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碩士論文 

 

摘要 

    在網格環境中對工作流程應用程式排程是個很大的挑戰，因為這類型的問題

是屬於 NP-complete。對於這類型問題，現今已經有許多探索式的方法被提出，

然而大部份都著重在排程單一個工作流程應用程式。近幾年來，有許多的研究致

力於處理並行或線上的工作流程，但在每個工作需要多顆處理器的情況這些研究

沒辦法處理，本文中，我們提出了一個 OWM方法，OWM對線上工作流程可以有效

的做排程。為了解決當工作需要多顆處理器所面臨的問題，我們加入解決這類問

題的一些有名方法到 OWM中，如：first fit，conservative backfilling，easy 

backfilling。根據模擬實驗，數據顯示我們所提出的 OWM 表現的比其他方法還

要傑出；而在工作需要多顆處理器的情況下， OWM(FCFS)表現的幾乎和

OWM(conservative)一樣並且 OWM(FCFS)表現的比 OWM(easy)和 OWM(first fit)

還要來的好。 

 

關鍵字: 線上工作流程，不循環有向圖，工作圖，工作流程排程，工作排程，異

質系統，網格計算，工作配置，資料平行，回填機制。 
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Online Scheduling of Workflow Applications in 

a Grid Environment 

 

Student: Chih-Chiang Hsu    Advisor: Feng-Jian Wang 

Institute of Computer Science and Engineering 

National Chiao Tung University 

1001 University Road, Hsinchu, Taiwan 300, ROC 

 

Abstract 

    Scheduling workflow applications in a Grid environment is a great challenge, 

because it is NP-complete problem. Many heuristic methods are presented, but most 

of them work in the domain of single workflow application. In recent years, there are 

several heuristic methods presented to deal with concurrent workflows or online 

workflows, but they do not work with workflows composed of data-parallel tasks. In 

the thesis, we present an approach for dealing with online workflows, which is named 

Online Workflow Management (OWM). For dealing with data-parallel problems, 

well-known approaches, e.g., first fit, conservative backfilling and easy backfilling 

are added into OWM. The experiments show that OWM outperforms other two 

methods in various workloads. For workflows composed of data-parallel tasks, the 

experiments show that OWM(FCFS) is almost equal OWM(conservative), and 

outperforms OWM(easy) and OWM(first fit). 

 

Keywords: Online Workflows, DAG, Task Graph, Workflow Scheduling, Task 

Scheduling, Heterogeneous Systems, Grid Computing, Task Allocation, Data Parallel 

Task, Backfilling.  
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Chapter 1 Introduction 

     

Grid environments are an important platform for running high-performance and 

distributed applications. Many large-scale scientific applications are usually 

constructed as workflows due to large amounts of interrelated computation and 

communication, e.g., Montage [29] and EMAN [30]. A Grid environment is 

composed of widespread resources from different administrative domains. Miguel et 

al. [33] indicates that a Grid environment usually has the characteristics: heterogeneity, 

large scale and geographical distribution. Task scheduling in Grid is a NP-complete 

problem [31] [32], therefore many heuristic methods have been proposed. The 

workflow scheduling problem in Grid environments is a great challenge. In the past 

years, there are many static heuristic methods proposed [3] [4] [5] [6] [7] [8] [9] [18] 

[25]. They are designed in the domain of scheduling single workflow only.  

Zhao et al. presented composition and fairness approaches [20] for scheduling 

multiple workflows at the same time. T. N'takpe' et al. presented an approach [23] to 

scheduling concurrent workflows composed of moldable tasks. However, all these 

methods do not work with online workflows: i.e., multiple workflows occur at 

different times. Z. Yu et al. [21] presented a planner-guided dynamic scheduling 

approach for dealing with online workflows, but it doesn’t work with workflows 

composed of data-parallel tasks (parallel tasks) of which each uses multiple 

processors simultaneously for its execution. 

In this thesis, we present a new approach called Online Workflow Management 

(OWM). There are four processes in OWM: Critical Path Workflow Scheduling 

(CPWS), Task Scheduling, Multi-Processor Task Rearrangement and Adaptive 

Allocation (AA). CPWS process submits tasks into the waiting queue. Task 
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scheduling and AA processes prioritize the tasks in the queue and assign the task with 

highest priority to the processor for execution respectively. In data-parallel task 

scheduling, there may be some scheduling holes which are formed when the free 

processors are not enough for the first task in the queue. The multi-processor 

rearrangement process works for dealing with scheduling holes to improve utilization. 

The process includes first fit, easy backfilling [22], and conservative backfilling [22] 

approaches. 

To validate the advantages of the cooperation designed among these four 

processes, task-waiting queue, event queue and workflows, we developed a Grid 

simulator using a discrete-event based technique for experiments. Task-waiting queue 

and event queue keep the tasks and events for processing. The Grid environment 

consists of several simulated clusters of which each contains an amount of processors. 

A workflow is represented by direct acyclic graph (DAG). Each experiment involves 

20 runs, and each run has 100 unique DAGs on a Grid environment that contains 3 

clusters each containing 30~50 processors respectively. Experimental results show 

that OWM has better performance than RANK_HYBD [21] and Fairness_Dynamic 

which extends the Fairness (F2) in [20] to handle online workflows. When workflows 

composed of data-parallel tasks, the experimental results show that OWM(FCFS) is 

almost equal to OWM(conservative), and outperforms OWM(easy) and OWM(first 

fit). 

The remainder of the thesis is organized as follows. Chapter 2 discusses related 

work. Chapter 3 describes the software simulator for workflow scheduling. Chapter 4 

presents the OWM approach for Grid environments. Chapter 5 presents the 

experimental results and Chapter 6 concludes the thesis. 
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Chapter 2 Related Work 

     

In this chapter, we survey related algorithms in Grid environments. Section 2.1 

describes workflow scheduling algorithms for Grid computing. Section 2.2 describes 

static workflow scheduling algorithms. Section 2.3, 2.4, 2.5 describe concurrent 

workflows, online workflow and mixed parallel workflows scheduling algorithms in 

Grid environments respectively. 

 

2.1 Workflow Scheduling Algorithms for Grid Computing 

    Workflow scheduling algorithms for Grid computing can be classified into two 

groups [26] (Figure 2-1): static and dynamic. 

 

 

 

 

In a static scheduling algorithm, the structure of workflow applications i.e., the 

dependency of tasks, and the estimated cost are known in the very beginning. The 

resource assignment of tasks is made before execution (Figure 2-2), and each 

approach has its own policy of assignment. Static approaches are not adaptive to some 

situations, e.g., one of the resources selected fails, or the real execution time on some 

resources is longer than the estimated time. Unfortunately, these situations occur in a 

great potential due to the nature of Grid environments. To alleviate this problem, there 

Figure 2-1 A taxonomy of workflow scheduling algorithms 
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are two approaches: task partitioning [10] and rescheduling [1] [11]. The former 

partitions a workflow into multiple sub-workflows which are executed sequentially. 

Instead of mapping entire workflow at one time, it allocates resources to tasks in one 

sub-workflow each time. A sub-workflow mapping is started only after the previously 

mapped sub-workflow starts the execution. The latter reschedule unexecuted tasks 

when the Grid environment changes. H. Braun et al. compare eleven static heuristic 

algorithms on heterogeneous distributed computing systems [2]. Figure 2-2 shows an 

example of a static scheduling algorithm. Figure 2-2(a) shows an original workflow. 

Figure 2-2(b) shows the resource mapping of tasks before execution: t1, t3 and t5 are 

mapped to R1, and t2 and t4 are mapped to R2 . 

 

 

 

 

 

Dynamic scheduling approaches perform task allocation as workflow 

applications execute. When a task is ready to execute, it is submitted to waiting queue. 

Dynamic scheduling mechanisms make a decision when the waiting queue has tasks 

and there are free resources. Dynamic scheduling is usually applied when it is difficult 

Figure 2-2 An example of static scheduling (a) an original workflow (b) the resource 

mapping of a workflow before execution 



 

5 
 

to estimate the costs of tasks, or when workflow applications may come at different 

times (it is called online scheduling). For example, Z. Yu [21] proposed a 

planner-guided scheduling strategy. 

 

 

2.2 Static Workflow Scheduling Algorithms 

Static workflow scheduling algorithms can be classified into two groups [17] as 

shown in Figure 2-3: heuristic-based and meta-heuristic based. 

 

 

 

 

 

Heuristic-based scheduling algorithms usually can be classified into five groups: 

(1) list-based, (2) clustering-based, (3) duplication-based, (4) level-based, (5) 

hybrid-based. A list-based heuristic approach maintains a list of all tasks of a 

workflow application according to their priorities. The method schedules the tasks 

based on the list. There are list-based heuristics proposed [3] [4] [5] [6] [7].  

HEFT (Heterogeneous Earliest Finish Time) [7] is a well-known list-based 

Figure 2-3 A taxonomy of static workflow scheduling algorithms 
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scheduling algorithm in heterogeneous environments, and it is implemented in 

ASKLON that is a workflow management system based on Grid computing [17]. In 

recent years, many researches have been applied to modify HEFT in the 

corresponding environments. Typical examples include HHS (Hybrid Scheduling 

Algorithm) [18], M-HEFT (Mixed-Parallel HEFT) [19], Fairness Policy [20] , 

RANK_HYBD [21].  

HEFT algorithm has two major phases: a task prioritizing phase and a processor 

selection phase. The task prioritizing sets the priority of each task with an upward 

rank value, ranku, which is based on mean computation and mean communication 

costs. A higher ranku value gets a higher priority. The processor selection selects a 

processor which has earliest estimated finish time of the task. Figure 2-4 shows an 

example of a list-based heuristic, HEFT. 

 

 

 

 

The main idea of clustering-based heuristic method is to reduce communication 

delay by grouping the tasks of heavy communicating into the same labeled cluster. In 

general, a clustering-based heuristic method has two phases: clustering and merging. 

In the clustering phase, the original workflow application is partitioned into clusters, 

and the merging phase merges the clusters so that the remaining number of clusters 

Figure 2-4 An example of a list-based heuristic 
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equals to the number of resources. There are various clustering-based heuristic 

methods proposed [8]. Figure 2-5 shows an example of a clustering-based heuristic. In  

figure 2-5, (a) represents an original workflow, and (b) shows the result of arranging 

the tasks into three clusters {t1, t2, t7}, {t3, t4, t6}, {t5}. These three clusters {t1, t2, 

t7}, {t3, t4, t6}, {t5} will be allocated to three resources respectively at run time. 

 

 

 

 

A duplication-based heuristic method helps a task to transmit the data to the 

resource of succeeding task(s) implicitly during its execution time. This may reduce 

the communication cost from a task to a successor. Various duplication-based 

heuristic methods are proposed [9]. 

 

A level-based heuristic method, i.e. LHBS (Levelized Heuristic Based 

Scheduling) [25], divides the workflow into levels of independent tasks. Within each 

Figure 2-5 An example of a clustering-based heuristic (a) an original 

workflow (b) after clustering 
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level, LHBS can use Greedy, Min-Min, Min-Max, or Sufferage [2] heuristics to map 

the tasks to resources. Both the GrADS [16] and Pegasus [27] schedulers use a 

version of LHBS. 

 

A Hybrid-based heuristic method, i.e., HHS (Hybrid Heuristic Scheduling) [18], 

is a combination of list-based and level-based heuristic methods. HHS first computes 

the levels as in LHBS, then the tasks in each level following the prioritized order used 

by HEFT. The five static heuristic methods mentioned above are restricted to single 

workflow. 

Y. Zhang et al. [24] compare HEFT [7], LHBS [25], and HHS [18] in Grid 

environments. They showed that list-based and hybrid-based heuristic methods are 

effective in a Grid environment, outperforming the level-based heuristic. [15] also 

shows that list-based heuristic method perform better than clustering-based and 

duplication-based heuristic methods. 

 

The meta-heuristic based scheduling algorithms produces an optimized 

scheduling solution based on the performance of the entire workflow. Genetic 

algorithms [13], simulated annealing [14], and GRASP (Greedy randomized adaptive 

search) [12] are well-known meta-heuristic scheduling algorithms. Each task in the 

workflow is assigned a priori to resources in order to minimize the makespan of the 

whole workflow. However, the scheduling time in meta-heuristic scheduling 

algorithms is significantly higher [16] [17] than heuristic-based algorithms.  

 

J. Blythe et al. [16] compare the heuristic-based algorithm and the meta-heuristic 

based algorithm. In the comparison, they select one algorithm to represent each 

approach, Min-Min scheduling algorithm for heuristic-based algorithm and GRASP 
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for the meta-heuristic based algorithm. The experiment results indicate both 

approaches are similar for compute-intensive cases, but the meta-heuristic based 

algorithm is better than the heuristic-based algorithm for data-intensive cases. 

However, the time complexity of the meta-heuristic based algorithm grows more 

rapidly than the heuristic-based algorithm if the workflow has more tasks. 

 

 

2.3 Scheduling Concurrent Workflows in Grid Environments 

In the past years, most works dealing with workflow scheduling were restricted 

to single workflow application. Zhao et al. [20] envisaged a scenario that need to 

schedule multiple workflow applications at the same time. They proposed two 

approaches: composition approach and fairness approach.  

(1) The composition approach merges multiple workflows into a single workflow 

first. Then, two list scheduling heuristic methods, such as HEFT [7] and HHS 

[18], can be used to schedule the merged workflow. 

 

(2) The main idea of fairness approach is that when a task completes, it will 

re-calculate the slowdown value of each workflow (or single workflow) against 

other workflows and make a decision on which a workflow should be 

considered next. 

 

Moreover, the composition and the fairness approaches are static algorithms and 

not feasible to deal with online workflow applications, i.e., multiple workflows come 

at different times. 
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2.4 Scheduling Online Workflows in Grid Environments 

RANK_HYBD [21] is designed to deal with online workflow applications 

submitted by different users at different times. The task scheduling approach of 

RANK_HYBD sorts the tasks in waiting queue using the rules repeatedly. 

1.  If tasks in waiting queue come from multiple workflows, the tasks are sorted 

in ascending order of their rank value (ranku) where ranku is described in 

HEFT [7]; 

2.  If all task are belong to the same workflow, the tasks are sorted in descending 

order of their rank value (ranku). 

However, the number of processors to be used by each task is limited to a single 

processor. It is not feasible to deal with workflows composed of data-parallel tasks. 

 

 

2.5 Scheduling Mixed Parallel Workflows in Grid Environments. 

Parallel task scheduling can be classified into two modes: rigid and moldable. 

The number of processors required by a rigid task is fixed. The number of processors 

used in a moldable task is determined by some algorithms before each run.  

T. N'takpe' et al. proposed mixed parallel applications on Heterogeneous 

platforms [28]. This can be considered as an example of moldable mode. Mixed 

parallelism is a combination of task parallelism and data parallelism where the former 

indicates that an application has more than one task that can execute concurrently and 

the latter means a task can run at different resources concurrently. 

[28] is only suitable for a single workflow. T. N'takpe' et al. further developed an 

approach to deal with concurrent mixed parallel applications [23]. Concurrent 

scheduling for mixed parallel applications contains two steps: constrained resource 

allocation and concurrent mapping. The former aims at finding an optimal allocation 
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for each task. The number of processors is determined in this step. The latter 

prioritizes tasks of workflows. 

However, the approach in [23] is restricted to concurrent workflows. It is 

infeasible to deal with online workflows. 
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Chapter 3 Software Simulator for Workflow 

Scheduling 

 

    This chapter presents the software simulator that we developed for simulating the 

workflow scheduling activities in a Grid environment. Section 3-1 describes data 

components in the simulator. Section 3-2 describes classes used in the simulator and 

section 3-3 presents simulation processes. 

 

3.1 Data Components in the Simulator 

Input Workload: 

A workflow application is represented by a direct acyclic graph (DAG). A DAG 

is defined as G = (V, E), where V is a set of nodes, each representing a task, and E is 

the set of links, each representing the computation precedence order between two 

tasks. For example, a link (x,y) ∈ E represents the precedence constraint that task tx 

completes before task ty starts.  

 

Global System Time (GST): 

    In a discrete-event based simulation, the simulator maintains a global timing 

system which increments the time whenever an event is processed. 

 

System Queues: 

    There are two system queues: an event queue and a waiting queue. They keep the 

events and tasks waiting for processing. 
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Grid Environment: 

A Grid is composed of several clusters. A cluster contains an amount of 

processors. The Grid is heterogeneous in that the processors at different clusters might 

run at different speed. On the other hand, each cluster is homogeneous, consisting of 

identical processors. The cost for a task includes computation and communication 

costs where the former means the execution time, and the latter means the data 

transfer time between processors. The computation cost of a task is the same for 

different processors in the same cluster, but may be different in different clusters. The 

communication cost between any two processors in the same cluster is set to be zero, 

but not in different clusters. Figure 3-1 shows an example of a Grid environment in 

our simulator. The processor speeds and network link speeds are homogeneous in the 

same cluster, but they are heterogeneous between different clusters. 

 

 

 

 

  

Figure 3-1 A Grid Environment 
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3.2 Classes in the Simulator 

    In this section, the classes used in the simulator are described including 

DAG_Generator, EventNode, EventQueue, WaitQueueNode, WaitQueue, 

WorkflowScheduling and Allocation classes. 

 

DAG_Generator: 

DAG_Generator is responsible for generating input workload consisting of a 

sequence of DAGs in their arrival order. Table 3-1 shows an UML DAG_Generator 

class. It contains 7 attributes, <Node, Shape, OutDegree, CCR, BRange, WDAG, 

Cluster>, and 4 operations, <Generator(), ShapeGenerator(Node, Shape), 

RelationGenerator(Node, OutDegree), CostGenerator(Node, BRange, WDAG, Cluster, 

CCR)>. 

 

 

 

The attributes and operations in DAG_Generator are described as following. 

Attributes: 

1. Node: the number of tasks in a DAG. 

2. Shape: the shape of a DAG. 

3. OutDegree: the maximum of out degree of tasks in a DAG. 

4. CCR: communication cost to computation cost ratio. 

5. BRange (β): distribution range of computation cost of tasks on processors. It is 

the heterogeneous factor for processor speeds. A high range indicates 

Table 3-1 DAG_Generator class 
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significant differences in task’s computation costs among the processors and a 

low range indicates that the expected execution time of a task is almost the 

same on each processor. 

6. WDAG: the average computation cost of a DAG. 

7. Cluster: the number of clusters in a Grid environment. 

Operations: 

1. Generator(): randomly generates a DAG according to the 7 input parameters 

mentioned above. It invokes ShapeGenerator(), RelationGenerator(), 

CostGenerator() in turn. 

2. ShapeGenerator(Node, Shape): generates the shape of a DAG using Node and 

Shape parameters. The height (depth) of a DAG is randomly generated from a 

uniform distribution with mean value equal to 
 Node

Shape
. The width for each level 

is randomly generated from a uniform distribution with mean value equal to 

Shape ×  Node . If 𝑠ℎ𝑎𝑝𝑒 ≫ 1 , it generates a shorter graph with high 

parallelism degree. Otherwise, if shape ≪ 1, it generates a longer graph with a 

low parallelism degree. 

3. RelationGenerator(Node, OutDegree): generates the connect relation of a DAG 

according to the input parameters Node and OutDegree defined above. Out 

degree of each task is randomly generated from a uniform distribution with 

range [1, OutDegree]. 

4. CostGenerator(Node, BRange, WDAG, Cluster, CCR): generates the 

computation cost and the communication cost of a DAG. The average estimated 

computation cost of each task tx , i.e., wx     is randomly generated from a 

distribution ranged [1, 2 × WDAG]. The estimated computation cost of each 
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task tx  on each cluster cy , i.e., wx,y  is randomly generated from a uniform 

distribution with range: 

wx    × (1 −
BRange

2
) ≤ wx,y ≤ wx    × (1 +

BRange

2
) 

 

EventNode: 

    EventQueue stores a set of EventNodes. Each EventNode contains 6 attributes, 

<type, time, jobIndex, dagIndex, *pre, *next>. Table 3-2 shows EventNode class. 

 

 

Attributes: 

1. type: the type of an event. Table 3-3 shows EventType enumeration. There are 

two kinds of EventType: submit and end. Each event contains the attributes, 

<jobIndex, dagIndex> uniquely identifying a job. When a submit event occurs, 

a job <jobIndex, dagIndex> will be submitted to WaitQueue for scheduling and 

allocation. When an end event occurs, a job <jobIndex, dagIndex> completes 

successfully. 

 

 

 

Table 3-2 EventNode class 

Table 3-3 EventType enumeration 
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2. time: the time that the event happens.  

3. jobIndex: the index of a job. 

4. dagIndex: the index of a dag. 

5. *pre: a link pointing to the preceding EventNode. 

6. *next: a link pointing to the next EventNode. 

 

EventQueue: 

    EventQueue is composed of a sequence of EventNodes. There are 3 attributes, 

<*front, *rear, eventQueueCount>, and 3 operations, <enQueue(EventNode), 

deQueue(), isEmpty()> in EventQueue. Table 3-4 shows EventQueue class. 

 

 

 

Attributes: 

1. *front: points to the first EventNode in EventQueue. 

2. *rear: points to the last EventNode in EventQueue. 

Operations: 

1. enQueue(EventNode): an operation that inserts an EventNode into 

EventQueue. 

2. deQueue(): an operation that removes and returns the first EventNode in 

EventQueue. 

Table 3-4 EventQueue class 
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3. isEmpty(): an operation that checks whether EventQueue is empty or not. If 

EventQueue is empty, it returns true. Otherwise, it returns false. 

 

    Figure 3-2 shows an example of EventQueue. The EventNodes are sorted 

according to their arrival time (EventNode.time). *fornt points to the first EventNode, 

EventNode1, and *rear points to the last EventNode, EventNode5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 An example of EventQueue 
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WaitQueueNode: 

    WaitQueueNode represents the elements stored in WaitQueue. There are 7 

attributes, <jobIndex, dagIndex, np, ftown, ftmulti, rank, slowdown> in 

WaitQueueNode. Table 3-5 shows WaitQueueNode class. 

 

 

 

Attributes: 

1. jobIndex: the index of a job. 

2. dagIndex: the index of a dag. 

3. np: the number of processors that the job <jobIndex, dagIndex> needs. 

4. ftown: the finish time of the job <jobIndex, dagIndex>, when the DAG has the 

whole processors for exclusive use. The detail of ftown is described in [20]. 

5. ftmulti: the finish time of the job <jobIndex, dagIndex>, when the DAG is 

scheduled onto processors along with other workflow applications. The detail 

of ftmulti is described in [20]. 

6. rank: the upward rank value ranku. ranku (ti) means the length of critical 

path from task ti to the exit task. The detail of ranku  is described in Chapter 

4. 

7. slowdown: the main idea of the slowdown value is defined as ftown / ftmulti. The 

detail of slowdown is described in [20]. 

Table 3-5 WaitQueueNode class 
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WaitQueue: 

WaitQueue is composed of a sequence of WaitQueueNodes. On a submit event, a 

new WaitQueueNode is created according to the EventNode, and is submitted to 

WaitQueue by calling WaitQueue.enQueue (WaitQueueNode) operation. WaitQueue 

has 2 attributes, <waitQueueCount, waitQueue[]>, and 10  operations, 

<enQueue(WaitQueueNode), remove(WaitQueueNode), isEmpty(), front(), 

Fairnss_TaskScheduling(), RankHYBD_TaskScheduling(), Easy_Backfilling(), 

Conservative_Backfilling(), FirstFit(), FCFS()>. Table 3-6 shows WaitQueue class. 

 

 

 

Attributes: 

1. waitQueueCount: the total number of WaitQueueNodes in WaitQueue. In other 

words, it represents the length of WaitQueue. 

2. waiQueue[]: an array that WaitQueueNodes are stored. 

Operations: 

1. enQueue(WaitQueueNode): an operation that inserts a WaitQueueNode into 

WaitQueue. 

2. remove(WaitQueueNode): an operation that removes a WaitQueueNode from 

Table 3-6 WaitQueue class 
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WaitQueue. 

3. isEmpty(): an operation that checks whether WaitQueue is empty or not. If 

WaitQueue is empty, it returns true. Otherwise, it returns false. 

4. front(): returns the first WaitQueueNode in WaitQueue. 

5. Fairness_TaskScheduling() and RankHYBD_TaskScheduling(): both 

operations implement two distinct task scheduling algorithms. The order of 

WaitQueueNodes in WaitQueue is determined by these two operations. The 

details of these two scheduling algorithms will be described in Chapter 4. 

6. Easy_Backfilling(), Conservative_Backfilling() and FirstFit(): In parallel task 

scheduling, a task is delayed when the processors it needs are more than free 

processors in the system. This situation causes a scheduling hole. These 

approaches provide distinct methods to locate waiting tasks for the scheduling 

hole to improve resource usage. The details of these algorithms will be 

described in Chapter 4. 

 

Workflow Scheduling: 

    Workflow Scheduling implements workflow scheduling algorithms and contains 

2 operations, <SWS(), CPWS()>. SWS means simple workflow scheduling, and 

CPWS means critical path workflow scheduling. The detailed descriptions of these 

two workflow scheduling algorithms are presented in Chapter 4. Table 3-1 shows 

WorkflowScheduling class. 

 

 

Table 3-7 WorkflowScheduling class 
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Allocation: 

    Allocation implements allocation algorithms and contains 2 operations, <SA(), 

AA()>. SA means simple allocation, and AA means adaptive allocation. The detailed 

description of these two allocation algorithms are presented in Chapter 4. Table 3-8 

shows Allocation class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-8 Allocation class 
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3.3 Simulation Process 

This section presents the simulation process. The GST cannot change until an 

event happens. The simulation process contains several procedures including 

Task_Submission(), Scheduler_Allocation() and Simulator(), where the former two 

are invoked in Simulator(). The following describes the details. 

 

Simulator(): 

Simulator() is the skeleton procedure of our simulator. Procedure 3-1 shows the 

pseudo code of Simulator(). Firstly, it constructs a Grid environment, generates input 

DAGs using DAG_Generator.Generator(), and then calls Task_Submission(), as 

shown in lines 2 to 4. Line 5 checks whether EventQueue is empty or not. If 

EventQueue is empty, the simulation completes successfully. Otherwise, the simulator 

takes the first Node in EventQueue as EventNode, and sets GST with EventNode.time 

as shown in lines 6 to 7. Lines 8 to 10 show that when the EventNode is a submit 

event, a WaitQueueNode is created and added into WaitQueue correspondingly. Lines 

11 to 13 show that if the EventNode is an end event, it will release the processors that 

the EventNode requires, and calsl Task_Submission() to check if there are tasks need 

to be submitted. Line 14 checks whether GST is equal to the time of the first node in 

EventQueue or not. If it is equal, the simulator goes to loop the above execution. 

Otherwise, it calls Scheduler_Allocation() to schedule the tasks in the waiting queue 

and allocate the tasks. 

 

Scheduler_Allocation(): 

Scheduler_Allocation() sorts waiting queue (WaitQueue.WaitQueue[]) according 

to the task scheduling algorithm, and allocates a task to the free processor according 

to the allocation algorithm. Procedure 3-2 shows the pseudo code of 
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Scheduler_Allocation(). According to the task scheduling algorithm used, 

WaitQueue.Fairness_TaskScheduling() or WaitQueue.RankHYBD_TaskScheduling() 

can be selected to prioritize tasks in waiting queue as shown in line 2. Line 3 checks 

the waiting queue whether is empty or not. If the waiting queue is empty, the 

procedure finishes. Otherwise, it executes the following codes. If workflows 

composed of data-parallel tasks, scheduling holes may happen. To overcome this 

problem for improving processor usage, the multi-processor task rearrangement 

algorithm can be selected: WaitQueue.FCFS(), WaitQueue.FirstFit(), 

WaitQueue.Conservative_Backfilling or WaitQueue.Easy_Backfilling, as shown in 

lines 4 to 6. Lines 7 to 8 show that the system takes the first node in the waiting queue 

as WaitQueueNode, and allocates the WaitQueueNode to the processors that it 

requires using an allocation algorithm: Allocation.SA() or Allocation.AA(). After the 

WaitQueueNode be allocated successfully, it is removed from the waiting queue as 

shown in line 10. When the WaitQueueNode completes successfully, an EventNode is 

created correspondingly. Then, it will be added to EventQueue with an end event as 

shown in lines 11 to 12. 

 

Task_Submission(): 

Procedure 3-3 shows the pseudo code of Task_Submission(). Different workflow 

scheduling algorithms can be used, i.e., WorkflowScheduling.SWS() or 

WorkflowScheduling.CPWS() as shown in line 2. The detail of these two workflow 

scheduling algorithm is described in Chapter 4. Line 3 shows that the submitted tasks 

that workflow scheduling algorithm determine will cause submit events be added into 

EventQueue. 
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Simulator() 

01 begin 

02   construct a Grid environment; 

03   generate online DAGs using DAG_Generator.Generator(); 

04   Task_Submission(); 

 

05  while( EventQueue.isEmpty() == false ) do 

06         EvnetNode = EventQueue.deQueue(); 

07          GST = EventNode.time; 

08          if( EventNode.type == submit ) 

09              WaitQueueNode is created according to EventNode; 

10              WaitQueue.enQueue( WaitQueueNode ); 

11          else // EventNode.type == end  

12              release the processors that EventNode requires; 

13              Task_Submission(); 

 

14          if( (*EventQueue.front).time ≠ GST) 

15              Scheduler_Allocation(); 

16          end if 

17    end while 

18  end 

Procedure 3-1. Simulator() 



 

26 
 

 

 

 

 

 

  

Scheduler_Allocation() 

01  begin 

02      // according to the task scheduling algorithm 

      WaitQueue.Fairness_TaskScheduler() or 

      WaitQueue.RankHYBD_TaskScheduler(); 

03      while( WaitQueue.isEmpty() == false ) do 

04          if (workflows composed of data-parallel tasks) 

05              // according to the multi-processor task rearrangement 

                WaitQueue.FCFS() or WaitQueue.FirstFit() or 

                WaitQueue.Conservative_Backfilling() or 

                WaitQueue.Easy_Backfilling(); 

06          end if 

07          WaitQueueNode = WaitQueue.front(); 

08          // according to the allocation algorithm 

            Allocation.SA() or Allocation.AA(); 

09          if (allocate WaitQueueNode successfully) 

10              WaitQueue.remove(WaitQueueNode); 

11              EventNode is created according WaitQueueNode; 

12              EventQueue.enQueue(EventNode);  // end event 

13          end if 

14      end while 

15  end 

Procedure 3-2. Scheduler_Allocation() 
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Task_Submission() 

01  begin 

02      // according to the workflow scheduling algorithm 

      WorkflowScheduling.SWS() or WorkflowScheduling.CPWS(); 

 

03      /* the submitted tasks that workflow scheduling algorithm determine 

will cause submit events be added into EventQueue */ 

      EventQueue.enQueue( EventNode );  // submit event 

04  end 

Procedure 3-3. Task_Submission() 
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Chapter 4 Online Workflow Management in a 

Grid Environment 

 

In this chapter, we propose an Online Workflow Management system (OWM) 

for dealing with the simulation of online workflows in a Grid environment. Section 

4.1 describes the structure of OWM. Section 4.2 presents the proposed algorithms for 

OWM 

 

4.1 Structure of Online Workflow Management 

    Figure 4-1 shows the structure of OWM. In OWM, there are four processes: 

Critical Path Workflow Scheduling (CPWS), Task Scheduling, multi-processor task 

rearrangement and Adaptive Allocation (AA), and three data structures: online 

workflows, a Grid environment and a waiting queue. The processes are represented by 

solid boxes, and the data structures are represented by dotted boxes. 

    The four processes in OWM are independent. When workflows come into the 

system or tasks complete successfully, CPWS, takes the critical path in workflows 

into account, and submits the tasks of online workflows into the waiting queue. The 

details of CWPS are described in section 4.2. The task scheduling process in OWM is 

RANK_HYBD [21]. In RANK_HYBD, the task execution order is sorted based on 

the length of tasks’ critical path. If all tasks in the waiting queue belong to the same 

workflow, they are sorted in the descending order. Otherwise, the tasks in different 

workflows are sorted in the ascending order. In parallel task scheduling, there may be 

some scheduling holes which are formed when the free processors are not enough for 

the first task in the queue. A multi-processor rearrangement process in OWM works 

for scheduling holes to improve utilization. Existing techniques for the process 
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include first fit, easy backfilling [22] or conservative backfilling [22] approaches. 

When there are free processors in the Grid environment, AA gets the first task (the 

highest priority task) in the waiting queue, and selects the required processors to 

execute the task. The details of AA are described in section 4.2. 

 

 

 
Figure 4-1 Online Workflow Management (OWM) 
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4.2 Online Workflow Management (OWM) 

4.2.1 Upward Rank Value 

The upward rank of a task 𝑡𝑖 . 𝑟𝑎𝑛𝑘𝑢 𝑡𝑖  [7] is the length of critical path form 

task 𝑡𝑖  to the exit task. The definition as below 

    𝑟𝑎𝑛𝑘𝑢 𝑡𝑖 = 𝑤𝑖 + max𝑡𝑗∈𝑠𝑢𝑐𝑐 (𝑡𝑖)(𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗 )) 

, where 𝑠𝑢𝑐𝑐(𝑡𝑖) is the set of immediate successors of task 𝑡𝑖 , 𝑐𝑖 ,𝑗  is the average 

communication cost of edge (𝑖, 𝑗), and 𝑤𝑖  is the average computation cost of task 𝑡𝑖 . 

The computation of a rank starts from the exit task and traverses up along the task 

graph recursively. Thus, the rank is called upward rank, and the upward rank of the 

exit task 𝑡𝑒𝑥𝑖𝑡  is 

𝑟𝑎𝑛𝑘𝑢 𝑡𝑒𝑥𝑖𝑡  = 𝑤𝑒𝑥𝑖𝑡  

 

4.2.2 Critical Path Workflow Scheduling (CPWS) 

A task has four states: finished, submitted, ready and unready. A finished task 

means the task has completed its execution successfully. A submitted task means the 

task is in the waiting queue. A task is ready when all necessary predecessor(s) of the 

task have finished. It is not, otherwise; the task is unready. 

Workflow scheduling in RANK_HYBD [21] is straightforward. It submits the 

ready tasks into the waiting queue and is named Simple Workflow Scheduling (SWS). 

On the other hand, when a new workflow arrives, CPWS is adopted to calculate ranku 

of each task in the workflow and sort and put in a list for the tasks in descending order 

of ranku. The list is named as a critical path list. The system maintains an array List[], 

and List[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖 ] points to the critical path list of 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖 . CPWS is 

described in Algorithm 4-1.According to the order in each critical path list, CPWS 

continuously submits the ready tasks in a list into the waiting queue until running into 

an unready task. 



 

31 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 and 4-3 shows the difference between SWS and CPWS. Figure 4-2 

shows an example of SWS. Black nodes are finished tasks, i.e., A1, A2, B1 and B3. 

White nodes are ready tasks, i.e., A3, A4, B2 and B4. White nodes with dotted lines 

are unready tasks, i.e., A5 and B5. SWS submits all ready tasks into the waiting queue, 

i.e., A3, A4, B2 and B4. Figure 4-3 shows an example of CPWS. The critical path list 

of each workflow is sorted in descending order of ranku. The critical path list for 

workflow A is A1→A2→A3→A5→A4 and the critical path list for workflow B is B1

→B3→B4→B5→B2. A1, A2, B1 and B3 have been finished. A3, A4, B2 and B4 are 

ready. A5 and B5 are unready. According to the order in the critical path lists, CPWS 

submits A3 and B4 tasks. 

 

D: a set of unfinished workflows 

List[]:an array of critical path lists. List[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖] keeps the critical path list of 

𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖  

  

CPWS(D,List[]) 

1   begin 

2       while(𝐷 ≠ ∅) do 

3           for each 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖 ∈ 𝐷 do 

4               according to the order List[𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑖], continuously 

submit the ready tasks into the waiting queue until 

running into an unready task; 

5       end while 

6   end 

Algorithm 4-1. CPWS algorithm 
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Figure 4-2 An example of SWS  

Figure 4-3 An example of CPWS 
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4.2.3 Adaptive Allocation (AA) 

To improve the precision, we define the following quantities: 

 The Estimated Computation Time ECT(t, p) is defined as the estimated 

execution time of task t on processor group p. 

 The Estimated File Communication Time EFCT(t, p) is defined as the 

estimated communication time required by task t on processor group p to 

receive all necessary files before execution. 

 The Estimated Available Time EAT(t, p) is defined as the earliest time when 

processor group p has a large enough time slot to execute task t. 

 The Estimated Finish Time EFT(t, p) is defined as the estimated time when 

task t completes on processor group p: 

𝐸𝐹𝑇 𝑡, 𝑝 = 𝐸𝐴𝑇 𝑡, 𝑝 + 𝐸𝐶𝑇 𝑡, 𝑝 + 𝐸𝐹𝐶𝑇(𝑡, 𝑝) 

The task allocation method in RANK_HYBD [21] selects the highest priority 

task and allocates it to the free processor group that has the earliest estimated finish 

time. We call this approach as Simple Allocation (SA). In this thesis, we propose a 

new approach called Adaptive Allocation (AA). The main idea of AA is described 

below: 

1. When the number of clusters that can accommodate the first task is 1, it 

finds the processor group with the earliest estimated available time among 

other clusters. If the estimated finish time of the first task on that processor 

group in the future is earlier than that on the free processor group, the task 

will be kept in the waiting queue. Otherwise, the system allocates the task to 

the free processor group right away. 

2. When the number of clusters that can accommodate the highest priority task 

is larger than 1, it allocates the highest priority task to the free processor 

group that has the earliest estimated finish time. 
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AA is described in Algorithm 4-2 which indicates a loop. When there are free 

processors and the waiting queue contains at least one task, it selects the first tasks 

and follows above allocation rules. In parallel task scheduling, if the number of free 

processors is not enough for a task, the idle processors become a scheduling hole. To 

overcome this problem, we import multi-processor task rearrangement, i.e., first fit, 

easy backfilling [22] or conservative backfilling [22] to fix the scheduling hole as 

shown in lines 4 to 5. First fit approach finds the first waiting task that can be moved 

to fix the scheduling hole. Conservative backfilling approach moves tasks forward 

only if they do not delay previously queued task. Easy backfilling approach is more 

aggressive and allows tasks to skip ahead provided they do not delay the job at the 

head of the queue [22]. Lines 25 to 31 show that a function 

(allocateNumberOfClusters(R,  𝑡𝑖 )). It returns the number of clusters that can 

accommodate the first task. If the function returns 1, the steps in lines 8 to 16 work 

for item 1 described previously. If the function returns a number larger than 1, the 

steps in lines 17 to 22 work for item 2.     
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𝑇: a set of tasks in the waiting queue 

𝑅: a set of free processors 

C: a set of clusters 

 

AA(T,R,C) 

01   begin 

02   while(𝑇 ≠ ∅ 𝑎𝑛𝑑 𝑅 ≠ ∅) do 

03     select 𝑡𝑖 ∈ 𝑇, where 𝑡𝑖  with the highest priority task; 

04     If workflows are composed of data-parallel tasks 

05        *Multi-Processor Task Rearrangement; 

 

06     If allocateNumberOfClusters(R, 𝑡𝑖 ) = 0 

07        task 𝑡𝑖  keeps waiting in the waiting queue; 

08     else if allocateNumberOfClusters(R, 𝑡𝑖 ) = 1 

09        the free processor group 𝑝𝑥 ∈ 𝐶𝑥  and calculate 𝐸𝐹𝑇 𝑡𝑖 ,𝑝𝑥 ;      

10        find the processor group 𝑝𝑦 ∈ 𝐶𝑦  with the earliest estimated 

available time among other clusters, where Cx ≠ Cy ; 

11        If 𝐸𝐹𝑇 𝑡𝑖 ,𝑝𝑥 ≤  𝐸𝐹𝑇 𝑡𝑖 , 𝑝𝑦  

12          Assign task 𝑡𝑖  to the processor(s) 𝑝𝑥 ; 

13          𝑇 = 𝑇 − {𝑡𝑖}; 

14          𝑅 = 𝑅 − {𝑝𝑥}; 

15        else    

16          task 𝑡𝑖  keeps waiting in the waiting queue; 

17      else    // allocateNumberOfClusters(R, 𝑡𝑖 )> 1 

18        for each processor group 𝑝𝑘 ∈ 𝑅 do 

19          calculate 𝐸𝐹𝑇 𝑡𝑖 , 𝑝𝑘 ;  // EAT(ti,pk) = current time 

20        Assign task 𝑡𝑖  to the processor group 𝑝𝑘  that has earliest 

estimated finish time, 𝐸𝐹𝑇 𝑡𝑖 , 𝑝𝑘 ; 

21        𝑇 = 𝑇 − {𝑡𝑖}; 

22        𝑅 = 𝑅 − {𝑝𝑘}; 

23    end while 

24    end 
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Algorithm 4-2. AA algorithm 

25    int allocateNumberOfClusters(R, 𝑡𝑖 ){ 

26      numberOfCluster=0; 

27      for each cluster Ci  do 

28        If free processors in Ci  ≥ processors that  𝑡𝑖  requires 

29          numberOfClusters++; 

30      return numberOfClusters; 

31    } 

 

*Each simulation selects one of first fit, easy backfilling and conservative 

backfilling approaches; 
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Chapter 5 Experimental Results 

     

This chapter presents the experimental results of the proposed method. Section 

5.1 introduces the performance metrics used. Section 5.2 describes experimental 

results for workflows composed of single-processor tasks. Section 5.3 presents 

experimental results for workflows composed of data-parallel tasks. 

 

5.1 Performance Metrics 

The performance metrics used in our experiments are described below: 

 makespan: the time between submission and completion of a workflow, 

including execution time and waiting time. 

 Schedule Length Ratio (SLR): makespan usually varies widely among 

workflows with different sizes and other properties. To measure the scheduling 

efficiency objectively, we can use another performance metric derived from 

makespan, which calculates the ratio of a workflow’s makespan over the best 

possible schedule length in a given environment. The performance is called 

Schedule Length Ratio (SLR) and defined by 

𝑆𝐿𝑅 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝐶𝑃𝐿
 

, where CPL represents the Critical Path Length of a workflow. SLR is not 

sensitive to the size of a workflow. 

 win (%): used for the comparison of different algorithms. For a workflow, one 

of the algorithms has shortest makespan. The win value of an algorithm means 

the percentage of the workflows that have the shortest makespan. From users’ 

perspective, the higher win value leads to the higher satisfaction. 
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5.2 Experimental Results for Workflows Composed of 

Single-Processor Tasks 

5.2.1 Difference between RANK_HYBD, Fairness_Dynamic and 

OWM 

We partition the complete scheduling process into three components, workflow 

scheduling, task scheduling and allocation approaches, for clearly clarifying the 

differences among different scheduling approaches. Z Yu et al. [21] propose a 

dynamic algorithm for online workflows, RANK_HYBD as shown in figure 5-1(a). 

The original Fairness approach (F2) in [20] is a static algorithm and can not deal with 

online workflows. In the following experiments, we modify the Fairness (F2) 

approach to handle online workflows by replacing the original workflow scheduling 

and allocation approaches in this approach with SWS and SA respectively. We call 

this new approach as Fairness_Dynamic in figure 5-1. 

 

 

 

  

Figure 5-1 The difference between RANK_HYBD, Fairness_Dynamic and OWM 
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5.2.2 Experimental Setup 

To experiment with different workload characteristics, we use the following 

parameters to generate different types of workflows. A workflow is represented as a 

Directed Acyclic Graph (DAG). 

 Node={20, 40, 60, 80, 100} 

 Shape={0.5, 1.0, 2.0} 

 OutDegree={1, 2, 3, 4, 5} 

 CCR={0.1, 0.5, 1.0, 1.5, 2.0} 

 BRange={0.1, 0.25, 0.5, 0.75, 1.0} 

 WDAG=100~1000 

The values of these parameters are randomly selected from the corresponding 

sets given above for each DAG. The arrival interval value between DAGs is set based 

on Poisson distribution. Each experiment involves 20 runs, and each run has 100 

unique DAGs on a Grid environment that contains 3 clusters each containing 30~50 

processors respectively. 

In the experiment, we also take other factors into account: the distribution of 

tasks’ computation cost (Wi_DisType) and the computation intensity of a workflow 

represented by CCR (computationIntensity). The average computation cost of each 

task is randomly generated from a probability distribution within the range [1, 2 ×

WDAG] as described in Chapter 3. We experimented with both a uniform distribution 

and an exponential distribution for tasks’ computation cost. For the computation 

intensity of a workflow, we refer a workflow to computation intensive if its 

computation time is longer than file communication time. Otherwise, a workflow is 

communication intensive. For general workflows, CCR is randomly selected from the 

set {0.1, 0.5, 1.0, 1.5, 2.0}. For computation-intensive workflows, CCR is randomly 

selected form the set {0.1, 0.5}, and for communication-intensive workflows, CCR is 
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randomly selected from the set {1.5, 2.0}. 

 

5.2.3 Results Analyses 

A. Impact of the Arrival Interval of workflows 

    Figure 5-2, 5-3 and 5-4 show the results of different mean arrival intervals for 

average makespan, average SLR and win (%) respectively. It can be easily seen that 

when the system is more crowded, i.e., smaller arrival interval in the figures, OWM 

outperforms the other two algorithms significantly. When all DAGs are submitted at 

the same time, i.e., the zero arrival interval in the figures, OWM outperforms 

Fainess_Dynamic by 26% and 49%, and outperforms RANK_HYBD by 13% and 

20% for average makespan and average SLR respectively, as shown in figure 5-2 and 

5-3. Fairness_Dynamic has pool performance for average SLR, because it achieves 

fairness by the cost of enlarging the makespan of the workflows with shorter critical 

path length. OWM wins in terms of makespan by 94.55% as shown in figure 5-4. 

From users’ perspective, it means 94.55% users may prefer OWM. When workflows 

arrive at an interval about 400 time units, these three algorithms are almost equivalent 

for average makespan, average SLR and win (%) because one workflow almost come 

in after another one finishes. In real environments, most high-performance centers are 

overloaded, therefore OWM can outperform others in such environments. 
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Figure 5-2 Results of different mean arrival intervals for average makespan 

Figure 5-3 Results of different mean arrival intervals for average SLR 
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B. Impact of the Computation Intensity with Different Distributions of Tasks’ 

Computation Cost 

    Figure 5-5, 5-6 and 5-7 show the results of computation intensity at different 

levels for average makespan, average SLR and win (%) with a uniform distribution of 

tasks’ computation cost respectively. Figure 5-8, 5-9 and 5-10 show the results with an 

exponential distribution of tasks’ computation cost. In these experiments, the arrival 

interval of workflows is set with the Poisson distribution with the mean value of 20. It 

represents a global level that several workflows may be simultaneously running in the 

system. Obviously, OWM outperforms the other two algorithms. The superiority of 

OWM over the other two methods is that it consistently achieves the best performance 

for all types of workflows.  

    In figure 5-5, OWM outperforms Fairness_Dynamic by 23%, 22% and 27%, 

and outperforms RANK_HYBD by 12%, 17% and 11% in terms of average makespan 

for general, computation and communication intensive workflows respectively. In 
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Figure 5-4 Results of different mean arrival intervals for win (%) 



 

43 
 

figure 5-6, OWM outperforms Fairness_Dynamic by 44%, 45% and 45%, and 

outperforms RANK_HYBD by 16%, 19% and 14% in terms of SLR for general, 

computation and communication intensive workflows respectively. OWM wins in 

terms of makespan by about 82% for all the three types of workflows as show in 

figure 5-7.  

In figure 5-8, OWM outperforms Fairness_Dynamic by 17%, 14% and 20%, and 

outperforms RANK_HYBD by 16%, 20% and 15% in terms of average makespan for 

general, computation and communication intensive workflows respectively. In figure 

5-9, OWM outperforms Fairness_Dynamic by 24%, 20% and 26%, and outperforms 

RANK_HYBD by 20%, 23% and 18% for in terms of average SLR for general, 

computation and communication intensive workflows respectively. OWM wins in 

terms of makespan by about 72% for all the three types of workflows as show in 

figure 5-10. 
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Figure 5-7 Results of different computation intensity for win (%) with a 

uniform distribution of tasks’ computation cost 
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C. Impact of the Number of Clusters 

    The following investigate the effects of cluster amount in a Grid environment. In 

the experiment, the Grid environment is composed of 120 processors, and divided 

equally into a different number of clusters, 2, 4, 6, 8, 10 and 12, for each test case. We 

assume the arrival interval of workflows conforms to the Poisson distribution with the 

mean value of 20. The results indicate that in average, OWM outperforms 

Fairness_Dynamic by 22%, and outperforms RANK_HYBD by 11% in terms of 

average makespan as shown in figure 5-1l. OWM outperforms Fairness_Dynamic by 

48%, and outperforms RANK_HYBD by 15% in terms of average SLR as shown in 

figure 5-12. OWM wins in terms of makespan by about 82% as shown in figure 5-13. 
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Figure 5-11 Results of different number of clusters for average makespan 
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Figure 5-12 Results of different number of clusters for average SLR 

Figure 5-13 Results of different number of clusters for win (%) 
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D. Impact of Inaccurate Execution Estimates 

    The execution time of each task on a specific processor is necessary information 

for workflow scheduling algorithms. In practice, the execution time of a task is 

usually difficult to known before the execution completes. Therefore, the execution 

time used in scheduling algorithm s is not precise. The following experiments 

investigate the effects of inaccurate estimation of task execution time. The simulator 

picks the actual execution time of a task randomly from the range: 

[1, 𝑒𝑡 + 2 ×
𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

100
× 𝑒𝑡 ] 

, where 𝑒𝑡 is the estimated execution time of the task. For example, when the 

uncertainty is 400 and 𝑒𝑡 of a task is 100, the actual execution time of the task is 

randomly picked from the range: [1, 900]. We also assume that the arrival interval of 

workflows conforms to the Poisson distribution with the mean value of 20. Figure 

5-14, 5-15 and 5-16 show the results of inaccurate execution estimates for average 

makespan, average SLR and win (%) respectively. It can be easily observed that 

OWM outperforms the other two algorithms for the uncertainty levels from 50% to 

400%. In average, OWM outperforms Fairness_Dynamic by 19%, and outperforms 

RANK_HYBD by 8% for average makespan as shown in figure 5-14; OWM 

outperforms Fairness_Dynamic by 38%, and outperforms RANK_HYBD by 12% for 

average SLR as shown in figure 5-15. OWM wins in terms of makespan by about 

74% as shown in figure 5-16. These results indicate that OWM is more resilient to 

inaccurate estimation of task execution time than the other methods. 
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5.3 Experimental Results for Workflows Composed of Data-Parallel 

Tasks 

    In this section, we compare different multi-processor task rearrangement 

processes including first fit, easy backfilling [22] and conservative backfilling [22] 

approaches with FCFS (First Come First Serve) approach. The FCFS approach 

doesn’t find waiting task to fit the scheduling hole. In the experiments, OWM(FCFS), 

OWM(conservative), OWM(easy) and OWM(first fit) stand for FCFS, conservative 

backfilling, easy backfilling and first fit approaches respectively. Figure 5-17 shows 

the main processes in OWM(FCFS), OWM(conservative), OWM(easy) and 

OWM(first fit). 

 

 

 

Figure 5-17 The processes in OWM(FCFS), OWM(conservative), 

OWM(easy) and OWM(first fit) 
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5.3.1 Experimental Setup 

The experimental setups for data-parallel tasks are the same as that for 

single-processor tasks, but each run has 50 unique workflows. To be more realistic, 

maximal required processors of all tasks (maxTaskNP) and the distribution of the 

processors that tasks require (NP_DisType) are taken into account. In the experiment, 

maxTaskNP is defined with maximum, half and minimum.  

 maxTaskNP is maximum: maxTaskNP = the number of processors in the smallest 

cluster in the Grid environment. 

 maxTaskNP is half: maxTaskNP = 
1

2
× the number of processors in the smallest 

cluster in the Grid environment. 

 maxTaskNP is minimum: maxTaskNP = 
1

5
× the number of processors in the 

smallest cluster in the Grid environment. 

The required processors of each task is randomly generated from a probability 

distribution within the range [1,𝑚𝑎𝑥𝑇𝑎𝑠𝑘𝑁𝑃]. The experiment is done with uniform 

distribution, exponential distribution and normal distribution for NP_DisType. 
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5.3.2 Results Analyses 

    Each experiment is configured by the following four parameters. Their values are 

assigned from the corresponding sets below: 

 Wi_DisType={uniform, exponential} 

 maxTaskNP={maximum, half, minimum} 

 NP_DisType={uniform, exponential, normal} 

 computationIntensity={general, computation, communication} 

The combinations of the above parameter values give 54 different experiments. 

These 54 experiments lead to an interesting observation for workflow scheduling. In 

independent task scheduling, it is well known that FCFS approach has worse 

performance than conservative backfilling [22], easy backfilling and first fit 

approaches. However, in workflow scheduling, the experiments show that 

OWM(FCFS) is almost equal to OWM(conservative), and outperforms OWM(easy) 

and OWM(first fit) for average SLR, and outperforms the other three approaches for 

win (%). The results indicate that that when the waiting tasks are rearranged by the 

multi-processor task rearrangement process, it doesn’t result in better performance as 

expected. The following example helps to explain the reason. The tasks in the waiting 

queue are sorted by their critical path in the ascending order. Suppose that a workflow 

is near completion, and the last task in the workflow will get the highest priority in the 

waiting queue. If the task cannot be allocated due to the lack of free processors, the 

multi-processor task rearrangement process will find a waiting task to fit the 

scheduling hole. The above rearrangement technique may make the last task to wait 

infinitely, and it in turn increases the makespan of the workflow. So, the performance 

may be reduced correspondingly. Therefore, frequent the task rearrangement may 

contrarily lead to poor performance. For example, OWM(first fit) has the highest 

frequency of task rearrangement, and may result in the worst performance. 
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Figure 5-18, 5-19 and 5-20 are an example among the 54 experiments. Other 

experimental results are shown in Appendix. Figure 5-18, 5-19 and 5-20 show the 

results of different computation intensity for average makespan, average SLR and win 

(%) respectively, with Wi_DisType=uniform, maxTaskNP=min, and 

NP_DisType=uniform. 
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Figure 5-20 Results of different computation intensity for win (%) 
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Chapter 6 Conclusion and Future Work 

     

Most workflow scheduling algorithms are restricted to the domain of single 

workflow. There are few researches for scheduling online workflows. In the thesis, we 

propose OWM approach for scheduling online workflows in a Grid environment. Our 

experiments show that OWM outperforms RANK_HYBD [21] and 

Fairness_Dynamic for average makesapn, average SLR and win (%) in different 

experimental workloads. 

    However, RANK_HYBD and Fairness_Dynamic do not work with workflows 

composed of data-parallel tasks. There are few studies focused on workflow 

scheduling for data-parallel tasks. The thesis takes this issue into account. We 

incorporate well-known approaches, e.g., first fit, easy backfilling [22] and 

conservative backfilling [22] into OWM to deal with workflows composed of 

data-parallel tasks. The experiments show that OWM(FCFS) is almost equal to 

OWM(conservative), and outperforms OWM(easy) and OWM(first fit) for average 

SLR, and outperforms the other three approaches for win (%). 

 

    In the future, we will investigate the trade-off between the QoS (Quality of 

Service) and the performance, i.e., the relation between the fairness and average 

makespan for workflows. In addition, we will implement OWM to real Grid 

environments to validate our simulation results. 
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Appendix 

 

The remainder experimental results for workflows composed of data-parallel 

tasks are shown below. 
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Figure A-1 Results of different computation intensity for average makespan 

with (uniform, max, uniform) 



 

59 
 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

20000

40000

60000

80000

100000

120000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-3 Results of different computation intensity for win (%) 

with (uniform, max, uniform) 

Figure A-4 Results of different computation intensity for average makespan 

with (uniform, max, exponential) 



 

60 
 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

10

20

30

40

50

general computation communication

w
in

 (
%

)

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-5 Results of different computation intensity for average SLR 

with (uniform, max, exponential) 

Figure A-6 Results of different computation intensity for win (%) 

with (uniform, max, exponential) 



 

61 
 

 

 

 

 

 

 

 

 

 

 

 

 

0

50000

100000

150000

200000

general computation communication

av
g.

 m
ak

e
sp

an

cost intensive

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

5

10

15

20

25

30

35

40

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-8 Results of different computation intensity for average SLR 

with (uniform, max, normal) 

Figure A-7 Results of different computation intensity for average makespan 

with (uniform, max, normal) 
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Figure A-11 Results of different computation intensity for average SLR 

with (uniform, half, uniform) 

Figure A-12 Results of different computation intensity for win (%) 

with (uniform, half, uniform) 
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Figure A-14 Results of different computation intensity for average SLR 

with (uniform, half, exponential) 
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Figure A-15 Results of different computation intensity for win (%) 

with (uniform, half, exponential) 
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Figure A-17 Results of different computation intensity for average SLR 
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with (uniform, half, normal) 
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Figure A-20 Results of different computation intensity for average SLR 
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Figure A-21 Results of different computation intensity for win (%) 
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Figure A-22 Results of different computation intensity for average makespan 
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Figure A-23 Results of different computation intensity for average SLR 
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Figure A-27 Results of different computation intensity for win (%) 
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Figure A-29 Results of different computation intensity for average SLR 
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with (exponential, max, normal) 

Figure A-31 Results of different computation intensity for average makespan 
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Figure A-33 Results of different computation intensity for win (%) 
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Figure A-35 Results of different computation intensity for average SLR 

with (exponential, half, uniform) 
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with (exponential, half, uniform) 



 

76 
 

 

 

 

 

 

 

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

general computation communication

av
g 

m
ak

e
sp

an

cost intensive

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

0

1

2

3

4

5

6

7

general computation communication

av
g.

 S
LR

computation intensity

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

OWM (FCFS) OWM (conservative) OWM (easy) OWM (first fit)

Figure A-38 Results of different computation intensity for average SLR 
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Figure A-39 Results of different computation intensity for win (%) 

with (exponential, half, exponential) 

Figure A-40 Results of different computation intensity for average makespan 

with (exponential, half, normal) 
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Figure A-41 Results of different computation intensity for average SLR 

with (exponential, half, normal) 

Figure A-42 Results of different computation intensity for win (%) 

with (exponential, half, normal) 
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Figure A-44 Results of different computation intensity for average SLR 

with (exponential, min, uniform) 

Figure A-43 Results of different computation intensity for average makespan 
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Figure A-45 Results of different computation intensity for win (%) 

with (exponential, min, uniform) 
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Figure A-47 Results of different computation intensity for average SLR 
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Figure A-50 Results of different computation intensity for average SLR 
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