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Privacy Preserving String Matching
With a Constant Size Token

Student: Szu-Wei Liu Advisor: Dr. Wen-Guey Tzeng

Institute of Computer Science and Engineering

National Chiao Tung University
Abstract

Nowadays, many cryptographic schemes have been developed to achieve search on
encrypted data, but most of them are keyword search. Few of schemes can support
more general query like string‘matching on encrypted data.

In our protocol, the tagsstands for the encrypted text, and the token stands for
the encrypted pattern. We propose a schemewhich can determine whether the en-
crypted text contains the dedicated pattern. Under thescomputational assumption,
we can prove it secure.

As far as we know, there exists one protocol to our problem, but its token size
is large. We can reduce the token size to the constant size, and we hope to reduce
the communication size in the network and the computational time in the user side
as far as possible.

Keywords: privacy preserving, string matching, pattern matching, full text search,

keyword search, homomorphic encryption, privacy homomorphism, RSA assumption
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Chapter 1

Introduction

Search on encrypted data has become popular in recent years. Because more and
more application service providers have been inereased, the users can process their
data on the remote server for saving cost-of storage and eomputation, just like “cloud
computing”. One service provider supports:storage, and’'the users can upload their
data and download it in the future:

For the confidentiality, the data are encrypted before being uploaded to the
server. But, if the user wants to search on encrypted file, the naive solution is to
download the entire file, decrypt it, and then search on the local decrypted file. The
naive solution requires much more cost of computation and communication, so the
better solution is wondered.

Nowadays, there are many protocols proposed for this purpose. Usually, we have
to construct the tag of each file and append the tag with the encrypted file to the
remote server, and then tags will be searched in the future. Until now, most protocols
concern on keyword search. The main limitation is that the user can only search the
pre-defined “keywords” and can not search any pattern which occurs in the file for

the general purpose. Sometimes the latter way is called “string matching”, “pattern



matching”, or “full text search”. It is natural, and we are interested to extend it to

the encrypted data.

1.1 Contribution

Until now, there exists one protocol proposed by Oleshchuk[1]. It is designed directly
for pattern matching on encrypted data, but the token size is large. Like Oleshchuk’s
protocol, we use the same idea as the naive string-matching algorithm to develop a
protocol which supports string matching on encrypted data, and the token size is

constant. Furthermore, we can prove it secure under the computational assumption.




Chapter 2

Preliminary

In this chapter, we introduce the preliminaries which are used in our protocol. First,
the problem of string matching is discussed, andthen the naive string-matching

algorithm is showed. Second, the idea of privacy:homomorphism is discussed.

2.1 String Matching

The problem “String Matching?” has-been mestly“studied in literature, and many
programming languages or some utilities have it as the basic primitive function or
the basic tool. Especially, the text-editing programs frequently use it. Here, most
of definitions and examples follow [2].

Let ¥ be the character space, e.g. {0,1} or {a,b,...,z}. The array of characters
is called “string”. In other words, any string S can be expressed as an array S[1...n],
and size of the array, n, is called length of the string S. A substring of the string S
is expressed as S|i...j] for all 4, j such that 0 <i < j <n.

The problem of string matching has two main roles like “text” T and “pattern”

P. Both T and P are the string of finite length over the same character space. We



want to find all “occurrences” of the pattern P in the text 7. Obviously, length of
P must be smaller than or equal to length of T". The following figure shows that the

pattern P occurrences at the position 2 of the text T

text T a|lblc|lc]|a

pattern P b|c

Figure 2.1: Occurrences of Pattern

2.1.1 The Naive String-Matching Algorithm

A natural approach to the stiing matching problem is to verify whether the pat-
tern occurrences at any pesition of the text. -Let the text be T1...n] and the
pattern be P[1...m] where 0°< m < n. Themaive string-matching algorithm is as

follows.

1: fori=1ton—m+1de

2. if T[i...i+m— 1] == P[1. " m] then
3: print ¢

4:  end if

5. end for

There are two main operations like “comparing” and “sliding” in the naive string-
matching algorithm. Comparing is happened on line 2 and requires to test whether
the corresponding positions of the text and the pattern are same. After the test on
line 2, sliding is happened as the text is shifted left one character and is compared
with the same pattern repeatedly.

The following is an example.



text T alb|lc]|lc]|a alblc)|c|a
| sliding
pattern P b|c b|c
alblc|lc|a a|lblc|lc|a
sliding sliding
% Ao % .." __.'"
b | c b|c

Figure 2.2: The Naive String-Matching Algorithm

Each test on line 2 is executed until some mismatch is found, so each comparing
requires O(m) times. The for-logp s executéd O(n — m + 1) times. Overall, the
execution time of the naive string-matehing-algorithm is O((n —m + 1)m).

There are more efﬁcieﬁt ways to redu’rée: flieexectition time with extra pre-

processing. However, we focus on searchon encrypted data like the naive way.

2.2 Privacy Horﬁomorphism

“Privacy Homomorphism” (PH) is firstly proposed by Rivest et al.[3]. The encryp-
tion function called “privacy homomorphism” permits encrypted data to be operated
without preliminary decryption of it.

For example, given two encryptions E(m;) and E(ms). There exist some oper-

ations like ® and ® such that
E(ml) X E(mg) = E(m1 ® MQ).

Sometimes an encryption scheme which has this property is also called a homomor-

phic encryption scheme.



The other similar idea is that given an encryption F(m) and we can generate
another different encryption F(m’) such that m and m’ are meaningfully related if
the encryption function is “malleable” [4].

For example, one-time pad is a perfect secure encryption scheme and malleable.
Assume that there exists one ciphertext like Ex(m) = K @ m = ¢. We can get
another ciphertext of plaintext m@r by c@r=(K@&m)dr=K® (mor) =
Ex(m@r).

The homomorphic or malleable encryption can support to search on encrypted
data. On the other way, it may violate the integrity of data or authentication of
signature. Here are some well-known encryption schemes which are privacy homo-

morphism.

2.2.1 RSA cryptosystem

RSA cryptosystem proposed. by Rivest et al. is.a publictkey cryptosystem and pop-

ular for the purposes of encryption and signature[5).

e Key Generation
Randomly choose two large and distinct primes p and ¢ such that |p| = |q|.
Let n = pg. Choose random e € Z;(n) and then compute d = e~ mod ¢(n).

Then the public key pk is (n,e) and the secret key sk is (n,d).

e Encryption

Input a plaintext m € Z,, and output the ciphertext of m is

Encyr(m) = m® mod n

e Decryption



Input a ciphertext ¢ € Z,, and output the plaintext of c is

Decg,(c) = ¢ mod n

Based on modular power, RSA is a homomorphic encryption. For example,
assume that

Encyr(my) = m{ mod n
Encyp(ms) = m3 mod n
Then, we can get a new ciphertext of (m; - mo mod n) as follows:

Encyi(my) - Encye(msz)

= (mjmodn) - (mj mod )

(my - me modn)®

="Enepr(my - me mod n)- (mod n)

Our protocol is based &n theridea of modular power. Under RSA assumption,

we can prove it secure.

2.2.2 ElGamal cryptosystem

ElGamal cryptosystem proposed by ElGamal is a public key cryptosystem for the

purposes of encryption and signature[6].

e Key Generation
Choose a large prime p and let g be a generator of Z;. Then, choose a random
x such that 0 < z < p — 2 and compute y = ¢g* mod p. Finally, the public key

pk is (p, g,y) and the secret key sk is (p, g, x).



e Encryption
Input a plaintext m € Z,,, and then choose a random 7 such that 1 <r < p—2.

Output the ciphertext of m is

Encyr(m) = (9",m-y")

e Decryption

Input a ciphertext ¢ = (A, B). Output the plaintext of ¢ is

B

Decg(c) = T

ElGamal encryption is also a homomorphic encryption. For example, assume

that

Encymi) = (9", ma - v
Enepr(me) = (9", ms ~y™)

we can get a new ciphertext of (7 -y mod p) as follows:

Encyi(ma )« Encpp(ms)

-9 my -yt o mg - y"?)

(T‘1+7”2) (7’1+7”2))

= (g ) (m1m2> "y

= Encyr(mymsy mod p)

Note: All above computations are finished in Z,.
We can observe that the homomorphic encryption can aggregate many cipher-
texts into one ciphertext. Our protocol uses this idea to reduce the token size and

achieve the sliding operation on encrypted data.



Chapter 3

Related Work

In this chapter, we will introduce the related work about string matching and key-

word search on encrypted data;

3.1 Framework

When the problem of string matching is-extend to'the encrypted data, there are
some modifications for this purposes Here, most of‘definitions and models follow [7].

There are three main parties in the problem like

e Data Owner
The party generates the original plaintext data, and then encrypts the data

and uploads it to the server.

e Data Client
The party issues some instructions to the server for retrieving some encrypted

data uploaded by the data owner.

e Server

The party serves for all the data owners and the data clients. For the data

9



owners, it supports storage space for storing the encrypted data uploaded
from the data owner. For the data clients, it supports computational power

for processing the encrypted data indicated by the data client.!

We explain some definitions which occur in the following schemes and our pro-

tocol. There are two main roles in the problem of search on encrypted data like

o Tag
The tag stands for the encrypted data. Namely, the original plaintext data
are encrypted into the tag. Therefore, searching on encrypted data is actually

searching on the tag.

The process of generating tagi must invelve with the message like the text
which will be searched,in the future. In other'words, it seems to map original
plaintext data into the encrypted“form. In our protocol for string matching

on encrypted data, the tagis also called “encrypted text”.

There are some schemes which support both searching and decrypting on the
tag. However, decryption of.the tag is-not. necessary if we concentrate on
search on encrypted data. One way can deal with it like using the symmetric
encryption algorithm (e.g. AES, DES, etc.) on the plaintext data and ap-
pending it with the tag. Therefore, we prefer to use the word tag instead of

ciphertext to represent the data which will be searched in the future.

e Token
It preserves some functionality like searching on the tag. More precisely, if any
party wants to searching on the tag, the party requires to have the appropriate

token which can be generated only by the data client’s secret key.

Tn our protocol, we assume that it is the semi-honest model which means the server must follow

the protocol.

10



The process of generating token must involve with the message like the pat-
tern which will search for the text. Generally speaking, the token is called
“encrypted query”. In our protocol, the token is also called “encrypted pat-

tern”.

Here, we give a general description about the protocol of search on encrypted
data in the following sections. Most of schemes can be expressed as the following

four algorithms.

e KeyGen

— Input: a security parameter which usually determines length of the key.

— Output: the keys.

Note: In the seeret-key setting, Genlag and:GenToken involve with the
same secret key. In the public-key setting, GenTag and GenToken involve

with the public'key and‘theprivatekey respectively.

e GenTag

— Input: the plaintext data and the key.

— Output: the tag which can be searched with the token.

e GenToken

— Input: the plaintext data and the key.

— Output: the token which can search on the tag.

e Search

— Input: the tag and the token.

11



— Output: True(Yes) means found, or False(No) otherwise.
Note: In some protocols, the search result is the occurrence positions
instead of Yes or No like the string matching problem. It still satisfies
the above definition with returning Yes if some occurrence is found or No

if there is no any occurrence.

3.2 String Matching on Encrypted Data

Until now, there exists one protocol which was proposed by Oleshchuk and supports
to search on encrypted data with pattern matching [1]. Oleshchuk proposed a so-
lution of matching bitstrings in the bitstring encrypted by stream cipher using the
naive string-matching algorithm. The_main idea is that the encryption scheme is
malleable.

As the string matching problem, theré are two, roles like text and pattern. The

text T'is encrypted by the stream cipher and uploaded:to the remote server like
Ex(T) =T @K

where & is the operation of bitwise exclusive OR.

Define 77" denote a bit substring of the bitstring 7" that begins at the position
¢ and has length m. Let length of 7" and K be n and the pattern P be a bitstring
of length m(m < n). The user wants to find all occurrences of P in the text 7" and

does the following steps:

1. Randomly choose r as a bitstring of length m.
2. Compute the set Q(r, K) ={K{"®r,K*®r,..., K" ., ©r}.

3. Send P @ r and Q(r, k) to the remote server.?

2Such information uploaded to the server implies the length of P known to the server.

12



When the server receives the information from the user, it verifies if for all

1=1,2,....n—m—+1
(e K" e (K"ar)=(Par)

For the confidentiality of the text T" and the pattern P, T and P are encrypted
before being sent to the server. Namely, the user can mask the pattern P by a
random bitstring . Since the stream cipher is malleable, the server can convert
each partial ciphertext (7)™ @ K™*) with the mask (K" @ r) into another ciphertext
(T @ r) = (T/" & K™) & (K™ @ r) which is compared with the masked pattern
(P@dr).

The size of Q(r, K) is O((n =w.+ 1)m) which almost increases linearly with
respect to the size of T when n >> muydt-requires overwhelming communication
size when the size of the pattern P is small especially. Also, this is an insecure
solution because the keystream K ean be'testored from @(r, K) and then the text T
does also since we can deduee /! from (K7 @&r) &(KL* ©r) with high probability.

As the above construction,sthe-author has claimed that it can be more secure if

extending 7 into the set of ’s. Let J be the set of r’s like
J=Ary,ry, ..., C{0,1}™

where each r; is a random bitstring of length m. Also, the k, size of the set J,
determines the strength of security and the resource of the computational time and

the communication size in the protocol. Let p be a mapping defined like
p:{1,2,....n—m+1} —J
and then define a set

Qp, K)={K"&p(i)li=1,2,....,n —m+ 1}.

13



The intuition is that Q(p, K) is used instead of Q(r, K). Therefore, the attacker can
not restore the keystream like previous scheme. Under such modifications, the user
must send all bitstring P @ r; and the set Q(p, K) to the server. Then, the search

is as follows.

e For each P & r;; where i; = 1,2,..., k, the server verifies if for all ¢
(T & K & (K" @ p(i) = (P & ).

In the modified protocol, the real occurrence is happened only if p(i) = 7.
Since the information about the mapping p is not available to the server, it can not
distinguish which occurrence is real or fake. Namely, the server may be confused
with the false positives and it can not deduce the keystream K from the set Q(p, K)
again.

However, the token size is at least O((n— m+ 1jm) because of size of the
set Q(p, k). Such size isdarge overhead. We hope that it can be reduced as far
as possible. On the other *hand, ‘Qleshchuk’s protocol is efficient in computation
because the operation of exclusivel ORuis-simple and convenient. It is appropriate

when the communication overhead is not important.

3.3 Keyword Search on Encrypted Data

Under the keyword search on encrypted data, the main role is the “keyword”. Adapt-
ing with the definitions of string matching, the keyword is also a string. Now, both
the text and the pattern are keywords. It is wondered to determine if the pattern
matches the text exactly.

Like one way of indexing for speeding up searching, a document is associated

with some keywords. Then, the document is tested whether it is associated with the

14



dedicated keywords when the user searches on the documents.

Search on encrypted data based on keyword search uses the same idea. The
document is associated with many keywords, or it is just composed of the keywords.
Also, the keywords are encrypted.

Also, the tag stands for the encrypted keyword which will be searched in the
future. On the other way, the token also stands for some encrypted keyword which
will search on the tags.

With above ideas, keyword search on encrypted data is mainly classified into two

categories as the secret-key and public-key based schemes as follows.

3.3.1 Secret-key Based. Keyword: Search

Under the secret-key setting, the data owner and thé data client are usually the
same party. For simplicity, wé call, the data-owner or data client, the user.

The scenario is that asuser wants.toupload.data tosthe remote server and then
retrieve the demand data in the future. For the -confidentiality, the data are en-
crypted before being uploaded to the remote server. In such case, we want to let
the server test whether the file is associated with some keywords, and should learn
nothing beyond founded or not.

Song et al. proposed the first protocol which supports to search on encrypted data
with keyword search[8]. In the Song et al.’s protocol, the document is composed
of the keywords. For simplicity, assume that length of each keyword is same, or
padding with 0’s or 1’s otherwise. Let W be the keyword space which contains all
keywords and D be a document. As above, D is expressed as a sequence of keywords
Wi, Wy, ..., W, where each W; € W.

There are some primitives used as follows:

15



Let G : Kg — S be a pseudorandom generator, e.g. a stream cipher.

Let F': Kp x {0,1}"™ — {0, 1} where m < n be a pseudorandom function.

Let E: Kg x {0,1}" — {0, 1}™ be a pseudorandom permutation, e.g. a block

cipher.

Let f: Kr x {0,1}* — Kp be a pseudorandom function.
The protocol is described as follows:
o KeyGen

— Input: a security parameter.

— Output: kg, kg and &y which will input'to &G, £/ and f respectively and

keep them secret:

o GenTag
— Input: a document D =W [|W5]|77||11j and a pseudorandom bitstring
S = S1||Ss]| ... ||S; whichuis-generated by G with input kg. For all i,

Wil =n,1Si| =n—mand n>m > 0.
— Output: the tag of the document D.

1. fori=1tol do

2 X; = B, (W)

3 ki = fi, (Xi)

4:  tag; = X; ® (Si||Fx,(S:))
5. end for

6: return tag = tagi||tags|| ... ||tag

e GenToken

16



— Input: a keyword W and the secret keys kg and ky.
— Output: token = (X = Ep, (W), kx = fi,;(X)).
e Search
— Input: a tag = tagi||tags|| ... ||[tag and a token = (X, kx).

— Output: the occurrence positions of X.

1: fori=1to !l do

2:  if tag; ® X is the form of S||Fy, (S) then

3: print ¢
4:  end if
5. end for

Note: In fact, the above protocol Supports decryption on the tag with some
modification and it is still secure. For simplicity,- we just explain the idea of the
protocol.

As above construction, searching requires linear time with respect to number of
the keywords of a document because of sequential scan. For speeding up, there is a

tool as follows.

Bloom filter

The idea comes from [9]. The Bloom filter is composed of a m-bit string B and r
independent hash functions hy, hs, ..., h, where h; : {0,1}* — [1,m] for all i, and
every bit of B is set to 0 initially.

Adapting with the same scenario of above protocol, the following two algorithms

are GenTag and Search respectively.

e BuildIndex(GenTag)

17



— Input: a encrypted document D' = Ej_ (WH)||Ex,(Wa)l| ... ||Ex,(W)) =
Xq||Xa|| - 1 X
— Output: m-bit string B.
1: set every bit of B to 0
2: fori=1to!l do
33 forj=1tordo
4: Blh;(Xi)] =1
5. end for
6: end for

7: return B
e SearchIndex(Search)
— Input: a Bloom filter bit string B and an encrypted keyword X =
By, (W).

— Output: True(found) or False(not found)s

1: fori=1tor do

2: if B[hi(X)] =0 then

3: return False
4:  end if
5. end for

6: return True

The keyword must be encrypted before being inputted to BuildIndex and SearchIn-
dex because we do not want to let the server search any keyword arbitrary. As above
construction, there is false positive, but it can be controlled if  (the number of hash

functions), m (the length of bit string B), and [ (the number of keywords which is

18



inserted into the Bloom filter) are chosen appropriately[9)].
The idea of the scheme is to build all indexes of required keywords, and then the

searching time can be reduced to the constant time.

3.3.2 Public-key Based Keyword Search

Under the public-key setting, the data owner and the data client are usually the
different parties.

The scenario comes from the email system. Assume that a sender Bob wants to
send a mail to the receiver Alice. For privacy, the mail is encrypted with Alice’s
public key. Obviously, Alice is only party who can decrypt the encrypted mail.
Sometimes Alice wants to let the mail server have some functionality to test her
mails whether the mails contain some keywords and léarn nothing beyond founded
or not. For example, Alice lets the server have a token-which can search the mails
whether mail is associated'with the keyword ‘urgent’. I so, the server will directly
forward it to her pager.

Boneh et al. proposed the first protecol which can search on encrypted data
based on the public key system[10]. In Boneh et al.’s protocol, the mail is encrypted
with the receiver’s public key. Besides, each mail is associated with many keywords
which will be searched with dedicated token in the future.

For example, Bob wants to send a mail to Alice, and the mail is encrypted by

Alice’s public key and it is associated with [ tags as follows:

Epkaiic. (mail)|[tag [[tags|] .. . |[tag,
Epk ... () means a public key encryption with Alice’s public key and each tag; is

generated by GenTag on inputting some keyword and Alice’s public key.
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As the above example, Bob must previously choose the demand keywords asso-
ciated with the encrypted mail. Then, the mail server can search on the tags with
the tokens which can be generated only by Alice’s private key.

The bilinear map is used in the protocol and described as follows: Let G, and
(G5 be two groups of large prime order p. A bilinear map e : G; X G; — G, satisfies

the following properties:
e Bilinear: given g,h € G, and a,b € Z, then e(g?, h®) = e(g, h)*.
e Non-degenerate: if g is a generator of G, then e(g, g) is a generator of Gs.
e Computable: the map e can be computed in a polynomial time.
The protocol is described as follows:
e KeyGen

— Input: a security parameter to determine p, the size of the groups G; and

Ga. Choose a random o€ Z; and a generator g of G.

— Output: pk = (g9, h = g*)and sk = «.
e GenTag

— Input: the public key pk and a keyword W. Compute t = e(H; (W), h") €

G for a random r € Z; where H; : {0,1}* — Gy.

— Output: tag = (g", Ho(t)) where Hy : Gy — {0, 1}1°8P.
e GenToken

— Input: the secret key sk and a keyword W.

— Output: tk = H{(W)* € G;.
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e Secarch

— Input: the public key pk, a tag tag = (A, B) and a token tk.

— Output: yes if Hy(e(tk, A)) = B; no otherwise.
The correctness comes from the bilinear map as follows.

Hs(e(tk, A))

Keyword search is a way of indexing. When we want to search for some docu-
ments in the database, we usually issue a.quéry with some,keywords. These keywords
are used to test whether the document is asseciated with them. Therefore, keyword
is a good idea for indexing. Nevertheless, it is not natural when we want to find if
the document contains some pattern. Therefore, string matching is suitable for this

job.

3.3.3 String Matching with Keyword Search

As above section, the ideas of keyword search and the tool like Bloom filter can be
extended for string matching with some modifications.

String Matching with Keyword Search

As above constructions of keyword search, there is a trivial way for string matching

on encrypted data with keyword search. Based on the naive string-matching algo-
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rithm, the two main roles are text and pattern. The text is encrypted as the tag
like

GenTag
—_—

text = c1llcal| .. . || tag = (tagy,tags, ..., tag)

where each ¢; is a character and [ > 0. Also, the pattern is encrypted as the token

like

;  GenToken
—_—T

o token = (tokeny,tokena, ... token,,)

pattern = ||| .. .]|¢

where each ¢ is a character and 0 < m <.
The string matching algorithm based on keyword search is like
1: fortr=1tol—m+1do
2: flag=1

33 forj=itoi+m—1do

4: if search(tag;,token; ;+1)==False then
5: flag =0
6: break /*** exit inmer foriloop ***/

7: end if
8: end for

9: if flag==1 then

10: print ¢
11:  end if
12: end for

The above way seems to deal with the problem of string matching on encrypted
data. However, the most important problem is that it is vulnerable of the statis-
tical attack because the tokens are independent. In other words, the characters of

the pattern are independent. Therefore, the server can test any occurrence of the
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character belong to the pattern for the token. It causes the statistical analysis. The

more details are discussed in the following section about heuristic approaches.

String Matching with Bloom Filter

As above, Bloom filter can speed up searching like the idea of indexing. Besides, it
can also support string matching.

Let T be the text and find all substrings of 7. For example, assume that the
text T is “abc”. Then, all strings like “a”,“b”,“c” with length 1, “ab” “bc” with
length 2, and “abc” with length 3 are the substrings of 7. Namely, if T" is a string
of length I, there are [ + (I — 1) 4+ ---+ 1 = (14 1)I/2 = O({?) substrings.

Let these substrings be the keywords and insert them to Bloom filter. Then, we
can get a trivial construction of string matching by Bloom filter. For example, if we
want to search some pattern, we can use Searchlndex with the input of encrypted
pattern. In the scheme, the preprocessinig’ time is 'O([%)*for inserting all substrings

of the text but the searching time is.still O(1)-which is constant.

3.4 Other Extensions

There are many issues about search on encrypted data. The issue about more flexible
and efficiency for secret-key based keyword is discussed in [11]. The issue about
decryption which means that the tag can be decrypted is discussed in [12, 13]. The
issue about conjunction keyword search which supports to search many keywords in
a query is discussed in [14, 15, 16, 17, 18, 19]. The issue about more general query

like conjunction, subset, and range queries is discussed in [20].
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Chapter 4

Proposed Protocol

In this chapter, we will show the heuristic approaches and the detailed construction
of our protocol. In fact, the idea ¢omes from the maive string-matching algorithm, so
there are two primitive operations-like “comparing” and “sliding”. In the following
sections, we will focus on'the achievement of the two primitive operations.

Loosely speaking, for comparing,the idea is-that the tag is exactly matched by
some information from the token. For sliding, the idea of privacy homomorphism
is used. The token seems to be conyerted to another one, and it still expresses the

token of the same pattern at the different position.

4.1 Problem description

Search on encrypted data by string matching instead of keyword search has the main
advantage which is that the pattern does not be defined in advance, and any string

of length not over than the text can be the pattern.

Background Sometimes the user wants to upload the files to the remote server.

For the confidentiality, the files are encrypted before being uploaded. If the user
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wants to search the files, the dedicated token which can be generated only by the file
owner’s secret key is required for this purpose. We hope to reduce the communication
size of data (which are the information to finish the protocol, not the encrypted files

itself) and the computational time of the user as far as possible.

Expression of data In our protocol, we use the idea of the naive string-matching
algorithm. For practical purpose, the character space may be ASCII or some else
finite character sets. The data are encrypted with respect to each character, so

length of the tag is asymptotically same to length of the text.

4.2 Heuristic Approaches

In this section, we introduee our| approaches incrementally. The first approach is a
deterministic way to generate tag but is vulnerable of statistical attack.

In the second approach, we can get‘a randomized way to generate tag through
some randomness involved. However, the toke size:may be too large to cause heavy
communication cost.

Therefore, we use the multiplication homomorphism to get rid of such obstacle
and get the third approach for saving the communication cost. Nevertheless, it is
still vulnerable of statistical attack.

Finally, we explain the fourth approach which is the model of our protocol to
get rid of the problems which occur in the previous approaches.

Here is an example which is used in the following approaches. We assume that
a user wants to search the text T = al|b||c||a||a with the pattern P = b||¢, and both

the text T" and the pattern P are encrypted.
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4.2.1 Scheme I: The Deterministic Scheme

In our protocol, the tag is generated by each character of the text. In other words,
each character of the text seems to be encrypted into some ciphertext as the tag.

For example,

GenTa
T = aHbHcHaHa —g> Tag = (#7$7 %7 #7 #)

Obviously, we can see that the first, fourth and fifth tuples of the tag stand for the
encryption of the same character. Namely, the tag just tells the ingredients of the
text.

Therefore, the deterministic generation of the tag is vulnerable of statistical
analysis since the encryption of a charactergis only a mapping to get the identifier

of the character.

4.2.2 Scheme II: The Randomized Scheme

The idea of modification is-that the-generation of the tag must involve some extra
information besides the original character. The.nformation of the position is nat-
ural. If the GenTag is simply described as the function f on inputting a character

and a position information, we can get the tag like

GenTag

T = alfpllcllalla ——— Tag = (f(a,1), f(b,2), f(¢,3), f(a,4), f(a,5))

Roughly speaking, the probability of f(a,i) = f(a,j) where i # j is negligible when
f is appropriately chosen as a random function.

In fact, the deterministic idea is still used in our protocol The tag is actually
deterministic if the character ¢ and the position ¢ are fixed. Therefore, the user can

generate the appropriate token of the pattern which can search the dedicated text
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afterward. Therefore, we can get the token like

GenToken
_—

P =b|c

Token = {[f(b,1), f(¢,2)], [f(,2), f(e,3)], [f(,3), f (e, 4)], [f (b, 4), f(¢, 5)]}

For comparing, each pair of [f(b,7), f(c,i+1)] verifies if the occurrence of the pattern
takes place at the position i. For sliding, the next pair of [f(b,i + 1), f(c,i + 2)] is
used.

It asymptotically requires O((|T'| — |P| + 1) - |P|) communication cost. If the
length of the text is long, the communication cost is almost equal to the size of
retrieving the entire encrypted text. We want to reduce the communication cost as

far as possible.

4.2.3 Scheme III:.The Slide Scheme

Scheme-1I is similar to Oleshchuk/etal’s scheme[1]. ‘In fact, the information of
position is an abstract idea).and it ¢an be any information kept only by the owner.
Namely, the owner can generate any validtag of a character on the dedicated position
as the token. However, it can not reach our purpose since all tags of the pattern at
any position are sent.

The privacy homomorphism is a good idea to solve this problem. The idea is to
convert one token into another one of the same pattern at the different position as
follows:

slide(c)
D

fle1) f(c, ) where i # j

The token of the character ¢ at the position ¢ can be converted into the token of the

same character ¢ at the position j with the extra information like slide(c). Therefore,
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we can get the token like

GenToken
_—

P =b||c Token = {f(b,1), f(c,2) and slide(b), slide(c)}

For comparing, the initial information like f(b,1) and f(c,2) is taken first to com-
pare with the tag. For sliding, the slide information like slide(b) and slide(c) can
convent f(b,1) and f(c,2) into any f(b,4) and f(c,i+ 1) respectively and keep going
comparing.

Under this construction, the communication cost can be reduced to O(|P]).

4.2.4 Scheme IV: The Final Scheme

Although, the communication ceSt can be reduced to O(|P|) in the Scheme-III. At
least, it is same to the original problem of string matching with the naive string-
matching algorithm. Nevertheless, it is still yailnerable of statistical analysis like the

Scheme-I1. There are twoanain reasouns like

e The pattern is indirect'tevealed by the tokens of each character of the pattern.
For example, if Token = {f(b, 1), f(e,2) and slide(b), slide(c)}, then we can

get f(b,2) by

slide(b)
- =

f,1) f(0,2)

Since the probability of f(b,2) # f(c,2) is quite high, it tells that the first

character and the second character of the pattern are different.

e The information beyond the occurrences of the pattern is revealed. For ex-
ample, if Token = {f(b,1), f(c,2) and slide(b), slide(c)}, then we can get any

f(b,7) for all i by

slide(b)
—_—

f(b,1) fb,2), f(b,3), ...
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Namely, the server can generate all tokens of each character of the pattern
at any position. In other words, the server can search the text with any

arrangement of the characters of the pattern.

Therefore, the idea of the final scheme comes from “encapsulation”. Originally,
the token of a pattern is composed of the “initials” like {f(b,1), f(c,2)} and the
“slides” like {slide(b), slide(c)}. Now, we aggregate the initials and the slides to form
the “aggregate initial” and the “aggregate slide” respectively. Roughly speaking, the
individual information of each character of the pattern is not revealed. Our protocol

is based on this idea, and the detailed construction is as the following section.

4.3 Construction

We first introduce the framework of our protocol. The protocol is composed of the

following algorithms:

o KeyGen(\)
Input a security parameter Xand output a secret key K. In the process, some

tables are set up and kept secret.

e GenTag(T,K)
Input a text T and a secret key K and output the T'ag of T. Usually, the T'ag

will be uploaded to the remote server.

e GenToken(P,K)
Input a pattern P and a secret key K and output the Token of P. Usually,

the T'oken is generated only for the search.
e Search(Tag,Token)
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Input a T'ag and a T'oken and output the occurrences. Usually, it is happened
in the server side. The tag had been reserved in the server previously, and the

user issues a query by the token uploaded to the server.

correctness In the search algorithm, the result of the execution is the occurrence
of the patter P in the text T if the T'ag is generated by the text T" and the Token

is generated by the pattern P.

4.3.1 Owur Protocol

o KeyGen(\)
Input a security parameter A+ Randemly ehoose two large and distinct primes
p and ¢ such that |pl#= |q| = Awand let n = pg. Then randomly choose
d € Zj,, and s € Zy(m). Finally, nlisthe public parameter and K = (s,d) is

(n
the secret key.
After key generation,the useramust-determine archaracter space ¥ and a 1-1

mapping f : X — Y’ as the following table:

C1 | C2 Ck

:

/
> Ziy | Rig Ziy,

Table 4.1: Character Space Encoding

Especially, ' is a subset of Z*. Then, all the following computations are done

in Z*. Finally, the user has to keep the mapping(table) secret.

e GenTag(T,K)

Input a text T' = ¢q||cz|| . .. ||e; where each ¢; is a character over the character
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space ¥ and a secret key K = (s,d). Choose a random r € Z* and output

Tag

= (tagy, tags, . .., tag;)

= ((z17)* mod n, (zr) V9 mod n, . .., (zr) Y4 mod n)

where for all i, z; = f(¢;) € Z7.

After generating the tag of a text, the user must maintain the following table.

TextID || text; | texts

r T1 T2

length [ 1 l2

Table 4:2: Text: Information

The table shows the #; and ength I, which are associated with the text;. The
user has to determine the dedicated r; before generating the token which search

on the tag of the text;. Finally, the user has to keep the table secret.

e GenToken(P,K)
Input a pattern = ;||c,]] ... ||c,, where each ¢} is a character over the character
space ¥ and a secret key K = (s,d). The user has to determine r and length

[ of the target text in advance. If length of the pattern is greater than [, then
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terminate. Otherwise, output

Token = (
length = m,
initial = (2)r)*4(2hr) TV (o p)stm=Dd yod n,

slide = (2,22 -r™)% mod n

)
where for all 4, 2] = f(c}) € Z;.
e Search(Tag,Token)

Input a Tag = (tagy, tags, . .qtag)) and & T'oken = (length = m,initial, slide).
For efficiency, the extra variables-like templ and temp2 can reduce the times
of multiplication, and then does

1: templ = initial

2: temp2 = tag,-tags- - tagy,. mod-n

3: fori=1tol —m+1.deo

4:  if templ == temp2 then

5: print i /* the occurrence position of pattern */

6: end if

7. ifi<l—m+1then

8: templ = templ - slide mod n

9: temp2 = tagi_l- temp2-tag;r, mod n
10:  end if

11: end for
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For example, assume that there are a text T' = al|b||c||a||a and a pattern P = b||c.

With GenTag and GenToken, we can get

Tag
= (tagy,tags, ..., tags)
= (((a)r)Sd mod n, (<b>r)(s+1)d mod n,

() mod n, ((a)r) 9 mod n, ((a)r)+H? mod n)
and

Token = (
length =72,
initial = ((O)FPY@F) V¥ mod n,
slide = ((b){c) - r*) mod n

)

where (¢) means encoding of the character ¢ in Z* like f(c).

4.3.2 Correctness

In this section, the correctness of search in our protocol will be discussed.
Let the text T = ¢1||ea]] ... ||a; and the pattern P = c}||c]] ... ||c, where both
c; and c;. are the character over the same character space for all 2,7 and 0 <m <.

Then, we can get the tag and the token like

Tag
= (tagy,tags, . .., tag)

= ((z17)* mod n, (zr) V¥ mod n, ..., (zr) =4 mod n)
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and

Token = (
length = m,
initial = (2)r)*4(2hr)EHVE L ( p)stm=Dd yod n,
slide = (2,22 -r™)% mod n

)

where z; = f(¢;), 2; = f(c}) € Z;; for all i, j.

We differ the cases by length m of the pattern P.

ecascel: m=1

The token tells initial.= (z;r)*tmodmn-and skide = (2{r)? mod n. We can
multiply initial by slide any k tinie and get any (2,r)*+%? mod n for k € Z+.
If some z; is equal to 2/, then we can compare the tag; = (z;7)* 4 mod n
with (27)%%- ((2}r)) 5 mod .= (Z1)? (2r) 704 mod n = (2)r)T D4 mod

n.

case 2: 1< m <
Assume that the pattern P is occurred at the position 7 of the text T" where
1 <i<l—m+1. Namely, P=T[i...i+m—1]and 2] = z;, 2, = zj41,..., 2, =

m

Zivm—1. The search algorithm can print all ¢+ when the for-loop is executed on
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the i-th times as follows:

templ

initial - slide™"

((ZiT)Sd(Z;’I’)(S+1)d L. (Z/ ’I’)(s+m_1)d) . ((Zizé L. Z, . ,r,m)d)i—l

() ()00 () 00) (o) D ) D (31, ) )

(Zir)(s-l-i—l)d(zér)(s—i-i)d o (ZI T)(s+m+z'—2)d

(ZZ.T)(s—i—i—l)d(zi_'_lr)(s—l—i)d o (Zi+m_1r)(s+m+i—2)d

= tag; - tagiv1 -+ - lagivm—1

=temp2 (mod n)

e case 3: m=1

In fact, the slide is use = 2, 20 = 29, ...y 20 = Zm = 2

if P exactly matches reh algorithm can print the

ted only once since initial is

templ
= initial

(ZiT)Sd(zéT)(S"—l)d . (z/ r)(s—i-m—l)d

= (zlr)Sd(ZQT)(SH)d. .. (zmr)(s-l-m—l)d

= (er)sd(22r)(s+1)d o (er)(s—i-l—l)d
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4.3.3 Mask Exponent s

In our protocol, the position information of a character ¢ is used to be the exponent
information. If the mask exponent s is omitted (or always set to 1), we can raise
tag; to the i-th power and then compare with tag;. Similarly, tag, can be compared
with tagy; for i € Z* and so on. In other words, the ingredients of a text may
be deduced through only encrypted text like tag. Avoiding such statistical analysis

requires a random s.

4.3.4 Mask Base Number r

It is obvious to generate the randomized 1'ag if the owner wants to use the same
secret key in the different texts. For the avoidance of statistical attack of the different
texts, we hope that the sétver can notdeduce any information on corresponding
positions between the different tags. On the other hand, we hope that the entire

base number like z;r is randomlylover.Z; for the security analysis.
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Chapter 5

Analysis

In this chapter, we will analysis security, comparison, avoidance and discussions of
our protocol. For the securitys.itiis based on the security proof by reduction. For
the comparison, we discuss the difference -between. Oleshchuk’s and our protocol.
For the avoidance, we show that the attack’may be suctessful if the inappropriate

directions are used. In the end, there are some discussions.

5.1 Security

The RSA assumption is adopted in the following security reduction because our

protocol is based on the similar operation like modular power.

5.1.1 RSA Assumption

Given (n,e,y) where n = pq, p and ¢ are large primes, and e is coprime to ¢(n), a
random y € Z. It is computationally infeasible to determine z such that z¢ mod

n=uy.
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5.1.2 Security Model

RSA assumption tells that RSA function is hard to invert. In our security model,
we think that the adversary can not get the information like z;r from the i-th subtag
(2;7)+ D9 mod n of the tag. Although, the information like z; is enough to cause
statistical analysis. In fact, the information like z;r is also enough, and we finish

the security reduction in this scenario.

5.1.3 Security Reduction

Our protocol is based on RSA assumption. Assume that an adversary A can break
our protocol that means to determine any z;# tuple of the T'ag, and then we can use
A to determine RSA problemyas follows.

Let (n,e,y) be the RSA problem challenge.  Randotly choose s € Zy(,). Then,
set r to 2 and d to e. Then, randomly choosé '€ Z* and z; € Z* foralli = 1,2,...,1.

Finally, n is the publiceparameter,.and.give.4 the tag like

Tag

= (tagy,tags, ..., tag)

s+1l)e )(s+l—1)e

= ((z12)* mod n, (z02) mod n, ..., (zx mod n)

= (2{°y® mod n, zésﬂ)ey(sﬂ) mod n, . .. ,zl(SH_l)ey(SH*l) mod n)

By contradiction, we assume that some adversary A can break our protocol.

It means that A outputs m; such that m; = z;x, and we can compute the x =

mizfl

.~ mod n as the answer of the RSA problem challenge. It concludes the security

reduction.
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5.2 Comparison

The section will discuss the comparison of Oleshchuk and our protocol. Let n be

the length of the text and m be the length of the pattern.

5.2.1 Time

Bitwise exclusive OR is the main operation in Oleshchuk’s protocol, and modular
multiplication is ours. Obviously, modular multiplication is much more overhead
than bitwise exclusive OR, but the generation of the tag can be done off-line in the
user side. Also, the search algorithm is executed in the server side. Actually, the
operation of modular power or modular éxponentiation can be speeded up through
some way like square-and-multiply, etc,

However, both Oleshchuk and-eur protocel: use the sequential scan based on
the naive string-matching=algorithm. It requires asymptotically O((n — m + 1)m)
time. There are many better waystoreduce-thertime like KMP[21] algorithm, etc.
The protocol proposed by Oleshehuk supports KMP" algorithm. We hope that our

protocol can do in the future.

5.2.2 Space

Type Key Size(bits) | Tag Size(bits) | Token Size(bits)
Oleshchuk(original) n n (n—m+1)m+m
Ours O(\) O(n\) logm 4+ O(\)

Table 5.1: Protocol Space Comparison

The table shows the demand space of Oleshchuk’s protocol and ours. Especially,

the size of the token in ours is logm + O(\) seems not constant because of logm.
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However, the value of logm only tells the length of the pattern. We think that it is
not major overhead.

In our protocol, the text is encrypted by each character, so the size of the tag
is linear with respect to the size of the text. The owner keeps only the secret key
(s,d) and two tables of the character space encoding and the text information. The
sizes of the secret key and the table of the character encoding space are constant.
The size of the table of the text information is liner with respect to the number of

the texts.

5.3 Avoidance

Our protocol has been designed to avoid the statisfical attacks as far as possible.
However, the protocol reveals the lengthof the pattern from the token and the occur-
rence of the pattern. Through such information, the server can take the statistical

attack successfully if the inappropriate directions are used.

5.3.1 Small Token

It means that the pattern contains fewer characters. In this case, the occurrences of
the pattern may be happened frequently. For extreme example, the pattern contains
only one character. There are many occurrences with high probability. Because of
revealing length of the pattern by the token, it may be vulnerable of statistical

analysis.
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5.3.2 Search Too Many Times

If the user searches too many times on the same encrypted text like tag, revealing
the occurrences of each pattern may cause the statistical attack with length of the
pattern and a dictionary. For getting rid of this problem, the main idea is to reduce
the search times or to re-encrypt the text after searching too many times.
Actually, re-encrypt means to ignore the original uploaded tag in the server, gen-
erate a new tag, and then upload it. Then, the following queries of string matching

are taken place in the new tag in the future.

5.4 Discussion

In this section, we will discuss some issués of our protocol.

5.4.1 False Positive

In our protocol, the search*algorithm may have false positive. However, we think
that the probability is quite small under-modulon. If it is happened, the user can

retrieve the file, decrypt it, and verify before use. Therefore, it requires post-filtering.

5.4.2 Exposure of Occurrence Position

Such situation also exists in Oleshchuk’s protocol, and it may be vulnerable of
statistical attack. Because of revealing the occurrence positions, small token or
searching too many times may cause the statistical attack successfully. The result
directly implies that the randomized generation of a token is meaningless because of
exposure of occurrence positions. Namely, the adversary can do statistical analysis

from the occurrence position through the search result and the length of the pattern
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which is told from the token and then distinguish the tokens.

5.4.3 Decryptable

An encryption function usually has the corresponding inverse function as the decryp-
tion function. Here we just concern on search on encrypted data, and the original
data can be encrypted by standard encryption algorithm like DES, AES, etc., and
append it to the tags. Actually, the generation of tag uses the way which is similar

to RSA function. Therefore, we hope that the tag can be decrypted in the future.
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Chapter 6

Conclusion

We have proposed a protocol to deal with string matching on encrypted data with a
constant size token. Nevertheless; it requires the sequential search. Is it possible to
reduce the time with indexing on other ways? Also, in-our protocol, the occurrence
and length of the pattern are known to the server. It may‘cause the statistical attacks
under special case of usage. Is it possible to avoid revealing such information to the
server? We assume that the$erver is curious and fellows the protocol. Is it possible
to enhance our protocol to the malicious server who may not follow the protocol?
Also, is it possible to extend the problem to the pubic-key setting? The most obvious

application is the email system.
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