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摘要 

 

 網際網路由於讓使用者可以使用不同的線上資源像是執行個人化的應用程式，瀏覽

與發佈網頁內容，與朋友及同事溝通，逐漸與人們的生活變得密不可分。從伺服器的角

度來看，提供這些網際服務，為了同時維持另人滿意的服務品質，需要充份的計算資源

與數種其他像記憶體、磁碟儲存空間及網路頻寬等資源。當所提供的服務數目增加，並

且使用者偏好程度彼此之間有差異時，如何兼顧其服務品質與避免使用過多的計算機資

源於是變得具有挑戰性。現在以網站為主的系統藉由在多台伺服器之間分散使用者的工

作來運作負載帄衡，然而，大部份這些技術考慮的是擁有相同資源數的同質系統伺服器

環境。由於不同的服務對不同的資源的要求不同，且不同工作的比例也隨著時間而有差

異，這些帄衡負載的技術可能不能最佳地運作，而造成不必要的資源競爭。我們先前研

究過在傳統資源排程的環境下，機器有不同的資源分布時負載帄衡的問題，並且提出一

以市場為主的方法來有效地減少因資源分配不帄衡而產生的系統瓶頸。這篇論文中，我

們延伸先前的研究，但是集中在工作執行時間短、數量極大的網站為主的系統。為了使
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用以市場為主的方法，我們提出一個以代幣為主的方法。伺服器不再以工作為基礎作交

換，而是將代表工作量及特定多資源要求的代幣為基礎作交換，我們的目標是帄衡伺服

器的負載，以及有效地使用所有可用的系統資源。我們設定許多不同的系統設定，並作

了廣泛的模擬實驗，並比較我們的方法與現存負載帄衡的方法。結果顯示我們的方法提

供了維持在一定水帄的效能改進，在相同的工作產出下能使用更少數目的伺服器。 

 

關鍵字：雲端計算、多資源負載平衡、負載分配 
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Abstract 

 

 The Internet has become an indispensible media where people access various on-line 

services, such as executing personalized applications, browsing and publishing web contents, 

communicating with friends and co-workers, and so on. From the server-side perspective, 

providing an Internet service requires sufficient CPU power as well as other kinds of 

resources such as memory, disk space, and network bandwidth, in order to maintain 

satisfactory service quality. When the kinds of services increase and their popularity vary, 

how to ensure quality of service without acquiring excessive computing resources becomes a 

challenge. Modern web-based systems employ various load balancing techniques in order to 

spread user requests among multiple machines. However, most of these techniques assume 

that servers are homogenous with similar resource capacities. Because different services 

impose different requirements on different kinds of resources, and the request rates for 

different services are also different, these load balancing techniques may not operate 

optimally and result in unnecessary resource contention. We have studied the problem of load 

balancing among machines with heterogeneous resource capacities in a traditional resource 

scheduling context, and proposed a market-based approach to effectively reducing 
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unnecessary system bottleneck. In this thesis, we extend the previous study but focus on 

web-based systems, where requests tend to be small in processing time but large in volume. 

To apply the same market-based principle, we propose a token-based approach in which the 

servers do not exchange load on a per-request basis, but rather on a token basis where each 

token represents a workload with specific multi-resource requirements. Our goal is to balance 

the server load and to make efficient use of all the available system resources. We have 

conduct extensive simulation under different system configurations and compare our method 

with existing load balancing schemes. The results showed that our approach provides 

substantial performance improvement, capable of delivering equivalent system throughput 

with fewer machines. 

 

Keywords: cloud computing, multi-resource load balancing, workload distribution 
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Chapter 1  Introduction 

 

The Internet has experienced rapid growth over the last few years as people rely more 

and more on the Internet to access their on-line, personalized applications, to browse and 

publish Web contents, to communicate with friends and co-workers, and so on. Web content 

providers and e-commerce companies are often inundated by the sheer number of Web page 

requests, and they need to constantly expand their server capabilities to cope with the 

increasing demand. Serving dynamic and feature-rich web content, which is crucial to the 

success of the web site, only intensifies the problem further. When serving dynamic content, 

the server usually needs to take into account user information such as the location of the 

request, the user’s permission and other session information. Based on the user information 

and the types of services requested, the processing flow on the server side may vary a lot, 

possibly requiring different amount of CPU time, involving different databases or external 

servers. If the capacities of the various resources on each machine are not configured right, or 

if the actual user request pattern does not match what is expected when the system is built, 

performance bottlenecks may emerge from time to time, resulting in low resource utilization 

for the whole system and unacceptable response time for end users. Moreover, even when the 

observed request pattern matches what is planned, performance bottlenecks may still emerge 

when the volume of user requests surge unexpectedly and persist for a certain period of time, 

which may bring the system into an instable state. 

To cope with the heterogeneity in terms of multiple request types, differentiated resource 

requirements, and diverse request patterns, modern web-based systems often employ some 

kinds of load balancing techniques so that user requests can be spread among multiple 

machines evenly. However, these techniques often assume a simpler system model in which 

the CPU resource is of the primary concern when allocating servers for different applications. 
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For example, some approaches attempt to adjust the number of servers for a given web 

application based on statistical information to achieve a specific utilization target. As 

mentioned previously, however, different types of requests often have different requirements 

for different resources, and trying to balance the usage of only one resource type may induce 

inadvertent performance bottleneck, especially when other scarcer resources are under 

contention. 

In previous work [Yang, et al], we have investigated the problem of task scheduling in a 

more traditional context, where each task is unique, has longer lifespan, and has different 

requirements for different kinds of resources. We have demonstrated that both inter-server 

heterogeneity (where different servers have different resource capacities) and intra-server 

heterogeneity (where the capabilities of different resource types inside each server also vary) 

can have dramatic impact on the overall system performance. We proposed a market 

mechanism (MM) to effectively deal with the problem. Basically, the MM approach prices 

overloaded resources with higher cost, and tasks are swapped among servers dynamically to 

reduce the overall cost. 

In this thesis, we focus on large-scale web-based systems such as clusters or cloud 

computing environments where user requests tend to have much shorter processing time but 

large in volume. We adapt the MM model mentioned above and propose a token-based load 

balancing method in which a token represents a certain amount of workload for a specific 

request type and is characterized by the requirements of multiple resources. Instead of 

scheduling individual requests, our method schedules tokens among servers dynamically 

following the same MM strategy. 

We have conducted extensive experiments to investigate the effectiveness of our method 

under various system configurations, by varying the number of machines, the variation of 

resource requirements for user requests, the capacity differences among machines, and the 
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heterogeneity of resource capacities inside each machine. Our method outperforms other 

comparable load balancing methods considerably, especially when the degree of inter-server 

and intra-server heterogeneity is high. Furthermore, we also study the cases where request 

rates change over time, i.e. the time-of-day effect studied in [Ranjan, et al], and show that our 

method can tolerate temporal surge of requests better than the other methods. 

The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chapter 

3 presents a framework characterizing our token-based load balancing architecture. Chapter 4 

discusses our token-based load balancing algorithm based on distributed market mechanism. 

Chapter 5 presents the adaptive token-based load balancing algorithm that deals with 

time-varying requests. Chapter 6 discusses the experiments. Chapter 7 gives discussion and 

future work, and Chapter 8 concludes this thesis. 
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Chapter 2  Background and Related Work 

 

Modern large-scale web-based systems invariably contain multiple inter-connected 

machines in order to serve the large volume of income requests in parallel. Depending on the 

web site traffic, the server-side architecture may range from clusters to larger cloud 

computing environments that contain multiple clusters serving different Web applications. 

Within each cluster, the computational resources of the machines may be aggregated into a 

resource pool to execute potentially diverse requests on behalf of users [Paton, et al]. These 

clusters are used not only for executing computation-intensive applications, but also for 

replicating storage and backup servers to provide essential fault tolerance and reliability for 

critical applications. In such cluster architecture, the system has to distribute user requests 

among servers properly in order to meet the required quality of service. A simple approach to 

load distribution is to use a load balancer in front of multiple web servers and dispatches 

income requests to specific groups of servers based on the request URL pattern. 

As another example, in cloud computing, there is usually a server migration algorithm 

which allocates servers on-demand within a cluster by adapting the number of servers 

according to client demands. It moves servers from a shared server pool into an overloaded 

cluster and away from under-loaded cluster into the server pool, respectively [Ranjan, et al]. 

[Ranjan, et al] also proposes a server selection mechanism that enables statistical multiplexing 

of resources across clusters by redirecting requests away from overloaded clusters. A cluster 

decision algorithm is proposed to decide between serving a request locally after migrating in 

additional servers at the local cluster and serving it remotely by redirecting the request to a 

remote server that can serve the request earliest. They consider dynamic web requests that 

incur multi-resource requirements of a server, and the resource allocation algorithm considers 

both network latency effect on user-perceived response time and the CPU utilization of 
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servers. However, they implement the server-on-demand algorithm base only on target CPU 

utilization, and they allocate servers based on CPU resource utilization only. 

In contrast, this thesis explores more complex load balancing strategies that take into 

account the diverse inter-server and intra-server resource capacities, as well as heterogeneous 

workload associated with different types of requests. To simplify the load balancing problem, 

we make several assumptions about the overall system. First, we focus on a cluster system in 

which there are multiple machines with different resource capacities, and each machine is 

responsible of processing certain incoming requests, but the types of requests and the implied 

workload behind these requests may be different for different machines. For simplicity, we 

also assume that each machine is capable of processing the requests redirected from any other 

machine if it is asked to. These assumptions simplify the model and make it easier for us to 

adapt existing load balancing methods for web-based cluster systems. Figure 2.1 depicts the 

model described above. 

 

When scheduling tasks with multi-resource requirements concerned, [Leinberger, et al] 

discusses generalized job selection heuristics to schedule jobs that can best balance the 

Figure 2.1: Multi-resource requirement and heterogeneous servers 
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utilization of all the k resources. Specifically, the backfill lowest (BL) heuristic searches the 

job queue looking for the feasible job (i.e. when available resources can still meet the job’s 

multi-resource requirements) which also demands the most for the currently least loaded 

resource. In contrast, the backfill balance (BB) heuristic attempts to pick the feasible job that 

can result in most balanced resource utilization for the whole system. [Yang, et al] proposes a 

distributed market mechanism (MM) for multi-resource task scheduling. In addition to the 

inter-server imbalance degree that is considered in BL and BB, the MM approach also 

considers the imbalance degree within each server. More specifically, MM not only tries to 

shift load from higher loaded servers to under loaded ones, but also attempts to exchange load 

between servers with moderate load to minimize their internal imbalance. This simple 

heuristic allows more jobs to be packed into each server in general, hence helps increasing the 

overall system utilization. 

The BL, BB, and MM load balancing methods are devised for more conventional task 

scheduling problem where each task is unique, has longer lifespan, and has different 

requirements for different kinds of resources. In this context, a task may be allocated to some 

server initially, executed partially, and be reallocated to another server based on the dynamic 

state of the system. This model does not fit well with web-based systems, where requests need 

to be processed timely and responses generated promptly. Although requests may still be 

redirected among servers, once a request is processed there is no room for rescheduling. To 

adapt the abovementioned methods in such context, a straightforward approach is to aggregate 

multiple requests of the same type into a token, which serves as the unit of scheduling. 

Specifically, each token is associated with some multi-resource requirements derived from the 

type of request and the request rate. Conceptually, when a server is assigned a token, it needs 

to process the designated number of requests before claiming the completion of the token. In 

practice, however, the server may keep the token for a long time and continuously process the 
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corresponding requests before the token is rescheduled elsewhere. Therefore, the token in fact 

represents a certain portion of the workload associated with the request type. 

[Kulkarni, et al] also uses the concept of tokens to facilitate load balancing, but in a 

distributed system setting. The system is modeled as a network of inter-connected servers 

where each node has a single load indicator, based on which “local minimum” and “local 

maximum” can be found by exchanging the load information between neighbors. Two types 

of tokens, namely sender tokens and receiver tokens are created accordingly and passed over 

to neighbors. Servers who receive the tokens may shift its own load or help the other server 

based on its own load status and the kind of token received. The token may also be 

propagated further. [Borovska, et al] applies similar token-based load balancing method to a 

computational model for solving a puzzle problem in parallel computation system. This 

approach uses token messages to circulate among the parallel processors and to store 

information about the load distribution throughout the system. The load balance algorithm is 

initiated and performed by the idle or under-loaded processes by identifying the most heavily 

loaded processor to make a request for load migration. In addition, the token message also 

includes additional fields such as terminating conditions and best solution calculated so far, so 

as to reduce communication overhead since servers need to communicate with each other 

frequently and send messages to inform system manager of their latest computed solutions to 

the sub-problems they are designated to solve. 

[Lin, et al] proposes a gradient model for load balancing in distributed multi-processor 

systems. The method first lets each individual processor determine its own load condition 

(heavy, moderate or light). Secondly, it establishes a system-wide gradient surface 

represented by aggregate value of all proximities to facilitate task migrations. A proximity 

value is determined for each processor to denote the minimum distance between the processor 

and a lightly loaded node in the system. The gradient surface is used as indication of all 
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under-utilized processors, and the load balancing is based on a demand-driven principle which 

requires the under-utilized processors to dynamically initiate load balancing requests. 

Our approach is similar to volunteer computing in many aspects. Briefly speaking, 

volunteer computing is a distributed computing paradigm in which a large number of 

computers, volunteered by members of the general public, are aggregated to provide unified 

computing and storage resources. Not surprisingly, there is usually some entity which is in 

charge of job scheduling among the participating computers. From load balancing perspective, 

the main difference between volunteer computing and traditional parallel computing systems 

is that for the former it is the computers that are idle or under-loaded that ask the scheduler for 

jobs to execute, while for the latter the scheduler usually takes the active role of maintaining 

the load status for the member servers and dispatching jobs once they arrive. Notable 

volunteer computing examples include SETI@Home and BOINC (Berkeley Open 

Infrastructure for Network Computing) [Anderson, et al]. For example, BOINC is middleware 

system being used for applications in physics, molecular biology, medicine, chemistry, 

astronomy, climate dynamics, mathematics, and the study of games. Volunteers participate by 

running BOINC client software on their computers (hosts). Each client periodically 

communicates with the task server to report completed work and to get new work. All 

network communication in BOINC is initiated by the client. The fact that it is the client who 

triggers job assignment can have importance consequence for the overall system utilization, 

especially when each computer has its own load beyond the control of the scheduler. 

Naturally, it is the participating computers who know the best timing to request for jobs. 

Following the same principle, we also investigate some variations of our token-driven load 

balancing method, that is, by letting a server to grab additional tokens from other servers only 

when it is under loaded. 
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Chapter 3  Token-based Load Balancing Architecture 

 

The overall load balancing architecture is modeled as a set of servers interconnected with 

high-bandwidth links. Without loss of generality, we assume each server is configured to 

handle one application; that is, it serves as the entry point for all user requests related to that 

application. In practice, a server may be in charge of multiple applications, or multiple servers 

may share the load for the same application. An application distinguishes itself from other 

applications by the types of requests associated with it; each request type is characterized by 

its specific arrival rate and multi-resource requirements. In our simulation model that will be 

described in more details later, for each server, we will assign the mean and variance for its 

request arrival rate and its requirement for each type of resources. In addition, each server 

contains multiple types of resources each with different capacity. Again, in the simulation 

model we will assign the capacity for each resource type in different servers based on certain 

random distribution.  

A request can be executed on a server only when the available resources of the server 

can satisfy all of the request’s resource requirements; otherwise the request is put in a queue 

waiting for execution. Note that once the request is put in the wait queue, it cannot be 

rescheduled to another server. When a request is in execution, it claims all the resources from 

the server and will not return them back until it is finished. Therefore, the load of a server at a 

given time is the sum of the resources claimed by all the requests in execution. There are two 

sources of requests to each server: one is generated from outside by the user; the other is from 

the other servers in the cluster. This implies that a server may also be able to process requests 

from other applications. For simplicity, we assume each server is capable of executing any 

kind of request if it is asked to. Note that this assumption is not far from reality because, to be 
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scalable, modern cloud computing environment such as Amazon E3 or Google App Engine 

indeed try to replicate the same application to different servers based on the application 

traffic. 

Figure 3.1 depicts the system architecture described above. In the figure, Client 1 

represents an application with high CPU requirement, but the CPU resource of Server 1 is 

overloaded, while Server 2 and 3 only have moderate CPU load. From the perspective of 

Server 1, it is desirable to shift some of the requests from Client 1 to Server 2 or 3 properly to 

reduce its CPU load, so as to increase its own chance to accept more requests from its wait 

queue. Of course, since all of the servers have the same goal, the load balancing mechanism 

needs to ensure that workload is divided and assigned among the servers properly such that 

the overall resource utilization is kept high.  

 

The load balancing algorithm is implemented in a distributed manner. Each server 

contains a workload mapper which monitors and analyzes incoming workload continuously, 

and communicates with other servers’ mappers to decide how workload is divided among 

them. In other words, it is the set of workload mappers that together implement the load 

balancing strategy for the whole system. The dispatcher in each server is the one that takes 

care of actual request dispatching. 

Figure 3.1: Workload distribution model 
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In our token-based approach, each workload mapper divides the workload corresponding 

to each request type into multiple tokens, where the number tokens is determined in a way 

that is proportional to the size of the workload. Specifically, assume request type i has arrival 

rate Ri and average CPU time Ci, its workload can be derived as 

iii CRL *  

We simply pick a system-wise constant Lg as the “unit” of workload all tokens should 

represent. Therefore, the token size Ni for request type i can be derived using the following 

formula: 














g

i
i

L

L
N  

Note that in this thesis we only study the case where all token represent roughly the same 

CPU workload. Other variations are also worth further investigation. For example, we can 

allow tokens to represent different workload sizes and see the impact on the scheduling result. 

Initially, each server holds all the tokens created by its mapper. Tokens serve many 

purposes. Firstly, because tokens can be passed among servers, if a server holds a token, it is 

responsible for the associated workload, meaning it should accept and process the 

corresponding requests dispatched from the token originator. Secondly, the workload mapper 

also uses the tokens to determine how to process each incoming request. For example, if a 

request type is divided evenly into N tokens, the workload mapper first picks one token from 

the N tokens randomly (or in a round-robin manner), checks which server currently holds the 

token, and dispatches the request to that server. Thirdly, because the total workload of a 

server can be computed by summing up all the tokens the server holds, the load balancing 

algorithm can use this information to rearrange tokens among servers to increase system 

utilization. 
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Figure 3.2 demonstrates how tokens are managed within each server, where Tmgr stands 

for the token manager that controls the creation and management of tokens for the server. In 

this example, the server’s own workload for request type i is divided into 6 tokens. The buddy 

set, which is used to hold tokens from other servers, is empty initially. 

 

Figure 3.3 shows how tokens migrate between servers. In the figure, server A attempts to 

shift one of its tokens to server B. The token manager of server A marks the holder of a token 

to be server B, meaning that future requests of type i will have 1/6 chance to be redirected to 

server B. The token manager then notifies server B about the token assignment; Server B 

needs to add a new token in its buddy set to record the newly introduced workload it is 

responsible of. 
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Figure 3.2: Initial token set and buddy set for workloadi on server A 
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Figure 3.3: Token distribution scheme 
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Chapter 4  Token-based Load Balancing based on Market 

Mechanism 

In Chapter 3 we outline the token-based load balancing architecture based on which 

different load-balancing schemes can be conceived. In this chapter, we proceed to describe 

one specific load-balancing algorithm, namely TBMM (Token-Based Market Mechanism), 

that dynamically rearrange tokens among servers to improve the overall system utilization. 

Distributed load balancing methods can be characterized with four policies [Shivaratri, et 

al][Eager, et al], namely information policy, transfer policy, location policy, and selection 

policy. We will also use the four policies to describe our load balancing method. Before going 

into the details, however, we first summarize these four policies: 

 Information policy. The information policy determines the kinds of state information to 

be exchanged among servers. Conventional methods usually exchange information about 

a single resource, such as the CPU load. 

 Transfer policy. The transfer policy determines the set of servers that need to adjust. 

The most common approach is threshold-based, which calculates an upper threshold Ts 

and a lower threshold Tr. The upper threshold Ts may be in the form of avg

avgL + d, where 

avg

avgL  stands for the average resource load of the whole server cluster and d a designated 

constant, or a avg

avgL  where a is a constant value greater than 1. Likewise, Tr may be in the 

form of avg

avgL - d or a avg

avgL where a < 1. 

As shown in Figure 4.1, if the load of a server is greater than Ts, the server is said to be 

in sender state; if less than Tr, the server is in receiver state. Otherwise, the server is in 

common state. As the names suggest, a server in sender state tends to send some of its 



 

15 

jobs to another server with a lower load, while a server in receiver state tends to receive 

jobs from another server with higher load. The servers in common state do not have to do 

anything. In this paper, we also define a new state, call exchanger state, to deal with 

multi-resource load imbalance issue within each server. 

 

 Location Policy. The location policy concerns the steps needed to find the target server 

to which a server in sender state can send jobs to, and to find the source server from 

which a server in receiver state can receive jobs from. A simple heuristics is for a server 

in sender state to match the server with lowest load, and similarly for a server in receiver 

state to match the one with highest load. 

 Selection Policy. Once the server pair is chosen, the selection policy determines which 

jobs should be sent to or received from the matching server. We investigate three popular 

job scheduling approaches, called latest arrival job, backfill lowest [Leinberger, et al] 

and backfill balance [Leinberger, et al]: 

- Latest Arrival Job (LAJ): send the latest arriving job from the sending server to the 

receiving server, 

- Backfill Lowest (BL): find the resource of the receiving server that is most available, 

and send the job that demands that resource most from the sending server. 

- Backfill Balance (BB): send the job which can minimize the (maximum load / 

average load) measure for the receiving server. 

avg

Tr

Ts

Receiver

Common

Sender

 

Figure 4.1: Sender, receiver, and common states 
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As an example, consider Figure 4.2 in which there are two servers with 3 jobs and 1 job, 

respectively, and the load of their resources are 13, 15, 14 and 7, 5, 6, respectively, before job 

exchange (Figure 4.2a). Assume the server on the left is in sender state and has to send a job 

to the server on the right. If the LAJ selection policy is used, the latest arriving job (with 

resource requirements 5, 3, and 5) will be selected (Figure 4.2b). In case the BL selection 

policy is used, since the second resource of the receiving server is least busy, the first job 

(with resource requirements 5, 7, and 5) of the sending server will be chosen because it 

demands the second resource most (Figure 4.2c). Finally, when the BB selection policy is 

used, since the measure of executing the three jobs on the receiving server are 1.16, 1.0, and 

1.03, respectively, the second job will be selected (Figure 4.2d). 
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Figure 4.2: Example of selection policies 
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The framework discussed above is for conventional job scheduling problem. In this 

thesis, only small modification is needed, that is, by replacing the concept of jobs with tokens. 

Note that in conventional job schedule problem, jobs enter the system continuously, and leave 

the system when completed. In our model, however, tokens persist in the system since 

beginning, even though their number may increase or decrease over time. However, such 

difference has no impact from load balancing perspective, since we can simply think of tokens 

as long-running jobs that seldom finish. 

In TBMM, each token assigned to a server will be associated with a cost, which is 

directly proportional to the resource load of that server. We define the cost per resource 

requirement of token w assigned to server j as: 

 
 












K

k

k

w

K

k

k

j

k

w

j

J

LJ

wC

1

1
            (1) 

where 
k

wJ  is the requirement of resource k for token w, k

jL  the load of resource k in server j, 

and K the number of resource types. The reason we define the cost per requirement rather than 

the total cost of a token assigned to a server is that the former helps improve the load 

imbalance degree within a server.  

Below we describe our method in terms of the four policies mentioned above: 

Information policy. In our method, servers exchange their entire resource load K

jj LL ~1  with 

each other, where k

jL represents the load of resource k in server j. 

Transfer policy. We define the load imbalance degree for server j as: 

 



K

k

k

avg

k

jj LLB
1

  (2) 

where k

avgL  is the average load of resource k of the whole server cluster. Bj measures the load 

imbalance degree between servers. Similarly, the absolute load imbalance degree for server j 
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is defined as the sum of absolute values of load differences: 





K

k

k

avg

k

jjabs LLB
1

_     (3) 

which measures the load imbalance degree between resources inside a server j. We then 

determine the state of a server as follows: 

 Sender: 
js BT  . 

 Receiver: 
rj TB  . 

 Exchanger: 
sjr TBT   and 

jabsBT _ . 

 Common: the rest. 

 

Ts and Tr are thresholds that are also commonly used in conventional methods. The difference 

is that we add an exchanger state with the threshold T for servers to further improve load 

balancing of resources inside of a server. 

 

Location policy. For servers in sender or receiver state, the location policy to find matching 

server pairs is the same as those in conventional methods. For servers in exchanger state, on 

the other hand, the policy is different: 

Assume server i and j are both in exchanger state, we define the load imbalance degree 

for the pair before token exchange as: 

jabsiabs BB __      (4) 

and the ideal load imbalance degree after token exchange as: 

   

 




K

k
k

j

k

i

k

j

k

avg

k

j

k

i

k

avg

k

i

RR

RLLRLL

1

2  (5) 

where k

iR  and k

jR  are the capacity ratios of resource k for heterogeneous servers i and j.  
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Our goal is to find the pair of servers i, j such that their imbalance degree before token 

exchange minus their ideal load imbalance degree afterwards is the largest. For illustration, 

consider Figure 4.3a in which there are three servers; the ratio of their capacities is 1:3:4 and 

their current loads compared to the whole system load are +4%, -4%, and +3% respectively. 

Before token exchange, Babs_1, Babs_2, and Babs_3 are 4, 4, and 3, respectively. Without 

considering server capacity, we may tend to pair server 1 with server 2, because the imbalance 

degree before token exchange is 4 + 4 = 8, and  
422

31

3414
2 




  afterwards (Figure 

4.3b), hence the improvement of imbalance degree is 8 – 4 = 4. If we pair server 2 and server 

3 instead, the imbalance degree is 4 + 3 = 7 before token exchange, and becomes 

   
002

43

4334
2 




  afterwards (Figure 4.3c), an improvement by 7. 

 

+4% -4% +3%+4% -4% +3%

S1 S2 S3            (a) Before job exchange 

-2% -2% +3%-2% -2% +3%

S1 S2 S3
(b) Result of pairing server 1 and server 2 

+4% 0% 0%+4% 0% 0%

S1 S2 S3
(c) Result of pairing server 2 and server 3 

Figure 4.3: Example of location policy 
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Selection policy. Employ Equation (1). For each server pair i, j selected by the location policy 

among the servers in sender and receiver states, the token, w, to be sent from server i to j is 

the one that can result in minimum  wC j
 for server j.  

For each server pair i, j where both servers are in exchanger state, we want to pick a 

token from each server for exchange, and the exchange can benefit both servers overall. We 

define the benefit of transferring a token w from server i to server j as: 

   wCwC ji      (6) 

Accordingly, the total benefit of exchanging token w1 in server i with token w2 in server j 

becomes 

   )2()2()1()1( wCwCwCwC ijji        (7) 

Furthermore, the benefit should be larger than a threshold T for the exchange to take place. 

Without the threshold T, it is possible that two servers in exchanger state may constantly 

exchange the same pair of token to and from each other without converging. 
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Chapter 5  Adaptive Token-based Market Mechanism 

 

The algorithm described in previous chapter assumes workload associated with each 

request type does not change over time. When requests of a certain request type surge and 

persist for a long time, the tokens for the request types no longer represent the effective 

workload correctly. This means the estimated total workload for all the servers that hold any 

of these tokens is not correct, and some adjustment to the tokens is needed. However, it is not 

desirable to inform all involved servers to update the corresponding tokens because doing so 

may require many update messages and trigger many new load balancing activities. Instead, 

the workload mapper that originates the tokens can create additional number of tokens to 

match the actual workload it observes. Similarly, when the actual workload decreases, the 

workload mapper can reduce the number of tokens, by removing the tokens hold in the local 

server or reclaiming some tokens back from remote token holders. Whether the token number 

is increased or decreased, the individual tokens remain unchanged. 

We implement this strategy by extending the original load balancing algorithm described 

previously. The new algorithm, called adaptive token-based load balancing (ATBMM), 

adjusts the number of tokens in face of changing workload. Figure 5.1 shows the three cases, 

namely, when workload surges, drops, or remains within a certain range: 
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In case 1 where the workload surges, the calculated token number is larger than original 

number of tokens, and new tokens of the same kind are added to the token set. In case 2, the 

new token number becomes smaller, so server A informs server C to recall one of the token 

back; server C also updates its buddy set accordingly. In case 3, the newly calculated token 

number is equal to original one, and nothing needs to be done.  

Token set 

Tmgra 

Token buddy set 

Figure 5.1: Adaptive token-based Market Mechanism 
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Chapter 6  Simulation 

 

In this chapter we evaluate the performance of TBMM and ATBMM and compare the 

results with other methods via simulation. The simulator is built on top of an event-driven 

simulator PeerSim [PeerSim]. The simulation model is summarized as follows. Each server is 

pre-configured to serve some of the applications, and the assignment will not change during 

the entire run. An application consists of several request types, each of which is associated 

with multi-resource requirements. When a request of a given type is generated, its actual 

requirement for each of the resources is determined randomly according to the request type’s 

multi-resource requirements. The request can be executed on a server only when the available 

resources of the server can satisfy all of the request’s resource requirements; otherwise the 

request is put in a queue waiting for execution. Once the request is put in the wait queue, it 

cannot be rescheduled to another server. To investigate the effectiveness of our load balancing 

method, we also adapt existing multi-resource load balancing methods BL, BB to fit our 

model, and compare them with our method.  

We conduct the simulation for clusters of 32 servers. Each server has three kinds of 

resources: CPU (measured in Gflops - giga floating points operations per second), Memory 

(measured in GBs), and Network Bandwidth (measured in gb/s). There are two independent 

parameters used to configure the degree of heterogeneity of server resource capacities: 

average server resource (Srm) and server resource variance (Srv). Srv is used to specify range of 

capacity for the resources within a server. A resource variance of zero implies the resource 

capacities of CPU, memory, and network bandwidth is the same for all the servers. We refer to 

this configuration as homogeneous configuration. Otherwise, the configurations are 

heterogeneous. A resource variance of Srv = ±X implies that the capacity of the resource will 

be assigned the value randomly within the range (Srm – X, Srm + X). In our simulation we set 
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the value of X to be 0, 20, 40, 60, 80 and 100, respectively. 

CPU capacity is specified in terms of Gflops. We assume each machine uses time sharing 

to allocate the CPU resources among the requests it is processing. In other words, all requests 

in execution share the CPU resource, and they are executed by the CPU in a round-robin 

manner. 

The workload model is described as follows. All the methods are simulated using static 

workload, except ATBMM which is simulated with time-varying workload. For each case, a 

suite of synthesized workload was generated. Two main settings of the simulated workload 

are the request arrival rate and the generation of multi-resource requirements. For both static 

workload and changing workload, we have experimented with different combinations of 

changing workloads. We allocate 1 to 3 workloads out of 6 workloads to each server. A 

workload can be served by more than one server. When a server is configured to be 

responsible for a workload, the corresponding request will arrive at the server’s local wait 

queue depending on the specified arrival rate following the Poisson distribution with mean λk 

(0 ≤ k ≤ 5). The arrival rates for all workloads are adjusted such that resource utilization for 

the baseline algorithm (without load balancing) is around 80%. The multi-resource 

requirement of requests is generated as weak correlation among CPU, Memory and Network 

bandwidth requirements [Leinberger, et al].  

The settings of 6 workloads, along with the initial configuration to each server are shown 

in Table 6.1 and Table 6.2. 

Table 6.1: The multi-resource workloads used in the simulation: 

Workload (jobs/ 

time unit) 

CPU (gigaflop) Memory(GB) Network (gb/s) 

W0 (λ = 2) 0.95~1.05 10~20 1~2 

W1 (λ = 0.8) 0.35~0.45 10~20 0.5~1.5 
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W2 (λ = 1.21) 0.55~0.65 5~15 1~2 

W3 (λ = 0.29) 0.37~0.47 1~9 2~3 

W4 (λ = 0.57) 0.79~0.89 20~30 0.1~0.9 

W5 (λ = 1.14) 1.63~1.73 10~20 1~2 

 

 

Table 6.2: The 4 combination of 6 workload in the simulation: 

Workload (jobs/ 

time unit) 

Comb. 1 Comb. 2 Comb. 3 Comb. 4 

W0 (λ = 2) ○ N/A N/A N/A 

W1 (λ = 0.8) N/A ○ ○ N/A 

W2 (λ = 1.21) N/A ○ N/A N/A 

W3 (λ = 0.29) N/A N/A N/A ○ 

Figure 6.1: Initial configuration of workloads on servers 

Four Combinations of Workloads 

Server 1 Server 2 Server 3 Server 4 

W0: 2 jobs/sec W1: 0.8 jobs/sec 

W2: 1.21 jobs/sec 

W1: 0.8 jobs/sec 

W5: 1.14 jobs/sec 

W3: 0.29 jobs/sec 

W4: 0.57 

jobs/sec W5: 1.14 jobs/sec 

Server 5 Server 6 Server 7 Server 8 

…
 

…
 

…
 

…
 

W0 W1 W2 W1 W5 W3 W4 W5 

CPU/Memory/Network 
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W4 (λ = 0.57) N/A N/A N/A ○ 

W5 (λ = 1.14) N/A N/A ○ ○ 

To simulate demands surge with different duration and magnitude, we first referenced a 

24-hour e-commerce trace from a large scale e-commerce site [Ranjan, et al]. In the study, the 

workload consists of 18 percent static requests, 57 percent dynamic request, 8 percent that are 

un-cacheable, and 17 percent request of other types. Static request usually incurs resource 

bottleneck of single resource, such as network transmission latency, while dynamic page 

request incurs a combination of multiple resources. The un-cacheable request incurs 500 and 

100 times more CPU demand than a cache hit request. To parameterize and characterize the 

workload changing phenomena, we synthesize our changing workload using sine waves. The 

baseline of the sine wave is chosen to be workload without changing, that is, the baseline 

workload without surging user demands. We use two parameters, Wamplitude, Wcycle_time to 

control the “shapes” of the changing workload.  

The amplitude of the sine wave (Wamplitude) is taken from 0.3 to 1, and the cycle time is 

14 to 128. Figure 6.3 and Table 6.3 shows our synthesized changing workload pattern and the 

configuration for each parameter. All simulation is conducted on a time line of 700 units. We 

set Wamplitude to be ±0.3 to ±1.0 request per time unit. The baseline (±0 request per time unit) 

incurs no change to the workload. In Figure 6.3, for example, the cycle-time for the sine wave 

is 106 time units, with amplitude ±1.0 request per time unit. For the entire simulation run, 

there are about 6.6 cycles. As the cycle time increases, the number of cycles decreases (6.5 to 

120 cycles in our experiments). Finally, the average token size is configured such that number 

of tokens each server has initially ranges 12 to 50. 
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Table 6.3: The changing workload configurations of simulation: 

Amplitude ±0.3~1.0 request per time unit 

Cycle time (Number of cycles per run) 14(50), 26(27), 66(10.6), 80(8.75), 

106(6.6), 128(5.5) (unit: time unit 

(number of cycles per run) 

Token size (Use token size and number 

of requests per 10 time units to 

calculate number of token) 

1.68 (unit: gigaflop): used in all 

experiment except for token size effect 

comparison 

Token size (Use token size and number 

of requests per 100 time units to 

calculate number of token) 

4, 6, 8, 10, 12, 14, 16, 16.80 (unit: 

gigaflop): used in token size effect 

comparison 

The major performance metrics measured in our simulation are response time, server 

utilization, queue length, and standard deviation of queue length. For server utilization, we 

measure CPU utilization as percentage of CPU in busy state, and use it as the server 

utilization. For memory and network utilization, it is measured as percentages of occupied 

capacities. The utilization of both can be affected by the job’s CPU requirement. In our model, 

CPU is busy as long as there are jobs in execution, and jobs have different execution time 

Figure 6.2: Our synthesized workload 

Cycle inter-arrival unit: 106; Amplitude=±1.0request (per time unit) 
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depending on CPU capacity of each server. Even if there is only one job, the CPU is busy but 

the other resources may be under-utilized. Therefore we separately observe 3 resources 

utilization and show only the CPU utilization as server utilization. We will discuss memory 

and network utilization shortly. 

The following sections provide performance evaluation of TBMM and ATBMM, which 

are compared with other algorithms BL and BB as well as the baseline algorithm where no 

load balancing is performed.  

First, we consider the case of static workload with varying server capacities. The results 

are shown in Figure 6.3 - 6.7. In Figure 6.3 and 6.4, as the heterogeneity of server capacity 

grows, all the methods except our TBMM have high server variance and low server utilization, 

which suggests that the inter-server imbalance degree is high, and there exist bottlenecks for 

some resources while the other resources remain idle. This causes more jobs to wait in the 

wait queue, and the overall average utilization becomes low. TBMM achieves the lowest 

server variance and the highest server utilization in all the cases, suggesting that a request has 

more chance to be redirected to servers with under-utilized resources, and thus more jobs can 

get executed instead of waiting in the queue. This is also confirmed in Figure 6.5 and 6.6, in 

which TBMM achieves the lowest response time and queue length. Figure 6.7 further shows 

that TBMM has lowest variance for queue length, showing that the quality of service seen 

from each request is more uniform. 
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Figures 6.8 - 6.11 show the average number of servers required against response times 

under a fix load. The load for each of the 32 servers is fixed load in this experiment. For a 

targeted response time such as 10 sec, TBMM uses 34 servers, while TBBL and TBBB uses 

Figure 6.3, 6.4: Average standard deviation of server utilization and average 

server utilization 

Figure 6.7: Average standard deviation of queue length 

X-axis: Server Heterogeneity Degree 

Y: Average Response Time (unit) 

Y: Average Server Utilization (100%) 

Y: Queue Length 

Y: Average Standard Deviation of 

Queue length 

Y: Average Standard Deviation 

   of Server Utilization 

Figure 6.5, 6.6: Average response time and average queue length 
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about 38 servers, and the baseline method uses about 41 servers. Moreover, for a server 

number of 32, TBMM outperforms all of the other resource balancing algorithms Note that as 

the number of servers grows, all methods have lower server utilization. This means allocating 

more servers can improve performance, but utilization will drop, wasting resources. 

Increasing the number of servers also lowers average queue length and variance, which 

reflects the fact that with more servers, jobs has more opportunities to be executed on any 

server, therefore fewer jobs will be queued and the performance improves.  

 

Figure 6.8, 6.9: Average response time and average server utilization 

Y: Average Response Time (unit) Y: Average Server Utilization (100%) 

X-axis: Number of servers 
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We examine the performance of ATBMM with changing workload as follows. Figures 

6.12 - 6.15 show the results when increasing the cycle times. As cycle time increases, the 

average queue length increases. For shorter cycle time, although the job arrival rate surges 

during short period, it drops down quickly, too. The chances of forming a system bottleneck 

due to unhandled jobs increase as cycle time increases. We observe from the response time 

that ATBMM achieves lowest wait queue length. Moreover, it achieves lowest queue variance 

as cycle time increases. This shows that our method outperforms other multi-resource 

token-based algorithms. 

Figure 6.10, 6.11: Average queue length and standard deviation 

Y: Queue Length Y: Average Standard Deviation of 

Queue length 

X-axis: Number of servers 
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We also evaluate the number-of-servers effect on the response time for changing 

workload. Figures 6.16 - 6.19 show the results for high magnitude (±1.0 request per time unit) 

and long cycle time. Again, the load of each server is fixed. For a fixed response time 

constraint such as 10 sec, ATBMM needs 34 servers, while TBMM needs 40 servers. For 

TBBL and TBBB, it’s about 50 servers. For baseline method, a number of about 54 servers is 

required. The queue length results have similar trend. Note that in the case of average 

standard deviation of queue length, ATBMM achieves a relatively low standard deviation, and 

remains low even if number of servers decreases. This shows that the queue lengths are 

Figure 6.14, 6.15: Average queue length and standard deviation 

Figure 6.12, 6.13: Average response time and average server utilization 

Y: Average Response Time (unit) Y: Average Server Utilization (100%) 

Y: Queue Length Y: Average Standard Deviation of 

Queue length 

X-axis: Cycle-inter-arrival time (unit) 
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balanced for each of the servers, while the other methods have high imbalance degree for the 

queue lengths. Another noticeable phenomenon in the simulation is the dramatic improvement 

due to increasing number of servers. However, this significant improvement does not imply 

that the larger number of servers, the better the performance, because the server utilization 

will be lowered. In addition, we configure the system with a fix workload that is about 70% to 

80% server utilization and average queue length about 90 jobs for baseline method. This 

already saturated workload may cause a high response time, while increasing more servers 

help distribute the workload to more servers, and average queue length decreases, and thus 

lower response time. 

 

Figure 6.16, 6.17: Average response time and average server utilization 

Y: Average Response Time (unit) Y: Average Server Utilization (100%) 

X-axis: Number of servers 



 

34 

 

We also investigate the effect of increasing token size. Figures 6.20 - 6.23 show the 

simulation results. As size of token increases, the number of tokens for each server decrease. 

All the load balancing methods except ATBMM have long response times when the token 

size is small. The reason is that, when the token size is small, it becomes more difficult for 

other methods to balance the surging workload. In this case, our algorithm can adapt to 

changing workload, adding more tokens when workload surges, and can balance more system 

imbalance. Although not shown here, we have also observed that using small token size does 

not incur too much overhead because it does not induce excessive token exchanges when 

compared to the cases where tokens are larger. 

Figure 6.18, 6.19: Average queue length and standard deviation 

Y: Queue Length Y: Average Standard Deviation of 

Queue length 

X-axis: Number of servers 
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Figure 6.20, 6.21: Average response time and average server utilization 

Figure 6.22, 6.23: Average queue length and standard deviation 

Y: Average Response Time (unit) Y: Average Server Utilization (100%) 

Y: Queue Length Y: Average Standard Deviation of 

Queue length 

X-axis: Token size (unit: 100 gigaflop) 
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Chapter 7  Discussion and Future work 

It is interesting to compare the effect of changing workload on the number of servers 

required to meet a given response time requirement. Under static workload, performance of 

all load balancing methods improves quickly as the number of servers increase. For a target 

response time such as 8 time units, the differences of TBMM compared with existing load 

balancing methods (including the baseline method) is 4 and 10 servers, respectively. Under 

changing workload, the differences between TBMM and the other methods grow to 8 and 12 

servers, respectively, with the same response time constraint (8 time units). ATBMM reduces 

an additional 6 to 8 servers compared to TBMM. In fact, as workload changes, the surging 

workload above baseline causes a large number of jobs queued at each server. If there is not a 

good adaptive way to adjust the system to tackle the surging workload, it becomes a source of 

system bottleneck. On the contrary, as workload declines, the number of jobs queued at server 

also declines, and all methods can handle the requests quickly, hence the differences of all 

methods are not significant. 

Token size is also an issue. As the token size increases, the number of token transfers 

used to balance workload of each server also increases for all the load balancing methods 

except ATBMM. Higher number of token exchanges implies higher system overhead 

(although not further investigated in this thesis). In the future we will also study mechanisms 

that can dynamically adjust token size based on workload change. The goal is to reduce token 

transfers while maintaining high system performance. 
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Chapter 8  Conclusion 

 

In this thesis, we have defined the load balancing problem that takes into account 

multi-resource requirements in the context of web-based systems, and investigated an 

token-based approach to load balancing for such systems. We investigated how well existing 

multi-resource load balancing algorithms perform when request patterns are heterogeneous 

and time-varying. Our proposed token-based load balancing algorithm adapts well to the 

changing workload by maintaining a dynamically changing token set that reflects the 

workload change for each server, so that temporal surge in workload for a server can be 

shifted to other servers via the market mechanism. Simulation shows that TBMM outperforms 

other multi-resource load balancing methods under various system configurations, especially 

when inter-server and intra-server resource heterogeneity are high. We also showed that when 

workload changes over time, the ATBMM method also outperforms the other methods, 

including TBMM. 
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