"B =2
[qu =1 Au —k_ =
A AT =2y %’F}IDJE i

Rl

i

* [ P-based #@E f * 2 %9 B & {7
3t e e B RS W @R B 2} B ir

Study and Implementation-of Identification-based
Packet Marking and Route Traceback in IP-based Networks

r&E X Jueo 575 = K



» [P-based i |+ BB g5
$o e H BTy B H2 ] 2 e
Study and Implementation of Identification-based Packet Marking
and Route Traceback in IP-based Networks

PR A S 2 Student : Tim Hann Huang
iR AR Advisor : Hsi-Lu Chao
B2+ F
AL Sl - A
ML ®H 2
A Thesis

Submitted to Institute-of Computer Science and Engineering
College of Computer-Science
National Chiae- Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
July 2009

Hsinchu, Taiwan, Republic of China

VBSR4 LN E



¥t IP-based e Bi | * BuFEE Fite A RES Y BYHRL AL EFF

24§ % I AR

Pz il F SR AR g TR LT

# O£

SEF RPN R o PR 2 RALESE P AR o SR AR R G

EadihipiiFdte Bk BRA L Dl > URRSBEYREY

ﬁ
We
-
W
A4
N
=y

FEETT R dh o 4 BLAT W PRIE BRen ™ 2 LAY ST dlendte > B afe poaik
Bk o w KRR FEAE TR BE v B AL p TR E DR R
Biod kiR n G Avgdenits  BE P T 2 @ chBE RS
10 VB RO T o 36 fice HRE I Y R - TR hife chBULERES o T
W e i o X T H e hEiRse g 0 2 BB T R A R
Bdi- B E it B B DS 20 A B E R R ART o R RE A

FEIE BN B R R 0 TR R S BT S o e B 2 R R R Y T
IP Option o i+ » fRse = 5% AUk T e W75 4 ~ IP Option ehfff i » & -1 i e -
B el T ko AL R Y ELRETH L FRLME 0 0 I e

o PR Bk o

BEEETP: feln > > Gig MR mab - 40 fhie ~ BRAD W R B



Study and Implementation of Identification-based Packet Marking
and Route Traceback in IP-based Networks

Student : Tim Hann Huang Advisor : Hsi-Lu Chao

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Along with the development of Internet, network security becomes important. Many
attackers spoofed the source address of the packets.in the internet. The method of traceback
would not trace the true path of:source which.is spaofed. The method of traceback used the
source address of the packet and sent the packet to the source address. The router along the
path will return the IP address of.itself: The victim can used these messages to rebuild the
path. But the source address is spoofed:so that the trace path is wrong. According to this
reason, packet marking used to get the accurate trace path. The packets across the marking
machine were marked by marking procedure. The victim could collect or gather the marking
information to trace the accurate paths. This paper describes a simple method of packet
marking for IP traceback. The packets with spoofing address could be traced the accurate
paths by marking information. The Identification-based Packet Marking (IPM) for
Real-Time/Non-Real-Time is effective to trace route. The IPM marks identifiers to the IP
Option field and los the marking information. Afterwards, we could find the path of packet’s

transmission by analyzing the marking information.

Keywords: Network Security, IP Spoofing, Packet Marking, Route Traceback



EAL - BT R MORBOA TR RRY BV RAER T F I L Ky

‘f"a‘ L;’/_? 1—,;’., El" o

= B 4o d g Linux =h

ﬂ\v

U éﬂ’*‘H&ﬂﬁnwhuaﬁmJ@ﬂa .
P i ’)‘T‘wi 31 o B FIELen Kemnel B 45 i3 ¢ 0 374 e @ WG T E & FHE > ¥ i
REFE > FARE R v LR ERE S AR O TR G FUE
WA f e Fate g ey § o

AN BEFERE LR ARAF A BINFAZIRL TIORIFFAETEN RS RA
ner ‘ - T AR S E
EFARRE RN G FIATORBELY O EEFF I AR o RHEF LTS 5

gy 7 R o

BAAL 5 R eiBARY o 2L R P kg e AR A S R4 o i H R e
ERRED 2 PR 4 2L I A R R A R A ko R BT F 4k cf

BIRE 4 cnfk o

T A% 2009 F 77 6pTATAE AR



Contents

ADSTFACT ...ttt bttt bbbt 0\
B B v
(0] 41 (=] 01 KOS URPRRPROPROPPPIN Vi
LIST OF TADIES ... bbbt viii
LESES OF FIQUIES.. ..t b ettt e bbbt IX
Chapter 1. INTrOTUCTION .....c.ooiiiiieiiiese e 1
1.1. Traceback APProaChES .........cciiiiie e 2
1.2. CONTEIIDUTION ...t 3
1.3. OFQANIZATION ...ttt bbb 3
Chapter 2. Related WOIK ..o 5
2.1. Probabilistic Packet Marking SCheme..........ccccooiiiiiiiiinciceee 5
2.2. Deterministic Packet Marking SCheme ..., 7
2.3. Router Interface Marking SChEME ..., 9
2.4. LOgging SCREME ... o0ii i e 9
Chapter 3.  Packet Marking and Route Traceback.............ccccevvivniiiinienienienecieeenn 10
3.1. DESIGN CONCEPTION ittt it ikhane s ekttt sttt ettt 10
3.2. The Proposed Packet Marking Module...............ccooeiiinininiiiieee, 11
3.3. The Proposed Logging Module ...iiii..ooiee e 14
3.4. The Proposed TracebackModule ..............ccov i, 15
3.5. SYSEEM AFCRITECTUIE ... 17
3.6. AlGOTTENM DESIGN ...t 18
3.6.1.  The Process of Packet Marking............ccccueriiininiiieienc e, 19
3.6.2.  The Process of PaCket LOGQING.......ccceieriririnienieieieiese e 20
3.6.3.  The Process of Traceback ............ccocviiiiiiiiiiiiiieee e 21
Chapter 4.  Performance EVAlUALION ...........ccooeiiiiiiiiiiiieceee e 23
4.1. ATEACK SCENAITO......eiiiiiiieiieieee e 23
4.2. EXperiment ENVIFONMENT ..o 23
4.2.1. HAFAWALE.......ciiiiieie e 23
4.2.2. NETWOIK TOPOIOGY ....ecveeeiiiiiiiieee e 24
4.2.3. FUNCTIONS ...t 25

4.3. EXPEriment SCENAKIOS ........cccuiiiiiiiiiiesie e 26
4.4, EXPeriment RESUIT ........cooiiiieieee e 27
441, Setting RESUIT ........ooiiiiieee e 28
442,  SNITTEr RESUIT .....oeiiiie e 30

Vi



4.4.3. Database RESUIL .........oooiiee e et 31

444,  TracebaCk RESUIT ... s 32
Chapter 5.  Conclusion and FUtUre WOrK...........cccoiieiiiii i 35
RETEIEINCES ..ottt bttt b et b ettt e e e be e b e 37
Appendix A. (00 =TSRSS 38
Appendix B. Setting Procedures of an IPM ROULEr .........c.ccceviiiiiiccc e, 75

vii



List of Tables

Table 1 Fields Of IP NBAUET ......c.ccieieie e e 12
Table 2 Design of OuUr IP OPLION ......ocviiiiie e 12
Table 3 Columns and data type in the table...........ccooveieiiii e 14
Table 4 Hardware SPeCIfiCatioN...........cocveiii i 24
Table 5 FUNCtions of the MAChINES ... e 26
Table 6 Network setting of all eqUIPMENT ..........ccooiiiiei e 27

viii



Lists of Figures

Figure 1 Network as seen from a victim of an attack.............ccccoceiieiieie i 5
Figure 2 Encoding edge fragment into the IP identification field..............cccoovveiiieiiiicn, 7
Figure 3 DPM only WOrks in the rOULEr Ry.......ccviiiiiiiicc e 8
Figure 4 Network arChiteCtUIe.........cc.eiiiiice et 10
Figure 5 Three modules OF IPIM FOULET .........ccveiiiiie e 11
Figure 6 Process of traceback SChEME ..........coveii i 16
Figure 7 Example of the traceback SChemMe...........ccooveiiiii i 17
Figure 8 Overview of System architecture Of IPM FOULET ...........ccccoveiveieiieieec e 17
Figure 9 Components between IPM Router and MCC ...........ccooeiieiieieiie e 18
Figure 10 Procedure of Bridge MOl ...........ccooivv it 19
Figure 11 Algorithm of packet marking ProCeSS........ccciveieiieiieieiieie e 19
Figure 12 Procedure of packet transmission through sniffer..........c.ccccoeov i, 20
Figure 13 Algorithm of packet 10ggiNg ........coceiieiiiiie e 21
Figure 14 Connection between MCC and IPM rOULEr..........ccccveiiiieiieie e 22
Figure 15 Scenario of packet spoofing from an attaek.............ccccovveviiiieieccieic e 23
Figure 16 Network topology ......uec. ki it et se e se e re e e e eaennes 25
Figure 17 Traceroute process DY VICHIM ....... i e 27
Figure 18 Traceback process by TPIM FOULBT ... i .ccibiee ettt 28
Figure 19 Commands Of the IPM FQULET.............ooitaieniei e 29
Figure 20 Operations of the IPM rOULEE . i e 29
Figure 21 Domain control and file 10ading ...........ccccovevi i 30
Figure 22 Packet information gathered from the sniffer ...........ccccoov i, 31
Figure 23 Records in the database...........cccciiieiicie i 32
Figure 24 Traceback with the condition “Source IP and Port” ..........ccccccovvveieiiein e 33
Figure 25 Traceback with the condition “Destination IP and Date” ............cccceevevveveviieieenns 33
Figure 26 Traceback with the condition “Date and TIMe”.........cccccveveiiieiierie s 34
FIQUIE 27 ASSOCIALION ......cvieuiiiiieiie ettt e et et e e ta et e e esbeetesneesraeeeeneesreebeannenreas 38
Figure 28 Installation of packets from INternet ...........ccoooveiieiiic i 75
Figure 29 The table “tam” in the database “Wnl”...........cccooveiiiii i 76
Figure 30 Commands for bridge SELUD ......cveiveie e 77
Figure 31 The setting of NEtWOIK FUIES.........ccviviiieiece e 77
Figure 32 Sniffer for each INterface...........ccooveii e 78
Figure 33 Server 0N the IPIM FOULET ..........c.ccuviie et 78



Chapter 1.  Introduction

Internet security has been an important research in the recent years. Traceback is one of
interesting problems to exhibit the route and pinpoint the true source of received packets. The
origins of the problems are the stateless nature of the Internet, the destination-oriented routing
and the lack of verification of the source IP address. The attackers utilize these facts to
conceal their identities by forging the source address of their attack packets, which is
generally known by IP spoofing. IP spoofing technique makes the attackers difficult to detect

and trace.

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are the threats
to the Internet Infrastructure. An Attacker dominates several hosts, called agents, to inundate
a large number of packets to the same host, called victim. The enormous volume of traffic
aggregates at the victim so that the congestion and packet loss are occurred. Additionally,
Resources of the victim are consumed by the traffic- of attacks. Hence, The Resources are
unavailable for legitimate clients. The quality-of the victim is growing worse and being
destroyed. DoS and DDoS are the most common to'take advantage of IP spoofing. There are
two purposes of IP spoofing. One of the purposes is to conceal the identities of attackers so
that the victim fails to trace back to the sources of attacks. The other is to make difficult to
distinguish the spoofed packets from valid packets. The victims can not verify whether the
source address carried by the packet is valid or not. Therefore, it is motive for attackers to

force the source IP address.

As already mentioned, IP spoofing is a serious problem. The solution of IP traceback is
the major goal. Traceback mechanisms have been proposed to trace the real source of the
attackers. The one of the purposes is to cease the attacks at the position nearest to its source in
order to reduce waste of network resources. The other is to find the identity of the attackers in
order to take other legitimate actions against them. In backtracking techniques, the traceback

process is performed hop by hop. It first starts at the victim level. The neighboring network



elements of the victim are transmitted a description of the flow. They are requested to identify
if a same flow is routed locally; this supposes that the routed flow is successful to the
backtracking mechanism. If so, neighbors should be identified in order to repeat the operation.

This operation is performed recursively until identities of attacks are discovered.

1.1. Traceback Approaches

The existing approaches for IP traceback could be grouped into two dimensions: packet
marking and packet logging. The main idea behind packet marking is to record path
information in packets. Routers write their own identification information into header fields of
forwarded packets in mark-based traceback. The victim then retrieves the marking
information from received packets and determines the routing path by the collection of
marked packets. Due to the limited spaces of the marking fields, routers probabilistically
decide to mark packets. Therefore, each.marked packet only carries partial information of the
path. The path can be constructed by combining the marking information collected from a
number of received packets. Such approach is known-as probabilistic packet marking (PPM)
[1]. PPM incurs little overhead of the packets-at-routers. However, it requires some of marked

packets to construct the path from victim to their origin.

The main idea in packet logging is to record path information at routers. Packets are
logged by the routers on the path toward the destination in log-based IP traceback. The path is
constructed based on the information of logs at the routers. The log-based approach is more
powerful as it can trace attacks that use a single packet. However, it is impractical due to that
the enormous resources for packet logs. A hybrid IP traceback approach based on both packet
marking and packet logging maintains single packet traceback and alleviates the resources for

packet logs. Such approach is the main goal for us to trace the position nearest to the attacks.

Combining two approaches is closed related to the techniques of packet marking and
packet logging. Many researchers proposed packet marking approaches for constructing the
path toward to the sources of attacks. Majority of them utilizes the fields used unusually in the

IP header in order to append the marking information of the network path. Such method does

- 2-



not increase the traffic load of the internet and does not change the measure of packet
proposition. However, it induces errors occurred in the fragmentation and reassembly of IP
datagram and is limited marking fields to a small amount of spaces. Others are appends IP
Option fields into the packet of IP header in order to attach the marking information to the
packets. Compared to the preceding method, the marking fields are possessed of large spaces
for appending marking information. Nevertheless, the method raises the traffic load of the
internet and increases the measure of each transmitted packets. Hence, both of two methods
have distinct consideration. Choosing the suitable method has a great influence on our

approach.

1.2.  Contribution

In this thesis, the proposed scheme is a hybrid IP traceback approach based on packet
marking and packet logging for revealing the,attackers at the point nearest to its sources. The
packets passed through the marking machines-are marked with marking information during
the transmission first of all. Furthermore, each marking machines logs the information of
marking and the messages related to transmitted-packets and stores into databases installed at
each marking machine. According to the information of the databases, traceback scheme
reconstructs the routing path of the attacks and reveals the marking machines passed through

by the packets of attacks.

Due to the proposed scheme, two purpose of IP spoofing will be destroyed. The reason
why we can prevent attackers from concealing the identities is that the marking information
presents the position of the sources. The spoofed packets can be recognized by filter
according to the same marking signs of the received packets. Hence, the spoofed packets
transmitted from attackers are marked by marking machines and are identified if the same

flow is routed locally by marking information.
1.3.  Organization

This thesis is organized as follows. The related work of packet marking, packet logging,

and approaches to defend spoofed packets is introduced in Chapter 2. In Chapter 3, the
- 3-



proposed scheme is studied and properties are discussed. Afterward the algorithms of the
marking and logging and the implementation of proposed scheme are showed in Chapter 4.

Finally, the thesis concludes with Chapter 5 and future work is presented.



Chapter 2. Related Work

Many researchers proposed mark-based approaches for constructing the path toward to
the sources of attacks. The similar approaches are grouped into the same categories by
marking techniques. The following session describes several IP traceback approaches to
identify attack origin. Figure 1 depicts the network as seen from a victim V. Routers are
represented by R; and an attacker A has an attack to the victim. The node A on the network is
the attack origin and the attack path from A is the unique ordered list of routers between A

and V. An attack from A to V must traverse the path Ry, R4, and Re.

Attacker Sender Sender

Victim

Figure 1 Network as seen from a victim of an attack

2.1.  Probabilistic Packet Marking Scheme

An intriguing alternative solution to IP traceback problem is probabilistic packet
marking (PPM). The concept of the PPM is marking the packets probabilistically and
collecting the information of marking at the victim in order to reconstruct the routing path

between the attacker and the victim. The PPM has a series of marking algorithms to



implement the marking process.

The first algorithm, called PPM - Node Append, is the basic idea and the simplest
algorithm. The concept is similar to the IP Record Route Option [2]. The algorithm is to
append each node’s address to the IP option field of the packet as it travels through the
network from attacker to victim. Therefore, every packets received by the victim reaches with
a complete ordered list of the nodes it traversed. However, it is impossible to ensure that there
is sufficient unused space in the packets for the whole list of nodes. Moreover, the attackers
can append data into IP option field so that there is not sufficient space for router to append

the address of them.

The second algorithm, called PPM — Node Sampling, is to sample one node along the
path at a time instead of the entire path in order to reduce router overhead and solve the
problem of spaces. The implement of the algarithm requires addition of a write and checksum
update to the forward path. A “node” field s reserved in the packet header to hold a single
router address. Each router received:the packet chooses to write its address in the node field
with probability p. The probability of ‘receiving-a- marked packet from a router d hops away is
p(1-p)**. The victim will have received.at least-one sample for every router in the attack path
after enough packets had been sent by the attacker. Hence, the victim ranks each router by the
number of sample and produces the correct attack path. However, the two serious problem of
the algorithm are the slow process of reconstructing the path and the confusion of the multiple
attackers. A large number of packets sent from attacker are needed for reconstructing resulted
in the first problem. The second problem is caused by different attackers exists at the same

distance. This algorithm is not robust for multiple attackers.

The third algorithm, called PPM — Edge Sampling, is to explicitly encode edges in the
attack path. Two static address-sized fields and a small field are reserved to hold the addresses
and the distance. Two fields, called start and end, are to represent the routers at each end of a
link. A small field, called distance, is written by the router along the routing path. When a

router decides to mark the packet, it writes its own address into to start field and write a zero



into the distance field. Otherwise, if the distance is already zero, it means that the previous
router marked the packet. In this case, the router writes its own address into end field and
increases the distance field to one. If the router does not decide to mark the packet, it always
adds one to distance field. The victim used the edges sampled in the packets to create the
graph conducting to the source. Finally, the version of edge sampling is modified so that the
requirement of space is reduced by dividing the edges and fragmenting the sampling. After
the fragment of sampling, the identification of IP header is used without increasing overhead
of the routers. Figure 2 depicts the fragment of encoding edge. The identification is divided
into three parts, called offset, distance and edge fragment. The offset field represents the
number of the edge fragment. The distance field represents the hops of the router. The edge
fragment represents the part of edge fragment. However, such process needs more packets
sent by attackers to construct the accurate path. The attacker can inject a packet, which is
marked with erroneous information, Such behavior is called mark spoofing. The PPM cannot

prevent the packet with mark spoofing from attackers:

Ver. | IHL TOS Total Length
k Identification  Flags | Fragmentoffset
,’;j TTL Protocol ‘\‘\\ Header checksum
;” Source IP a‘t‘:l‘dress
,,"‘ Destination IP ;\tgldress
y Offset | distance Edge fragment Y

0 23 7 8 15

Figure 2 Encoding edge fragment into the IP identification field

2.2.  Deterministic Packet Marking Scheme

The opposite of constructing the accurate path, deterministic packet marking (DPM) [3]
marks the packets closest to the source. The 16-bit Packet ID field and the reserved 1-bit flag
in the IP header are used to mark packets. When a packet passes through the nearest router to

-7-



the source, the packet is marked with a part of source IP address. In this case, only address
closest to the attacker on the edge routers will participate in packet marking. A 32-bit IP
address needs to be transmitted to the victim. This means that a single packet cannot carry the
whole IP address in the available 17 bits. An IP address is split into two parts, each of them is
16 bits. The reserved bit is set with the probability p. If the reserved bit is set to 0, the ID field
of IP address is the first part. Otherwise, the reserved bit is set to 1 and the ID field of IP

address is the second part. Figure 3 depicts router R; as DPM router.

Figure’3 DRM-only works in the router R;

An advantage of this technique‘is-that only.the nearest router participates in the packet
mark, moreover, it reduces the traffic load of packet marking. However, the packets used the
same source IP address by multiple attackers will make the victim confusing with the simples.
Due to the drawback, DPM-with address digest [4] modified the DPM and adds an additional

function to distinguish the attackers by mark simples.

DPM-with address digest uses the concept of DPM and utilizes a hash function to
distinguish the attackers. The different from DPM is using three fields, called Address
fragment, Hash digest and Index. The original IP address is divided into more parts in order to
write three fields. The packets passed through the same router are containing the same hash
identity so that the victim can recognize the different attack path. It extends the advantage of

DPM and differs from multiple attackers.



2.3.  Router Interface Marking Scheme

The concept of Router Interface Marking (RIM) [5] comes from PPM. The algorithm of
RIM is that each routers mark the packets with the probability p. The action of the mark is
writes the interface of the router and the hop number into IP header. The ID fields in IP
header is used by RIM so that the interface and hop can write to the packet. The ID field is
separated into three fields, called 11D, XOR and HOP. If the probability p is smaller than a
constant, RIM-enable routers write their own identity into the 11D field and XOR field, and
writes zero into HOP field. Otherwise, routers write their own 1D and executes exclusive OR
into XOR field, and increment operations on HOP field. The victim collects the marks of the
packets received from attack and builds a table in order to compute the same mark of attack
path. An advantage of using RIM is that it does not increase traffic load and builds the graph
of the attacks. However, it needs to collect;the whole marking packets of each RIM-enable

router, or the attack path cannot besreconstructed.

2.4. Logging Scheme

There are many challenges to logging. The first one is that the path reconstruction is
difficult because of the packets transformed through the network. The next one is that full
packet storage is problematic. Memory requirement are unlimited at high line speeds so that
the storage never enough. Third one is that traffic repositories may aid eavesdroppers. It may
be a privacy risk. The source path isolation engine (SPIE) [6] uses auditing techniques to
support the traceback of individual packets while reducing the storage requirements by
several orders of magnitude over log-based techniques. The SPIE computes packet digests by
invariable fields of IP header and first 8 bytes of the payload so that using packet digests to
recognize the different routing packets. It pays to keep an eye on the work of logging. It is

important to store up the log under the limited storage.



Chapter 3.  Packet Marking and Route Traceback

In this section, we describe our proposed solution which uses packet marking and packet
logging techniques to traceback routing path of attack packets. The method of
Identification-based Packet Marking (IPM) is marking packets and records marking
information into logs of local database at each IPM router. Packets are marked at each IPM
enable router in order to trace single packet from the attackers. Therefore, the traceback

scheme is using the logs so that non-real-time and real-time traceback schemes are effective.

3.1.  Design Conception

Our goal is to design an approach which can trace the closest position where nears
attackers. We have to consider legacy routers in the network. Legacy routers should not be
replaced by the routers contained the function of marking scheme due to plenty of funds. The
approach has to maintain the original network architecture and appends the marking routers to

the network architecture. Figure 4 depicts the network-architecture in the current network.

O PC (O Router

Figure 4 Network architecture

The design of marking scheme has to take legacy routers into account when new routers
are placed into the network. The marking technique has to do the marking process and passes

through legacy routers. This means that the proposed marking scheme does not work at all

-10-



routers and new routers may not be the neighbors. Therefore, IPM routers are placed nearest
to the gateway of the local network. Each IPM router contains marking process and local
database in order to trace the path. They write marking information into IP header of the
packets passed through and record marking information into local databases in the interface of
the ingress. The traceback process collects all information from databases of each IPM router

and reconstructs the attack path.

Three modules are designed to implement IPM router. Figure 5 depicts three modules in
IPM router. Packet marking module marks packets and forwarding them to network. Logging

module records packet information Traceback module trace the routing path from database.

Database Traceback
< [
Logging
Packets Incoming Packet marking [—> Packets Outgoing

Figure 5 Three modules of IPM router

3.2. The Proposed Packet Marking Module

The design of packet marking utilizes the IP protocol in the existing protocol. The fields
of IP protocol are presented in Table 1. The first 20 bytes of IP header are essential for IP
protocol during the transmission. When routers or PCs need to send special control message,
the IP Option is utilized to contain the messages needed by them. The padding is needed as a
filter to guarantee that the data starts on a 32 bit boundary when IP Option field is not a

multiple of 32 bits.

-11-



Table 1 Fields of IP header

Version IHL TOS Total length
Identification Flags Fragment offset
TTL Protocol Header checksum

Source IP address

Destination IP address

IP Option and padding

We design our own Option for IP Option field for packet marking. There are seven fields

in our Option. Table 2 depicts the fields of our option. The following is the description of our

design.
Table 2 Design of our IP option
Version IHL TOS Total length
Identification Flags Fragment offset
TTL Protocol Header checksum

Source IP address

Destination IP address
Options Length 11D1 11D2
11D3 11D4 Hash

The options field is exactly one octet which is their type field, followed by a one octet
length field. It is sub-divided into a one bit copied field, a two bit class field, and a five bit
option number. These taken together form an eight bit value for the option type field. IP
option are commonly refers to by this value. The copied field indicates if the option is to be
copied into all fragments. The class field is used for differentiating the group, such as control,

debug and measurement. The option number is used for separating different option designs.

The length field is utilized to provide the total length of this option. The different number

options have different length so that we can jump into other options by this field. If the

-12-



reference is large than the value of this field, it can indicate the wrong message.

Each of the four 11D fields has 9 bits. The 11D1 and 11D2 are utilized to record identities
of the first two IPM routers, and the 11D3 and 11D4 are utilized to record the identities of the

last two IPM routers.

The hash field is 12 bytes for verifying the option fields in order to prevent an attacker
from manufacturing the option field. We use md>5 algorithm to generate the value of the hash

field.

Each IPM router has their identities and marking process. The identity of a IPM router is
defined by ourselves. The value of the identity is from 1 to 511 because of the size of IID
field. The value zero is reserved to indicate if the 11D field is used. When the IPM router
executes marking process, it first identifies if the option field is existence or not. If so, it
check if the hash field is as same as the'value.it computes. If the computation is correct, it
identifies if the 11D fields contained the value with zero from 11D1 to 11D4 in order to write its
identity into the fields. While the whole 11D fields are not zero, the IPM router copies values
from 11D4 field into 11D3 field and.write 1ts-identity-to 11D4. If the hash value is not correct,
the IPM router deletes the option of the IP-header. If the option field is not existence, the IPM
router appends the IP option into the end of IP header so that the marking process can initial
the value of option and length and write the identity into 11D1. Nevertheless, if the total length
is larger than 1492, IPM router does not appends the IP option to IP header because the

Maximum Transmission Unit of Ethernet is 1500.

IPM routers append IP option to the packet lead to the different size of the packet. The
IHL field specifies the length of the IP header in 32 bit words. The IP option increases the size
of the packet so that the value of IHL field has to plus two. The total length contains the
length of the datagram so that it needs to plus 8. The changes of IP header occurs header
checksum error so that the neighbor router received the packet drops the packet. The IPM
router needs to compute the checksum and replace the origin value so that the packet can

transmit correctly.

- 13-



Consequently, IPM routers are not only appending the option to IP header or modifying
the value in the option, but also modifying the three values of IP header. Each packet records
four identities of IPM routers so that it only contains partial information of IPM routers. The

marking scheme marks the packets and forwards the packets to the next router.

3.3.  The Proposed Logging Module

We use a sniffer which is a piece of software that grabs all of the traffic flowing into and
out of a computer attached to a network. The sniffer can be utilized to gather data necessary
for our logging scheme. The IPM router knows that packets received containe the IP option
due to the value of IHL. If IHL is larger than 5, the IPM router identifies if the option number
equals the number defined by us. If so, it checks on the hash number. If the hash number is
correct, it gathers the information from the packet with marking messages before the marking

scheme executes.

The logging scheme uses the database to.record the information gathered from the
packets with marking samples. -Each IPM.router contains a database. The data needed for
traceback are the time, source IP-address, destination IP address, protocol type, destination
port and 11Ds. We construct a table forlogging, and the columns are defined in Table 3.

Table 3 Columns and data type in the table

Column Data Type Column Data Type
STime | DATETIME IIDNUM | SAMLLINT UNSIGNED
ETime | DATETIME ID1 | SAMLLINT UNSIGNED
SIP INT UNSIGNED 1D2 | SAMLLINT UNSIGNED
DIP INT UNSIGNED ID3 | SAMLLINT UNSIGNED
Protocol | SMALLINT UNSIGNED 1ID4 | SAMLLINT UNSIGNED
DPORT | SAMLLINT UNSIGNED ID5 | SAMLLINT UNSIGNED

The STime column is the start time of the flow passed through. The ETime column is the

end time of the flow passed through. The SIP and DIP column are the IP address of the source

- 14-



and the destination. The Protocol column is 6 for transmission control protocol (TCP) or 17
for user datagram protocol (UDP). The IIDNUM column is the number of 11Ds contained in

the IP header. The 11D1 to 11D5 columns are the identities of IPM routers.

In order to prevent the same records presented in the database from gathering the same
flow. The process of logging first gathers the different flow into a buffer which has a fixed
size. If the packet of the same flow contains the same information in the buffer, it gathers to
the same record so that the same flow only has one record for it. The outdated record stored in
the buffer is moved to database when the time of the record is termination or the buffer has
been full. The database only contains logs between seven days in order to prevent the full of

the storage from logging.

3.4. The Proposed Traceback Module

The concept of traceback scheme’is that gathering marking information from each of
IPM routers so that all attack paths can be|reconstructed by these logs. Each of IPM routers
only contains partial information of the attack path.: Therefore, we utilize a main control

center (MCC) to execute the tracéback scheme:.

MCC has a graphical user interface (GUI) for users to input the searching conditions.
The searching conditions contains the time, source IP address, destination IP address, protocol
and destination port. When MCC operates the execution of traceback, it sends a packet with
traceback command to the IPM router chosen by MCC. The IPM router starts to search the
data satisfied the conditions from the database. Then it sends a packet contained the data back
to MCC so that MCC can present the partial path of the attack path. Figure 6 depicts the

process of the traceback scheme.

- 15-



Operation System @)
Graphic User > DB
Interface(GUI)
1) IPM
Socket router
A
Socket 3)

@) I

<O

Figure 6 Process of traceback scheme

The traceback scheme traces a partial attack path from an IPM router. The all IPM
routers have to cooperate to gather the whole attack path. Figure 7 depicts the example of the
traceback scheme. MCC first sends a packet to IPM router #9 so that the MCC receives the
packet contained the log of the attack path. MCC can know that the IPM router before IPM
router #9 is IPM router #7 by the log of IPM router #9. Then MCC sends another packet to
the IPM router #7 to require the-log of/the-attack path. Such process is repeated until the last
IPM router #4 is reached. MCC can construct the attack path by gathering the logs of each
IPM router. Therefore, MCC finds that the attack path is #4-#2-#6-#3-#7-#9.

However, the process of searching the entire IPM router is not automatic so that it is
inconvenient for constructing the accurate attack path. The process done by us is the
transmission between the MCC and IPM router. Hence, the transmission between IPM routers

may be cooperated to let the process automatically.

-16-



TP Option Logs
TPM Raoutar () 423|179
42|79 _—'—é;"'" MCC
Alalglalg L
Andlala iPM Router @ 5=
=i L ¥ #7
TPM Router 3) 4 2|16|3
412163 53
IPM Router @ 28
4 2‘ 5 £ £
T IPM Router ) |42
4i2 52
© (4
4
Figure 7 Example of the traceback scheme
3.5.  System Architecture
IPM Router
Linux
Kemel Space  UserSpace
User Traceback
D | RIP | SETPN sl | Module
' v C
: N IPM PRI SIPM ]
v | 7| Systemecall | [|7 Pmemg
Packet gram
Marking vModules
Modulq.?
) Bridge >| . Sniffer Buffer
A A “
1 ]
Logging
Eth0 Ethl Hardware
I T "3 Module
1 1
v v

Figure 8 Overview of System architecture of IPM router

The complete components of an IPM Router are shown in Figure 8. The operation

-17-




system of IPM router is Linux so that we can modify packets during the forwarding process.
In kernel space, we add three variables and system call function into kernel and install the
module of the Bridge. Therefore, we install databases for packet logging and write control
programs for controlling logs of the database in the user space. The sniffer is utilized to
monitor packets transferred between Ethernet interface EthO and Ethl. Some programs are

designed to modify the variables in the kernel space by system call functions.

The components of the transmission between IPM router and MCC are shown in Figure
9. MCC has the GUI program for user to input the option value and listens to the port number

4862. The IPM router has a program for searching the data from database and listens to the

port number 4862,

IPM Router MCC

S

“ (Windows)

|  Search | | cur |
I I

| Socket | | Socket |

| Port: 4862 | | Port: 4862 |
A A

H
------------------------

Figure 9 Components between IPM Router and MCC

3.6.  Algorithm Design

The algorithm design is sub-divided into three parts. First, the process is executing
between the network interface and data-link layer. The packets passed through mark the
marking information during this process. Second, the process listened to the interface captures
information of the packets passed through the interface. The last one, the process between

IPM Router and MCC is the transmission protocol.

- 18-



3.6.1. The Process of Packet Marking

The packets came from incoming interface pass through Sniffer and Bridge model and
forward to outgoing interface. The Bridge model has three parts of the execution. The
marking process is written into Forward part so that the packet can combine the marking

information. Figure 10 depicts the complete process of the transmission during IPM router.

Incomingp Packet Outgoing Packet
(1)| Incoming Inierface (8)| Ouigoing inierface
) - 4
Bridge modei
¥ \ II (4) Forward ll r )
I \-II i Auluuu_u_ I - ! e - . ! - ! ‘!\J” A WLl ““I.l- !
| (5) Marking ] '

Figure 10 Procedure'of Bridge model

The algorithm of packet markingtprocess-is-shown in Figure 11.

Append marking | Delete marking N MDS5 hash
information - information check?
| .
P Edit marking
Compute MD5 hash € info ion

Outgoing <
packet

Figure 11 Algorithm of packet marking process
-19-



3.6.2. The Process of Packet Logging

The logging process contains the process of the Sniffer and Buffer. The Sniffer can
capture and analyze any traffic that pass through the incoming interface. The packets
contained the marking information are captured by Sniffer. The marking information is
analyzed and written into Buffer for a while. The same marking information in the Buffer is
combined into the same record. The records are written to Database while the Buffer is full.

Figure 12 depicts the process of the Sniffer and Database.

Incoming Packet | | Outgoing Packet
1 7y
(1)| Incoming Interface (5)| Outgoing Interface

il :
. 22
@.1) Smiffer @2 )

Gather Packet 23)
Information Database
4
)|  Bridge model »  (4) Sniffer ]

Figure 12 Procedure of packet transmission through sniffer

The process of the sniffer captures packets information is shown in Figure 13. Packet

information are recorded after checking Buffer.

- 20-



Capture packet

information
Buffer Y Copy records from
Full? buffer to database
x !
Copy marking P delete records from
information to Buffer | buffer

Figure 13 Algorithm of packet logging
3.6.3.  The Process of Traceback

The traceback process contains two sides. First; the MCC captured the restriction from
the GUI. The conditions is written into the socket and-sent to the IPM router. The IPM router
received the request message logins the-database.'and searches the records satisfied the
conditions. Afterwards, the IPM router‘gathers the records into data message and returns to
the MCC. The MCC analyzes the data message and displays the records in GUI. Figure 14

depicts the protocol between MCC and IPM router.

-21-



MCC IPM-router Database

([ Receive the conditions ]
L from GUI

A 4

) ™
(2)[ Request message G) Authentication and
searching request

(5)[ Response data |
message )

)
-

24)[ Response data
message J

©) Display the records in
GUI

A

Time i v v

Figure 14 Connection between MCC and IPM router

-22-



Chapter 4.  Performance Evaluation

4.1. Attack Scenario

The attacker utilizes the IP spoof techniques to transfer the forged packets. The packets
are sent to the same destination. The attacker masquerades the source IP address of the
neighbor location so that the packets are sent as another host at the victim.

Figure 15 depicts that Attacker from 192.168.64.1 use IP spoofing technique to
masquerade SIM (192.168.16.11). Packets from attacker seem to be sent from SIM

(192.168.16.11).

Attacker
192,168 64.1 L

A\/

192168 64254
Router
192.168.03
| |

IPM Router#2
192.168.0.2 A Zone

e I LI y

o 192.168.0.4
/ 192.168.32.254  Router 192.168.]6.254\
. ’ = —€———5SFnn € —~ —
.E P - / ~ - S
B Zone :— ~. | TPMRoutert6 C Zone
4 [PMRouteri4 J 192168162
;| 192168322 5 |
/7 - 8\
K Y | Switch
) :'. Switch / \
| 1
Iy MCC I SIM HN
Host 192.168.16.33 || 192.168.16.11 || 192.168.16.16
192.168.32.4 Host 192.168.16.86
192.168.1624

Figure 15 Scenario of packet spoofing from an attack

4.2.  Experiment Environment

42.1. Hardware

Each IPM router uses the same hardware specification. The details of the equipment are

-23-



shown in Table 4. The hardware of MCC is as same as IPM router.

Table 4 Hardware specification

Hardware Specification

CPU Intel E7200

Motherboard Gigabyte EP35-DS3LP35/ICH9
RAM A-DATA DDRII 800 2GB x 2
VGA GeForce 7200 series 128M
HDD WD 6400 AAKS 640GB
PSU FSP-350W APFC
NIC Ethernet Cards x 2

4.2.2. Network Topology

IPM routers place in three spaces. The spaces are called A zone, B zone and C zone.
Each of the zones has a gateway and a IPM router. The IPM router is adjacent to the gateway
and marks the packets. The packets passed through-the gateway also go through the IPM

router. The network topology is showtin Figure-16. There are many PCs connected to normal

routers. The three zones are connected:to each other.

- 24-




A Zoinie
B B
= = |
MCC i -',E/
.-”‘-‘k_*i ;%
— avaaven = I—! A==
B Zone ™ P S | & J
| { —
. < =
S [ | C Zone
o= - |, e
g ) e
— P — —
[ o™ (g ' ;
- | . ] | b
ey S ™ ™ [™
e e | | /.. | .-
e | | == | ==
Gk o \GmE - o Nk i
- = —
ST P~ o~
= . 1B=>
1 rDRE condae L Narmial rosiiee (.. | Dy
!- I AR L¥L AWFLEAAAL v‘-! FR LV FNLIA RN " 4 7 8 ?L! l A Sy
S — -

Figure 16 Network topology

4.2.3. Functions

The difference between IPM router and normal router are the process of forwarding,
supply of applications and the services. The machines contained functions are shown in
Table 5.

The IPM router contains forwarding packets, gathering and analyzing packets, marking
packets and searching services. The IPM router receives the packets came from the interface
and forwarding to other interface. It also utilizes the sniffer software to gather and analyze
these packets. The packets combine IP header with marking information during the
forwarding process. The MCC provides GUI searching engine for users to input the
conditions. The conditions are sent to IPM router for searching the records gathered from the
transmission. Afterwards, the IPM router enables the searching services to search the records

from database and sends to the MCC that requires the searching services. The MCC displays

- 25-



the records to the users. The normal router is working as legacy router.

Table 5 Functions of the machines

Machine Function

Forwarding packets

Gathering and analyzing packets

IPM router
Marking packets
Searching services
MCC Providing GUI searching engine
Normal router Forwarding packets

4.3.  Experiment Scenarios

There are three zones in the network. Each zene has two computer, one IPM router and

one legacy router. The network setting of each zone is-shown in Table 6.

- 26-



Table 6 Network setting of all equipment

Zone Equipment IP Sub-mask Gateway

Normal router 192.168.64.254 | 255.255.255.0 X
192.168.0.3 255.255.255.0 X

A Attacker 192.168.64.1 255.255.255.0 192.168.64.254

Host 192.168.64.2 255.255.255.0 192.168.64.254

IPM router [1ID:2] | 192.168.0.2 255.255.255.0 192.168.0.4

Normal router 192.168.32.254 | 255.255.255.0 X
192.168.32.254 | 255.255.255.0 X

B Host 192.168.32.4 255.255.255.0 192.168.32.254

Host 192.168.32.7 255.255.255.0 192.168.32.254

IPM router [11D:4] | 192.168.32.2 255.255.255.0 192.168.32.254
MCC 192.168.16.33 255.255.255.0 X

SIM 192.168.16.11 255.255.255.0 192.168.16.254

¢ HN 192.168.16.16 255.255.255.0 192.168.16.254

IPM router [11D:6] | 192.168.16.2 255.255.255.0 192.168.16.254
192.168.0.4 255.255.255.0 X
Normal router 192.168.16.254 | 255.255.255.0 X
192.168.32.254 ' | 255.255.255.0 X

Traffic flows are transmitted through.these'three zones. IPM routers mark packets passed
through and record marking information. According to the records, we could know which
zone packets came from and its source IP address. If source IP address belongs to other zone,

the result shows that source IP address of the packet is masqueraded.

4.4. Experiment Result

Traceback process is used at the last step. We show the GUI for presenting the results of
the wrong and correct. Figure 17 depicts the traceback by traceroute. IP spoofing causes the

wrong host and area Figure 18 depicts the correct traceback process by IPM routers.

EdSon@edson-lapiop: ~
=] EHSON@EASON=SPLop:

HEE HFERE Brnl #RET HEE kbl
eason@eason—-laptop:~$ traceroute 192.168.16.11
traceroute to 192.168.16.11 (192.168.16.11), 30 hops max, 40 byte packets

1 192.168.32.254 (192.168.32.254)
2 192.168.16.11 (192.168.16.11)
eason®@eason—-laptop:”$

0.938 ms
0.347 ms

0.281 ms
0.358 ms

0.257 ms
0.325 ms

Figure 17 Traceroute process by victim

-27-



MiNEEE  RREEEEE

'-i-lu-neyr:lt;t- ! TraceBack I -Neif-lnwmia-lysis

Source IF; [+ | Destip; - | DestPort: [+ | 1P Protocot: |* | Router P = [192.168.32.2 | IP List !
] Date : [2008-11-27 ] Time : [15322 fizuus]--js_ |11|-iﬁ Prlv| B |5]v|m 2]+ 2]vw

Ea 1 || sEmmn

gttt ] EndT | srclP [ Dstip [ Proto[Dst P../Rout..] nDI1] [10G21 | D3] [ 1Dg] | nois] [ ot |
2008-11-27 15:32.28 |2008-11-27 15:32:28 [192.168.16.11 192168324 Pz e 2 2 & @ [0 o |0
2008-11-27 153228 |2008-11-27 15:32.20 [192.168.16.11 [192.168.32.4 fz 8@ fp |2 [« 8 Jo o |0

i Search |

Figure 18 Traceback process by IPM router

The results are sub-divided into five parts. The first part is the setting of the IPM router.
The IPM router has to set the initial value for the 11D number and the region. The IPM router
bases on the setting to decide if the packets need to mark the information. The second part is
the execution of the sniffer. The information that the sniffer gathered is shown in the screen.
The third part is that the database stores the recdrd’s, and controls on the web. The fourth part
is the traceback GUI. The users‘utilize the GUI to input the conditions and get the records
from one of IPM routers. The IaSt part.is the real-network performance.

4.4.1. Setting Result |

The program we designed could change the variables in the kernel space. We could use
this program to identify the 11D number, set the domain region and the marking decision.
Figure 19 depicts the total commands of the program. The commands are using to change the
variables as show in Figure 20. We can use the file to configure the setting. Figure 21 show

the execution of the commands.

- 28-



1&3% (F) #mEE(E) RRT(V)

FEimtE(T) o H(B)
wh |@an |-PCL:~F . /mpeset.o help

Exarmple:

Showy TID Murber -
Set IID MNurber :
£od ip and subrask
Celete ip and subrrask : LSmposet.
Show al | ip and subrask @ . Arposet.
Showe SETPN hurber :
Set SETPM Murber =
Load the setting =

LSmposet.
rpeset.
Srposet.

Jrpcset.
LSmposet.
LSmposet.

Lo o S o B O o R R

w1 |@en | -PC1:~§ ]

HEN(H)

iid

iid <nurber 1-511%

rip add <ip>/<subrask 0-323
rip del <ip>/<dsubrask 0-3Z
Fip show

setpn

setpn <nurber 0-13

| cad

i [ @ [-PCL: 5
IID =4
wry | @ [-PC1: ~F

wr | @ | -PC1: ~F

i [ @ [-PCL: ~§

wh [ @an [-PCL: 5

wry | @ [-PC1: ~F

Figure 19 Commands of the IPM router

f23= (F) mEE(E) Bn(V)

Jpcset.o i

Jrposet.o i

Shposet.o

Jhpcset.o

Jmpcset.o

wn |G |-Pci:~3

rip add 152.168.1.0

Fip shou

rip del 192.168.1.0

/24

J 24

Figure 20 Operations of the IPM router

- 20-




1252 (F) #W8E(E) Mm(v) Himed(T) o R(B) REi(H)

w | @en | -PCL -8 | frpcset.o setpn
SETPMN =0
wh |@an |-PCL:~F L /mpeset.o setpn 1

W |@n [-PC1:~F . /mpcset.o load

w1 @sn | -PC1: 4 ]

Figure 21 Domain control and file loading

4.4.2. Sniffer Result

The sniffer program is setting in each of the interface. The packets are captured by
sniffer and analyzed the marking information. The results are shown in Figure 22. Start time
and End time are the time on the buffer. The main part is the information of IP Option. The
marking information is analyzed by g,n_i'ffér‘r éha"éepzarated into different fields.

P&

- 30-



, Foot@wWnl=PCIE E@
T8R (E) imEE(E) &A=(V) SHRWE(T) = R(B) XBIH)
Start: 2009-06-18 02:01:49

End: Z009-06-18 02:01:49 a
source IP = Oxc0a80102(192.168.1.2) — dest IP = Oxe00000fh({224.0.0.251)
Protocol :ILEP{17) Scurce Port:5353 Dest Port:5353
Cption=27, Length=8, Hash=237,

Router Murber:1l ——»I1101=5 ,IICE=0,1103=0, IIDY=0 ,II1CS=0,1106=0
Start: Z2003-08-18 0Z:01:56

End: Z009=-06=-18 0Z:01:56

soUurce IP = Oxc0a80102(192.168.1.2) — dest IP = Oxc0a801fe(192.168.1.254)
Protocol :TCPIG) Source Port:d0129 Dest Port:iB0

Cption=27, Length=8, Hash=£07,

Router Manoer:l —»I[I101=6 ,IICE=0,1103=0, IIC«=0 ,IICGE=0,II10G=0
Start: Z009-06-12 D0Z:02:52

Encl: Z009-05-18 02:02:52

source [P = Oxc0a80107 (192.168.1.2) — dest IP = Oxe00000Fh(Z24.0.0.251)
Protocol ILOP(1T) Source Port:5353 Dest Port:5353

Cption=27, Length=8, Hash=:37,

Router Munoer:1 ——»I1101=6 ,I1ICE=0,1103=0, IICY=0 ,IICS=0,I106=0

Start: Z009-06-12 0Z:03:06 Encl: Z009-05-18 02:03:05

source IP = OxcDaB0l10Z(192.168.1.2) —- dest IP = Oxc0aS01fe(192.168. 1.254)
Protocol iTCP(G) Source PortiS6d423 Dest Port:80

Cption=27, Length=8, Hash=35,

Router Murmber:l ——>1I101=F ,1I0@=0,1103=0, IID¥=0 ,I1ICS=0,II06=0

(4]

Figure 22 Packet information gathered from the sniffer

4.4.3. Database Result

The sniffer captures the marking information and sends the information into the table in

the database. The table information is shown by phpMyAdmin. Figure 23 depicts the records
in the “tam” table.

- 31-



r@; 1=y 0O A oAl o ST S & rar | g P yAd rn = S LS d B oo B@W
g% (F) #meE (B) = (v) E® (s) &% (B) IR (T) REA (H)

ETime SIP DIP Protocol DPORT IIDNUM IID1 [*]
2009-05-18 01:35:09 3232235778 3232251905 17 53 1 2
2009-05-18 01:35:08 3232235778 3232251905 B 80 1 2
2009-05-18 01:36:00 3232235778 3232251905 B 80 1 2
2009-05-18 01:35:09 3232235778 3232251905 B 80 1 2 |
2009-05-18 01:35:09 3232235778 3232251905 B 80 1 2
2009-05-18 01:35:09 3232235778 3232251905 B 80 1 2
U02-06-18 O1:32:08 3232231300 323zz25770 17 23885 2 3]
Z003-06-18 01:33:08 3232231305 32322355778 B 53184 2 B 7
Z003-06-18 01:33:08 3232231305 3232235778 17 559454 2 a]
Z003-06-18 01:33:08 3232231305 3232233778 B 48733 Z a]
Z003-06-18 01:33:2d 3232231305 32322353778 B 45761 il a]
Z003-06-18 01:33:2d 3232231305 32322353778 B 45762 il a]
Z2005-06-18 01:33:24 3232231305 3232253778 B 48763 z a]
Z2005-06-18 01:33:24 3232231305 3232253778 B 48764 z B |
a S I— — DB
FER

Figure 23 Records in the database
4.4.4. Traceback Result

The traceback result is different from the conditions. The users select the conditions to
find the information that they need. Figure 24 depicts that the user choose Source IP and Port

to trace back the path so that the result contains the same source IP and port.

- 32-



Source IP:[197.168.1.2 | Desup [+ | DestPort: 30 [ IP Protocol: | | Router IP - [192.168.1.3 |
1. ] I 1 I. 1 | P——— S

[ Date 000-6-18 [] Time: 2288 lzuug!-! -3 ls lv!):j !13!-! ] !3 !-!aﬂ; lzsl-!g,:\ llsl-!gy
e T e
1IFE |1 | w | Sploofnta] ot

L1 1

Start Time End Time soLrce IP Dest. IP Protocol | D2st Port [Router Mur. [ IDLL] NDEZ ][I .1 L.
Z009-06-18 C1:35:08 |2009-06-18 01:35:08 |192.168...2 |192.168.64.1 |6 80 i 2 o OO0 00 (=]
000 05 18 013508 (2009 08 18013800 (152 16812 |Lgz2.ls851.1 & 20 1 2 4] OO0 60
Z009-06-18 CL 3508 [2009-06-18 01:35:00 1192 168,22 |192 168 F4.1 |6 a0 1 2 0 oolo oo
Z009-06-18 C1:35:09 |[2009-06-18 01:35:00 |192.168.2.2 |192.168.54.1 |6 g0 1 2 0 o 1o oo
SUDO-0E-1H O 4500 1 2000-0E- 18 014500 1182 168 - 2 192 188 ed 1 16 =1l 1 E ] [ R AR
INNG-NE-18 012628 [P000-05-18 013620 1192 168 © 2 a2 16874 1 |5 a0 1 ? n nlonlol
Z009-08-18 013829 2009-08-18 013529 1192.188...2 (192,168,641 & 80 1 2 o SRR
CARo e 18 r1 32530 oo nE 12013530 1165 152 - 5 las 1em e 1 e P T S - a1 1ol
EVUI-VOT10 LWL DU OV CUWITUO- 10 VL. 30D oY 12,100, .2 L2 L0001 2 ouv L & ") W W oW
S002-0CG-18 CL37i44  (2002-00-10 QL3749 (122.108.L.2 |L22.158.64.1 24 1 2 O O g0 00
Z009-06-18 C1:37:44 |2009-06-18 01:37:44 (192.168._.2 |192.168.654.1 |6 g0 1 2 0 0101010
Z009-06-18 C1:41:44 (|2009-05-18 01:41:45 (192.168...2 |192.168.64.1 |6 g0 i 2 o o000
Z009-06-18 C1:41:44 [2009-06-18 01:41:45 [192.168...2 54.1 |6 80 1 2 0 oo oo
2000 08 128 C1:A2:52 (2009 06 12 01:12: 192 1& 1.1 & 2d 1 2 4] o 1o oo
Z009-06-18 £1:42:52 [2009-06-18 01:43; 192.168...2 64,1 |6 20 1 2 o o lololo
TOANQ_NE_18 M1-AE-A1 DOAMNG_NE_18 M1-A8- 1a2 188 2 A4 1 “ on 1 >l 's] ™ ™ Mol
Z009-06-18 C1:45:41 |2009-06-18 0L:46: 192.168...2 54116 80 1 2 0 o lololols

!

Source IP: [+ * | RouterIP: [193.168 1.3 |
7 Date: 2003-6-18 !1g!v! g3 lvlmize vy 1sl~lw
FE 1 |+ «EELSR

Start Time End Time Source IP Dest. IP | Protocol | Dest Port [Router bom. L i0p0 ol b 0
F009-06-18 01508 [PON9-06-18 012507 |137 168 A4 1 197 16817 |17 F9385 |7 & > oo lo o |4
2009-06-18 01:25:08 2009-06-18 0L35:08 (192 168641 (19216812 |6 52184 2 =3 2 01000
2009-06-18 01:35:08 (2009-06-18 0L:35:08 |192 168.64 1 |192.168.1.2 |17 29494 2 & 2 ojofo|o
2005-06-18 01:35:08 |2005-06-18 0L35:08 152 168.641 [1592.168.1.2 |6 48755 2 & 2 00|00
2009-06-18 01:35:08 |[2009-06-18 0L:35:24 |192 168641 |192.168.1.2 |6 48761 |2 & 2 Q10|00
2009-06-18 0L:35:08 [2009-06-18 0L35:24 [192.168.64 1 [192.168.1.2 |g 48762 |2 G 2 jofololfe|_
2009-06-18 0L:25:08 [2009-06-18 013524 |152.168.64 1 |192.168.1.2 |6 48763 2 15 2 olofole]
2009-06-18 01:35:08 |2009-06-18 01:35:24 |152.168.64 1 |192.168.1.2 |6 48764 2 (s} 2 Q0|00
2009-06-18 01:25:08 |2009-06-18 01:25:08 |192.168.64 1 |192.168.1.2 |17 51774 |2 5 2 Jololola
2009-06-18 01:35:09 2009-06-18 0L35:00 1132 168641 1192 16812 |6 50559 2 1=} 2 [CR IR
2005-06-18 01:35:05 2005-06-18 0L35:29 (152 168641 |152.168.1.2 |6 48766 2 5 2 G000
2009-06-18 01:35:09 |2009-06-18 01:35:09 |152 168,641 |192.168.1.2 |17 44859 |2 & 2 Q10|00
2009-06-18 01:35:09 |2009-06-18 01:35:00 |132.168.641 [192.168.1.2 |6 35133 2 6 2 oo
2009-06-18 01.35.09 [2009-06-18 01.35.09 [192.168.64 1 [192.168.1.2 |17 36033 |2 5 2 Jofolole
2009-06-18 01:35:09 [2009-06-18 01:35:09 |132 168641 |192.168.1.2 |6 51742 2 =3 2 Q1010012

Searcii i

Figure 25 Traceback with the condition “Destination IP and Date”

Figure 26 depicts that the records with the same date and the time between 3:29:47 to

- 33-



f the value chose by users.

ion o

is the reg

ime

47. T

31

3

= R=1L=2K=]
L] =]

(=] [

L]

e ea | e e e | e e ]

AR MW | WD L]

A A AN ) i

o |G| |e|w|m|u|a

re | @
w i @ re | e T e T

L | 6D

80

- P
| Router iP: [152.168.1.3] |
. | 1 | 1 | | 1 | | 1
e - ime: 134 : A vlR 1 vi&E 3 w5 8 v
23l Foil jRoiier MuT.. . OIL] jiDi25. i 0
1 2 3 jolofelo
i ] 00 90
1 3 Jojojolo
olololo
885 6 0lololo
184 o0
A4 [N
755 |2 olofolo
761 |2 3 olololo
762 |2 5 oo oo
763 & 0000
ABTEA 2 & 2 O |0 |00
TFT7A Iy lsl
774 o0
1
i
i
i
T4 [13 H ”
ition “Date and Time

[
1
G
1
3]
3]
3]
[
[
1

| IF Protocol: |*
-
Fi
7
7
7
=
7

i
i

B
o

—— |

@&
i
8
.51,
192.1e8.64.1 |6
8
8
£8
£8
£8
=1
£8
8
192.1e8.1.2
£

estPort: |
I
I
1
1
1
i
i
i
1

(=} e |

o

1

i
192.168.1.2

18

18

1s

1g

ia

ia

16

18
192.1e8.61.1

g

[<B]
e | oo | e e ||| T e Q
i _...Iu. (% ) nl_ LS L i | _...Iu [ A R I ] A.M a
Wfw WO | w | wy | w it | —
e o LI O e o O O O o A O O O I P T
- I e e e I A = e Bl B A =
e E Elolo|lolala|lo|lo|o|o|o|lalo|o (o]
d = Fleo | oo |eo|eo | eofen|o|cof|m|e|wm|eo N
_m = .I_. — .I_. .|__ .|__ .._._ 1 .I_. J. J. .|__ — .._._ )
= L] =
n [&] W fw [ [ g ud [w e[| w|uw —
E| | SRR =
= oo |on | on|en | e | |an|an| o | o | an [@)]
o|lo|lo|lo|lalo|lo|lo|la|lalalolo —
I=aR=R=2=AR=10=1R=AR=2 L= R=1R=2R=2R=] LL
IR I e R N A ]
o0
= ||| o [to|w|w|w| oo
W o|alo|a o|lo|o|o|lo|lo|a
| W um | w |t | un | ut
[+)] i1 [Ra et e e L e O A O A A e
2 E| i [ ]| == e R ]
= SElo|o|o| o Ao oo oo
® ] =l m e e oo ||| e o | e
- b || Zlalalal— g petr i e Jputo b i e
A o = [N NN |
= = = (e EY=R Y Y 1w o e e e e e
@ [ e o|lo|lo|o o|lo|o|o|o|lo|o
=) 1 | 1 1 ] ] ] ]
= = b @ oo | @ al@m oo @ e |
= - I, o|lo|lo|o Qlo|le|le|lo|e|@
o (3] i S|a|a|a A=A i=AE=1R=2R=2 k=]
w e e e e [ e e ea e e

- 34-



Chapter 5.  Conclusion and Future Work

Developing a traceback system that can trace a single packet has been viewed as
impractical due to the tremendous storage requirements of saving packet data. We believe that
the implementation of IPM router is feasible for tracing a single packet. Our system is based

on the observation that the marking information under attack would discover the attack path.

Our system contains three schemes for implementation. In the marking scheme, we
utilize the identifiable number to reduce the space of the option. Additionally, we use MD5
function to hash a number for verification of the fields. Attackers have to try the correct hash
number for masquerading option fields. The marking scheme marks packets according the
domain value of RIP setting. We could choose networks that we want to mark or not. In the
logging scheme, we use buffer space to reduce same records and store them into local
database. Same packet information gathers into one record during a moment. In the traceback
scheme, we could find the areasthat packets belong to according the records. The records
show the 11D information so that'we could transfer 11D to normal IP address to know the area.

Packets with wrong address are discovered by comparing the area and IP address.

An advantage of our system is that it works in real-time and non-real-time and traces a
single packet. No matter how attackers modify the source IP address, the area that packets

come from can not be hidden.

Commercial firewalls filter out packets by rules set by management. Packets with
marking information may drop by firewall so that the transmission is not complete and failure.
In the future, the marking information may put into other header or fields which are
infrequent used. The database of each IPM router could interact for changing marking

information so that the whole routing path would discover.

IPM would combine with other technique for traceback in wireless network. Access
points (AP) in wireless network should keep the connection information during connecting to

them such that the IPM could traceback to the AP and AP applies MAC address to know who

- 35-



uses this IP address. APs are the roles of monitoring all information of mobile stations.

- 36-



[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network Support for IP
Traceback,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 226-237, 2001.

S. Deering, “Internet Protocol, Version 6 IPv6,” RFC 2460, 1998.

A. Belenky and N. Ansari, “IP Traceback With Deterministic Packet Marking,” IEEE
Communication Letters, vol. 7, pp. 162-164, Apr. 2003.

A. Belenky and N. Ansari, “Tracing multiple attackers with deterministic packet marking
(DPM),” in Proceedings of IEEE Pacific Rim Con. Communications, Computers and

Signal Processing, vol. 1, pp. 49-52, Aug. 2003.

R. Chen, J. Park, and R. Marchany, “RIM: Router Interface Marking for IP Traceback,”
in Proceedings of IEEE GLOBECOM,pp.,1-5, Nov. 2006.

A. Snoeren, C. Partridge, L.:Sanchez, C. Jones; F. Tchakountio, B. Schwartz, S. Kent,
and W. Strayer, “Single-Packet IP Traceback,” IEEE/ACM Transactions on Networking,
vol. 10, no. 6, pp. 721-734, 2002:

D. Basheer and G. Manimaran, “Novel hybrid schemes employing packet marking and
logging for IP traceback,” IEEE Trans. Parallel and Distributed Systems, Vol. 17(5), pp.
403- 418, May 2006.

S. Bellovin, M. Leech, and T. Taylor, ICMP Traceback Messages, Internet Draft,
draft-ietf-itrace-04.txt, Feb. 2003.

A. Yaar, A.Perrig, and D.Song, "FIT: Fast Internet Traceback," in Proceedings of
INFOCOM, Mar. 2005, pp. 1395-1406.

-37-



Appendix A. Codes

L0000 [ N 0 ] o111 O o PSSR PSSRTI 39
L0000 (oA 0 )Y 1153 =] T o o PSSR PSSSTI 46
(0000 [ 1 1)/ oSS T TP TP PR PROPOPOPPPTPIR 58
COode 4 TraCehACK JAVA ......cuviieieiiie et 60
(00T [ IRCT o] gl (0] V=V o I oL SRR TRPR 68
Traceback java
(client)
Mpcset.c
IPM_Side java
(server)
[ID.SETPN.RIP /L
\[ > Mylistener.c =L
) DB
S rd
Br forward c > Myd.c

Figure 27 Association

- 38-



Code 1 mpcset.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syscall.h>

#define RED "\E[31m\E[1m"
#define GREEN  "E[32m\E[1m"
#define BLUE "\E[34m\E[1m"
#define NORMAL "\E[m"

unsigned int reverse_submask(unsigned int num){

inti;
unsigned int submask;
submask=0;
for(i=31;i>=0;i--){

if(num%2==1)

submask += 1<<i;

num = num>>1,;

}

return submask;

¥

void savefile(){
FILE *output;
inti;
int temp;

if((output=fopen("mpc.config","w+"))==NULL){
printf("File mpc.config is not writeable\n");
return;

¥

I/ save 11D first

I/ save SETPN second

// save RIP records

fprintf(output,"%d\n",syscall(__NR_getlID));

fprintf(output,"%d\n",syscall(__NR_getSETPN));

temp = syscall(__NR_getCNT);

for(i=1;i<=temp;i++)
fprintf(output,”%d/%d\n",syscall(__NR_getRIP,i),syscall(__NR_getSUB,i));

fclose(output);

¥

void loadfile(){
FILE *input;
int cnt;
int iid;
int setpn;

unsigned int ip;

- 39-




}

unsigned int submask;

if((input=fopen(**/home/wnl/mpc.config”,"r"))==NULL){
fprintf(stderr,RED"File mpc.config is not found\n"NORMAL);
exit(-1);

}

I/ read 11D first

if(fscanf(input,”%d\n",&iid)==EOF){
fprintf(stderr,RED"File mpc.config is not correct context\n"NORMAL);
fclose(input);
exit(-1);

}

if(iid<l || iid>511){
fprintf(stderr,RED"File mpc.config is not correct context\n"NORMAL);
fclose(input);
exit(-1);

}

syscall(__NR_setlID,iid);

Il read SETPN second

if(fscanf(input,"%d\n",&setpn)==EOF){
fprintf(stderr, RED"File mpc.config is not correct context\n"NORMAL);
fclose(input);
exit(-1);

}

if(setpn<0 || setpn>1){
fprintf(stderr, RED"File mpe.config-is-not correct context\n"NORMAL);
fclose(input);
exit(-1);

}

syscall(__NR_setSETPN,setpn);

/I clean RIP all records

syscall(__NR_setCNT,0);

cnt=0;

I/ read RIP records

while(fscanf(input,"%d/%d\n",&ip,&submask)!'=EOF){
cnt++;
syscall(__NR_setRIP,ip,cnt);
syscall(__NR_setSUB,submask,cnt);
syscall(__NR_setCNT,cnt);

¥

fclose(input);

printf(GREEN"Load mpc.config is finished\n"NORMAL);

void IID(unsigned int iid){

if(iid < 1 iid > 511){
fprintf(stderr, RED"1ID Number out of range (1-511)\n"NORMAL);
exit(-1);

- 40-




syscall(__NR_setlID,iid);
printf(GREEN"IID = %d\n"NORMAL,syscall(__NR_getlID));

savefile();

}

void RIP(int modes,int argc,char **argv){
char *ip_str;

char *submask_str;
unsigned int ip;
unsigned int temp;

int count;

int num;

unsigned int submask;
unsigned int submask_2;

/[ param[0] = add, del or show
if(modes==1){
// add
if(argc<2){
fprintf(stderr,RED"Too few parameter: rip add
<ip/submask>\n"NORMAL);
exit(-1);
}

/l divide ip and submask
ip_str=strtok(argv[1],%[");
submask_str=strtok(NULL,"/*);

/I deal with IP
ip_str=strtok(ip_str,".");
ip=0;
count = -8;
while(ip_str '= NULL){
count += 8;
temp = atoi(ip_str);
if(temp > 255 || temp < 0){
fprintf(stderr,RED"Error : IP address is not correct\n"NORMAL);
exit(-1);
}
ip += (temp << count);
ip_str = strtok(NULL,".");
¥
if(count 1= 24){
fprintf(stderr, RED"Error : IP address is not correct\n"NORMAL);
exit(-1);

/I deal with submask
submask_2 = atoi(submask_str);
submask=0;
while(submask_2>0){

submask = submask*2 + 1;

-41-




submask_2--;

}
temp = syscall(__NR_getCNT);
if(temp>=30){
fprintf(stderr,RED"Error : The records are full! Please delete record
firsth\n"NORMAL);
exit(-1);
}

temp++;

syscall(__NR_setRIP,ip,temp);
syscall(__NR_setSUB,submask,temp);
syscall(__NR_setCNT,temp);

savefile();

printf(GREEN"Add the record into RIPI\n");

printf("'1P:%d.%d.%d.%d\t",ip&0XFF,ip>>8&0xFF,ip>>16&0XFF,ip>>24&0xFF);
printf(submask:%08X\n"NORMAL,reverse_submask(submask));
}else if(modes==2){
/1 del
if(argc<2){
fprintf(stderr,RED"Too few parameter: rip del <ip/submask>\n"NORMAL);
exit(-1);
}
/I divide ip and submask
ip_str=strtok(argv[1],°/");
submask_str=strtok(NULL,"/*);

/I deal with IP
ip_str=strtok(ip_str,".");
ip=0;
count = -8;
while(ip_str '= NULL){
count +=8;
temp = atoi(ip_str);
if(temp > 255 || temp < 0){
fprintf(stderr, RED"Error : IP address is not correct\n"NORMAL);
exit(-1);
}
ip += (temp << count);
ip_str = strtok(NULL,".");
¥
if(count 1= 24){
fprintf(stderr, RED"Error : IP address is not correct\n"NORMAL);
exit(-1);

/I deal with submask
submask_2 = atoi(submask_str);
submask=0;
while(submask_2>0){

submask = submask*2 + 1;

- 42-




submask_2--;
}
temp = syscall(__NR_getCNT);

//search the records
num = 1;
while(temp >= num){
if(syscall(__NR_getRIP,num)==ip &&
syscall(__NR_getSUB,num)==submask){

break;
}
num++;
}
if(num>temp){
fprintf(stderr,RED"Error : The record is not found"\n"NORMAL);
exit(-1);
}

ip=syscall(__NR_getRIP,temp);

submask=syscall(__NR_getSUB,temp);

syscall(__NR_setRIP,ip,num);

syscall(__NR_setSUB,submask,num);

temp--;

syscall(__NR_setCNT,temp);

savefile();

printf(GREEN"Succeed! Delete the.record from RIP\n"NORMAL);

}else if(modes==3){

I show

temp = syscall(__NR_getCNT);,

printf(GREEN"The records(Total:%d):\n",temp);

for(num=1; num<=temp; num++){
ip=syscall(__NR_getRIP,num);
submask=syscall(__NR_getSUB,num);

printf("1P:%d.%d.%d.%d\t",ip&0xFF,ip>>8&0XFF,ip>>16&0xFF,ip>>24&0xFF);
printf("submask:%08X\n" reverse_submask(submask));
}

printf(NORMAL);

}

void SETPN(unsigned int setpn){

if(setpn < 0 || setpn > 1){
fprintf(stderr, RED"SETPN Number out of range (0-1)\n"NORMAL);
exit(-1);

}

syscall(__NR_setSETPN,setpn);

savefile();

printf(GREEN"SETPN = %d\n"NORMAL,setpn);

- 43-




int main(int argc, char **argv)

{
char *cmds[]={"iid","rip","setpn","load","help"},
char *ripcmds[]={"add","del","show"},
int modes,ripmodes;

if(argc < 2)
fprintf(stderr,RED"%s <execute command> <parameter>\n"NORMAL, argv[0]);
return -1;

}

if(!strcasecmp(cmds[0],argv[1])){
/1 iid
modes=1,

}else if(Istrcasecmp(cmds[1],argv[1])){
I rip
modes=2;

}else if(Istrcasecmp(cmds[2],argv[1])){
I/ setpn
modes=3;

Yelse if(!strcasecmp(cmds[3],argvfi])){
/' load config

loadfile();
return O;
Yelse if(Istrcasecmp(cmds[4],argv[1])){
I help
O L1 \n");
printf("Example:\n");
printf(*\tShow 11D Number : %s iid\n",argv[0]);
printf("\tSet 11D Number : %s iid <number 1-511>\n",argv[0]);
printf(*\tAdd ip and submask : %s rip add <ip>/<submask

0-32>\n",argv[0]);

printf(*\tDelete ip and submask :  %s rip del <ip>/<submask
0-32>\n",argv[0]);

printf(*\tShow all ip and submask : %s rip show\n",argv[0]);

printf(*\tShow SETPN Number : %s setpn\n",argv[0]);
printf(*\tSet SETPN Number : %s setpn <number 0-1>\n",argv[0]);
printf(*\tLoad the setting : %s load\n",argv[0]);
O \n");
return O;
Yelse{

fprintf(stderr,RED"%s <execute command> <parameter>\n"NORMAL, argv[0]);
fprintf(stderr,RED"%s %s:Unknow\n"NORMAL, argv[0], argv[1]);

return -1;
}
switch(modes){
case 1:
if(argc <3){

- 44-




I/ show 11D
printf(BLUE"IID = %d \n"NORMAL,syscall(__NR_getlID));
return O;

}else{
11D (atoi(argv[2]));
}

break;
case 2:
if(argc <3){
fprintf(stderr,RED"%s rip [\"add <ip>/<submask 0-32>\" | \"del
<ip>/<submask 0-32>\" | \"show\"][\n"NORMAL, argv[0]);

return -1;
}
if('strcasecmp(ripcmds[0],argv[2])){
// add
ripmodes=1,
}else if(Istrcasecmp(ripcmds[1],argv[2])){
/1 del
ripmodes=2;
}else if(Istrcasecmp(ripcmds[2],argv[2])){
I/ show
ripmodes=3;
Yelse{

fprintf(stderr;RED"%s|rip [\!'add.<ip>/<submask 0-32>\" | \"del
<ip>/<submask 0-32>\" | \"showA"\n*"NORMAL, argv[0]);

fprintf(stderr,RED"%s rip %s:Unknow\n"NORMAL, argv[0],argv[2]);
return -1;

}

RIP(ripmodes,argc-2; &argvj2]);

break;

case 3:

if(argc <3){
// show SETPN
printf(BLUE"SETPN = %d \n"NORMAL,syscall(__NR_getSETPN));
return O;

Yelse{
SETPN(atoi(argv[2]));
}

break;
default:
break;

}

return O;

- 45-




Code 2 mylistener.c

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <fcntl.h>
#include <netpacket/packet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <netinet/in.h>
#include <net/ethernet.h>
#include <netinet/ether.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <linux/if_ether.h>
#include <arpa/inet.n>
#include <sys/ioctl.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
#include <signal.h>
#include <mysql/mysql.h>
#include <linux/unistd.h>

#define RED "\E[31rm\E[tm"
#define GREEN "\E[32m\E[1m"
#define YELLOW  "\E[33m\E[1m"
#define BLUE "\E[34m\E[1m"
#define NORMAL  "\E[m"

#define MAX_BUFFER 100 // max number of records
#define MAX_SECOND 60.0 // Time of life for each record

/l The option from internet without editing, only get the infomation and copy to this
structure
typedef struct Tempop {

unsigned short option:8, length:8;

unsigned char ops[6];

} Tempop;

Il The option corss Tempop structure and get the correct information to each field
typedef struct Myop {

unsigned short option:8, length:8;

unsigned short hash;

unsigned short 11D[6];

}Myop;

- 46-




// Full information for each packet
typedef struct ops {

time_t Ts,Te; // time of first packet crossed and time of last packet crossed (Same
info.)

unsigned int source_IP; // Source IP

unsigned int dest_IP; // Destination IP

unsigned short protocol; // IP Protocol

unsigned int source_PORT; // Source Port

unsigned int dest_ PORT; // Destination Port

unsigned short 11D_Num; // Number of 11Ds

Myop op;// Packet Option Information

struct ops *next,*pre; // Linking list according to time (H:earlist T:latest)

struct ops *11D_next,*I11D_pre; // Linking list according to number of I1Ds
}OPs;

/I Global variables

int RecordNum; // count number of information

OPs *IIDListH[6], *I1DListT[6]; // 11D linking list Head and Tail
OPs *TimeListH,*TimeListT; // Time linking list Head and Tail
MYSQL mysql;

char *host;

char *database;

char *user;

char *passwd,;

unsigned int 11D;

int Get_Ifacelndex(int fd, const.char*.interfaceName)

{

struct ifreq ifr;
if (interfaceName == NULL)

{
¥

memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, interfaceName);

if (ioctl(fd, SIOCGIFINDEX, &ifr) ==-1)
{

return -1;

printf("RED ioctl error\n™);
return -1;

}

return ifr.ifr_ifindex;

}

int set_Iface_promisc(int fd, int dev_id)

{
struct packet_mreq mr;
memset(&mr,0,sizeof(mr));
mr.mr_ifindex = dev _id;
mr.mr_type = PACKET_MR_PROMISC,;

-47-




if(setsockopt(fd, SOL_PACKET,
PACKET_ADD_MEMBERSHIP,&mr sizeof(mr))==-1)

{
fprintf(stderr,"GREEN set promisc failed! \n");
return -1,

}

return O;

¥

int compareBuf(OPs *CP1, OPs *CP2){
if(CP1->source_IP == CP2->source_IP && CP1->dest_IP == CP2->dest_IP)
iIf(CP1->dest PORT == CP2->dest PORT && CP1->protocol ==
CP2->protocol)
iIf(CP1->0p.11D[0] == CP2->0p.1ID[0] &&CP1->0p.1ID[1] ==
CP2->0p.1ID[1] &&CP1->0p.1ID[2] == CP2->0p.1ID[2] &&CP1->0p.I1ID[3] ==
CP2->0p.1ID[3])

return 1;

return O;
}
void usage(char *exename)
{

fprintf(stderr, RED"%s <interface>\n"NORMAL, exename);
}
void printPacket(OPs *Opbuf)
{

struct tm sts,ste;

#ifdef SunOS
memcpy(&sts, localtime(&Opbuf->Ts), sizeof(struct tm));
memcpy(&ste, localtime(&Opbuf->Te), sizeof(struct tm));
#else
localtime_r(&Opbuf->Ts, &sts);
localtime_r(&Opbuf->Te, &ste);
#endif

fprintf(stdout,"Start: %04d-%02d-%02d %02d:%02d:%02d
" sts.tm_year+1900,sts.tm_mon+1,sts.tm_mday,sts.tm_hour,sts.tm_min,sts.tm_sec);

fprintf(stdout,”End: %04d-%02d-%02d
%02d:%02d:%02d\n",ste.tm_year+1900,ste.tm_mon+1,ste.tm_mday,ste.tm_hour,ste.tm_mi
n,ste.tm_sec);

fprintf(stdout,"source IP = 0x%08x",Opbuf->source_IP);

fprintf(stdout,"(%d.%d.%d.%d)",Opbuf->source_IP>>24&0xFF,Opbuf->source_IP>>
16&0xFF,0Opbuf->source_IP>>8&0xFF,Opbuf->source_IP&0OxFF);

fprintf(stdout,” --->");

fprintf(stdout,"dest IP = 0x%08x",Opbuf->dest_IP);

fprintf(stdout," (%d.%d.%d.%d)\n",Opbuf->dest_IP>>24&0xFF,Opbuf->dest_IP>>16
&OxFF,0Opbuf->dest_IP>>8&0xFF,Opbuf->dest_IP&O0XFF);

if(Opbuf->protocol == 6)

- 48-




fprintf(stdout,"Protocol: TCP(%d) ",Opbuf->protocol);
iIf(Opbuf->protocol == 17)
fprintf(stdout,"Protocol:UDP(%d) ",0Opbuf->protocol);
fprintf(stdout,"Source Port:%d Dest Port:%d\n ",0Opbuf->source_PORT,
Opbuf->dest_ PORT);
fprintf(stdout,"Option=%d, Length=%d, Hash=%d,\n",Opbuf->op.option,
Opbuf->op.length, Opbuf->op.hash);
fprintf(stdout,” Router Number:%d -->",Opbuf->11D_Num);
fprintf(stdout,”11D1=%d ,11D2=%d,11D3=%d,
", Opbuf->op.11D[0],0pbuf->op.11D[1],0pbuf->o0p.11D[2]);
fprintf(stdout,"11D4=%d ,11D5=%d,I1D6=%d\n\n",Opbuf->o0p.11D[3],0Opbuf->op.1ID[4
],0Opbuf->o0p.11D[5]);
}

void PacketRecv()

{ - -
int i
time_t nt,nowt;
struct tm sts,ste;
OPs *tbuf;
char *query;

I/ get the time and date

time(&nt);
memcpy(&nowt,&nt,sizeof(time._t));
tbuf = TimeListH;

while(tbuf '= NULL){
if(difftime(nowt,tbuf->Ts) >MAX.SECOND)
{
#ifdef SunOS
memcpy(&sts, localtime(&tbuf->Ts), sizeof(struct tm));
memcpy(&ste, localtime(&tbuf->Te), sizeof(struct tm));
#else
localtime_r(&tbuf->Ts, &sts);
localtime_r(&tbuf->Te, &ste);
#endif

query = malloc(256*sizeof(char));

sprintf(query,"insert into
tam(Stime,Etime,SIP,DIP,Protocol,DPORT,IIDNUM,1ID1,11D2,11D3,11D4,11D5,11D6) \

value('%04d-%02d-%02d %02d:%02d:%02d','%04d-%02d-%02d
%02d:%02d:%02d',0x%08x,0x%08x,%d,%d,%d,%d,%(d, \

%d,%d,%d,%d)",sts.tm_year+1900,sts.tm_mon+1,sts.tm_mday,sts.tm_hour,sts.tm_mi
n,sts.tm_sec, \

ste.tm_year+1900,ste.tm_mon+1,ste.tm_mday,ste.tm_hour,ste.tm_min,ste.tm_sec,tbuf
->source_IP,tbuf->dest_IP,tbuf->protocol, \

- 49-




tbuf->dest_ PORT,tbuf->11D_Num,tbuf->op.11D[0],tbuf->op.11D[1],tbuf->op.I1D[2],tb
uf->op.I1D[3],tbuf->op.11D[4],tbuf->op.1ID[5]);
if(mysql_real_query(&mysql,query,strlen(query))){

if('mysql_real_connect(&mysql,host,user,passwd,database,0,NULL,0)){
fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));
return ;
}

}

/I delete the record
TimeListH = TimeListH->next;
if(TimeListH == NULL)
TimeListT = NULL;
else
TimeListH->pre = NULL;

if(tbuf->11D_pre == NULL){
/I it's head
[IDListH[tbuf->11D.sNum-1] =
IIDListH[tbuf->11D_Num-1]->I1Dhext;
if(11DListH[tbufs>HD_ Num-1] == NULL)
/I no data
[IDListT[tbuf->1ID_Num-1}:= NULL;

else
IIDListHftbuf=>ITD_Num-1] -> I1D_pre = NULL,;
Yelse{
if(tbuf->11D_next == NULL){
Il it's tail
IIDListT[tbuf->11D_Num-1] = tbuf->IID_pre;
IIDListT[tbuf->11D_Num-1]->I11D_next = NULL,;
Yelse{
/I it's middle

tbuf->11D_pre->I1D_next = tbuf->11D_next;
tbuf->11D_next->I1D_pre = tbuf->11D_pre;

}
}
RecordNum--;
free(tbuf);
}else
break;
tbuf = tbuf->next;
}
}
void recordMAX()
{

- 50-




OPs *tbuf; // options pointer

struct tm sts,ste; // structure of time
inti;

char *query;

tbuf = TimeListH;

#ifdef SunOS
memcpy(&sts, localtime(&tbuf->Ts), sizeof(struct tm));
memcpy(&ste, localtime(&tbuf->Te), sizeof(struct tm));
#else
localtime_r(&tbuf->Ts, &sts);
localtime_r(&tbuf->Te, &ste);
#endif

query = malloc(256*sizeof(char));
sprintf(query,”insert into
tam(Stime,Etime,SIP,DIP,Protocol, DPORT,IIDNUM,IID1,11D2,11D3,11D4,11D5,11D6) \
value('%04d-%02d-%02d %02d:%02d:%02d','%04d-%02d-%02d
%002d:9602d:%02d',0x%08x,0x%08x,%d,%d,%d,%d,%d, \
%d,%d,%d,%d)",sts.tm_year+1900,sts.tm_mon+1,sts.tm_mday,sts.tm_hour,sts.tm_mi
n,sts.tm_sec, \
ste.tm_year+1900,ste.tm_mon+1,ste.tm_mday,ste.tm_hour,ste.tm_min,ste.tm_sec,tbuf
->source_IP,tbuf->dest_IP,tbuf->protocol, \
tbuf->dest_ PORT,tbuf->11D_Num,tbuf->op.11D[0],tbuf->op.11D[1],tbuf->op.I1D[2],tb
uf->op.11D[3],tbuf->op.11D[4],tbuf->op.HD]5]);
if(mysql_real_query(&mysqgl,query;strientguery))){
if("mysql_real_connect(&mysql,host,user;passwd,database,0,NULL,0)){
fprintf(stderr, "Failed to-.connect to database: Error: %s\n",
mysql_error(&mysql));
return;
}

}

/I delete the record
TimeListH = TimeListH->next;
if(TimeListH == NULL)
TimeListT = NULL;
else
TimeListH->pre = NULL;

if(tbuf->11D_pre == NULL){
/I it's head
lIDListH[tbuf->11D_Num-1] = IDListH[touf->11D_Num-1]->11D_next;
if(11DListH[tbuf->11D_Num-1] == NULL)
/I no data
IIDListT[tbuf->11D_Num-1] = NULL;
else
IIDListH[tbuf->11D_Num-1] -> 11D _pre = NULL,;

-51-




Yelse{
if(tbuf->11D_next == NULL){
Il it's tail
[IDListT[tbuf->11D_Num-1] = tbuf->11D_pre;
IIDListT[tbuf->11D_Num-1]->I1D_next = NULL;
Yelse{
/I it's middle
tbuf->11D_pre->I1D_next = tbuf->11D_next;
tbuf->11D_next->11D_pre = tbuf->11D_pre;
}
}
RecordNum--;
free(tbuf);

int main(int argc, char **argv)

{
int listen_fd;
int ipak=0,maxk=0;
char buffer[256];
int frmlen;
inti;
sigset_t intmask,oldmask;
Tempop *top; // option pointer.to packet
OPs *Opbuf; // packet buffer for record
OPs *tbuf; // pointer used for linking-list
time_tt; // time
struct sockaddr_II sll;
struct ether_header *eptr; /* net/ethernet.h */
struct iphdr *ip; // for ip header
struct tcphdr *tcp; // for tcp header
struct udphdr *udp; // for udp header
struct tm sts,ste; // structure of time
struct itimerval value;

u_short ether_type;

if(argc <2)
usage(argv[0]);
return -1,

¥

listen_fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
sll.sll_family = AF_PACKET,;

sll.sll_ifindex = Get_lIfacelndex(listen_fd,argv[1]);

sll.sll_protocol = htons(ETH_P_ALL);

if(bind(listen_fd,(struct sockaddr *)(&sll),sizeof(sll))==-1)

-52-




fprintf(stderr, YELLOW"bind error:%s \n"NORMAL,strerror(errno));
goto FAIL,

}

if(set_Iface_promisc(listen_fd,sll.sll_ifindex) == -1)
fprintf(stderr,"BLUE set promisc failed '\n");
goto FAIL,

}

Il read 11D

1D = syscall(__NR_getlID);

if(argc>2)
maxk = atoi(argv[2]);

RecordNum = 0;

signal(SIGALRM, PacketRecv);
value.it_value.tv_sec = 5;
value.it_value.tv_usec = 0;
value.it_interval.tv_sec = 5;
value.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL,&value, INULL);

for(i=0;i<6;i++)
{
IIDListH[i] = NULL;
IIDListT[i] = NULL;
}
TimeListH = NULL;
TimeListT = NULL;

sigemptyset(&intmask);
sigaddset(&intmask, SIGALRM);

host = "127.0.0.1";

user="wnl";

passwd="1234";

database="wnl";

mysql_init(&mysql);

if('mysql_real_connect(&mysql,host,user,passwd,database,0,NULL,0)){
fprintf(stderr, "Failed to connect to database: Error: %s\n",

mysql_error(&mysql));

return O;

}
fprintf(stdout,"Listen %s start!"\n",argv[1]);

while(!maxk || (ipak < maxk || maxk==0))

- 53-




frmlen = recv(listen_fd,buffer,192, MSG_TRUNC); //0->flags
(MSG_PEEK,MSG_0OOB,MSG_WAITALL,MSG_TRUNC)

if(frmlen < 32)
continue;

eptr = (struct ether_header *) buffer;

ether_type = ntohs(eptr->ether_type);

if(ether_type '= ETHERTYPE_IP)
continue;

/I get the address of protocols
ip = (struct iphdr *)(buffer + sizeof(struct ethhdr));
if(ip->ihl==7)
{
top = (struct Tempop *)(buffer + sizeof(struct ethhdr) + sizeof(struct iphdr));
if(top->option 1= 27)
continue;

I* HEHHHTHHHHHEH A packet record start
HHH TR R ]
Opbuf = (OPs *) malloc(sizeof(struct ops));

/I get the time and-date
time(&t);

memcpy(&(Opbuf->Ts),&t;-Sizeof(time_t));
memcpy(&(Opbuf->Te),&t, sizeof(time_t));

I TCP
if(ip->protocol==6)
tcp = (struct tephdr *)(buffer + sizeof(struct ethhdr) + sizeof(struct
iphdr) + sizeof(struct Tempop) );
/ UDP
else if(ip->protocol==17)
udp = (struct udphdr *)(buffer + sizeof(struct ethhdr) + sizeof(struct
iphdr) + sizeof(struct Tempop) );
else
continue;

I/ source IP and destination IP

Opbuf->source_IP = *(int *)&ip->saddr;

Opbuf->source_IP = (Opbuf->source_IP>>24 & OxFF) |
(Opbuf->source_IP>>8 & 0xFFO00) | (Opbuf->source_IP<<8 & 0xFF0000) |
(Opbuf->source_IP<<24 & 0xFF000000);

Opbuf->dest_IP = *(int *)&ip->daddr;

Opbuf->dest_IP = (Opbuf->dest_IP>>24 & OxFF) | (Opbuf->dest_IP>>8 &
OxFFO0O) | (Opbuf->dest_1P<<8 & 0xFF0000) | (Opbuf->dest_IP<<24 & 0xFF000000);

/' IP protocol

- 54-




Opbuf->protocol = ip->protocol;

if(ip->protocol==6)

{
I/l TCP - source port & destination port
Opbuf->source_PORT = ntohs(tcp->source);
Opbuf->dest_ PORT = ntohs(tcp->dest);

else if(ip->protocol==17)

{
// UDP - source port & destination port
Opbuf->source_ PORT = ntohs(udp->source);
Opbuf->dest PORT = ntohs(udp->dest);

}

I/ Packet option

Opbuf->op.option = top->option;

Opbuf->op.length = top->length;

Opbuf->op.hash = (top->ops[4]&0xF) | top->ops[5];
Opbuf->op.I1D[0]= top->0ps[0] | ((top->0ps[4]&0x80)<<1);
Opbuf->op.II1D[1]= top->ops[1] | ((top->0ps[4]&0x40)<<2);
Opbuf->op.I1D[2]= top->0ps[2] | ((top->0ps[4]&0x20)<<3);
Opbuf->op.I1D[3]=top->0ps[3] | ((top->0ps[4]&0x10)<<4);
Opbuf->op.IID[4])= 0;

Opbuf->op.I1D[5]=.0;

/[ 11D number
Opbuf->11D_Num=0;
if(Opbuf->op.11D[Opbuf->11D_Num]==0)

continue;
while(Opbuf->op.I1D[Opbuf->11D_Num]!=0)
{

Opbuf->11D_Num ++;
¥

if(Opbuf->op.1ID[Opbuf->11D_Num-1]!=11D){
Opbuf->op.IID[Opbuf->11D_Num] = IID;
Opbuf->11D_Num-++;

Yelse{
if(Opbuf->1ID_Num !=1)
continue;

}

/I pointer default
Opbuf->next = NULL,;
Opbuf->pre = NULL;
Opbuf->11D_next = NULL;
Opbuf->11D_pre = NULL,;

I* HHHHHHHHHEHE A packet record end
Wt R

- 55-




sigprocmask(SIG_BLOCK,&intmask,NULL);
/I search the buffer whether the record is exist
if(11DListH[Opbuf->11D_Num-1] ==NULL)

{

I/l The Head is NULL
IIDListH[Opbuf->11D_Num-1] = Opbuf;
IIDListT[Opbuf->11D_Num-1] = Opbuf;
if(TimeListH == NULL)
{
TimeListH = Opbuf;
TimeListT = Opbuf;
Yelse{
TimeListT->next = Opbuf;
Opbuf -> pre = TimeListT;
TimeListT = Opbuf;
}

RecordNum++;

if(RecordNum > MAX_BUFFER)
{

}
IprintPacket(Opbuf);{IHIHIHI print the packet information

recordMAX();

Yelse{

/I search buffer other than head
tbuf = 1IDListH[Opbuf->11D_Num-1];
while(tbuf I=NULL)

{
if(compareBuf(tbuf,Opbuf))
break;
tbuf = tbuf->11D_next;
¥
if(tbuf '= NULL)
{

memcpy(&(tbuf->Te), &(Opbuf->Te), sizeof(time_t));
free(Opbuf);

}else{
// compare not found
IIDListT[Opbuf->11D_Num-1]->11D_next = Opbuf;
Opbuf->11D_pre = IIDListT[Opbuf->11D_Num-1];
IIDListT[Opbuf->11D_Num-1] = Opbuf;

TimeListT ->next = Opbuf;
Opbuf->pre = TimeListT,;
TimeListT = Opbuf;

RecordNum++;
if(RecordNum >MAX BUFFER)

- 56-




recordMAX();

}
IIprintPacket(Opbuf); /11111
}
}
sigprocmask(SIG_UNBLOCK,&intmask,NULL);
Yelse{
continue;
}
ipak++;
}
mysql_close(&mysql);
return O;
FAIL:
close(listen_fd);
return -1;

-57-




Code 3 myd.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <mysql/mysql.h>
#define MAX_DAY 7

int main(int argc, char **argv)
{
time_tt; // time
struct tm sts;
char host[] ="127.0.0.1";
char database[]="wnl";
char user[]="root";
char passwd[]="wnl";
char *query;
MYSQL mysql;

mysql_init(&mysql);

/I get the time and date
t = time(NULL)- MAX_DAY * 3600 *24;

#ifdef SunOS

memcpy(&sts, localtime(&t), sizeof(struct tm));
#else

localtime_r(&t, &sts);
#endif

if('mysql_real_connect(&mysql,host,user,passwd,database,0,NULL,0)){
fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));
return O,
}

query = (char *) malloc(256*sizeof(char));

sprintf(query,"delete from tam where STime<'%04d-%02d-%02d
%02d:%02d:%02d™ sts.tm_year+1900,sts.tm_mon+1,sts.tm_mday,sts.tm_hour,sts.tm_min,
sts.tm_sec);

printf("%s",query);

if(mysql_real_query(&mysql,query,strlen(query))){
fprintf(stderr, "Failed to update database: Error: %s\n", mysql_error(&mysql));
}

mysql_close(&mysql);

- 58-




return O;

-59-




Code 4 Traceback.java

import javax.swing.*;

import java.awt.*;

import java.util.*;

import java.net.*;

import java.awt.event.*;

import java.text.SimpleDateFormat;
import TBapps.*;

public class Traceback extends JFrame implements ItemListener,ActionListener

{

JPanel TBPanel;

JPanel TBPanel_Rowl = new JPanel(new FlowLayout(FlowLayout.LEFT));
JPanel TBPanel_Row?2 = new JPanel(new FlowLayout(FlowLayout.LEFT));
JPanel TBPanel_Row3 = new JPanel(new FlowLayout(FlowLayout.LEFT));

JTextField SourceText;
JTextField DestPortText;
JTextField ipprotocol Text;
JTextField Search_IP_Text;
JTextField DestText;
JTextField RouterText;
JTextField TimeText;
JTextField DateText;

JComboBox yearBox = new JComboBox();
JComboBox monthBox = new JComboBox();
JComboBox dayBox = new JComboBox();
JComboBox hourBox = new JComboBox();
JComboBox minuteBox = new JComboBox();
JComboBox secondBox = new JComboBox();
JComboBox differBox = new JComboBox();

JCheckBox time_checkbox = new JCheckBox();
JCheckBox date_checkbox = new JCheckBox();

JButton searchpathButton;
GregorianCalendar day;

// another java code
SimpleTable Stable;

Traceback()

=
addWindowL.istener(
new WindowAdapter()

- 60-




public void windowClosing(WindowEvent we)

{
¥

System.exit(0);

);

Il =% ¢+ Panel
TBPanel = new JPanel();
TBPanel.setLayout(new GridLayout(4, 1));

Il # e

SourceText = new JTextField("*", 10);
DestText = new JTextField("*", 10);
DestPortText = new JTextField("*",5);
ipprotocol Text = new JTextField("*",6);
RouterText = new JTextField("127.0.0.1", 10);
TimeText = new JTextField("*", 10);
DateText = new JTextField("*", 10);
searchpathButton = new JButton(*'Search™);

Stable = new SimpleTable();

I FVRAR T

day = new GregorianCalendar();

I
for(int i=day.get(Calendar. YEAR)-8;'i<=day.get(Calendar.YEAR); i++)
{

}
yearBox.setSelectedIndex(8);

yearBox.addltem(i);

//F‘ﬁjtzf,ﬁp TE
for(int i=1; i<=12; i++)

{

}
monthBox.setSelectedIndex(day.get(Calendar. MONTH));

monthBox.addltem(i);

IR 1
for(int i=1; i<=31; i++)

{

}
dayBox.setSelectedIndex(day.get(Calendar.DATE)-1);

dayBox.addltem(i);

IEThe o

- 61-




for(int i=0; i<=23; i++)
{

}
hourBox.setSelectedIndex(day.get(Calendar. HOUR_OF_DAY));

hourBox.addItem(i);

ISP 53
for(int i=0; i<=59; i++)
{

}
minuteBox.setSelectedIndex(day.get(Calendar. MINUTE));

minuteBox.addltem(i);

Il Fﬁjizﬁﬁp TE)
for(int i=0; i<=59; i++)
{

}
secondBox.setSelectedIndex(day.get(Calendar.SECOND));

secondBox.addlItem(i);

I T=¢1 E\ﬂj EiEA
for(int i=1; i<=60; i++)

differBox.addlItem(i);
}

I ¥4 l’“‘Eﬁ == |1 AN a
TimeText.setEditable(false);
DateText.setEditable(false);

TimeText.setText(hourBox.getSelectedltem().toString()+":"+minuteBox.getSelectedlte
m().toString()+":"+secondBox.getSelectedItem().toString());

DateText.setText(yearBox.getSelectedltem().toString()+"-"+monthBox.getSelectedltem(
).toString()+"-"+dayBox.getSelectedltem().toString());

/1™ row 1

TBPanel.add(TBPanel_Row1);
TBPanel_Row1.add(new JLabel("Source IP:"));
TBPanel_Row1.add(SourceText);
TBPanel_Row1.add(new JLabel("DestIP:"));
TBPanel_Row1.add(DestText);
TBPanel_Row1.add(new JLabel("DestPort:"));
TBPanel_Row1l.add(DestPortText);
TBPanel_Row1.add(new JLabel("IP Protocol:"));
TBPanel_Row1.add(ipprotocolText);
TBPanel_Row1.add(new JLabel("Router IP : "));

TBPanel Rowl.add(RouterText);

- 62-




Il row 2
TBPanel.add(TBPanel_Row?2);
TBPanel_Row?2.add(date_checkbox);
TBPanel_Row?2.add(new JLabel("Date : "));
TBPanel_Row2.add(DateText);
TBPanel_Row?2.add(time_checkbox);
TBPanel_Row2.add(new JLabel("Time : "));
TBPanel_Row?2.add(TimeText);

TBPanel _Row?2.add(yearBox);
TBPanel_Row2.add(new Label("="));
TBPanel_Row?2.add(monthBox);
TBPanel_Row2.add(new Label("*|™));
TBPanel_Row?2.add(dayBox);
TBPanel_Row2.add(new Label(" [ ™));
TBPanel_Rowz2.add(hourBox);
TBPanel_Rowz2.add(new Label("Eﬁ ");
TBPanel_Row?2.add(minuteBox);
TBPanel_Row2.add(new Label("7;");
TBPanel_Row2.add(secondBox);
TBPanel_Rowz2.add(new Label("#}"));

Il g row 3

TBPanel.add(TBPanel=Row3);
TBPanel_Row3.add(new Label(*Z-g1"));
TBPanel_Rows3.add(differBox);
TBPanel_Rowa3.add(new-Label(" 57 B HES]H1);

I1 T A
yearBox.addltemListener(this);
monthBox.addItemL.istener(this);
dayBox.addltemListener(this);
hourBox.addItemListener(this);
minuteBox.addltemListener(this);
secondBox.addItemL.istener(this);
differBox.addItemListener(this);

searchpathButton.addActionListener(this);

I i) ft{%i{g

getContentPane().add(BorderLayout. NORTH, TBPanel);
getContentPane().add(BorderLayout. CENTER, Stable);
getContentPane().add(BorderLayout. SOUTH, searchpathButton);

setVisible(true);
setSize(1024, 768);

-63-




public void itemStateChanged(ltemEvent ie)

{
Il 955 | [ﬁﬁﬁﬁ Hl J*’Fﬁ'
String year_str = yearBox.getSelectedItem().toString();
String month_str = monthBox.getSelectedltem().toString();
String day_str = dayBox.getSelectedltem().toString();
String hour_str = hourBox.getSelectedltem().toString();
String minute_str = minuteBox.getSelectedltem().toString();
String second_str = secondBox.getSelectedltem().toString();
String time_str = hour_str + ":" + minute_str + ™:" + second_str;
String date_str = year_str + "-"+ month_str + "-" + day_str;
TimeText.setText(time_str);
DateText.setText(date_str);
}
public void actionPerformed(ActionEvent e)
{
if (e.getSource().equals(searchpathButton))
{
/I35 search button:f¥s =
long SsIP=0;
long DdIP=0;
String[] records;
String[] records_cols;
String whereStr;
SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd
HH:mm:ss");

Calendar SCal=Calendar.getInstance(),ECal=Calendar.getInstance();
String sql="SELECT * FROM tam";

String[] siplist = (SourceText.getText()).split("[.]");
if(siplist.length==4)
SsIP = Long.parseLong(siplist[0])<<24 | Long.parseLong(siplist[1])<<16
| Long.parseLong(siplist[2])<<8 | Long.parseLong(siplist[3]);

String[] diplist = (DestText.getText()).split("[.]");
if(diplist.length==4)
DdIP = Long.parseLong(diplist[0])<<24 |
Long.parseLong(diplist[1])<<16 | Long.parseLong(diplist[2])<<8 |
Long.parseLong(diplist[3]);

whereStr ="";
/I source IP

- 64-




if('SourceText.getText().equals("*"))

if(whereStr =="")
whereStr =" where";
else
whereStr +=" and";
whereStr +=" SIP="+ Long.toString(SsIP);

}
/I dest IP
if('DestText.getText().equals("*"))
{
if(whereStr =="")
whereStr =" where";
else
whereStr +=" and";
whereStr +=" DIP=" + Long.toString(DdIP);
}
/I dest port
if('DestPortText.getText().equals("*"))
{
if(whereStr == )
whereStr="where";
else
whereStr +=" and";
whereStr +=* DPORT=",+-DestPortText.getText();
}

/I ip porotocl
if(lipprotocol Text.getText().equals("*"))

if(whereStr =="")
whereStr =" where";
else
whereStr +=" and";
whereStr += " Protocol=" + ipprotocolText.getText();

}

I/l Time
if(date_checkbox.isSelected()){
Integer differ_time =

Integer.parselnt(differBox.getSelectedltem().toString());

Integer Myear = Integer.parselnt(yearBox.getSelectedltem().toString());
Integer Mmonth =

Integer.parselnt(monthBox.getSelectedltem().toString())-1;

Integer Mday = Integer.parselnt(dayBox.getSelectedltem().toString());

Integer Mhour = Integer.parselnt(hourBox.getSelectedltem().toString());
Integer Mminute =

- 65-




Integer.parselnt(minuteBox.getSelectedltem().toString());
Integer Msecond =
Integer.parselnt(secondBox.getSelectedltem().toString());
if('time_checkbox.isSelected()){

Mhour = 0;
Mminute = 0;
Msecond = 0;

SCal.set(Myear,Mmonth,Mday,Mhour,Mminute,Msecond);
ECal.set(Myear,Mmonth,Mday,Mhour,Mminute,Msecond);

if(time_checkbox.isSelected()){
SCal.add(Calendar.MINUTE, -differ_time);
ECal.add(Calendar. MINUTE, differ_time);

Yelse{
ECal.add(Calendar. HOUR,24);
¥

if(whereStr =="")
whereStr =" where";
else
whereStr+="and";
whereStr +=:' STime<="'tformatter.format(ECal.getTime())+" and
ETime>="" + formatter.format(SCal.getTime())+"";

}

sgl += whereStr;

I &= ﬁ[ FUPVE[™ connection action

MessagePacket currPacket = null;

Integer usePort = 4862,

String recv_string;

try {
ClientThread client = new

ClientThread(InetAddress.getByName(RouterText.getText()), usePort);

client.send_message(new MessagePacket("traceback”, sql));

MessagePacket revPacket = client.receive_message();

if(revPacket.getType().equals("tracebackEop™)) {
Stable.removeAllRows();
recv_string = revPacket.toString();
records = recv_string.split("\n");
for(int i=0;i<records.length;i++){
records_cols = records[i].split("/");
Stable.myinsert(records_cols);

- 66-




}

client.close_connection();
} catch (Exception ex) {
ex.printStackTrace();
}

public static void main(String[] args)

{
¥

Traceback tb = new Traceback();

-67-




Code 5 br_forward.c

~
>(.

Forwarding decision
Linux ethernet bridge

Authors:
Lennert Buytenhek <buytenh@gnu.org>

$Id: br_forward.c,v 1.4 2001/08/14 22:05:57 davem Exp $

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

0% % 3k ok ok X X % % 3k ok X X

Change log: br_forward.c, modified by Tim Hann Huang 2009/07/06

*
-

#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/netfilter_bridge.h=
#include "br_private.h"

#include <linux/ip.h>

#include <net/ip.h>

#include <linux/unistd.h>

#include "md5.h"
#define ETHERTYPE_IP 0x0800

extern unsigned int MYID;
extern unsigned int MYRIP[30];
extern unsigned int MYSUBJ[30];
extern unsigned int MYCNT;
extern unsigned int SETPN;

/* Don't forward packets to originating port or forwarding diasabled */
static inline int should_deliver(const struct net_bridge_port *p,
const struct sk_buff *skb)

return (skb->dev != p->dev && p->state == BR_STATE_FORWARDING);

¥
static inline unsigned packet_length(const struct sk_buff *skb)
{
return skb->len - (skb->protocol == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
}

- 68-




int br_dev_queue_push_xmit(struct sk_buff *skb)

{
/* drop mtu oversized packets except gso */
if (packet_length(skb) > skb->dev->mtu && !skb_is_gso(skb))
kfree skb(skb);
else {
/* ip_refrag calls ip_fragment, doesn't copy the MAC header. */
if (nf_bridge_maybe_copy_header(skb))
kfree skb(skb);
else {
skb_push(skb, ETH_HLEN);
dev_queue_xmit(skb);
}
}
return 0;
}
int br_forward_finish(struct sk_buff *skb)
{
return NF_HOOK(PF_BRIDGE, NF_BR POST_ROUTING, skb, NULL, skb->dev,
br_dev_queue_push_xmit);
}

static void __br_deliver(const struet net-"bridge_port*to, struct sk_buff *skb)
{
skb->dev = to->dev;
NF_HOOK(PF_BRIDGE, NF_BR_LOCAL_OUT, skb, NULL, skb->dev,
br_forward_finish);

}

static void __br_forward(const struct net_bridge_port *to, struct sk_buff *skb)

{

struct net_device *indev;

// add my thing

unsigned int i,j;

struct ethhdr *ethh;

struct iphdr *iph;

unsigned char *optptr;
unsigned int hashs;

char buffer[4];

md5_t md5;

unsigned char sig[MD5_SIZE];

// *k*k

- 69-




indev = skb->dev;
skb->dev = to->dev;
skb_forward_csum(skb);

// *k%k

ethh = eth_hdr(skb);
if(ntohs(ethh->h_proto) == ETHERTYPE_IP){
iph = ip_hdr(skb);

i=1;
J=0;

while(i<=MYCNT){
if( !((_iph->daddr A MYRIP[i-1]) & MYSUBJi-1])){

=1
break;
}
i++;
}
if(j==SETPN){

if((iph->ihl==5) && (ntohs(iph->tot_len)<1488) && ((iph->protocol)==6 ||
(iph->protocol)==17)) {

ethhdr));
iphdr));

iphdr) - 8;

iph->ihl +=2;
iph->tot_len =htons(ntohs(iph->tot_len) + 8);
skb_push(skb,8);.// 8 byte

memcpy((unsigned-char-*)ethh-8, (unsigned char *)ethh, sizeof(struct
memcpy((unsigned char.*)iph-8, (unsigned char *)iph, sizeof(struct

optptr = (unsigned char *)ethh + sizeof(struct ethhdr) + sizeof(struct

iph = (struct iphdr *)((unsigned char *)iph - 8);

hashs = 0;

*optptr = 27; //option = 27,

optptr[1] = 0x08; // unit 1 byte (length)

optptr[2] = MYIID & OxFF; // 11D1:8 bits

optptr[3] = 0x0; // 11D2:8 bits

optptr[4] = 0x0; // 11D3:8 bits

optptr[5] = 0x0; // 11D4:8 bits

optptr[6] = (MY1ID & 0x100)>>1 | ((hashs & 0xF00)>>8); //

[1D1:1bit,11D2:1bit,11D3:1bit,11D4:1bit, HASH:4bits

(optptr[6]&0xF0);

buffer[0] = ((((unsigned int)(iph->saddr))>>8) & OxFF) ~ optptr[5]

buffer[1] = ((iph->daddr>>8) & OxFF) " optptr[4]  (iph->id & OXFF);
buffer[2] = ((iph->saddr>>24) & OxFF) " optptr[3] ~ (optptr[6]&0xFO);
buffer[3] = ((iph->daddr>>24) & O0xFF) ” optptr[2] » ((iph->id>>8) &

- 70-




OxFF);

md>5_init(&md5);
md5_process(&md5, buffer, 4);
md5_finish(&md5, sig);

hashs = (sig[0] ~ sig[1] ~ sig[6] ~ sig[7]) | ((sig[3] ~ sig[4] ~ sig[9] *

optptr[6] = (MYIID & 0x100)>>1 | ((hashs & 0x0F00)>>8); //
I1D1:1bit,11D2:1bit,11D3:1bit, 11D4:1bit, HASH:4bits
optptr[7] = hashs & OxFF; // HASH:8 bits

sig[10])<<8);

ip_send_check(iph);
Yelse{
if(iph->ihl1==7){
optptr = (unsigned char *)iph + sizeof(struct iphdr);
if(*optptr == 27){

buffer[0] = ((((unsigned int)(iph->saddr))>>8) & OxFF)
optptr[5] ” (optptr[6]&0xFO0);

buffer[1] = ((iph->daddr>>8) & OxFF) ™ optptr[4] " (iph->id
& OXFF);

bufferf2] = ((iph->saddr>>24) & 0xFF) ~ optptr[3] »
(optptr[6]&0xF0);

buffer[3] = ((iph->daddr>>24) & 0xFF) " optptr[2] »
((iph->id>>8) & OxFF);

md5- init(&md5),
md5_process(&md>S,; buffer, 4);
md5_finish(&mad>, sig);

hashs = (sig[0] ~ sig[1] " sig[6] ~ sig[7]) | ((sig[3] " sig[4] *
sig[9] " sig[10])<<8);

if((hashs&Ox0FFF) = (((optptr[6]&0x0F)<<8)|optptr[7])){
optptr[0] = 0;
}else{
if(optptr[3]==0 && (optptr[6]&0x40)==0){
optptr[3]=MY1ID & OxFF;
optptr[6]=optptr[6] | (MYIID & 0x100)>>2);
}else if(optptr[4]==0 && (optptr[6]&0x20)==0){
optptr[4]=MY1ID & OxFF;
optptr[6]=optptr[6] | (MYIID & 0x100)>>3);
}else if(optptr[5]==0 && (optptr[6]&0x10)==0){
optptr[5]=MY1ID & OxFF;
optptr[6]=optptr[6] | (MYIID & 0x100)>>4);
}else{
optptr[4]=optptr[5];
optptr[5]=MY1ID & OxFF;
optptr[6]=(optptr[6] & OXCF) |

-71-




((optptr[6]&0x10)<<1) | (MY1ID&0x100)>>4);

¥
ip_send_check(iph);

¥
Yelse{
if(iph->ihl==7 && ((iph->protocol)==6 || (iph->protocol)==17)) {
optptr = (unsigned char *)iph + sizeof(struct iphdr);
if(*optptr == 27) {
iph->ihl -= 2;
iph->tot_len = htons(ntohs(iph->tot_len) - 8);

memcpy((unsigned char *)iph+20,(unsigned char *)iph+12,8);
memcpy((unsigned char *)iph+12,(unsigned char *)iph+4,8);
memcpy((unsigned char *)iph+8,(unsigned char *)iph,4);
memcpy((unsigned char *)ethh+14,(unsigned char *)ethh+6,8);
memcpy((unsigned char *)ethh+8,(unsigned char *)ethh,6);
skb_pull(skb,8);

iph = (struct iphdr *)((unsigned char *)iph +8);
ip_send_check(iph);

}
}
/! end of add

NF_HOOK(PF_BRIDGE, NF_BR_FORWARD, skb, indev, skb->dev,
br_forward_finish);

}

/* called with rcu_read_lock */
void br_deliver(const struct net_bridge_port *to, struct sk_buff *skb)
{
if (should_deliver(to, skb)) {
__br_deliver(to, skb);
return;

}

kfree_skb(skb);
¥

/* called with rcu_read_lock */
void br_forward(const struct net_bridge_port *to, struct sk_buff *skb)
{
if (should_deliver(to, skb)) {
__br_forward(to, skb);
return;

-72-




}

kfree_skb(skb);
}

/* called under bridge lock */
static void br_flood(struct net_bridge *br, struct sk_buff *skb,
void (*__packet_hook)(const struct net_bridge_port *p,
struct sk_buff *skb))

struct net_bridge_port *p;
struct net_bridge_port *prev;

prev = NULL;

list_for_each_entry_rcu(p, &br->port_list, list) {
if (should_deliver(p, skb)) {
if (prev != NULL) {
struct sk_buff *skb2;

if ((skb2 = skb_clone(skb, GFP_ATOMIC)) == NULL) {
br->statistics.tx,.dropped++;
kfree_skb(skb);
return;

}

__packet_hook(prev;-skb2);
¥

prev =p;

}

if (prev '= NULL) {
__packet_hook(prev, skb);
return;

¥
kfree_skb(skb);

/* called with rcu_read_lock */
void br_flood_deliver(struct net_bridge *br, struct sk_buff *skb)

br_flood(br, skb, _br_deliver);
¥

/* called under bridge lock */
void br_flood forward(struct net_bridge *br, struct sk_buff *skb)

-73-




br_flood(br, skb, __br_forward);

- 74-




Appendix B. Setting Procedures of an IPM Router

Here is the setting of an IPM router. The following description is the steps of installing
and controlling an IPM router.

At first, we download the Ubuntu 8.04 LTS I1SO image and install to a computer. The
guide will teach us, step-by-step, to finish the installation. We change Linux kernel to our
modified version so that we can use our commands to revise variables inside the kernel.

We open command window to install packets which we need from Internet. Figure 28
depicts the installation of packets from Internet. After the installation of these commands, we

already have bridge modules, a MySQL database and java environment.

r rooti@wnl=PCa~ E@W
fe5= (E) #WEE(E) (M) HiWR(I) T R(B) REI(H)
root@wn |-PCL:~f apt-get install g+ bridge—uti ls mysgl-server-5.0 Iibrn,,fsqlclientz
15-derv phpmeadmin libmesgl-java sun—jawab- jdk
BREMEER... T
TEREMfRT BT -
Reading state information... e/
Fhridge-uti lsg SEEZBFEET .
Frysql-server-5.00 2 EEFIEET .«
FlibmsglclientiS—devy ESBFFEET -
Fphpmyadming SEFEHEET .
Flibmegl-java) EEEEFHIEET .
Psun—javab-jok gy LEZEFEET .
TAPLF] ESFAFEEERE
g+H—4.2 |ibstdcHE-4.2-dav
M58 (Suggested) MEH:
gH—rultilib gH=a.2-rultilib goc—d.2-doc |ibstdc+6-4.2-dbg
litns tddo+H5-4. 2-doc
TR F] EEFAFEETE
g+ gH—4. 2 |ibstdc+E-9.2—dev
B 0 BEMS. HER 3 EEMS, B o BEMH, BRAERH 0 @AEH.
EETE 297ke MEX.
2fter this cperaticon, 15.0MB of additional disk space will ke used.
EEHTEY 24 [v] 8, T &

Figure 28 Installation of packets from Internet
The next step is setting the configuration of the database. We add an administrator, a
database name and a table into the database. Figure 29 depicts the table in the database. We

can see the setting of each fields and types of them.

-75-



270,01/ Tocalnosty wil y tam | pPHpMyAdmin 211> 3d e Tun =) Lo (=]

fese (F) #wEE (E) &R (v) E* () &FE (B) IR (1) &7 (H)
- - 6 D) [F_w, http://127.0.0.1/phpm; -] [- -.1-}]
EEFEERNHEs - Lo Smart Bookmarks = e Getting Started e
phpliyAdmin & FHE: tam e
ERE EEHE pso. R 1HN EeE
@ @ kA SSEH FEY ?@!E
s i e £ EH n & B
lwnl (1) :] . R e
1
canl 412 [] STime datetime & ]
= tam ] ETime  datetime =
] SIP int{10) UISISNED 3T
] DIP int {10 LREIED <5
] Protocol mediumint(2) AlLian) 2g
] DPORT  mediumint(s} UNSIENED =T
] IDNUM  mediumint(s) R
] HD1 mediumint (2] dh=rion| o
] IDz mediumint £S5 ) HISIENED 3T
] HD3 mediumint (2] dh=rion| o
] D4 mediumint £S5 ) HISIGNED 3T =
| | Dl
TER

Figure 29 The table “tam” in the database “wnl”
The following step is the setup of changing a PC into a bridge. We install the bridge-utils
packets for the modules of bridge. We still need to start it up so that it could work for a PC.
Figure 30 depicts how to add a bridge name “br0” and add interface into the bridge. The

bridge will start after the command “ifconfig br0 up”.

-76-



i
FootEwWnicPETE=

=E )

1&3% (F) imEE(E) BRT(Vv) HIREE(I) oR(B) REN(H)

root@wn |-PC1: -8 brot| addibr bro
root@an =P~ brotl addif bro etho
root@wn |—PCL:~8 brot!| addif bro ethl
root@wn | —PCL:~# brot | show

root@wn [-PC1:i~# ifconfig br0 up

root@n | -PCL:i~4 ifconfig bro

bro Link encap:Ethernet Hvaddr 00:1f:dD:87:34:2c
inetE addr: feB0::21f :d0ff:feB¥:3d2c /64 Scope:Link
LP BROADCAST RULMMIMNG MLLTICAST MU 1500 Metricil
R packets:0 errors:0 dropped:0 cverruns:0 frame:0
Tx packets:S errors:0 dropped:0 cverruns:0 carrier:0
collisions:0 trguelslen:O
R bytes:i0 (0.0 B) T« bytes:398 (398.0 B)

reot@nl-PC1:~4 |

bridge nare bridge id S5TF enabled interfaces
kro 2000, 001fd0g73de.: gle! etho
ethl

[»]

[4]

Figure 30 Commands for bridge setup

We have to decide the 11D of the PC. The HD-value will modify by the program written

by us. We add network rule for smarking packets. The control is shown in Figure 31. We set

I1D into 16. Network rules are set'to the-kernel.-The packets through these two networks will

be marked.

FOOTEWTI SRR

i)

f@k(F) iEE(E) SFr (V) SIREE(T) sR(B) XAEN(H)
roct@an-PCL: -4 L fmpcset.o did 16

roct@an|-PC1: -4 L /rposet.o rip add 192,168, 1.0/24
roct@an|-PC1: -4 L /rposet.o rip add 192.168.2.0/24

root@n [-PCli# J/rposet.o rip show

root@n [-PC1i-# . /rpcset.o setpn O

# 1

Foot @ | —PC

&

R

Y

[4]

Figure 31 The setting of network rules

We have to execute sniffer for listening to the packets with marking information. The

-77-



sniffers are executed by the commands shown in Figure 32.

= root@wnl-PC1: ~

fe&s=(F) #gE(E) Mr(V) Himtd(I) S E(B) REn(H)

root@an | -PCL:~4 . Ayl Lo ethi
Listen ethd start!!|

EENEY

-

= root@wnl-PC1: ~

e (E) #WEE(E) ATV HimtR(I) o H(B) KEN(H)

root@en [-PCL 8 L Amyvloo ethl
Listen ethl start!!

Figure 32 Sniffer for éach interface

The last step is opening the-service for traceback: We execute a program for listening to

of packets. Figure 33 depicts that server program-is:executed by java.

the port 4862. Therefore, PC would response the result of searching the database to the source

f&3F(E) #mEE(E) BRT (V) HREE(I) = R(B) RAEN(H)

Foot@en |-PC1: ~/Desk top/Tracebackt java MPCS|de
Server starting on localhost/127.0.0.1:4362

J—
Y

Figure 33 Server on the IPM router

An IPM router is complete after the setting and installation. We could put it into the

network which we want to mark packets.

-78-



