
i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉由重新指定暫存器為混合指令集處理器之

程式碼減量

Code Size Reduction with Register Reassignment for

Mixed-Width ISA Processors

研 究 生：顧耀崙

指導教授：楊武 博士

中 華 民 國 九 十 八 年 九 月

ii

藉由重新指定暫存器為混合指令集處理器之程式碼減量

Code Size Reduction with Register Reassignment for Mixed-Width

ISA Processors

研 究 生：顧耀崙 Student：Yao-Lun Ku

指導教授：楊武 Advisor：Dr. Wuu Yang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Engineering

September 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年九月

iii

藉由重新指定暫存器為混合指令集處理器之程式碼

減量

學生：顧耀崙 指導教授：楊 武 博士

國立交通大學資訊科學與工程學系(研究所)碩士班

摘 要

 由於嵌入式系統缺乏記憶體，所以程式碼大小成為一個重要的研究議題。基於這個

理由，一些精簡指令集處理器，例如：ARM、MIPS 和 ANDES 都提出混合長度的指令集架

構。此指令集架構支援一般標準長度的指令集，還有一個長度較小的指令集。若一個 32

位元指令能夠被轉換成對應的 16位元指令，則程式碼大小即能得到縮減。但是 16位元

指令的暫存器欄位通常只有 3位元長度，因此 16位元指令在暫存器的使用上有所限制。

相反地，32 位元指令其暫存器欄位通常有 4到 5 個位元長度，所以 32 位元指令可以使

用所有的暫存器。因而當 32位元指令要轉換成對應的 16位元指令時，可能需要重新指

定暫存器才能讓轉換順利執行。指定暫存器通常以下列兩種方式執行：(1)程式碼產生

器指定適當的暫存器並試著產生 16位元指令；當無法產生 16位元指令時，編譯器則會

產生 32 位元指令。(2)編譯器產生出全部為 32 位元的指令，之後再利用一個額外的步

驟去嘗試重新指定暫存器來讓 32位元指令轉換為對應的 16位元指令。我們基於上述第

二種方式，提出了兩個快速重新指定暫存器的方法。單純只有轉換而沒有執行我們提出

之重新指定暫存器的方法，程式碼大小平均有百分之二十七的縮減。而我們的實驗結果

顯示在相同的程式底下程式碼大小平均有百分之二十八的縮減。

iv

Code Size Reduction with Register Reassignment for

Mixed-Width ISA Processors

Student: Yao-Lun Ku Advisor: Dr. Wuu Yang

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Due to the limited memory in embedded systems, code size becomes an important issue.

For this reason, many RISC processors, such as ARM, MIPS, and ANDES, etc., provide a

mixed-width instruction set architecture (ISA). This ISA supports a normal-width instruction

set (usually 32-bit) and a short-width instruction set (usually 16-bit). Code size will be

reduced if some 32-bit instructions are replaced with 16-bit equivalents. There is a restriction

on the registers that can be used by 16-bit instructions because the register field in a 16-bit

instruction is usually 3 bits wide. In contrast, in a 32-bit instruction, the register field is

usually 4 or 5 bits wide. All registers can be used in 32-bit instructions. Therefore, replacing a

32-bit instruction with the 16-bit equivalent may need to re-assign the registers. Register

assignment can be performed in two ways: (1) the code generator will attempt to generate

16-bit instructions and assign appropriate registers to the instructions. When it is not possible

to generate 16-bit instructions, the compiler will generate 32-bit instructions instead; (2) the

compiler will generate purely 32-bit instructions first. A later pass will attempt to reassign the

registers so that as many 32-bit instructions can be converted to 16-bit equivalents as possible.

We propose two fast methods based on the second approach. We will call our method register

re-assignment. We implemented our method in the LLVM static compiler. The results

demonstrate that the code size reduction is 28% with our methods. In contrast, a

straightforward translation without register reassignment achieves code reduction of 27% on

the same benchmarks.

v

Acknowledgement

 The foremost person I would like to thank is my advisor, Dr. Wuu Yang. This thesis

would not been possible without his useful comments and suggestions. I thank him for his

continuous guidance let me to complete my research. I also acknowledge him for his patience

on improving the readability of this thesis.

 I am very grateful to Yu-Sheng who advised me and helped me in various aspects of my

research. He guided me about the direction of my thesis from the beginning. Besides, he is the

one that I can always count on to discuss the difficulties or the tiniest details of a problem. I

thankfully acknowledge discussions with Dr. Wei-Chung Hsu and Dr. Jyh-Jiun Shann. Their

helpful and valuable feedbacks inspired me to continue working on my research.

 I also thank all the members in PLASLAB and my schoolmates in the university. They

are good guys and very kind to me. We enjoy chatting about various topics, such as someone

is dating a girl, which baseball team will win the final champion, etc. I really had lots of fun

being a member of this fantastic group.

 My deepest appreciation goes to my family. Their continued support enabled me to

overcome the frustrations during my study. Finally, I would like to show my profound

gratitude to my girlfriend, who accompanied me throughout my research.

vi

Table of Contents

摘 要 ... iii

Abstract .. iv

Acknowledgement ... v

Table of Contents ... vi

List of Figures .. viii

List of Tables .. ix

Chapter 1 Introduction .. 1

1.1 Motivation ... 2

1.2 Objective .. 4

1.3 Organization ... 4

Chapter 2 Background and Related Work .. 5

2.1 Mixed-Width ISA ... 5

2.1.1 Constrains of Mixed-width ISA ... 6

2.1.2 Mode Switching Mechanisms ... 6

2.2 Calling Convention ... 9

2.3 Related Works .. 10

Chapter 3 Register Reassignment Methods ... 12

3.1 Compiler Backend and Definition for our Design ... 12

3.1.1 Compiler Backend ... 12

3.1.2 Instruction Types ... 14

3.1.3 Register Set .. 15

3.2 Method I .. 16

3.2.1 Register Selection Phase .. 17

3.2.2 Mapping and Reassign Phase ... 18

3.2.3 Insertion Phase .. 21

3.3 Method II ... 23

3.3.1 Register Selection Phase .. 25

Chapter 4 Experiment .. 27

4.1 Environment ... 27

4.1.1 Benchmarks ... 28

4.2 ReassignCost ... 28

vii

4.3 Experimental Result ... 31

Chapter 5 Conclusion and Future Work .. 35

References.. 36

viii

List of Figures

Figure 1-1 Translation rate of 16-bit instructions ... 3

Figure 2-1 Different Instruction Formats in MIPS ... 6

Figure 2-2 ARM branch and exchange (BX) instruction format .. 7

Figure 2-3 Mode switching through bx instruction .. 7

Figure 2-4 ISA Mode bit in ANDES .. 8

Figure 2-5 Mode switching through the ISA mode bit ... 8

Figure 2-6 The standard process of function call ... 9

Figure 3-1 A compiler backend for mixed-width ISA ... 13

Figure 3-2 Different encoding formats of ADDIU instruction .. 14

Figure 3-3 Flowchart of register reassignment method I ... 16

Figure 3-4 Example for counting RACi .. 17

Figure 3-5 Comparison between (a) the code before reassignment and (b) the cod after

reassignment ... 20

Figure 3-6 Pseudo code of additional instructions insertion .. 22

Figure 3-7 Relationship between selected register and its neighbors 24

Figure 3-8 The difference between Method I and Method II is Register Selection Phase 24

Figure 3-9 Building a neighbor graph with weighted edges .. 25

Figure 3-10 Update priority of neighbors of select register ... 26

Figure 4-1 Code Size Reduction of Register Reassignment Methods 33

Figure 4-2 Additional Instruction Rate ... 34

ix

List of Tables

Table 2-1 Register usage in MIPS .. 10

Table 3-1 MIPS Special-Purpose Registers.. 15

Table 3-2 An Example of mapping pairs.. 21

Table 4-1 Benchmarks in our experiment .. 28

Table 4-2 Factors for calculating ReassignCost ... 29

Table 4-3 Analysis result of main function in CRC32 benchmark .. 29

Table 4-4 The ArgRegs' ReassignCost of main function in CRC32 .. 30

Table 4-5 The RetRegs' ReassignCost of main function in CRC32 ... 30

Table 4-6 Code size reduction and additional instructions of Method I 31

Table 4-7 Code size reduction and additional instructions of Method II 32

1

Chapter 1 Introduction

 In recent years, embedded systems, such as cell phones, PDAs, etc., brought significant

impacts on our daily life. Most of these devices come with very limited memory due to

consideration of weight, power consumption, or price. On the other hand, more and more

sophisticated applications are demanded nowadays in such devices. For instance, encryption

software and games are popular in cell phones. These sophisticated applications require a lot

of memory. Thus, code size becomes a critical design issue for the embedded devices.

RISC processors have been widely used in embedded systems. They usually offer the

benefits of high computing ability and low power consumption. Due to the very uniform

instruction format, RISC software commonly suffers from poor code density. On the other

hand, large code size requires more accesses to the instruction memory. This potentially

increases the instruction cache miss rate and power consumption.

Traditional RISC processors, e.g., 32-bit ARM and 32-bit MIPS, come with fixed-width

instructions. Fixed-width ISAs offer good performance at the cost of larger code size. They

are not suitable for limited-memory embedded systems. Therefore, newer RISC processors

support a narrower instruction set (usually 16-bit wide) in addition to the normal instruction

set (usually 32-bit wide). The mixed-width ISA[1] improves poor code density and runs

programs with acceptable performance.

There are two limitations in the narrower ISA: First, there are fewer bits in a 16-bit

instruction for indexing registers. For instance, in MIPS, all the 16-bit instructions can use

only eight registers, $0~$7, but 32-bit instructions can use all registers. Thus, the register

allocator in a compiler needs to carefully consider the available registers for individual

2

instructions. Second, there are fewer bits for encoding immediate values in a 16-bit

instruction.

In this thesis, we will assume a traditional compiler that will generate purely 32-bit

instructions. Then a new register re-assignment phase will re-arrange the registers so that as

many 32-bit instructions can be converted to their 16-bit equivalents as possible. We propose

two fast register reassignment methods. Both methods select registers according to their

priorities. The main difference between the two methods lies in calculating a register’s

priority. The simple reassignment method selects registers based on the usage frequencies of

the registers. The second method selects registers based on a dynamically changing neighbor

graph.

1.1 Motivation

 We found out the restriction of using register does affect the generation of 16-bit

instructions, since 16-bit instructions have fewer bits to use registers and hold immediate

value. If a register is out of the encodable range of a instruction's 16-bit equivalent (i.e. 16-bit

instruction cannot use it), this instruction cannot be converted to 16-bit format. In short, the

generation of 16-bit instructions is closely related to registers which are assigned by register

allocator. If the register allocator assigns registers without considering the restriction of 16-bit

instructions, hence the number of 16-bit instructions would not be many. It quite wastes the

characteristic of mixed-width ISA.

 In some platform, for example, CVM (CDCHI virtual machine)[2], including a dynamic

complier, call Just-In-Time compiler (JITC). It translates Java bytecode into native code

dynamically. Because of dynamical compilation of JITC, it cannot perform complicated

register allocation, such as graph coloring register allocation. Instead of register allocation, it

uses register manager for keeping track of register usage during the compilation processes.

3

More precisely, the register manager is the resource manager, because what it really does is

use a data structure called CVMRMResoure to keep track of where evaluated expressions are

currently stored, both in memory and in registers. Hence, this kind of allocation is too simple

to use register efficiently. If this JITC is applied on a mixed-width ISA, the generation of

16-bit instructions would not be more since the register management does not allocate

registers carefully. Our register reassignment methods can be applied on this platform to

improve the registers use.

 We get the translation rate of the 16-bit instructions by analyzing each benchmark as

shown in Figure 1-1. Direct Conversion only performs default register allocation and without

register reassignment, its translation rate is on average 53.4%. "Without register limitation"

indicates that instructions have 16-bit equivalents and their immediate value is encodable, the

translation rate is on average 89.9%. This observation motivates us to propose register

re-assignment methods to improve the register use after a simple register allocation.

Figure 1-1 Translation rate of 16-bit instructions

4

1.2 Objective

Design a simple and fast method to reduce code size for mixed-width ISA with

mode-switch by encoding technique mechanism. The proposed methods achieve code

reduction by increasing the generation of 16-bit instructions. Besides, an analysis of the

low-level intermediate representation (IR) to evaluate a function is worthy of register

reassignment, and to minimize the additional instructions that required for solving the calling

convention problem. Our methods are simple and fast enough for adapting to targets likes

Just-In-Time run-time compilers.

1.3 Organization

 The rest of this thesis is organized as follows: Chapter 2 introduces the background

knowledge. Chapter 3 first gives the definition of instruction types and register sets which are

used in the register reassignment methods, then gives the overview of compiler back-end for

mixed-width ISA and presents the register reassignment methods. Chapter 4 demonstrates the

experimental results. Chapter 5 gives the conclusion and the future work.

5

Chapter 2 Background and Related Work

 This chapter describes background knowledge in our research. Section 2.1 introduces the

mixed-width ISA, including constrains of narrower instruction set and mode switch

mechanisms. In section 2.2, we describe the calling convention, especially calling convention

in MIPS ISA, since we face the problem about calling convention in our register reassignment

methods.

2.1 Mixed-Width ISA

As the name suggests, the mixed-width ISA contains more than one fixed-width

instruction set. Typically, it has two instruction sets of different instruction widths. The

normal instruction set (usually 32-bit) provides good performance and the narrow instruction

set (usually 16-bit) provides high code density. The narrow instruction set is usually a subset

of the normal instruction set. Processors with mixed-width ISA are popular in embedded

systems, such as ARM with Thumb ISA[3][4], MIPS with MIPS16e ISA[5], or Andes with

AndeStar ISA[6], and so on.

Code generating by using mixed-width ISA may achieve significant code size reduction

since the 16-bit instruction has half width against with the 32-bit instruction. Because of this,

there are some bit width restrictions. Due to the bit width limitation of narrow instruction set,

it usually encodes the most frequently used operations from normal instruction set; in addition,

it also has fewer bits to use registers and immediate value. Figure 2-1 show the different

width register field and immediate value of different width instructions.

6

ADDIU rx3 immry3 addiu $ry3, $rx3, imm

ADDIU rx5 immry5

addiu $ry5, $rx5, imm16-bit

32 -bit

Figure 2-1 Different Instruction Formats in MIPS

2.1.1 Constrains of Mixed-width ISA

A 16-bit instruction could use only a subset of the registers. For example, the register

field of a typical MIPS 16-bit instruction, shown in Figure 2-1, consists of three bits. Thus, it

could only use eight registers (i.e., R0 through R7). RegS denotes the set of these registers. An

instruction that uses any registers not belonging to Regs must be encoded as a 32-bit

instruction. If the compiler does not take into account this restriction when assigning registers

of the instructions, these instructions may not be able to encode as 16-bit equivalents. Thus, a

compiler needs to be careful to allocate registers for instructions.

In addition to the limitation on accessible registers, immediate values in a 16-bit

instruction are also restricted to fewer bits. For example, the encodable bits of 16-bit addiu

instruction are five in Figure 2-1; that is, the maximum unsigned value the instruction can be

expressed is 31. There are 16 bits for the immediate value in the 32-bit instruction and only 5

bits in the 16-bit instruction. Large immediate values also force generation of 16-bit

instructions, but it depends on compiler how to hold the constants. The impact of this

constrain might be eliminated as if compiler uses a constant pool to hold large immediate

values.

2.1.2 Mode Switching Mechanisms

Multiple fixed-width ISAs do not come without a cost. There is the cost for switching

among the different modes. There are two mode-switching mechanisms:

7

i. Use a Mode Switch Instruction

ARM/Thumb uses a branch instruction (e.g., Branch and exchange, BX) as mode

switching instruction to change modes between different width code sections. Figure 2-2

shows a branch-and-switch-mode instruction in ARM, it performs a branch by copying the

contents of a general register, Rn, into the program counter, PC. The value of Rn[0]

determines whether the instruction stream will be decoded as ARM or Thumb instructions

during execution.

Figure 2-2 ARM branch and exchange (BX) instruction format

This mechanism is useful when a block of contiguous instructions can be converted to a

different mode[7][9]. These existing approaches usually perform analysis to determine

whether they were worthy of converting. In order to reduce the overhead of the mode switch

instructions, every subroutine is compiled in a single mode in ARM/Thumb. The mode

switching between ARM and Thumb code is shown as Figure 2-3.

.code 16

... ; Thumb code(16-bit)

.align 2

bx r15

.code 32

... ; ARM code(32-bit)

orr r15, r15, #1

bx r15

Figure 2-3 Mode switching through bx instruction

8

ii. Use the encoding technique

This mechanism uses a mode bit to indicate the mode bit of the instruction. For example,

in AndeStar, the first bit of every instruction is an “ISA mode bit”. This bit indicates if the

instruction is 16-bit or 32-bit. Hence, 16-bit and 32-bit instructions can be mixed together

without the mode-switching instructions. Figure 2-4 shows how the ISA mode bit in ANDES.

Instruction is 32-bit if bit[31] equals zero; likewise, instruction is 16-bit if bit[15] equals one.

The obvious disadvantage of this mechanism is that it needs to reserve a bit for ISA mode bit.

31 24

0

1

opcode

15

ISA mode bit opcode

0

0

Figure 2-4 ISA Mode bit in ANDES

 Because of AndeStar uses the mode bit to indicate instruction format, it’s not required as

same as switching mode through mode switch instruction which needs to compile entirely

code segment into identical width. 16-/32-bit instructions can spread all over the function

arbitrarily (e.g., instruction-level granularity). Figure 2-5 shows an AndeStar code fragment;

the instructions swi333.bi, movi55, jral5, subi333, and lwi333 are 16-bit. Others are 32-bit.

B.S. Liang et al. [8] show that the mode switching by using encoding technique is an efficient

way for multiple fixed width instruction sets in instruction-level.

BB1:

...

swi333.bi $s1, [JSP_$s0], 4 ; 16-bit

lwi $gp, [$s1+0]

movi55 $ta, -4 ; 16-bit

and $gp, $gp, $ta

lwi $gp, [$gp+68]

lwi $a0, [$gp+20]

lwi $gp, [$a0+0]

jral5 $gp ; 16-bit

subi333 JSP_$s0, JSP_$s0, 4 ; 16-bit

lwi333 $s1, [JSP_$s0+0] ; 16-bit

...

Figure 2-5 Mode switching through the ISA mode bit

9

2.2 Calling Convention

 The calling convention is a scheme for how functions receive arguments from their caller

and how they return a value. The calling conventions can differ in follows:

 Where arguments and return values are placed (in registers; on the call stack; or a mix of

both).

 The order in which arguments are passed.

 How the task of setting up and cleaning up a function call is divided between the caller

and the callee.

 Which registers that may be directly used by the callee.

Caller Callee

Argument
Registers (ArgRegs)

Return value
Registers (RetRegs)

What registers I need to store before call ?

Caller-Saved Registers (CallerSR)
CALL

RETURN

What registers must I not clobber ?

Callee-Saved Registers (CalleeSR)

Restore CalleeSRRestore CallerSR

Figure 2-6 The standard process when function call

 Figure 2-6 shows the standard process when the caller calls to callee. First, we need to

store the caller-saved registers before call and put parameters into Arguments Registers

(ArgRegs), then caller changes control to callee. Callee-saved registers must be preserved

before the callee use them. So callee stores callee-saved registers to stack frame in prolog and

restored them in epilog before changing control to caller. The return value of callee is stored

10

in Return value Register (RetRegs). After callee returns, the caller gets the return value of

callee from RetRegs.

 In MIPS, the register usage is shown in Table 2-1. The ArgRegs are $4-$7, and the

RetRegs are $2, $3. The first four arguments are passed in ArgRegs, and the rest of arguments

are stored in stack frame. The arguments pass order is started from $4 to $7 (i.e. the first

argument is passed to $4, the second is passed to $5, and so on).

Table 2-1 Register usage in MIPS

Register

Number

Alternative

Name

Description

2-3 $v0-$v1 (Values) from expression evaluation and function results

4-7 $a0-$a3 (Arguments) First four arguments for subroutine

8-15 $t0-$t7 Caller-saved if needed. Subroutines can use w/out saving

16-23 $s0-$s7 Callee-saved. A subroutine using one of these must save original

and restore it before exiting.

24-25 $t8-$t9 Caller saved if needed. Subroutines can use w/out saving. These

are in addition to $t0 - $t7 above.

2.3 Related Works

 Due to the restriction of the Thumb instruction set, it leads to generation of poorer

quality code that leads to the loss of performance. For establishing above claims,

Krishnaswamy and Gupta [9] present analysis of Thumb instruction set restrictions. Besides,

they proposed a profile guided algorithms for generating mixed ARM and Thumb code for

application programs, not only achieve significant code size reduction but also without loss in

performance. There two generation of mixed code in this thesis, coarse grained and fine

11

grained. The coarse grained approach using heuristic for choosing ARM or Thumb code for

frequently executing function (more than 5% of total execution time); Thumb code for all

other functions. Each function compiles entirely into either ARM code or Thumb code. A

function must be compiled into ARM code if it result in significantly lower overall

performance when generating in Thumb code.

 In fine grained approach, a function is compiled into mixed ARM and Thumb code.

Because of some functions the Thumb version has greater number of instructions than ARM

version and result in decreasing overall performance. To make the decision for a single

function whether it would result in better overall result or not, they analyzed the instruction

counts of the benchmarks. They found frequently occurring patterns in Thumb code from four

instruction types which increase the overall Thumb instruction counts significantly. Afterward

the patterns are compiled into equivalent ARM code and insert the bx instruction to switch

modes.

Halambi et al. [7] presents a novel compilation framework for dual instruction sets,

which uses a profitability base compiler heuristic to convert normal instructions into reduced

width instructions. In this thesis, the compiler first marked all convertible instructions and

looked for rISABlocks which were composed of contiguous candidate instructions. Thereupon

a profitability heuristic evaluated each rISABlock to determine whether it is worthy of

converting rISABlocks into reduced format by estimating the tradeoff between code size and

performance. Lastly the compiler inserted a mode change instruction to switch between

normal and reduced mode. Since this compiler framework was designed for architectures with

mode switch by a branch instruction, it is not suitable for architectures which indicate the

instruction format by instruction encoding mechanism.

12

Chapter 3 Register Reassignment Methods

 We propose two simple and fast register reassignment methods for reducing code size in

this thesis. These methods are designed for mixed-width ISA processor with the mode bit to

indicate the instructions' width (16-bit or 32-bit). Register reassignment methods are

performed after register allocation to improve the generation of 16 bit instructions by means

of reassigning registers with higher priority. Both methods process one function at a time. The

function that is under processing is denoted as CurrentFunction in the following discussion.

 In this chapter, section 3.1 first describes the compiler backend and the definition of

instruction types and register sets. Section 3.2 presents the first reassignment method and the

solution for handling calling convention problem. Section 3.3 presents the second

reassignment method and the neighbor-graph. The second method is different from first

method in calculation of registers' priorities.

3.1 Compiler Backend and Definition for our Design

 Figure 3-1shows the overall structure of a compiler backend with a register reassignment

phase. The input for the register re-assignment phase is the program in the form of LLVM IR,

in which the instructions have already been selected and the registers have already been

allocated. The register re-assignment phase attempts to re-arrange the registers in the program.

Finally, a code emitter will write the resulting program as an assembly file.

3.1.1 Compiler Backend

 A traditional compiler backend performs the following functions: instruction selection,

instruction scheduling, register allocation, and code emission. In the instruction selection

phase it uses a pattern-matching scheme to map the low-level intermediate representation (IR)

to target-machine instructions. The instruction scheduling phase is for speed optimization,

13

which improves instruction-level parallelism (ILP) by rearranging the order of instructions to

avoid pipeline stalls. The register allocator allocates program variables to physical registers.

Finally, the code emitter outputs the machine code.

 Several frequently used instructions have both 16-bit and 32-bit versions. The main

differences between the two versions are their encoding length and accessible registers. So we

first map operations in the IR to the temporary instructions (called INS) in the instruction

selection phase, shown in Figure 3-1. Our register reassignment methods take the INSs as

input and the output is still the INSs, but the registers may have been reassigned.

Compiler Backend (Code Generator)

Instruction Selection

Instruction Scheduling

Register Allocation

Register Reassignment

Instruction Formatting

Code Emission

Assembly file contains 16-/32-Format

Instructions

Mapping IR to temporary

instruction (INS)

Schedule for optimization

Assign physical registers to

program variables

Determine INS format

Output .s file

Low-level IR

Figure 3-1 A compiler backend for mixed-width ISA

 An additional instruction formatting phase is added after the register reassignment phase.

It performs the translation from INS to the instruction of the proper format according to the

14

re-assigned registers. In this phase, we first check if a INS has 16-bit version. For example,

the addition (addiu) INS has two 16-bit versions, shown in Figure 3-2. Then one of the 16-bit

versions is selected based on the operands of INS. For instance, addisup is selected if the base

register is $sp and the offset is within its encodable range.

ADDIU rx3 immry3 addiu $ry3, $rx3, imm

addiu $rx3, $sp, immADDIUSP rx3 imm

16-bit

Figure 3-2 Different encoding formats of ADDIU instruction

3.1.2 Instruction Types

 Every instruction (abbreviated as INS) in the program, which is 32 bits wide, is classified

into the following three types: L-INS, U-INS, and S-INS.

1) L-INS (Long-Format INS)

An instruction of this type indicates that it has no 16-bit equivalent or its immediate

value is out of the encodable range of 16-bit instructions. An L-INS cannot be converted

to a 16-bit instruction.

2) U-INS (Uncertainly-Format INS)

An instruction is classified as U-INS if it has 16-bit equivalents but the registers the

16-bit equivalents can use are restricted. This kind of INS might be converted to its

16-bit equivalent if the registers can be properly re-arranged. This kind of instruction is

the target of our register reassignment methods.

3) S-INS (Short-Format INS)

An instruction of this type has 16-bit equivalents and the 16-bit equivalents can use all

physical registers. In MIPS, all and only JALR, JR, and NOP instructions are S-INSs.

For example, the JALR instruction has just one register operand, which contains an

15

instruction address; it can access all physical registers. An S-INS can always be

converted to a 16-bit instruction with or without register reassignment.

3.1.3 Register Set

 Owning to the limited number of bits for indexing registers, we denote the physical

registers that can be used by 16-bit instructions as RegS. The number of registers in RegS is

denoted as NRS. For example, in MIPS, 3 bits are reserved in a 16-bit instruction to designate

a register. Thus, it can index registers from $0 to $7. In fact, a 16-bit instruction can only

access registers $1~$7, since $0 always contains zero in MIPS. In addition, a few registers are

reserved for special purposes. For example, $28 is the global pointer and $29 the stack pointer,

etc.

Table 3-1 shows the special-purpose registers in MIPS. These registers are sometimes

used in the special way. For example, some instructions, such as addisup in Figure 3-2, use

$29 (i.e., $sp) implicitly. They are called the SP-Relative instructions. In our methods, we do

not re-assign these special-purpose registers. Hence, we denote RegL as the set of all but the

special-purpose registers.

Table 3-1 MIPS Special-Purpose Registers

Number Name Purpose

$0 zero Always 0

$28 gp The Global Pointer used for addressing static global variables

$29 sp The Stack Pointer

$30 fp The Frame Pointer

$31 ra The Return Address in a subroutine call

16

3.2 Method I

 The Method I is the basic design among our register reassignment methods. It consists of

three phases: Register Selection, Mapping & Reassign, and Insertion, shown in Figure 3-3.

We count the number of times each register is used in CurrentFunction. This count is

regarded as the priority of the register. Then the registers, in the order of their priorities, are

re-assigned to registers in RegS.

 Register reassignment is under several constraints. In the calling convention, arguments

are stored in the argument registers, which are $4, $5, $6, and $7 in MIPS architecture. We

will use ArgRegs to denote the set of these four registers. The return values are stored in the

return registers, which are $2 and $3. We will use RetRegs to denote the set of the two

registers. In addition, reassignment also changes registers' save convention. We use an extra

insertion phase after the mapping & reassign phase for handing the calling convention.

Start

Mapping & Reassign

Register Selection

Calculate

Select

< NRS

Mapping

Reassign

All select registers
are reassigned ?

Insertion

yes

Inserter

yes

Analysis

End

Figure 3-3 Flowchart of register reassignment method I

17

3.2.1 Register Selection Phase

 In this phase we first inspect individual functions and calculate the priority of each

register belonging to RegL that have been used in an U-INS. We select the general purpose

register (GPR) currently. Calculation focuses on registers used in U-INSs since they might be

converted to 16-bit instructions. The priority of a register is defined as follows:

Priorityi denotes the priority of register i (e.g., the priority of $22 is denoted as Priority22).

RACi denotes the number of times register i is used in U-INSs. For example, the U-INS "add

$2, $3, $4" has three register operands. Therefore, RAC2, RAC3, and RAC4 are incremented by

one, respectively. Figure 3-4 shows an example. RAC2 is 8 not 9 in Figure 3-4 since JR is not

a U-INS. Thus, we do not count it. The main task of the register selection phase is to select k

registers with the highest priorities, where k is NRS or the number of registers used in U-INSs,

whichever is smaller.

$BB1_14: # bb581

lw $3, %got($JTI1_1)($gp)

nop

addiu $3, $3, %lo($JTI1_1)

sll $2, $2, 2

addu $2, $2, $3

lw $2, 0($2)

nop

lw $3, 28($sp)

nop

addu $2, $2, $3

jr $2

nop

j $BB1_16 # bb666

nop

RAC2 = 8

RAC3 = 6

Figure 3-4 Example for counting RACi

18

3.2.2 Mapping and Reassign Phase

 Register reassignment might reassign registers to others such ArgRegs and RetRegs,

which sometimes contain specific values. In this situation we to insert additional instructions

to handle this problem (see the insertion phase below). These additional instructions increase

the code size. This conflicts with our objective, i.e. code size reduction. Therefore, we need to

determine if a function is worthy of register reassignment by comparing the overhead and the

profits of reassignment.

 Every register which belongs to RegS and to either ArgRegs or RetRegs is given a cost,

called ReassignCost. In our implementation, ReassignCosti denotes the code size of the

additional instructions for handling the calling convention if register i is reassigned to another

register. If register i belongs to neither ArgRegs nor RetRegs, then ReassignCosti is 0. We get

the following information for calculating ReassignCost by analyzing the low-level IR in the

analysis stage:

i. Arguments

Both arguments of CurrentFunction and arguments of the functions called in

CurrentFunction are stored in ArgRegs. We figure out the number of arguments of

Current Function that have been passed in ArgRegs. Besides, we record the number of

arguments of each function call in CurrentFunction.

ii. Return Value

A call might return a value that is stored in RetRegs. Both $2 and $3 are needed to hold a

64-bit return value. We need to determine whether only $2 or both $2 and $3 are needed

for the return value.

iii. ReassignCost

We calculate ReassignCost as follows:

19

 InstrSize denotes the total size (measured in bytes) of the additional instructions per call

that are required for solving the calling convention problem. NCi means the number of

function calls inside CurrentFunction that have passed arguments or return value into register

i (register i must belong to either ArgRegs or RetRegs). MovArgISi denotes the size of the

instruction for moving the arguments of CurrentFunction from register i to the new register.

MovRetValISi denotes the size of the instruction for moving the return value of Current

Function to register i.

 The mapping stage maps the selected registers to RegS. The mapping relationship is a set

of mapping pairs. For example, the mapping pair "$16-$5" indicates that $16 is mapped to $5.

The reassignment stage later will replace the registers according to mapping pairs. The

mapping is performed according to the following two rules:

i. If a register selected in the register selection phase belongs to RegS, it is mapped to

itself. This means that the register will not be replaced.

ii. The rest of the registers selected in the register selection phase are mapped to

registers in RegS that have not been mapped yet. These registers are mapped from

highest priority to lowest one until all selected registers have been mapped.

 Our register reassignment methods need inserting additional instructions for conforming

to calling convention. When CurrentFunction calls other functions many times, a lot of

additional instructions might be added. Thus, not every function is suitable for register

reassignment.

 For this reason, we inspect CurrentFunction to calculate the total code size reduction if

we reassign registers according to the mapping pairs. Afterwards we compare the code size

20

with the total cost, which is shown as follows. Register reassignment is performed on the

CurrentFunction only if the code size reduction is larger than TotalCost.

 After finishing mapping stage it is time for reassigning. Reassignment is done according

to the mapping pairs. Figure 3-5 (a) shows a fraction of function before register reassignment.

In reassign stage it performs reassignment according to the mapping pairs as shown in

Table 3-2. For a mapping pair, such as “$10-$1”, all the appearances of $10 in

CurrentFunction is replaced with $1. Similarly, all appearances of $1 is replaced with $10.

Figure 3-5 (b) shows the result of (a) after register reassignment.

$BB1_1: # bb191.preheader

addiu $2, $0, -1

slt $2, $2, $10

beq $2, $0, $BB1_5

nop

$BB1_2: # bb.nph

addiu $20, $0, 0

addu $21, $0, $6

$BB1_3: # bb68

addu $10, $19, $20

lbu $2, 1($10)

nop

lbu $3, 0($10)

nop

lbu $4, 5($10)

nop

lbu $5, 4($10)

nop

sll $2, $2, 16

$BB1_1: # bb191.preheader

addiu $2, $0, -1

slt $2, $2, $1

beq $2, $0, $BB1_5

nop

$BB1_2: # bb.nph

addiu $7, $0, 0

addu $21, $0, $16

$BB1_3: # bb68

addu $1, $4, $7

lbu $2, 1($1)

nop

lbu $3, 0($1)

nop

lbu $19, 5($1)

nop

lbu $17, 4($1)

nop

sll $2, $2, 16

(a) Before Reassignment (b) After Reassignment

Figure 3-5 Comparison between (a) the code before reassignment and (b) the cod after

reassignment

21

Table 3-2 An Example of mapping pairs

Select Registers RegS

$10 $1

$2 $2

$3 $3

$19 $4

$17 $5

$16 $6

$20 $7

3.2.3 Insertion Phase

 We deal with the calling convention problem in this phase. The calling convention

problem is that registers which contain arguments or return value are re-assigned to another

registers, or registers' saving convention (e.g., caller-saved vs. callee-saved) are changed. The

caller must save caller-saved registers before calling the callee. The callee-saved registers

must be saved by the callee before using them. This problem is solved by inserting additional

instructions to keep the values of these registers.

 Because of the register reassignment replaces a register with another register. Thus, there

are two cases, "callee-saved registers (CalleeSR) after reassignment" and "caller-saved

registers (CallerSR) after reassignment". Note that we assume both ArgRegs and RetRegs

belong to CallerSR in our solution. The following is our solution for the calling convention

problem:

22

Procedure Insertion

if a CalleeSR has reassigned then

 if new register is still CalleeSR then

 Modify offset of PreserveCalleeSR if need;

 else /* it reassigned to CallerSR */

 Remove PreserveCalleeSR;

 for each function call

 Insert PreserveCallerSR;

 endfor

 endif

else if a CallerSR has reassigned then

 if new register is still CallerSR then

 /* Do nothing here */

 else /* it reassigned to CalleeR */

 Insert PreserveCalleeSR;

 if there existed PreserveCallerSR then

 Remove them since the register has been changed.

 endif

 endif

 if this CallerSR is ArgRegs then

 Insert MovFuncArg after prolog;

 for each function call

 Insert PreserveArgRegs;

 Insert MovCallsArg precede the call and succeed the PreserveArgRegs;

 endfor

 endif

 if this CallerSR is RetRegs then

 for each RET in function

 Insert MovFuncRetValue precede RET instruction;

 endfor

 for each function call which needs to return a value

 Insert PreserveRetRegs;

 Insert MovCallRetValue succeed the call and precede the PreserveRetRegs;

 endfor

 endif

endif

Figure 3-6 Pseudo code of additional instructions insertion

23

 PreserveCalleeSR are a consecutive sequence of instructions that store callee-saved

registers in the stack frame in prolog and load them from the stack frame in epilog. Similarly,

PreserveCallerSR are a consecutive sequence of instructions that store caller-saved registers

in the stack frame before function call and load them from the stack frame after the call

returns. MovFuncArg are a sequence of MOVE instructions which move arguments of

CurrentFunction from ArgRegs to new registers. MovCallsArg are a sequence of MOVE

instructions which move arguments of a function call from new registers to ArgRegs, since

arguments are in the new registers after register reassignment. Both MovCallRetValue and

MovFuncRetValue are a sequence of MOVE instructions that moves the return value of a

function call from RetRegs to new registers and moves the return value of CurrentFunction

from new registers to RetRegs, respectively. PreserveArgRegs are a sequence of instructions

which store ArgRegs in the stack frame before a function call and load them from the stack

frame after the call returns. PreserveRetRegs is similar to PreserveArgRegs with ArgRegs

replaced by RetRegs.

3.3 Method II

 In order to generate more 16-bit instructions, we modify the priorities. The purpose of

this modification is to create more opportunities for the “neighbors” of the selected registers.

Two registers are “neighbors” if they are used in the same instruction. We may construct a

neighbor-graph for a piece of code in which nodes represent registers and edges represent the

neighborhood relation. Consider the store-word instruction "sw $8, 0($5)" in BB5_11 shown

in Figure 3-7 (a). The neighbor-graph for the code in Figure 3-7 (a) is shown in Figure 3-7 (b).

If $5 is mapped to a register in RegS, $8 must also be mapped to a register in RegS otherwise

the instruction still cannot be replaced with a 16-bit version. To this end we add weights to the

edges in the neighbor graph in which the weight of an edge denotes the number of times the

two vertices (i.e., registers) are accessed in the same instructions.

24

 Method II has three phases as well as Method I, but the different part from Method I is

the selection phase. The selection phase of Method II has added two extra stages, "Build

Graph" and "Update Priority" as shown in Figure 3-8.

$BB5_11: # bb13

addiu $4, $4, 1

sw $8, 0($5)

addiu $5, $0, 18

bne $4, $5, $BB5_3

nop

$BB5_12:

...

$BB5_15:

...

addu $gp, $0, $3

lw $3, 20($sp)

nop

addu $2, $18, $2

sw $3, 72($2)

lw $3, 24($sp)

...

Neighbor

of selected

register

The selected

register

$5

$8

$18

$4

$2

$3

(a) Example code for neighbors (b) Neighbors of registers

Figure 3-7 Relationship between selected register and its neighbors

Start

Mapping & Reassign

Register Selection

Calculate

Select

< NRS

Insertion

yes

End

Start

Mapping & Reassign

Register Selection

Calculate

Select

< NRS

Insertion

yes

End

Build Graph

Update priority

(a) Method I (b) Method II

Figure 3-8 The difference between Method I and Method II is Register Selection Phase

25

3.3.1 Register Selection Phase

 As in Method I, the priority of a register is the number of times the register is used in

U-INSs. When a register is selected in select stage, the priorities of its neighbors will be

adjusted, as follows. Assume register Ra and register Rb are neighbors. After Ra is selected,

the weight of the edge between Ra and Rb is added to the priority of Rb. This increases the

likelihood of Rb being selected.

 Figure 3-9 shows an neighbor graph example. $6 is used in seven instructions in BB3_3,

and its priority is nine since it has been used twice in two instructions. The weight between $6

and $5 is four since they have been accessed together in three instructions. Note that if an

instruction has three register operands and two of them are the same register, such as "sltu $6,

$10, $6" and "addu $5, $5, $6" in Figure 3-9, the weights of these registers are two rather than

one. $10 is mapped first because it has the highest priority. Then we add the edge weights to

its neighbors' priorities (i.e., $2, $4, $6, etc). The updated priorities of registers are shown in

Figure 3-10. Keep selecting k registers with the highest priorities, where k is NRS or the

number of registers used in U-INS, whichever is smaller.

$4

$11

$15

$12

$2

$14 $13

$24

$10

$6

$5

9

6

1

1

1

2
4

1

1

5

12

1

1

1
6

4

1

2

1

1

1
1

1

1

2

$BB3_3: # bb2

srl $6, $5, 31

addu $10, $2, $6

sltu $6, $10, $6

addu $5, $5, $6

sll $6, $5, 31

srl $10, $10, 1

or $6, $10, $6

addiu $10, $0, 48

mult $6, $10

mfhi $10

sra $5, $5, 1

addu $11, $10, $4

lw $10, -16($11)

nop

lw $11, -12($11)

nop

xor $14, $10, $13

sltu $15, $11, $12

slt $24, $10, $13

sltu $14, $14, 1

bne $14, $0, $BB3_5

nop

Priorityi Weight

Figure 3-9 Building a neighbor graph with weighted edges

26

$4

$11

$15

$12

$2

$14 $13

$24

$6

$5

15

6

2

2

2

4
5

1

1

7

1
4

1

1

1

1

1

Priorityi Weight

Figure 3-10 Update priority of neighbors of select register

27

Chapter 4 Experiment

This chapter shows the experimental environments and presents the experimental results.

4.1 Environment

 In our experiment we use Low-Level Virtual Machine (LLVM) [10][11] as our compiler

infrastructure. It is a new compiler architecture built with reusable components. LLVM

replaces GGC optimizer and code generator, and reuses GCC parser and runtime libraries

(llvm-gcc front-end). The LLVM's back-end supports many common architectures, such as

x86, PowerPC, ARM, MIPS, etc, and it is composed of many passes, e.g., mid-level optimizer,

instruction selection, register allocator, etc. A pass manager takes a list of passes, ensures

their prerequisites are set up correctly, and then schedules passes to run efficiently.

 The low-level intermediate representation (IR) is generated from LLVM's front-end and

the IR is in Static Single Assignment (SSA) form. Our compiler back-end takes the low-level

IR as its input and outputs the assembly file. To generate the INS, we modified the LLVM

back-end to produce the INS with virtual registers. The LLVM default register allocator then

performs register allocation on these INSs. Afterward register reassignment method reassigns

these INSs.

 The MIPS/MIPS16e is the target ISA in our experiment, and we assume the instruction

mode is changed by instruction encoding mechanism (i.e. using a bit to indicate instruction

format, 16-/32-bit Format) rather than using mode switch instructions. The RegS = $1 ~ $7

since $0 is used as ZERO in MIPS, and thus NRS = 7. The special purpose registers are $0, GP,

SP, FP, and RA in MIPS. Besides, both $26 and $27 are reserved for kernel used. Hence,

excluding special purpose registers and kernel reserved registers, RegL = $1 ~ $25.

28

4.1.1 Benchmarks

 We select some benchmarks from MiBench[12], MediaBench[13], and SPEC

INT2000[14]. The programs of each benchmark are shown as Table 4-1.

Table 4-1 Benchmarks in our experiment

Benchmark Programs

SPEC INT2000 164.gzip, 181.mcf

MiBench rawcaudio, rawdaudio

MediaBench automative-bitcount, network-dijkstra, offstring-stringsearch,

security-blowfish, security-rijndael, telecomm-CRC32

4.2 ReassignCost

 Registers such as ArgRegs, RetRegs, contain specific value are given a ReassignCost. We

will describe the calculation of ReassignCost in this section. There are four ArgRegs (e.g., $4,

$5, $6, and $7) and two RetRegs ($2 and $3) in MIPS. The first four argument are pass to

ArgRegs, and the pass order is started from $4 to $7 (i.e. the first argument is passed to $4, the

second is passed to $5, and so on). If there are more than four arguments, the rest of them will

store in stack frame. Normally, the return value is stored in $2, but if the return value is larger

than one register could hold, $3 will be used.

 Basically, a 32-bit instruction is 4 bytes and a 16-bit instruction is 2 bytes. We need four

additional instructions (i.e. sw, lw, addu(as move instruction), and NOP after lw instruction)

per call for handling calling convention. Therefore, the InstrSize is equal to 10 bytes since

three of these additional instructions can be converted to 16-bit equivalents. MovArgIS and

MovRetValIS are move instructions, their size are 4 bytes. Note that ArgRegs do not use in

returning value, so their MovRetValISi is zero. Similarly, the MovArgISi of RetRegs are zero.

Above factors for calculating ReassignCost are listed in Table 4-2.

29

Table 4-2 Factors for calculating ReassignCost

Register i InstrSize (bytes) MovArgISi (bytes) MovRetValISi (bytes)

$2-$3 10 0 4

$4-$7 10 4 0

 Next we get the NCi from analysis phase, and we calculate each ReassignCosti according

to it. For example, we get the analysis result of main function in CRC32 benchmark, as shown

in Table 4-3. There are two arguments of CRC32's main function, so we need to insert two

move instructions after prolog to move values from $4 and $5 to their own new registers, if

both $4 and $5 have been reassigned. The ReassignCost of ArgRegs are shown in

Table 4-4. There are eight function calls of CRC32's main function, indexing from 0 to 7. The

ReassignCost4 is 84 bytes because InstrSize × NC4 = 80 and plus MovArgIS4 (4 bytes).

Table 4-3 Analysis result of main function in CRC32 benchmark

Name of Calls Index # of Arguments Registers used

fopen 0 2 $4, $5

_IO_getc 1 1 $4

perror 2 1 $4

_IO_getc 3 1 $4

ferror 4 1 $4

perror 5 1 $4

fclose 6 1 $4

printf 7 4 All ArgRegs

30

Table 4-4 The ArgRegs' ReassignCost of main function in CRC32

Registers

i

NCi Have used in arguemtns of

CurrentFunction?

ReassignCosti

(Bytes)

$4 8 Yes 10×8+4 = 84

$5 2 Yes 2×8+4 = 20

$6 1 No 1×8 = 8

$7 1 No 1×8= 8

 We find out the RetRegs were be selected in most cases by observing each mapping pairs

of all benchmarks. That means RetRegs do not reassign to new registers at most of time,

hence we seldom insert additional instructions for them. Besides, we cannot know the exact

numbers of RetRegs precisely that both CurrentFunction and function calls are required.

Accordingly, we do not analyze for the return value of function calls or CurrentFunction. But

if any RetRegs has been reassigned, we assume it is used in storing the return value of all

function calls (i.e. eight function calls in CRC32's main function) and the CurrentFunction.

Then we have to insert additional instructions for them to conform with calling convention.

Table 4-5 shows the ReassignCost of RetRegs. In this table we know $2 has been reassigned,

so ReassignCost2 is the sum of InstrSize*NCi and MovRetValISi.

 We get the TotalCost by summing up all ReassignCost. The TotalCost of CRC32's main

function is larger than the code size reduction we could get, so we leave this function

unchanged.

Table 4-5 The RetRegs' ReassignCost of main function in CRC32

Register i NCi Has been reassign? ReassignCosti (Bytes)

$2 8 Yes 10×8+4 = 84

$3 8 No 0

31

4.3 Experimental Result

 This section presents the performance of our register reassignment methods. We use

direct translation as the baseline for comparison. In direct translation, we examine each

instruction in turn, converting it to a 16-bit version if possible. We calculate the code size and

the ratio of additional instructions under the two register re-assignment methods, respectively.

In last section we show the analysis by comparing two methods and give summary.

Table 4-6 Code size reduction and additional instructions of Method I

 Number of

Instructions

Original

Code Size

After RR

Code Size

Code Size

Reduction

(%)

Additional

Instructions (%)

gzip 17,497 69,988 47,208 32.55% 1.81%

mcf 7,428 29,715 21,646 27.15% 0.94%

bitcount 352 1,408 920 34.66% 0.00%

dijkstra 490 1,960 1,356 30.82% 0.00%

stringsearch 213 852 596 30.05% 3.76%

rawcaudio 217 868 652 24.88% 0.00%

rawdaudio 209 836 642 23.21% 0.00%

blowfish 4,277 17,108 11,982 29.96% 3.30%

rijndael 4,622 18,488 14,806 19.92% 0.09%

crc32 165 660 486 26.36% 0.00%

Average 27.96% 0.99%

32

Table 4-7 Code size reduction and additional instructions of Method II

 Number of

Instructions

Original

Code Size

After RR

Code Size

Code Size

Reduction

(%)

Additional

Instructions (%)

gzip 17,497 69,988 47,260 32.47% 1.45%

mcf 7,428 29,715 21,604 27.29% 0.92%

bitcount 352 1,408 920 34.66% 0.00%

dijkstra 490 1,960 1,356 30.82% 0.00%

stringsearch 213 852 594 30.28% 3.76%

rawcaudio 217 868 652 24.88% 0.00%

rawdaudio 209 836 642 23.21% 0.00%

blowfish 4,277 17,108 11,998 29.87% 1.40%

rijndael 4,622 18,488 14,692 20.53% 0.17%

crc32 165 660 486 26.36% 0.00%

Average 28.04% 0.77%

 The result is shown in Figure 4-1, where the code size reduction of Method I is on

average 27.96% and Method II is 28.04%. Direct Conversion achieves code reduction of

26.7% in the same benchmark programs. Register re-assignment is not done on rawcaudio,

rawdaudio, and CRC32 the cost is larger than the profit. We could get more code reduction

from larger programs, such as gzip, mcf, blowfish, and rijnadel, and from functions that make

few function calls.

33

Figure 4-1 Code Size Reduction of Register Reassignment Methods

Compared with Method I, Method II has no significant improvement in reducing code size.

The reason is that the weight used in Method II, which is simply the number of times two

registers are used in the same instructions, should be biased toward instructions with fewer

register operands. Different instructions might have different numbers of register operands.

For converting a 32-bit instruction to a 16-bit equivalent, all the register operands used in the

instruction must be mapped to registers in RegS.

 Figure 4-2 shows the additional instructions rate in each benchmark program. The rate of

Method I is on average 0.99%, and Method II is 0.77%. As a rule of thumb, the more ArgRegs

and RetRegs are reassigned to other registers, the more additional instructions are inserted. In

blowfish, the additional instructions ratio in Method I is much higher than that in Method II,

since the largest function in blowfish is profitable for conversion in Method I but is not so in

Method II. Hence, Method II will leave the function unchanged, but Method I will perform

register reassignment on it. This causes numerous additional instructions.

34

Figure 4-2 Additional Instruction Rate

 There are no additional instructions in rawcdaudio, rawdaudio, and CRC32, since

register reassignment is not done on them. Because the stringsearch benchmark is small, the

overhead is relatively high. The bitcount benchmark has no additional instructions because in

lots of functions, all the registers are mapped to themselves. The rijndael benchmark has

lower cost than others since the mapping pairs in most functions do not cause the calling

convention problem.

35

Chapter 5 Conclusion and Future Work

 In this thesis we present two register re-assignment methods for mixed-width ISA. On

the average, the two methods reduce 28% of the code size. In contrast, a direct translation

reduces 26.7% of the code. If a ArgRegs or RetRegs have been reassigned, and at the same

time they are used for arguments or the return value, the reassignment comes with a cost. We

could get more code reduction from larger programs, such as gzip, mcf, blowfish, and rijnadel,

and from functions that make few function calls.

 From the experimental results, we observed that the effects of Method I and Method II

are not much different. The main reason might be that the weights do not consider the number

of register operands in an instruction. We plan to modify the weights by taking the number of

operands into consideration in the future.

36

References

[1]. A. Krishnaswamy and R. Gupta, "Mixed-Width Instruction Sets," In Communications of

the ACM, Vol. 46, No. 8, 2003

[2]. Sun Microsystems. CDC HotSpot Implementation Dynamic Compiler Architecture

Guide, 2005

[3]. S. Furber. ARM System Architecture. Addison-Wesley, 1996. ISBN 0-201-40352-8.

[4]. ARM Corporation. Thumb ISA. http://www.arm.com/products/CPUs/ARM7TDMI.html

[5]. MIPS32 Architecture for Programmers Volume IV-a: The MIPS16 Application Specific

Extension to the MIPS32 Architecture. 2001

[6]. Andes Technology. Andes Instruction Set Architecture Specification, 2008.

[7]. Aviral Shrivastava, Partha Biswas, Ashok Halambi, Nikil Dutt, Alex Nicolau,

"Compilation framework for code size reduction using reduced bit-width ISAs (rISAs),"

ACM Transactions on Design Automation of Electronic System (TODAES), v.11 n.1,

p.123-146, January 2006.

[8]. Bor-Sung Liang, June-YuhWu, Jih-YiingLin, Ming-Chuan Huang, Chi-Shaw Lai,

Yun-Yin Lien. Ching-HuaChang, Pei-Lin Tsai, Ching-PengLin, SunplusTechnol. Co.,

Ltd., Hsinchu, Taiwan. "Instruction set architecture scheme for multiple fixed-width

instruction sets and conditional execution". 2005 IEEE VLSI-TSA International

Symposium on VLSI Design, Automation and Test, 2005. (VLSI-TSA-DAT).

[9]. A. Krishnaswamy and R. Gupta, "Profile guided selection of ARM and Thumb

instructions." In Proceedings of LCTES/SCOPES, Berlin, Germany, June 2002.

[10]. Chris Lattner and Vikram Adve. "LLVM: A compilation framework for lifelong program

analysis & transformation," Proceedings of the international symposium on Code

37

generation and optimization: feedback-directed and runtime optimization, p.75, March

20-24, 2004, Palo Alto, California

[11]. C. Lattner et al. The LLVM Compiler Infrastructure. http://llvm.org/

[12]. Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge,

Richard B. Brown, "MiBench: A free, commercially representative embedded benchmark

suite", IEEE 4th Annual Workshop on Workload Characterization, Austin, TX,

December 2001.

[13]. C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A tool for evaluating

and synthesizing multimedia and communications systems," in Proceedings of the 30th

Annual International Symposium on Microarchitecture, (Research Triangle Park, North

Carolina), pp. 330-335, Dec. 1-3, 1997.

[14]. SPEC: Standard Performance Evaluation Corporation. http://www.spec.org, September

2000.

