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ANALYTIC SOLUTIONS FOR SOIL-STRUCTURE 
INTERACTION IN LAYERED MEDIA 

GIN-SHOW LIOU* 
Department of Civil Engineering, National Chiuo-Tung University, Hsin-Chu, Tuiwun 

SUMMARY 

The total system studied in this paper is a layered soil stratum with a rigid bedrock and a cylindrical cavity on the surface. 
Analytic solutions for the layered medium with prescribed harmonic displacement time history on the surface of the 
cylindrical cavity are presented. The whole soil domain is divided into interior and exterior domains. The interior domain 
is the projection of the cylindrical cavity down to the rigid bedrock, whereas the exterior domain is then the soil medium 
complement to the interior domain. The displacement and stress fields in both domains are expanded as an infinite series 
of Fourier components with respect to the azimuth. For each Fourier component in the infinite series, the solutions for 
both domains are found independently by solving the general differential equations of wave propagation satisfying the 
boundary conditions of the top surface and the lower rigid boundary. Displacement and stress continuity conditions are 
then imposed on the vertical interface between the two domains using the formulation of a weighted residual. For the 
soil-structure interaction problem, the impedance matrix at the interface between the structure and the soil medium can 
be easily generated using the analytic solutions, which can then be combined with the finite element model of the structure. 
A simple example is presented to demonstrate the effectiveness of the procedure presented. 

1. INTRODUCTION 

The substructure technique is often used in seismic analyses involving soil-structure interactions. In such an 
application, the surrounding soil medium is represented by an impedance matrix, which can be easily 
combined into the total structural stiffness matrix, at the contact interface with the structure. Many different 
methods with different specific assumptions can be used to  calculate the impedance matrix. In most cases, it is 
necessary to rely upon the finite element approach to  model the soil in the vicinity of the soil-structure 
interface.’. However, the finite element approach is expensive and sometimes ineffective, especially for 
general three dimensional cases. Therefore, much effort has been devoted to minimizing the finite element soil 
region. 

To a certain extent, the boundary element method can serve the purpose of replacing the finite element 
approach in the soil * The conventional boundary element method uses the formulation of a 
weighted residual to  minimize the error caused by the discrepancy between the Green’s function and the finite 
element solution at  the interface.’ To use the Green’s function, a singularity problem will arise when the 
source point coincides with the observation point. To avoid this situation, one can choose a non-coincident 
observation point or use an analytic integration scheme. However, the complexity in the computation still 
exists for the general 3-D case. The analytic solutions presented in this paper can be employed in the boundary 
element method without the use of Green’s functions. 

Waas6 and Kause17 developed a semi-discrete analytic method to model the far-field with homogeneous 
boundary conditions for two dimensional and axisymmetric problems. This semi-discrete analytic model is 
then combined with the finite element model of the near-field to  solve the soil-structure interaction problems 
in layered media. Tassoulas’ extended this method to calculate the semi-discrete analytic solutions for the 
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near-field with rigid foundation. Tzong and Penzien’ developed a boundary solution method to solve a 
similar problem. The major difference between the two methods is that Tzong’s method uses a linear 
combination of the analytic solutions for the far-field while Waas’ method discretizes the far-field by layer 
elements. Therefore, Tzong’s method requires complex root finding of transcendental equations, while Waas’ 
method solves an eigenvalue problem. 

The research reported herein deals with the problem of soil-structure interaction in a layered medium 
having a rigid lower boundary. The total system shown in Figure 1 is divided into three domains: exterior and 
interior soil domains, and structural domain. Owing to the nature of the boundary conditions, the analytic 
solution for the interior domain is the combination of a homogeneous solution and a particular solution. The 
exterior domain is described by a homogeneous solution only. The homogeneous solution satisfies the 
boundary conditions of the rigid lower boundary and no prescribed excitation on the top surface, while the 
particular solution is directly determined from the prescribed excitation at the top surface of the interior 
domain. 

Assuming harmonic displacement (or stress) time history is prescribed on the surface of the cylindrical 
cavity, the analytic solutions for both the exterior and the interior soil domains are generated independently. 
Then, displacement and stress continuities are imposed on the vertical interface between the exterior and the 
interior domains to obtain the participation factors of the homogeneous solutions. For the soil-structure 
interaction problem, the analytic solutions can be used to generate the impedance matrix at the surface of the 
cylindrical cavity by employing the formulation of a weighted residual to minimize the discrepancy between 
the analytic solution of the soil domain and the finite element solution of the structure. 

To obtain the homogeneous solutions, one has to find the complex roots of the transcendental equations 
due to the homogeneous boundary conditions. A newly developed complex root searching scheme is 
proposed. 

A simple example of a rigid massless circular plate resting on a single layer stratum and subjected to 
torsional and vertical motions is used to illustrate the procedure presented. 
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2. ANALYTIC SOLUTIONS FOR LAYERED MEDIA WITH CYLINDRICAL CAVITY 

The total system is shown in Figure 1. Let ubl and ubz in cylindrical coordinates be the harmonic displacement 
excitations on the wall and the bottom of the cylindrical cavity respectively (Figure 2).* One can express them 
in terms of Fourier components with respect to the azimuth as follows: 

669 

and 

-sin nd 
Gl ( z )  { cos 

where a;, ui and G: are the displacement amplitudes of the nth Fourier component in the r, z and tl directions 
respectively. From superposition, i t  is sufficient to describe the solution procedure by considering only a 
particular Fourier displacement component in equations (1)  and (2). 

The general equations of wave propagation with harmonic excitations can be expressed in cylindrical 
coordinates as follows: 

2 dA 2 G d w  awe --w PU, =(A+ 2G) --- -+ 2G ~ 

ar r atl d Z  

dA 2Gd(rw0) 2 G d w ,  
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where j. and G are LamC's constants, p is the mass density, w is the frequency, 

1 a(ru,) 1 due du, 
A=--  +--+- r ar r dd & 

is the dilatation, and 

and 

are the rotations. 

(3) 

* For convenience, the harmonic time variation eio' has been omitted in the following derivation. 
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Figure 2. Layered soil domain 

Referring to Figure 2, the solutions ofequation (3) for the nth Fourier component must satisfy the following 
boundary conditions: 

1. 
2. 
3. 
4. 

5. 

Free surface condition: the tractions at z = 0 and r 2 a, must be equal to zero. 
Rigid base condition: the displacements at z = h must be equal to zero. 
Radiation condition: both displacements and stresses must be equal to zero when r-m. 
Displacement boundary on the wall of the cavity: the displacements at r = a, and 0 < z < d must be equal 
to U g l  in equation (1). 
Displacement boundary on the bottom of the cavity: the displacements at z = d and 0 < r  < a, must be 
equal to Ug2 in equation (2) .  

For convenience, the superscript n in equations (1) and (2) and in the boundary conditions (4) and (5)  are 
dropped in the formulations that follow. 

To solve equation (3) satisfying the boundary conditions (1H5), one can divide the soil domain into the 
exterior and the interior domains as shown in Figure 2. The solution de) =(up), u:), ur))T of equation (3) for the 
exterior domain now should satisfy the boundary conditions (l), (2), (3) and (4) and the condition of 
displacement continuity at the vertical interface with the interior domain. The condition (4) and the condition 
of displacement continuity can be written as 

The solution di) = (u?, u:), u I ; I ) ) ~  of equation (3) for the interior domain should satisfy the boundary conditions 
( 2 )  and (5 )  and the condition of stress continuity at the vertical interface. The condition of stress continuity can 
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be written as 

t(i)=t(e) r=ao  and d d z d h  

67 1 

( 5 )  

2, l .  Solutions for exterior domain 
The exterior domain is shown in Figure 3(a). For the nth Fourier component, Sezawa" has developed a 

procedure to separate the dilatational and the rotational waves in equation (3) and used the technique of the 
separation of variables to obtain the general solution of equation (3) for the half-space medium. Tzong and 
Penzien' extended this solution to the layered medium and described the stress and the displacement fields in 
a layer in terms of the displacements and the tractions on the upper boundary of the layer. By imposing the 
displacement and the stress continuities between two layers consecutively from the top layer to the bottom 
layer, one obtains 

Yge)=Hamam-l . .  . alH-lYg)=HT(e)H-lY(e) 0 (6)  

where Y$)=(@),  ti:), f:), r?:, tit), ft;): is the displacement-stress vector on the mth horizontal interface in 
Figure 3(a), H is the Hankel function matrix and the 8;s are the transfer matrices given by equations (A4), 
(Al), (A2) and (A3) in the Appendix. Using equations (AlHA3) for the matrice aj's, one can express matrix T(e) 
in the following form: 

From the bounndary conditions of the free surface and the rigid lower boundary, equation (6) gives the 
transcendental equations 

t11t22--t12t21=0 

rHortzonta1 Interface 

I 
' I  

n-1 

n n 

4.6 /c /A 
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for the wave numbers representing Rayleigh modes, and 

t,, =o  (9) 

for the wave numbers representing Love modes. For each wave number k which is a root of equation (8) or (9), 
the tractions at depth z on the vertical interface between the exterior and the interior domains can be 
expressed in terms of the displacement-stress vector on the free surface as follows: 

t~)(z)=(H,F,+H2F2)e(z-hj-,)Ej'aj-,  . . . a,H-'  Y g )  (10) 

where tP)(z) =(a:), T:), ~ ! e g ) ) ~ ( ~ = ~ ~  in the jth layer, and the matrices H,, H,, F,e(z - h j -  ,)E? and F2e(z - h j -  ,) 
E j  are given by equations (ASHA8) in the Appendix. 

Substituting the root of equation (8) into equation (6) and making use of the free surface and the lower rigid 
boundary conditions, one can easily show that H-'Y$) in equations (6) and (10) can be written as 

H - '  Y g ) = ( l ,  ti, O,O, 0, O)Tct{e' ( 11 )  

for the ith Rayleigh mode, in which ti= - t ,  ,/t,, = -t2,/t22 and ale) is the unknown modal participation 
factor. Similarly, substituting the root of equation (9) into equation (6), one obtains 

H-'Yg'=(O, O,O, 0, 1, O)Tcty) (12) 
for thejth Love mode, in which ay) is the unknown modal participation factor. Although equations (8) and (9) 
have an infinite number of roots, the displacement and the stress fields in the exterior domain can be 
approximated adequately by only a few lower modes. The number of modes needed depends upon the desired 
accuracy. 

After the number of modes to approximate the displacement and the stress fields in the exterior domain is 
determined, the displacement and the stress vectors on the vertical interface (vertical surface S ,  + S 3  in 
Figure 3(a)) can be expressed by the combination of these modes with unknown participation factors as 
follows: 

where N(')(z) and G(')(z) are the matrices of modal displacements and stresses respectively, and a(') is the vector 
of unknown modal participation factors in equations (11) and (12). 

2.2. Solutions for interior domain 
The interior domain is shown in Figure 3(b). Since the solution for the interior domain has to satisfy the 

non-homogeneous boundary condition (5 ) ,  the solution is the combination of the homogeneous and the 
particular solutions: i.e. 

(14) u(i) = u(i) h +,a' 
The particular solution u!) satisfies the boundary conditions (2) and (9, whereas the homogeneous solution 
up) satisfies the boundary condition (2) and 

u(i)l ,, s = d = O  O,<r,<a, (15) 

2.2.1. Homogeneous solution. To obtain the homogeneous solution, one can follow the procedure 
described in the preceding section. As explained for equation (6), a similar equation can be obtained by 
applying the displacement and the stress continuities between two layers consecutively from the top layer to 
the bottom layer. The equation is 

(16) 
where Y:)=(@), @), f?;, c?;!, i$), Tgl): is the displacement-stress vector on the nth horizontal interface in 
Figure 3(b), matrix T(') is similar to T(') in equation (7) and matrix J is similar to H in equation (A4) in the 

Y:)=Ja,a,-, . . . a,J-'Y$)= JT(i'J-1 y$) 
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Appendix with the Hankel function in H replaced by the Bessel function. Because of equation (15) and the 
rigid lower boundary, equation (16) gives the following transcendental equations: 

(17) 

t$b = 0 (18) 

t(i) t(i) - $0 t(i) - 0 
1 3  24 14 23- 

for the wave numbers representing Rayleigh modes, and 

for the wave numbers representing Love modes, where ti:) is the element ij in the matrix T"). Similarly, for each 
root of equations (17) and (18), the traction ty)(z) at depth z on the vertical interface can be expressed as 

t~~(z )=(J ,F l+J ,F , ) e (z -h j~ , )E~~ 'a j~ ,  . . . alJ- '  YCi) 0 (19) 
where the matrices J1, J, are similar to H,, H, in equations (A7) and (A8) in the Appendix with the Hankel 
function in H, and H, replaced by the Bessel function, and Fle(z- h,- are shown 
in equation (A5) and (A6) in the Appendix. As explained in the derivations of equations (1 1) and (12), one can 
substitute the conditions of equation (15) and the rigid lower boundary into equation (16) to obtain J-'  Yg) 
for each root of equations (17) and (18). Therefore, J- '  Yg) in equations (16) and (19) is 

(20) 

and F,e(z- h j -  

J - Y 8) = (0, 0, 1, qi, 0, O)Ta{i) 

and 

J-  Y g) = (0, 0, 0, 0, 0, l)Tay) (21) 
for the ith Rayleigh mode and the jth Love mode respectively, where a?) and a:) are the unknown modal 
participation factors, and 

Similar to the solution for the exterior domain, the displacement and stress vectors on the upper boundary 
and the vertical interface, S 2  and S 3  in Figure 3(b), can be approximated by a finite number of lower modes 
such that 
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2.2.2. Particular solution. Since the particular solution must satisfy the non-homogeneous boundary 
condition (5),  a special technique is developed to impose the non-homogeneous boundary condition on the 
general solution of equation (3) for the interior domain. Referring to Figure 3(b) and considering the first top 
layer, the general solution of equation (3) for the nth Fourier component in the interior domain can be 
obtained using the procedure reported by Sezawa" to separate the dilatational and the rotational waves in 
equation (3), as briefly discussed in Section 2.1. The general solution is 

r 1 

or 

n 
r k k 0 0 -v' V' 

- v  v 0 0 k k]eA 
0 0 1 1  0 0 

Jb(kr) 0 -J,(kr) 

= 0 kJ,(kr) 0 

n 
-J,(kr) 0 Jb(kr) 
r 

u = J,KeA 

where Ji(kr)=d( J,(kr))/&, e=diag(e-V(z-d) ev(2-d) e-V'(z-d) eV'(2-d) ,-V'(Z-d) ev ' (Z-d)  ), v = , / m j ,  
v ' = J m ,  A=(A,, A,, B,, B,, C,, C2)T are unknown coefficients determined from the boundary 
conditions, and cp and c, are the compressional and shear wave velocities respectively. One can obtain the 
displacements at the upper boundary by substituting z=d  into equation (24); i.e. 

UI, = = J,KA (25) 
In the right-hand side, one can see that only J, is a function of I and can be decomposed, using the technique of 
expressing a matrix in terms of its eigenvectors and eigenvalues, as follows: 

0 
1 0 1 -kJ,+,(kr) 0 

J,=[ 0 1 O ] [  0 0 
- 1  0 1 

or 

J,=SAS-' 

in which matrix S is formed by the orthogonal eigenvectors of J, and A is the diagonal eigenvalue matrix. Let 
D=KA=(d,, d,, d3)T in equation (25) be expressed in terms of S; i.e. 

or 

D = SD' 
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Substituting equations (26) and (27) into equation (25), one obtains 

uJ, = d  = SAD (28) 
Similarly, the prescribed boundary displacements tibz at the bottom of the cavity [boundary condition (S)] can 
also be written in terms of S; i.e. 

or 

ti*, = Szib, 

Comparing equation (29) with equation (28) and enforcing the boundary condition (5),  one can conclude 
that each element in Gb, should be expanded as a series of Bessel functions in the interval (0, a,) in which a, is 
the radius of the cavity; i.e. 

where the kil)’s, ky) ’s  and kj3)’s are the roots of J , +  (kn,) =0, J,(kn,) =0, and J ,  - (ka,) = 0 respectively, for i,j, 
I =  1, 2, , . . , 00, and choosing k6’)=0.5kf1) 1 9  k(’)=0.5k12) 0 and kL3)=0*5k\3) in order to satisfy the boundary 
condition at r = a, and z = d.* The Bessel functions in equations (30), (3 1) or (32), except the first term, are 
orthogonal to each other with respect to the weighting function w(r)=r in the interval (0, a,). The fll’)’s, e l ’ s  
and f i 3 ) ’ s  can be determined from the orthogonal property as follows: 

* This condition may not be necessary to be satisfied. However, this treatment can reduce the number of terms needed to approximate 
the boundary condition. 
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J , -  (kj3)r) dr -/3b3)kb3) rJ ,  - (kb3)r) J , -  (kj3)r) dr 
I =  1,2, .  . . , 00 (35a) c jr fir2 G 2  

pj3) = 

ki3) r J i -  l ( k { 3 ) r )  dr 
0 

The terms - k:” J , ,  (k!l)r), ky ’  J,(ky)r) and k j 3 ) J n -  (kj3)r)  in equations (30H32) are the eigenvalues of the 
matrix J, in equation (26). Therefore, the prescribed displacement Ubz [equations (29H32)] can be expanded 

where Jf, Ji  and Jf, for mode i , j  and I respectively are defined in equations (24) or (26). In equation (36), the 
pi1%, #)’s and Bj3)’s are defined as the modal participation factors with respect to the wave number k$’)’s, 
ki2)’s and kj3)’s respectively. They are determined from the prescribed displacements tib2 given in equations 

The preceding derivations have shown that the arbitary presribed displacements on the upper boundary 
can be decomposed into three separate series of Bessel function matrices [equation (36)]. Each mode in the 
series satisfies the general solution [equation (24)] of equation (3) on the upper boundary. Similar to the 
homogeneous solutions, the displacement and the stress fields given by the particular solutions can also be 
expressed in terms of the displacements and the stresses on the upper boundary of the interior domain as 
shown in equations (16) and (19). For each mode in the series shown in equation (36), one can apply the 
displacement and the stress continuities on the horizontal interfaces consecutively down to the lower rigid 
boundary as shown in equation (16). By making use of equation (16) and introducing the condition of rigid 
lower boundary, the corresponding traction vector on the upper boundary is then 

(33H35). 

where t:;) is the element ij in the matrix T“’ in equation (161, and Ujb2 is the displacement vector on the upper 
boundary for the j t h  mode of the particular solutions in equatiom(36). One should note that Ji-l Ujb2 = ( I ,  0, 
- l)Tpjl), (0, I ,  O)’@) or (1, 0, 1)Tp:3). 

After obtaining the stress vector on the upper boundary for each mode in equation (36), the displacement 
and stress fields given by the particular solutions in the interior: domain can be expressed in terms of the 
displacement-stress vector at the upper boundary of the interior domain as shown in equations (16) and (19). 
The vector J -  Yg) in equations (16) and (19) is the combination of the vectors Ji- t iZ and Ji- ’ Ujbz in 
equation (37) for the jth mode of the particular solution. Therefore, the displacement and stress vectors on the 
upper boundary and the vertical interface, S, and S ,  in Figure 3(b), can be approximated by a finite number of 
lower modes as 
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and 
u(i) 

p,s3 (4 = "d'lS3 (z)B 

t;!s,(z)= Gb'!,,(Z)B 
where vector /? is the vector of participation factors in equation (36). 
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(384 

2.3. Solutions for combined soil domain 
Once the homogeneous and the particular solutions have been found, the modal participation factors in 

equations (13), (23) and (23a) can be obtained by imposing the displacement and the stress continuity 
conditions of equations (4) and (5). Although the exact solutions for the interior and the exterior domains are 
given by infinite series, only a finite number of terms are needed to give a good approximation. The number of 
terms required depends on the desired accuracy. To enforce the conditions in equations (4) and (5),  the 
weighted residual procedure is followed. 

Considering the exterior domain as shown in Figure 3(a), the displacements and the tractions on the 
vertical interface S ,  +S3 can be found in equation (13). The prescribed displacements on S ,  +S, can be 
obtained using the corresponding component in equation ( 1 )  for S ,  and equations (23a), (38a) for S, .  Then, the 
displacement continuity condition in equation (4) is imposed in the form of the variational principle 

htT(u -ti) ds = 0 in which U is the prescribed displacement vector. This leads to ss, +s3 

L 

K e i = J  G~" ' (~)N~!~~(z)dz  
SO 

r 
Vl = J G(e)T ( ~ ) N g ! ~ ~ ( z )  dz 

s3 

For the interior domain shown in Figure 3(b), the displacements and the tractions on the interface S3 can be 
obtained using equations (14), (23a) and (38a). Similarly, imposing the stress continuity condition in equation 
( 5 )  for which the prescribed traction vector t(') on S, can be found in equation (13), one can use the form of 

hu'(t - t)  ds = O  with = 0. This gives 
IS, 

K i i ~ ( i ) - K i e a ( e ) =  - v 2 B (40) 

where 

K i i = l  N~!~3(z)GI;'!s3(z)dz 

K i e = j  N','!,',(z)G(''(z)dz=K~, 

V ,  = 1 Ng!:, (z) Gb'!s3 (z) ds 

s3 

s3 

s3 

Combining equations (39) with (40), one obtains 
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or 

K a =  vfi+ vb 
Therefore, the unknown modal participation factors of the homogeneous solutions in the exterior and the 
interior domains can be calculated as follows: 

a = K - ' ( V B +  v b )  (42) 
Then the displacements and the stresses at any arbitary location in the soil domain or on the boundary can be 
calculated. Consequently the problem with arbitary prescribed displacements on the surface of the cylindrical 
cavity has been solved. 

3. ROOT SEARCHING SCHEME FOR TRANSCENDENTAL EQUATIONS 

Equations (8), (9), (17) and (18) have an infinite number of roots on the complex plane. However, only the roots 
in a specific region on the complex plane (Figure4) are needed for engineering purposes without losing 
accuracy. The conventional complex root searching methods (cg. Newton's and Muller's method") often 
break down owing to the complexity of the transcendental functions and the lack of a good initial guess. 
Therefore, a newly developed root searching scheme is proposed. 

Let f(z) be the transcendental function 

f(4 = +, Y) + iu(x, Y) (43) 

where z=x+iy is a complex variable and u(x,  y) and u(x, y) are the real and the imaginary parts off(z) 
respectively. The scheme is to find the approximate z such thatf(z)=O. 

To find all the approximate root z's, one needs to divide the region into the mesh shown in Figure 4 and 
calculate the functionf(z) at all the nodes. Assuming each grid in the mesh is small enough such that at most 
one root is located inside the grid, then one can check all the grids one by one as follows. 

Figure 5 shows typical grid patterns. If any two function values among the function values at the four 
corners of the grid have different signs both in the real and the imaginary parts; i.e. 

uiuj<O and uiuj<O, l < i , j < 4  and i # j  (44) 
then one can use the Falsi or Muller methods" to locate the points z5, z6, z, and zg, as shown in Figures S(a) 

Y 

Figure 4. Mesh of the region - o < x b a  and b < y < O  on complex plane 
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\7 

Figure 5. Grids without and with a root inside 

and (b), at which 

These four points can form two straight lines as shown in Figures 5(a) and (b). The line formed by z5 and z6 

approximates Ref(f(z))=O in the grid and the equation for this line can be written as 

where a,  = y , - y , ,  b ,  = x 6 - x 5  and c1 = x , y , - y , x , .  Similarly, the line formed by z7 and z8 approximates 
Im ( f ( z ) )  = 0 in the grid and the equation is 

l i (x ,  y )  = U ~ X  + b2y  + c2 = 0 (47) 

where a, = y ,  - y , ,  b ,  = x8 - x7 and c, = x , y ,  - y ,x8 .  
To determine if there is a root in the grid, one can substitute ( x 7 ,  y 7 )  and (x,, ye)  into Ir(x, y )  in equation (46). 

If Ir(x7, y7)Ir(x8,  y8)>0, then there is no root in the grid [Figure 5(a)]. On the other hand, Ir(x7, y7)I,(x8, y,),<O 
means that there is a root in the grid [Figure 5(b)]. The approximate root z, is the intersection of the lines 
Ir(x, y )=O and li(x, y )  = O  in equations (46) and (47), and can be calculated using the following equations: 

x,= - ( b , y , + c , ) / a , ,  if a,>a2 (49) 
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or 
x, = - (b,y, + c,)/a,, if a, > a, 

After the approximate root is found, one can improve the accuracy of the approximate root by the Newton 
method. 

4. NUMERICAL EXAMPLE 

The procedure described in the previous sections is demonstrated by a simple example of a rigid massless 
circular plate resting on a single layer stratum shown in Figure 6 and subjected to torsional and vertical 
excitations. Therefore, the prescribed boundary condition of equation (2) has only one term with n = O .  
Figure 6 also shows the dimensions and the soil properties of the total system. In order to avoid the 
singularity encountered in calculating the traction vector in equation (37) for some particular frequencies, 
material damping in the soil is necessary. 

To find the impedances for the torsional and the vertical motions, both amplitudes of the harmonic 
displacement excitations are set equal to 1. Then the impedances are the total reaction moment and force due 
to the corresponding stress under the plate. 

For the case of torsional motion, the prescribed boundary condition on the top surface of the interior 
domain can be decomposed, using equation (36), as follows: 

A 
Soil Properties 

Hysteretic Damping Ratio C. = .05 

Shear Modulus G = l+Xi 
Poisson's Ratio )L = 1 3 
Mass Density p = 1 

h = l  

Rigid Bedrock 

Figure 6. Soil profile of example 
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Since kj')=kj3), f l $ ' )=  -PI3) and J,(k$"r)= - J - ' ( k j 3 ) r )  for i = l ,  

In the process of the decomposition, one should notice that matrix J, in equation (24) is diagonal when n =O. 
In other words, vector (0, 0, - l)T is an eigenvector of J, under the condition n = 0. For the homogeneous 
solution, only the Love wave modes are involved. The wave number k's corresponding to the exterior and the 
interior domains are the roots of equations (9) and (18) respectively. 

Similarly, for the case of vertical motion, the prescribed boundary condition can be decomposed as follows: 

and only the Rayleigh wave modes are involved in the homogeneous solution. The wave number k's 
corresponding to the exterior and the interior domains are the roots of equations (8) and (17) respectively. 

In this investigation, converged results can be obtained by using only the first seven modes of the particular 
solution of the interior domain [equation (50) or (51)J For the homogeneous solutions, the roots of the 
transcendental equations [equations (8), (9), (17) and (1 8)] always come in pairs, i.e. both k and - k are roots. 
For the exterior domain, one should pick up the roots with a negative imaginary part, which satisfy the 
radiation condition of the far-field. Therefore, one needs only to search the roots ofequations (8) and (9) on the 
lower half of the complex plane shown in Figure 4. For the interior domain, both k and - k roots give the 
same linear independent mode. Therefore, only the roots on the lower half of the complex plane are sought for 
equations (17) and (18). 

While using the technique stated in Section 3 to find the roots of the transcendental equations, one has to 
decide the grid size first. After investigations, it is found that the roots, which are non-dimensional wave 
number kh's, with a large imaginary part, are quite far apart. For the cases with no material damping in the 
soil, only the roots on the real axis of the complex plane may be close to each other under very high frequency 
excitations. If the material damping is put in the soil, then these real roots deviate from the real axis. Therefore, 
for the cases with material damping in the soil, the strategy to determine the grid size near the real axis is to 
ignore the material damping in the soil and use the bisection method" to locate the approximate real roots 
first. This suggests how far the roots are separated and one can use this information to determine the grid size 
near the real axis. For the roots with a large imaginary part, the grid size can be as large as 1.5 x 1.5. 

In this example, the elements in matrices K and V in equation (41) are calculated by closed form 
integrations. The impedances for the torsional and the vertical modes are shown in Figures 7 and 8 
respectively. In these figures, the non-dimensional frequency ii0 = ouo/cs, K ,  designates the torsional 
impedance and K ,  represents the vertical impedance. The results obtained with 150 homogeneous modes in 
both the interior and the exterior domains are very close to that with 100 homogeneous modes. The four solid 
line curves in each figure represent the results obtained with 15,30,50 and 100 homogeneous modes in both 
domains respectively. From these results, one can see that the results converge in general. However, more 
homogeneous modes may be needed for higher frequency excitations in order to maintain the same accuracy 
as in the lower frequency range. 

The dashed line curve in each figure is the result reported in Reference 8. Comparing both results with each 
other, one can notice some discrepancy. In Reference 8, the layer elements, which impose linear variation of 
the displacements in the elements in the vertical direction, are used to model the total system. This is similar to 
the finite element method. Therefore, the method of layer element approach theoretically gives the upper 
bound of the impedance. On the other hand, the method of analytic approach presented in this paper, which 
uses the weighted residual formulation to minimize the discrepancy at the vertical interface between the 
exterior and the interior domains, gives the lower bound of the impedance. This explains the small differences 
between the results obtained by the two methods. 
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Figure 7. Torsional impedance 

Furthermore, one can see that the method presented herein is more general than Tassoulas' procedure8 
which can deal only with limited types of foundation (e.g. rigid circular or rigid ring foundation). The method 
presented has the same advantage as Tassoulas' procedure, requiring less storage in computations than 
Kausel's pr~cedure. ' .~ Therefore, the method presented is more suitable for the case of a deep soil stratum. 
Also, as pointed out previously, more modes may be needed for the higher frequency excitations. However, it 
is inconvenient to refine the layer element model in Tassoulas' or Kausel's procedure for the higher frequency 
excitations. The method presented can easily handle the problem by increasing the number of modes. Finally, 
another advantage of using this method is that the elements in matrices K and V in equation (41) can be 
calculated by closed form integrations which require less computational effort. 



h 

48 
v 

4 

SOIL-STRUCTURE INTERACTION IN LAYERED MEDIA 

15.000 

12.500 

10.01)o 

7.500 

5.003 

1.503 

O.Oo0 

-2.500 

-5.030 

-7.930 I ~ 1 0 0 m o d e s  \P 
t V 

0.m 0.101) 0.m 0.300 0.400 0.500 0.W 0.700 0.800 0.900 1.033 

1o.ooo 1 

9. ooo 

8.003 

7.000 

6.003 

Y 5.003 

h 

48 
s 

ell$ 4.000 

3. m 

2.000 

Loo0 

0.003 

1 

683 

0 . m  0.100 0.m 0.300 0.403 0.m 0.603 0.701) 0.800 0.930 1.ooO 

- 
a0 a, 
2n 2nc, 

Figure 8. Vertical impedance 

-= - 

5. DISCUSSION 

The method presented can also be applied to the problem with prescribed tractions, instead of prescribed 
displacements, acting on the surface of the cylindrical cavity. In such case, the boundary condition in equation 
(1 5) for the homogeneous solutions is replaced by a traction free condition and the prescribed tractions on the 
bottom of the cavity can be represented by three separate series of Bessel functions similar to equation (36). 
Procedures stated in the preceding sections are then followed to solve the problem. 

The analytic solutions in the preceding sections can be easily combined with the finite element model of the 
structural domain. To do so, the displacement and the stress continuity conditions are imposed on the 
interface between the structural and the soil domains to generate the impedance matrix using the formulation 
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of a weighted residual. In other words, the analytic solutions can be used to replace the Green’s functions as 
the fundamental modes in the boundary element method provided the bedrock under the layered soil stratum 
can be assumed rigid. 

To perform the soil-structure interaction analysis, one is usually interested in the displacement and the 
stress fields in the soil vicinity near the foundation level of the structure. For the case with material damping in 
the soil medium, the stress wave attenuates along the travelling path. Therefore, if the material damping in the 
soil medium is significant, and the rigid lower boundary is at a distance sufficiently far away so that the 
reflected waves from the rigid boundary have little effect on the results, then the analytic solutions reported in 
this paper can be an approximation for a layered half-space medium. In the approximation, the depth of the 
lowered rigid boundary will depend upon the magnitude of the material damping in the soil, the dimensions of 
the foundation, the depth of the embedment of the foundation and the excitation frequency. The relationship 
between these parameters needs further study. 
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APPENDIX 

The transfer matrice a i s  in equations (6) and (16) can be expressed as fol10ws:~ 

in which 

k SH 
.- ( (2k2  - k;) 2v’SH’) 
k,Z 

2k2 k ( 2vSH -(2k2 CH -~ (CH -CH’) 
k; k,Z 

(2k2 - k,Z) (CH - CH’) 2kG -- (2k2  - k;)’ SH’ a, = 

k; k,Z v‘ 

(2k2 - k,Z)’ SH 4 k 2  - + ~ v’SH’ 
k,Z v k,Z (2k2 - k;) (CH - CH’) 

k 
C k i  

~ (CH - CH’) 

- 2k2 (CH - CH’) + CH’ -“( kS2 k,Z 

2k2 
CH - ~ (CH - CH’) 

V k,Z 
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and 

Cv’SH’ CH’ a2 = 

CH = cosh vdj, CH’ = cosh v’dj, SH = sinh vdj, SH‘ = sinh v’dj, k, = J(o fc, ), G is the shear modulus, and v and 
v’ are given in equation (24). 

The Hankel function matrix H in equation (6) is 

H =  

Hi 0 0 0 FH, 0 
O k H , O  0 0 0 
0 0 Hi 0 0 FH, 
0 0 O k H , O  0 

0 0 FH, 0 0 H, 
0 0 0 H, 0 

in which H, = Hk2)(kr) is the second kind of Hankel function of order n and H:, =dH, fdr. The Bessel function 
matrix J in equation (16) has the same form as the matrix H except that H, and H, in H are replaced by J ,  and 
3; respectively. J ,  is the first kind af Bessel function of order n and J:, = dJ,/dr. 

The matrices F,e(z- h j -  ,)Ej and F2e(z - h j -  JE,; in equations (10) and (19) can be expressed as follows: 

.__ 2kG (2k2-k;)(CH-CH’) 
k,Z 

SH 
F,e(z-hj-,)Efl= (2k2-k;)(2v2+ki)--4k2v’SH‘ V 

L 0 0 

0 
2k2 ”( (2k2-k:),-2vSH) SH‘ 0 

V 
~ (CH - CH’) + CH’ 
k; % 

2v‘SH‘-(2v2 + k,Z) ( ( 2 ~ ~  + ki)CH -2k’CH‘) 0 0 

and 

) ?( 2v‘SH-(2k2-k;)- V F2e(z-hj-,)E,:’= [2C( F(CH-CH’)+CH’  sH) 
L 0 0 

1 (A6) 
”( k 2  S f l - V r ~ ~ r  V 0 
k,Z 

, I  

SH‘ 
0 0 2GCH 2 - 1  V 
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in which CH = cosh v ( z  - h j -  1), CH’ = cosh V’(Z - hi- 1), SH = sinh v (z - h j -  1) and SH’ = sinh v’(z - h j -  J. 
The matrices H I  and H, in equation (10) can be expressed as follows: 

and 

The matrices J ,  and J, in equation (19) have the same forms as the matrices HI  and H, except that H ,  and HL 
are replaced by J ,  and J ;  respectively. 
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