Un
H

Bl p

Al

~

i
;In_{

=D

/A

EARERE
Bt @ X

RREE Y L AR B AR 2 W
; Es

A% -

<2

Online Scheduling of Workflow Applications in a Grid

Environment

FTEREB Lt \FE N A

R ? AEI TR AN AP TR R

Online Scheduling of Workflow Applications in a Grid Environment

Foyod i FEER Student : Chih-Chiang Hsu
hERR I IER Advisor : Feng-Jian Wang

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

September 2009

Hsinchu, Taiwan, Republic of China

PR R4 L ANEA4

LRI B P I TR A7 N e B PR T L R A en R RE

5> NP-complete « > B3 A) B8 » T ©005 37 S 4R 2 3% en 2L 0

A
i

KA A MFLALEE S BPLIRERY BN T SE L S AR

'S

WEJLT FAR Y 1 (EiR AR A F BIATG B S M AL BN GE Y
APE2 I A2 @ 5 APHRDI T - B OWM =2 OWMHsm P 1 FiREv G
AR AR e 50 fRAE 1 TE R I RIL E AT TR R AL AP A~ RS

Heh- 25 223 0W # >4 first fit - conservative backfilling > easy

i

backfilling o {345 Bk F % > B lim A P orde e OWM £ et His = 2R
RS w1 FF R SO AL EAERT - OMCES) Min o fr
OWM(conservative)- #1 ® OWM(FCFS) % et OWM(easy)fe OWM(first fit)

B R L edF o

MetEF: W1 ivife . 2 Bk » R 3 FH > 3 Fifepfe 3 fvptfp ., 8

Bse s> 1 ey > TR F wigfgl -

Online Scheduling of Workflow Applications in

a Grid Environment

Student: Chih-Chiang Hsu Advisor: Feng-Jian Wang
Institute of Computer Science and Engineering
National Chiao Tung University

1001 University Road, Hsinchu, Taiwan 300, ROC

Abstract

Scheduling workflow applications, in &, Grid environment is a great challenge,
because it is NP-complete problem. Many heuristic-methods are presented, but most
of them work in the domain of single workflow application. In recent years, there are
several heuristic methods presented to-deal with concurrent workflows or online
workflows, but they do not workwith workflows composed of data-parallel tasks. In
the thesis, we present an approach for dealing with online workflows, which is named
Online Workflow Management (OWM). For dealing with data-parallel problems,
well-known approaches, e.g., first fit, conservative backfilling and easy backfilling
are added into OWM. The experiments show that OWM outperforms other two
methods in various workloads. For workflows composed of data-parallel tasks, the
experiments show that OWM(FCFS) is almost equal OWM(conservative), and

outperforms OWM(easy) and OWM(first fit).

Keywords: Online Workflows, DAG, Task Graph, Workflow Scheduling, Task
Scheduling, Heterogeneous Systems, Grid Computing, Task Allocation, Data Parallel

Task, Backfilling.

2+ 2
o

S AR S T E AR R Y e e R S

LakiFo B

R
<k
A=

BEDFBEREBEEA AWM AR 1 TR R R AT

*
v
o

97

[t
N
X

Ao &Y EEF MR gk Vb LoR M R AMEFFEL %G

THLZFRERELOPF AL @ KNGt L2

o

HIXHhBRWFHZTIEELLE - -FHFZ2E 5 Piod £ K awsd RAE L3 4
%07&:/ i E s~ 2492

RSO FE AL 2 [RA T P EIRERE
POBERISPR 0 A F A R F B oA IR 2 R BIEMRAL Y
FHEEFRAF R E AEH A @R 2 o RiB G - R

A Ao A

+ 5’ 144 /#— Bé': ASes 5'\‘ 4 /FJJ 3 ij:?” ﬁ‘j/“}-é‘fﬁi ﬂaﬂ °

Bis > AR RBBABMEHRAPLEZ G R L s 4 A sl

e A WO IR g B R I AR Y R

Table of Contents

ADSIIACT. . .. s I
o PPN I
Table of CONtENtS.o IV
List Of Tables. ..o, VI
LISt Of FIQUIES. ..ot e VI
Chapter 1 Introduction...... ot il e 1
Chapter 2 Related Work ..., . . foc e e 3
2.1 Workflow Scheduling-Algorithms for Grid Computing..................... .. 3
2.2 Static Workflow Scheduling Algorithms......cceroeoeveeeeeiieeeeeeeeeeeeeee, 5
2.3 Scheduling Concurrent Workflows: in Grid Environments...........ccoovvvvunen. 9
2.4 Scheduling Online Workflows in Grid Environments........................ 10
2.5 Scheduling Mixed Parallel Workflows in Grid Environments................ 10
Chapter 3 Software Simulator for Workflow Scheduling................. 12
3.1 Data Components in the Simulator.............ooiiiiiiiini i 12
3.2 Classes inthe Simulator............ooiiiiiiiiiiiii e, 14
3.3 SIMUIALION PrOCESS. .. vvete ittt et e e 23
Chapter 4 Online Workflow Management in a Grid Environment...... 28
4.1 Structure of Online Workflow Management................cccooevveeennn.... 28
4.2 Online Workflow Management (OWM)..........cooviiiiiiiiiieieiinnnn.. 30
4.2.1 Upward Rank ValUE.c.veiiiiii i 30

4.2.2 Critical Path Workflow Scheduling (CPWS)...........ccciiiivvnnnn... 30

4.2.3 Adaptive Allocation (AA).......ooviiiiiiii i 33
Chapter 5 Experimental Results...................oooiiii . 37
5.1 Performance MEtIICS.vveeie ettt et et 37

5.2 Experimental Results for Workflows Composed of Single-Processor Tasks..38

5.2.1 Difference between RANK_HYBD, Fairness_Dynamic and OWM...38

5.2.2 Experimental SEtUP.ooveiiiie e 39

5.2.3 ReSUItS ANAlYSES. ..o 40

5.3 Experimental Results for Workflows Composed of Data-Parallel Tasks...... 52
5.3.1 Experimental SEtUD.ovviie e 52

5.3.2 ReSUItS ANalYSES. iihsisceeeeeee e e e e e e 54
Chapter 6 Conclusion and FuturesWork. ..o, ..o, 57
AppendiX.................. off el S B 58
Reference.................. 8. . W ammrmmpras . . % ...t 84

List of Tables

Table 3-1 DAG_Generator Class...........o.ovriiei i 14
Table 3-2 EVENtNOGE CIaSS.eeieiee e 16
Table 3-3 EventType enUMEration.o.oiiiiiii e 16
Table 3-4 EVENtQUEUE ClaSS.ooviiei i e e 17
Table 3-5 WaitQueueNOde Class. ..o 19
Table 3-6 WaItQUEUE ClaSS.c.oouiiii e 20
Table 3-7 WorkflowScheduling Class.............ccooiiiiiii 21
Table 3-8 AllOCAtION CIaSS.........ovii e 22

\

List of Figures

Figure 2-1 A taxonomy of workflow scheduling algorithms............................... 3
Figure 2-2 An example of static scheduling................cooooiiiiiiiii 4
Figure 2-3 A taxonomy of static workflow scheduling algorithms........................ 5
Figure 2-4 An example of a list-based heuristiC...............coooviiiiiiiiiiiiiin, 6
Figure 2-5 An example of a clustering-based heuristic....................coooiiiiinin, 7
Figure 3-1 A Grid ENVIFONMENT. ..ottt 13
Figure 3-2 An example of EVENtQUEUE.ottt 18
Figure 4-1 Online Workflow Management (OWM)............cooiiiiiiiiiiiiiin.. 29
Figure 4-2 An example 0f SWS .. e i, 32
Figure 4-3 An example of CPV S .. Lol e, 32

Figure 5-1 The difference between RANK_HYBD, Fairness_Dynamic and OWM...38

Figure 5-2 Results of different*mean arrival intervals for average makespan.......... 41
Figure 5-3 Results of different mean arrival intervals for average SLR................. 41
Figure 5-4 Results of different mean arrival intervals for win (%)....................... 42

Figure 5-5 Results of different computation intensity for average makespan with a
uniform distribution of tasks’ computation cost.............................. 43

Figure 5-6 Results of different computation intensity for average SLR with a uniform
distribution of tasks’ computation CoSt...............cooeviiiiiiiiiiii 44

Figure 5-7 Results of different computation intensity for win (%) with a uniform
distribution of tasks’ computation CoSt...............ccoviiiiiiiiiinnn, 44

Figure 5-8 Results of different computation intensity for average makespan with an

exponential distribution of tasks’ computation cost........................... 45

Vil

Figure 5-9 Results of different computation intensity for average SLR with an
exponential distribution of tasks’ computation cost......................... 45

Figure 5-10 Results of different computation intensity for win (%) with an

exponential distribution of tasks’ computation cost...................... 46
Figure 5-11 Results of different number of clusters for average Makespan............ 47
Figure 5-12 Results of different number of clusters for average SLR................... 48
Figure 5-13 Results of different number of clusters for win (%)......................... 48
Figure 5-14 Results of inaccurate execution estimates for average makespan......... 50
Figure 5-15 Results of inaccurate execution estimates for average SLR................ 50
Figure 5-16 Results of inaccurate execution estimates for win (%)...................... 51

Figure 5-17 The processes in OWM(FCES), OWM(conservative), OWM(easy) and
OWM(First fit).... oee e it e 52

Figure 5-18 Results of different computation -intensity for average makespan
with (uniform, smin, URTFOLM)wee. ..ot 55

Figure 5-19 Results of different computation intensity for average SLR
with (uniform, min, uniform).................. 56

Figure 5-20 Results of different computation intensity for win (%)
with (uniform, min, uniform).................... 56

Figure A-1 Results of different computation intensity for average makespan
with (uniform, max, uniform).................... 58

Figure A-2 Results of different computation intensity for average SLR
with (uniform, max, uniform)..................cooiii 58

Figure A-3 Results of different computation intensity for win (%)
with (uniform, max, uniform)...............coooiiiiiiiiii 59

Figure A-4 Results of different computation intensity for average makespan

with (uniform, max, exponential)....................oocoiiiiiii, 59
Vil

Figure A-5 Results of different computation intensity for average SLR
with (uniform, max, exponential).................ccooiiiiiiiiiin. 60

Figure A-6 Results of different computation intensity for win (%)
with (uniform, max, exponential)................c.cocooiiiiiiiiiiinn 60

Figure A-7 Results of different computation intensity for average makespan
with (uniform, max, normal)...............ooiiiiii 61

Figure A-8 Results of different computation intensity for average SLR
with (uniform, max, normal)................cooiiiii, 61

Figure A-9 Results of different computation intensity for win (%)
with (uniform, max, normal)...............cooiiiiiii 62

Figure A-10 Results of different computation intensity for average makespan
with (uniform, half, uniform)e.o.. oo o 62

Figure A-11 Results of different computation “intensity for average SLR
with (uniform; half, uniform).........o.......ooo 63

Figure A-12 Results of different computation intensity for win (%)
with (uniform, half, uniform)........................ 63

Figure A-13 Results of different computation intensity for average makespan
with (uniform, half, exponential)....................... 64

Figure A-14 Results of different computation intensity for average SLR
with (uniform, half, exponential)............................l. 64

Figure A-15 Results of different computation intensity for win (%)
with (uniform, half, exponential)....................cooooiiiiiinn. 65

Figure A-16 Results of different computation intensity for average makespan
with (uniform, half, normal).....................o 65

Figure A-17 Results of different computation intensity for average SLR

with (uniform, half, normal)........................ 66
IX

Figure A-18 Results of different computation intensity for win (%)
with (uniform, half, normal).................... 66
Figure A-19 Results of different computation intensity for average makespan
with (uniform, min, exponential)..................oooiiiiii . 67
Figure A-20 Results of different computation intensity for average SLR
with (uniform, min, exponential)......................ooiiiiinnl, 67
Figure A-21 Results of different computation intensity for win (%)
with (uniform, min, exponential)......................cooiiiiiall. 68
Figure A-22 Results of different computation intensity for average makespan
with (uniform, min, normal).................oc 68
Figure A-23 Results of different, computation intensity for average SLR
with (uniform, min, normal).... oo 69
Figure A-24 Results of “different computation intensity for win (%)
with (uniformy ming NOFMAL) e ..o 69
Figure A-25 Results of different.computation “intensity for average makespan
with (exponential, max, uniform).....................o 70
Figure A-26 Results of different computation intensity for average SLR
with (exponential, max, uniform).......................o, 70
Figure A-27 Results of different computation intensity for win (%)
with (exponential, max, uniform).......................ooo, 71
Figure A-28 Results of different computation intensity for average makespan
with (exponential, max, exponential)................coooeiiiiiiiiiinnnn, 71
Figure A-29 Results of different computation intensity for average SLR
with (exponential, max, exponential)........................ooon 72
Figure A-30 Results of different computation intensity for win (%)

with (exponential, max, exponential).........................oon 72
X

Figure A-31 Results of different computation intensity for average makespan
with (exponential, max, normal)..................ooiii, 73
Figure A-32 Results of different computation intensity for average SLR
with (exponential, max, normal).................cooiiiiiin 73
Figure A-33 Results of different computation intensity for win (%)
with (exponential, max, normal).......................ooi 74
Figure A-34 Results of different computation intensity for average makespan
with (exponential, half, uniform)......................... 74
Figure A-35 Results of different computation intensity for average SLR
with (exponential, half, uniform).....................o. 75
Figure A-36 Results of different, computation intensity for win (%)
with (exponential, half,suniform)..c......................l. 75
Figure A-37 Results of different computation -intensity for average makespan
with (exponential, half,_exponential).................................... 76
Figure A-38 Results of different computation intensity for average SLR
with (exponential, half, exponential).................................... 76
Figure A-39 Results of different computation intensity for win (%)
with (exponential, half, exponential).................................... 77
Figure A-40 Results of different computation intensity for average makespan
with (exponential, half, normal).......................... 77
Figure A-41 Results of different computation intensity for average SLR
with (exponential, half, normal)....................ooc 78
Figure A-42 Results of different computation intensity for win (%)
with (exponential, half, normal)......................... 78
Figure A-43 Results of different computation intensity for average makespan

with (exponential, min, uniform)...................o 79
XI

Figure A-44 Results of different computation intensity for average SLR
with (exponential, min, uniform)...................coooiiiii. 79
Figure A-45 Results of different computation intensity for win (%)
with (exponential, min, uniform).................cooiiiii, 80
Figure A-46 Results of different computation intensity for average makespan
with (exponential, min, exponential)......................ooiiial. 80
Figure A-47 Results of different computation intensity for average SLR
with (exponential, min, exponential)........................ooiiiil. 81
Figure A-48 Results of different computation intensity for win (%)
with (exponential, min, exponential)........................oooiil. 81
Figure A-49 Results of different computation intensity for average makespan
with (exponential, min, permal)....oc..............oooi 82
Figure A-50 Results of different computation “intensity for average SLR
with (exponential, min,-normal)......c..........ocooiii 82
Figure A-51 Results of different computation intensity for win (%)

with (exponential, min, normal)......................o 83

Xl

Chapter 1 Introduction

Grid environments are an important platform for running high-performance and
distributed applications. Many large-scale scientific applications are usually
constructed as workflows due to large amounts of interrelated computation and
communication, e.g., Montage [29] and EMAN [30]. A Grid environment is
composed of widespread resources from different administrative domains. Miguel et
al. [33] indicates that a Grid environment usually has the characteristics: heterogeneity,
large scale and geographical distribution. Task scheduling in Grid is a NP-complete
problem [31] [32], therefore many heuristic methods have been proposed. The
workflow scheduling problem in Grid environments is a great challenge. In the past
years, there are many static heuristic methods proposed [3] [4] [5] [6] [7] [8] [9] [18]
[25]. They are designed in the-domain of scheduling single workflow only.

Zhao et al. presented composition and fairness.approaches [20] for scheduling
multiple workflows at the same time. T..N‘takpe" et al. presented an approach [23] to
scheduling concurrent workflows composed of moldable tasks. However, all these
methods do not work with online workflows: i.e., multiple workflows occur at
different times. Z. Yu et al. [21] presented a planner-guided dynamic scheduling
approach for dealing with online workflows, but it doesn’t work with workflows
composed of data-parallel tasks (parallel tasks) of which each uses multiple
processors simultaneously for its execution.

In this thesis, we present a new approach called Online Workflow Management
(OWM). There are four processes in OWM: Critical Path Workflow Scheduling
(CPWS), Task Scheduling, Multi-Processor Task Rearrangement and Adaptive

Allocation (AA). CPWS process submits tasks into the waiting queue. Task

scheduling and AA processes prioritize the tasks in the queue and assign the task with
highest priority to the processor for execution respectively. In data-parallel task
scheduling, there may be some scheduling holes which are formed when the free
processors are not enough for the first task in the queue. The multi-processor
rearrangement process works for dealing with scheduling holes to improve utilization.
The process includes first fit, easy backfilling [22], and conservative backfilling [22]
approaches.

To validate the advantages of the cooperation designed among these four
processes, task-waiting queue, event queue and workflows, we developed a Grid
simulator using a discrete-event based technique for experiments. Task-waiting queue
and event queue keep the tasks and events for processing. The Grid environment
consists of several simulated clusters of which.each contains an amount of processors.
A workflow is represented by direct acyclic graph(DAG). Each experiment involves
20 runs, and each run has 100 unique’DAGs.on a Grid environment that contains 3
clusters each containing 30~50 ‘processors respectively. Experimental results show
that OWM has better performance than RANK_HYBD [21] and Fairness_Dynamic
which extends the Fairness (F2) in [20] to handle online workflows. When workflows
composed of data-parallel tasks, the experimental results show that OWM(FCFS) is
almost equal to OWM(conservative), and outperforms OWM(easy) and OWM(first
fit).

The remainder of the thesis is organized as follows. Chapter 2 discusses related
work. Chapter 3 describes the software simulator for workflow scheduling. Chapter 4
presents the OWM approach for Grid environments. Chapter 5 presents the

experimental results and Chapter 6 concludes the thesis.

Chapter 2 Related Work

In this chapter, we survey related algorithms in Grid environments. Section 2.1
describes workflow scheduling algorithms for Grid computing. Section 2.2 describes
static workflow scheduling algorithms. Section 2.3, 2.4, 2.5 describe concurrent
workflows, online workflow and mixed parallel workflows scheduling algorithms in

Grid environments respectively.

2.1 Workflow Scheduling Algorithms for Grid Computing

Workflow scheduling algorithms for Grid computing can be classified into two

groups [26] (Figure 2-1): static and dynamic.

workflow scheduling algorithms

static dynamic

Figure 2-1 A taxonomy of workflow scheduling algorithms

In a static scheduling algorithm, the structure of workflow applications i.e., the
dependency of tasks, and the estimated cost are known in the very beginning. The
resource assignment of tasks is made before execution (Figure 2-2), and each
approach has its own policy of assignment. Static approaches are not adaptive to some
situations, e.g., one of the resources selected fails, or the real execution time on some
resources is longer than the estimated time. Unfortunately, these situations occur in a

great potential due to the nature of Grid environments. To alleviate this problem, there
3

are two approaches: task partitioning [10] and rescheduling [1] [11]. The former
partitions a workflow into multiple sub-workflows which are executed sequentially.
Instead of mapping entire workflow at one time, it allocates resources to tasks in one
sub-workflow each time. A sub-workflow mapping is started only after the previously
mapped sub-workflow starts the execution. The latter reschedule unexecuted tasks
when the Grid environment changes. H. Braun et al. compare eleven static heuristic
algorithms on heterogeneous distributed computing systems [2]. Figure 2-2 shows an
example of a static scheduling algorithm. Figure 2-2(a) shows an original workflow.
Figure 2-2(b) shows the resource mapping of tasks before execution: t1, t3 and t5 are

mapped to R1, and t2 and t4 are mapped to R2 .

\// tl \‘ |/ tl \\'

./ \(R1)
70 /) 20 &
L 2) 3] l ‘.
\\\ /// &\\ ,) \ (}{2) v \ (Rl/)//l
,MN/;\ o 4’\\ // 5\\
/, \‘.' // \ / t . ’ t \
»\ t4 /, |\\ t5 /J l\\ (R2)) \ (R1) /|
SR N S N

(a) (b)

Figure 2-2 An example of static scheduling (a) an original workflow (b) the resource
mapping of a workflow before execution

Dynamic scheduling approaches perform task allocation as workflow
applications execute. When a task is ready to execute, it is submitted to waiting queue.
Dynamic scheduling mechanisms make a decision when the waiting queue has tasks

and there are free resources. Dynamic scheduling is usually applied when it is difficult

to estimate the costs of tasks, or when workflow applications may come at different
times (it is called online scheduling). For example, Z. Yu [21] proposed a

planner-guided scheduling strategy.

2.2 Static Workflow Scheduling Algorithms
Static workflow scheduling algorithms can be classified into two groups [17] as

shown in Figure 2-3: heuristic-based and meta-heuristic based.

{ Static workflow scheduling algorithms

‘ Heuristic based Meta-heuristic based

List-based | | Clustering-based | | Duplication-based || Level-based | | Hybrid-based

Figure 2-3 A taxonomy of static workflow scheduling algorithms

Heuristic-based scheduling algorithms usually can be classified into five groups:
(1) list-based, (2) clustering-based, (3) duplication-based, (4) level-based, (5)
hybrid-based. A list-based heuristic approach maintains a list of all tasks of a
workflow application according to their priorities. The method schedules the tasks
based on the list. There are list-based heuristics proposed [3] [4] [5] [6] [7].

HEFT (Heterogeneous Earliest Finish Time) [7] is a well-known list-based

5

scheduling algorithm in heterogeneous environments, and it is implemented in
ASKLON that is a workflow management system based on Grid computing [17]. In
recent years, many researches have been applied to modify HEFT in the
corresponding environments. Typical examples include HHS (Hybrid Scheduling
Algorithm) [18], M-HEFT (Mixed-Parallel HEFT) [19], Fairness Policy [20] ,
RANK_HYBD [21].

HEFT algorithm has two major phases: a task prioritizing phase and a processor
selection phase. The task prioritizing sets the priority of each task with an upward
rank value, ranky, which is based on mean computation and mean communication
costs. A higher rank, value gets a higher priority. The processor selection selects a
processor which has earliest estimated finish time of the task. Figure 2-4 shows an

example of a list-based heuristic;, HEFT.

R, rank value of HEFT
(tl) rank(t1) = 100
‘/‘/\‘ rank(t2) = 70
¥ = rank(t3) = 85
(2) (3) |rank(t4) =50
A " |rank(t5) = 30
'\ t4) < t5 /\ A list of the workflow :
P Nt tl >t3->12->t4 ->1t5

Figure 2-4 An example of a list-based heuristic

The main idea of clustering-based heuristic method is to reduce communication
delay by grouping the tasks of heavy communicating into the same labeled cluster. In
general, a clustering-based heuristic method has two phases: clustering and merging.
In the clustering phase, the original workflow application is partitioned into clusters,

and the merging phase merges the clusters so that the remaining number of clusters
6

equals to the number of resources. There are various clustering-based heuristic
methods proposed [8]. Figure 2-5 shows an example of a clustering-based heuristic. In
figure 2-5, (a) represents an original workflow, and (b) shows the result of arranging
the tasks into three clusters {t1, t2, t7}, {t3, t4, t6}, {t5}. These three clusters {t1, t2,

t7}, {t3, t4, t6}, {t5} will be allocated to three resources respectively at run time.

\/’/\f

(’,./ < \\._\
\ t7 ,_/I

(@)

Figure 2-5 An example of a clustering-based heuristic (a) an original
workflow (b) after clustering
A duplication-based heuristic method helps a task to transmit the data to the
resource of succeeding task(s) implicitly during its execution time. This may reduce
the communication cost from a task to a successor. Various duplication-based

heuristic methods are proposed [9].

A level-based heuristic method, i.e. LHBS (Levelized Heuristic Based

Scheduling) [25], divides the workflow into levels of independent tasks. Within each

7

level, LHBS can use Greedy, Min-Min, Min-Max, or Sufferage [2] heuristics to map
the tasks to resources. Both the GrADS [16] and Pegasus [27] schedulers use a

version of LHBS.

A Hybrid-based heuristic method, i.e., HHS (Hybrid Heuristic Scheduling) [18],
is a combination of list-based and level-based heuristic methods. HHS first computes
the levels as in LHBS, then the tasks in each level following the prioritized order used
by HEFT. The five static heuristic methods mentioned above are restricted to single
workflow.

Y. Zhang et al. [24] compare HEFT [7], LHBS [25], and HHS [18] in Grid
environments. They showed that list-based and hybrid-based heuristic methods are
effective in a Grid environment, outperforming the level-based heuristic. [15] also
shows that list-based heuristic imethod perform-better than clustering-based and

duplication-based heuristic methods:

The meta-heuristic based scheduling algorithms produces an optimized
scheduling solution based on the performance of the entire workflow. Genetic
algorithms [13], simulated annealing [14], and GRASP (Greedy randomized adaptive
search) [12] are well-known meta-heuristic scheduling algorithms. Each task in the
workflow is assigned a priori to resources in order to minimize the makespan of the
whole workflow. However, the scheduling time in meta-heuristic scheduling

algorithms is significantly higher [16] [17] than heuristic-based algorithms.

J. Blythe et al. [16] compare the heuristic-based algorithm and the meta-heuristic
based algorithm. In the comparison, they select one algorithm to represent each

approach, Min-Min scheduling algorithm for heuristic-based algorithm and GRASP
8

for the meta-heuristic based algorithm. The experiment results indicate both
approaches are similar for compute-intensive cases, but the meta-heuristic based
algorithm is better than the heuristic-based algorithm for data-intensive cases.
However, the time complexity of the meta-heuristic based algorithm grows more

rapidly than the heuristic-based algorithm if the workflow has more tasks.

2.3 Scheduling Concurrent Workflows in Grid Environments
In the past years, most works dealing with workflow scheduling were restricted
to single workflow application. Zhao et al. [20] envisaged a scenario that need to
schedule multiple workflow applications .at_the same time. They proposed two
approaches: composition approach and fairness-approach.
(1) The composition approach:merges multiple workflows into a single workflow
first. Then, two list scheduling heuristic.methods, such as HEFT [7] and HHS

[18], can be used to schedule the merged workflow.

(2) The main idea of fairness approach is that when a task completes, it will
re-calculate the slowdown value of each workflow (or single workflow) against
other workflows and make a decision on which a workflow should be

considered next.

Moreover, the composition and the fairness approaches are static algorithms and
not feasible to deal with online workflow applications, i.e., multiple workflows come

at different times.

2.4 Scheduling Online Workflows in Grid Environments
RANK_HYBD [21] is designed to deal with online workflow applications
submitted by different users at different times. The task scheduling approach of
RANK_HYBD sorts the tasks in waiting queue using the rules repeatedly.
1. If tasks in waiting queue come from multiple workflows, the tasks are sorted
in ascending order of their rank value (rank,) where rank, is described in
HEFT [7];
2. Ifall task are belong to the same workflow, the tasks are sorted in descending
order of their rank value (ranky).
However, the number of processors to be used by each task is limited to a single

processor. It is not feasible to deal with workflows composed of data-parallel tasks.

2.5 Scheduling Mixed Parallel Workflows in'Grid Environments.

Parallel task scheduling can-be classified.inte two modes: rigid and moldable.
The number of processors required by a rigid task is fixed. The number of processors
used in a moldable task is determined by some algorithms before each run.

T. N'takpe' et al. proposed mixed parallel applications on Heterogeneous
platforms [28]. This can be considered as an example of moldable mode. Mixed
parallelism is a combination of task parallelism and data parallelism where the former
indicates that an application has more than one task that can execute concurrently and
the latter means a task can run at different resources concurrently.

[28] is only suitable for a single workflow. T. N'takpe' et al. further developed an
approach to deal with concurrent mixed parallel applications [23]. Concurrent
scheduling for mixed parallel applications contains two steps: constrained resource

allocation and concurrent mapping. The former aims at finding an optimal allocation
10

for each task. The number of processors is determined in this step. The latter
prioritizes tasks of workflows.
However, the approach in [23] is restricted to concurrent workflows. It is

infeasible to deal with online workflows.

11

Chapter 3 Software Simulator for Workflow

Scheduling

This chapter presents the software simulator that we developed for simulating the
workflow scheduling activities in a Grid environment. Section 3-1 describes data
components in the simulator. Section 3-2 describes classes used in the simulator and

section 3-3 presents simulation processes.

3.1 Data Components in the Simulator
Input Workload:

A workflow application is represented by a.direct acyclic graph (DAG). A DAG
is defined as G = (V, E), where*V is a set of nodes, each representing a task, and E is
the set of links, each representing the computation precedence order between two
tasks. For example, a link (x,y) € E represents the precedence constraint that task t

completes before task ty starts.

Global System Time (GST):
In a discrete-event based simulation, the simulator maintains a global timing

system which increments the time whenever an event is processed.

System Queues:
There are two system queues: an event queue and a waiting queue. They keep the

events and tasks waiting for processing.

12

Grid Environment:

A Grid is composed of several clusters. A cluster contains an amount of
processors. The Grid is heterogeneous in that the processors at different clusters might
run at different speed. On the other hand, each cluster is homogeneous, consisting of
identical processors. The cost for a task includes computation and communication
costs where the former means the execution time, and the latter means the data
transfer time between processors. The computation cost of a task is the same for
different processors in the same cluster, but may be different in different clusters. The
communication cost between any two processors in the same cluster is set to be zero,
but not in different clusters. Figure 3-1 shows an example of a Grid environment in
our simulator. The processor speeds and network link speeds are homogeneous in the

same cluster, but they are heterogeneous between different clusters.

internet

I

@ 9?5

Cluster A (homogeneous) Cluster B (homogeneous) Cluster N (homogeneous)

A Grid Environment (heterogencous)

,,,

Figure 3-1 A Grid Environment

13

3.2 Classes in the Simulator
In this section, the classes used in the simulator are described including
DAG_Generator, EventNode, EventQueue, WaitQueueNode, WaitQueue,

WorkflowScheduling and Allocation classes.

DAG_Generator:

DAG_Generator is responsible for generating input workload consisting of a
sequence of DAGs in their arrival order. Table 3-1 shows an UML DAG_Generator
class. It contains 7 attributes, <Node, Shape, OutDegree, CCR, BRange, WDAG,
Cluster>, and 4 operations, <Generator(), ShapeGenerator(Node, Shape),
RelationGenerator(Node, OutDegree), CostGenerator(Node, BRange, WDAG, Cluster,
CCR)>.

Table 3-1 DAG_Generator class

DAG_Information

HNode : unsigned int

rtShape : double

+OutDegree : unsigned int

+CCR : double

+BRange : double

HWDAG : unsigned int

rCluster : unsigned int

HGenerator(in Node : unsigned int, in Shape : double, in OutDegree : unsigned int, in CCR : double, in BRange : double, in WDAG : unsigned int, in Cluster : unsigned int)
rShapeGenerator(in Node : unsigned int, in Shape : double)

rtRelationGenerator(in Node : unsigned int, in OutDegree : unsigned int)

+CostGenerator(in Node : unsigned int, in BRange : double, in WDAG : unsigned int, in Cluster : unsigned int, in CCR : double)

The attributes and operations in DAG_Generator are described as following.
Attributes:

1. Node: the number of tasks in a DAG.

2. Shape: the shape of a DAG.

3. OutDegree: the maximum of out degree of tasks in a DAG.

4. CCR: communication cost to computation cost ratio.

5. BRange (f3): distribution range of computation cost of tasks on processors. It is

the heterogeneous factor for processor speeds. A high range indicates
14

significant differences in task’s computation costs among the processors and a
low range indicates that the expected execution time of a task is almost the
same on each processor.
6. WDAG: the average computation cost of a DAG.
7. Cluster: the number of clusters in a Grid environment.
Operations:

1. Generator(): randomly generates a DAG according to the 7 input parameters
mentioned above. It invokes ShapeGenerator(), RelationGenerator(),
CostGenerator() in turn.

2. ShapeGenerator(Node, Shape): generates the shape of a DAG using Node and

Shape parameters. The height (depth) of a DAG is randomly generated from a

VNode

. The width for each level
Shape

uniform distribution with.mean value equal to

is randomly generated -from a uniform distribution with mean value equal to
Shape x VNode. If shape > 1, it generates a shorter graph with high
parallelism degree. Otherwise, If shape «'1, it generates a longer graph with a
low parallelism degree.

3. RelationGenerator(Node, OutDegree): generates the connect relation of a DAG
according to the input parameters Node and OutDegree defined above. Out
degree of each task is randomly generated from a uniform distribution with
range [1, OutDegree].

4. CostGenerator(Node, BRange, WDAG, Cluster, CCR): generates the
computation cost and the communication cost of a DAG. The average estimated

computation cost of each task t,, i.e., w, is randomly generated from a

distribution ranged [1,2 X WDAG]. The estimated computation cost of each

15

task t, on each cluster c,, i.e., wy, is randomly generated from a uniform

distribution with range:

BRange _ BRange
-)wa,yswxx(l'l' 2)

wy X (1

EventNode:
EventQueue stores a set of EventNodes. Each EventNode contains 6 attributes,

<type, time, jobIndex, daglndex, *pre, *next>. Table 3-2 shows EventNode class.

Table 3-2 EventNode class

EventNode
+type : EventType
+time : unsigned long
+jobIndex : unsigned long
+dagIndex : unsigned long
+*pre : EventNode
+*next : EventNode

Attributes:

1. type: the type of an event. Table 3-3 shows EventType enumeration. There are
two kinds of EventType: submit and end. Each event contains the attributes,
<joblndex, daglndex> uniquely identifying a job. When a submit event occurs,
a job <joblndex, dagindex> will be submitted to WaitQueue for scheduling and
allocation. When an end event occurs, a job <joblndex, daglndex> completes
successfully.

Table 3-3 EventType enumeration

<<enumeration>>
EventType

+submit

+end

16

2. time: the time that the event happens.

3. joblIndex: the index of a job.

4. daglndex: the index of a dag.

5. *pre: a link pointing to the preceding EventNode.

6. *next: a link pointing to the next EventNode.

EventQueue:
EventQueue is composed of a sequence of EventNodes. There are 3 attributes,
<*front, *rear, eventQueueCount>, and 3 operations, <enQueue(EventNode),

deQueue(), isSEmpty()> in EventQueue. Table 3-4 shows EventQueue class.

Table 3-4 EventQueue class

EventQueue
+*front : EventNode
+*rear : EventNode
+enQueue(in enNode : EventNode)
+deQueue() : EventNode
+isEmpty() : bool

Attributes:
1. *front: points to the first EventNode in EventQueue.
2. “*rear: points to the last EventNode in EventQueue.
Operations:
1. enQueue(EventNode): an operation that inserts an EventNode into
EventQueue.
2. deQueue(): an operation that removes and returns the first EventNode in

EventQueue.

17

3. isEmpty(): an operation that checks whether EventQueue is empty or not. If

EventQueue is empty, it returns true. Otherwise, it returns false.

Figure 3-2 shows an example of EventQueue. The EventNodes are sorted
according to their arrival time (EventNode.time). *fornt points to the first EventNode,

EventNodel, and *rear points to the last EventNode, EventNode5.

*front | o] p | EventNodel
: x
r BventNode2 | ¢
: w
r EventNode3 | ¢
)
7 | EventNoded /
\ \

| *rear | o] EventNode5 /

Figure 3-2 An example of EventQueue

18

WaitQueueNode:
WaitQueueNode represents the elements stored in WaitQueue. There are 7
attributes, <jobIndex, daglindex, np, ftown, ftmulti, rank, slowdown> in

WaitQueueNode. Table 3-5 shows WaitQueueNode class.

Table 3-5 WaitOueueNode class

WaitQueueNode

+jobIndex : unsigned long
+daglIndex : unsigned long
+np : unsigned long
+ftown : unsigned long
+ftmulti : unsigned long
+rank : unsigned long
+slowdown : double

Attributes:

1. joblndex: the index of a job.

2. daglndex: the index of a dag:

3. np: the number of processors that the job <jobindex, dagindex> needs.

4. ftown: the finish time of the job <joblIndex, dagindex>, when the DAG has the
whole processors for exclusive use. The detail of ftou, is described in [20].

5. ftmu: the finish time of the job <joblndex, dagindex>, when the DAG is
scheduled onto processors along with other workflow applications. The detail
of ftmuni Is described in [20].

6. rank: the upward rank value rank,. rank,(t;) means the length of critical
path from task t; to the exit task. The detail of rank, is described in Chapter
4.

7. slowdown: the main idea of the slowdown value is defined as ftown / ftmuii. The

detail of slowdown is described in [20].
19

WaitQueue:

WaitQueue is composed of a sequence of WaitQueueNodes. On a submit event, a
new WaitQueueNode is created according to the EventNode, and is submitted to
WaitQueue by calling WaitQueue.enQueue (WaitQueueNode) operation. WaitQueue
has 2 attributes, <waitQueueCount, waitQueue[]>, and 10 operations,
<enQueue(WaitQueueNode), remove(WaitQueueNode), iIsEmpty(), front(),
Fairnss_TaskScheduling(), = RankHYBD_TaskScheduling(), = Easy_Backfilling(),

Conservative_Backfilling(), FirstFit(), FCFS()>. Table 3-6 shows WaitQueue class.

Table 3-6 WaitQueue class

WaitQueue
+waitQueueCount : unsigned long
+waitQueue[] : WaitQueueNode
+enQueue(in enNode : WaitQueueNode)
Hremove(in deNode : WaitQueueNode)
+isEmpty() : bool
+ront() : WaitQueueNode
+Fairness_TaskScheduling()
+RankHYBD TaskScheduling()
+Conservative Backfilling()
+Easy Backfilling()
+FirstFit()
+FCFS()

Attributes:
1. waitQueueCount: the total number of WaitQueueNodes in WaitQueue. In other
words, it represents the length of WaitQueue.
2. waiQueue[]: an array that WaitQueueNodes are stored.
Operations:
1. enQueue(WaitQueueNode): an operation that inserts a WaitQueueNode into
WaitQueue.

2. remove(WaitQueueNode): an operation that removes a WaitQueueNode from

20

WaitQueue.

3. isEmpty(): an operation that checks whether WaitQueue is empty or not. If
WaitQueue is empty, it returns true. Otherwise, it returns false.

4. front(): returns the first WaitQueueNode in WaitQueue.

5. Fairness_TaskScheduling() and RankHYBD_TaskScheduling(): both
operations implement two distinct task scheduling algorithms. The order of
WaitQueueNodes in WaitQueue is determined by these two operations. The
details of these two scheduling algorithms will be described in Chapter 4.

6. Easy_Backfilling(), Conservative_Backfilling() and FirstFit(): In parallel task
scheduling, a task is delayed when the processors it needs are more than free
processors in the system. This situation causes a scheduling hole. These
approaches provide distinct metheds.to-locate waiting tasks for the scheduling
hole to improve resaurce usage. The details. of these algorithms will be

described in Chapter 4.

Workflow Scheduling:

Workflow Scheduling implements workflow scheduling algorithms and contains
2 operations, <SWS(), CPWS()>. SWS means simple workflow scheduling, and
CPWS means critical path workflow scheduling. The detailed descriptions of these
two workflow scheduling algorithms are presented in Chapter 4. Table 3-1 shows

WorkflowScheduling class.
Table 3-7 WorkflowScheduling class

WorkflowScheduling

+SWS()
+CPWS()

21

Allocation:

Allocation implements allocation algorithms and contains 2 operations, <SA(),
AA()>. SA means simple allocation, and AA means adaptive allocation. The detailed
description of these two allocation algorithms are presented in Chapter 4. Table 3-8

shows Allocation class.

Table 3-8 Allocation class

Allocation

+SA()
+AA()

22

3.3 Simulation Process

This section presents the simulation process. The GST cannot change until an
event happens. The simulation process contains several procedures including
Task_Submission(), Scheduler_Allocation() and Simulator(), where the former two

are invoked in Simulator(). The following describes the details.

Simulator():

Simulator() is the skeleton procedure of our simulator. Procedure 3-1 shows the
pseudo code of Simulator(). Firstly, it constructs a Grid environment, generates input
DAGs using DAG_Generator.Generator(), and then calls Task _Submission(), as
shown in lines 2 to 4. Line 5 checks, whether EventQueue is empty or not. If
EventQueue is empty, the simulation completes.successfully. Otherwise, the simulator
takes the first Node in EventQueue as EventNode, and'sets GST with EventNode.time
as shown in lines 6 to 7. Lines 8 to 10-show.that when the EventNode is a submit
event, a WaitQueueNode is created and added int@ WaitQueue correspondingly. Lines
11 to 13 show that if the EventNode is an end event, it will release the processors that
the EventNode requires, and calsl Task_Submission() to check if there are tasks need
to be submitted. Line 14 checks whether GST is equal to the time of the first node in
EventQueue or not. If it is equal, the simulator goes to loop the above execution.
Otherwise, it calls Scheduler_Allocation() to schedule the tasks in the waiting queue

and allocate the tasks.

Scheduler_Allocation():
Scheduler_Allocation() sorts waiting queue (WaitQueue.WaitQueue[]) according
to the task scheduling algorithm, and allocates a task to the free processor according

to the allocation algorithm. Procedure 3-2 shows the pseudo code of
23

Scheduler_Allocation(). According to the task scheduling algorithm used,
WaitQueue.Fairness_TaskScheduling() or WaitQueue.RankHYBD_TaskScheduling()
can be selected to prioritize tasks in waiting queue as shown in line 2. Line 3 checks
the waiting queue whether is empty or not. If the waiting queue is empty, the
procedure finishes. Otherwise, it executes the following codes. If workflows
composed of data-parallel tasks, scheduling holes may happen. To overcome this
problem for improving processor usage, the multi-processor task rearrangement
algorithm can be selected: WaitQueue.FCFS(), WaitQueue.FirstFit(),
WaitQueue.Conservative_Backfilling or WaitQueue.Easy Backfilling, as shown in
lines 4 to 6. Lines 7 to 8 show that the system takes the first node in the waiting queue
as WaitQueueNode, and allocates the ,WaitQueueNode to the processors that it
requires using an allocation algoerithm: Allecation.SA() or Allocation.AA(). After the
WaitQueueNode be allocated successfully, it“is removed from the waiting queue as
shown in line 10. When the WaitQueueNode.completes successfully, an EventNode is
created correspondingly. Then, it.will be added to"EventQueue with an end event as

shown in lines 11 to 12.

Task_Submission():

Procedure 3-3 shows the pseudo code of Task_Submission(). Different workflow
scheduling algorithms can be wused, i.e., WorkflowScheduling.SWS() or
WorkflowScheduling. CPWS() as shown in line 2. The detail of these two workflow
scheduling algorithm is described in Chapter 4. Line 3 shows that the submitted tasks
that workflow scheduling algorithm determine will cause submit events be added into

EventQueue.

24

Simulator()

01 begin

02 construct a Grid environment;

03 generate online DAGs using DAG_Generator.Generator();

04 Task_Submission();

05 while(EventQueue.isEmpty() == false) do

06 EvnetNode = EventQueue.deQueue();

07 GST = EventNode.time;

08 if(EventNode.type == submit)

09 WaitQueueNode is created according to EventNode;
10 WaitQueue.enQueue(WaitQueueNode);

11 else // EventNode.type == end

12 release the processors that EventNode requires;
13 Task_Submission();

14 if((*EventQueue.front).time # GST)

15 Scheduler_Allocation();

16 end if

17 end while

18 end

Procedure 3-1. Simulator()

25

Scheduler_Allocation()

01 begin

02 Il according to the task scheduling algorithm
WaitQueue.Fairness_TaskScheduler() or

WaitQueue.RankHYBD_TaskScheduler();

03 while(WaitQueue.isEmpty() == false) do
04 if (workflows composed of data-parallel tasks)
05 /[according to the multi-processor task rearrangement

WaitQueue.FCFS() or WaitQueue.FirstFit() or
WaitQueue.Conservative_Backfilling() or

WaitQueue.Easy Backfilling();

06 end if
07 WaitQueueNode = WaitQueue.front();
08 /I according to the allocation algorithm

Allocation.SA() or Allocation.AA();

09 if (allocate WaitQueueNode successfully)

10 WaitQueue.remove(WaitQueueNode);

11 EventNode is created according WaitQueueNode;
12 EventQueue.enQueue(EventNode); // end event
13 end if

14 end while

15 end

Procedure 3-2. Scheduler_Allocation()

26

Task_Submission()
01 begin
02 Il according to the workflow scheduling algorithm

WorkflowScheduling.SWS() or WorkflowScheduling.CPWS();

03 * the submitted tasks that workflow scheduling algorithm determine
will cause submit events be added into EventQueue */
EventQueue.enQueue(EventNode); // submit event

04 end

Procedure 3-3. Task_Submission()

27

Chapter 4 Online Workflow Management in a

Grid Environment

In this chapter, we propose an Online Workflow Management system (OWM)
for dealing with the simulation of online workflows in a Grid environment. Section
4.1 describes the structure of OWM. Section 4.2 presents the proposed algorithms for

OWM

4.1 Structure of Online Workflow Management

Figure 4-1 shows the structure of OWM. In OWM, there are four processes:
Critical Path Workflow Scheduling (CPWS), Task Scheduling, multi-processor task
rearrangement and Adaptive~Allocation (AA), -and- three data structures: online
workflows, a Grid environment and a waiting queue. The processes are represented by
solid boxes, and the data structures are representeddy dotted boxes.

The four processes in OWM are independent. When workflows come into the
system or tasks complete successfully, CPWS, takes the critical path in workflows
into account, and submits the tasks of online workflows into the waiting queue. The
details of CWPS are described in section 4.2. The task scheduling process in OWM is
RANK_HYBD [21]. In RANK_HYBD, the task execution order is sorted based on
the length of tasks’ critical path. If all tasks in the waiting queue belong to the same
workflow, they are sorted in the descending order. Otherwise, the tasks in different
workflows are sorted in the ascending order. In parallel task scheduling, there may be
some scheduling holes which are formed when the free processors are not enough for
the first task in the queue. A multi-processor rearrangement process in OWM works

for scheduling holes to improve utilization. Existing techniques for the process

28

include first fit, easy backfilling [22] or conservative backfilling [22] approaches.
When there are free processors in the Grid environment, AA gets the first task (the
highest priority task) in the waiting queue, and selects the required processors to

execute the task. The details of AA are described in section 4.2.

Online Workflows

®
(o

| o e S 1
| |
| :
|
Critical Path Workflow Scheduling (CPWS) -------- » I
| |
| |
| |
| |
| |
| |
| |
Task Scheduling e " l
[355 '
| Waiting i
| Queue |
|
i |
Multi-Processor Task Rearrangement e ->{ l
| |
| |
| |
| |
| |
| |
|
Adaptive Allocation (AA) e 1 |
X b |
|
1
|
|
[r T mememe T |
: ternet :
| :
: :
: Cluster 1 Cluster 2 Clustet3: | e Cluster n :
| |
| |

A Grid Environment

Figure 4-1 Online Workflow Management (OWM)

29

4.2 Online Workflow Management (OWM)
4.2.1 Upward Rank Value
The upward rank of a task t;. rank,(t;) [7] is the length of critical path form

task t; to the exit task. The definition as below
rank, (ti) =w; + math €succ (t;) (q + rank, (t]))

, where succ(t;) is the set of immediate successors of task t;, ¢;;

is the average
communication cost of edge (i,j), and w; is the average computation cost of task ¢;.
The computation of a rank starts from the exit task and traverses up along the task
graph recursively. Thus, the rank is called upward rank, and the upward rank of the

exit task t,,;; IS

Tanku (texit) = Weyir

4.2.2 Critical Path Workflow Scheduling (CPWS)

A task has four states: finished, submitted, ready and unready. A finished task
means the task has completed itS execution successfully. A submitted task means the
task is in the waiting queue. A task is ready when all necessary predecessor(s) of the
task have finished. It is not, otherwise; the task is unready.

Workflow scheduling in RANK_HYBD [21] is straightforward. It submits the
ready tasks into the waiting queue and is named Simple Workflow Scheduling (SWS).
On the other hand, when a new workflow arrives, CPWS is adopted to calculate rank,
of each task in the workflow and sort and put in a list for the tasks in descending order
of rank,. The list is named as a critical path list. The system maintains an array List[],
and Listfworkflow;] points to the critical path list of workflow;. CPWS is
described in Algorithm 4-1.According to the order in each critical path list, CPWS
continuously submits the ready tasks in a list into the waiting queue until running into

an unready task.

30

D: a set of unfinished workflows
List[]:an array of critical path lists. List{fworkflow;] keeps the critical path list of

workflow;

CPWS(D,List[])

1 begin

2 while(D # @) do

3 for each workflow; € D do

4 according to the order List{workflow;], continuously
submit the ready tasks into the waiting queue until
running into an unready task;

5 end while

6 end

shows an example of SWS. Black nodes are finished tasks, i.e., Al, A2, B1 and B3.
White nodes are ready tasks, ke., A3,/A4,.B2.and B4. White nodes with dotted lines
are unready tasks, i.e., A5 and B5. SWS submitsall ready tasks into the waiting queue,
i.e., A3, A4, B2 and B4. Figure 4-3 shows an example of CPWS. The critical path list
of each workflow is sorted in descending order of rank,. The critical path list for
workflow A is Al—A2— A3— A5— A4 and the critical path list for workflow B is B1
—B3—B4—-B5—>B2. Al, A2, B1 and B3 have been finished. A3, A4, B2 and B4 are

ready. A5 and B5 are unready. According to the order in the critical path lists, CPWS

Algorithm 4-1. CPWS algorithm

Figure 4-2 and 4-3 shows the difference between SWS and CPWS. Figure 4-2

submits A3 and B4 tasks.

31

=
{ \, unready
N

I

I

I

O ‘
ready |

|

I

I

|

workflow A

»
() unready
N

-

| :
! ‘ I
! I
| O ready |
! I
! I
! I
! I

workflow B

Workflow Scheduling

workflow A

workflow B

workflow Rank
Al 80 [A4 15
waorkilow A A2 72 A5 25
A3 43
Bl 120 | B4 65
wokllowB | By 20 | BS 47
B3 98

Workflow Scheduling

/
workilow A |

\

FTE
workflow B I BS)

o ~ - 4

critical path list

-
N\
AS)

\4/

Fiaure 4-3 An example of CPWS

32

4.2.3 Adaptive Allocation (AA)
To improve the precision, we define the following quantities:

B The Estimated Computation Time ECT(t, p) is defined as the estimated
execution time of task t on processor group p.

B The Estimated File Communication Time EFCT(t, p) is defined as the
estimated communication time required by task t on processor group p to
receive all necessary files before execution.

B The Estimated Available Time EAT(t, p) is defined as the earliest time when
processor group p has a large enough time slot to execute task t.

B The Estimated Finish Time EFT(t, p) is defined as the estimated time when
task t completes on processor group p:

EFT(t,p) = EAT(t,p) £ECT(t,p) + EFCT(t,p)

The task allocation method in RANK_HYBD [21] selects the highest priority
task and allocates it to the free processor group that has the earliest estimated finish
time. We call this approach as_Simple Allocation (SA). In this thesis, we propose a
new approach called Adaptive Allocation (AA). The main idea of AA is described
below:

1. When the number of clusters that can accommodate the first task is 1, it
finds the processor group with the earliest estimated available time among
other clusters. If the estimated finish time of the first task on that processor
group in the future is earlier than that on the free processor group, the task
will be kept in the waiting queue. Otherwise, the system allocates the task to
the free processor group right away.

2. When the number of clusters that can accommodate the highest priority task
is larger than 1, it allocates the highest priority task to the free processor

group that has the earliest estimated finish time.

33

AA is described in Algorithm 4-2 which indicates a loop. When there are free
processors and the waiting queue contains at least one task, it selects the first tasks
and follows above allocation rules. In parallel task scheduling, if the number of free
processors is not enough for a task, the idle processors become a scheduling hole. To
overcome this problem, we import multi-processor task rearrangement, i.e., first fit,
easy backfilling [22] or conservative backfilling [22] to fix the scheduling hole as
shown in lines 4 to 5. First fit approach finds the first waiting task that can be moved
to fix the scheduling hole. Conservative backfilling approach moves tasks forward
only if they do not delay previously queued task. Easy backfilling approach is more
aggressive and allows tasks to skip ahead provided they do not delay the job at the
head of the queue [22]. Lines,.25 to 31 show that a function
(allocateNumberOfClusters(R, t;)). It returns. the: number of clusters that can
accommodate the first task. If the function returns-1, the steps in lines 8 to 16 work
for item 1 described previously. Ifithe function, returns a number larger than 1, the

steps in lines 17 to 22 work for item 2.

34

T: a set of tasks in the waiting queue

R: a set of free processors

C: a set of clusters

AA(T,R,C)

01 begin

02 while(T # @ and R + @) do

03 select t; € T, where t; with the highest priority task;

04 If workflows are composed of data-parallel tasks

05 *Multi-Processor Task Rearrangement;

06 If allocateNumberOfClusters(R, t;) =0

07 task t; keeps waiting in the waiting queue;

08 else if allocateNumberOfClusters(R, t;) = 1

09 the free processor group p, € C, and calculate EFT(t;,p,);

10 find the processor group p, € C, with the earliest estimated
available time among other clusters, where C, # Cy;

11 if EFT(t;,p,) < EFT(t;,p,)

12 Assign task t; tothe processor(s) py;

13 T=T-{t};

14 R =R —{p.};

15 else

16 task t; keeps waiting in the waiting queue;

17 else // allocateNumberOfClusters(R, t;)> 1

18 for each processor group p, € R do

19 calculate EFT(t;,py); // EAT(ti,pk) = current time

20 Assign task t; tothe processor group p, that has earliest
estimated finish time, EFT(t;, p);

21 T=T-{t};

22 R=R-{p}

23 end while

24 end

35

25
26
27
28
29
30
31

int allocateNumberOfClusters(R, t;){
numberOfCluster=0;
for each cluster C; do
If free processors in C; = processors that t; requires
numberOfClusters++;

return numberOfClusters;

*Each simulation selects one of first fit, easy backfilling and conservative

backfilling approaches;

Algorithm 4-2. AA algorithm

36

Chapter 5 Experimental Results

This chapter presents the experimental results of the proposed method. Section

5.1 introduces the performance metrics used. Section 5.2 describes experimental

results for workflows composed of single-processor tasks. Section 5.3 presents

experimental results for workflows composed of data-parallel tasks.

5.1 Performance Metrics

The performance metrics used in our experiments are described below:

B makespan: the time between submission and completion of a workflow,
including execution time and waiting time.

Schedule Length Ratio (SLR):- makespan “usually varies widely among
workflows with different sizes and other properties. To measure the scheduling
efficiency objectively, we can use another performance metric derived from
makespan, which calculates the ratio-of a“workflow’s makespan over the best
possible schedule length in a given environment. The performance is called

Schedule Length Ratio (SLR) and defined by

makespan

SLR = CPL

, Where CPL represents the Critical Path Length of a workflow. SLR is not
sensitive to the size of a workflow.

win (%0): used for the comparison of different algorithms. For a workflow, one
of the algorithms has shortest makespan. The win value of an algorithm means
the percentage of the workflows that have the shortest makespan. From users’

perspective, the higher win value leads to the higher satisfaction.

37

5.2 Experimental Results for Workflows Composed of
Single-Processor Tasks
5.2.1 Difference between RANK HYBD, Fairness Dynamic and
OWM

We partition the complete scheduling process into three components, workflow
scheduling, task scheduling and allocation approaches, for clearly clarifying the
differences among different scheduling approaches. Z Yu et al. [21] propose a
dynamic algorithm for online workflows, RANK_HYBD as shown in figure 5-1(a).
The original Fairness approach (F2) in [20] is a static algorithm and can not deal with
online workflows. In the following experiments, we modify the Fairness (F2)
approach to handle online workflows by, replacing the original workflow scheduling
and allocation approaches in this approach with SWS and SA respectively. We call

this new approach as Fairness. Dynamic in figure 5-1.

Workflow Scheduling
Critical Path Workflow Scheduling
(CPWS)

Workflow Scheduling

| Simple Workflow Scheduling (SWS)

Workflow Scheduling

I Simple Workflow Scheduling (SWS) ‘

Task Scheduling Task Scheduling Task Scheduling

| Task Scheduling of Fairness (F2) ‘

Allocation Allocation Allocation

| Simple Allocation (SA) | | Simple Allocation (SA) l ’ Adaptive Allocation (AA) |

| |
| | | |
I | | |
I		
!		
I	!	
I		
I		
: ‘ Task Scheduling of RANK_HYBD ’ !	‘ Task Scheduling of RANK_HYBD ‘	
I		
I	!	
	!	
	I	

__

(a) RANK HYBD (b) Fairness Dynamic (c) OWM

Figure 5-1 The difference between RANK_HYBD, Fairness_Dynamic and OWM

38

5.2.2 Experimental Setup

To experiment with different workload characteristics, we use the following
parameters to generate different types of workflows. A workflow is represented as a
Directed Acyclic Graph (DAG).

B Node={20, 40, 60, 80, 100}

B Shape={0.5, 1.0, 2.0}

B OutDegree={1, 2, 3, 4, 5}

B CCR={0.1,0.5,10,15,2.0}

B BRange={0.1, 0.25, 0.5, 0.75, 1.0}
® WDAG=100~1000

The values of these parameters are randomly selected from the corresponding
sets given above for each DAG.«The arrival.interval value between DAGsS is set based
on Poisson distribution. Each experiment involves 20 runs, and each run has 100
unique DAGs on a Grid environment-that.contains 3 clusters each containing 30~50
processors respectively.

In the experiment, we also take other factors into account: the distribution of
tasks’ computation cost (Wi_DisType) and the computation intensity of a workflow
represented by CCR (computationintensity). The average computation cost of each
task is randomly generated from a probability distribution within the range [1,2 X
WDAG] as described in Chapter 3. We experimented with both a uniform distribution
and an exponential distribution for tasks’ computation cost. For the computation
intensity of a workflow, we refer a workflow to computation intensive if its
computation time is longer than file communication time. Otherwise, a workflow is
communication intensive. For general workflows, CCR is randomly selected from the
set {0.1, 0.5, 1.0, 1.5, 2.0}. For computation-intensive workflows, CCR is randomly

selected form the set {0.1, 0.5}, and for communication-intensive workflows, CCR is
39

randomly selected from the set {1.5, 2.0}.

5.2.3 Results Analyses
A. Impact of the Arrival Interval of workflows

Figure 5-2, 5-3 and 5-4 show the results of different mean arrival intervals for
average makespan, average SLR and win (%) respectively. It can be easily seen that
when the system is more crowded, i.e., smaller arrival interval in the figures, OWM
outperforms the other two algorithms significantly. When all DAGs are submitted at
the same time, i.e., the zero arrival interval in the figures, OWM outperforms
Fainess_Dynamic by 26% and 49%, and outperforms RANK_HYBD by 13% and
20% for average makespan and average. SLR. respectively, as shown in figure 5-2 and
5-3. Fairness_Dynamic has poel performance:for average SLR, because it achieves
fairness by the cost of enlarging the makespan of the workflows with shorter critical
path length. OWM wins in terms of makespan.by 94.55% as shown in figure 5-4.
From users’ perspective, it means 94.55% users:may prefer OWM. When workflows
arrive at an interval about 400 time units, these three algorithms are almost equivalent
for average makespan, average SLR and win (%) because one workflow almost come
in after another one finishes. In real environments, most high-performance centers are

overloaded, therefore OWM can outperform others in such environments.

40

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ® RANK_HYBD = OWM
20000

15000

10000

avg. makespan

5000

0 50 100 150 200 250 300 350 400

arrival interval of workflows

Figure 5-2 Results of different mean arrival intervals for average makespan

adERIER

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ® RANK_HYBD m OWM

avg. SLR

0 50 100 150 200 250 300 350 400

arrival interval of workflows

Figure 5-3 Results of different mean arrival intervals for average SLR

41

Wi_DisType=uniform, computationintensity=general

B Fairness_Dynamic ® RANK_HYBD OWM

100
80
< 60
£
s 40
. ddddddl
0 L —m ‘
0 50 100 150 200 250 300 350 400

arrival interval of workflows

Figure 5-4 Results of different mean arrival intervals for win (%)

B. Impact of the Computatilon Intenéity'with Different Distributions of Tasks’
Computation Cost |

Figure 5-5, 5-6 and 5-7 show:the results.of ‘computation intensity at different
levels for average makespan, average SLR and win (%) with a uniform distribution of
tasks’ computation cost respectively. Figure 5-8, 5-9 and 5-10 show the results with an
exponential distribution of tasks’ computation cost. In these experiments, the arrival
interval of workflows is set with the Poisson distribution with the mean value of 20. It
represents a global level that several workflows may be simultaneously running in the
system. Obviously, OWM outperforms the other two algorithms. The superiority of
OWM over the other two methods is that it consistently achieves the best performance
for all types of workflows.

In figure 5-5, OWM outperforms Fairness_Dynamic by 23%, 22% and 27%,
and outperforms RANK_HYBD by 12%, 17% and 11% in terms of average makespan

for general, computation and communication intensive workflows respectively. In
42

figure 5-6, OWM outperforms Fairness_Dynamic by 44%, 45% and 45%, and
outperforms RANK_HYBD by 16%, 19% and 14% in terms of SLR for general,
computation and communication intensive workflows respectively. OWM wins in
terms of makespan by about 82% for all the three types of workflows as show in
figure 5-7.

In figure 5-8, OWM outperforms Fairness_Dynamic by 17%, 14% and 20%, and
outperforms RANK_HYBD by 16%, 20% and 15% in terms of average makespan for
general, computation and communication intensive workflows respectively. In figure
5-9, OWM outperforms Fairness_Dynamic by 24%, 20% and 26%, and outperforms
RANK_HYBD by 20%, 23% and 18% for in terms of average SLR for general,
computation and communication mtensgve workflows respectively. OWM wins in

terms of makespan by about 72% for aII the three types of workflows as show in

figure 5-10. o)
Wi_DisType=uniform
B Fairness_Dynamic ® RANK_HYBD OWM
25000
< 20000
@
Q.
& 15000 - —
<
©
€ 10000 - —
oo
>
® 5000 - —
0 .
general computation communication
intensive

Figure 5-5 Results of different computation intensity for average makespan
with a uniform distribution of tasks’ computation cost

43

Wi_DisType=uniform

M Fairness_Dynamic ™ RANK_HYBD = OWM

avg. SLR

general computation communication

computation intensity

Figure 5-6 Results of different computation intensity for average SLR with
a uniform distribution of tasks’ computation cost

Wi_DisType=uniform
M Fairness_Dynamic ™ RANK_HYBD = OWM

100

80

60

win (%)

40

20

general computation communication

computation intensity

Figure 5-7 Results of different computation intensity for win (%) with a
uniform distribution of tasks’ computation cost

44

Wi_DisType=exponential
M Fairness_Dynamic ® RANK_HYBD = OWM

16000
14000
12000
10000
8000 -
6000 -
4000 -
2000 -

avg. makespan

general computation communication

intensive

Figure 5-8 Results of different computation intensity for average makespan
with an exponential distribution of tasks’ computation cost

Wi_DisType=exponential

M Fairness_Dynamic ™ RANK_HYBD = OWM

2.5

avg.SLR

0.5 A

general computation communication

computationintensity

Figure 5-9 Results of different computation intensity for average SLR with
an exponential distribution of tasks’ computation cost

45

Wi_DisType=exponential
M Fairness_Dynamic ™ RANK_HYBD = OWM

80
70
60
50
40
30
20
10

win (%)

general computation communication

computationintensity

Figure 5-10 Results of different computation intensity for win (%) with an
exponential distribution of tasks” computation cost

46

C. Impact of the Number of Clusters

The following investigate the effects of cluster amount in a Grid environment. In
the experiment, the Grid environment is composed of 120 processors, and divided
equally into a different number of clusters, 2, 4, 6, 8, 10 and 12, for each test case. We
assume the arrival interval of workflows conforms to the Poisson distribution with the
mean value of 20. The results indicate that in average, OWM outperforms
Fairness_Dynamic by 22%, and outperforms RANK_HYBD by 11% in terms of
average makespan as shown in figure 5-11. OWM outperforms Fairness_Dynamic by
48%, and outperforms RANK_HYBD by 15% in terms of average SLR as shown in

figure 5-12. OWM wins in terms of makespan by about 82% as shown in figure 5-13.

R LYZSEG TR

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ® RANK_HYBD m OWM

20000

15000

10000

avg. makespan

5000

2 4 6 8 10 12

number of clusters

Figure 5-11 Results of different number of clusters for average makespan

47

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ™ RANK_HYBD = OWM

avg. SLR

2 4 6 8 10 12

number of clusters

Figure 5-12 Results of different number of clusters for average SLR

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ™ RANK_HYBD = OWM

100

80

60

win (%)

40

20

2 4 6 8 10 12

number of clusters

Figure 5-13 Results of different number of clusters for win (%)

48

D. Impact of Inaccurate Execution Estimates

The execution time of each task on a specific processor is necessary information
for workflow scheduling algorithms. In practice, the execution time of a task is
usually difficult to known before the execution completes. Therefore, the execution
time used in scheduling algorithm s is not precise. The following experiments
investigate the effects of inaccurate estimation of task execution time. The simulator

picks the actual execution time of a task randomly from the range:

uncertainty
ncertainty)

1 2 X
[’(eH 100

, Where et is the estimated execution time of the task. For example, when the
uncertainty is 400 and et of a task is 100, the actual execution time of the task is
randomly picked from the range: [1;, 900]. We also assume that the arrival interval of
workflows conforms to the Paisson distribution. with the mean value of 20. Figure
5-14, 5-15 and 5-16 show the results of inaccurate execution estimates for average
makespan, average SLR and ‘win (%) respectively.. 1t can be easily observed that
OWM outperforms the other two algorithms for the uncertainty levels from 50% to
400%. In average, OWM outperforms Fairness_Dynamic by 19%, and outperforms
RANK_HYBD by 8% for average makespan as shown in figure 5-14; OWM
outperforms Fairness_Dynamic by 38%, and outperforms RANK_HYBD by 12% for
average SLR as shown in figure 5-15. OWM wins in terms of makespan by about
74% as shown in figure 5-16. These results indicate that OWM is more resilient to

inaccurate estimation of task execution time than the other methods.

49

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ™ RANK_HYBD = OWM
100000

80000

60000

40000

avg. makespan

20000 -

0 .
50 100 150 200 250 300 350 400

uncertainty (%)

Figure 5-14 Results of inaccurate execution estimates for average makespan

{0

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ™ RANK_HYBD = OWM

20

15

10

avg.SLR

50 100 150 200 250 300 350 400

uncertainty (%)

Figure 5-15 Results of inaccurate execution estimates for average SLR

50

win (%)

100

Wi_DisType=uniform, computationintensity=general

M Fairness_Dynamic ™ RANK_HYBD = OWM

80

60

40

20 A

50 100 150 200 250 300 350 400

uncertainty (%)

Figure 5-16 Results of inaccurate execution estimates for win (%)

51

5.3 Experimental Results for Workflows Composed of Data-Parallel
Tasks

In this section, we compare different multi-processor task rearrangement
processes including first fit, easy backfilling [22] and conservative backfilling [22]
approaches with FCFS (First Come First Serve) approach. The FCFS approach
doesn’t find waiting task to fit the scheduling hole. In the experiments, OWM(FCFS),
OWM(conservative), OWM(easy) and OWM(first fit) stand for FCFS, conservative
backfilling, easy backfilling and first fit approaches respectively. Figure 5-17 shows
the main processes in OWM(FCFS), OWM(conservative), OWM(easy) and
OWM(first fit).

Workflow Scheduling
Critical Path Workflow Scheduling
(CPWS)

Workflow Scheduling
Critical Path Workflow Scheduling
(CPWS)

Task Scheduling
| Task Scheduling of RANK_HYBD |

Task Scheduling
| Task Scheduling of RANK_HYBD |

Multi-Processor Task Rearrangement

[FCFS |

Multi-Processor Task Rearrangement

| Conservative Backfilling |

Allocation

| Adaptive Allocation (AA) I

Allocation
[Adaptive Allocation (AA) I

Workflow Scheduling
Critical Path Workflow Scheduling
(CPWS)

Workflow Scheduling
Critical Path Workflow Scheduling
(CPWS)

Task Scheduling
| Task Scheduling of RANK_HYBD |

Task Scheduling
| Task Scheduling of RANK._HYBD |

Multi-Processor Task Rearrangement

l Easy Backfilling I

Multi-Processor Task Rearrangement

| First Fit |

Allocation

| Adaptive Allocation (AA) I

Allocation

[Adaptive Allocation (AA) I

(c) OWM (easy) (d) OWM (first fit)

Figure 5-17 The processes in OWM(FCFS), OWM(conservative),
OWM(easy) and OWM(first fit)

52

5.3.1 Experimental Setup

The experimental setups for data-parallel tasks are the same as that for
single-processor tasks, but each run has 50 unique workflows. To be more realistic,
maximal required processors of all tasks (maxTaskNP) and the distribution of the
processors that tasks require (NP_DisType) are taken into account. In the experiment,
maxTaskNP is defined with maximum, half and minimum.

B maxTaskNP is maximum: maxTaskNP = the number of processors in the smallest

cluster in the Grid environment.

B maxTaskNP is half: maxTaskNP = %xthe number of processors in the smallest
cluster in the Grid environment.

B maxTaskNP is minimum: maxTaskNP: = %xthe number of processors in the

smallest cluster in the Grid.environment.
The required processors-of each task-is randomly generated from a probability
distribution within the range [1,maxTaskNP]. The experiment is done with uniform

distribution, exponential distribution and-nermal distribution for NP_DisType.

53

5.3.2 Results Analyses

Each experiment is configured by the following four parameters. Their values are

assigned from the corresponding sets below:

B Wi_DisType={uniform, exponential}

B maxTaskNP={maximum, half, minimum}

B NP_DisType={uniform, exponential, normal}

B computationintensity={general, computation, communication}

The combinations of the above parameter values give 54 different experiments.
These 54 experiments lead to an interesting observation for workflow scheduling. In
independent task scheduling, it is well known that FCFS approach has worse
performance than conservative backfilling [22], easy backfilling and first fit
approaches. However, in workflow sscheduling; the experiments show that
OWM(FCFS) is almost equal to-OWM(conservative), and outperforms OWM(easy)
and OWM(first fit) for average SLR, and.outperforms the other three approaches for
win (%). The results indicate that that when the waiting tasks are rearranged by the
multi-processor task rearrangement process, it doesn’t result in better performance as
expected. The following example helps to explain the reason. The tasks in the waiting
queue are sorted by their critical path in the ascending order. Suppose that a workflow
is near completion, and the last task in the workflow will get the highest priority in the
waiting queue. If the task cannot be allocated due to the lack of free processors, the
multi-processor task rearrangement process will find a waiting task to fit the
scheduling hole. The above rearrangement technique may make the last task to wait
infinitely, and it in turn increases the makespan of the workflow. So, the performance
may be reduced correspondingly. Therefore, frequent the task rearrangement may
contrarily lead to poor performance. For example, OWM(first fit) has the highest

frequency of task rearrangement, and may result in the worst performance.
54

Figure 5-18, 5-19 and 5-20 are an example among the 54 experiments. Other
experimental results are shown in Appendix. Figure 5-18, 5-19 and 5-20 show the
results of different computation intensity for average makespan, average SLR and win
(%) respectively, with Wi_DisType=uniform, maxTaskNP=min, and

NP_DisType=uniform.

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) = OWM (easy) M OWM (first fit)

30000
25000
20000 -
15000 -
10000 -
5000 -

0 -

avg. makespan

general computation communication

costintensive

e -~
Figure 5-18 Results of different computation intensity for average makespan
with (uniform, min, uniform)

55

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=uniform

B OWM (FCFS) ®OWM (conservative) = OWM (easy) M OWM (first fit)

5
4
3
2

avg. SLR

general computation communication

computation intensity

Figure 5-19 Results of different computation intensity for average SLR
with (uniform, min, uniform)

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) ™ OWM (easy) M OWM (first fit)

50

40

30 -
20 A

win (%)

10 -

0 -

general computation communication

computationintensity

Figure 5-20 Results of different computation intensity for win (%)
with (uniform, min, uniform)

56

Chapter 6 Conclusion and Future Work

Most workflow scheduling algorithms are restricted to the domain of single
workflow. There are few researches for scheduling online workflows. In the thesis, we
propose OWM approach for scheduling online workflows in a Grid environment. Our
experiments show that OWM outperforms RANK_HYBD [21] and
Fairness_Dynamic for average makesapn, average SLR and win (%) in different
experimental workloads.

However, RANK_HYBD and Fairness_Dynamic do not work with workflows
composed of data-parallel tasks. There are few studies focused on workflow
scheduling for data-parallel tasks.. The thesis.takes this issue into account. We
incorporate well-known approaches, 1 e.g., first fit, easy backfilling [22] and
conservative backfilling [22] into OWM to deal with workflows composed of
data-parallel tasks. The experiments show that OWM(FCFS) is almost equal to
OWM(conservative), and outperforms OWM(easy) and OWM(first fit) for average

SLR, and outperforms the other three approaches for win (%).

In the future, we will investigate the trade-off between the QoS (Quality of
Service) and the performance, i.e., the relation between the fairness and average
makespan for workflows. In addition, we will implement OWM to real Grid

environments to validate our simulation results.

57

Appendix

The remainder experimental results for workflows composed of data-parallel

tasks are shown below.

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

200000

150000

100000 -

avg. makespan

50000 -

0 -

general computation communication

costintensive

Figure A-1 Results of different computation intensity for average makespan
with (uniform, max, uniform)

e

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

35
30
25
20
15 4
10
5 .

avg.SLR

general computation communication

computation intensity

Figure A-2 Results of different computation intensity for average SLR
with (uniform, max, uniform)

58

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=uniform
B OWM (FCFS) ®mOWM (conservative) = OWM (easy) M OWM (first fit)

50

40 -

30 A

win (%)

20 -

10

general computation communication

computation intensity

Figure A-3 Results of different computation intensity for win (%)
with (uniform, max, uniform)

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

120000
100000
80000
60000 -
40000 -
20000 -

0 -

avg. makespan

general computation communication

costintensive

Figure A-4 Results of different computation intensity for average makespan
with (uniform, max, exponential)

59

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)
30
25
20
15
10 -

5

0 .

avg. SLR

general computation communication

computation intensity

Figure A-5 Results of different computation intensity for average SLR
with (uniform, max, exponential)

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

50

40 -

30 A

win (%)

20 -

10 4

general computation communication

computation intensity

Figure A-6 Results of different computation intensity for win (%)
with (uniform, max, exponential)

60

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

200000

150000

100000 -

50000 -

avg. makespan

O .
general computation communication

costintensive

Figure A-7 Results of different computation intensity for average makespan
with (uniform, max, normal)

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

40
35
30
25
20
15 ~
10
5 .
0 -

avg.SLR

general computation communication

computation intensity

Figure A-8 Results of different computation intensity for average SLR
with (uniform, max, normal)

61

Wi_DisType=uniform, maxTaskNP=max, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

50

40 -

30 A

win (%)

20 -

10 -

general computation communication

computation intensity

Figure A-9 Results of different computation intensity for win (%)
with (uniform, max, normal)

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=uniform
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

80000
70000
60000
50000
40000
30000
20000
10000

0

avg. makespan

general computation communication

cost intensive

Figure A-10 Results of different computation intensity for average makespan
with (uniform, half, uniform)

62

avg. SLR

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=uniform
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

16
14
12
10

OoON & O

general computation communication

computation intensity

Figure A-11 Results of different computation intensity for average SLR

with (uniform, half, uniform)

win (%)

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=uniform
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

50

40 -

30 A

20 -

10 4

general computation communication

computation intensity

Figure A-12 Results of different computation intensity for win (%)
with (uniform, half, uniform)

63

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=exponential

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)
60000
50000
40000
30000
20000
10000
0

avg. makespan

general computation communication

cost intensive

Figure A-13 Results of different computation intensity for average makespan
with (uniform, half, exponential)

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

14
12
10

avg.SLR

o N B O
1

general computation communication

computation intensity

Figure A-14 Results of different computation intensity for average SLR
with (uniform, half, exponential)

64

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=exponential
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

50

40

30 A

win (%)

20 -

10 -

general computation communication

computation intensity

Figure A-15 Results of different computation intensity for win (%)
with (uniform, half, exponential)

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=normal

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

80000
70000
60000
50000 -
40000 -
30000 -
20000 -
10000 -

0 .

avg. makespan

general computation communication

cost intensive

Figure A-16 Results of different computation intensity for average makespan
with (uniform, half, normal)

65

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

14
12
10

avg. SLR

o N B O

general computation communication

computation intensity

Figure A-17 Results of different computation intensity for average SLR
with (uniform, half, normal)

Wi_DisType=uniform, maxTaskNP=half, NP_DisType=normal

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)
50

40

30 A

20 -

win (%)

10 4

general computation communication

computation intensity

Figure A-18 Results of different computation intensity for win (%)
with (uniform, half, normal)

66

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=exponential

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

25000

20000

15000

10000 -

avg. makespan

5000 -

0 .
general computation communication

cost intensive

Figure A-19 Results of different computation intensity for average makespan
with (uniform, min, exponential)

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

4
3.5
3
2.5
2
1.5
1
0.5
0

avg.SLR

general computation communication

computation intensity

Figure A-20 Results of different computation intensity for average SLR
with (uniform, min, exponential)

67

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=exponential
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

40
35
30
25
20
15
10

5

0

win (%)

general computation communication

computation intensity

Figure A-21 Results of different computation intensity for win (%)
with (uniform, min, exponential)

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=normal
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

35000
30000
25000 -
20000 -
15000 -
10000 -
5000 -

0 .

avg. makespan

general computation communication

cost intensive

Figure A-22 Results of different computation intensity for average makespan
with (uniform, min, normal)

68

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

avg. SLR
o = N w EY (6] o))

general computation communication

computation intensity

Figure A-23 Results of different computation intensity for average SLR
with (uniform, min, normal)

Wi_DisType=uniform, maxTaskNP=min, NP_DisType=normal
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

50

40

30 A

20 -

win (%)

10 4

general computation communication

computation intensity

Figure A-24 Results of different computation intensity for win (%)
with (uniform, min, normal)

69

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)
120000
100000
80000 -
60000 -
40000 -
20000 -~
O .

avg. makespan

general computation communication

costintensive

Figure A-25 Results of different computation intensity for average makespan
with (exponential, max, uniform)

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=uniform
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

25

20

15 ~

10 ~

avg.SLR

general computation communication

computation intensity

Figure A-26 Results of different computation intensity for average SLR
with (exponential, max, uniform)

70

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=uniform
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

60
50
40
30
20
10

0

win (%)

general computation communication

computation intensity

Figure A-27 Results of different computation intensity for win (%)
with (exponential, max, uniform)

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

70000
60000
50000
40000
30000
20000
10000

0

avg. makespan

general computation communication

cost intensive

Figure A-28 Results of different computation intensity for average makespan
with (exponential, max, exponential)

71

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=exponential
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

16
14
12
10

avg. SLR

OoON & O

general computation communication

computation intensity

Figure A-29 Results of different computation intensity for average SLR
with (exponential, max, exponential)

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

50

40 -

30 A

20 -

win (%)

10 4

general computation communication

computation intensity

Figure A-30 Results of different computation intensity for win (%)
with (exponential, max, exponential)

72

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

120000
100000
80000
60000
40000
20000
0

avg. makespan

general computation communication

costintensive

Figure A-31 Results of different computation intensity for average makespan
with (exponential, max, normal)

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=normal

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

25

20

15 ~

10 ~

avg.SLR

general computation communication

computation intensity

Figure A-32 Results of different computation intensity for average SLR
with (exponential, max, normal)

73

Wi_DisType=exponential, maxTaskNP=max, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

50

40 -

30 A

win (%)

20 -

10 -

general computation communication

computation intensity

Figure A-33 Results of different computation intensity for win (%)
with (exponential, max, normal)

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=uniform
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

60000
50000
40000
30000 -
20000 -
10000 -

0 -

avg. makespan

general computation communication

cost intensive

Figure A-34 Results of different computation intensity for average makespan
with (exponential, half, uniform)

74

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

12
10

avg. SLR

o N b OO
1

general computation communication

computation intensity

Figure A-35 Results of different computation intensity for average SLR
with (exponential, half, uniform)

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=uniform

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)
50

40 -

30 A

20 -

win (%)

10 4

general computation communication

computation intensity

Figure A-36 Results of different computation intensity for win (%)
with (exponential, half, uniform)

75

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

35000
30000
25000
20000 -
15000 -
10000 -
5000 -

0 -

avg makespan

general computation communication

cost intensive

Figure A-37 Results of different computation intensity for average makespan
with (exponential, half, exponential)

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

avg.SLR
O R, N W & U1 O N

general computation communication

computation intensity

Figure A-38 Results of different computation intensity for average SLR
with (exponential, half, exponential)

76

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=exponential
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

50

40

30 A

win (%)

20 -

10 -

general computation communication

computation intensity

Figure A-39 Results of different computation intensity for win (%)
with (exponential, half, exponential)

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=normal

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

60000
50000
40000
30000 -
20000 -
10000 -

0 -

avg. makespan

general computation communication

cost intensive

Figure A-40 Results of different computation intensity for average makespan
with (exponential, half, normal)

77

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=normal

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)
12
10

avg. SLR

o N b OO
1

general computation communication

computation intensity

Figure A-41 Results of different computation intensity for average SLR
with (exponential, half, normal)

Wi_DisType=exponential, maxTaskNP=half, NP_DisType=normal

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)
50

40 -

30 A

20 -

win (%)

10 4

general computation communication

computation intensity

Figure A-42 Results of different computation intensity for win (%)
with (exponential, half, normal)

78

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

20000

15000

10000 -

5000 -

avg. makespan

0 .
general computation communication

cost intensive

Figure A-43 Results of different computation intensity for average makespan
with (exponential, min, uniform)

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=uniform
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

4
3.5
3
2.5
2
1.5
1
0.5
0

avg.SLR

general computation communication

computation intensity

Figure A-44 Results of different computation intensity for average SLR
with (exponential, min, uniform)

79

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=uniform

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

40
35
30
25
20
15
10

5

0

win (%)

general computation communication

computation intensity

Figure A-45 Results of different computation intensity for win (%)
with (exponential, min, uniform)

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=exponential
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

16000
14000
12000
10000
8000 -
6000 -
4000 ~
2000 -

0 .

avg. makespan

general computation communication

cost intensive

Figure A-46 Results of different computation intensity for average makespan
with (exponential, min, exponential)

80

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=exponential

B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)
3
2.5
2
1.5
1
0.5
0

avg. SLR

general computation communication

computation intensity

Figure A-47 Results of different computation intensity for average SLR
with (exponential, min, exponential)

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=exponential

B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

40
35
30
25
20
15
10

5

0

win (%)

general computation communication

computation intensity

Figure A-48 Results of different computation intensity for win (%)
with (exponential, min, exponential)

81

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=normal
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

25000

20000

15000 -

10000 -

avg. makespan

5000 -

0 .
general computation communication

cost intensive

Figure A-49 Results of different computation intensity for average makespan
with (exponential, min, normal)

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=normal
B OWM (FCFS) ®OWM (conservative) = OWM (easy) B OWM (first fit)

5

4

avg.SLR

general computation communication

computation intensity

Figure A-50 Results of different computation intensity for average SLR
with (exponential, min, normal)

82

Wi_DisType=exponential, maxTaskNP=min, NP_DisType=normal
B OWM (FCFS) ® OWM (conservative) = OWM (easy) ® OWM (first fit)

40
35
30
25
20
15
10

5

0

win (%)

general computation communication

computation intensity

Figure A-51 Results of different computation intensity for win (%)
with (exponential, min, normal)

83

[1]

[2]

(3]

[4]

[5]

[6]

[7]

8]

[9]

Reference

K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M.
Mazina, J. Mellor- Crummey, F. Berman, H. Casanova, A. Chien, H. Dalil,
X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed,
W. Deng, C. Mendes, Z. Shi, A. YarKhan and J. Dongarra, “New Grid
Scheduling and Rescheduling Methods in the GrADS Project”, in Proc. of the
18th International Parallel and Distributed Processing Symposium (IPDPS'04),
pp.199--206, Santa Fe, New Mexico USA, April 2004.

T.D. Braun, H.J. Siegel, N. Beck, L.L. Bo6loni, M. Maheswaran,
A.l. Reuther, JP. Robertson, M.D. Theys, B. Yao, D. Hensgen,
R.F. Freund, “A Comparison of Eleven Static Heuristics for Mapping a Class
of Independent Tasks onto Heterogeneous Distributed Computing Systems”,
Journal of Parallel and Distributed Computing, Volume 61, Number 6, June
2001, pp. 810-837(28).

M. Wu and D. Gajski. “ Hypertool: A"Programming Aid for Message Passing
Systems”. IEEE Transactions on Parallel and Distributed Systems, vol. 1, pp.
330-343, July 1990.

Y. Kwok and 1. Ahmad. “Dynamic Critical-Path Scheduling: An Effective
Technique for Allocation «TaskrtGraphs ~to Multi-processors”. IEEE
Transactions on Parallel"and Distributed Systems, vol. 7, no. 5, pp. 506-521,
May 1996.

G.C. Sih and E.A. Lee. “ A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures”. IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-186,
Feb 1993.

H. El-Rewini and T.G. Lewis. “Scheduling Parallel Program Tasks onto
Arbitrary Target Machines”. J. Parallel and Distributed Computing, vol. 9, pp.
138-153, 1990.

H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing”. IEEE
Transactions on Parallel and Distributed Systems, 2(13):260-247, 2002.

T. Yang and A. Gerasoulis. “DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors”. IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 9, pp. 951-967, Sept. 1994.

G. Park, B. Shirazi, and J. Marquis. “DFRN: A New Approach for Duplication
Based Scheduling for Distributed Memory Multi-processor Systems”. Proc.

84

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Int'l Conf. Parallel Processing, pp. 157-166, 1997.

E. Deelman et al. “Pegasus: Mapping Scientific Workflows onto the Grid”. In
European Across Grids Conference, pp. 11-20, 2004.

R. Sakellariou and H. Zhao. “A Low-Cost Rescheduling Policy for Efficient
Mapping of Workflows on Grid Systems”. Scientific Programming, 12(4), pp.
253-262, December 2004.

M. Resende and C. Ribeiro. “Greedy Randomized Adaptive Search Procedures,
State-of-the-art Handbook in MetaHeuristics”. Glover and Kochenberger, eds.,
Kluwer Academic Publishers, 2002.

H. Singh and A. Youssef. “Mapping and Scheduling Heterogeneous Task
Graphs Using Genetic Algorithms”. Proc. Heterogeneous Computing
Workshop, pp. 86-97, 1996.

A. YarKhan and J.J. Dongarra. “Experiments with Scheduling Using Simulated
Annealing in a Grid Environment”. In Grid 2002, November 2002.

Y. Kwok and 1. Ahmad, “Benchmarking and comparison of the task graph
scheduling algorithms”, Journal of Parallel and Distributed
Computing, 59(3):381-422;1999

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy, “Task
Scheduling Strategies. for_Workflow-based 'Applications in Grid”. Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium,
pp. 759-767 \Vol. 2, 9-12 May:2005:

J. Yu, R, Buyya, “Workflow Scheduling Algorithms for Grid Computing”.
Technical Report, Grid-TR-2007-10.

R. Sakellariou and H. Zhao. “A hybrid heuristic for DAG scheduling on
heterogeneous systems”.In 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), page 111. IEEE Computer Society, 2004.
H. Casanova, F. Desprez, and F. Suter. “From Heterogeneous Task Scheduling
to Heterogeneous Mixed Parallel Scheduling”. In 10" Int. Euro-Par
Conference, volume 3149 of LNCS, pages 230-237, Aug. 2004.

H. Zhao and R. Sakellarious. “Scheduling Multiple DAGs onto Heterogeneous
Systems”. In Proceedings of the 15" Heterogeneous Computing Workshop
(HCW), Rhodes Island, Greece, April 2006.

Z. Yu and W. Shi. “A Planner-Guided Scheduling Strategy for Multiple
Workflow Applications”. On Parallel Processing Workshops, ICPP-W 08, 8-12
Sept. 2008.

A.W. Mu'alem and D.G. Feitelson. “Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling”. IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 6, June 2001.

85

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

T. N'takpe' and F. Suter. “Concurrent Scheduling of Parallel Task Graphs on
Multi-Clusters Using Constrained Resource Allocations”. Rapport de
recherché n° 6774, December 2008.

Y. Zhang, C. Koelbel, and K. Kennedy. “Relative Performance of Scheduling
Algorithms in Grid Environments”. In 7™ IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2007).

A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B. Liu,
and L. Johnsson. “Scheduling Strategies for Mapping Application workflows
onto the Gird”. In 14™ IEEE Symposium on High Performance Distributed
Computing (HPDC 14), pp. 125-134, 2005.

F. Dong and S.G. Akl. “Scheduling Algorithms for Grid Computing: State of
the Art and Open Problems”. Technical Report No. 2006-504.

E. Deelman, G. Singh, and C. Kesselman. “Optimizing Grid-based Workflow
Execution”. Journal of Grid Computing, 3(3): 201-219, 2005.

T. N'takpe' and F. Suter. “A Comparison of Scheduling Approaches for
Mixed-Parallel Applications on Heterogeneous Platforms”. In 6™ International
Symposium on Parallel and" Distributed Computing (IS-PDC), pp. 250-257,
Hagenberg, Austria, July 2007.

G. Singh, E. Deelman, and G. Bruce Berriman et al. “Montage: a Grid
Enabled Image Mosaic Service for the National Virtual Observatory”.
Astronomical Data Analysis Software-and Systems (ADASS), (13), 2003.

S. Ludtke, P. Baldwin, and-W. Chiu. “EMAN: Semiautomated Software for
High Resolution Single-Particle Reconstructions”. J. Struct. Biol, (128): 82-97,
1999.

M.R. Gary and D.S. Johnson. “Computers and Intractability: A Guide to the
Theory of NP-Completeness”. W.H. Freeman and Co., 1979.

J.D. Ullman. “NP-Complete Scheduling Problems”. J. Computer and Systems
Sciences, vol. 10, pp. 384-393, 1975.

Miguel L. Bote-Lorenzo, Yannis A. Dimitraidis, and Eduardo Gomez-Sanchez.
“Grid Characteristics and uses: a Grid Definition”.

86

