodology in this 

thesis can simultaneously detect and correct k place faults, x amount transition faults 

and k - x colour transition faults after adding 2k places, where 0 ≤ x ≤ k. There is a 

corresponding code correction algorithm in Reed-Solomon code, which is 

Berlekamp-Massey algorithm [16]. By appling Berlekamp-Massey algorithm on the 

syndrome of a faulty marking, the equation sets obtained from the syndrome can be 

solved out in time complexity O(kγ(α+β)), and hence the marking can be corrected in 

time complexity O(kγ(α+β)), where α, β and γ are the number of transitions, places 

and colour types in a coloured Petri net, respectively. 

There are two further research topics which can be extended from this thesis. 

First, from the marking, input and output matrices of the CPN with fault detection and 

correction capability, it can be seen that the values in these matrices are large. The 

reason is that the Reed-Solomon code has only minimized the length of a code but 

hasn’t minimized the value of a code word. Thus, one of the future works is to come 
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out the encoding matrices which can also minimize the values in these matrices. 

Second, there are several kinds of high level CPNs extended from basic CPN 

discussed in this thesis. Thus, the other future work is to extend the methodology in 

this thesis to these high level CPNs. 
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