B
¥
43
‘IR
JHLL
Hil
o
o

BB FT R STE R R A H#2 f P g

o4
(=

A Token-based Approach to Load Balancing of Heterogeneous,

Multi-resource Systems

Bopod i mE R

P FE R o

PEREB A+ FNAAR

FH RS TR AR R A T TR 2

A Token-based Approach to Load Balancing of Heterogeneous, Multi-resource

Systems
g2 i Student : Kun-Ting Chen
R mid g Advisor : Jing-Ying Chen
Bz 2 dF
A S S R A S
oA oo
A Thesis

Submitted to Institute of Computer Science and Engineering
College, of Computer Science
National Chiao Tung University
in partial Fulfillmentof the Requirements
for the Degree of
Master

in

Computer Science

August 2009

Hsinchu, Taiwan, Republic of China

;l*i;:g\]_g],i‘;,_,’{,\’i

SHETS TR SRS AW f PTG Y
e

Fia: pmE R B FE MET B

Bz« F
FTAPEE Y AT
I

R

AARRARER R R MR I ARl s R L R 5 [PR B
FRAEICIE 2T P Rl S SRR T T - PR AR
YR ARSI &T@‘J'fﬁJEﬁﬁiéﬁ b3~ PRI e DR e
SERPEEL PR AR G 2 T M AR A OSR - HR EASRE TR

ST PRl A LS T B P AT ﬁﬁ/wﬁ! WERER 7 5 2Rt prsyey
W U TN (R SN ﬁ*ﬁ“ﬂ sk el 27 Rl e 7 T et =
(BB BpabL B SJyhy - g e P Rl R LBEE A I YRR P [l 21 %a‘ﬁ’ﬁlﬁ%a‘a
R o PR [AIPAR ST T FIP e Rp et Tl 2 T Il (o Pyt e g feff o & 2
B g R P Trﬁﬁ%ﬁﬁwnﬁwTM%wgmwwoﬂﬁimﬁ

FEH T MR PEEAVEROH B E] T IRIFVERRT Eﬁ TEVT rE@“ﬂJﬁL TR & 2 -

PYT B R = oty e & 3P P PR S Tl filihy i Y 2 RS o xﬂﬁ.kﬂm‘d/ iR
(PR Pt o (DAL SR P = P R TAT ~ BRI FOAfhien — oo« B i

PIFTI R T ISP] PO PO - IR PRI MR
Lo R O (ERI & SRRRRRAY P LR 5 25 PO E R BT

éﬂﬁm FJ[EB’ , [ij £ }‘*';-[—ﬂj]F[[FI F}}"E F‘IJ FIJFIJ—F“T&E E},JIF‘] iylfﬂir%“ %T fr[FU—T—"T&EI:%}J—L ’ i,

BT ER R P S AT G R < A 2 P
(R T R IR (e PR D R -

»
._1‘\

Mit: : ;-53'%;_1._% . g?/};ﬂﬁ ;\‘.J:ggj—\ gi g\‘.a\ﬁja

A Token-based Approach to Load Balancing of

Heterogeneous, Multi-resource Systems

Student: Kun-Ting Chen Advisor: Dr. Jing-Ying Chen
Institute of Computer Science and Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

The Internet has become an indispensible.media where people access various on-line
services, such as executing personalized applications, browsing and publishing web contents,
communicating with friends and co-werkers, and_so on. From the server-side perspective,
providing an Internet service requires. sufficient €PU power as well as other kinds of
resources such as memory, disk space, and network bandwidth, in order to maintain
satisfactory service quality. When the kinds of services increase and their popularity vary,
how to ensure quality of service without acquiring excessive computing resources becomes a
challenge. Modern web-based systems employ various load balancing techniques in order to
spread user requests among multiple machines. However, most of these techniques assume
that servers are homogenous with similar resource capacities. Because different services
impose different requirements on different kinds of resources, and the request rates for
different services are also different, these load balancing techniques may not operate
optimally and result in unnecessary resource contention. We have studied the problem of load
balancing among machines with heterogeneous resource capacities in a traditional resource

scheduling context, and proposed a market-based approach to effectively reducing

unnecessary system bottleneck. In this thesis, we extend the previous study but focus on
web-based systems, where requests tend to be small in processing time but large in volume.
To apply the same market-based principle, we propose a token-based approach in which the
servers do not exchange load on a per-request basis, but rather on a token basis where each
token represents a workload with specific multi-resource requirements. Our goal is to balance
the server load and to make efficient use of all the available system resources. We have
conduct extensive simulation under different system configurations and compare our method
with existing load balancing schemes. The results showed that our approach provides
substantial performance improvement, capable of delivering equivalent system throughput

with fewer machines.

Keywords: cloud computing, multi-resource.load balancing, workload distribution

“ 2
=Z

AR P i SRR T

BLa & k7 dadp i A LRIRE f T 4
B 0

~

i3

=)

[EFewd RAV AT RIREE T YR RPLITE &>
BT EERFRE AN HINGE » 2 AITFHRPFAS BREFER TR A4
ﬁ%?%&%oﬁﬁéﬁmﬁﬁi&%éiﬁ%?iﬁ%ﬁ&@o?ﬂ’Aﬁﬁﬁm&
EvdiTd i oAl Mgl Ll o RikF i oL L0 AL
WY BER B K e oo

HX ABRMIRTOEL 2 LR TR PR R REE S 2

T RHEP AT AR S RE R AT Y 3 oY i L
RIS X0 AR A bk - A2 B E R ST 7 e 2 ok 3T 0] eh

e R

ANERBADRA > F Rl FHERAF L A < 4§
Bep oo E R B F A BTl A8 Pl

- BT AR FAABBE T Y o Bt Bl

[ER

FH ik 2009 £ 8 ¢

ERUEREE- & =% I -

ok

AADSTFACT ...ttt i
= OSSPSR ORURSS \Y;
Table OF CONLENLS ..ottt Vi
LISt OF TADIES ...t vii
TS o B o U (SRS viii
Chapter L. INTrOAUCTIONcouiiiiiieee bbbttt b nre s 1
Chapter 2. Background and Related WOIKcccoooiiiiiieii e 4
Chapter 3. Token-based load balancing ArchiteCtureccocieiiiinininieee s 9
Chapter 4. Token-based Load Balancing based on Market Mechanismc..ccccceeeennnn. 14
Chapter 5. Adaptive Token-based Market MechaniSm..........cccccooiiierienienieene e 21

Chapter 6. SIMUIALIONoiui i s ses e et siesteeeeee et nne e 23

Chapter 7. Discussion and FULUIe MWOEK oo it i itt e cims e 36
Chapter 8. CONCIUSIONccviiii it B ibeesnmmsnmsassssns oo 4efheesteessesteessesssesseessssssesseessesnsesseessens 37
Chapter 9. RETEIENCEooviiiiiieiiee ittt ettt 38

Vi

List of Tables

Table 6.1: The multi-resource workloads used in the Simulation:ccccevveeeeeeeeeeeeeeeeeeeeene. 30
Table 6.2; The 4 combination of 6 workload in the simulation:ovevveeevieeoiee e 30
Table 6.3: The changing workload configurations of SImulation:cccccceeeviiniiiieninnns 30

vii

List of Figures

Figure 2.1: Multi-resource request requirement and heterogeneous Servers....................

Figure 3.1: Workload distribution model
Figure 3.2: Initial token set and buddy set for workload; on server A
Figure 3.3: Token distribution scheme

Figure 4.1: Sender, receiver, and common states

Figure 4.2: Example of selection poliCIeS.............ceiniiiiiiie e

Figure 4.3: Example of location poliCy............ccooiiiiiiiiii s
Figure 5.1: Adaptive token-based Market Mechanism...........ccccoviiiieiiiiin i,

Figure 6.1: Initial configuration of workloads on servers

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

6.2:

6.3:

6.4:

6.5:

6.6:

6.7:

6.8:

6.9:

6.10:

6.11:

6.12:

6.13:

6.14:

6.15:

6.16

Our synthesized Workload. s i e,

Average standard deviation of server. utilization...............................

Average server UtIHZation.o

Average response time
Average queue length.
Average standard devi

Average response time

ation of queue length............cccoiiiiiiiiiiiiiee,

Average server UtIlization.. ...

Average queue length

Average standard dev

iation of queue length............ccoiiiiiiiiiiiie e,

Average response tiMe.........oo.iuiir i,

Average server Utilization..............ooooiiiiiiii i

Average queue length
Average standard dev

Average response time

jation of queue length............cccooiiiiii e,

viii

17

27

29

31

32

32

34

35

36

37

38

38

37

36

38

37

36

38

38

Figure
Figure
Figure
Figure
Figure
Figure

Figure

6.17:

6.18:

6.19:

6.20:

6.21:

6.22:

6.23:

Average server Utilization............cooiiiiiiiiiii e 36
Average queue length...... ..., 38
Average standard deviation of queue length..............ccccciiiiiiiieeeeee.. 38

Average responSe TiMe.ooiuiiii i 37
Average server Utilization............cooiiiiiiiiii 36
Average queue length........ ..o, 38
Average standard deviation of queue length..............ccccceiiiiiiiieeeneen.. 38

Chapter 1 Introduction

The Internet has experienced rapid growth over the last few years as people rely more
and more on the Internet to access their on-line, personalized applications, to browse and
publish Web contents, to communicate with friends and co-workers, and so on. Web content
providers and e-commerce companies are often inundated by the sheer number of Web page
requests, and they need to constantly expand their server capabilities to cope with the
increasing demand. Serving dynamic and feature-rich web content, which is crucial to the
success of the web site, only intensifies the problem further. When serving dynamic content,
the server usually needs to take into account user information such as the location of the
request, the user’s permission and other session information. Based on the user information
and the types of services requested, the processing flow on the server side may vary a lot,
possibly requiring different amount of CPU time, involving different databases or external
servers. If the capacities of the various resources on each-machine are not configured right, or
if the actual user request pattern does not match what is expected when the system is built,
performance bottlenecks may emerge from time to time, resulting in low resource utilization
for the whole system and unacceptable response time for end users. Moreover, even when the
observed request pattern matches what is planned, performance bottlenecks may still emerge
when the volume of user requests surge unexpectedly and persist for a certain period of time,

which may bring the system into an instable state.

To cope with the heterogeneity in terms of multiple request types, differentiated resource
requirements, and diverse request patterns, modern web-based systems often employ some
kinds of load balancing techniques so that user requests can be spread among multiple
machines evenly. However, these techniques often assume a simpler system model in which

the CPU resource is of the primary concern when allocating servers for different applications.

1

For example, some approaches attempt to adjust the number of servers for a given web
application based on statistical information to achieve a specific utilization target. As
mentioned previously, however, different types of requests often have different requirements
for different resources, and trying to balance the usage of only one resource type may induce
inadvertent performance bottleneck, especially when other scarcer resources are under

contention.

In previous work [Yang, et al], we have investigated the problem of task scheduling in a
more traditional context, where each task is unique, has longer lifespan, and has different
requirements for different kinds of resources. We have demonstrated that both inter-server
heterogeneity (where different servers have different resource capacities) and intra-server
heterogeneity (where the capabilities of different resource types inside each server also vary)
can have dramatic impact on the overall system performance. We proposed a market
mechanism (MM) to effectively deal"with the problem. Basically, the MM approach prices
overloaded resources with higher cost, and tasks are swapped among servers dynamically to

reduce the overall cost.

In this thesis, we focus on large-scale web-based systems such as clusters or cloud
computing environments where user requests tend to have much shorter processing time but
large in volume. We adapt the MM model mentioned above and propose a token-based load
balancing method in which a token represents a certain amount of workload for a specific
request type and is characterized by the requirements of multiple resources. Instead of
scheduling individual requests, our method schedules tokens among servers dynamically

following the same MM strategy.

We have conducted extensive experiments to investigate the effectiveness of our method
under various system configurations, by varying the number of machines, the variation of

resource requirements for user requests, the capacity differences among machines, and the

2

heterogeneity of resource capacities inside each machine. Our method outperforms other
comparable load balancing methods considerably, especially when the degree of inter-server
and intra-server heterogeneity is high. Furthermore, we also study the cases where request
rates change over time, i.e. the time-of-day effect studied in [Ranjan, et al], and show that our

method can tolerate temporal surge of requests better than the other methods.

The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chapter
3 presents a framework characterizing our token-based load balancing architecture. Chapter 4
discusses our token-based load balancing algorithm based on distributed market mechanism.
Chapter 5 presents the adaptive token-based load balancing algorithm that deals with
time-varying requests. Chapter 6 discusses the experiments. Chapter 7 gives discussion and

future work, and Chapter 8 concludes this:thesis.

Chapter 2 Background and Related Work

Modern large-scale web-based systems invariably contain multiple inter-connected
machines in order to serve the large volume of income requests in parallel. Depending on the
web site traffic, the server-side architecture may range from clusters to larger cloud
computing environments that contain multiple clusters serving different Web applications.
Within each cluster, the computational resources of the machines may be aggregated into a
resource pool to execute potentially diverse requests on behalf of users [Paton, et al]. These
clusters are used not only for executing computation-intensive applications, but also for
replicating storage and backup servers to provide essential fault tolerance and reliability for
critical applications. In such cluster architecture, the system has to distribute user requests
among servers properly in order to.meet the required quality of service. A simple approach to
load distribution is to use a load balancer in front of multiple web servers and dispatches

income requests to specific groups of servers based on the request URL pattern.

As another example, in cloud computing, there is usually a server migration algorithm
which allocates servers on-demand within a cluster by adapting the number of servers
according to client demands. It moves servers from a shared server pool into an overloaded
cluster and away from under-loaded cluster into the server pool, respectively [Ranjan, et al].
[Ranjan, et al] also proposes a server selection mechanism that enables statistical multiplexing
of resources across clusters by redirecting requests away from overloaded clusters. A cluster
decision algorithm is proposed to decide between serving a request locally after migrating in
additional servers at the local cluster and serving it remotely by redirecting the request to a
remote server that can serve the request earliest. They consider dynamic web requests that
incur multi-resource requirements of a server, and the resource allocation algorithm considers

both network latency effect on user-perceived response time and the CPU utilization of

4

servers. However, they implement the server-on-demand algorithm base only on target CPU

utilization, and they allocate servers based on CPU resource utilization only.

In contrast, this thesis explores more complex load balancing strategies that take into
account the diverse inter-server and intra-server resource capacities, as well as heterogeneous
workload associated with different types of requests. To simplify the load balancing problem,
we make several assumptions about the overall system. First, we focus on a cluster system in
which there are multiple machines with different resource capacities, and each machine is
responsible of processing certain incoming requests, but the types of requests and the implied
workload behind these requests may be different for different machines. For simplicity, we
also assume that each machine is capable of processing the requests redirected from any other
machine if it is asked to. These assumptions simplify the model and make it easier for us to
adapt existing load balancing methods for web-based cluster systems. Figure 2.1 depicts the

model described above.

il 11

Seperl) ™ oad || SRR Job requests
Balancing
Job Resource Server Capacity
Requirements BN CPU Mem Network
CPU Mem Network Server3 ﬂ

Figure 2.1: Multi-resource requirement and heterogeneous servers

When scheduling tasks with multi-resource requirements concerned, [Leinberger, et al]

discusses generalized job selection heuristics to schedule jobs that can best balance the

utilization of all the k resources. Specifically, the backfill lowest (BL) heuristic searches the
job queue looking for the feasible job (i.e. when available resources can still meet the job’s
multi-resource requirements) which also demands the most for the currently least loaded
resource. In contrast, the backfill balance (BB) heuristic attempts to pick the feasible job that
can result in most balanced resource utilization for the whole system. [Yang, et al] proposes a
distributed market mechanism (MM) for multi-resource task scheduling. In addition to the
inter-server imbalance degree that is considered in BL and BB, the MM approach also
considers the imbalance degree within each server. More specifically, MM not only tries to
shift load from higher loaded servers to under loaded ones, but also attempts to exchange load
between servers with moderate load to minimize their internal imbalance. This simple
heuristic allows more jobs to be packed into each server in general, hence helps increasing the

overall system utilization.

The BL, BB, and MM load-balancing methods are devised for more conventional task
scheduling problem where each+task . is"unique, has longer lifespan, and has different
requirements for different kinds of resources. In-this context, a task may be allocated to some
server initially, executed partially, and be reallocated to another server based on the dynamic
state of the system. This model does not fit well with web-based systems, where requests need
to be processed timely and responses generated promptly. Although requests may still be
redirected among servers, once a request is processed there is no room for rescheduling. To
adapt the abovementioned methods in such context, a straightforward approach is to aggregate
multiple requests of the same type into a token, which serves as the unit of scheduling.
Specifically, each token is associated with some multi-resource requirements derived from the
type of request and the request rate. Conceptually, when a server is assigned a token, it needs
to process the designated number of requests before claiming the completion of the token. In

practice, however, the server may keep the token for a long time and continuously process the

corresponding requests before the token is rescheduled elsewhere. Therefore, the token in fact

represents a certain portion of the workload associated with the request type.

[Kulkarni, et al] also uses the concept of tokens to facilitate load balancing, but in a
distributed system setting. The system is modeled as a network of inter-connected servers
where each node has a single load indicator, based on which “local minimum” and “local
maximum” can be found by exchanging the load information between neighbors. Two types
of tokens, namely sender tokens and receiver tokens are created accordingly and passed over
to neighbors. Servers who receive the tokens may shift its own load or help the other server
based on its own load status and the kind of token received. The token may also be
propagated further. [Borovska, et al] applies similar token-based load balancing method to a
computational model for solving a puzzle problem in parallel computation system. This
approach uses token messages to- circulate among the parallel processors and to store
information about the load distribution throughout the system. The load balance algorithm is
initiated and performed by the idle-or under-loaded processes by identifying the most heavily
loaded processor to make a request for load-migration. In addition, the token message also
includes additional fields such as terminating conditions and best solution calculated so far, so
as to reduce communication overhead since servers need to communicate with each other
frequently and send messages to inform system manager of their latest computed solutions to

the sub-problems they are designated to solve.

[Lin, et al] proposes a gradient model for load balancing in distributed multi-processor
systems. The method first lets each individual processor determine its own load condition
(heavy, moderate or light). Secondly, it establishes a system-wide gradient surface
represented by aggregate value of all proximities to facilitate task migrations. A proximity
value is determined for each processor to denote the minimum distance between the processor

and a lightly loaded node in the system. The gradient surface is used as indication of all

under-utilized processors, and the load balancing is based on a demand-driven principle which

requires the under-utilized processors to dynamically initiate load balancing requests.

Our approach is similar to volunteer computing in many aspects. Briefly speaking,
volunteer computing is a distributed computing paradigm in which a large number of
computers, volunteered by members of the general public, are aggregated to provide unified
computing and storage resources. Not surprisingly, there is usually some entity which is in
charge of job scheduling among the participating computers. From load balancing perspective,
the main difference between volunteer computing and traditional parallel computing systems
is that for the former it is the computers that are idle or under-loaded that ask the scheduler for
jobs to execute, while for the latter the scheduler usually takes the active role of maintaining
the load status for the member servers and dispatching jobs once they arrive. Notable
volunteer computing examples jincluder SETI@Home and BOINC (Berkeley Open
Infrastructure for Network Computing) [Anderson, et al]. For example, BOINC is middleware
system being used for applications in physies, molecular biology, medicine, chemistry,
astronomy, climate dynamics, mathematics; and-the study of games. Volunteers participate by
running BOINC client software on their computers (hosts). Each client periodically
communicates with the task server to report completed work and to get new work. All
network communication in BOINC is initiated by the client. The fact that it is the client who
triggers job assignment can have importance consequence for the overall system utilization,
especially when each computer has its own load beyond the control of the scheduler.
Naturally, it is the participating computers who know the best timing to request for jobs.
Following the same principle, we also investigate some variations of our token-driven load
balancing method, that is, by letting a server to grab additional tokens from other servers only

when it is under loaded.

Chapter 3 Token-based Load Balancing Architecture

The overall load balancing architecture is modeled as a set of servers interconnected with
high-bandwidth links. Without loss of generality, we assume each server is configured to
handle one application; that is, it serves as the entry point for all user requests related to that
application. In practice, a server may be in charge of multiple applications, or multiple servers
may share the load for the same application. An application distinguishes itself from other
applications by the types of requests associated with it; each request type is characterized by
its specific arrival rate and multi-resource requirements. In our simulation model that will be
described in more details later, for each server, we will assign the mean and variance for its
request arrival rate and its requirement for each type of resources. In addition, each server
contains multiple types of resources-each with different capacity. Again, in the simulation
model we will assign the capacity.for each resource type in different servers based on certain

random distribution.

A request can be executed on a server only when the available resources of the server
can satisfy all of the request’s resource requirements; otherwise the request is put in a queue
waiting for execution. Note that once the request is put in the wait queue, it cannot be
rescheduled to another server. When a request is in execution, it claims all the resources from
the server and will not return them back until it is finished. Therefore, the load of a server at a
given time is the sum of the resources claimed by all the requests in execution. There are two
sources of requests to each server: one is generated from outside by the user; the other is from
the other servers in the cluster. This implies that a server may also be able to process requests
from other applications. For simplicity, we assume each server is capable of executing any

kind of request if it is asked to. Note that this assumption is not far from reality because, to be

scalable, modern cloud computing environment such as Amazon E3 or Google App Engine
indeed try to replicate the same application to different servers based on the application

traffic.

Figure 3.1 depicts the system architecture described above. In the figure, Client 1
represents an application with high CPU requirement, but the CPU resource of Server 1 is
overloaded, while Server 2 and 3 only have moderate CPU load. From the perspective of
Server 1, it is desirable to shift some of the requests from Client 1 to Server 2 or 3 properly to
reduce its CPU load, so as to increase its own chance to accept more requests from its wait
queue. Of course, since all of the servers have the same goal, the load balancing mechanism
needs to ensure that workload is divided and assigned among the servers properly such that

the overall resource utilization is kept high.

, ml
0. L worszad |

N WorkLoad1 ’IHQ Cluster3 Serverl
X _~ Workload mapper

. | Server2 ///;// Dispatcher I
N Workload mapperf~_— { T
Dispatcher E Server3

Ty
— =

G o — | Workload mapper _ |)
[Workload from Server3 \‘; WorkLoad3 ’

Dispatcher Vo

Client
I

Figure 3.1: Workload distribution model

The load balancing algorithm is implemented in a distributed manner. Each server
contains a workload mapper which monitors and analyzes incoming workload continuously,
and communicates with other servers’ mappers to decide how workload is divided among
them. In other words, it is the set of workload mappers that together implement the load
balancing strategy for the whole system. The dispatcher in each server is the one that takes

care of actual request dispatching.

10

In our token-based approach, each workload mapper divides the workload corresponding
to each request type into multiple tokens, where the number tokens is determined in a way
that is proportional to the size of the workload. Specifically, assume request type i has arrival

rate Ri and average CPU time Ci, its workload can be derived as
L, =R, *C,

We simply pick a system-wise constant Lg as the “unit” of workload all tokens should
represent. Therefore, the token size Ni for request type i can be derived using the following

formula:

Note that in this thesis we only study the-case where all token represent roughly the same
CPU workload. Other variations-are also werth further investigation. For example, we can

allow tokens to represent different waorkload sizes and see the impact on the scheduling result.

Initially, each server holds all the tokens created by its mapper. Tokens serve many
purposes. Firstly, because tokens can be passed among servers, if a server holds a token, it is
responsible for the associated workload, meaning it should accept and process the
corresponding requests dispatched from the token originator. Secondly, the workload mapper
also uses the tokens to determine how to process each incoming request. For example, if a
request type is divided evenly into N tokens, the workload mapper first picks one token from
the N tokens randomly (or in a round-robin manner), checks which server currently holds the
token, and dispatches the request to that server. Thirdly, because the total workload of a
server can be computed by summing up all the tokens the server holds, the load balancing
algorithm can use this information to rearrange tokens among servers to increase system

utilization.

11

Figure 3.2 demonstrates how tokens are managed within each server, where Tpg Stands
for the token manager that controls the creation and management of tokens for the server. In
this example, the server’s own workload for request type i is divided into 6 tokens. The buddy

set, which is used to hold tokens from other servers, is empty initially.

Inter-cluster

Workload;
workload
Al Al Al A| A| A 21?21?2122 7?2
1/6 1/6 1/6 1/61/6 1/6 20?21?2122 7?2
Token set

Token spare set

Figure 3.2: Initial token'set and buddy set for workload; on server A

Figure 3.3 shows how tokens‘migrate between servers. In the figure, server A attempts to
shift one of its tokens to server B."The token manager of server A marks the holder of a token
to be server B, meaning that future requests of type.i will have 1/6 chance to be redirected to
server B. The token manager then notifies server B about the token assignment; Server B
needs to add a new token in its buddy set to record the newly introduced workload it is

responsible of.

12

Workload;

Workload;

Bl B| B

Token set

1. Mark Holder;q=B
2. Lease token (1/6;)

Inter-cluster
workload

accept Server A’sitoken

CI|C|C|D|A|?

212020222

Figure 3.3: Token distribution scheme

13

Chapter 4 Token-based Load Balancing based on Market

Mechanism

In Chapter 3 we outline the token-based load balancing architecture based on which
different load-balancing schemes can be conceived. In this chapter, we proceed to describe
one specific load-balancing algorithm, namely TBMM (Token-Based Market Mechanism),
that dynamically rearrange tokens among servers to improve the overall system utilization.
Distributed load balancing methods can be characterized with four policies [Shivaratri, et
al][Eager, et al], namely information policy, transfer policy, location policy, and selection
policy. We will also use the four policies to describe our load balancing method. Before going

into the details, however, we first summarize these four policies:

® Information policy. The information policy determines the kinds of state information to
be exchanged among servers..Conventional methods usually exchange information about

a single resource, such as the CRPU load.

® Transfer policy. The transfer policy determines the set of servers that need to adjust.

The most common approach is threshold-based, which calculates an upper threshold T,

and a lower threshold T,. The upper threshold Ts may be in the form of L2 + d, where

avg

L29 stands for the average resource load of the whole server cluster and d a designated

avg

constant, or a L9

avg

where a is a constant value greater than 1. Likewise, T, may be in the

formof L29-doral®?wherea<1.

avg avg

As shown in Figure 4.1, if the load of a server is greater than Ts, the server is said to be
in sender state; if less than T,, the server is in receiver state. Otherwise, the server is in

common state. As the names suggest, a server in sender state tends to send some of its

14

jobs to another server with a lower load, while a server in receiver state tends to receive
jobs from another server with higher load. The servers in common state do not have to do
anything. In this paper, we also define a new state, call exchanger state, to deal with

multi-resource load imbalance issue within each server.

.....

.....

Receiver

Figure 4.1: Sender, receiver, and common states

Location Policy. The location policy concerns the steps needed to find the target server

to which a server in sender ‘state.can send jobs to, and to find the source server from

which a server in receiver state can.receive jobs from. A simple heuristics is for a server

in sender state to match the server with lowest lead, and similarly for a server in receiver

state to match the one with highest load.

Selection Policy. Once the server pair is chosen, the selection policy determines which

jobs should be sent to or received from the matching server. We investigate three popular

job scheduling approaches, called latest arrival job, backfill lowest [Leinberger, et al]

and backfill balance [Leinberger, et al]:

- Latest Arrival Job (LAJ): send the latest arriving job from the sending server to the
receiving server,

- Backfill Lowest (BL): find the resource of the receiving server that is most available,
and send the job that demands that resource most from the sending server.

- Backfill Balance (BB): send the job which can minimize the (maximum load /

average load) measure for the receiving server.

15

3 — =
-5 Fs e
S | e | S —
5 k= ~Fi-si o
13 15 14 7 5 6 (a) Before job exchange
= E=
> E5-] 5]
= gy | et —— =2 :::
sHEE ===
8 12 9 12 8 11) Result of LAJ selection policy
===
s R
e
8 8 9 12 12 11 (¢) Result of BL selection policy
sy EEiEElEE
sHE S| EcEeE
10 10 10 10 10 10 (d) Result of BB selection policy

Figure 4.2: Example of selection policies

As an example, consider Figure 4.2:in which there are two servers with 3 jobs and 1 job,
respectively, and the load of their resources are 13, 15, 14 and 7, 5, 6, respectively, before job
exchange (Figure 4.2a). Assume the server on the left is in sender state and has to send a job
to the server on the right. If the LAJ selection policy is used, the latest arriving job (with
resource requirements 5, 3, and 5) will be selected (Figure 4.2b). In case the BL selection
policy is used, since the second resource of the receiving server is least busy, the first job
(with resource requirements 5, 7, and 5) of the sending server will be chosen because it
demands the second resource most (Figure 4.2c). Finally, when the BB selection policy is
used, since the measure of executing the three jobs on the receiving server are 1.16, 1.0, and

1.03, respectively, the second job will be selected (Figure 4.2d).

16

The framework discussed above is for conventional job scheduling problem. In this
thesis, only small modification is needed, that is, by replacing the concept of jobs with tokens.
Note that in conventional job schedule problem, jobs enter the system continuously, and leave
the system when completed. In our model, however, tokens persist in the system since
beginning, even though their number may increase or decrease over time. However, such
difference has no impact from load balancing perspective, since we can simply think of tokens
as long-running jobs that seldom finish.

In TBMM, each token assigned to a server will be associated with a cost, which is
directly proportional to the resource load of that server. We define the cost per resource
requirement of token w assigned to server j as:

ZK:(J ka)

C,(w)=tdr— L)

K
pIK
k=1
where J is the requirement of resource k for token w, L"j the load of resource k in server j,

and K the number of resource types. The.reason we define the cost per requirement rather than
the total cost of a token assigned to a server is that the former helps improve the load
imbalance degree within a server.

Below we describe our method in terms of the four policies mentioned above:
Information policy. In our method, servers exchange their entire resource load L} ~ L with
each other, where L‘] represents the load of resource k in server j.

Transfer policy. We define the load imbalance degree for server j as:
< k k
B; = Z(L,— - Lavg) (2)

where LY is the average load of resource k of the whole server cluster. B; measures the load

avg

imbalance degree between servers. Similarly, the absolute load imbalance degree for server j

17

is defined as the sum of absolute values of load differences:

©)

K
_ k k
Bas 5 = |1 — L
k=1

which measures the load imbalance degree between resources inside a server j. We then

determine the state of a server as follows:

® Sender: T, <B,.
® Receiver: B, <T,.

® Exchanger: T, <B;<T, and T<B

abs_j "

® Common: the rest.

Ts and T, are thresholds that are also.commonly.used in‘conventional methods. The difference
is that we add an exchanger state with the threshold T for servers to further improve load

balancing of resources inside of a server;

Location policy. For servers in sender or receiver state, the location policy to find matching
server pairs is the same as those in conventional methods. For servers in exchanger state, on
the other hand, the policy is different:

Assume server i and j are both in exchanger state, we define the load imbalance degree

for the pair before token exchange as:

B.,. .+B

abs i

abs_j (4)
and the ideal load imbalance degree after token exchange as:

kK 1k k kK _ 1k k
2% zK“%(LI Lavq)>< Elk ::(FL‘I(J Lavg)>< R; % (5)
i j

k=1

where r¥ and RY are the capacity ratios of resource k for heterogeneous servers i and j.

18

Our goal is to find the pair of servers i, j such that their imbalance degree before token
exchange minus their ideal load imbalance degree afterwards is the largest. For illustration,
consider Figure 4.3a in which there are three servers; the ratio of their capacities is 1:3:4 and
their current loads compared to the whole system load are +4%, -4%, and +3% respectively.
Before token exchange, Baps_1, Bans_2, and Baps_3 are 4, 4, and 3, respectively. Without

considering server capacity, we may tend to pair server 1 with server 2, because the imbalance

4x1+(-4)x3
1+3

degree before token exchangeis4 +4 =8, and 2« =2x2=4 afterwards (Figure

4.3b), hence the improvement of imbalance degree is 8 — 4 = 4. If we pair server 2 and server

3 instead, the imbalance degree is 4 + 3 = 7 before token exchange, and becomes

(—4)><3+(3)><4
3+4

2% —2x0=0 afterwards (Figure 4.3c), an improvement by 7.

+4% 4% +3%

S1 s2 S3 (a) Before job exchange

2% 2% +3%

S1 82 S3 (b) Result of pairing server 1 and server 2

+4% 0% 0%

S1 S2 S3

(c) Result of pairing server 2 and server 3

Figure 4.3: Example of location policy

19

Selection policy. Employ Equation (1). For each server pair i, j selected by the location policy

among the servers in sender and receiver states, the token, w, to be sent from server i to j is
the one that can result in minimum ¢, (w) for server j.
For each server pair i, j where both servers are in exchanger state, we want to pick a

token from each server for exchange, and the exchange can benefit both servers overall. We

define the benefit of transferring a token w from server i to server j as:
Ci (W)_C i (W) (6)
Accordingly, the total benefit of exchanging token w1l in server i with token w2 in server j
becomes
(€ (W) -c, (W))+ (C, w2)-C, (W2)) (7)
Furthermore, the benefit should be Jlarger than.a threshold T for the exchange to take place.

Without the threshold T, it is passible that two servers in exchanger state may constantly

exchange the same pair of token to.and from each other without converging.

20

Chapter 5 Adaptive Token-based Market Mechanism

The algorithm described in previous chapter assumes workload associated with each
request type does not change over time. When requests of a certain request type surge and
persist for a long time, the tokens for the request types no longer represent the effective
workload correctly. This means the estimated total workload for all the servers that hold any
of these tokens is not correct, and some adjustment to the tokens is needed. However, it is not
desirable to inform all involved servers to update the corresponding tokens because doing so
may require many update messages and trigger many new load balancing activities. Instead,
the workload mapper that originates the tokens can create additional number of tokens to
match the actual workload it observes. Similarly, when the actual workload decreases, the
workload mapper can reduce the number of tokens; by removing the tokens hold in the local
server or reclaiming some tokens ‘back from remote token holders. Whether the token number

is increased or decreased, the individual tokens remain.unchanged.

We implement this strategy by extending the original load balancing algorithm described
previously. The new algorithm, called adaptive token-based load balancing (ATBMM),
adjusts the number of tokens in face of changing workload. Figure 5.1 shows the three cases,

namely, when workload surges, drops, or remains within a certain range:

21

Server A
Inter-cluster

workload

Bl C| Al Al A cl2|?2|?2]?]|?

Token set Y 21?21?21 2?21?27

Workload;

Add tokens to

/ / Server A Token buddy set

Case 2 Bl B
/ / / Server C’s buddy set

Send message to inform Alol2l2]92]2

returning token leased

from Server Ato Server C 2l olalala] 0
Case 3 B| B| C| A| Al A

Token set unaffected

Figure 5.1: Adaptive token-based Market Mechanism

In case 1 where the workload surges; the calculated-token number is larger than original
number of tokens, and new tokens of the same kind are added to the token set. In case 2, the
new token number becomes smaller, so server A informs server C to recall one of the token
back; server C also updates its buddy set accordingly. In case 3, the newly calculated token

number is equal to original one, and nothing needs to be done.

22

Chapter 6 Simulation

In this chapter we evaluate the performance of TBMM and ATBMM and compare the
results with other methods via simulation. The simulator is built on top of an event-driven
simulator PeerSim [PeerSim]. The simulation model is summarized as follows. Each server is
pre-configured to serve some of the applications, and the assignment will not change during
the entire run. An application consists of several request types, each of which is associated
with multi-resource requirements. When a request of a given type is generated, its actual
requirement for each of the resources is determined randomly according to the request type’s
multi-resource requirements. The request can be executed on a server only when the available
resources of the server can satisfy all of the request’s resource requirements; otherwise the
request is put in a queue waiting for execution. Once. the-request is put in the wait queue, it
cannot be rescheduled to another server. To investigate the effectiveness of our load balancing
method, we also adapt existing multi-resource load balancing methods BL, BB to fit our

model, and compare them with our method.

We conduct the simulation for clusters of 32 servers. Each server has three kinds of
resources: CPU (measured in Gflops - giga floating points operations per second), Memory
(measured in GBs), and Network Bandwidth (measured in gb/s). There are two independent
parameters used to configure the degree of heterogeneity of server resource capacities:
average server resource (Sym) and server resource variance (Sy). Sy is used to specify range of
capacity for the resources within a server. A resource variance of zero implies the resource
capacities of CPU, memory, and network bandwidth is the same for all the servers. We refer to
this configuration as homogeneous configuration. Otherwise, the configurations are
heterogeneous. A resource variance of S, = £X implies that the capacity of the resource will

be assigned the value randomly within the range (Sim — X, Sim+ X). In our simulation we set

23

the value of X to be 0, 20, 40, 60, 80 and 100, respectively.

CPU capacity is specified in terms of Gflops. We assume each machine uses time sharing
to allocate the CPU resources among the requests it is processing. In other words, all requests
in execution share the CPU resource, and they are executed by the CPU in a round-robin

manner.

The workload model is described as follows. All the methods are simulated using static
workload, except ATBMM which is simulated with time-varying workload. For each case, a
suite of synthesized workload was generated. Two main settings of the simulated workload
are the request arrival rate and the generation of multi-resource requirements. For both static
workload and changing workload, we have experimented with different combinations of
changing workloads. We allocate 1 0 .é'w‘brkl‘oéds oqt of 6 workloads to each server. A
workload can be served by mo_r‘e than (‘Jrﬁke server. When a server is configured to be
responsible for a workload, the corresponding request w.i_il arrive at the server’s local wait
queue depending on the specified arrival rate -fo'lrlc-n‘;vi’ng thé Poisson distribution with mean Ay
(0 < k <5). The arrival rates for all wbrktoads are adjusted such that resource utilization for
the baseline algorithm (without load balancing) is around 80%. The multi-resource
requirement of requests is generated as weak correlation among CPU, Memory and Network

bandwidth requirements [Leinberger, et al].

The settings of 6 workloads, along with the initial configuration to each server are shown

in Table 6.1 and Table 6.2.

Workload (jobs/ CPU (gigaflop) Memory(GB) Network (gb/s)
time unit)

WO (A =2) 0.95~1.05 10~20 1~2

W1 (A =0.8) 0.35~0.45 10~20 0.5~1.5

24

W2 (= 1.21)
W3 (A = 0.29)
W4 (= 0.57)

W5 () = 1.14)

0.55~0.65
0.37~0.47
0.79~0.89

1.63~1.73

5~15

1~9

20~30

10~20

2~3

0.1~0.9

1~2

WO: 2 jobs/sec

CPU/Memory/N

WO

Four Combinations of Workloads

W1: 0.8 jobs/sec

W2: 1.21 jobs/sec
etwork

ol |
w1l W2

W1: 0.8 jobs/sec

WS5: 1.14 jobs/sec

] h
,‘vv;'l?hws

W3: 0.29 jobs/sec
Wa4: 0.57
WS5: 1.14 jobs/sec

diLh|

w3 W4 W5

Server6

, P A
rver6) Server 8
.77.7’ 0 . 5" . .

Figure 6.1: Initial configuration of workloads on servers

Comb. 4

Workload (jobs/
time unit)

WO (A = 2)
W1 (A =0.8)
W2 (A = 1.21)

W3 (% = 0.29)

Comb. 1

O
N/A
N/A

N/A

Comb. 2

N/A

N/A

25

Comb. 3

N/A N/A
O N/A
N/A N/A
N/A O

W4 (= 0.57) N/A N/A N/A O

W5 (A = 1.14) N/A N/A O O

To simulate demands surge with different duration and magnitude, we first referenced a
24-hour e-commerce trace from a large scale e-commerce site [Ranjan, et al]. In the study, the
workload consists of 18 percent static requests, 57 percent dynamic request, 8 percent that are
un-cacheable, and 17 percent request of other types. Static request usually incurs resource
bottleneck of single resource, such as network transmission latency, while dynamic page
request incurs a combination of multiple resources. The un-cacheable request incurs 500 and
100 times more CPU demand than a cache hit request. To parameterize and characterize the
workload changing phenomena, we synthesize our changing workload using sine waves. The
baseline of the sine wave is chosen to he workload without changing, that is, the baseline
workload without surging user demands. \We use two parameters, Wamplitude, Weycle time tO

control the “shapes” of the changing workload.

The amplitude of the sine wave (Wampliwde) 1S taken from 0.3 to 1, and the cycle time is
14 to 128. Figure 6.3 and Table 6.3 shows our'synthesized changing workload pattern and the
configuration for each parameter. All simulation is conducted on a time line of 700 units. We
set Wamplitde 10 be 0.3 to £1.0 request per time unit. The baseline (X0 request per time unit)
incurs no change to the workload. In Figure 6.3, for example, the cycle-time for the sine wave
is 106 time units, with amplitude *1.0 request per time unit. For the entire simulation run,
there are about 6.6 cycles. As the cycle time increases, the number of cycles decreases (6.5 to
120 cycles in our experiments). Finally, the average token size is configured such that number

of tokens each server has initially ranges 12 to 50.

26

800

-1.5

Cycle inter-arrival unit: 106; Amplitude=x1.0request (per time unit)

Figure 6.2: Our synthesized workload

Amplitude +0.3~1.0 request per time unit

Cycle time (Number of cycles per run) 14(50), 26(27), 66(10.6), 80(8.75),
106(6.6), 128(5.5) (unit: time unit
- (number of cycles per run)

Token size (Use token size and number 1.68 (unit: gigaflop): used in all
of requests per 10 time units to experiment except for token size effect
calculate number of token) comparison

Token size (Use token size and number 4, 6, 8, 10, 12, 14, 16, 16.80 (unit:

of requests per 100 time units to gigaflop): used in token size effect

calculate number of token) comparison

The major performance metrics measured in our simulation are response time, server
utilization, queue length, and standard deviation of queue length. For server utilization, we
measure CPU utilization as percentage of CPU in busy state, and use it as the server
utilization. For memory and network utilization, it is measured as percentages of occupied
capacities. The utilization of both can be affected by the job’s CPU requirement. In our model,

CPU is busy as long as there are jobs in execution, and jobs have different execution time

27

depending on CPU capacity of each server. Even if there is only one job, the CPU is busy but
the other resources may be under-utilized. Therefore we separately observe 3 resources
utilization and show only the CPU utilization as server utilization. We will discuss memory

and network utilization shortly.

The following sections provide performance evaluation of TBMM and ATBMM, which
are compared with other algorithms BL and BB as well as the baseline algorithm where no

load balancing is performed.

First, we consider the case of static workload with varying server capacities. The results
are shown in Figure 6.3 - 6.7. In Figure 6.3 and 6.4, as the heterogeneity of server capacity
grows, all the methods except our TBMM have high server variance and low server utilization,
which suggests that the inter-server imbalance degree.is high, and there exist bottlenecks for
some resources while the other resources remain ‘idle. This causes more jobs to wait in the
wait queue, and the overall average utilization becomes low. TBMM achieves the lowest
server variance and the highest server utilization in all.the cases, suggesting that a request has
more chance to be redirected to servers with ‘under-utilized resources, and thus more jobs can
get executed instead of waiting in the queue. This is also confirmed in Figure 6.5 and 6.6, in
which TBMM achieves the lowest response time and queue length. Figure 6.7 further shows
that TBMM has lowest variance for queue length, showing that the quality of service seen

from each request is more uniform.

28

25 100
20 ——— — e 95 -
w’ 90 — >~
15 — e *\‘_
/ 85 | S
e e
80
5 75
0 70
0 20 40 60 80 100 0 20 40 60 80 100
Y: Average Standard Deviation Y: Average Server Utilization (100%)

of Server Utilization
Figure 6.3, 6.4: Average standard deviation of server utilization and average
server utilization

40 100

30 /1 20 /
e |t =

: ’—__—.————'/’/)_ e L————l————.////.,
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Y: Average Response Time'.(uni:t).r_, o : Y: Queue Length
Figure 6.5, 6.6: Averé’ge résponse time an,.d’average queue length
140 130 —e—NO
120 -
100 // ——TBBL
/
80 » ——T8BB
60 ,*‘,__///
40 ,/fz—/ o —=—TBMM
20 ,,/
0 X-axis: Server Heterogeneity Degree
0 20 40 60 80 100

Y: Average Standard Deviation of
Queue length

Figure 6.7: Average standard deviation of queue length

Figures 6.8 - 6.11 show the average number of servers required against response times
under a fix load. The load for each of the 32 servers is fixed load in this experiment. For a

targeted response time such as 10 sec, TBMM uses 34 servers, while TBBL and TBBB uses

29

about 38 servers, and the baseline method uses about 41 servers. Moreover, for a server
number of 32, TBMM outperforms all of the other resource balancing algorithms Note that as
the number of servers grows, all methods have lower server utilization. This means allocating
more servers can improve performance, but utilization will drop, wasting resources.
Increasing the number of servers also lowers average queue length and variance, which
reflects the fact that with more servers, jobs has more opportunities to be executed on any

server, therefore fewer jobs will be queued and the performance improves.

40 100
90 -
30
80 -
20 70 -
60
10
50 -+
0 40
32 36 40 44 48 52 32 36 40 44 48 52
Y: Average Response Time (unit) Y: Average Server Utilization (100%)
—e—NO
——TBBL
- X-axis: Number of servers
——TBMM

Figure 6.8, 6.9: Average response time and average server utilization

30

100 : 120
90 -
80 - \ 100 +
70— - |
60 80
50 + 60
40 -
30 - 40
20 1
10 - 20
0:= 0 -
32 36 40 44 48 52 32 36 40 44 48 52
Y: Queue Length Y: Average Standard Deviation of
Queue length
——NO
——TBBL
Ta88 X-axis: Number of servers
—8—TBMM

Figure 6.10, 6.11: Average queue length and standard deviation

We examine the performance of ATBMM- with changing workload as follows. Figures
6.12 - 6.15 show the results when increasing the cycle times. As cycle time increases, the
average queue length increases. For shorter cycle time, although the job arrival rate surges
during short period, it drops down quickly,"too. The chances of forming a system bottleneck
due to unhandled jobs increase as cycle time increases. We observe from the response time
that ATBMM achieves lowest wait queue length. Moreover, it achieves lowest queue variance
as cycle time increases. This shows that our method outperforms other multi-resource

token-based algorithms.

31

50 - 85
40 —

) / 80 ._c-f‘__\—-
30 ==
= %/’4 70 \\\‘\\m

10 |{—p—= ' ==

14 26 66 80 106 128 14 26 66 80 106 128

Y: Average Response Time (unit) Y: Average Server Utilization (100%)

Figure 6.12, 6.13: Average response time and average server utilization

100 100
80 — 80
60 - J/{/ 60
40 ';,//ﬂ = = 40
20 = //'—'.i — 20 — _
0] 0
14 26 66 80 106 128 14 26 66 80 106 128
Y: Queue Length .~ Y:Average Standard Deviation of
—e—NO Queuelength
——TBBL
——TBBB X-axis: Cycle-inter-arrival time (unit)
—8—TBMM ‘ :
ATBMM

Figure 6.14, 6.15: Average queue length and standard deviation

We also evaluate the number-of-servers effect on the response time for changing
workload. Figures 6.16 - 6.19 show the results for high magnitude (£1.0 request per time unit)
and long cycle time. Again, the load of each server is fixed. For a fixed response time
constraint such as 10 sec, ATBMM needs 34 servers, while TBMM needs 40 servers. For
TBBL and TBBB, it’s about 50 servers. For baseline method, a number of about 54 servers is
required. The queue length results have similar trend. Note that in the case of average
standard deviation of queue length, ATBMM achieves a relatively low standard deviation, and

remains low even if number of servers decreases. This shows that the queue lengths are

32

balanced for each of the servers, while the other methods have high imbalance degree for the
queue lengths. Another noticeable phenomenon in the simulation is the dramatic improvement
due to increasing number of servers. However, this significant improvement does not imply
that the larger number of servers, the better the performance, because the server utilization
will be lowered. In addition, we configure the system with a fix workload that is about 70% to
80% server utilization and average queue length about 90 jobs for baseline method. This
already saturated workload may cause a high response time, while increasing more servers
help distribute the workload to more servers, and average queue length decreases, and thus

lower response time.

50 90
40 | 8057 .*\~
70 i
30 -
60 ‘\\ -
20 50 T — =
10 - 40 =
0 = 30 -
32 36 40 44 48 52 56 60 64 32 36 40 44 48 52 56 60 64
Y: Average Response Time (unit) Y: Average Server Utilization (100%)
—e—NO
——T8BL
TBBB X-axis: Number of servers
—8—TBMN

ATBMM

Figure 6.16, 6.17: Average response time and average server utilization

33

100 - - 100

IWi—¢ 90

80 80

70 70

60 60

50 50 -

40 40

30 + 30

20 - 20 —

10 - 10 \'\w

0 0 L e I ——f———a——h
32 36 40 44 48 52 56 60 64 32 36 40 44 48 52 56 60 64

Y: Queue Length Y: Average Standard Deviation of
—e—NO Queue length

X-axis: Number of servers

ATBMM

Figure 6.18, 6.19: Average gueue:length and standard deviation

We also investigate the effect of 'increasing token size. Figures 6.20 - 6.23 show the
simulation results. As size of token increases; the number of tokens for each server decrease.
All the load balancing methods exeept ATBMM have long response times when the token
size is small. The reason is that, when the token size is small, it becomes more difficult for
other methods to balance the surging workload. In this case, our algorithm can adapt to
changing workload, adding more tokens when workload surges, and can balance more system
imbalance. Although not shown here, we have also observed that using small token size does
not incur too much overhead because it does not induce excessive token exchanges when

compared to the cases where tokens are larger.

34

50
40
30
20
10

400 600 800 1000 1200 1400 1600 1680

85

80

75

70

65

————

400 600 800 1000 1200 1400 1600 1680

Y: Average Response Time (unit)

Y: Average Server Utilization (100%)

Figure 6.20, 6.21: Average response time and average server utilization

100 100
90 90
80 80
70 70
60 60 %
e e
30 L 30
20 % 20 — e &
10 A 10 =
0 0
400 600 800 1000 1200 1400 1600 1680 400 600 800 1000 12001400 1600 1680
Y: Queue Leng rage Standard Deviation of
—e—NO length
—<—TBBL
—+—TBBB X-axis: Tok 00 gigaflop)
—a—TBMM
—&—ATBMM

Figure 6.22, 6.23: Average queue length and standard deviation

35

Chapter 7 Discussion and Future work

It is interesting to compare the effect of changing workload on the number of servers
required to meet a given response time requirement. Under static workload, performance of
all load balancing methods improves quickly as the number of servers increase. For a target
response time such as 8 time units, the differences of TBMM compared with existing load
balancing methods (including the baseline method) is 4 and 10 servers, respectively. Under
changing workload, the differences between TBMM and the other methods grow to 8 and 12
servers, respectively, with the same response time constraint (8 time units). ATBMM reduces
an additional 6 to 8 servers compared to TBMM. In fact, as workload changes, the surging
workload above baseline causes a large number of jobs queued at each server. If there is not a
good adaptive way to adjust the system to tackle the'surging workload, it becomes a source of
system bottleneck. On the contrary, as workload declines, the number of jobs queued at server
also declines, and all methods can handle the requests quickly, hence the differences of all

methods are not significant.

Token size is also an issue. As the token size increases, the number of token transfers
used to balance workload of each server also increases for all the load balancing methods
except ATBMM. Higher number of token exchanges implies higher system overhead
(although not further investigated in this thesis). In the future we will also study mechanisms
that can dynamically adjust token size based on workload change. The goal is to reduce token

transfers while maintaining high system performance.

36

Chapter 8 Conclusion

In this thesis, we have defined the load balancing problem that takes into account
multi-resource requirements in the context of web-based systems, and investigated an
token-based approach to load balancing for such systems. We investigated how well existing
multi-resource load balancing algorithms perform when request patterns are heterogeneous
and time-varying. Our proposed token-based load balancing algorithm adapts well to the
changing workload by maintaining a dynamically changing token set that reflects the
workload change for each server, so that temporal surge in workload for a server can be
shifted to other servers via the market mechanism. Simulation shows that TBMM outperforms
other multi-resource load balancing methods under‘various system configurations, especially
when inter-server and intra-server resource heterogeneity are high. We also showed that when
workload changes over time, the ATBMM method also outperforms the other methods,

including TBMM.

37

References

[Anderson, et al] David P. Anderson, Eric Korpela, “High-Performance Task Distribution for
Volunteer Computing”, IEEE International Conference on e-Science and Grid
Technologies, December 2005, pp. 196 - 203

[Anderson, et al] David P. Anderson, John McLeod, “Local Scheduling for Volunteer
Computing”, IEEE International Conference on e-Science and Grid Technologies.
December 2005,

[Borovska, et al] Plamenka Borovska, Milena Lazarova, “Token-Based Adaptive Load
Balancing for Dynamically Parallel Computations on Multicomputer
Platforms,”International conference on Computer systems and technologies, vol. 285, 2007,
Article No. 10.

[Bryhni, et al] H. Bryhni, E. Klovning, and O Kure, “A Comparison of Load Balancing
Techniques for Scalable Web Servers”, IEEE Network, Vol. 14(4), July/August 2000, pp.
58 - 64.

[Cardellini, et al] V. Cardellini, M. 'Colajannij ‘and P. S: Yu, “Dynamic Load Balancing on
Web-Server Systems”, IEEE Internet Computing, Vol.3May, 1999, pp. 28 - 39.

[Eager, et al] D.L. Eager, E.D. Lazowska, .and J: Zahorjan, “A Comparison of
Receiver-Initiated and Sender-Initiated Adaptive Load Sharing,” Proceedings of the 1985
ACM SIGMETRICS conference on Measurement and modeling of computer systems, Oct.
1985, pp. 1 - 3.

[Kulkarni, et al] Parag Kulkarni, Indranil SenGupta, “Dual and multiple token based
approaches for load balancing,”Journal of Systems Architecture Vol. 51 (2005) pp. 95-110.

[Leinberger, et al] W. Leinberger, G. Karypis, and V. Kumar, “Load Balancing Across
Near-Homogeneous Multi-Resource Server,” Proceedings of Heterogeneous Computing
Workshop, Aug. 2000, pp. 60 - 74.

[Leinberger, et al] W. Leinberger, G. Karypis, and V. Kumar, “Job Scheduling in the presence
of Multiple Resource Requirements,” Proceedings of the 1999 ACM/IEEE conference on
Supercomputing, Article No. 47.

[Lin, et al] Frank C. H. Lin and Robert M. Keller,, “The Gradient Model Load Balancing
Method,” IEEE Transactions on Software Engineering, vol. 13(1), January 1987, pp. 32 -
38.

38

[Paton, et al] Norman W. Paton, Marcelo A. T. de Arag ao, Kevin Lee, Alvaro A. A.
Fernandes, Rizos Sakellariou, “Optimizing Utility in Cloud Computing through Autonomic
Workload Execution,” IEEE Data Engineering Bulletin, vol. 32, 2009, pp. 51 - 58

[PeerSim] http://peersim.sourceforge.net/

[Ranjan, et al] Supranamaya Ranjan and Edward Knightly, “High-Performance Resource
Allocation and Request Redirection Algorithms for Web Clusters,” IEEE Transactions on
parallel and distributed systems, vol. 19, NO. 9, September 2008, pp. 1186 - 1200.

[Shin, et al] Chee Shin Yeo and Rajkumar Buyya, “Pricing for Utility-driven Resource
Management and Allocation in Clusters,” International Journal of High Performance
Computing Applications,vol. 21(4), November. 2007, pp. 405 - 418.

[Shivaratri, et al] N.G. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing for Locally
Distributed Systems,” Computer, Vol. 25, December, 1992, pp. 33 — 44.

[Ting] Nyik San Ting, “A Generic Peer-to-Peer Network Simulator,” Department of
Computer Science, University of Saskatehewan;, 2003

[Yang, et al] Chih-Chiang Yang, Kun-Ting Chen, Chien Chen and Jing-Ying Chen,
“Market-based Load Balancing for Distributed Heterogeneous Multi-Resource Servers”,
(proposed, accepted on) International conference on -parallel and distributed systems,
ICPADS, December, 2009)

[Zhang, et al] Z. Zhang, and W. Fan, “Web server load balancing: A queueing analysis,”
European Journal of Operational Research, VVol. 186 (2007), pp. 681-693.

39

