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具有固定大小搜尋符號之隱私的字串搜尋 

 

學生:劉思維        指導教授:曾文貴 博士 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

 

  目前有許多密碼學上的方法能夠支援在加密資料上進行關鍵字的搜尋，但是

較少相關的方法能夠支援更一般化的查詢方式，例如：字串搜尋。 

  在我們所提出的方法中，標籤代表加密過後的文件，搜尋符號則是代表用來

搜尋文件的字串加密。根據我們所提出的方法，針對一份加密過後的文件當中，

我們可以得知是否其包含一個特定的字串。並且在計算上難題的假設之下，我們

可以證明我們的方法是安全的。 

  就我們所知，目前有一個相關的方法是針對在加密資料上進行字串搜尋，不

過這個方法所需要的搜尋符號大小較大。在我們提出來的方法中，我們可以將搜

尋符號大小降低到固定大小，並且我們希望盡可能減少網路傳輸的通訊量以及減

少使用者端的計算負擔。 

關鍵字：具有隱私、字串搜尋、樣式比對、全文搜尋、關鍵字搜尋、同代像加密、

隱私同態、RSA 假設 



Privacy Preserving String Matching
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Abstract

Nowadays, many cryptographic schemes have been developed to achieve search on

encrypted data, but most of them are keyword search. Few of schemes can support

more general query like string matching on encrypted data.

In our protocol, the tag stands for the encrypted text, and the token stands for

the encrypted pattern. We propose a scheme which can determine whether the en-

crypted text contains the dedicated pattern. Under the computational assumption,

we can prove it secure.

As far as we know, there exists one protocol to our problem, but its token size

is large. We can reduce the token size to the constant size, and we hope to reduce

the communication size in the network and the computational time in the user side

as far as possible.

Keywords: privacy preserving, string matching, pattern matching, full text search,

keyword search, homomorphic encryption, privacy homomorphism, RSA assumption

ii



iii 
 

誌 謝       

 

  本篇論文得以順利完成，都要感謝受到許多的幫助。 

 

  首先，我要感謝我的指導教授曾文貴教授，在這兩年求學過程中，老師給予

我在研究上的指導與經驗上的分享，帶領我進入密碼學與資訊安全的領域，能夠

有所收穫。老師嚴謹的態度，使我更加積極，不論是在課業或研究上，自己都認

真付出，盡力作好。接著，我要感謝口試委員清大資工系孫宏民教授、交大資工

系蔡錫鈞教授以及交大電機系黃育綸教授，在論文上給予我的寶貴建議，使得論

文可以更加完善。 

 

  另外，我要感謝已經畢業的成康學長，在我就讀一年級的時候給予課業、研

究與實驗室生活上的幫助，再加上最近透過電子郵件向他請教時，也提供論文方

面許多寶貴經驗與協助。感謝實驗室的孝盈學姊，總是細心地協助解決研究上的

疑惑與實驗室大小問題，還有煥宗與宣佐學長的幫忙。感謝同學韶瑩，在課業與

研究上與他的討論過程都讓我倍感收穫，還有家宏、毅睿、證傑與政利，藉由同

儕之間的切磋、鼓勵，大家一起進步。感謝學弟們與助理天心，大家一起聊天度

過的歡樂時光，以及大大小小事情也都互相幫忙。感謝實驗室所有成員，大家兩

年來的陪伴與幫忙。 

 

  最重要的，我要感謝我的家人，特別是爸爸與媽媽，一直以來給我的細心照

料，無微不至，從小到大都是支持我的最大動力。還有我的女友佳玲，一路走來，

幸好有妳時時鼓勵與幫忙，總是讓我能夠再次重拾信心與動力，真的很感謝妳的

大力相助，希望妳也順利完成碩士學業。還有我的弟弟，偶爾與你之間天南地北

的聊天對話，也是減壓的一大助力，希望你也順利完成碩士學業。 

 

  最後，我要感謝所有我曾經受到的幫助，以及交通大學與交大資工，提供優

良的求學環境，讓我能夠盡情在其中完成學業，入寶山而滿載而歸。 

 

  謹以此論文獻給大家，一同分享喜悅。 



Contents

Abstract in Chinese i

Abstract ii

Acknowledgement iii

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminary 3

2.1 String Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The Naive String-Matching Algorithm . . . . . . . . . . . . . 4

2.2 Privacy Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 RSA cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 ElGamal cryptosystem . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 9

iv



3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 String Matching on Encrypted Data . . . . . . . . . . . . . . . . . . . 12

3.3 Keyword Search on Encrypted Data . . . . . . . . . . . . . . . . . . . 14

3.3.1 Secret-key Based Keyword Search . . . . . . . . . . . . . . . . 15

3.3.2 Public-key Based Keyword Search . . . . . . . . . . . . . . . . 19

3.3.3 String Matching with Keyword Search . . . . . . . . . . . . . 21

3.4 Other Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Proposed Protocol 24

4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Heuristic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Scheme I: The Deterministic Scheme . . . . . . . . . . . . . . 26

4.2.2 Scheme II: The Randomized Scheme . . . . . . . . . . . . . . 26

4.2.3 Scheme III: The Slide Scheme . . . . . . . . . . . . . . . . . . 27

4.2.4 Scheme IV: The Final Scheme . . . . . . . . . . . . . . . . . . 28

4.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Our Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 Mask Exponent s . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.4 Mask Base Number r . . . . . . . . . . . . . . . . . . . . . . . 36

5 Analysis 37

5.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 RSA Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.3 Security Reduction . . . . . . . . . . . . . . . . . . . . . . . . 38

v



5.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Small Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2 Search Too Many Times . . . . . . . . . . . . . . . . . . . . . 41

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.2 Exposure of Occurrence Position . . . . . . . . . . . . . . . . 41

5.4.3 Decryptable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 43

Bibliography 44

vi



List of Tables

4.1 Character Space Encoding . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Text Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Protocol Space Comparison . . . . . . . . . . . . . . . . . . . . . . . 39

vii



List of Figures

2.1 Occurrences of Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Naive String-Matching Algorithm . . . . . . . . . . . . . . . . . 5

viii



Chapter 1

Introduction

Search on encrypted data has become popular in recent years. Because more and

more application service providers have been increased, the users can process their

data on the remote server for saving cost of storage and computation, just like “cloud

computing”. One service provider supports storage, and the users can upload their

data and download it in the future.

For the confidentiality, the data are encrypted before being uploaded to the

server. But, if the user wants to search on encrypted file, the naive solution is to

download the entire file, decrypt it, and then search on the local decrypted file. The

naive solution requires much more cost of computation and communication, so the

better solution is wondered.

Nowadays, there are many protocols proposed for this purpose. Usually, we have

to construct the tag of each file and append the tag with the encrypted file to the

remote server, and then tags will be searched in the future. Until now, most protocols

concern on keyword search. The main limitation is that the user can only search the

pre-defined “keywords” and can not search any pattern which occurs in the file for

the general purpose. Sometimes the latter way is called “string matching”, “pattern

1



matching”, or “full text search”. It is natural, and we are interested to extend it to

the encrypted data.

1.1 Contribution

Until now, there exists one protocol proposed by Oleshchuk[1]. It is designed directly

for pattern matching on encrypted data, but the token size is large. Like Oleshchuk’s

protocol, we use the same idea as the naive string-matching algorithm to develop a

protocol which supports string matching on encrypted data, and the token size is

constant. Furthermore, we can prove it secure under the computational assumption.
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Chapter 2

Preliminary

In this chapter, we introduce the preliminaries which are used in our protocol. First,

the problem of string matching is discussed, and then the naive string-matching

algorithm is showed. Second, the idea of privacy homomorphism is discussed.

2.1 String Matching

The problem “String Matching” has been mostly studied in literature, and many

programming languages or some utilities have it as the basic primitive function or

the basic tool. Especially, the text-editing programs frequently use it. Here, most

of definitions and examples follow [2].

Let Σ be the character space, e.g. {0, 1} or {a, b, . . . , z}. The array of characters

is called “string”. In other words, any string S can be expressed as an array S[1 . . . n],

and size of the array, n, is called length of the string S. A substring of the string S

is expressed as S[i . . . j] for all i, j such that 0 ≤ i ≤ j ≤ n.

The problem of string matching has two main roles like “text” T and “pattern”

P . Both T and P are the string of finite length over the same character space. We

3



want to find all “occurrences” of the pattern P in the text T . Obviously, length of

P must be smaller than or equal to length of T . The following figure shows that the

pattern P occurrences at the position 2 of the text T .

Figure 2.1: Occurrences of Pattern

2.1.1 The Naive String-Matching Algorithm

A natural approach to the string matching problem is to verify whether the pat-

tern occurrences at any position of the text. Let the text be T [1 . . . n] and the

pattern be P [1 . . .m] where 0 < m ≤ n. The naive string-matching algorithm is as

follows.

1: for i = 1 to n−m + 1 do

2: if T [i . . . i + m− 1] == P [1 . . .m] then

3: print i

4: end if

5: end for

There are two main operations like “comparing” and “sliding” in the naive string-

matching algorithm. Comparing is happened on line 2 and requires to test whether

the corresponding positions of the text and the pattern are same. After the test on

line 2, sliding is happened as the text is shifted left one character and is compared

with the same pattern repeatedly.

The following is an example.

4



Figure 2.2: The Naive String-Matching Algorithm

Each test on line 2 is executed until some mismatch is found, so each comparing

requires O(m) times. The for-loop is executed O(n − m + 1) times. Overall, the

execution time of the naive string-matching algorithm is O((n−m + 1)m).

There are more efficient ways to reduce the execution time with extra pre-

processing. However, we focus on search on encrypted data like the naive way.

2.2 Privacy Homomorphism

“Privacy Homomorphism”(PH) is firstly proposed by Rivest et al.[3]. The encryp-

tion function called “privacy homomorphism” permits encrypted data to be operated

without preliminary decryption of it.

For example, given two encryptions E(m1) and E(m2). There exist some oper-

ations like ⊗ and ¯ such that

E(m1)⊗ E(m2) = E(m1 ¯m2).

Sometimes an encryption scheme which has this property is also called a homomor-

phic encryption scheme.

5



The other similar idea is that given an encryption E(m) and we can generate

another different encryption E(m′) such that m and m′ are meaningfully related if

the encryption function is “malleable”[4].

For example, one-time pad is a perfect secure encryption scheme and malleable.

Assume that there exists one ciphertext like EK(m) = K ⊕ m = c. We can get

another ciphertext of plaintext m ⊕ r by c ⊕ r = (K ⊕ m) ⊕ r = K ⊕ (m ⊕ r) =

EK(m⊕ r).

The homomorphic or malleable encryption can support to search on encrypted

data. On the other way, it may violate the integrity of data or authentication of

signature. Here are some well-known encryption schemes which are privacy homo-

morphism.

2.2.1 RSA cryptosystem

RSA cryptosystem proposed by Rivest et al. is a public key cryptosystem and pop-

ular for the purposes of encryption and signature[5].

• Key Generation

Randomly choose two large and distinct primes p and q such that |p| = |q|.

Let n = pq. Choose random e ∈ Z∗
φ(n) and then compute d = e−1 mod φ(n).

Then the public key pk is (n, e) and the secret key sk is (n, d).

• Encryption

Input a plaintext m ∈ Zn and output the ciphertext of m is

Encpk(m) = me mod n

• Decryption

6



Input a ciphertext c ∈ Zn and output the plaintext of c is

Decsk(c) = cd mod n

Based on modular power, RSA is a homomorphic encryption. For example,

assume that

Encpk(m1) = me
1 mod n

Encpk(m2) = me
2 mod n

Then, we can get a new ciphertext of (m1 ·m2 mod n) as follows:

Encpk(m1) · Encpk(m2)

≡ (me
1 mod n) · (me

2 mod n)

≡ (m1 ·m2 mod n)e

≡ Encpk(m1 ·m2 mod n) (mod n)

Our protocol is based on the idea of modular power. Under RSA assumption,

we can prove it secure.

2.2.2 ElGamal cryptosystem

ElGamal cryptosystem proposed by ElGamal is a public key cryptosystem for the

purposes of encryption and signature[6].

• Key Generation

Choose a large prime p and let g be a generator of Z∗
p . Then, choose a random

x such that 0 ≤ x ≤ p− 2 and compute y = gx mod p. Finally, the public key

pk is (p, g, y) and the secret key sk is (p, g, x).

7



• Encryption

Input a plaintext m ∈ Zp, and then choose a random r such that 1 ≤ r ≤ p−2.

Output the ciphertext of m is

Encpk(m) = (gr,m · yr)

• Decryption

Input a ciphertext c = (A,B). Output the plaintext of c is

Decsk(c) =
B

Ax

ElGamal encryption is also a homomorphic encryption. For example, assume

that

Encpk(m1) = (gr1 ,m1 · yr1)

Encpk(m2) = (gr2 ,m2 · yr2)

we can get a new ciphertext of (m1 ·m2 mod p) as follows:

Encpk(m1) · Encpk(m2)

:= (gr1 · gr2 ,m1 · yr1 ·m2 · yr2)

= (g(r1+r2), (m1m2) · y(r1+r2))

= Encpk(m1m2 mod p)

Note: All above computations are finished in Zp.

We can observe that the homomorphic encryption can aggregate many cipher-

texts into one ciphertext. Our protocol uses this idea to reduce the token size and

achieve the sliding operation on encrypted data.
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Chapter 3

Related Work

In this chapter, we will introduce the related work about string matching and key-

word search on encrypted data.

3.1 Framework

When the problem of string matching is extend to the encrypted data, there are

some modifications for this purpose. Here, most of definitions and models follow [7].

There are three main parties in the problem like

• Data Owner

The party generates the original plaintext data, and then encrypts the data

and uploads it to the server.

• Data Client

The party issues some instructions to the server for retrieving some encrypted

data uploaded by the data owner.

• Server

The party serves for all the data owners and the data clients. For the data

9



owners, it supports storage space for storing the encrypted data uploaded

from the data owner. For the data clients, it supports computational power

for processing the encrypted data indicated by the data client.1

We explain some definitions which occur in the following schemes and our pro-

tocol. There are two main roles in the problem of search on encrypted data like

• Tag

The tag stands for the encrypted data. Namely, the original plaintext data

are encrypted into the tag. Therefore, searching on encrypted data is actually

searching on the tag.

The process of generating tag must involve with the message like the text

which will be searched in the future. In other words, it seems to map original

plaintext data into the encrypted form. In our protocol for string matching

on encrypted data, the tag is also called “encrypted text”.

There are some schemes which support both searching and decrypting on the

tag. However, decryption of the tag is not necessary if we concentrate on

search on encrypted data. One way can deal with it like using the symmetric

encryption algorithm (e.g. AES, DES, etc.) on the plaintext data and ap-

pending it with the tag. Therefore, we prefer to use the word tag instead of

ciphertext to represent the data which will be searched in the future.

• Token

It preserves some functionality like searching on the tag. More precisely, if any

party wants to searching on the tag, the party requires to have the appropriate

token which can be generated only by the data client’s secret key.

1In our protocol, we assume that it is the semi-honest model which means the server must follow

the protocol.
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The process of generating token must involve with the message like the pat-

tern which will search for the text. Generally speaking, the token is called

“encrypted query”. In our protocol, the token is also called “encrypted pat-

tern”.

Here, we give a general description about the protocol of search on encrypted

data in the following sections. Most of schemes can be expressed as the following

four algorithms.

• KeyGen

– Input: a security parameter which usually determines length of the key.

– Output: the keys.

Note: In the secret-key setting, GenTag and GenToken involve with the

same secret key. In the public-key setting, GenTag and GenToken involve

with the public key and the private key respectively.

• GenTag

– Input: the plaintext data and the key.

– Output: the tag which can be searched with the token.

• GenToken

– Input: the plaintext data and the key.

– Output: the token which can search on the tag.

• Search

– Input: the tag and the token.

11



– Output: True(Yes) means found, or False(No) otherwise.

Note: In some protocols, the search result is the occurrence positions

instead of Yes or No like the string matching problem. It still satisfies

the above definition with returning Yes if some occurrence is found or No

if there is no any occurrence.

3.2 String Matching on Encrypted Data

Until now, there exists one protocol which was proposed by Oleshchuk and supports

to search on encrypted data with pattern matching [1]. Oleshchuk proposed a so-

lution of matching bitstrings in the bitstring encrypted by stream cipher using the

naive string-matching algorithm. The main idea is that the encryption scheme is

malleable.

As the string matching problem, there are two roles like text and pattern. The

text T is encrypted by the stream cipher and uploaded to the remote server like

EK(T ) = T ⊕K

where ⊕ is the operation of bitwise exclusive OR.

Define Tm
i denote a bit substring of the bitstring T that begins at the position

i and has length m. Let length of T and K be n and the pattern P be a bitstring

of length m(m ≤ n). The user wants to find all occurrences of P in the text T and

does the following steps:

1. Randomly choose r as a bitstring of length m.

2. Compute the set Q(r,K) = {Km
1 ⊕ r,Km

2 ⊕ r, . . . , Km
n−m+1 ⊕ r}.

3. Send P ⊕ r and Q(r, k) to the remote server.2

2Such information uploaded to the server implies the length of P known to the server.
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When the server receives the information from the user, it verifies if for all

i = 1, 2, . . . , n−m + 1

(Tm
i ⊕Km

i )⊕ (Km
i ⊕ r) = (P ⊕ r)

For the confidentiality of the text T and the pattern P , T and P are encrypted

before being sent to the server. Namely, the user can mask the pattern P by a

random bitstring r. Since the stream cipher is malleable, the server can convert

each partial ciphertext (Tm
i ⊕Km

i ) with the mask (Km
i ⊕ r) into another ciphertext

(Tm
i ⊕ r) = (Tm

i ⊕ Km
i ) ⊕ (Km

i ⊕ r) which is compared with the masked pattern

(P ⊕ r).

The size of Q(r,K) is O((n − m + 1)m) which almost increases linearly with

respect to the size of T when n >> m. It requires overwhelming communication

size when the size of the pattern P is small especially. Also, this is an insecure

solution because the keystream K can be restored from Q(r,K) and then the text T

does also since we can deduce Km+1
1 from (Km

1 ⊕r)⊕(Km
2 ⊕r) with high probability.

As the above construction, the author has claimed that it can be more secure if

extending r into the set of r′s. Let J be the set of r′s like

J = {r1, r2, . . . , rk} ⊆ {0, 1}m

where each ri is a random bitstring of length m. Also, the k, size of the set J ,

determines the strength of security and the resource of the computational time and

the communication size in the protocol. Let ρ be a mapping defined like

ρ : {1, 2, . . . , n−m + 1} → J

and then define a set

Q(ρ,K) = {Km
i ⊕ ρ(i)|i = 1, 2, . . . , n−m + 1}.
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The intuition is that Q(ρ,K) is used instead of Q(r,K). Therefore, the attacker can

not restore the keystream like previous scheme. Under such modifications, the user

must send all bitstring P ⊕ ri and the set Q(ρ,K) to the server. Then, the search

is as follows.

• For each P ⊕ rij where ij = 1, 2, . . . , k, the server verifies if for all i

(Tm
i ⊕Km

i )⊕ (Km
i ⊕ ρ(i)) = (P ⊕ rij).

In the modified protocol, the real occurrence is happened only if ρ(i) = rij .

Since the information about the mapping ρ is not available to the server, it can not

distinguish which occurrence is real or fake. Namely, the server may be confused

with the false positives and it can not deduce the keystream K from the set Q(ρ,K)

again.

However, the token size is at least O((n − m + 1)m) because of size of the

set Q(ρ, k). Such size is large overhead. We hope that it can be reduced as far

as possible. On the other hand, Oleshchuk’s protocol is efficient in computation

because the operation of exclusive OR is simple and convenient. It is appropriate

when the communication overhead is not important.

3.3 Keyword Search on Encrypted Data

Under the keyword search on encrypted data, the main role is the “keyword”. Adapt-

ing with the definitions of string matching, the keyword is also a string. Now, both

the text and the pattern are keywords. It is wondered to determine if the pattern

matches the text exactly.

Like one way of indexing for speeding up searching, a document is associated

with some keywords. Then, the document is tested whether it is associated with the
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dedicated keywords when the user searches on the documents.

Search on encrypted data based on keyword search uses the same idea. The

document is associated with many keywords, or it is just composed of the keywords.

Also, the keywords are encrypted.

Also, the tag stands for the encrypted keyword which will be searched in the

future. On the other way, the token also stands for some encrypted keyword which

will search on the tags.

With above ideas, keyword search on encrypted data is mainly classified into two

categories as the secret-key and public-key based schemes as follows.

3.3.1 Secret-key Based Keyword Search

Under the secret-key setting, the data owner and the data client are usually the

same party. For simplicity, we call, the data owner or data client, the user.

The scenario is that a user wants to upload data to the remote server and then

retrieve the demand data in the future. For the confidentiality, the data are en-

crypted before being uploaded to the remote server. In such case, we want to let

the server test whether the file is associated with some keywords, and should learn

nothing beyond founded or not.

Song et al. proposed the first protocol which supports to search on encrypted data

with keyword search[8]. In the Song et al.’s protocol, the document is composed

of the keywords. For simplicity, assume that length of each keyword is same, or

padding with 0’s or 1’s otherwise. Let W be the keyword space which contains all

keywords and D be a document. As above, D is expressed as a sequence of keywords

W1,W2, . . . , Wl where each Wi ∈ W .

There are some primitives used as follows:
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• Let G : KG → S be a pseudorandom generator, e.g. a stream cipher.

• Let F : KF ×{0, 1}n−m → {0, 1}m where m < n be a pseudorandom function.

• Let E : KE × {0, 1}n → {0, 1}n be a pseudorandom permutation, e.g. a block

cipher.

• Let f : KF × {0, 1}∗ → KF be a pseudorandom function.

The protocol is described as follows:

• KeyGen

– Input: a security parameter.

– Output: kG, kE and kf which will input to G, E and f respectively and

keep them secret.

• GenTag

– Input: a document D = W1||W2|| . . . ||Wl and a pseudorandom bitstring

S = S1||S2|| . . . ||Sl which is generated by G with input kG. For all i,

|Wi| = n , |Si| = n−m and n > m > 0.

– Output: the tag of the document D.

1: for i = 1 to l do

2: Xi = EkE
(Wi)

3: ki = fkf
(Xi)

4: tagi = Xi ⊕ (Si||Fki
(Si))

5: end for

6: return tag = tag1||tag2|| . . . ||tagl

• GenToken
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– Input: a keyword W and the secret keys kE and kf .

– Output: token = (X = EkE
(W ), kX = fkf

(X)).

• Search

– Input: a tag = tag1||tag2|| . . . ||tagl and a token = (X, kX).

– Output: the occurrence positions of X.

1: for i = 1 to l do

2: if tagi ⊕X is the form of S||FkX
(S) then

3: print i

4: end if

5: end for

Note: In fact, the above protocol supports decryption on the tag with some

modification and it is still secure. For simplicity, we just explain the idea of the

protocol.

As above construction, searching requires linear time with respect to number of

the keywords of a document because of sequential scan. For speeding up, there is a

tool as follows.

Bloom filter

The idea comes from [9]. The Bloom filter is composed of a m-bit string B and r

independent hash functions h1, h2, . . . , hr where hi : {0, 1}∗ → [1,m] for all i, and

every bit of B is set to 0 initially.

Adapting with the same scenario of above protocol, the following two algorithms

are GenTag and Search respectively.

• BuildIndex(GenTag)
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– Input: a encrypted document D′ = EkE
(W1)||EkE

(W2)|| . . . ||EkE
(Wl) =

X1||X2|| . . . ||Xl.

– Output: m-bit string B.

1: set every bit of B to 0

2: for i = 1 to l do

3: for j = 1 to r do

4: B[hj(Xi)] = 1

5: end for

6: end for

7: return B

• SearchIndex(Search)

– Input: a Bloom filter bit string B and an encrypted keyword X =

EkE
(W ).

– Output: True(found) or False(not found).

1: for i = 1 to r do

2: if B[hi(X)] = 0 then

3: return False

4: end if

5: end for

6: return True

The keyword must be encrypted before being inputted to BuildIndex and SearchIn-

dex because we do not want to let the server search any keyword arbitrary. As above

construction, there is false positive, but it can be controlled if r (the number of hash

functions), m (the length of bit string B), and l (the number of keywords which is
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inserted into the Bloom filter) are chosen appropriately[9].

The idea of the scheme is to build all indexes of required keywords, and then the

searching time can be reduced to the constant time.

3.3.2 Public-key Based Keyword Search

Under the public-key setting, the data owner and the data client are usually the

different parties.

The scenario comes from the email system. Assume that a sender Bob wants to

send a mail to the receiver Alice. For privacy, the mail is encrypted with Alice’s

public key. Obviously, Alice is only party who can decrypt the encrypted mail.

Sometimes Alice wants to let the mail server have some functionality to test her

mails whether the mails contain some keywords and learn nothing beyond founded

or not. For example, Alice lets the server have a token which can search the mails

whether mail is associated with the keyword ‘urgent’. If so, the server will directly

forward it to her pager.

Boneh et al. proposed the first protocol which can search on encrypted data

based on the public key system[10]. In Boneh et al.’s protocol, the mail is encrypted

with the receiver’s public key. Besides, each mail is associated with many keywords

which will be searched with dedicated token in the future.

For example, Bob wants to send a mail to Alice, and the mail is encrypted by

Alice’s public key and it is associated with l tags as follows:

EpkAlice
(mail)||tag1||tag2|| . . . ||tagl

EpkAlice
(·) means a public key encryption with Alice’s public key and each tagi is

generated by GenTag on inputting some keyword and Alice’s public key.
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As the above example, Bob must previously choose the demand keywords asso-

ciated with the encrypted mail. Then, the mail server can search on the tags with

the tokens which can be generated only by Alice’s private key.

The bilinear map is used in the protocol and described as follows: Let G1 and

G2 be two groups of large prime order p. A bilinear map e : G1×G1 → G2 satisfies

the following properties:

• Bilinear: given g, h ∈ G1 and a, b ∈ Z, then e(ga, hb) = e(g, h)ab.

• Non-degenerate: if g is a generator of G1, then e(g, g) is a generator of G2.

• Computable: the map e can be computed in a polynomial time.

The protocol is described as follows:

• KeyGen

– Input: a security parameter to determine p, the size of the groups G1 and

G2. Choose a random α ∈ Z∗
p and a generator g of G1.

– Output: pk = (g, h = gα) and sk = α.

• GenTag

– Input: the public key pk and a keyword W . Compute t = e(H1(W ), hr) ∈

G2 for a random r ∈ Z∗
p where H1 : {0, 1}∗ → G1.

– Output: tag = (gr, H2(t)) where H2 : G2 → {0, 1}log p.

• GenToken

– Input: the secret key sk and a keyword W .

– Output: tk = H1(W )α ∈ G1.
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• Search

– Input: the public key pk, a tag tag = (A,B) and a token tk.

– Output: yes if H2(e(tk, A)) = B; no otherwise.

The correctness comes from the bilinear map as follows.

H2(e(tk, A))

= H2(e(H1(W )α, gr))

= H2(e(H1(W ), g)αr)

= H2(e(H1(W ), (gα)r))

= H2(e(H1(W ), hr))

= B

Keyword search is a way of indexing. When we want to search for some docu-

ments in the database, we usually issue a query with some keywords. These keywords

are used to test whether the document is associated with them. Therefore, keyword

is a good idea for indexing. Nevertheless, it is not natural when we want to find if

the document contains some pattern. Therefore, string matching is suitable for this

job.

3.3.3 String Matching with Keyword Search

As above section, the ideas of keyword search and the tool like Bloom filter can be

extended for string matching with some modifications.

String Matching with Keyword Search

As above constructions of keyword search, there is a trivial way for string matching

on encrypted data with keyword search. Based on the naive string-matching algo-
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rithm, the two main roles are text and pattern. The text is encrypted as the tag

like

text = c1||c2|| . . . ||cl
GenTag−−−−→ tag = (tag1, tag2, . . . , tagl)

where each ci is a character and l > 0. Also, the pattern is encrypted as the token

like

pattern = c′1||c′2|| . . . ||c′m GenToken−−−−−−→ token = (token1, token2, . . . , tokenm)

where each c′i is a character and 0 < m ≤ l.

The string matching algorithm based on keyword search is like

1: for i = 1 to l −m + 1 do

2: flag = 1

3: for j = i to i + m− 1 do

4: if search(tagj,tokenj−i+1)==False then

5: flag = 0

6: break /*** exit inner for loop ***/

7: end if

8: end for

9: if flag==1 then

10: print i

11: end if

12: end for

The above way seems to deal with the problem of string matching on encrypted

data. However, the most important problem is that it is vulnerable of the statis-

tical attack because the tokens are independent. In other words, the characters of

the pattern are independent. Therefore, the server can test any occurrence of the
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character belong to the pattern for the token. It causes the statistical analysis. The

more details are discussed in the following section about heuristic approaches.

String Matching with Bloom Filter

As above, Bloom filter can speed up searching like the idea of indexing. Besides, it

can also support string matching.

Let T be the text and find all substrings of T . For example, assume that the

text T is “abc”. Then, all strings like “a”,“b”,“c” with length 1, “ab”,“bc” with

length 2, and “abc” with length 3 are the substrings of T . Namely, if T is a string

of length l, there are l + (l − 1) + · · ·+ 1 = (l + 1)l/2 = O(l2) substrings.

Let these substrings be the keywords and insert them to Bloom filter. Then, we

can get a trivial construction of string matching by Bloom filter. For example, if we

want to search some pattern, we can use SearchIndex with the input of encrypted

pattern. In the scheme, the preprocessing time is O(l2) for inserting all substrings

of the text but the searching time is still O(1) which is constant.

3.4 Other Extensions

There are many issues about search on encrypted data. The issue about more flexible

and efficiency for secret-key based keyword is discussed in [11]. The issue about

decryption which means that the tag can be decrypted is discussed in [12, 13]. The

issue about conjunction keyword search which supports to search many keywords in

a query is discussed in [14, 15, 16, 17, 18, 19]. The issue about more general query

like conjunction, subset, and range queries is discussed in [20].
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Chapter 4

Proposed Protocol

In this chapter, we will show the heuristic approaches and the detailed construction

of our protocol. In fact, the idea comes from the naive string-matching algorithm, so

there are two primitive operations like “comparing” and “sliding”. In the following

sections, we will focus on the achievement of the two primitive operations.

Loosely speaking, for comparing, the idea is that the tag is exactly matched by

some information from the token. For sliding, the idea of privacy homomorphism

is used. The token seems to be converted to another one, and it still expresses the

token of the same pattern at the different position.

4.1 Problem description

Search on encrypted data by string matching instead of keyword search has the main

advantage which is that the pattern does not be defined in advance, and any string

of length not over than the text can be the pattern.

Background Sometimes the user wants to upload the files to the remote server.

For the confidentiality, the files are encrypted before being uploaded. If the user
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wants to search the files, the dedicated token which can be generated only by the file

owner’s secret key is required for this purpose. We hope to reduce the communication

size of data (which are the information to finish the protocol, not the encrypted files

itself) and the computational time of the user as far as possible.

Expression of data In our protocol, we use the idea of the naive string-matching

algorithm. For practical purpose, the character space may be ASCII or some else

finite character sets. The data are encrypted with respect to each character, so

length of the tag is asymptotically same to length of the text.

4.2 Heuristic Approaches

In this section, we introduce our approaches incrementally. The first approach is a

deterministic way to generate tag but is vulnerable of statistical attack.

In the second approach, we can get a randomized way to generate tag through

some randomness involved. However, the toke size may be too large to cause heavy

communication cost.

Therefore, we use the multiplication homomorphism to get rid of such obstacle

and get the third approach for saving the communication cost. Nevertheless, it is

still vulnerable of statistical attack.

Finally, we explain the fourth approach which is the model of our protocol to

get rid of the problems which occur in the previous approaches.

Here is an example which is used in the following approaches. We assume that

a user wants to search the text T = a||b||c||a||a with the pattern P = b||c, and both

the text T and the pattern P are encrypted.
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4.2.1 Scheme I: The Deterministic Scheme

In our protocol, the tag is generated by each character of the text. In other words,

each character of the text seems to be encrypted into some ciphertext as the tag.

For example,

T = a||b||c||a||a GenTag−−−−→ Tag = (#, $, %, #, #)

Obviously, we can see that the first, fourth and fifth tuples of the tag stand for the

encryption of the same character. Namely, the tag just tells the ingredients of the

text.

Therefore, the deterministic generation of the tag is vulnerable of statistical

analysis since the encryption of a character is only a mapping to get the identifier

of the character.

4.2.2 Scheme II: The Randomized Scheme

The idea of modification is that the generation of the tag must involve some extra

information besides the original character. The information of the position is nat-

ural. If the GenTag is simply described as the function f on inputting a character

and a position information, we can get the tag like

T = a||b||c||a||a GenTag−−−−→ Tag = (f(a, 1), f(b, 2), f(c, 3), f(a, 4), f(a, 5))

Roughly speaking, the probability of f(a, i) = f(a, j) where i 6= j is negligible when

f is appropriately chosen as a random function.

In fact, the deterministic idea is still used in our protocol The tag is actually

deterministic if the character c and the position i are fixed. Therefore, the user can

generate the appropriate token of the pattern which can search the dedicated text
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afterward. Therefore, we can get the token like

P = b||c GenToken−−−−−−→

Token = {[f(b, 1), f(c, 2)], [f(b, 2), f(c, 3)], [f(b, 3), f(c, 4)], [f(b, 4), f(c, 5)]}

For comparing, each pair of [f(b, i), f(c, i+1)] verifies if the occurrence of the pattern

takes place at the position i. For sliding, the next pair of [f(b, i + 1), f(c, i + 2)] is

used.

It asymptotically requires O((|T | − |P | + 1) · |P |) communication cost. If the

length of the text is long, the communication cost is almost equal to the size of

retrieving the entire encrypted text. We want to reduce the communication cost as

far as possible.

4.2.3 Scheme III: The Slide Scheme

Scheme-II is similar to Oleshchuk et al.’s scheme[1]. In fact, the information of

position is an abstract idea, and it can be any information kept only by the owner.

Namely, the owner can generate any valid tag of a character on the dedicated position

as the token. However, it can not reach our purpose since all tags of the pattern at

any position are sent.

The privacy homomorphism is a good idea to solve this problem. The idea is to

convert one token into another one of the same pattern at the different position as

follows:

f(c, i)
slide(c)−−−−→ f(c, j) where i 6= j

The token of the character c at the position i can be converted into the token of the

same character c at the position j with the extra information like slide(c). Therefore,
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we can get the token like

P = b||c GenToken−−−−−−→ Token = {f(b, 1), f(c, 2) and slide(b), slide(c)}

For comparing, the initial information like f(b, 1) and f(c, 2) is taken first to com-

pare with the tag. For sliding, the slide information like slide(b) and slide(c) can

convent f(b, 1) and f(c, 2) into any f(b, i) and f(c, i+1) respectively and keep going

comparing.

Under this construction, the communication cost can be reduced to O(|P |).

4.2.4 Scheme IV: The Final Scheme

Although, the communication cost can be reduced to O(|P |) in the Scheme-III. At

least, it is same to the original problem of string matching with the naive string-

matching algorithm. Nevertheless, it is still vulnerable of statistical analysis like the

Scheme-II. There are two main reasons like

• The pattern is indirect revealed by the tokens of each character of the pattern.

For example, if Token = {f(b, 1), f(c, 2) and slide(b), slide(c)}, then we can

get f(b, 2) by

f(b, 1)
slide(b)−−−−→ f(b, 2)

Since the probability of f(b, 2) 6= f(c, 2) is quite high, it tells that the first

character and the second character of the pattern are different.

• The information beyond the occurrences of the pattern is revealed. For ex-

ample, if Token = {f(b, 1), f(c, 2) and slide(b), slide(c)}, then we can get any

f(b, i) for all i by

f(b, 1)
slide(b)−−−−→ f(b, 2), f(b, 3), . . .
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Namely, the server can generate all tokens of each character of the pattern

at any position. In other words, the server can search the text with any

arrangement of the characters of the pattern.

Therefore, the idea of the final scheme comes from “encapsulation”. Originally,

the token of a pattern is composed of the “initials” like {f(b, 1), f(c, 2)} and the

“slides” like {slide(b), slide(c)}. Now, we aggregate the initials and the slides to form

the “aggregate initial” and the “aggregate slide” respectively. Roughly speaking, the

individual information of each character of the pattern is not revealed. Our protocol

is based on this idea, and the detailed construction is as the following section.

4.3 Construction

We first introduce the framework of our protocol. The protocol is composed of the

following algorithms:

• KeyGen(λ)

Input a security parameter λ and output a secret key K. In the process, some

tables are set up and kept secret.

• GenTag(T ,K)

Input a text T and a secret key K and output the Tag of T . Usually, the Tag

will be uploaded to the remote server.

• GenToken(P ,K)

Input a pattern P and a secret key K and output the Token of P . Usually,

the Token is generated only for the search.

• Search(Tag,Token)
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Input a Tag and a Token and output the occurrences. Usually, it is happened

in the server side. The tag had been reserved in the server previously, and the

user issues a query by the token uploaded to the server.

correctness In the search algorithm, the result of the execution is the occurrence

of the patter P in the text T if the Tag is generated by the text T and the Token

is generated by the pattern P .

4.3.1 Our Protocol

• KeyGen(λ)

Input a security parameter λ. Randomly choose two large and distinct primes

p and q such that |p| = |q| = λ and let n = pq. Then randomly choose

d ∈ Z∗
φ(n) and s ∈ Zφ(n). Finally, n is the public parameter and K = (s, d) is

the secret key.

After key generation, the user must determine a character space Σ and a 1-1

mapping f : Σ → Σ′ as the following table:

Σ c1 c2 · · · ck

Σ′ zi1 zi2 · · · zik

Table 4.1: Character Space Encoding

Especially, Σ′ is a subset of Z∗
n. Then, all the following computations are done

in Z∗
n. Finally, the user has to keep the mapping(table) secret.

• GenTag(T ,K)

Input a text T = c1||c2|| . . . ||cl where each ci is a character over the character
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space Σ and a secret key K = (s, d). Choose a random r ∈ Z∗
n and output

Tag

= (tag1, tag2, . . . , tagl)

= ((z1r)
sd mod n, (z2r)

(s+1)d mod n, . . . , (zlr)
(s+l−1)d mod n)

where for all i, zi = f(ci) ∈ Z∗
n.

After generating the tag of a text, the user must maintain the following table.

TextID text1 text2 · · ·

r r1 r2 · · ·

length l1 l2 · · ·

Table 4.2: Text Information

The table shows the ri and length li which are associated with the texti. The

user has to determine the dedicated ri before generating the token which search

on the tag of the texti. Finally, the user has to keep the table secret.

• GenToken(P ,K)

Input a pattern = c′1||c′2|| . . . ||c′m where each c′i is a character over the character

space Σ and a secret key K = (s, d). The user has to determine r and length

l of the target text in advance. If length of the pattern is greater than l, then
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terminate. Otherwise, output

Token = (

length = m,

initial = (z′1r)
sd(z′2r)

(s+1)d · · · (z′mr)(s+m−1)d mod n,

slide = (z′1z
′
2 · · · z′m · rm)d mod n

)

where for all i, z′i = f(c′i) ∈ Z∗
n.

• Search(Tag,Token)

Input a Tag = (tag1, tag2, . . . , tagl) and a Token = (length = m, initial, slide).

For efficiency, the extra variables like temp1 and temp2 can reduce the times

of multiplication, and then does

1: temp1 = initial

2: temp2 = tag1· tag2 · · · tagm mod n

3: for i = 1 to l −m + 1 do

4: if temp1 == temp2 then

5: print i /* the occurrence position of pattern */

6: end if

7: if i < l −m + 1 then

8: temp1 = temp1 · slide mod n

9: temp2 = tag−1
i · temp2· tagi+m mod n

10: end if

11: end for
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For example, assume that there are a text T = a||b||c||a||a and a pattern P = b||c.

With GenTag and GenToken, we can get

Tag

= (tag1, tag2, . . . , tag5)

= ((〈a〉r)sd mod n, (〈b〉r)(s+1)d mod n,

(〈c〉r)(s+2)d mod n, (〈a〉r)(s+3)d mod n, (〈a〉r)(s+4)d mod n)

and

Token = (

length = 2,

initial = (〈b〉r)sd(〈c〉r)(s+1)d mod n,

slide = (〈b〉〈c〉 · r2)d mod n

)

where 〈c〉 means encoding of the character c in Z∗
n like f(c).

4.3.2 Correctness

In this section, the correctness of search in our protocol will be discussed.

Let the text T = c1||c2|| . . . ||cl and the pattern P = c′1||c′2|| . . . ||c′m where both

ci and c′j are the character over the same character space for all i, j and 0 < m ≤ l.

Then, we can get the tag and the token like

Tag

= (tag1, tag2, . . . , tagl)

= ((z1r)
sd mod n, (z2r)

(s+1)d mod n, . . . , (zlr)
(s+l−1)d mod n)
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and

Token = (

length = m,

initial = (z′1r)
sd(z′2r)

(s+1)d · · · (z′mr)(s+m−1)d mod n,

slide = (z′1z
′
2 · · · z′m · rm)d mod n

)

where zi = f(ci), z′j = f(c′j) ∈ Z∗
n for all i, j.

We differ the cases by length m of the pattern P .

• case 1: m = 1

The token tells initial = (z′1r)
sd mod n and slide = (z′1r)

d mod n. We can

multiply initial by slide any k time and get any (z′1r)
(s+k)d mod n for k ∈ Z+.

If some zi is equal to z′1, then we can compare the tagi = (zir)
(s+i−1)d mod n

with (z′1r)
sd ·((z′1r)d)i−1 mod n = (z′1r)

sd ·(z′1r)(i−1)d mod n = (z′1r)
(s+i−1)d mod

n.

• case 2: 1 < m < l

Assume that the pattern P is occurred at the position i of the text T where

1 ≤ i ≤ l−m+1. Namely, P = T [i . . . i+m−1] and z′1 = zi, z
′
2 = zi+1, . . . , z

′
m =

zi+m−1. The search algorithm can print all i when the for-loop is executed on
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the i-th times as follows:

temp1

≡ initial · slide(i−1)

≡ ((z′1r)
sd(z′2r)

(s+1)d · · · (z′mr)(s+m−1)d) · ((z′1z′2 · · · z′m · rm)d)i−1

≡ ((z′1r)
sd(z′2r)

(s+1)d · · · (z′mr)(s+m−1)d) · ((z′1r)(i−1)d(z′2r)
(i−1)d · · · (z′mr)(i−1)d)

≡ (z′1r)
(s+i−1)d(z′2r)

(s+i)d . . . (z′mr)(s+m+i−2)d

≡ (zir)
(s+i−1)d(zi+1r)

(s+i)d . . . (zi+m−1r)
(s+m+i−2)d

≡ tagi · tagi+1 · · · tagi+m−1

≡ temp2 (mod n)

• case 3: m = l

In fact, the slide is useless in this case. Also, z′1 = z1, z
′
2 = z2, . . . , z

′
m = zm = zl

if P exactly matches with T . Therefore, the search algorithm can print the

occurrence position 1 and the for-loop is executed only once since initial is

equal to tag1 · tag2 · · · tagl as follows:

temp1

≡ initial

≡ (z′1r)
sd(z′2r)

(s+1)d · · · (z′mr)(s+m−1)d

≡ (z1r)
sd(z2r)

(s+1)d · · · (zmr)(s+m−1)d

≡ (z1r)
sd(z2r)

(s+1)d · · · (zlr)
(s+l−1)d

≡ tag1 · tag2 · · · tagl

≡ temp2 (mod n)
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4.3.3 Mask Exponent s

In our protocol, the position information of a character c is used to be the exponent

information. If the mask exponent s is omitted (or always set to 1), we can raise

tag1 to the i-th power and then compare with tagi. Similarly, tag2 can be compared

with tag2i for i ∈ Z+ and so on. In other words, the ingredients of a text may

be deduced through only encrypted text like tag. Avoiding such statistical analysis

requires a random s.

4.3.4 Mask Base Number r

It is obvious to generate the randomized Tag if the owner wants to use the same

secret key in the different texts. For the avoidance of statistical attack of the different

texts, we hope that the server can not deduce any information on corresponding

positions between the different tags. On the other hand, we hope that the entire

base number like zir is randomly over Z∗
n for the security analysis.

36



Chapter 5

Analysis

In this chapter, we will analysis security, comparison, avoidance and discussions of

our protocol. For the security, it is based on the security proof by reduction. For

the comparison, we discuss the difference between Oleshchuk’s and our protocol.

For the avoidance, we show that the attack may be successful if the inappropriate

directions are used. In the end, there are some discussions.

5.1 Security

The RSA assumption is adopted in the following security reduction because our

protocol is based on the similar operation like modular power.

5.1.1 RSA Assumption

Given (n, e, y) where n = pq, p and q are large primes, and e is coprime to φ(n), a

random y ∈ Z∗
n. It is computationally infeasible to determine x such that xe mod

n = y.
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5.1.2 Security Model

RSA assumption tells that RSA function is hard to invert. In our security model,

we think that the adversary can not get the information like zir from the i-th subtag

(zir)
(s+i−1)d mod n of the tag. Although, the information like zi is enough to cause

statistical analysis. In fact, the information like zir is also enough, and we finish

the security reduction in this scenario.

5.1.3 Security Reduction

Our protocol is based on RSA assumption. Assume that an adversary A can break

our protocol that means to determine any zir tuple of the Tag, and then we can use

A to determine RSA problem as follows.

Let (n, e, y) be the RSA problem challenge. Randomly choose s ∈ Zφ(n). Then,

set r to x and d to e. Then, randomly choose l ∈ Z+ and zi ∈ Z∗
n for all i = 1, 2, . . . , l.

Finally, n is the public parameter, and give A the tag like

Tag

= (tag1, tag2, . . . , tagl)

= ((z1x)se mod n, (z2x)(s+1)e mod n, . . . , (zlx)(s+l−1)e mod n)

= (zse
1 ys mod n, z

(s+1)e
2 y(s+1) mod n, . . . , z

(s+l−1)e
l y(s+l−1) mod n)

By contradiction, we assume that some adversary A can break our protocol.

It means that A outputs mi such that mi = zix, and we can compute the x =

miz
−1
i mod n as the answer of the RSA problem challenge. It concludes the security

reduction.
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5.2 Comparison

The section will discuss the comparison of Oleshchuk and our protocol. Let n be

the length of the text and m be the length of the pattern.

5.2.1 Time

Bitwise exclusive OR is the main operation in Oleshchuk’s protocol, and modular

multiplication is ours. Obviously, modular multiplication is much more overhead

than bitwise exclusive OR, but the generation of the tag can be done off-line in the

user side. Also, the search algorithm is executed in the server side. Actually, the

operation of modular power or modular exponentiation can be speeded up through

some way like square-and-multiply, etc.

However, both Oleshchuk and our protocol use the sequential scan based on

the naive string-matching algorithm. It requires asymptotically O((n −m + 1)m)

time. There are many better ways to reduce the time like KMP[21] algorithm, etc.

The protocol proposed by Oleshchuk supports KMP algorithm. We hope that our

protocol can do in the future.

5.2.2 Space

Type Key Size(bits) Tag Size(bits) Token Size(bits)

Oleshchuk(original) n n (n−m + 1)m + m

Ours O(λ) O(nλ) log m + O(λ)

Table 5.1: Protocol Space Comparison

The table shows the demand space of Oleshchuk’s protocol and ours. Especially,

the size of the token in ours is log m + O(λ) seems not constant because of log m.
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However, the value of log m only tells the length of the pattern. We think that it is

not major overhead.

In our protocol, the text is encrypted by each character, so the size of the tag

is linear with respect to the size of the text. The owner keeps only the secret key

(s, d) and two tables of the character space encoding and the text information. The

sizes of the secret key and the table of the character encoding space are constant.

The size of the table of the text information is liner with respect to the number of

the texts.

5.3 Avoidance

Our protocol has been designed to avoid the statistical attacks as far as possible.

However, the protocol reveals the length of the pattern from the token and the occur-

rence of the pattern. Through such information, the server can take the statistical

attack successfully if the inappropriate directions are used.

5.3.1 Small Token

It means that the pattern contains fewer characters. In this case, the occurrences of

the pattern may be happened frequently. For extreme example, the pattern contains

only one character. There are many occurrences with high probability. Because of

revealing length of the pattern by the token, it may be vulnerable of statistical

analysis.
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5.3.2 Search Too Many Times

If the user searches too many times on the same encrypted text like tag, revealing

the occurrences of each pattern may cause the statistical attack with length of the

pattern and a dictionary. For getting rid of this problem, the main idea is to reduce

the search times or to re-encrypt the text after searching too many times.

Actually, re-encrypt means to ignore the original uploaded tag in the server, gen-

erate a new tag, and then upload it. Then, the following queries of string matching

are taken place in the new tag in the future.

5.4 Discussion

In this section, we will discuss some issues of our protocol.

5.4.1 False Positive

In our protocol, the search algorithm may have false positive. However, we think

that the probability is quite small under modulo n. If it is happened, the user can

retrieve the file, decrypt it, and verify before use. Therefore, it requires post-filtering.

5.4.2 Exposure of Occurrence Position

Such situation also exists in Oleshchuk’s protocol, and it may be vulnerable of

statistical attack. Because of revealing the occurrence positions, small token or

searching too many times may cause the statistical attack successfully. The result

directly implies that the randomized generation of a token is meaningless because of

exposure of occurrence positions. Namely, the adversary can do statistical analysis

from the occurrence position through the search result and the length of the pattern
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which is told from the token and then distinguish the tokens.

5.4.3 Decryptable

An encryption function usually has the corresponding inverse function as the decryp-

tion function. Here we just concern on search on encrypted data, and the original

data can be encrypted by standard encryption algorithm like DES, AES, etc., and

append it to the tags. Actually, the generation of tag uses the way which is similar

to RSA function. Therefore, we hope that the tag can be decrypted in the future.
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Chapter 6

Conclusion

We have proposed a protocol to deal with string matching on encrypted data with a

constant size token. Nevertheless, it requires the sequential search. Is it possible to

reduce the time with indexing or other ways? Also, in our protocol, the occurrence

and length of the pattern are known to the server. It may cause the statistical attacks

under special case of usage. Is it possible to avoid revealing such information to the

server? We assume that the server is curious and follows the protocol. Is it possible

to enhance our protocol to the malicious server who may not follow the protocol?

Also, is it possible to extend the problem to the pubic-key setting? The most obvious

application is the email system.
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