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藉由重新指定暫存器為混合指令集處理器之程式碼

減量 

學生：顧耀崙         指導教授：楊 武 博士 

 

國立交通大學資訊科學與工程學系(研究所)碩士班 

摘 要 

 

 由於嵌入式系統缺乏記憶體，所以程式碼大小成為一個重要的研究議題。基於這個

理由，一些精簡指令集處理器，例如：ARM、MIPS 和 ANDES 都提出混合長度的指令集架

構。此指令集架構支援一般標準長度的指令集，還有一個長度較小的指令集。若一個 32

位元指令能夠被轉換成對應的 16位元指令，則程式碼大小即能得到縮減。但是 16位元

指令的暫存器欄位通常只有 3位元長度，因此 16位元指令在暫存器的使用上有所限制。

相反地，32 位元指令其暫存器欄位通常有 4到 5 個位元長度，所以 32 位元指令可以使

用所有的暫存器。因而當 32位元指令要轉換成對應的 16位元指令時，可能需要重新指

定暫存器才能讓轉換順利執行。指定暫存器通常以下列兩種方式執行：(1)程式碼產生

器指定適當的暫存器並試著產生 16位元指令；當無法產生 16位元指令時，編譯器則會

產生 32 位元指令。(2)編譯器產生出全部為 32 位元的指令，之後再利用一個額外的步

驟去嘗試重新指定暫存器來讓 32位元指令轉換為對應的 16位元指令。我們基於上述第

二種方式，提出了兩個快速重新指定暫存器的方法。單純只有轉換而沒有執行我們提出

之重新指定暫存器的方法，程式碼大小平均有百分之二十七的縮減。而我們的實驗結果

顯示在相同的程式底下程式碼大小平均有百分之二十八的縮減。 
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Mixed-Width ISA Processors 

Student: Yao-Lun Ku                      Advisor: Dr. Wuu Yang 

 

Institute of Computer Science and Engineering 

National Chiao Tung University 

Abstract 

Due to the limited memory in embedded systems, code size becomes an important issue. 

For this reason, many RISC processors, such as ARM, MIPS, and ANDES, etc., provide a 

mixed-width instruction set architecture (ISA). This ISA supports a normal-width instruction 

set (usually 32-bit) and a short-width instruction set (usually 16-bit). Code size will be 

reduced if some 32-bit instructions are replaced with 16-bit equivalents. There is a restriction 

on the registers that can be used by 16-bit instructions because the register field in a 16-bit 

instruction is usually 3 bits wide. In contrast, in a 32-bit instruction, the register field is 

usually 4 or 5 bits wide. All registers can be used in 32-bit instructions. Therefore, replacing a 

32-bit instruction with the 16-bit equivalent may need to re-assign the registers. Register 

assignment can be performed in two ways: (1) the code generator will attempt to generate 

16-bit instructions and assign appropriate registers to the instructions. When it is not possible 

to generate 16-bit instructions, the compiler will generate 32-bit instructions instead; (2) the 

compiler will generate purely 32-bit instructions first. A later pass will attempt to reassign the 

registers so that as many 32-bit instructions can be converted to 16-bit equivalents as possible. 

We propose two fast methods based on the second approach. We will call our method register 

re-assignment. We implemented our method in the LLVM static compiler. The results 

demonstrate that the code size reduction is 28% with our methods. In contrast, a 

straightforward translation without register reassignment achieves code reduction of 27% on 

the same benchmarks. 
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Chapter 1 Introduction 

 In recent years, embedded systems, such as cell phones, PDAs, etc., brought significant 

impacts on our daily life. Most of these devices come with very limited memory due to 

consideration of weight, power consumption, or price. On the other hand, more and more 

sophisticated applications are demanded nowadays in such devices. For instance, encryption 

software and games are popular in cell phones. These sophisticated applications require a lot 

of memory. Thus, code size becomes a critical design issue for the embedded devices. 

RISC processors have been widely used in embedded systems. They usually offer the 

benefits of high computing ability and low power consumption. Due to the very uniform 

instruction format, RISC software commonly suffers from poor code density. On the other 

hand, large code size requires more accesses to the instruction memory. This potentially 

increases the instruction cache miss rate and power consumption. 

Traditional RISC processors, e.g., 32-bit ARM and 32-bit MIPS, come with fixed-width 

instructions. Fixed-width ISAs offer good performance at the cost of larger code size. They 

are not suitable for limited-memory embedded systems. Therefore, newer RISC processors 

support a narrower instruction set (usually 16-bit wide) in addition to the normal instruction 

set (usually 32-bit wide). The mixed-width ISA[1] improves poor code density and runs 

programs with acceptable performance.  

There are two limitations in the narrower ISA: First, there are fewer bits in a 16-bit 

instruction for indexing registers. For instance, in MIPS, all the 16-bit instructions can use 

only eight registers, $0~$7, but 32-bit instructions can use all registers. Thus, the register 

allocator in a compiler needs to carefully consider the available registers for individual 
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instructions. Second, there are fewer bits for encoding immediate values in a 16-bit 

instruction. 

In this thesis, we will assume a traditional compiler that will generate purely 32-bit 

instructions. Then a new register re-assignment phase will re-arrange the registers so that as 

many 32-bit instructions can be converted to their 16-bit equivalents as possible. We propose 

two fast register reassignment methods. Both methods select registers according to their 

priorities. The main difference between the two methods lies in calculating a register’s 

priority. The simple reassignment method selects registers based on the usage frequencies of 

the registers. The second method selects registers based on a dynamically changing neighbor 

graph. 

1.1 Motivation 

 We found out the restriction of using register does affect the generation of 16-bit 

instructions, since 16-bit instructions have fewer bits to use registers and hold immediate 

value. If a register is out of the encodable range of a instruction's 16-bit equivalent (i.e. 16-bit 

instruction cannot use it), this instruction cannot be converted to 16-bit format. In short, the 

generation of 16-bit instructions is closely related to registers which are assigned by register 

allocator. If the register allocator assigns registers without considering the restriction of 16-bit 

instructions, hence the number of 16-bit instructions would not be many. It quite wastes the 

characteristic of mixed-width ISA. 

 In some platform, for example, CVM (CDCHI virtual machine)[2], including a dynamic 

complier, call Just-In-Time compiler (JITC). It translates Java bytecode into native code 

dynamically. Because of dynamical compilation of JITC, it cannot perform complicated 

register allocation, such as graph coloring register allocation. Instead of register allocation, it 

uses register manager for keeping track of register usage during the compilation processes. 
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More precisely, the register manager is the resource manager, because what it really does is 

use a data structure called CVMRMResoure to keep track of where evaluated expressions are 

currently stored, both in memory and in registers. Hence, this kind of allocation is too simple 

to use register efficiently. If this JITC is applied on a mixed-width ISA, the generation of 

16-bit instructions would not be more since the register management does not allocate 

registers carefully. Our register reassignment methods can be applied on this platform to 

improve the registers use. 

 We get the translation rate of the 16-bit instructions by analyzing each benchmark as 

shown in Figure 1-1. Direct Conversion only performs default register allocation and without 

register reassignment, its translation rate is on average 53.4%. "Without register limitation" 

indicates that instructions have 16-bit equivalents and their immediate value is encodable, the 

translation rate is on average 89.9%. This observation motivates us to propose register 

re-assignment methods to improve the register use after a simple register allocation. 

 

Figure 1-1 Translation rate of 16-bit instructions 
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1.2 Objective 

Design a simple and fast method to reduce code size for mixed-width ISA with 

mode-switch by encoding technique mechanism. The proposed methods achieve code 

reduction by increasing the generation of 16-bit instructions. Besides, an analysis of the 

low-level intermediate representation (IR) to evaluate a function is worthy of register 

reassignment, and to minimize the additional instructions that required for solving the calling 

convention problem. Our methods are simple and fast enough for adapting to targets likes 

Just-In-Time run-time compilers. 

1.3 Organization 

 The rest of this thesis is organized as follows: Chapter 2 introduces the background 

knowledge. Chapter 3 first gives the definition of instruction types and register sets which are 

used in the register reassignment methods, then gives the overview of compiler back-end for 

mixed-width ISA and presents the register reassignment methods. Chapter 4 demonstrates the 

experimental results. Chapter 5 gives the conclusion and the future work. 
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Chapter 2 Background and Related Work 

 This chapter describes background knowledge in our research. Section 2.1 introduces the 

mixed-width ISA, including constrains of narrower instruction set and mode switch 

mechanisms. In section 2.2, we describe the calling convention, especially calling convention 

in MIPS ISA, since we face the problem about calling convention in our register reassignment 

methods. 

2.1 Mixed-Width ISA 

As the name suggests, the mixed-width ISA contains more than one fixed-width 

instruction set. Typically, it has two instruction sets of different instruction widths. The 

normal instruction set (usually 32-bit) provides good performance and the narrow instruction 

set (usually 16-bit) provides high code density. The narrow instruction set is usually a subset 

of the normal instruction set. Processors with mixed-width ISA are popular in embedded 

systems, such as ARM with Thumb ISA[3][4], MIPS with MIPS16e ISA[5], or Andes with 

AndeStar ISA[6], and so on.  

Code generating by using mixed-width ISA may achieve significant code size reduction 

since the 16-bit instruction has half width against with the 32-bit instruction. Because of this, 

there are some bit width restrictions. Due to the bit width limitation of narrow instruction set, 

it usually encodes the most frequently used operations from normal instruction set; in addition, 

it also has fewer bits to use registers and immediate value. Figure 2-1 show the different 

width register field and immediate value of different width instructions. 
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ADDIU rx3 immry3 addiu $ry3, $rx3, imm

ADDIU rx5 immry5

addiu $ry5, $rx5, imm16-bit

32 -bit

 

Figure 2-1 Different Instruction Formats in MIPS 

2.1.1 Constrains of Mixed-width ISA 

A 16-bit instruction could use only a subset of the registers. For example, the register 

field of a typical MIPS 16-bit instruction, shown in Figure 2-1, consists of three bits. Thus, it 

could only use eight registers (i.e., R0 through R7). RegS denotes the set of these registers. An 

instruction that uses any registers not belonging to Regs must be encoded as a 32-bit 

instruction. If the compiler does not take into account this restriction when assigning registers 

of the instructions, these instructions may not be able to encode as 16-bit equivalents. Thus, a 

compiler needs to be careful to allocate registers for instructions.  

In addition to the limitation on accessible registers, immediate values in a 16-bit 

instruction are also restricted to fewer bits. For example, the encodable bits of 16-bit addiu 

instruction are five in Figure 2-1; that is, the maximum unsigned value the instruction can be 

expressed is 31. There are 16 bits for the immediate value in the 32-bit instruction and only 5 

bits in the 16-bit instruction. Large immediate values also force generation of 16-bit 

instructions, but it depends on compiler how to hold the constants. The impact of this 

constrain might be eliminated as if compiler uses a constant pool to hold large immediate 

values. 

2.1.2 Mode Switching Mechanisms 

Multiple fixed-width ISAs do not come without a cost. There is the cost for switching 

among the different modes. There are two mode-switching mechanisms: 
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i. Use a Mode Switch Instruction 

ARM/Thumb uses a branch instruction (e.g., Branch and exchange, BX) as mode 

switching instruction to change modes between different width code sections. Figure 2-2 

shows a branch-and-switch-mode instruction in ARM, it performs a branch by copying the 

contents of a general register, Rn, into the program counter, PC. The value of Rn[0] 

determines whether the instruction stream will be decoded as ARM or Thumb instructions 

during execution. 

 

Figure 2-2 ARM branch and exchange (BX) instruction format 

This mechanism is useful when a block of contiguous instructions can be converted to a 

different mode[7][9]. These existing approaches usually perform analysis to determine 

whether they were worthy of converting. In order to reduce the overhead of the mode switch 

instructions, every subroutine is compiled in a single mode in ARM/Thumb. The mode 

switching between ARM and Thumb code is shown as Figure 2-3. 

.code 16

... ; Thumb code(16-bit)

.align 2

bx r15

.code 32

... ; ARM code(32-bit)

orr r15, r15, #1

bx r15
 

Figure 2-3 Mode switching through bx instruction 
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ii. Use the encoding technique 

This mechanism uses a mode bit to indicate the mode bit of the instruction. For example, 

in AndeStar, the first bit of every instruction is an “ISA mode bit”. This bit indicates if the 

instruction is 16-bit or 32-bit. Hence, 16-bit and 32-bit instructions can be mixed together 

without the mode-switching instructions. Figure 2-4 shows how the ISA mode bit in ANDES. 

Instruction is 32-bit if bit[31] equals zero; likewise, instruction is 16-bit if bit[15] equals one. 

The obvious disadvantage of this mechanism is that it needs to reserve a bit for ISA mode bit. 

31 24

0

1

opcode

15

ISA mode bit opcode

0

0

 

Figure 2-4 ISA Mode bit in ANDES 

 Because of AndeStar uses the mode bit to indicate instruction format, it’s not required as 

same as switching mode through mode switch instruction which needs to compile entirely 

code segment into identical width. 16-/32-bit instructions can spread all over the function 

arbitrarily (e.g., instruction-level granularity). Figure 2-5 shows an AndeStar code fragment; 

the instructions swi333.bi, movi55, jral5, subi333, and lwi333 are 16-bit. Others are 32-bit. 

B.S. Liang et al. [8] show that the mode switching by using encoding technique is an efficient 

way for multiple fixed width instruction sets in instruction-level. 

BB1:

...

swi333.bi   $s1, [JSP_$s0], 4   ; 16-bit

lwi $gp, [$s1+0]

movi55      $ta, -4             ; 16-bit

and         $gp, $gp, $ta

lwi $gp, [$gp+68]

lwi $a0, [$gp+20]

lwi $gp, [$a0+0]

jral5       $gp ; 16-bit

subi333     JSP_$s0, JSP_$s0, 4 ; 16-bit

lwi333      $s1, [JSP_$s0+0]    ; 16-bit

...  

Figure 2-5 Mode switching through the ISA mode bit 
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2.2 Calling Convention 

 The calling convention is a scheme for how functions receive arguments from their caller 

and how they return a value. The calling conventions can differ in follows: 

 Where arguments and return values are placed (in registers; on the call stack; or a mix of 

both). 

 The order in which arguments are passed. 

 How the task of setting up and cleaning up a function call is divided between the caller 

and the callee. 

 Which registers that may be directly used by the callee. 

Caller Callee

Argument 
Registers (ArgRegs)

Return value 
Registers (RetRegs)

What registers I need to store before call ?

Caller-Saved Registers (CallerSR)
CALL

RETURN

What registers must I not clobber ?

Callee-Saved Registers (CalleeSR)

Restore CalleeSRRestore CallerSR
 

Figure 2-6 The standard process when function call 

 Figure 2-6 shows the standard process when the caller calls to callee. First, we need to 

store the caller-saved registers before call and put parameters into Arguments Registers 

(ArgRegs), then caller changes control to callee. Callee-saved registers must be preserved 

before the callee use them. So callee stores callee-saved registers to stack frame in prolog and 

restored them in epilog before changing control to caller. The return value of callee is stored 



10 

in Return value Register (RetRegs). After callee returns, the caller gets the return value of 

callee from RetRegs. 

 In MIPS, the register usage is shown in Table 2-1. The ArgRegs are $4-$7, and the 

RetRegs are $2, $3. The first four arguments are passed in ArgRegs, and the rest of arguments 

are stored in stack frame. The arguments pass order is started from $4 to $7 (i.e. the first 

argument is passed to $4, the second is passed to $5, and so on). 

Table 2-1 Register usage in MIPS 

Register 

Number 

Alternative 

Name 

Description 

2-3 $v0-$v1 (Values) from expression evaluation and function results 

4-7 $a0-$a3 (Arguments) First four arguments for subroutine 

8-15 $t0-$t7 Caller-saved if needed. Subroutines can use w/out saving 

16-23 $s0-$s7 Callee-saved. A subroutine using one of these must save original 

and restore it before exiting. 

24-25 $t8-$t9 Caller saved if needed. Subroutines can use w/out saving. These 

are in addition to $t0 - $t7 above. 

 

2.3 Related Works 

 Due to the restriction of the Thumb instruction set, it leads to generation of poorer 

quality code that leads to the loss of performance. For establishing above claims, 

Krishnaswamy and Gupta [9] present analysis of Thumb instruction set restrictions. Besides, 

they proposed a profile guided algorithms for generating mixed ARM and Thumb code for 

application programs, not only achieve significant code size reduction but also without loss in 

performance. There two generation of mixed code in this thesis, coarse grained and fine 
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grained. The coarse grained approach using heuristic for choosing ARM or Thumb code for 

frequently executing function (more than 5% of total execution time); Thumb code for all 

other functions. Each function compiles entirely into either ARM code or Thumb code. A 

function must be compiled into ARM code if it result in significantly lower overall 

performance when generating in Thumb code.  

 In fine grained approach, a function is compiled into mixed ARM and Thumb code. 

Because of some functions the Thumb version has greater number of instructions than ARM 

version and result in decreasing overall performance. To make the decision for a single 

function whether it would result in better overall result or not, they analyzed the instruction 

counts of the benchmarks. They found frequently occurring patterns in Thumb code from four 

instruction types which increase the overall Thumb instruction counts significantly. Afterward 

the patterns are compiled into equivalent ARM code and insert the bx instruction to switch 

modes. 

Halambi et al. [7] presents a novel compilation framework for dual instruction sets, 

which uses a profitability base compiler heuristic to convert normal instructions into reduced 

width instructions. In this thesis, the compiler first marked all convertible instructions and 

looked for rISABlocks which were composed of contiguous candidate instructions. Thereupon 

a profitability heuristic evaluated each rISABlock to determine whether it is worthy of 

converting rISABlocks into reduced format by estimating the tradeoff between code size and 

performance. Lastly the compiler inserted a mode change instruction to switch between 

normal and reduced mode. Since this compiler framework was designed for architectures with 

mode switch by a branch instruction, it is not suitable for architectures which indicate the 

instruction format by instruction encoding mechanism. 
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Chapter 3 Register Reassignment Methods 

 We propose two simple and fast register reassignment methods for reducing code size in 

this thesis. These methods are designed for mixed-width ISA processor with the mode bit to 

indicate the instructions' width (16-bit or 32-bit). Register reassignment methods are 

performed after register allocation to improve the generation of 16 bit instructions by means 

of reassigning registers with higher priority. Both methods process one function at a time. The 

function that is under processing is denoted as CurrentFunction in the following discussion. 

 In this chapter, section 3.1 first describes the compiler backend and the definition of 

instruction types and register sets. Section 3.2 presents the first reassignment method and the 

solution for handling calling convention problem. Section 3.3 presents the second 

reassignment method and the neighbor-graph. The second method is different from first 

method in calculation of registers' priorities. 

3.1 Compiler Backend and Definition for our Design 

 Figure 3-1shows the overall structure of a compiler backend with a register reassignment 

phase. The input for the register re-assignment phase is the program in the form of LLVM IR, 

in which the instructions have already been selected and the registers have already been 

allocated. The register re-assignment phase attempts to re-arrange the registers in the program. 

Finally, a code emitter will write the resulting program as an assembly file. 

3.1.1 Compiler Backend 

 A traditional compiler backend performs the following functions: instruction selection, 

instruction scheduling, register allocation, and code emission. In the instruction selection 

phase it uses a pattern-matching scheme to map the low-level intermediate representation (IR) 

to target-machine instructions. The instruction scheduling phase is for speed optimization, 
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which improves instruction-level parallelism (ILP) by rearranging the order of instructions to 

avoid pipeline stalls. The register allocator allocates program variables to physical registers. 

Finally, the code emitter outputs the machine code. 

 Several frequently used instructions have both 16-bit and 32-bit versions. The main 

differences between the two versions are their encoding length and accessible registers. So we 

first map operations in the IR to the temporary instructions (called INS) in the instruction 

selection phase, shown in Figure 3-1. Our register reassignment methods take the INSs as 

input and the output is still the INSs, but the registers may have been reassigned. 

Compiler Backend (Code Generator)

Instruction Selection

Instruction Scheduling

Register Allocation

Register Reassignment

Instruction Formatting

Code Emission

Assembly file contains 16-/32-Format 

Instructions

Mapping IR to temporary 

instruction (INS)

Schedule for  optimization

Assign physical registers to 

program variables

Determine INS format

Output .s file

Low-level IR

 

Figure 3-1 A compiler backend for mixed-width ISA 

 An additional instruction formatting phase is added after the register reassignment phase. 

It performs the translation from INS to the instruction of the proper format according to the 
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re-assigned registers. In this phase, we first check if a INS has 16-bit version. For example, 

the addition (addiu) INS has two 16-bit versions, shown in Figure 3-2. Then one of the 16-bit 

versions is selected based on the operands of INS. For instance, addisup is selected if the base 

register is $sp and the offset is within its encodable range. 

ADDIU rx3 immry3 addiu $ry3, $rx3, imm

addiu $rx3, $sp, immADDIUSP rx3 imm

16-bit

 

Figure 3-2 Different encoding formats of ADDIU instruction 

3.1.2 Instruction Types 

 Every instruction (abbreviated as INS) in the program, which is 32 bits wide, is classified 

into the following three types: L-INS, U-INS, and S-INS.  

1) L-INS (Long-Format INS) 

An instruction of this type indicates that it has no 16-bit equivalent or its immediate 

value is out of the encodable range of 16-bit instructions. An L-INS cannot be converted 

to a 16-bit instruction. 

2) U-INS (Uncertainly-Format INS) 

An instruction is classified as U-INS if it has 16-bit equivalents but the registers the 

16-bit equivalents can use are restricted. This kind of INS might be converted to its 

16-bit equivalent if the registers can be properly re-arranged. This kind of instruction is 

the target of our register reassignment methods. 

3) S-INS (Short-Format INS) 

An instruction of this type has 16-bit equivalents and the 16-bit equivalents can use all 

physical registers. In MIPS, all and only JALR, JR, and NOP instructions are S-INSs. 

For example, the JALR instruction has just one register operand, which contains an 
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instruction address; it can access all physical registers. An S-INS can always be 

converted to a 16-bit instruction with or without register reassignment. 

3.1.3 Register Set 

 Owning to the limited number of bits for indexing registers, we denote the physical 

registers that can be used by 16-bit instructions as RegS. The number of registers in RegS is 

denoted as NRS. For example, in MIPS, 3 bits are reserved in a 16-bit instruction to designate 

a register. Thus, it can index registers from $0 to $7. In fact, a 16-bit instruction can only 

access registers $1~$7, since $0 always contains zero in MIPS. In addition, a few registers are 

reserved for special purposes. For example, $28 is the global pointer and $29 the stack pointer, 

etc. 

Table 3-1 shows the special-purpose registers in MIPS. These registers are sometimes  

used in the special way. For example, some instructions, such as addisup in Figure 3-2, use 

$29 (i.e., $sp) implicitly. They are called the SP-Relative instructions. In our methods, we do 

not re-assign these special-purpose registers. Hence, we denote RegL as the set of all but the 

special-purpose registers. 

Table 3-1 MIPS Special-Purpose Registers 

Number Name Purpose 

$0 zero Always 0 

$28 gp The Global Pointer used for addressing static global variables 

$29 sp The Stack Pointer 

$30 fp The Frame Pointer 

$31 ra The Return Address in a subroutine call 
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3.2 Method I 

 The Method I is the basic design among our register reassignment methods. It consists of  

three phases: Register Selection, Mapping & Reassign, and Insertion, shown in Figure 3-3. 

We count the number of times each register is used in CurrentFunction. This count is 

regarded as the priority of the register. Then the registers, in the order of their priorities, are 

re-assigned to registers in RegS.  

 Register reassignment is under several constraints. In the calling convention, arguments 

are stored in the argument registers, which are $4, $5, $6, and $7 in MIPS architecture. We 

will use ArgRegs to denote the set of these four registers. The return values are stored in the 

return registers, which are $2 and $3. We will use RetRegs to denote the set of the two 

registers. In addition, reassignment also changes registers' save convention. We use an extra 

insertion phase after the mapping & reassign phase for handing the calling convention. 

Start

Mapping & Reassign

Register Selection

Calculate

Select

< NRS

Mapping

Reassign

All select registers 
are reassigned ?

Insertion

yes

Inserter

yes

Analysis

End
 

Figure 3-3 Flowchart of register reassignment method I 
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3.2.1 Register Selection Phase 

 In this phase we first inspect individual functions and calculate the priority of each 

register belonging to RegL that have been used in an U-INS. We select the general purpose 

register (GPR) currently. Calculation focuses on registers used in U-INSs since they might be 

converted to 16-bit instructions. The priority of a register is defined as follows: 

 

Priorityi denotes the priority of register i (e.g., the priority of $22 is denoted as Priority22). 

RACi denotes the number of times register i is used in U-INSs. For example, the U-INS "add 

$2, $3, $4" has three register operands. Therefore, RAC2, RAC3, and RAC4 are incremented by 

one, respectively. Figure 3-4 shows an example. RAC2 is 8 not 9 in Figure 3-4 since JR is not 

a U-INS. Thus, we do not count it. The main task of the register selection phase is to select k 

registers with the highest priorities, where k is NRS or the number of registers used in U-INSs, 

whichever is smaller. 

$BB1_14:        # bb581

lw      $3, %got($JTI1_1)($gp)

nop

addiu   $3, $3, %lo($JTI1_1)

sll     $2, $2, 2

addu    $2, $2, $3

lw      $2, 0($2)

nop

lw      $3, 28($sp)

nop

addu    $2, $2, $3

jr      $2

nop

j       $BB1_16 # bb666

nop

RAC2 = 8

RAC3 = 6
 

Figure 3-4 Example for counting RACi  
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3.2.2 Mapping and Reassign Phase 

 Register reassignment might reassign registers to others such ArgRegs and RetRegs, 

which sometimes contain specific values. In this situation we to insert additional instructions 

to handle this problem (see the insertion phase below). These additional instructions increase 

the code size. This conflicts with our objective, i.e. code size reduction. Therefore, we need to 

determine if a function is worthy of register reassignment by comparing the overhead and the 

profits of reassignment. 

 Every register which belongs to RegS and to either ArgRegs or RetRegs is given a cost, 

called ReassignCost. In our implementation, ReassignCosti denotes the code size of the 

additional instructions for handling the calling convention if register i is reassigned to another 

register. If register i belongs to neither ArgRegs nor RetRegs, then ReassignCosti is 0. We get 

the following information for calculating ReassignCost by analyzing the low-level IR in the 

analysis stage: 

i. Arguments 

Both arguments of CurrentFunction and arguments of the functions called in 

CurrentFunction are stored in ArgRegs. We figure out the number of arguments of 

Current Function that have been passed in ArgRegs. Besides, we record the number of 

arguments of each function call in CurrentFunction. 

ii. Return Value 

A call might return a value that is stored in RetRegs. Both $2 and $3 are needed to hold a 

64-bit return value. We need to determine whether only $2 or both $2 and $3 are needed 

for the return value. 

iii. ReassignCost 

We calculate ReassignCost as follows: 
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 InstrSize denotes the total size (measured in bytes) of the additional instructions per call 

that are required for solving the calling convention problem. NCi means the number of 

function calls inside CurrentFunction that have passed arguments or return value into register 

i (register i must belong to either ArgRegs or RetRegs). MovArgISi denotes the size of the 

instruction for moving the arguments of CurrentFunction from register i to the new register. 

MovRetValISi denotes the size of the instruction for moving the return value of Current 

Function to register i. 

 The mapping stage maps the selected registers to RegS. The mapping relationship is a set 

of mapping pairs. For example, the mapping pair "$16-$5" indicates that $16 is mapped to $5. 

The reassignment stage later will replace the registers according to mapping pairs. The 

mapping is performed according to the following two rules: 

i. If a register selected in the register selection phase belongs to RegS, it is mapped to 

itself. This means that the register will not be replaced. 

ii. The rest of the registers selected in the register selection phase are mapped to 

registers in RegS that have not been mapped yet. These registers are mapped from 

highest priority to lowest one until all selected registers have been mapped. 

 Our register reassignment methods need inserting additional instructions for conforming 

to calling convention. When CurrentFunction calls other functions many times, a lot of 

additional instructions might be added. Thus, not every function is suitable for register 

reassignment. 

 For this reason, we inspect CurrentFunction to calculate the total code size reduction if 

we reassign registers according to the mapping pairs. Afterwards we compare the code size 
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with the total cost, which is shown as follows. Register reassignment is performed on the 

CurrentFunction only if the code size reduction is larger than TotalCost. 

 

 After finishing mapping stage it is time for reassigning. Reassignment is done according 

to the mapping pairs. Figure 3-5 (a) shows a fraction of function before register reassignment. 

In reassign stage it performs reassignment according to the mapping pairs as shown in  

Table 3-2. For a mapping pair, such as “$10-$1”, all the appearances of $10 in 

CurrentFunction is replaced with $1. Similarly, all appearances of $1 is replaced with $10. 

Figure 3-5 (b) shows the result of (a) after register reassignment. 

$BB1_1: # bb191.preheader

addiu   $2, $0, -1

slt     $2, $2, $10

beq     $2, $0, $BB1_5

nop

$BB1_2: # bb.nph

addiu   $20, $0, 0

addu    $21, $0, $6

$BB1_3: # bb68

addu    $10, $19, $20

lbu     $2, 1($10)

nop

lbu     $3, 0($10)

nop

lbu     $4, 5($10)

nop

lbu     $5, 4($10)

nop

sll     $2, $2, 16 
 

$BB1_1: # bb191.preheader

addiu   $2, $0, -1

slt     $2, $2, $1

beq     $2, $0, $BB1_5

nop

$BB1_2: # bb.nph

addiu   $7, $0, 0

addu    $21, $0, $16

$BB1_3: # bb68

addu    $1, $4, $7

lbu     $2, 1($1)

nop

lbu     $3, 0($1)

nop

lbu     $19, 5($1)

nop

lbu     $17, 4($1)

nop

sll     $2, $2, 16
 

(a) Before Reassignment (b) After Reassignment 

Figure 3-5 Comparison between (a) the code before reassignment and (b) the cod after 

reassignment 
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Table 3-2 An Example of mapping pairs  

Select Registers RegS 

$10 $1 

$2 $2 

$3 $3 

$19 $4 

$17 $5 

$16 $6 

$20 $7 

 

3.2.3 Insertion Phase 

 We deal with the calling convention problem in this phase. The calling convention 

problem is that registers which contain arguments or return value are re-assigned to another 

registers, or registers' saving convention (e.g., caller-saved vs. callee-saved) are changed. The 

caller must save caller-saved registers before calling the callee. The callee-saved registers 

must be saved by the callee before using them. This problem is solved by inserting additional 

instructions to keep the values of these registers. 

 Because of the register reassignment replaces a register with another register. Thus, there 

are two cases, "callee-saved registers (CalleeSR) after reassignment" and "caller-saved 

registers (CallerSR) after reassignment". Note that we assume both ArgRegs and RetRegs 

belong to CallerSR in our solution. The following is our solution for the calling convention 

problem: 
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Procedure Insertion 

if a CalleeSR has reassigned then 

  if new register is still CalleeSR then 

    Modify offset of PreserveCalleeSR if need; 

  else   /* it reassigned to CallerSR */ 

    Remove PreserveCalleeSR; 

    for each function call 

      Insert PreserveCallerSR; 

    endfor 

  endif  

else if a CallerSR has reassigned then 

  if new register is still CallerSR then 

    /* Do nothing here */ 

  else   /* it reassigned to CalleeR */ 

    Insert PreserveCalleeSR; 

    if there existed PreserveCallerSR then 

      Remove them since the register has been changed. 

    endif 

  endif 

  if this CallerSR is ArgRegs then 

    Insert MovFuncArg after prolog; 

    for each function call 

      Insert PreserveArgRegs; 

      Insert MovCallsArg precede the call and succeed the PreserveArgRegs; 

    endfor 

  endif 

  if this CallerSR is RetRegs then 

    for each RET in function 

      Insert MovFuncRetValue precede RET instruction; 

    endfor 

    for each function call which needs to return a value 

      Insert PreserveRetRegs; 

      Insert MovCallRetValue succeed the call and precede the PreserveRetRegs; 

    endfor 

  endif 

endif 

Figure 3-6 Pseudo code of additional instructions insertion 
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 PreserveCalleeSR are a consecutive sequence of instructions that store callee-saved 

registers in the stack frame in prolog and load them from the stack frame in epilog. Similarly, 

PreserveCallerSR are a consecutive sequence of instructions that store caller-saved registers 

in the stack frame before function call and load them from the stack frame after the call 

returns. MovFuncArg are a sequence of MOVE instructions which move arguments of 

CurrentFunction from ArgRegs to new registers. MovCallsArg are a sequence of MOVE 

instructions which move arguments of a function call from new registers to ArgRegs, since 

arguments are in the new registers after register reassignment. Both MovCallRetValue and 

MovFuncRetValue are a sequence of MOVE instructions that moves the return value of a 

function call from RetRegs to new registers and moves the return value of CurrentFunction 

from new registers to RetRegs, respectively. PreserveArgRegs are a sequence of instructions 

which store ArgRegs in the stack frame before a function call and load them from the stack 

frame after the call returns. PreserveRetRegs is similar to PreserveArgRegs with ArgRegs 

replaced by RetRegs. 

3.3 Method II 

 In order to generate more 16-bit instructions, we modify the priorities. The purpose of 

this modification is to create more opportunities for the “neighbors” of the selected registers. 

Two registers are “neighbors” if they are used in the same instruction. We may construct a 

neighbor-graph for a piece of code in which nodes represent registers and edges represent the 

neighborhood relation. Consider the store-word instruction "sw $8, 0($5)" in BB5_11 shown 

in Figure 3-7 (a). The neighbor-graph for the code in Figure 3-7 (a) is shown in Figure 3-7 (b). 

If $5 is mapped to a register in RegS, $8 must also be mapped to a register in RegS otherwise 

the instruction still cannot be replaced with a 16-bit version. To this end we add weights to the 

edges in the neighbor graph in which the weight of an edge denotes the number of times the 

two vertices (i.e., registers) are accessed in the same instructions. 
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 Method II has three phases as well as Method I, but the different part from Method I is 

the selection phase. The selection phase of Method II has added two extra stages, "Build 

Graph" and "Update Priority" as shown in Figure 3-8. 

$BB5_11:        # bb13

addiu   $4, $4, 1

sw      $8, 0($5)

addiu   $5, $0, 18

bne     $4, $5, $BB5_3

nop

$BB5_12:

...

$BB5_15:

...

addu    $gp, $0, $3

lw      $3, 20($sp)

nop

addu    $2, $18, $2

sw      $3, 72($2)

lw      $3, 24($sp)

...

Neighbor 

of selected 

register

The selected 

register

 

 

$5

$8

$18

$4

$2

$3

 

(a) Example code for neighbors (b) Neighbors of registers 

Figure 3-7 Relationship between selected register and its neighbors 
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Mapping & Reassign

Register Selection

Calculate

Select

< NRS

Insertion

yes

End

Start

Mapping & Reassign

Register Selection

Calculate

Select

< NRS

Insertion

yes

End

Build Graph

Update priority

 

(a) Method I (b) Method II 

Figure 3-8 The difference between Method I and Method II is Register Selection Phase 
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3.3.1 Register Selection Phase 

 As in Method I, the priority of a register is the number of times the register is used in 

U-INSs. When a register is selected in select stage, the priorities of its neighbors will be 

adjusted, as follows. Assume register Ra and register Rb are neighbors. After Ra is selected, 

the weight of the edge between Ra and Rb is added to the priority of Rb. This increases the 

likelihood of Rb being selected. 

 Figure 3-9 shows an neighbor graph example. $6 is used in seven instructions in BB3_3, 

and its priority is nine since it has been used twice in two instructions. The weight between $6 

and $5 is four since they have been accessed together in three instructions. Note that if an 

instruction has three register operands and two of them are the same register, such as "sltu $6, 

$10, $6" and "addu $5, $5, $6" in Figure 3-9, the weights of these registers are two rather than 

one. $10 is mapped first because it has the highest priority. Then we add the edge weights to 

its neighbors' priorities (i.e., $2, $4, $6, etc). The updated priorities of registers are shown in 

Figure 3-10. Keep selecting k registers with the highest priorities, where k is NRS or the 

number of registers used in U-INS, whichever is smaller. 
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2

1

1

1
1

1

1
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$BB3_3: # bb2

srl     $6, $5, 31

addu    $10, $2, $6

sltu    $6, $10, $6

addu    $5, $5, $6

sll     $6, $5, 31

srl     $10, $10, 1

or      $6, $10, $6

addiu   $10, $0, 48

mult    $6, $10

mfhi    $10

sra     $5, $5, 1

addu    $11, $10, $4

lw      $10, -16($11)

nop

lw      $11, -12($11)

nop

xor     $14, $10, $13

sltu    $15, $11, $12

slt     $24, $10, $13

sltu    $14, $14, 1

bne     $14, $0, $BB3_5 

nop

Priorityi Weight

 

Figure 3-9 Building a neighbor graph with weighted edges 
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Figure 3-10 Update priority of neighbors of select register 
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Chapter 4 Experiment 

This chapter shows the experimental environments and presents the experimental results. 

4.1 Environment 

 In our experiment we use Low-Level Virtual Machine (LLVM) [10][11] as our compiler 

infrastructure. It is a new compiler architecture built with reusable components. LLVM 

replaces GGC optimizer and code generator, and reuses GCC parser and runtime libraries 

(llvm-gcc front-end). The LLVM's back-end supports many common architectures, such as 

x86, PowerPC, ARM, MIPS, etc, and it is composed of many passes, e.g., mid-level optimizer, 

instruction selection, register allocator, etc. A pass manager takes a list of passes, ensures 

their prerequisites are set up correctly, and then schedules passes to run efficiently. 

 The low-level intermediate representation (IR) is generated from LLVM's front-end and 

the IR is in Static Single Assignment (SSA) form. Our compiler back-end takes the low-level 

IR as its input and outputs the assembly file. To generate the INS, we modified the LLVM 

back-end to produce the INS with virtual registers. The LLVM default register allocator then 

performs register allocation on these INSs. Afterward register reassignment method reassigns 

these INSs. 

 The MIPS/MIPS16e is the target ISA in our experiment, and we assume the instruction 

mode is changed by instruction encoding mechanism (i.e. using a bit to indicate instruction 

format, 16-/32-bit Format) rather than using mode switch instructions. The RegS = $1 ~ $7 

since $0 is used as ZERO in MIPS, and thus NRS = 7. The special purpose registers are $0, GP, 

SP, FP, and RA in MIPS. Besides, both $26 and $27 are reserved for kernel used. Hence, 

excluding special purpose registers and kernel reserved registers, RegL = $1 ~ $25. 
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4.1.1 Benchmarks 

 We select some benchmarks from MiBench[12], MediaBench[13], and SPEC 

INT2000[14]. The programs of each benchmark are shown as Table 4-1. 

Table 4-1 Benchmarks in our experiment 

Benchmark Programs 

SPEC INT2000 164.gzip, 181.mcf 

MiBench rawcaudio, rawdaudio 

MediaBench automative-bitcount, network-dijkstra, offstring-stringsearch, 

security-blowfish, security-rijndael, telecomm-CRC32 

4.2 ReassignCost 

 Registers such as ArgRegs, RetRegs, contain specific value are given a ReassignCost. We 

will describe the calculation of ReassignCost in this section. There are four ArgRegs (e.g., $4, 

$5, $6, and $7) and two RetRegs ($2 and $3) in MIPS. The first four argument are pass to 

ArgRegs, and the pass order is started from $4 to $7 (i.e. the first argument is passed to $4, the 

second is passed to $5, and so on). If there are more than four arguments, the rest of them will 

store in stack frame. Normally, the return value is stored in $2, but if the return value is larger 

than one register could hold, $3 will be used. 

 Basically, a 32-bit instruction is 4 bytes and a 16-bit instruction is 2 bytes. We need four 

additional instructions (i.e. sw, lw, addu(as move instruction), and NOP after lw instruction) 

per call for handling calling convention. Therefore, the InstrSize is equal to 10 bytes since 

three of these additional instructions can be converted to 16-bit equivalents. MovArgIS and 

MovRetValIS are move instructions, their size are 4 bytes. Note that ArgRegs do not use in 

returning value, so their MovRetValISi is zero. Similarly, the MovArgISi of RetRegs are zero. 

Above factors for calculating ReassignCost are listed in Table 4-2. 
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Table 4-2 Factors for calculating ReassignCost 

Register i InstrSize (bytes) MovArgISi (bytes) MovRetValISi (bytes) 

$2-$3 10 0 4 

$4-$7 10 4 0 

 

 Next we get the NCi from analysis phase, and we calculate each ReassignCosti according 

to it. For example, we get the analysis result of main function in CRC32 benchmark, as shown 

in Table 4-3. There are two arguments of CRC32's main function, so we need to insert two 

move instructions after prolog to move values from $4 and $5 to their own new registers, if 

both $4 and $5 have been reassigned. The ReassignCost of ArgRegs are shown in  

Table 4-4. There are eight function calls of CRC32's main function, indexing from 0 to 7. The 

ReassignCost4 is 84 bytes because InstrSize × NC4 = 80 and plus MovArgIS4 (4 bytes). 

Table 4-3 Analysis result of main function in CRC32 benchmark 

Name of Calls Index # of Arguments Registers used 

fopen 0 2 $4, $5 

_IO_getc 1 1 $4 

perror 2 1 $4 

_IO_getc 3 1 $4 

ferror 4 1 $4 

perror 5 1 $4 

fclose 6 1 $4 

printf 7 4 All ArgRegs 
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Table 4-4 The ArgRegs' ReassignCost of main function in CRC32 

Registers 

i 

NCi Have used in arguemtns of 

CurrentFunction? 

ReassignCosti 

(Bytes) 

$4 8 Yes 10×8+4 = 84 

$5 2 Yes 2×8+4 = 20 

$6 1 No 1×8 = 8 

$7 1 No 1×8= 8 

 

 We find out the RetRegs were be selected in most cases by observing each mapping pairs 

of all benchmarks. That means RetRegs do not reassign to new registers at most of time, 

hence we seldom insert additional instructions for them. Besides, we cannot know the exact 

numbers of RetRegs precisely that both CurrentFunction and function calls are required. 

Accordingly, we do not analyze for the return value of function calls or CurrentFunction. But 

if any RetRegs has been reassigned, we assume it is used in storing the return value of all 

function calls (i.e. eight function calls in CRC32's main function) and the CurrentFunction. 

Then we have to insert additional instructions for them to conform with calling convention. 

Table 4-5 shows the ReassignCost of RetRegs. In this table we know $2 has been reassigned, 

so ReassignCost2 is the sum of InstrSize*NCi and MovRetValISi. 

 We get the TotalCost by summing up all ReassignCost. The TotalCost of CRC32's main 

function is larger than the code size reduction we could get, so we leave this function 

unchanged. 

Table 4-5 The RetRegs' ReassignCost of main function in CRC32 

Register i NCi Has been reassign? ReassignCosti (Bytes) 

$2 8 Yes 10×8+4 = 84 

$3 8 No 0 
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4.3 Experimental Result 

 This section presents the performance of our register reassignment methods. We use 

direct translation as the baseline for comparison. In direct translation, we examine each 

instruction in turn, converting it to a 16-bit version if possible. We calculate the code size and 

the ratio of additional instructions under the two register re-assignment methods, respectively. 

In last section we show the analysis by comparing two methods and give summary. 

Table 4-6 Code size reduction and additional instructions of Method I 

 Number of 

Instructions 

Original 

Code Size 

After RR 

Code Size 

Code Size 

Reduction 

(%) 

Additional 

Instructions (%) 

gzip 17,497 69,988 47,208 32.55% 1.81% 

mcf 7,428 29,715 21,646 27.15% 0.94% 

bitcount 352 1,408 920 34.66% 0.00% 

dijkstra 490 1,960 1,356 30.82% 0.00% 

stringsearch 213 852 596 30.05% 3.76% 

rawcaudio 217 868 652 24.88% 0.00% 

rawdaudio 209 836 642 23.21% 0.00% 

blowfish 4,277 17,108 11,982 29.96% 3.30% 

rijndael 4,622 18,488 14,806 19.92% 0.09% 

crc32 165 660 486 26.36% 0.00% 

Average  27.96% 0.99% 
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Table 4-7 Code size reduction and additional instructions of Method II 

 Number of 

Instructions 

Original 

Code Size 

After RR 

Code Size 

Code Size 

Reduction 

(%) 

Additional 

Instructions (%) 

gzip 17,497 69,988 47,260 32.47% 1.45% 

mcf 7,428 29,715 21,604 27.29% 0.92% 

bitcount 352 1,408 920 34.66% 0.00% 

dijkstra 490 1,960 1,356 30.82% 0.00% 

stringsearch 213 852 594 30.28% 3.76% 

rawcaudio 217 868 652 24.88% 0.00% 

rawdaudio 209 836 642 23.21% 0.00% 

blowfish 4,277 17,108 11,998 29.87% 1.40% 

rijndael 4,622 18,488 14,692 20.53% 0.17% 

crc32 165 660 486 26.36% 0.00% 

Average  28.04% 0.77% 

  

 The result is shown in Figure 4-1, where the code size reduction of Method I is on 

average 27.96% and Method II is 28.04%. Direct Conversion achieves code reduction of 

26.7% in the same benchmark programs. Register re-assignment is not done on rawcaudio, 

rawdaudio, and CRC32 the cost is larger than the profit. We could get more code reduction 

from larger programs, such as gzip, mcf, blowfish, and rijnadel, and from functions that make 

few function calls. 
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Figure 4-1 Code Size Reduction of Register Reassignment Methods 

Compared with Method I, Method II has no significant improvement in reducing code size. 

The reason is that the weight used in Method II, which is simply the number of times two 

registers are used in the same instructions, should be biased toward instructions with fewer 

register operands. Different instructions might have different numbers of register operands. 

For converting a 32-bit instruction to a 16-bit equivalent, all the register operands used in the 

instruction must be mapped to registers in RegS. 

 Figure 4-2 shows the additional instructions rate in each benchmark program. The rate of 

Method I is on average 0.99%, and Method II is 0.77%. As a rule of thumb, the more ArgRegs 

and RetRegs are reassigned to other registers, the more additional instructions are inserted. In 

blowfish, the additional instructions ratio in Method I is much higher than that in Method II, 

since the largest function in blowfish is profitable for conversion in Method I but is not so in 

Method II. Hence, Method II will leave the function unchanged, but Method I will perform 

register reassignment on it. This causes numerous additional instructions. 
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Figure 4-2 Additional Instruction Rate 

 

 There are no additional instructions in rawcdaudio, rawdaudio, and CRC32, since 

register reassignment is not done on them. Because the stringsearch benchmark is small, the 

overhead is relatively high. The bitcount benchmark has no additional instructions because in 

lots of functions, all the registers are mapped to themselves. The rijndael benchmark has 

lower cost than others since the mapping pairs in most functions do not cause the calling 

convention problem. 
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Chapter 5 Conclusion and Future Work 

 In this thesis we present two register re-assignment methods for mixed-width ISA. On 

the average, the two methods reduce 28% of the code size. In contrast, a direct translation 

reduces 26.7% of the code. If a ArgRegs or RetRegs have been reassigned, and at the same 

time they are used for arguments or the return value, the reassignment comes with a cost. We 

could get more code reduction from larger programs, such as gzip, mcf, blowfish, and rijnadel, 

and from functions that make few function calls. 

 From the experimental results, we observed that the effects of Method I and Method II 

are not much different. The main reason might be that the weights do not consider the number 

of register operands in an instruction. We plan to modify the weights by taking the number of 

operands into consideration in the future. 
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