

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

網格環境中支援工作流程應用程式之線上即時

排 程 方 法

Online Scheduling of Workflow Applications in a Grid

Environment

 研 究 生：許志強

 指導教授：王豐堅 教授

中 華 民 國 九 十 八 年 九 月

網格環境中支援工作流程應用程式之線上即時排程方法

Online Scheduling of Workflow Applications in a Grid Environment

研 究 生：許志強 Student：Chih-Chiang Hsu

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

September 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年九月

I

網格環境中支援工作流程應用程式之線上即時

排程方法

研究生: 許志強 指導教授: 王豐堅 博士

國立交通大學

資訊科學與工程研究所

新竹市大學路 1001號

碩士論文

摘要

 在網格環境中對工作流程應用程式排程是個很大的挑戰，因為這類型的問題

是屬於 NP-complete。對於這類型問題，現今已經有許多探索式的方法被提出，

然而大部份都著重在排程單一個工作流程應用程式。近幾年來，有許多的研究致

力於處理並行或線上的工作流程，但在每個工作需要多顆處理器的情況這些研究

沒辦法處理，本文中，我們提出了一個 OWM方法，OWM對線上工作流程可以有效

的做排程。為了解決當工作需要多顆處理器所面臨的問題，我們加入解決這類問

題的一些有名方法到 OWM中，如：first fit，conservative backfilling，easy

backfilling。根據模擬實驗，數據顯示我們所提出的 OWM 表現的比其他方法還

要傑出；而在工作需要多顆處理器的情況下， OWM(FCFS)表現的幾乎和

OWM(conservative)一樣並且 OWM(FCFS)表現的比 OWM(easy)和 OWM(first fit)

還要來的好。

關鍵字: 線上工作流程，不循環有向圖，工作圖，工作流程排程，工作排程，異

質系統，網格計算，工作配置，資料平行，回填機制。

II

Online Scheduling of Workflow Applications in

a Grid Environment

Student: Chih-Chiang Hsu Advisor: Feng-Jian Wang

Institute of Computer Science and Engineering

National Chiao Tung University

1001 University Road, Hsinchu, Taiwan 300, ROC

Abstract

 Scheduling workflow applications in a Grid environment is a great challenge,

because it is NP-complete problem. Many heuristic methods are presented, but most

of them work in the domain of single workflow application. In recent years, there are

several heuristic methods presented to deal with concurrent workflows or online

workflows, but they do not work with workflows composed of data-parallel tasks. In

the thesis, we present an approach for dealing with online workflows, which is named

Online Workflow Management (OWM). For dealing with data-parallel problems,

well-known approaches, e.g., first fit, conservative backfilling and easy backfilling

are added into OWM. The experiments show that OWM outperforms other two

methods in various workloads. For workflows composed of data-parallel tasks, the

experiments show that OWM(FCFS) is almost equal OWM(conservative), and

outperforms OWM(easy) and OWM(first fit).

Keywords: Online Workflows, DAG, Task Graph, Workflow Scheduling, Task

Scheduling, Heterogeneous Systems, Grid Computing, Task Allocation, Data Parallel

Task, Backfilling.

III

誌謝

 本篇論文得以順利完成，最主要要感謝我的指導教授王豐堅老師，在交大這

兩年期間傳道授業解惑讓我在軟體工程、工作流程以及網格計算領域能夠深入了

解，並且獲得許多知識以及經驗。另外，也十分感謝口試委員鍾葉青博士、張西

亞博士以及黃國展博士的寶貴意見，得以補足我論文的不足之處。

 其次，要感謝實驗室的學長姐、同學及學弟們這兩年來的砥礪、照顧以及指

導。尤其是黃國展學長給于的許多寶貴意見及指導，讓我在研究上遇到瓶頸時得

以順利克服，不管是專業的知識、研究技巧以及文章寫作都讓我受益良多，因為

有學長不厭其煩的指導，本篇論文才得以順利完成。當然還有一群總是默默支持

我的朋友們，在我低潮時給于我加油及鼓勵，謝謝你們。

 最後，我要感謝我最親愛的家人們，因為有你們支持、陪伴，才讓我有繼續

前進的動力，本篇論文才得以順利完成，謝謝我最親愛的家人們，本篇論文獻給

你們。

IV

Table of Contents

摘要……………………………………………………………………..Ⅰ

Abstract………………………………………………………………….Ⅱ

誌謝……………………………………………………………………..Ⅲ

Table of Contents………………………………………………………..Ⅳ

List of Tables……………………………………………………………Ⅵ

List of Figures…………………………………………………………...Ⅶ

Chapter 1 Introduction………………………………………………….1

Chapter 2 Related Work………………………………………………...3

2.1 Workflow Scheduling Algorithms for Grid Computing………………… ..3

2.2 Static Workflow Scheduling Algorithms...5

2.3 Scheduling Concurrent Workflows in Grid Environments...........................9

2.4 Scheduling Online Workflows in Grid Environments……………………10

2.5 Scheduling Mixed Parallel Workflows in Grid Environments…………….10

Chapter 3 Software Simulator for Workflow Scheduling……………..12

3.1 Data Components in the Simulator……………………………………12

3.2 Classes in the Simulator……………………………………………...14

3.3 Simulation Process………………………………………………….23

Chapter 4 Online Workflow Management in a Grid Environment……28

4.1 Structure of Online Workflow Management……………………………28

4.2 Online Workflow Management (OWM)……………………………….30

 4.2.1 Upward Rank Value……………………………………………30

V

 4.2.2 Critical Path Workflow Scheduling (CPWS)………………………30

4.2.3 Adaptive Allocation (AA)……………………………………….33

Chapter 5 Experimental Results………………………………………37

5.1 Performance Metrics………………………………………………...37

5.2 Experimental Results for Workflows Composed of Single-Processor Tasks..38

 5.2.1 Difference between RANK_HYBD, Fairness_Dynamic and OWM…38

 5.2.2 Experimental Setup…………………………………………….39

 5.2.3 Results Analyses……………………………………………….40

5.3 Experimental Results for Workflows Composed of Data-Parallel Tasks…...52

 5.3.1 Experimental Setup…………………………………………….52

5.3.2 Results Analyses……………………………………………….54

Chapter 6 Conclusion and Future Work…………………..…………..57

Appendix………………………………………………………………..58

Reference………………………………………………………………..84

VI

List of Tables

Table 3-1 DAG_Generator class……………………………………………………..14

Table 3-2 EventNode class…………………………………………………………...16

Table 3-3 EventType enumeration……………………………………………………16

Table 3-4 EventQueue class………………………………………………………….17

Table 3-5 WaitQueueNode class……………………………………………………...19

Table 3-6 WaitQueue class…………………………………………………………...20

Table 3-7 WorkflowScheduling class………………………………………………...21

Table 3-8 Allocation class……………………………………………………………22

VII

List of Figures

Figure 2-1 A taxonomy of workflow scheduling algorithms………………………….3

Figure 2-2 An example of static scheduling…………………………………………...4

Figure 2-3 A taxonomy of static workflow scheduling algorithms……………………5

Figure 2-4 An example of a list-based heuristic……………………………………….6

Figure 2-5 An example of a clustering-based heuristic………………………………..7

Figure 3-1 A Grid Environment……………………………………………………...13

Figure 3-2 An example of EventQueue………………………………………………18

Figure 4-1 Online Workflow Management (OWM)…………………………………29

Figure 4-2 An example of SWS ……………………………………………………..32

Figure 4-3 An example of CPWS…………………………………………………….32

Figure 5-1 The difference between RANK_HYBD, Fairness_Dynamic and OWM...38

Figure 5-2 Results of different mean arrival intervals for average makespan……….41

Figure 5-3 Results of different mean arrival intervals for average SLR……………..41

Figure 5-4 Results of different mean arrival intervals for win (%)…………………..42

Figure 5-5 Results of different computation intensity for average makespan with a

uniform distribution of tasks’ computation cost………………………...43

Figure 5-6 Results of different computation intensity for average SLR with a uniform

distribution of tasks’ computation cost…………………………………...44

Figure 5-7 Results of different computation intensity for win (%) with a uniform

distribution of tasks’ computation cost………………………………….44

Figure 5-8 Results of different computation intensity for average makespan with an

exponential distribution of tasks’ computation cost……………………...45

VIII

Figure 5-9 Results of different computation intensity for average SLR with an

exponential distribution of tasks’ computation cost…………………….45

Figure 5-10 Results of different computation intensity for win (%) with an

exponential distribution of tasks’ computation cost………………….46

Figure 5-11 Results of different number of clusters for average Makespan…………47

Figure 5-12 Results of different number of clusters for average SLR……………….48

Figure 5-13 Results of different number of clusters for win (%)…………………….48

Figure 5-14 Results of inaccurate execution estimates for average makespan………50

Figure 5-15 Results of inaccurate execution estimates for average SLR…………….50

Figure 5-16 Results of inaccurate execution estimates for win (%)………………….51

Figure 5-17 The processes in OWM(FCFS), OWM(conservative), OWM(easy) and

OWM(first fit)…………………………………………………………..52

Figure 5-18 Results of different computation intensity for average makespan

 with (uniform, min, uniform)……………………………………...55

Figure 5-19 Results of different computation intensity for average SLR

 with (uniform, min, uniform).……………………………………...56

Figure 5-20 Result s o f different computat ion int ensity for win (%)

 with (uniform, min, uniform)……………………………………...56

Figure A-1 Results of different computation intensity for average makespan

 with (uniform, max, uniform)…………………………………………58

Figure A-2 Results of different computation intensity for average SLR

 with (uniform, max, uniform)………………………………………58

Figure A-3 Resu lt s o f d ifferent co mputat ion int ens it y fo r win (%)

 with (uniform, max, uniform)………………………………………59

Figure A-4 Results of different computation intensity for average makespan

 with (uniform, max, exponential)….………………………………...59

IX

Figure A-5 Results of different computation intensity for average SLR

 with (uniform, max, exponential)…………………………………..60

Figure A-6 Resu lt s o f d ifferent computat ion int ens it y fo r win (%)

 with (uniform, max, exponential)…………………………………...60

Figure A-7 Results of different computation intensity for average makespan

 with (uniform, max, normal)…………………………………………..61

Figure A-8 Results of different computation intensity for average SLR

 with (uniform, max, normal)………………………………………..61

Figure A-9 Resu lt s o f d ifferent computat ion int ens it y fo r win (%)

 with (uniform, max, normal)………………………………………..62

Figure A-10 Results of different computation intensity for average makespan

 with (uniform, half, uniform)………………………………………...62

Figure A-11 Results of different computation intensity for average SLR

 with (uniform, half, uniform)……………………………………...63

Figure A-12 Result s of different computat ion intens ity for win (%)

 with (uniform, half, uniform)……………………………………...63

Figure A-13 Results of different computation intensity for average makespan

 with (uniform, half, exponential)…………………………………….64

Figure A-14 Results of different computation intensity for average SLR

 with (uniform, half, exponential)………………………………….64

Figure A-15 Result s of different computat ion intens ity for win (%)

 with (uniform, half, exponential)………………………………….65

Figure A-16 Results of different computation intensity for average makespan

 with (uniform, half, normal)………………………………………….65

Figure A-17 Results of different computation intensity for average SLR

 with (uniform, half, normal)……………………………………….66

X

Figure A-18 Result s of different computat ion intens ity for win (%)

 with (uniform, half, normal)……………………………………….66

Figure A-19 Results of different computation intensity for average makespan

 with (uniform, min, exponential)……….………………………….67

Figure A-20 Results of different computation intensity for average SLR

 with (uniform, min, exponential)………………………………….67

Figure A-21 Result s of different computat ion intens ity for win (%)

 with (uniform, min, exponential)………………………………….68

Figure A-22 Results of different computation intensity for average makespan

 with (uniform, min, normal)………………………………………….68

Figure A-23 Results of different computation intensity for average SLR

 with (uniform, min, normal)……………………………………….69

Figure A-24 Result s of different computat ion intens ity for win (%)

 with (uniform, min, normal)……………………………………….69

Figure A-25 Results of different computation intensity for average makespan

 with (exponential, max, uniform)…………………………………….70

Figure A-26 Results of different computation intensity for average SLR

 with (exponential, max, uniform)………………………………….70

Figure A-27 Result s of different computat ion intens ity for win (%)

 with (exponential, max, uniform)………………………………….71

Figure A-28 Results of different computation intensity for average makespan

 with (exponential, max, exponential)………………………………...71

Figure A-29 Results of different computation intensity for average SLR

 with (exponential, max, exponential)……………………………...72

Figure A-30 Result s of different computat ion intens ity for win (%)

 with (exponential, max, exponential)……………………………...72

XI

Figure A-31 Results of different computation intensity for average makespan

 with (exponential, max, normal)………….………………………..73

Figure A-32 Results of different computation intensity for average SLR

 with (exponential, max, normal)…………………………………..73

Figure A-33 Result s of different computat ion intens ity for win (%)

 with (exponential, max, normal)…………………………………..74

Figure A-34 Results of different computation intensity for average makespan

 with (exponential, half, uniform)…………………………………….74

Figure A-35 Results of different computation intensity for average SLR

 with (exponential, half, uniform)………………………………….75

Figure A-36 Result s of different computat ion intens ity for win (%)

 with (exponential, half, uniform)………………………………….75

Figure A-37 Results of different computation intensity for average makespan

 with (exponential, half, exponential)………………………………76

Figure A-38 Results of different computation intensity for average SLR

 with (exponential, half, exponential)………………………………76

Figure A-39 Result s of different computat ion intens ity for win (%)

 with (exponential, half, exponential)………………………………77

Figure A-40 Results of different computation intensity for average makespan

 with (exponential, half, normal)……….…………………………...77

Figure A-41 Results of different computation intensity for average SLR

 with (exponential, half, normal)…………………………………...78

Figure A-42 Result s of different computat ion intens ity for win (%)

 with (exponential, half, normal)…………………………………...78

Figure A-43 Results of different computation intensity for average makespan

 with (exponential, min, uniform)…………………………………….79

XII

Figure A-44 Results of different computation intensity for average SLR

 with (exponential, min, uniform)………………………………….79

Figure A-45 Result s of different computat ion intens ity for win (%)

 with (exponential, min, uniform)………………………………….80

Figure A-46 Results of different computation intensity for average makespan

 with (exponential, min, exponential)……….………………………80

Figure A-47 Results of different computation intensity for average SLR

 with (exponential, min, exponential)………………………………81

Figure A-48 Result s of different computat ion intens ity for win (%)

 with (exponential, min, exponential)………………………………81

Figure A-49 Results of different computation intensity for average makespan

 with (exponential, min, normal)………….………………………...82

Figure A-50 Results of different computation intensity for average SLR

 with (exponential, min, normal)…………………………………...82

Figure A-51 Result s of different computat ion intens ity for win (%)

 with (exponential, min, normal)…………………………………...83

1

Chapter 1 Introduction

Grid environments are an important platform for running high-performance and

distributed applications. Many large-scale scientific applications are usually

constructed as workflows due to large amounts of interrelated computation and

communication, e.g., Montage [29] and EMAN [30]. A Grid environment is

composed of widespread resources from different administrative domains. Miguel et

al. [33] indicates that a Grid environment usually has the characteristics: heterogeneity,

large scale and geographical distribution. Task scheduling in Grid is a NP-complete

problem [31] [32], therefore many heuristic methods have been proposed. The

workflow scheduling problem in Grid environments is a great challenge. In the past

years, there are many static heuristic methods proposed [3] [4] [5] [6] [7] [8] [9] [18]

[25]. They are designed in the domain of scheduling single workflow only.

Zhao et al. presented composition and fairness approaches [20] for scheduling

multiple workflows at the same time. T. N'takpe' et al. presented an approach [23] to

scheduling concurrent workflows composed of moldable tasks. However, all these

methods do not work with online workflows: i.e., multiple workflows occur at

different times. Z. Yu et al. [21] presented a planner-guided dynamic scheduling

approach for dealing with online workflows, but it doesn’t work with workflows

composed of data-parallel tasks (parallel tasks) of which each uses multiple

processors simultaneously for its execution.

In this thesis, we present a new approach called Online Workflow Management

(OWM). There are four processes in OWM: Critical Path Workflow Scheduling

(CPWS), Task Scheduling, Multi-Processor Task Rearrangement and Adaptive

Allocation (AA). CPWS process submits tasks into the waiting queue. Task

2

scheduling and AA processes prioritize the tasks in the queue and assign the task with

highest priority to the processor for execution respectively. In data-parallel task

scheduling, there may be some scheduling holes which are formed when the free

processors are not enough for the first task in the queue. The multi-processor

rearrangement process works for dealing with scheduling holes to improve utilization.

The process includes first fit, easy backfilling [22], and conservative backfilling [22]

approaches.

To validate the advantages of the cooperation designed among these four

processes, task-waiting queue, event queue and workflows, we developed a Grid

simulator using a discrete-event based technique for experiments. Task-waiting queue

and event queue keep the tasks and events for processing. The Grid environment

consists of several simulated clusters of which each contains an amount of processors.

A workflow is represented by direct acyclic graph (DAG). Each experiment involves

20 runs, and each run has 100 unique DAGs on a Grid environment that contains 3

clusters each containing 30~50 processors respectively. Experimental results show

that OWM has better performance than RANK_HYBD [21] and Fairness_Dynamic

which extends the Fairness (F2) in [20] to handle online workflows. When workflows

composed of data-parallel tasks, the experimental results show that OWM(FCFS) is

almost equal to OWM(conservative), and outperforms OWM(easy) and OWM(first

fit).

The remainder of the thesis is organized as follows. Chapter 2 discusses related

work. Chapter 3 describes the software simulator for workflow scheduling. Chapter 4

presents the OWM approach for Grid environments. Chapter 5 presents the

experimental results and Chapter 6 concludes the thesis.

3

Chapter 2 Related Work

In this chapter, we survey related algorithms in Grid environments. Section 2.1

describes workflow scheduling algorithms for Grid computing. Section 2.2 describes

static workflow scheduling algorithms. Section 2.3, 2.4, 2.5 describe concurrent

workflows, online workflow and mixed parallel workflows scheduling algorithms in

Grid environments respectively.

2.1 Workflow Scheduling Algorithms for Grid Computing

 Workflow scheduling algorithms for Grid computing can be classified into two

groups [26] (Figure 2-1): static and dynamic.

In a static scheduling algorithm, the structure of workflow applications i.e., the

dependency of tasks, and the estimated cost are known in the very beginning. The

resource assignment of tasks is made before execution (Figure 2-2), and each

approach has its own policy of assignment. Static approaches are not adaptive to some

situations, e.g., one of the resources selected fails, or the real execution time on some

resources is longer than the estimated time. Unfortunately, these situations occur in a

great potential due to the nature of Grid environments. To alleviate this problem, there

Figure 2-1 A taxonomy of workflow scheduling algorithms

4

are two approaches: task partitioning [10] and rescheduling [1] [11]. The former

partitions a workflow into multiple sub-workflows which are executed sequentially.

Instead of mapping entire workflow at one time, it allocates resources to tasks in one

sub-workflow each time. A sub-workflow mapping is started only after the previously

mapped sub-workflow starts the execution. The latter reschedule unexecuted tasks

when the Grid environment changes. H. Braun et al. compare eleven static heuristic

algorithms on heterogeneous distributed computing systems [2]. Figure 2-2 shows an

example of a static scheduling algorithm. Figure 2-2(a) shows an original workflow.

Figure 2-2(b) shows the resource mapping of tasks before execution: t1, t3 and t5 are

mapped to R1, and t2 and t4 are mapped to R2 .

Dynamic scheduling approaches perform task allocation as workflow

applications execute. When a task is ready to execute, it is submitted to waiting queue.

Dynamic scheduling mechanisms make a decision when the waiting queue has tasks

and there are free resources. Dynamic scheduling is usually applied when it is difficult

Figure 2-2 An example of static scheduling (a) an original workflow (b) the resource

mapping of a workflow before execution

5

to estimate the costs of tasks, or when workflow applications may come at different

times (it is called online scheduling). For example, Z. Yu [21] proposed a

planner-guided scheduling strategy.

2.2 Static Workflow Scheduling Algorithms

Static workflow scheduling algorithms can be classified into two groups [17] as

shown in Figure 2-3: heuristic-based and meta-heuristic based.

Heuristic-based scheduling algorithms usually can be classified into five groups:

(1) list-based, (2) clustering-based, (3) duplication-based, (4) level-based, (5)

hybrid-based. A list-based heuristic approach maintains a list of all tasks of a

workflow application according to their priorities. The method schedules the tasks

based on the list. There are list-based heuristics proposed [3] [4] [5] [6] [7].

HEFT (Heterogeneous Earliest Finish Time) [7] is a well-known list-based

Figure 2-3 A taxonomy of static workflow scheduling algorithms

6

scheduling algorithm in heterogeneous environments, and it is implemented in

ASKLON that is a workflow management system based on Grid computing [17]. In

recent years, many researches have been applied to modify HEFT in the

corresponding environments. Typical examples include HHS (Hybrid Scheduling

Algorithm) [18], M-HEFT (Mixed-Parallel HEFT) [19], Fairness Policy [20] ,

RANK_HYBD [21].

HEFT algorithm has two major phases: a task prioritizing phase and a processor

selection phase. The task prioritizing sets the priority of each task with an upward

rank value, ranku, which is based on mean computation and mean communication

costs. A higher ranku value gets a higher priority. The processor selection selects a

processor which has earliest estimated finish time of the task. Figure 2-4 shows an

example of a list-based heuristic, HEFT.

The main idea of clustering-based heuristic method is to reduce communication

delay by grouping the tasks of heavy communicating into the same labeled cluster. In

general, a clustering-based heuristic method has two phases: clustering and merging.

In the clustering phase, the original workflow application is partitioned into clusters,

and the merging phase merges the clusters so that the remaining number of clusters

Figure 2-4 An example of a list-based heuristic

7

equals to the number of resources. There are various clustering-based heuristic

methods proposed [8]. Figure 2-5 shows an example of a clustering-based heuristic. In

figure 2-5, (a) represents an original workflow, and (b) shows the result of arranging

the tasks into three clusters {t1, t2, t7}, {t3, t4, t6}, {t5}. These three clusters {t1, t2,

t7}, {t3, t4, t6}, {t5} will be allocated to three resources respectively at run time.

A duplication-based heuristic method helps a task to transmit the data to the

resource of succeeding task(s) implicitly during its execution time. This may reduce

the communication cost from a task to a successor. Various duplication-based

heuristic methods are proposed [9].

A level-based heuristic method, i.e. LHBS (Levelized Heuristic Based

Scheduling) [25], divides the workflow into levels of independent tasks. Within each

Figure 2-5 An example of a clustering-based heuristic (a) an original

workflow (b) after clustering

8

level, LHBS can use Greedy, Min-Min, Min-Max, or Sufferage [2] heuristics to map

the tasks to resources. Both the GrADS [16] and Pegasus [27] schedulers use a

version of LHBS.

A Hybrid-based heuristic method, i.e., HHS (Hybrid Heuristic Scheduling) [18],

is a combination of list-based and level-based heuristic methods. HHS first computes

the levels as in LHBS, then the tasks in each level following the prioritized order used

by HEFT. The five static heuristic methods mentioned above are restricted to single

workflow.

Y. Zhang et al. [24] compare HEFT [7], LHBS [25], and HHS [18] in Grid

environments. They showed that list-based and hybrid-based heuristic methods are

effective in a Grid environment, outperforming the level-based heuristic. [15] also

shows that list-based heuristic method perform better than clustering-based and

duplication-based heuristic methods.

The meta-heuristic based scheduling algorithms produces an optimized

scheduling solution based on the performance of the entire workflow. Genetic

algorithms [13], simulated annealing [14], and GRASP (Greedy randomized adaptive

search) [12] are well-known meta-heuristic scheduling algorithms. Each task in the

workflow is assigned a priori to resources in order to minimize the makespan of the

whole workflow. However, the scheduling time in meta-heuristic scheduling

algorithms is significantly higher [16] [17] than heuristic-based algorithms.

J. Blythe et al. [16] compare the heuristic-based algorithm and the meta-heuristic

based algorithm. In the comparison, they select one algorithm to represent each

approach, Min-Min scheduling algorithm for heuristic-based algorithm and GRASP

9

for the meta-heuristic based algorithm. The experiment results indicate both

approaches are similar for compute-intensive cases, but the meta-heuristic based

algorithm is better than the heuristic-based algorithm for data-intensive cases.

However, the time complexity of the meta-heuristic based algorithm grows more

rapidly than the heuristic-based algorithm if the workflow has more tasks.

2.3 Scheduling Concurrent Workflows in Grid Environments

In the past years, most works dealing with workflow scheduling were restricted

to single workflow application. Zhao et al. [20] envisaged a scenario that need to

schedule multiple workflow applications at the same time. They proposed two

approaches: composition approach and fairness approach.

(1) The composition approach merges multiple workflows into a single workflow

first. Then, two list scheduling heuristic methods, such as HEFT [7] and HHS

[18], can be used to schedule the merged workflow.

(2) The main idea of fairness approach is that when a task completes, it will

re-calculate the slowdown value of each workflow (or single workflow) against

other workflows and make a decision on which a workflow should be

considered next.

Moreover, the composition and the fairness approaches are static algorithms and

not feasible to deal with online workflow applications, i.e., multiple workflows come

at different times.

10

2.4 Scheduling Online Workflows in Grid Environments

RANK_HYBD [21] is designed to deal with online workflow applications

submitted by different users at different times. The task scheduling approach of

RANK_HYBD sorts the tasks in waiting queue using the rules repeatedly.

1. If tasks in waiting queue come from multiple workflows, the tasks are sorted

in ascending order of their rank value (ranku) where ranku is described in

HEFT [7];

2. If all task are belong to the same workflow, the tasks are sorted in descending

order of their rank value (ranku).

However, the number of processors to be used by each task is limited to a single

processor. It is not feasible to deal with workflows composed of data-parallel tasks.

2.5 Scheduling Mixed Parallel Workflows in Grid Environments.

Parallel task scheduling can be classified into two modes: rigid and moldable.

The number of processors required by a rigid task is fixed. The number of processors

used in a moldable task is determined by some algorithms before each run.

T. N'takpe' et al. proposed mixed parallel applications on Heterogeneous

platforms [28]. This can be considered as an example of moldable mode. Mixed

parallelism is a combination of task parallelism and data parallelism where the former

indicates that an application has more than one task that can execute concurrently and

the latter means a task can run at different resources concurrently.

[28] is only suitable for a single workflow. T. N'takpe' et al. further developed an

approach to deal with concurrent mixed parallel applications [23]. Concurrent

scheduling for mixed parallel applications contains two steps: constrained resource

allocation and concurrent mapping. The former aims at finding an optimal allocation

11

for each task. The number of processors is determined in this step. The latter

prioritizes tasks of workflows.

However, the approach in [23] is restricted to concurrent workflows. It is

infeasible to deal with online workflows.

12

Chapter 3 Software Simulator for Workflow

Scheduling

 This chapter presents the software simulator that we developed for simulating the

workflow scheduling activities in a Grid environment. Section 3-1 describes data

components in the simulator. Section 3-2 describes classes used in the simulator and

section 3-3 presents simulation processes.

3.1 Data Components in the Simulator

Input Workload:

A workflow application is represented by a direct acyclic graph (DAG). A DAG

is defined as G = (V, E), where V is a set of nodes, each representing a task, and E is

the set of links, each representing the computation precedence order between two

tasks. For example, a link (x,y) ∈ E represents the precedence constraint that task tx

completes before task ty starts.

Global System Time (GST):

 In a discrete-event based simulation, the simulator maintains a global timing

system which increments the time whenever an event is processed.

System Queues:

 There are two system queues: an event queue and a waiting queue. They keep the

events and tasks waiting for processing.

13

Grid Environment:

A Grid is composed of several clusters. A cluster contains an amount of

processors. The Grid is heterogeneous in that the processors at different clusters might

run at different speed. On the other hand, each cluster is homogeneous, consisting of

identical processors. The cost for a task includes computation and communication

costs where the former means the execution time, and the latter means the data

transfer time between processors. The computation cost of a task is the same for

different processors in the same cluster, but may be different in different clusters. The

communication cost between any two processors in the same cluster is set to be zero,

but not in different clusters. Figure 3-1 shows an example of a Grid environment in

our simulator. The processor speeds and network link speeds are homogeneous in the

same cluster, but they are heterogeneous between different clusters.

Figure 3-1 A Grid Environment

14

3.2 Classes in the Simulator

 In this section, the classes used in the simulator are described including

DAG_Generator, EventNode, EventQueue, WaitQueueNode, WaitQueue,

WorkflowScheduling and Allocation classes.

DAG_Generator:

DAG_Generator is responsible for generating input workload consisting of a

sequence of DAGs in their arrival order. Table 3-1 shows an UML DAG_Generator

class. It contains 7 attributes, <Node, Shape, OutDegree, CCR, BRange, WDAG,

Cluster>, and 4 operations, <Generator(), ShapeGenerator(Node, Shape),

RelationGenerator(Node, OutDegree), CostGenerator(Node, BRange, WDAG, Cluster,

CCR)>.

The attributes and operations in DAG_Generator are described as following.

Attributes:

1. Node: the number of tasks in a DAG.

2. Shape: the shape of a DAG.

3. OutDegree: the maximum of out degree of tasks in a DAG.

4. CCR: communication cost to computation cost ratio.

5. BRange (β): distribution range of computation cost of tasks on processors. It is

the heterogeneous factor for processor speeds. A high range indicates

Table 3-1 DAG_Generator class

15

significant differences in task’s computation costs among the processors and a

low range indicates that the expected execution time of a task is almost the

same on each processor.

6. WDAG: the average computation cost of a DAG.

7. Cluster: the number of clusters in a Grid environment.

Operations:

1. Generator(): randomly generates a DAG according to the 7 input parameters

mentioned above. It invokes ShapeGenerator(), RelationGenerator(),

CostGenerator() in turn.

2. ShapeGenerator(Node, Shape): generates the shape of a DAG using Node and

Shape parameters. The height (depth) of a DAG is randomly generated from a

uniform distribution with mean value equal to
 Node

Shape
. The width for each level

is randomly generated from a uniform distribution with mean value equal to

Shape × Node . If 𝑠ℎ𝑎𝑝𝑒 ≫ 1 , it generates a shorter graph with high

parallelism degree. Otherwise, if shape ≪ 1, it generates a longer graph with a

low parallelism degree.

3. RelationGenerator(Node, OutDegree): generates the connect relation of a DAG

according to the input parameters Node and OutDegree defined above. Out

degree of each task is randomly generated from a uniform distribution with

range [1, OutDegree].

4. CostGenerator(Node, BRange, WDAG, Cluster, CCR): generates the

computation cost and the communication cost of a DAG. The average estimated

computation cost of each task tx , i.e., wx is randomly generated from a

distribution ranged [1, 2 × WDAG]. The estimated computation cost of each

16

task tx on each cluster cy , i.e., wx,y is randomly generated from a uniform

distribution with range:

wx × (1 −
BRange

2
) ≤ wx,y ≤ wx × (1 +

BRange

2
)

EventNode:

 EventQueue stores a set of EventNodes. Each EventNode contains 6 attributes,

<type, time, jobIndex, dagIndex, *pre, *next>. Table 3-2 shows EventNode class.

Attributes:

1. type: the type of an event. Table 3-3 shows EventType enumeration. There are

two kinds of EventType: submit and end. Each event contains the attributes,

<jobIndex, dagIndex> uniquely identifying a job. When a submit event occurs,

a job <jobIndex, dagIndex> will be submitted to WaitQueue for scheduling and

allocation. When an end event occurs, a job <jobIndex, dagIndex> completes

successfully.

Table 3-2 EventNode class

Table 3-3 EventType enumeration

17

2. time: the time that the event happens.

3. jobIndex: the index of a job.

4. dagIndex: the index of a dag.

5. *pre: a link pointing to the preceding EventNode.

6. *next: a link pointing to the next EventNode.

EventQueue:

 EventQueue is composed of a sequence of EventNodes. There are 3 attributes,

<*front, *rear, eventQueueCount>, and 3 operations, <enQueue(EventNode),

deQueue(), isEmpty()> in EventQueue. Table 3-4 shows EventQueue class.

Attributes:

1. *front: points to the first EventNode in EventQueue.

2. *rear: points to the last EventNode in EventQueue.

Operations:

1. enQueue(EventNode): an operation that inserts an EventNode into

EventQueue.

2. deQueue(): an operation that removes and returns the first EventNode in

EventQueue.

Table 3-4 EventQueue class

18

3. isEmpty(): an operation that checks whether EventQueue is empty or not. If

EventQueue is empty, it returns true. Otherwise, it returns false.

 Figure 3-2 shows an example of EventQueue. The EventNodes are sorted

according to their arrival time (EventNode.time). *fornt points to the first EventNode,

EventNode1, and *rear points to the last EventNode, EventNode5.

Figure 3-2 An example of EventQueue

19

WaitQueueNode:

 WaitQueueNode represents the elements stored in WaitQueue. There are 7

attributes, <jobIndex, dagIndex, np, ftown, ftmulti, rank, slowdown> in

WaitQueueNode. Table 3-5 shows WaitQueueNode class.

Attributes:

1. jobIndex: the index of a job.

2. dagIndex: the index of a dag.

3. np: the number of processors that the job <jobIndex, dagIndex> needs.

4. ftown: the finish time of the job <jobIndex, dagIndex>, when the DAG has the

whole processors for exclusive use. The detail of ftown is described in [20].

5. ftmulti: the finish time of the job <jobIndex, dagIndex>, when the DAG is

scheduled onto processors along with other workflow applications. The detail

of ftmulti is described in [20].

6. rank: the upward rank value ranku. ranku (ti) means the length of critical

path from task ti to the exit task. The detail of ranku is described in Chapter

4.

7. slowdown: the main idea of the slowdown value is defined as ftown / ftmulti. The

detail of slowdown is described in [20].

Table 3-5 WaitQueueNode class

20

WaitQueue:

WaitQueue is composed of a sequence of WaitQueueNodes. On a submit event, a

new WaitQueueNode is created according to the EventNode, and is submitted to

WaitQueue by calling WaitQueue.enQueue (WaitQueueNode) operation. WaitQueue

has 2 attributes, <waitQueueCount, waitQueue[]>, and 10 operations,

<enQueue(WaitQueueNode), remove(WaitQueueNode), isEmpty(), front(),

Fairnss_TaskScheduling(), RankHYBD_TaskScheduling(), Easy_Backfilling(),

Conservative_Backfilling(), FirstFit(), FCFS()>. Table 3-6 shows WaitQueue class.

Attributes:

1. waitQueueCount: the total number of WaitQueueNodes in WaitQueue. In other

words, it represents the length of WaitQueue.

2. waiQueue[]: an array that WaitQueueNodes are stored.

Operations:

1. enQueue(WaitQueueNode): an operation that inserts a WaitQueueNode into

WaitQueue.

2. remove(WaitQueueNode): an operation that removes a WaitQueueNode from

Table 3-6 WaitQueue class

21

WaitQueue.

3. isEmpty(): an operation that checks whether WaitQueue is empty or not. If

WaitQueue is empty, it returns true. Otherwise, it returns false.

4. front(): returns the first WaitQueueNode in WaitQueue.

5. Fairness_TaskScheduling() and RankHYBD_TaskScheduling(): both

operations implement two distinct task scheduling algorithms. The order of

WaitQueueNodes in WaitQueue is determined by these two operations. The

details of these two scheduling algorithms will be described in Chapter 4.

6. Easy_Backfilling(), Conservative_Backfilling() and FirstFit(): In parallel task

scheduling, a task is delayed when the processors it needs are more than free

processors in the system. This situation causes a scheduling hole. These

approaches provide distinct methods to locate waiting tasks for the scheduling

hole to improve resource usage. The details of these algorithms will be

described in Chapter 4.

Workflow Scheduling:

 Workflow Scheduling implements workflow scheduling algorithms and contains

2 operations, <SWS(), CPWS()>. SWS means simple workflow scheduling, and

CPWS means critical path workflow scheduling. The detailed descriptions of these

two workflow scheduling algorithms are presented in Chapter 4. Table 3-1 shows

WorkflowScheduling class.

Table 3-7 WorkflowScheduling class

22

Allocation:

 Allocation implements allocation algorithms and contains 2 operations, <SA(),

AA()>. SA means simple allocation, and AA means adaptive allocation. The detailed

description of these two allocation algorithms are presented in Chapter 4. Table 3-8

shows Allocation class.

Table 3-8 Allocation class

23

3.3 Simulation Process

This section presents the simulation process. The GST cannot change until an

event happens. The simulation process contains several procedures including

Task_Submission(), Scheduler_Allocation() and Simulator(), where the former two

are invoked in Simulator(). The following describes the details.

Simulator():

Simulator() is the skeleton procedure of our simulator. Procedure 3-1 shows the

pseudo code of Simulator(). Firstly, it constructs a Grid environment, generates input

DAGs using DAG_Generator.Generator(), and then calls Task_Submission(), as

shown in lines 2 to 4. Line 5 checks whether EventQueue is empty or not. If

EventQueue is empty, the simulation completes successfully. Otherwise, the simulator

takes the first Node in EventQueue as EventNode, and sets GST with EventNode.time

as shown in lines 6 to 7. Lines 8 to 10 show that when the EventNode is a submit

event, a WaitQueueNode is created and added into WaitQueue correspondingly. Lines

11 to 13 show that if the EventNode is an end event, it will release the processors that

the EventNode requires, and calsl Task_Submission() to check if there are tasks need

to be submitted. Line 14 checks whether GST is equal to the time of the first node in

EventQueue or not. If it is equal, the simulator goes to loop the above execution.

Otherwise, it calls Scheduler_Allocation() to schedule the tasks in the waiting queue

and allocate the tasks.

Scheduler_Allocation():

Scheduler_Allocation() sorts waiting queue (WaitQueue.WaitQueue[]) according

to the task scheduling algorithm, and allocates a task to the free processor according

to the allocation algorithm. Procedure 3-2 shows the pseudo code of

24

Scheduler_Allocation(). According to the task scheduling algorithm used,

WaitQueue.Fairness_TaskScheduling() or WaitQueue.RankHYBD_TaskScheduling()

can be selected to prioritize tasks in waiting queue as shown in line 2. Line 3 checks

the waiting queue whether is empty or not. If the waiting queue is empty, the

procedure finishes. Otherwise, it executes the following codes. If workflows

composed of data-parallel tasks, scheduling holes may happen. To overcome this

problem for improving processor usage, the multi-processor task rearrangement

algorithm can be selected: WaitQueue.FCFS(), WaitQueue.FirstFit(),

WaitQueue.Conservative_Backfilling or WaitQueue.Easy_Backfilling, as shown in

lines 4 to 6. Lines 7 to 8 show that the system takes the first node in the waiting queue

as WaitQueueNode, and allocates the WaitQueueNode to the processors that it

requires using an allocation algorithm: Allocation.SA() or Allocation.AA(). After the

WaitQueueNode be allocated successfully, it is removed from the waiting queue as

shown in line 10. When the WaitQueueNode completes successfully, an EventNode is

created correspondingly. Then, it will be added to EventQueue with an end event as

shown in lines 11 to 12.

Task_Submission():

Procedure 3-3 shows the pseudo code of Task_Submission(). Different workflow

scheduling algorithms can be used, i.e., WorkflowScheduling.SWS() or

WorkflowScheduling.CPWS() as shown in line 2. The detail of these two workflow

scheduling algorithm is described in Chapter 4. Line 3 shows that the submitted tasks

that workflow scheduling algorithm determine will cause submit events be added into

EventQueue.

25

Simulator()

01 begin

02 construct a Grid environment;

03 generate online DAGs using DAG_Generator.Generator();

04 Task_Submission();

05 while(EventQueue.isEmpty() == false) do

06 EvnetNode = EventQueue.deQueue();

07 GST = EventNode.time;

08 if(EventNode.type == submit)

09 WaitQueueNode is created according to EventNode;

10 WaitQueue.enQueue(WaitQueueNode);

11 else // EventNode.type == end

12 release the processors that EventNode requires;

13 Task_Submission();

14 if((*EventQueue.front).time ≠ GST)

15 Scheduler_Allocation();

16 end if

17 end while

18 end

Procedure 3-1. Simulator()

26

Scheduler_Allocation()

01 begin

02 // according to the task scheduling algorithm

 WaitQueue.Fairness_TaskScheduler() or

 WaitQueue.RankHYBD_TaskScheduler();

03 while(WaitQueue.isEmpty() == false) do

04 if (workflows composed of data-parallel tasks)

05 // according to the multi-processor task rearrangement

 WaitQueue.FCFS() or WaitQueue.FirstFit() or

 WaitQueue.Conservative_Backfilling() or

 WaitQueue.Easy_Backfilling();

06 end if

07 WaitQueueNode = WaitQueue.front();

08 // according to the allocation algorithm

 Allocation.SA() or Allocation.AA();

09 if (allocate WaitQueueNode successfully)

10 WaitQueue.remove(WaitQueueNode);

11 EventNode is created according WaitQueueNode;

12 EventQueue.enQueue(EventNode); // end event

13 end if

14 end while

15 end

Procedure 3-2. Scheduler_Allocation()

27

Task_Submission()

01 begin

02 // according to the workflow scheduling algorithm

 WorkflowScheduling.SWS() or WorkflowScheduling.CPWS();

03 /* the submitted tasks that workflow scheduling algorithm determine

will cause submit events be added into EventQueue */

 EventQueue.enQueue(EventNode); // submit event

04 end

Procedure 3-3. Task_Submission()

28

Chapter 4 Online Workflow Management in a

Grid Environment

In this chapter, we propose an Online Workflow Management system (OWM)

for dealing with the simulation of online workflows in a Grid environment. Section

4.1 describes the structure of OWM. Section 4.2 presents the proposed algorithms for

OWM

4.1 Structure of Online Workflow Management

 Figure 4-1 shows the structure of OWM. In OWM, there are four processes:

Critical Path Workflow Scheduling (CPWS), Task Scheduling, multi-processor task

rearrangement and Adaptive Allocation (AA), and three data structures: online

workflows, a Grid environment and a waiting queue. The processes are represented by

solid boxes, and the data structures are represented by dotted boxes.

 The four processes in OWM are independent. When workflows come into the

system or tasks complete successfully, CPWS, takes the critical path in workflows

into account, and submits the tasks of online workflows into the waiting queue. The

details of CWPS are described in section 4.2. The task scheduling process in OWM is

RANK_HYBD [21]. In RANK_HYBD, the task execution order is sorted based on

the length of tasks’ critical path. If all tasks in the waiting queue belong to the same

workflow, they are sorted in the descending order. Otherwise, the tasks in different

workflows are sorted in the ascending order. In parallel task scheduling, there may be

some scheduling holes which are formed when the free processors are not enough for

the first task in the queue. A multi-processor rearrangement process in OWM works

for scheduling holes to improve utilization. Existing techniques for the process

29

include first fit, easy backfilling [22] or conservative backfilling [22] approaches.

When there are free processors in the Grid environment, AA gets the first task (the

highest priority task) in the waiting queue, and selects the required processors to

execute the task. The details of AA are described in section 4.2.

Figure 4-1 Online Workflow Management (OWM)

30

4.2 Online Workflow Management (OWM)

4.2.1 Upward Rank Value

The upward rank of a task 𝑡𝑖 . 𝑟𝑎𝑛𝑘𝑢 𝑡𝑖 [7] is the length of critical path form

task 𝑡𝑖 to the exit task. The definition as below

 𝑟𝑎𝑛𝑘𝑢 𝑡𝑖 = 𝑤𝑖 + max𝑡𝑗∈𝑠𝑢𝑐𝑐 (𝑡𝑖)(𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗))

, where 𝑠𝑢𝑐𝑐(𝑡𝑖) is the set of immediate successors of task 𝑡𝑖 , 𝑐𝑖 ,𝑗 is the average

communication cost of edge (𝑖, 𝑗), and 𝑤𝑖 is the average computation cost of task 𝑡𝑖 .

The computation of a rank starts from the exit task and traverses up along the task

graph recursively. Thus, the rank is called upward rank, and the upward rank of the

exit task 𝑡𝑒𝑥𝑖𝑡 is

𝑟𝑎𝑛𝑘𝑢 𝑡𝑒𝑥𝑖𝑡 = 𝑤𝑒𝑥𝑖𝑡

4.2.2 Critical Path Workflow Scheduling (CPWS)

A task has four states: finished, submitted, ready and unready. A finished task

means the task has completed its execution successfully. A submitted task means the

task is in the waiting queue. A task is ready when all necessary predecessor(s) of the

task have finished. It is not, otherwise; the task is unready.

Workflow scheduling in RANK_HYBD [21] is straightforward. It submits the

ready tasks into the waiting queue and is named Simple Workflow Scheduling (SWS).

On the other hand, when a new workflow arrives, CPWS is adopted to calculate ranku

of each task in the workflow and sort and put in a list for the tasks in descending order

of ranku. The list is named as a critical path list. The system maintains an array List[],

and List[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖] points to the critical path list of 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖 . CPWS is

described in Algorithm 4-1.According to the order in each critical path list, CPWS

continuously submits the ready tasks in a list into the waiting queue until running into

an unready task.

31

Figure 4-2 and 4-3 shows the difference between SWS and CPWS. Figure 4-2

shows an example of SWS. Black nodes are finished tasks, i.e., A1, A2, B1 and B3.

White nodes are ready tasks, i.e., A3, A4, B2 and B4. White nodes with dotted lines

are unready tasks, i.e., A5 and B5. SWS submits all ready tasks into the waiting queue,

i.e., A3, A4, B2 and B4. Figure 4-3 shows an example of CPWS. The critical path list

of each workflow is sorted in descending order of ranku. The critical path list for

workflow A is A1→A2→A3→A5→A4 and the critical path list for workflow B is B1

→B3→B4→B5→B2. A1, A2, B1 and B3 have been finished. A3, A4, B2 and B4 are

ready. A5 and B5 are unready. According to the order in the critical path lists, CPWS

submits A3 and B4 tasks.

D: a set of unfinished workflows

List[]:an array of critical path lists. List[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖] keeps the critical path list of

𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖

CPWS(D,List[])

1 begin

2 while(𝐷 ≠ ∅) do

3 for each 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖 ∈ 𝐷 do

4 according to the order List[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖], continuously

submit the ready tasks into the waiting queue until

running into an unready task;

5 end while

6 end

Algorithm 4-1. CPWS algorithm

32

Figure 4-2 An example of SWS

Figure 4-3 An example of CPWS

33

4.2.3 Adaptive Allocation (AA)

To improve the precision, we define the following quantities:

 The Estimated Computation Time ECT(t, p) is defined as the estimated

execution time of task t on processor group p.

 The Estimated File Communication Time EFCT(t, p) is defined as the

estimated communication time required by task t on processor group p to

receive all necessary files before execution.

 The Estimated Available Time EAT(t, p) is defined as the earliest time when

processor group p has a large enough time slot to execute task t.

 The Estimated Finish Time EFT(t, p) is defined as the estimated time when

task t completes on processor group p:

𝐸𝐹𝑇 𝑡, 𝑝 = 𝐸𝐴𝑇 𝑡, 𝑝 + 𝐸𝐶𝑇 𝑡, 𝑝 + 𝐸𝐹𝐶𝑇(𝑡, 𝑝)

The task allocation method in RANK_HYBD [21] selects the highest priority

task and allocates it to the free processor group that has the earliest estimated finish

time. We call this approach as Simple Allocation (SA). In this thesis, we propose a

new approach called Adaptive Allocation (AA). The main idea of AA is described

below:

1. When the number of clusters that can accommodate the first task is 1, it

finds the processor group with the earliest estimated available time among

other clusters. If the estimated finish time of the first task on that processor

group in the future is earlier than that on the free processor group, the task

will be kept in the waiting queue. Otherwise, the system allocates the task to

the free processor group right away.

2. When the number of clusters that can accommodate the highest priority task

is larger than 1, it allocates the highest priority task to the free processor

group that has the earliest estimated finish time.

34

AA is described in Algorithm 4-2 which indicates a loop. When there are free

processors and the waiting queue contains at least one task, it selects the first tasks

and follows above allocation rules. In parallel task scheduling, if the number of free

processors is not enough for a task, the idle processors become a scheduling hole. To

overcome this problem, we import multi-processor task rearrangement, i.e., first fit,

easy backfilling [22] or conservative backfilling [22] to fix the scheduling hole as

shown in lines 4 to 5. First fit approach finds the first waiting task that can be moved

to fix the scheduling hole. Conservative backfilling approach moves tasks forward

only if they do not delay previously queued task. Easy backfilling approach is more

aggressive and allows tasks to skip ahead provided they do not delay the job at the

head of the queue [22]. Lines 25 to 31 show that a function

(allocateNumberOfClusters(R, 𝑡𝑖)). It returns the number of clusters that can

accommodate the first task. If the function returns 1, the steps in lines 8 to 16 work

for item 1 described previously. If the function returns a number larger than 1, the

steps in lines 17 to 22 work for item 2.

35

𝑇: a set of tasks in the waiting queue

𝑅: a set of free processors

C: a set of clusters

AA(T,R,C)

01 begin

02 while(𝑇 ≠ ∅ 𝑎𝑛𝑑 𝑅 ≠ ∅) do

03 select 𝑡𝑖 ∈ 𝑇, where 𝑡𝑖 with the highest priority task;

04 If workflows are composed of data-parallel tasks

05 *Multi-Processor Task Rearrangement;

06 If allocateNumberOfClusters(R, 𝑡𝑖) = 0

07 task 𝑡𝑖 keeps waiting in the waiting queue;

08 else if allocateNumberOfClusters(R, 𝑡𝑖) = 1

09 the free processor group 𝑝𝑥 ∈ 𝐶𝑥 and calculate 𝐸𝐹𝑇 𝑡𝑖 ,𝑝𝑥 ;

10 find the processor group 𝑝𝑦 ∈ 𝐶𝑦 with the earliest estimated

available time among other clusters, where Cx ≠ Cy ;

11 If 𝐸𝐹𝑇 𝑡𝑖 ,𝑝𝑥 ≤ 𝐸𝐹𝑇 𝑡𝑖 , 𝑝𝑦

12 Assign task 𝑡𝑖 to the processor(s) 𝑝𝑥 ;

13 𝑇 = 𝑇 − {𝑡𝑖};

14 𝑅 = 𝑅 − {𝑝𝑥};

15 else

16 task 𝑡𝑖 keeps waiting in the waiting queue;

17 else // allocateNumberOfClusters(R, 𝑡𝑖)> 1

18 for each processor group 𝑝𝑘 ∈ 𝑅 do

19 calculate 𝐸𝐹𝑇 𝑡𝑖 , 𝑝𝑘 ; // EAT(ti,pk) = current time

20 Assign task 𝑡𝑖 to the processor group 𝑝𝑘 that has earliest

estimated finish time, 𝐸𝐹𝑇 𝑡𝑖 , 𝑝𝑘 ;

21 𝑇 = 𝑇 − {𝑡𝑖};

22 𝑅 = 𝑅 − {𝑝𝑘};

23 end while

24 end

36

Algorithm 4-2. AA algorithm

25 int allocateNumberOfClusters(R, 𝑡𝑖){

26 numberOfCluster=0;

27 for each cluster Ci do

28 If free processors in Ci ≥ processors that 𝑡𝑖 requires

29 numberOfClusters++;

30 return numberOfClusters;

31 }

*Each simulation selects one of first fit, easy backfilling and conservative

backfilling approaches;

37

Chapter 5 Experimental Results

This chapter presents the experimental results of the proposed method. Section

5.1 introduces the performance metrics used. Section 5.2 describes experimental

results for workflows composed of single-processor tasks. Section 5.3 presents

experimental results for workflows composed of data-parallel tasks.

5.1 Performance Metrics

The performance metrics used in our experiments are described below:

 makespan: the time between submission and completion of a workflow,

including execution time and waiting time.

 Schedule Length Ratio (SLR): makespan usually varies widely among

workflows with different sizes and other properties. To measure the scheduling

efficiency objectively, we can use another performance metric derived from

makespan, which calculates the ratio of a workflow’s makespan over the best

possible schedule length in a given environment. The performance is called

Schedule Length Ratio (SLR) and defined by

𝑆𝐿𝑅 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝐶𝑃𝐿

, where CPL represents the Critical Path Length of a workflow. SLR is not

sensitive to the size of a workflow.

 win (%): used for the comparison of different algorithms. For a workflow, one

of the algorithms has shortest makespan. The win value of an algorithm means

the percentage of the workflows that have the shortest makespan. From users’

perspective, the higher win value leads to the higher satisfaction.

38

5.2 Experimental Results for Workflows Composed of

Single-Processor Tasks

5.2.1 Difference between RANK_HYBD, Fairness_Dynamic and

OWM

We partition the complete scheduling process into three components, workflow

scheduling, task scheduling and allocation approaches, for clearly clarifying the

differences among different scheduling approaches. Z Yu et al. [21] propose a

dynamic algorithm for online workflows, RANK_HYBD as shown in figure 5-1(a).

The original Fairness approach (F2) in [20] is a static algorithm and can not deal with

online workflows. In the following experiments, we modify the Fairness (F2)

approach to handle online workflows by replacing the original workflow scheduling

and allocation approaches in this approach with SWS and SA respectively. We call

this new approach as Fairness_Dynamic in figure 5-1.

Figure 5-1 The difference between RANK_HYBD, Fairness_Dynamic and OWM

39

5.2.2 Experimental Setup

To experiment with different workload characteristics, we use the following

parameters to generate different types of workflows. A workflow is represented as a

Directed Acyclic Graph (DAG).

 Node={20, 40, 60, 80, 100}

 Shape={0.5, 1.0, 2.0}

 OutDegree={1, 2, 3, 4, 5}

 CCR={0.1, 0.5, 1.0, 1.5, 2.0}

 BRange={0.1, 0.25, 0.5, 0.75, 1.0}

 WDAG=100~1000

The values of these parameters are randomly selected from the corresponding

sets given above for each DAG. The arrival interval value between DAGs is set based

on Poisson distribution. Each experiment involves 20 runs, and each run has 100

unique DAGs on a Grid environment that contains 3 clusters each containing 30~50

processors respectively.

In the experiment, we also take other factors into account: the distribution of

tasks’ computation cost (Wi_DisType) and the computation intensity of a workflow

represented by CCR (computationIntensity). The average computation cost of each

task is randomly generated from a probability distribution within the range [1, 2 ×

WDAG] as described in Chapter 3. We experimented with both a uniform distribution

and an exponential distribution for tasks’ computation cost. For the computation

intensity of a workflow, we refer a workflow to computation intensive if its

computation time is longer than file communication time. Otherwise, a workflow is

communication intensive. For general workflows, CCR is randomly selected from the

set {0.1, 0.5, 1.0, 1.5, 2.0}. For computation-intensive workflows, CCR is randomly

selected form the set {0.1, 0.5}, and for communication-intensive workflows, CCR is

40

randomly selected from the set {1.5, 2.0}.

5.2.3 Results Analyses

A. Impact of the Arrival Interval of workflows

 Figure 5-2, 5-3 and 5-4 show the results of different mean arrival intervals for

average makespan, average SLR and win (%) respectively. It can be easily seen that

when the system is more crowded, i.e., smaller arrival interval in the figures, OWM

outperforms the other two algorithms significantly. When all DAGs are submitted at

the same time, i.e., the zero arrival interval in the figures, OWM outperforms

Fainess_Dynamic by 26% and 49%, and outperforms RANK_HYBD by 13% and

20% for average makespan and average SLR respectively, as shown in figure 5-2 and

5-3. Fairness_Dynamic has pool performance for average SLR, because it achieves

fairness by the cost of enlarging the makespan of the workflows with shorter critical

path length. OWM wins in terms of makespan by 94.55% as shown in figure 5-4.

From users’ perspective, it means 94.55% users may prefer OWM. When workflows

arrive at an interval about 400 time units, these three algorithms are almost equivalent

for average makespan, average SLR and win (%) because one workflow almost come

in after another one finishes. In real environments, most high-performance centers are

overloaded, therefore OWM can outperform others in such environments.

41

0

5000

10000

15000

20000

0 50 100 150 200 250 300 350 400

a
vg

. m
ak

e
sp

a
n

arrival interval of workflows

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

av
g.

 S
LR

arrival interval of workflows

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

Figure 5-2 Results of different mean arrival intervals for average makespan

Figure 5-3 Results of different mean arrival intervals for average SLR

42

B. Impact of the Computation Intensity with Different Distributions of Tasks’

Computation Cost

 Figure 5-5, 5-6 and 5-7 show the results of computation intensity at different

levels for average makespan, average SLR and win (%) with a uniform distribution of

tasks’ computation cost respectively. Figure 5-8, 5-9 and 5-10 show the results with an

exponential distribution of tasks’ computation cost. In these experiments, the arrival

interval of workflows is set with the Poisson distribution with the mean value of 20. It

represents a global level that several workflows may be simultaneously running in the

system. Obviously, OWM outperforms the other two algorithms. The superiority of

OWM over the other two methods is that it consistently achieves the best performance

for all types of workflows.

 In figure 5-5, OWM outperforms Fairness_Dynamic by 23%, 22% and 27%,

and outperforms RANK_HYBD by 12%, 17% and 11% in terms of average makespan

for general, computation and communication intensive workflows respectively. In

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

w
in

 (
%

)

arrival interval of workflows

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

Figure 5-4 Results of different mean arrival intervals for win (%)

43

figure 5-6, OWM outperforms Fairness_Dynamic by 44%, 45% and 45%, and

outperforms RANK_HYBD by 16%, 19% and 14% in terms of SLR for general,

computation and communication intensive workflows respectively. OWM wins in

terms of makespan by about 82% for all the three types of workflows as show in

figure 5-7.

In figure 5-8, OWM outperforms Fairness_Dynamic by 17%, 14% and 20%, and

outperforms RANK_HYBD by 16%, 20% and 15% in terms of average makespan for

general, computation and communication intensive workflows respectively. In figure

5-9, OWM outperforms Fairness_Dynamic by 24%, 20% and 26%, and outperforms

RANK_HYBD by 20%, 23% and 18% for in terms of average SLR for general,

computation and communication intensive workflows respectively. OWM wins in

terms of makespan by about 72% for all the three types of workflows as show in

figure 5-10.

0

5000

10000

15000

20000

25000

general computation communication

av
g.

 m
ak

e
sp

an

intensive

Wi_DisType=uniform

Fairness_Dynamic RANK_HYBD OWM

Figure 5-5 Results of different computation intensity for average makespan

with a uniform distribution of tasks’ computation cost

44

0

1

2

3

4

5

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform

Fairness_Dynamic RANK_HYBD OWM

0

20

40

60

80

100

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform

Fairness_Dynamic RANK_HYBD OWM

Figure 5-6 Results of different computation intensity for average SLR with

a uniform distribution of tasks’ computation cost

Figure 5-7 Results of different computation intensity for win (%) with a

uniform distribution of tasks’ computation cost

45

0

2000

4000

6000

8000

10000

12000

14000

16000

general computation communication

a
vg

. m
ak

e
sp

a
n

intensive

Wi_DisType=exponential

Fairness_Dynamic RANK_HYBD OWM

0

0.5

1

1.5

2

2.5

3

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential

Fairness_Dynamic RANK_HYBD OWM

Figure 5-9 Results of different computation intensity for average SLR with

an exponential distribution of tasks’ computation cost

Figure 5-8 Results of different computation intensity for average makespan

with an exponential distribution of tasks’ computation cost

46

0

10

20

30

40

50

60

70

80

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential

Fairness_Dynamic RANK_HYBD OWM

Figure 5-10 Results of different computation intensity for win (%) with an

exponential distribution of tasks’ computation cost

47

C. Impact of the Number of Clusters

 The following investigate the effects of cluster amount in a Grid environment. In

the experiment, the Grid environment is composed of 120 processors, and divided

equally into a different number of clusters, 2, 4, 6, 8, 10 and 12, for each test case. We

assume the arrival interval of workflows conforms to the Poisson distribution with the

mean value of 20. The results indicate that in average, OWM outperforms

Fairness_Dynamic by 22%, and outperforms RANK_HYBD by 11% in terms of

average makespan as shown in figure 5-1l. OWM outperforms Fairness_Dynamic by

48%, and outperforms RANK_HYBD by 15% in terms of average SLR as shown in

figure 5-12. OWM wins in terms of makespan by about 82% as shown in figure 5-13.

0

5000

10000

15000

20000

2 4 6 8 10 12

av
g.

 m
ak

es
p

an

number of clusters

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

Figure 5-11 Results of different number of clusters for average makespan

48

0

1

2

3

4

5

2 4 6 8 10 12

av
g.

 S
LR

number of clusters

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

0

20

40

60

80

100

2 4 6 8 10 12

w
in

 (
%

)

number of clusters

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

Figure 5-12 Results of different number of clusters for average SLR

Figure 5-13 Results of different number of clusters for win (%)

49

D. Impact of Inaccurate Execution Estimates

 The execution time of each task on a specific processor is necessary information

for workflow scheduling algorithms. In practice, the execution time of a task is

usually difficult to known before the execution completes. Therefore, the execution

time used in scheduling algorithm s is not precise. The following experiments

investigate the effects of inaccurate estimation of task execution time. The simulator

picks the actual execution time of a task randomly from the range:

[1, 𝑒𝑡 + 2 ×
𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

100
× 𝑒𝑡]

, where 𝑒𝑡 is the estimated execution time of the task. For example, when the

uncertainty is 400 and 𝑒𝑡 of a task is 100, the actual execution time of the task is

randomly picked from the range: [1, 900]. We also assume that the arrival interval of

workflows conforms to the Poisson distribution with the mean value of 20. Figure

5-14, 5-15 and 5-16 show the results of inaccurate execution estimates for average

makespan, average SLR and win (%) respectively. It can be easily observed that

OWM outperforms the other two algorithms for the uncertainty levels from 50% to

400%. In average, OWM outperforms Fairness_Dynamic by 19%, and outperforms

RANK_HYBD by 8% for average makespan as shown in figure 5-14; OWM

outperforms Fairness_Dynamic by 38%, and outperforms RANK_HYBD by 12% for

average SLR as shown in figure 5-15. OWM wins in terms of makespan by about

74% as shown in figure 5-16. These results indicate that OWM is more resilient to

inaccurate estimation of task execution time than the other methods.

50

0

20000

40000

60000

80000

100000

50 100 150 200 250 300 350 400

av
g.

 m
ak

e
sp

an

uncertainty (%)

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

0

5

10

15

20

50 100 150 200 250 300 350 400

av
g.

 S
LR

uncertainty (%)

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

Figure 5-15 Results of inaccurate execution estimates for average SLR

Figure 5-14 Results of inaccurate execution estimates for average makespan

51

0

20

40

60

80

100

50 100 150 200 250 300 350 400

w
in

 (
%

)

uncertainty (%)

Wi_DisType=uniform, computationIntensity=general

Fairness_Dynamic RANK_HYBD OWM

Figure 5-16 Results of inaccurate execution estimates for win (%)

52

5.3 Experimental Results for Workflows Composed of Data-Parallel

Tasks

 In this section, we compare different multi-processor task rearrangement

processes including first fit, easy backfilling [22] and conservative backfilling [22]

approaches with FCFS (First Come First Serve) approach. The FCFS approach

doesn’t find waiting task to fit the scheduling hole. In the experiments, OWM(FCFS),

OWM(conservative), OWM(easy) and OWM(first fit) stand for FCFS, conservative

backfilling, easy backfilling and first fit approaches respectively. Figure 5-17 shows

the main processes in OWM(FCFS), OWM(conservative), OWM(easy) and

OWM(first fit).

Figure 5-17 The processes in OWM(FCFS), OWM(conservative),

OWM(easy) and OWM(first fit)

53

5.3.1 Experimental Setup

The experimental setups for data-parallel tasks are the same as that for

single-processor tasks, but each run has 50 unique workflows. To be more realistic,

maximal required processors of all tasks (maxTaskNP) and the distribution of the

processors that tasks require (NP_DisType) are taken into account. In the experiment,

maxTaskNP is defined with maximum, half and minimum.

 maxTaskNP is maximum: maxTaskNP = the number of processors in the smallest

cluster in the Grid environment.

 maxTaskNP is half: maxTaskNP =
1

2
× the number of processors in the smallest

cluster in the Grid environment.

 maxTaskNP is minimum: maxTaskNP =
1

5
× the number of processors in the

smallest cluster in the Grid environment.

The required processors of each task is randomly generated from a probability

distribution within the range [1,𝑚𝑎𝑥𝑇𝑎𝑠𝑘𝑁𝑃]. The experiment is done with uniform

distribution, exponential distribution and normal distribution for NP_DisType.

54

5.3.2 Results Analyses

 Each experiment is configured by the following four parameters. Their values are

assigned from the corresponding sets below:

 Wi_DisType={uniform, exponential}

 maxTaskNP={maximum, half, minimum}

 NP_DisType={uniform, exponential, normal}

 computationIntensity={general, computation, communication}

The combinations of the above parameter values give 54 different experiments.

These 54 experiments lead to an interesting observation for workflow scheduling. In

independent task scheduling, it is well known that FCFS approach has worse

performance than conservative backfilling [22], easy backfilling and first fit

approaches. However, in workflow scheduling, the experiments show that

OWM(FCFS) is almost equal to OWM(conservative), and outperforms OWM(easy)

and OWM(first fit) for average SLR, and outperforms the other three approaches for

win (%). The results indicate that that when the waiting tasks are rearranged by the

multi-processor task rearrangement process, it doesn’t result in better performance as

expected. The following example helps to explain the reason. The tasks in the waiting

queue are sorted by their critical path in the ascending order. Suppose that a workflow

is near completion, and the last task in the workflow will get the highest priority in the

waiting queue. If the task cannot be allocated due to the lack of free processors, the

multi-processor task rearrangement process will find a waiting task to fit the

scheduling hole. The above rearrangement technique may make the last task to wait

infinitely, and it in turn increases the makespan of the workflow. So, the performance

may be reduced correspondingly. Therefore, frequent the task rearrangement may

contrarily lead to poor performance. For example, OWM(first fit) has the highest

frequency of task rearrangement, and may result in the worst performance.

55

Figure 5-18, 5-19 and 5-20 are an example among the 54 experiments. Other

experimental results are shown in Appendix. Figure 5-18, 5-19 and 5-20 show the

results of different computation intensity for average makespan, average SLR and win

(%) respectively, with Wi_DisType=uniform, maxTaskNP=min, and

NP_DisType=uniform.

0

5000

10000

15000

20000

25000

30000

general computation communication

a
vg

. m
ak

e
sp

a
n

cost intensive

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure 5-18 Results of different computation intensity for average makespan

with (uniform, min, uniform)

56

0

1

2

3

4

5

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure 5-19 Results of different computation intensity for average SLR

with (uniform, min, uniform)

Figure 5-20 Results of different computation intensity for win (%)

with (uniform, min, uniform)

57

Chapter 6 Conclusion and Future Work

Most workflow scheduling algorithms are restricted to the domain of single

workflow. There are few researches for scheduling online workflows. In the thesis, we

propose OWM approach for scheduling online workflows in a Grid environment. Our

experiments show that OWM outperforms RANK_HYBD [21] and

Fairness_Dynamic for average makesapn, average SLR and win (%) in different

experimental workloads.

 However, RANK_HYBD and Fairness_Dynamic do not work with workflows

composed of data-parallel tasks. There are few studies focused on workflow

scheduling for data-parallel tasks. The thesis takes this issue into account. We

incorporate well-known approaches, e.g., first fit, easy backfilling [22] and

conservative backfilling [22] into OWM to deal with workflows composed of

data-parallel tasks. The experiments show that OWM(FCFS) is almost equal to

OWM(conservative), and outperforms OWM(easy) and OWM(first fit) for average

SLR, and outperforms the other three approaches for win (%).

 In the future, we will investigate the trade-off between the QoS (Quality of

Service) and the performance, i.e., the relation between the fairness and average

makespan for workflows. In addition, we will implement OWM to real Grid

environments to validate our simulation results.

58

Appendix

The remainder experimental results for workflows composed of data-parallel

tasks are shown below.

0

50000

100000

150000

200000

general computation communication

av
g.

 m
ak

es
p

an

cost intensive

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5

10

15

20

25

30

35

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-2 Results of different computation intensity for average SLR

with (uniform, max, uniform)

Figure A-1 Results of different computation intensity for average makespan

with (uniform, max, uniform)

59

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

20000

40000

60000

80000

100000

120000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-3 Results of different computation intensity for win (%)

with (uniform, max, uniform)

Figure A-4 Results of different computation intensity for average makespan

with (uniform, max, exponential)

60

0

5

10

15

20

25

30

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-5 Results of different computation intensity for average SLR

with (uniform, max, exponential)

Figure A-6 Results of different computation intensity for win (%)

with (uniform, max, exponential)

61

0

50000

100000

150000

200000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5

10

15

20

25

30

35

40

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-8 Results of different computation intensity for average SLR

with (uniform, max, normal)

Figure A-7 Results of different computation intensity for average makespan

with (uniform, max, normal)

62

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10000

20000

30000

40000

50000

60000

70000

80000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-9 Results of different computation intensity for win (%)

with (uniform, max, normal)

Figure A-10 Results of different computation intensity for average makespan

with (uniform, half, uniform)

63

0

2

4

6

8

10

12

14

16

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-11 Results of different computation intensity for average SLR

with (uniform, half, uniform)

Figure A-12 Results of different computation intensity for win (%)

with (uniform, half, uniform)

64

0

10000

20000

30000

40000

50000

60000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

2

4

6

8

10

12

14

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-14 Results of different computation intensity for average SLR

with (uniform, half, exponential)

Figure A-13 Results of different computation intensity for average makespan

with (uniform, half, exponential)

65

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10000

20000

30000

40000

50000

60000

70000

80000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-15 Results of different computation intensity for win (%)

with (uniform, half, exponential)

Figure A-16 Results of different computation intensity for average makespan

with (uniform, half, normal)

66

0

2

4

6

8

10

12

14

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-17 Results of different computation intensity for average SLR

with (uniform, half, normal)

Figure A-18 Results of different computation intensity for win (%)

with (uniform, half, normal)

67

0

5000

10000

15000

20000

25000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

0.5

1

1.5

2

2.5

3

3.5

4

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-20 Results of different computation intensity for average SLR

with (uniform, min, exponential)

Figure A-19 Results of different computation intensity for average makespan

with (uniform, min, exponential)

68

0

5

10

15

20

25

30

35

40

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5000

10000

15000

20000

25000

30000

35000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-21 Results of different computation intensity for win (%)

with (uniform, min, exponential)

Figure A-22 Results of different computation intensity for average makespan

with (uniform, min, normal)

69

0

1

2

3

4

5

6

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-23 Results of different computation intensity for average SLR

with (uniform, min, normal)

Figure A-24 Results of different computation intensity for win (%)

with (uniform, min, normal)

70

0

20000

40000

60000

80000

100000

120000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5

10

15

20

25

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-26 Results of different computation intensity for average SLR

with (exponential, max, uniform)

Figure A-25 Results of different computation intensity for average makespan

with (exponential, max, uniform)

71

0

10

20

30

40

50

60

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10000

20000

30000

40000

50000

60000

70000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-27 Results of different computation intensity for win (%)

with (exponential, max, uniform)

Figure A-28 Results of different computation intensity for average makespan

with (exponential, max, exponential)

72

0

2

4

6

8

10

12

14

16

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-29 Results of different computation intensity for average SLR

with (exponential, max, exponential)

Figure A-30 Results of different computation intensity for win (%)

with (exponential, max, exponential)

73

0

20000

40000

60000

80000

100000

120000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5

10

15

20

25

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-32 Results of different computation intensity for average SLR

with (exponential, max, normal)

Figure A-31 Results of different computation intensity for average makespan

with (exponential, max, normal)

74

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10000

20000

30000

40000

50000

60000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-33 Results of different computation intensity for win (%)

with (exponential, max, normal)

Figure A-34 Results of different computation intensity for average makespan

with (exponential, half, uniform)

75

0

2

4

6

8

10

12

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-35 Results of different computation intensity for average SLR

with (exponential, half, uniform)

Figure A-36 Results of different computation intensity for win (%)

with (exponential, half, uniform)

76

0

5000

10000

15000

20000

25000

30000

35000

general computation communication

av
g

m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

1

2

3

4

5

6

7

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-38 Results of different computation intensity for average SLR

with (exponential, half, exponential)

Figure A-37 Results of different computation intensity for average makespan

with (exponential, half, exponential)

77

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10000

20000

30000

40000

50000

60000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-39 Results of different computation intensity for win (%)

with (exponential, half, exponential)

Figure A-40 Results of different computation intensity for average makespan

with (exponential, half, normal)

78

0

2

4

6

8

10

12

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-41 Results of different computation intensity for average SLR

with (exponential, half, normal)

Figure A-42 Results of different computation intensity for win (%)

with (exponential, half, normal)

79

0

5000

10000

15000

20000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

0.5

1

1.5

2

2.5

3

3.5

4

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-44 Results of different computation intensity for average SLR

with (exponential, min, uniform)

Figure A-43 Results of different computation intensity for average makespan

with (exponential, min, uniform)

80

0

5

10

15

20

25

30

35

40

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

2000

4000

6000

8000

10000

12000

14000

16000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-45 Results of different computation intensity for win (%)

with (exponential, min, uniform)

Figure A-46 Results of different computation intensity for average makespan

with (exponential, min, exponential)

81

0

0.5

1

1.5

2

2.5

3

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5

10

15

20

25

30

35

40

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-47 Results of different computation intensity for average SLR

with (exponential, min, exponential)

Figure A-48 Results of different computation intensity for win (%)

with (exponential, min, exponential)

82

0

5000

10000

15000

20000

25000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

1

2

3

4

5

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-50 Results of different computation intensity for average SLR

with (exponential, min, normal)

Figure A-49 Results of different computation intensity for average makespan

with (exponential, min, normal)

83

0

5

10

15

20

25

30

35

40

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-51 Results of different computation intensity for win (%)

with (exponential, min, normal)

84

Reference

[1] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M.

Mazina, J. Mellor- Crummey, F. Berman, H. Casanova, A. Chien, H. Dail,

X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed,

W. Deng, C. Mendes, Z. Shi, A. YarKhan and J. Dongarra, “New Grid

Scheduling and Rescheduling Methods in the GrADS Project”, in Proc. of the

18th International Parallel and Distributed Processing Symposium (IPDPS'04),

pp.199--206, Santa Fe, New Mexico USA, April 2004.

[2] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran,

A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen,

R.F. Freund, “A Comparison of Eleven Static Heuristics for Mapping a Class

of Independent Tasks onto Heterogeneous Distributed Computing Systems”,

Journal of Parallel and Distributed Computing, Volume 61, Number 6, June

2001 , pp. 810-837(28).

[3] M. Wu and D. Gajski. “ Hypertool: A Programming Aid for Message Passing

Systems”. IEEE Transactions on Parallel and Distributed Systems, vol. 1, pp.

330-343, July 1990.

[4] Y. Kwok and I. Ahmad. “Dynamic Critical-Path Scheduling: An Effective

Technique for Allocation Task Graphs to Multi-processors”. IEEE

Transactions on Parallel and Distributed Systems, vol. 7, no. 5, pp. 506-521,

May 1996.

[5] G.C. Sih and E.A. Lee. “ A Compile-Time Scheduling Heuristic for

Interconnection-Constrained Heterogeneous Processor Architectures”. IEEE

Transactions on Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-186,

Feb 1993.

[6] H. EI-Rewini and T.G. Lewis. “Scheduling Parallel Program Tasks onto

Arbitrary Target Machines”. J. Parallel and Distributed Computing, vol. 9, pp.

138-153, 1990.

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Performance-Effective and

Low-Complexity Task Scheduling for Heterogeneous Computing”. IEEE

Transactions on Parallel and Distributed Systems, 2(13):260-247, 2002.

[8] T. Yang and A. Gerasoulis. “DSC: Scheduling Parallel Tasks on an

Unbounded Number of Processors”. IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 9, pp. 951-967, Sept. 1994.

[9] G. Park, B. Shirazi, and J. Marquis. “DFRN: A New Approach for Duplication

Based Scheduling for Distributed Memory Multi-processor Systems”. Proc.

85

Int'l Conf. Parallel Processing, pp. 157-166, 1997.

[10] E. Deelman et al. “Pegasus: Mapping Scientific Workflows onto the Grid”. In

European Across Grids Conference, pp. 11-20, 2004.

[11] R. Sakellariou and H. Zhao. “A Low-Cost Rescheduling Policy for Efficient

Mapping of Workflows on Grid Systems”. Scientific Programming, 12(4), pp.

253-262, December 2004.

[12] M. Resende and C. Ribeiro. “Greedy Randomized Adaptive Search Procedures,

State-of-the-art Handbook in MetaHeuristics”. Glover and Kochenberger, eds.,

Kluwer Academic Publishers, 2002.

[13] H. Singh and A. Youssef. “Mapping and Scheduling Heterogeneous Task

Graphs Using Genetic Algorithms”. Proc. Heterogeneous Computing

Workshop, pp. 86-97, 1996.

[14] A. YarKhan and J.J. Dongarra. “Experiments with Scheduling Using Simulated

Annealing in a Grid Environment”. In Grid 2002, November 2002.

[15] Y. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph

scheduling algorithms”, Journal of Parallel and Distributed

Computing, 59(3):381–422, 1999

[16] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy, “Task

Scheduling Strategies for Workflow-based Applications in Grid”. Cluster

Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium,

pp. 759-767 Vol. 2, 9-12 May 2005.

[17] J. Yu, R, Buyya, “Workflow Scheduling Algorithms for Grid Computing”.

Technical Report, Grid-TR-2007-10.

[18] R. Sakellariou and H. Zhao. “A hybrid heuristic for DAG scheduling on

heterogeneous systems”.In 18th International Parallel and Distributed

Processing Symposium (IPDPS’04), page 111. IEEE Computer Society, 2004.

[19] H. Casanova, F. Desprez, and F. Suter. “From Heterogeneous Task Scheduling

to Heterogeneous Mixed Parallel Scheduling”. In 10
th
 Int. Euro-Par

Conference, volume 3149 of LNCS, pages 230-237, Aug. 2004.

[20] H. Zhao and R. Sakellarious. “Scheduling Multiple DAGs onto Heterogeneous

Systems”. In Proceedings of the 15
th
 Heterogeneous Computing Workshop

(HCW), Rhodes Island, Greece, April 2006.

[21] Z. Yu and W. Shi. “A Planner-Guided Scheduling Strategy for Multiple

Workflow Applications”. On Parallel Processing Workshops, ICPP-W 08, 8-12

Sept. 2008.

[22] A.W. Mu'alem and D.G. Feitelson. “Utilization, Predictability, Workloads, and

User Runtime Estimates in Scheduling the IBM SP2 with Backfilling”. IEEE

Transactions on Parallel and Distributed Systems, vol. 12, no. 6, June 2001.

86

[23] T. N'takpe' and F. Suter. “Concurrent Scheduling of Parallel Task Graphs on

Multi-Clusters Using Constrained Resource Allocations”. Rapport de

recherché n° 6774, December 2008.

[24] Y. Zhang, C. Koelbel, and K. Kennedy. “Relative Performance of Scheduling

Algorithms in Grid Environments”. In 7
th

 IEEE International Symposium on

Cluster Computing and the Grid (CCGrid 2007).

[25] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B. Liu,

and L. Johnsson. “Scheduling Strategies for Mapping Application workflows

onto the Gird”. In 14
th
 IEEE Symposium on High Performance Distributed

Computing (HPDC 14), pp. 125-134, 2005.

[26] F. Dong and S.G. Akl. “Scheduling Algorithms for Grid Computing: State of

the Art and Open Problems”. Technical Report No. 2006-504.

[27] E. Deelman, G. Singh, and C. Kesselman. “Optimizing Grid-based Workflow

Execution”. Journal of Grid Computing, 3(3): 201-219, 2005.

[28] T. N'takpe' and F. Suter. “A Comparison of Scheduling Approaches for

Mixed-Parallel Applications on Heterogeneous Platforms”. In 6
th
 International

Symposium on Parallel and Distributed Computing (IS-PDC), pp. 250-257,

Hagenberg, Austria, July 2007.

[29] G. Singh, E. Deelman, and G. Bruce Berriman et al. “Montage: a Grid

Enabled Image Mosaic Service for the National Virtual Observatory”.

Astronomical Data Analysis Software and Systems (ADASS), (13), 2003.

[30] S. Ludtke, P. Baldwin, and W. Chiu. “EMAN: Semiautomated Software for

High Resolution Single-Particle Reconstructions”. J. Struct. Biol, (128): 82-97,

1999.

[31] M.R. Gary and D.S. Johnson. “Computers and Intractability: A Guide to the

Theory of NP-Completeness”. W.H. Freeman and Co., 1979.

[32] J.D. Ullman. “NP-Complete Scheduling Problems”. J. Computer and Systems

Sciences, vol. 10, pp. 384-393, 1975.

[33] Miguel L. Bote-Lorenzo, Yannis A. Dimitraidis, and Eduardo Gomez-Sanchez.

“Grid Characteristics and uses: a Grid Definition”.

