
 i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以主要功能需求導引臨摹學習

網路應用系統的軟體架構設計

Major-Requirement-First Imitating Learning for

Software Architecture Design of Web Based System

研 究 生：薛祖淵

指導教授：曾憲雄 博士

中 華 民 國 九 十 八 年 七 月

ii

以主要功能需求導引臨摹學習

網路應用系統的軟體架構設計

Major-Requirement-First Imitating Learning for Software

Architecture Design of Web Based System

研 究 生：薛祖淵 Student：Tsu-Yuan Hsueh

指導教授：曾憲雄 Advisor：Dr. Shian-Shyong Tseng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

In partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

iii

以主要功能需求導引臨摹學習

網路應用系統的軟體架構設計

學生：薛祖淵 指導教授：曾憲雄 博士

國立交通大學資訊學院

資訊科學與工程研究所

摘 要

軟體架構設計對於把設計概念應用在實作能力上，並且透過解構、抽象和封

裝等概念去簡化整個系統功能需求的複雜度是非常重要的議題。在本篇論文中，

我們以「錄影帶租借管理系統」當作我們教學網路應用系統邏輯層設計的教材，

來教導學生軟體架構設計的概念。我們主要的教學策略導入了鷹架式教學的理

論，導引學生從系統的主要功能需求往細部的元件一一去臨摹，並且在過程中提

供必要的鷹架作為輔助。依照這個想法我們發展了一套臨摹式學習系統，我們定

義了一個系統需求的知識本體去維護教材的知識架構，並且設計了一套對話式問

答的機制去擷取老師設計教材的知識，然後產生出知識本體。接下來，根據我們

的教學策略去規劃出臨摹的流程，然後透過教學專家系統去呈現教材內容和提供

個人化的學習。最後，實驗結果顯示我們提出的教學策略對於學習軟體架構設計

是有效的，而且我們會在未來的研究上加入適性化學習以提供更合適的教學。

關鍵字：軟體架構設計, 物件導向程式設計, 臨摹式學習, 網路應用系統, 鷹架

式教學

iv

Major-Requirement-First Imitating Learning for

Software Architecture Design of Web Based System

Student: Tsu-Yuan Hsueh Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science

National Chiao Tung University

Abstract

Software architecture design is an important issue to transform design concepts

into implementation ability, where the ideas of decomposition, abstraction, and

encapsulation of functionality are usually used to simplify the complexity of the

system’s requirements. This thesis focusing on the logic tier of web-based system uses

“Video Rental Management System (VRMS)” as our teaching case to teach learners

how to design the software architecture. Major-Requirement-First strategy (MRFS),

the main idea of this thesis, applies scaffolding instruction theory to guide learners

imitating the system architecture design from major functionalities of VRMS to

detailed components by providing all the necessary scaffolds. Based upon MRFS, we

develop the Major-Requirement-First Imitating Learning System (MRFILS), where a

knowledge structure of VRMS is constructed and maintained according to System

Requirement Ontology (SRO), and the Recursive Descent Dialog Approach (RDDA)

is proposed to acquire the teacher’s knowledge of teaching cases and generate the

SRO. Accordingly, the schedule of an imitating procedure can present the learning

materials and provide personalized learning for learners with guidance using an

Object-Oriented Learning Activity (OOLA) System. Finally, the experimental results

show that our teaching approach is useful for learners to gain the software architecture

design concepts of VRMS, and we will add adaptive learning in MRFILS for the

future work.

Keywords: Software architecture design, object-oriented programming, imitating

learning, web-based system design, scaffolding instruction.

v

致謝

 在交大碩士班的兩年中，首先誠摯的感謝指導教授：曾憲雄博士。無論是在

學術研究或是為人處世方面，皆讓我受益匪淺，尤其是我學到了對一個知識領域

的研究方法、邏輯思考及表達能力的訓練，這將使我終生受用不盡，特別要在這

對教授獻上十二萬分的感謝。同時也要特地感謝我的口試委員，賀嘉生教授、孫

春在教授、廖岳祥教授和葉耀明教授，他們給了我相當多的寶貴意見，讓本論文

更有意義與價值。

再來要感謝的是實驗室的林喚宇學長、劉怡利學姊、翁瑞峰學長、蘇俊銘學

長、曲衍旭學長，在論文研究期間，不厭其煩的給予我非常多的建議及協助，讓

我的論文更加完整。此外，我也從他們身上學到了不少生活態度以及系統實作上

的技巧和經驗，在此深表感激。同時也要非常感謝實驗室的同窗夥伴們，惠君、

靖雅、啟珺、士緯和世恒以及學弟妹們：金龍、嘉祥、國彰、杰峰、紹宜和佳榕，

也要特別謝謝你們這段期間的互相鼓勵及支持，我才能堅持努力完成這篇碩士論

文，謝謝你們。

 祖淵

 2009 年 7 月于新竹

vi

Table of Content

Page

Table of Content .. vi

List of Figures .. viii

List of Tables ... ix

List of Definitions ... x

List of Algorithms .. xi

List of Examples ... xii

Chapter 1. Introduction ... 1

Chapter 2. Related Work ... 5

2.1 Web-Based System Design Learning ... 6

2.1.1 Traditional Teaching Approaches .. 6

2.1.2 Design Methodologies ... 6

2.2 Programming Learning in e-Learning .. 8

2.2.1 Object-Oriented Programming Learning ... 8

2.2.1 Other Programming Learning Issues ... 10

Chapter 3. Imitating Learning Guidance Approach .. 12

3.1 General Program Assignments ... 12

3.2 Major-Requirement-First Strategy (MRFS) ... 13

Chapter 4. Major-Requirement-First Imitating Learning System (MRFILS) 17

4.1 Knowledge Acquisition Phase .. 19

4.1.1 System Requirement Ontology (SRO) ... 19

4.1.2 Recursive Descent Dialog Approach (RDDA) 21

4.2 Knowledge Acquisition Phase .. 25

vii

4.2.1 Algorithm of Major-Requirement-First Strategy 25

4.2.2 Major-Requirement-First Guidance Transformation System 28

4.3 Learning Phase .. 31

4.3.1 Object-Oriented Learning Activity (OOLA) System 31

Chapter 5. System Implementation and Experiment .. 32

5.1 System Implementation .. 32

5.1.1 Teaching Materials Construction Phase ... 32

5.1.2 Software Architecture Design Learning Phase 34

5.2 Experiment .. 36

5.3 Discussion ... 38

Chapter 6. Conclusion and Future Work .. 39

References ... 40

viii

List of Figures

Page

Figure 1. Typical catalogs of Computer Science curriculums 5

Figure 2. Three-tier architecture .. 7

Figure 3. Traditional program assignment ... 12

Figure 4. Progressive program assignment .. 13

Figure 5. Top-down program assignment .. 15

Figure 6. The class diagram of Video Rental Management System (VRMS) 16

Figure 7. The system architecture of MRFILS .. 17

Figure 8. The examples of VRMS_SRO ... 21

Figure 9. Object-oriented design process ... 22

Figure 10. The example of VRMS_SRO construction process 24

Figure 11. The flowchart of Major-Requirement-First Strategy (MRFS) 27

Figure 12. Major-Requirement-First Guidance Transformation System 28

Figure 13. The example of MRFS Scheduler .. 29

Figure 14. The example of OOLA Transformer .. 30

Figure 15. The system architecture of OOLA System ... 31

Figure 16. The snapshot of teaching materials construction phase 33

Figure 17. The snapshot of software architecture design learning phase 35

Figure 18. The results for learning efficacy and satisfaction 37

ix

List of Tables

Page

Table 1. The detailed information of program scaffolds ... 14

Table 2. Question templates ... 22

Table 3. Learning guidance templates ... 30

Table 4. The questionnaire items ... 36

Table 5. The format of a typical five-level Likert degree .. 37

x

List of Definitions

Page

Definition 1. System Requirement Ontology (SRO) ... 19

xi

List of Algorithms

Page

Algorithm 1. Recursive Descent Dialog Approach (RDDA) 23

Algorithm 2. Major-Requirement-First Strategy (MRFS) ... 26

xii

List of Examples

Page

Example 1. Major-requirement-first strategy for program assignments 15

Example 2. Parts of VRMS_SRO .. 20

Example 3. RDDA Scaffolds Constructing System .. 24

Example 4. MRFS Scheduler ... 28

Example 5. OOLA Transformer .. 29

 1

Chapter 1. Introduction

 With the growth of Internet, many Internet service providers, such as

Google, Yahoo, etc., who have provided a huge amount of web applications for

various web services. In order to develop such web applications, the system

architecture design becomes a crucial task. Currently, the most popular web system

architecture design mechanism, named Three-Tier Architecture [1], consists of

presentation tier, logic tier, and data tier to implement user interface, business logic,

and data I/O, respectively. Among these three tiers, logic tier is responsible to handle

complicated computations and program control-flows, so it usually becomes a

bottleneck when novice programmers who just begin to learn web application design.

In the construction process of web application logic tier, designers are supposed

to clearly understand the system requirements, and then the concepts of

decomposition, abstraction, and encapsulation of functionality [1-4] are usually used

to transform the requirements into the system design and simplify the complexity of

requirements to each program component. We take a web application “Video Rental

Management System (VRMS)“ as an example, whose logic tier design contains various

requirements of member management, video management, online item management

and data passing, and this teaching case is simple and suitable for novice learners to

learn the software architecture design. Thus, a learner, who wants to construct a

VRMS, needs to consider the following design problems: How to divide the

requirements into different components to simplify the individual computation logics?

How to merge the computation results from different components to generate the final

outputs? How to cope with data encapsulation and passing? In other words, the

2

concept of software architecture design [3, 4] is a very important learning objective

for constructing web application.

In the traditional software architecture design learning, lectures and imitating

learning are the major methods for learners to gain the design idea. Among them,

lecturers can teach learners the abstract concept of software architecture design, but

learners usually can not easily apply the concepts to a real software design. As we

know, imitating learning lets learners imitate the design of teaching cases [5] or class

diagrams [1-3] to learn the real design experience, but it is still difficult to help

learners understanding the major idea of the previous design from the detailed

component implementation without any guidance and explanation. Another researches

use project-based learning [6, 7] to teach learners software architecture design, where

teachers guide learners to construct the main program in the project and gain the real

design concepts and construction experience. This teaching approach can contribute

significant learning efficacy, but it is very time consuming for teachers to run a

project.

Most computer-assisted programming learning systems [8-11] aim to assist

learners learning the syntax and semantic rules of programming language, but

software architecture design is still inadequate for learning because the abstract design

concepts are difficult to be implemented as the fixed learning rules in learning system.

Therefore we propose a learning system, which can guide learners to imitate the

design of a given learning project case to reduce teachers’ loading of guiding learners

to complete a project.

In order to help learners understanding why and how the software architecture

design can satisfy the abstract requirements, Major-Requirement-First Strategy

(MRFS) is proposed to guide learners to imitate program architectures from major

3

functionalities of the system to detailed components. According to scaffolding

instruction theory [12, 13], all the required scaffolds, including usable library

packages and suggestions, are provided for learners to assist them completing the

imitating tasks in the top-down imitating manner. This teaching approach can make

learners understand the overall configuration of the system first, so they will easily

comprehend the task and the design of each detailed component. Accordingly, we

develop the Major-Requirement-First Imitating Learning System (MRFILS),

where a knowledge structure of our teaching case, Video Rental Management System

(VRMS), is constructed and maintained based on System Requirement Ontology

(SRO), and the Recursive Descent Dialog Approach (RDDA) is proposed to acquire

the teacher’s knowledge of teaching cases to generate the SRO by a series of

dialogues. Based upon SRO, an imitating procedure which is scheduled by MRFS can

present the learning materials and provide personalized learning for learners using an

Object-Oriented Learning Activity (OOLA) System [14], which guides the learners to

learn the software architecture design of VRMS.

Finally, we have done a real experiment to evaluate the learning efficacy and

satisfaction of learners. The experimental results show that most of learners think this

top-down imitating learning can make them understand the software architecture

design effectively, and implementing the task with library packages supporting will

easily comprehend how to design these used objects afterward.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

some related works about the web-based system design learning and programming

learning in e-learning. Chapter 3 describes our main idea, Major-Requirement-First

Strategy (MRFS), and we propose a Major-Requirement-First Imitating Learning

4

System (MRFILS) in Chapter 4. Next, Chapter 5 discusses the system implementation

and experiment. Finally, we give the conclusion and future works in Chapter 6.

 5

Chapter 2. Related Work

In general Computer Science curriculums, computer programming and practical

techniques for implementation and application in computer system are important

abilities for students. Figure 1 shows the typical catalogs of Computer Science

curriculums [15]. From the coding’s aspects such as semantic and syntax rules of

programming language, data structure and algorithm, to the requirement’ aspects like

requirement analysis, system design, testing and deployment, the learners can gain the

software development ability through taking lessons in a series of Computer Science

curriculums.

However, as a result of the difficulty for learners to combine design concepts

with implementation ability in construction phase [16], there still exists a gap between

basic programming skills and software engineering abilities. Thus, the software

architecture design learning [3, 4] aims to solve the issues about how to design the

program architecture from requirement’s aspects to coding’s aspects. And in this

thesis, we focus on the software architecture design learning of web-based system.

The following sections will introduce related studies about present programming

learning.

Figure 1. Typical catalogs of Computer Science curriculums

6

2.1 Web-Based System Design Learning

2.1.1 Traditional Teaching Approaches

General programming capability on web-based system design can be learned by

lectures, case study, or project-based learning. Lecturer gives lessons about basic

concepts of web-based system development to learners, but the concept may be too

abstract to link the concept with their implementation ability. Case study [1-3] is to

consult relevant books, such as codes tracing to imitate related design concepts or use

class diagram to figure out the whole system architecture. These imitating learning

approaches are very difficult for helping learners understanding the design procedure

and the physical meaning of the whole system architecture design without the ability

of guidance and explanation. In project-based learning [6, 7], learners who explore

real-world problems and challenges can be inspired to obtain a deeper knowledge of

the subjects they're studying, but the teachers usually can not afford one-on-one

instruction.

Therefore, there are some issues which are required to be proved in this thesis as

follows: combine learner’s implementation ability with design concepts, provide an

appropriate guiding mechanism, make teaching cases contain semantic meaning, and

reduce the teacher’s loading for one-on-one instruction.

2.1.2 Design Methodologies

In web-based system design [17], there are many methodologies such as

Client-Server Architecture [18], Model-View-Controller Architecture, Component

Based Methodology [19], and Model Driven Architecture [20], etc. Among these

methodologies, three-tier architecture is a popular way for web-based system design

[1]. Apart from the usual advantages of modular software with well defined interfaces,

7

three-tier architecture also allows any of the three tiers to be upgraded or replaced

independently as requirements or technology change.

Figure 2. Three-tier architecture

Three-tier architecture is composed of presentation tier, logic tier and data tier.

Figure 2 briefly describes the utility of each tier. Presentation tier converts and

displays application data into a human-legible form, and it also provides an

application’s user controls. Logic tier implements business logic and translates the

reality into programming objects. Data tier provides data storage and data access

mechanisms to the application. Except for the user interface of presentation tier and

the data I/O of data tier, the logic tier is responsible to handle complicated

computations and program control-flows. For novice programmers who just begin to

learn web application design, the logic tier design usually becomes a bottleneck for

them. Thus, in this thesis we focus on the software architecture design of logic tier.

8

2.1.3 Software Architecture Design

Designing, developing, and evolving complex software systems require a

mastery of analytical and technical skills, as well as knowledge of appropriate

processes, architectures and design patterns. Software architects building complex

systems must create the illusion of simplicity through decomposition, abstraction, and

encapsulation of functionality. The following issues will be discussed in software

architecture design learning: the way to distribute the functionalities of software into

different components, the components design to handle the logic computation, the

responsibility of each component, the data and logic encapsulations, and the program

control-flow, etc.

Surveying the researches about software architecture design learning, most

researches adopt project-based learning to teach the design concepts by

implementation. For example, Woei-Kae Chen and Yu Chin Cheng [6] designed an

object-oriented programming (OOP) laboratory course where the students are required

to implement a small-to-medium scale interactive computer game with

framework-assisted. The students use the pre-define objects and source codes from

teachers to modify and re-design the game scenario. The teaching assistants need to

give all the students one-on-one instructions for guiding them to complete the lab, and

it is a very time-consuming job.

2.2 Programming Learning in e-Learning

2.2.1 Object-Oriented Programming Learning

Object-oriented programming (OOP) is a programming paradigm which uses

objects and their interactions to design applications and computer programs, and it is

very popular to be used in web-based system development. In the OOP learning

9

researches of e-learning domain, most issues are relevant to teach the basic coding

abilities and OO concepts such as inheritance, abstraction, encapsulation and

polymorphism. The followings are relevant literature reviews about OOP learning

Stelios Xinogalos et al. [11] proposed a programming environment, objectKarel,

which incorporates e-lessons, hands-on activities, an easy to use structure editor for

developing and editing programs, program animation, explanatory visualization,

highly informative and friendly error messages for novice programmers to develop

programs.

J.Baltasar Garcia Perez-Schofield et al. [8] developed an interactive

object-oriented environment, Visual Zero, which allows learners to concentrate on

objects and their relationships from the very beginning, and thus helps the learners

achieving a high degree of knowledge about the object-oriented programming

paradigm.

Matthew Conway et al. [10] developed a 3D programming environment, Alice,

to teach entry level Computer Science students basic programming concepts without

exposing them to all the intricate details of a full-blown programming language.

Using Alice, students accomplish their programming tasks by a series of mouse clicks

and drag-and-drop maneuvers, and it eliminates from syntax and logical errors of

programming.

The Lifelong Kindergarten research group at the MIT Media Lab [21] developed

a new programming language, Scratch, to help the learners creating their own

interactive stories, animations, games, music and arts. The learners can learn

important mathematical and computational ideas, while also learn to think creatively,

reason systematically, and work collaboratively.

10

2.2.1 Other Programming Learning Issues

In addition to basic coding ability, there are some researches about data structure,

algorithm, structured query language (SQL) and design pattern.

Jaime Galvez et al. [22] presented a blended e-learning experience consisting of

supplying an undergraduate student population with a learning tool called OOPS

and a testing system called SIETTE to teach data structure.

Maria Kordaki et al. [9] presented a modeling, student-centered methodology for

the design of a constructivist computer environment, the SORTING environment, for

the learning of sorting algorithms, within a context consisting of interactive, multiple

and linked representation systems.

Claus Pahl and Clair Kenny [23] presented an automated learning and skills

training system for a database programming environment that promotes procedural

knowledge acquisition and skills training. The system provides meaningful

knowledge-level feedback such as correction of student solutions and personalized

guidance through recommendations.

Zoran Jeremic et al. [24] presented the evaluation of DEPTHS (Design Patterns

Teaching Help System), an intelligent tutoring system (ITS) for teaching software

design patterns. Furthermore, there are other studies of software development in

general showing that adherence to common software design principles, guidelines,

and rules [25].

However, most of the aforementioned researches provide computer-assisted

programming learning systems or assisting tools to help learners learning the basic

coding abilities of object-oriented programming, but there is no research providing the

learning system to assist the software architecture design learning. In order to provide

11

the learners one-on-one instruction in a cost effective manner and reduce the teacher’s

loading, we decide to construct an intelligent tutoring system for software architecture

design learning.

 12

Chapter 3. Imitating Learning Guidance Approach

3.1 General Program Assignments

Generally, after a series of lectures in the programming course, the teacher

usually assigns homework to make learners obtain a deeper knowledge of the design

concepts they have learned. Figures 3 ~ 5 show three different implementation

processes of program assignment, where the teacher uses the Video Rental

Management System (VRMS) project as an example to make the students think how to

design this project. The horizontal axis means the assignment iteration, which is set by

teacher according to the project’s features like the amount of functionality or

component. And the vertical axis means the expected completeness degree of the

project, called expected program progress.

Major

Requirement

Assignment

Iteration

100%

25%

50%

75%

Expected Program Progress

0 1 2 … n

Figure 3. Traditional program assignment

Figure 3 shows that traditional program assignment assigns a whole VRMS

project to students in one time. The teacher requests students to apply the knowledge

which have been learned from the course to accomplish this project, but the scope of

VRMS project is too big for students to know how to start implementing it. Hence, the

students usually have trouble with this wide-scope assignment.

13

Major

Requirement

Assignment

Iteration

100%

0 1 2 … n

25%

50%

75%

Expected Program Progress

Figure 4. Progressive program assignment

Figure 4 shows that in progressive program assignment, the teacher segments the

VRMS project into several assignments according to the constructing procedure from

basic components to major requirements, and the learners are asked to complete parts

of programs progressively. This bottom-up manner can make learners understand the

constructing process, but they have no idea about why and how the design of basic

components and its details.

3.2 Major-Requirement-First Strategy (MRFS)

Hence, we propose a teaching strategy named Major-Requirement-First

Strategy (MRFS) to help learners easily understanding how to design the VRMS

project. This teaching strategy adopts a top-down imitating learning mechanism which

guides the learners from the major requirements of VRMS to basic components and

apply the ideas of Scaffolding Instruction Theory [12, 13].

As mentioned in scaffolding instruction theory, the Zone of Proximal

Development (ZPD) [12, 13] noted that it is also very efficient for learners to use their

prerequisite knowledge to help themselves developing new knowledge. So we intend

to combine the learners’ implementation ability and request them to complete the

14

project by imitating the software architecture which is designed by teachers in

advance.

Moreover, scaffolding instruction theory also mentioned that building some

scaffolds for learners and assisting them to complete the target they can’t accomplish

before, and then gradually dismantling the scaffolds they have learned, is an

effective way to get the learning objectives. So we provide the necessary scaffold

which called program scaffolds, such as component requirements, interface and

usable objects of each component, relationships between the components, library

packages and source codes to assist learners to implement from the major

requirements with these imitating information and library supporting. The detailed

information of program scaffolds is shown in Table 1.

Table 1. The detailed information of program scaffolds

Program Scaffold Description

System Requirement Describe the main target of this system.

Class Requirement Describe the requirement and design concepts of this class.

Method Requirement Describe the requirement and utility of this method.

Interface Describe what methods are included in this class.

Usable Objects Describe what objects will be used in this method.

Relationship Describe the relationship between two components.

Library Package A program library used for this component implementation.

Source Code A solution code created by teacher for this component.

Class Diagram An overall configuration of this system.

Therefore, based on scaffolding instruction theory, MRFS guides learners to

imitate the program architectures from major functionalities of system to detailed

15

components through a series of implementations with program scaffolds supporting.

As shown in Figure 5, top-down program assignment applies the idea of MRFS,

where the teachers have to construct the necessary program scaffolds and segment the

VRMS project into progressive assignments in advance, and then assign a task which

is the major functionality of VRMS to students. After the students finish the

assignment with program scaffolds supporting like library, they will continue to finish

the detailed components of major functionality. Consequently, the learners can figure

out the overall configuration of VRMS first, and then they will easily comprehend the

design concepts of each detailed component. The learning efficacy of MRFS will be

compared with general program assignments in our experiment in Chapter 5.

Major

Requirement

Assignment

Iteration

100%

0 1 2 … n

25%

50%

75%

Expected Program Progress

Program

Scaffolds

Program

Scaffolds

Program

Scaffolds

Figure 5. Top-down program assignment

Example 1. Major-requirement-first strategy for program assignments

Figure 6 shows our teaching case in this thesis, Video Rental Management

System (VRMS), which is represented by class diagram. VRMS is a common

web-based system which can offer user convenient services about online video rental,

such as video introduction, video search, popular video recommendation, subscribe

and relend for video, online comment and member management, etc. Besides the user

interface and database I/O, the learners are supposed to focus on logic tier design of

VRMS.

16

The teacher will segment the project into several assignments, and ask the

learners to complete the assignments from “MemberMgr”, “VideoMgr” or

“OnlineMgr”, the major functionalities of VRMS, to detailed components. If the

“MemberMgr” task is assigned to learners, all the information about the task like

design concepts, component requirements, interface, usable objects and library

packages like “DBMgr”, “MemberInfo”, etc. should also be provided to assist learners

implementing this class. The learners can imitate the software architecture design of

VRMS through a sequence of implementations with guidance and program scaffolds

supporting in this top-down imitating manner.

Major-requirement-first strategy is not only adaptive for VRMS but also suitable

for use in logic tier design of web-based system, and the learners can get the software

architecture design concepts easily in this top-down imitating manner.

Figure 6. The class diagram of Video Rental Management System (VRMS)

17

Chapter 4. Major-Requirement-First Imitating

Learning System (MRFILS)

For the purpose to provide the learners one-on-one instruction in a cost effective

manner and reduce the teacher’s loading, we develop the Major-Requirement-First

Imitating Learning System (MRFILS). MRFILS provides guidance and necessary

assistance for learners and assists them imitating the software architecture design of

teaching cases which are constructed by teachers.

In order to apply MRFILS, the teachers have to construct necessary teaching

materials for learners to imitate the software architecture design, and the learners need

to have enough coding ability of object-oriented programming for implementation.

The goal for this intelligent tutoring system is to help teachers constructing a

knowledge structure of teaching case, and then applying a guiding mechanism to

generate an imitating procedure, next guiding learners to imitate the software

architecture design of teaching case through a series of implementations with program

scaffolds supporting.

Figure 7. The system architecture of MRFILS

18

The MRFILS is composed of three phases, including knowledge acquisition

phase, knowledge transformation phase and learning phase. The overall picture of

system architecture is shown in Figure 7.

Firstly, in knowledge acquisition phase, the teachers construct the program

scaffolds by the RDDA Scaffolds Constructing System, which applies the Recursive

Descent Dialog Approach (RDDA) to acquire the teacher’s knowledge of teaching

case through a series of dialogues. After the construction, the program scaffolds that

are stored in scaffolds repository will be composed into a knowledge structure of

teaching case, named System Requirement Ontology (SRO).

Next, in knowledge transformation phase, MRFS scheduler applies

Major-Requirement-First Strategy (MRFS) on SRO to schedule an imitating

procedure, and then OOLA Transformer arranges different learning guidance

templates for imitating procedure to transform an Object-Oriented Learning Activity

(OOLA) [14].

At last, in learning phase, Object-Oriented Learning Activity (OOLA) System

retrieves learning activities and necessary program library packages from Learning

Activity Management System (LAMS) [14] and scaffolds repository to present the

guiding information and learning contents for learners. The following sections will

introduce the detail of each phase in MRFILS.

19

4.1 Knowledge Acquisition Phase

4.1.1 System Requirement Ontology (SRO)

For imitating learning, we need to construct teaching cases in advance.

According to the features of logic tier design of web-based system, we define a

knowledge structure named System Requirement Ontology (SRO) to maintain our

teaching case, Video Rental Management System (VRMS).

Traditional learning content of programming case doesn’t take the physical

meanings of components and the relationships between components into account, so

it’s difficult for learners to get the design concepts of system. Thus, we think the SRO

should contain semantic meanings like component’s utility and physical meaning of

interaction, and then we can apply MRFS to schedule an appropriate imitating

procedure based on the information. Accordingly, the knowledge representation of

SRO is defined as Definition 1, where p means the total number of node set and q

means the total number of relationship set.

Definition 1. System Requirement Ontology (SRO)

 SRO = (N, R) : Composed of a set of nodes denoting to N and a set of

relationships denoting to R.

 N = {n1, n2, n3,…, np} : A set of nodes denoting the downstream nodes of n.

 R = {r1, r2, r3,…, rq} : A set of relationships denoting the downstream

relationships of r.

 ni = (nTypei, Namei, Requirementi, Interfacei, ClassQuantityi, UsableObjecti) :

Composed of component type, component name, component requirements,

20

component interface, the quantity of class under the component, and the names of

usable objects, accordingly.

 ri = (rTypei, Fromi, Toi) : Composed of relationship type, relationship original

node, relationship terminal node, accordingly.

 nTypei{System, Class, Method} :

 System node is the root of SRO.

 Class node is the class name of system.

 Method node is the method name of class.

 rTypei{ Be-composed-of, Contain, Use-data, Use-function, Such-as} :

 Be-composed-of relationship describes what major functional classes

constitute System node.

 Contain relation describes what Method nodes are included in Class node.

 Use-data relation indicates which data-storage Class node is used by Method

node.

 Use-function relation indicates which functional Class node is used by

Method node.

 Such-as relation is similar to inheritance, and it is connected with two Class

nodes.

Example 2. Parts of VRMS_SRO

Figure 8 presents the utilities of three types of nodes and five types of

relationships in VRMS_SRO, which is instantiated from SRO and used to maintain

the knowledge structure of VRMS. Figure 8 (a) shows that VRMS is composed of

major functionalities like “MemberMgr” class and “VideoMgr” class. Figure 8 (b)

shows that “MemberMgr” class contains the interface such as “Register” method and

“Login” method. Figure 8 (c) shows that “Register” method uses a data-storage object

21

called “MemberInfo” which stores the information about member to handle data

encapsulation. Figure 8 (d) shows that “Register” method uses a functional object

called “DBMgr” which communicates with database to handle logic computation.

And Figure 8 (e) shows that “Profile” class and “Portfolio” class inherit from

“MemberInfo” class.

Figure 8. The examples of VRMS_SRO

4.1.2 Recursive Descent Dialog Approach (RDDA)

After defining the SRO, we have to help teachers constructing this ontology. We

propose the Recursive Descent Dialog Approach (RDDA), which is a systematic

procedure to allow teachers to input relevant program scaffolds of VRMS. RDDA

adopts a top-down dialogue mechanism built from a set of mutually-recursive

procedures to construct SRO from major functionalities of VRMS to basic

components by asking a series of questions about teacher’s design concepts of VRMS.

The question templates described in Table 2 are defined based upon basic

object-oriented design (OOD) process [5], which is shown in Figure 9. And the

detailed algorithm of RDDA is shown in Algorithm 1.

22

Table 2. Question templates

Node Type Question Template

System
請輸入這套系統的名稱和主要的功能需求

請輸入這套系統主要功能的類別名稱

Class 請問這個類別主要的功能需求以及Interface為何

Method
請問這個方法的功能需求、會使用到的物件和使用的關係為何

請問在這個方法所使用到的物件中，會使用到哪些方法

Figure 9. Object-oriented design process

Define system requirements

Define major requirements

Define interface

Define method requirements

Define usable objects & relationships

Decompose to objects

23

Algorithm 1: Recursive Descent Dialog Approach (RDDA)

Denotation :

S : The stack which is used for Depth-First Search (DFS)

Input: The program scaffolds of teaching case, Question Templates (QT)

Output: System Requirement Ontology (SRO)

While (There exists node ni which needs to be constructed for teacher)

{

Push node ni into S.

While (S is not empty)

{

Pop a node ni from S.

Based on ni type, use the corresponding QT to compose the dialogue and

ask all necessary information about node ni from teacher.

Acquire the teacher’s answer and construct a node

ni = (nTypei, Namei, Requirementi, Interfacei, 0, UsableObjecti).

Add ni to N.

For each relationship rj{ The output relationships of ni }

{

Based on ni type, use the corresponding QT to compose the dialogue

and ask all necessary information about rj from teacher.

Acquire the teacher’s answer and construct a relationship

rj = (rTypej, Fromj, Toj).

Add rj to R.

Push Toj into S.

}

}

Construct a SRO = (N, R).

For each node nk  N

{

According to the relationships and nodes of SRO to compute the class quantity

under node nk, and then modify ClassQuantityk.

}

Return SRO.

Algorithm 1. Recursive Descent Dialog Approach (RDDA)

24

Example 3. RDDA Scaffolds Constructing System

RDDA Scaffolds Constructing System adopts a series of dialogues to acquire the

knowledge from the teacher and construct a SRO of teaching case. Figure 10 shows

the example of VRMS_SRO construction process, where VRMS_SRO is an instance

of SRO. Firstly, RDDA Scaffolds Constructing System asks the system name, system

requirement and major functionalities from the teacher. And then according to major

functionalities, where we use “MemberMgr” for example to ask the class requirement,

class interface and their relationships. Next, based upon the interface of

“MemberMgr”, we choose a method “Register” for example to ask the method

requirement, usable objects like “MemberInfo” and “DBMgr” and their relationships

like “use-data” and “use-function”, accordingly. Rules like that, at last RDDA

Scaffolds Constructing System will request the teacher to upload the library package,

source codes and class diagram. According to this constructing process, the teacher

can construct a complete VRMS_SRO by RDDA Scaffolds Constructing System.

Figure 10. The example of VRMS_SRO construction process

25

4.2 Knowledge Acquisition Phase

4.2.1 Algorithm of Major-Requirement-First Strategy

The algorithm of MRFS is shown in Algorithm 2 and represented by the

flowchart in Figure 11. The main algorithm of MRFS is Depth-First-Search (DFS)

with heuristic functions to determine the search path. DFS needs a stack to store

temporal nodes, and a queue to store the imitating procedure as output. The heuristic

functions are based on the class quantity under each node and the weight of each

relationship type, where we define the weight of “Use-function” relationship is 2, the

weight of “Use-data” relationship is 1, and the others are 0 to schedule the priority of

imitation. We think that imitating the functional components first will easily

comprehend what is supposed to do in next step, so we set “Use-function” with high

priority than “Use-data”. If the relationship types are equal, we will compare the class

quantity under the node, where the larger quantity possesses the higher priority.

26

Algorithm 2: Major-Requirement-First Strategy (MRFS)

Denotation :

S : The stack which is used for Depth-First Search (DFS)

A : The array which is used for heuristic computation

Q : The queue which stores the imitating procedure

Input: System Requirement Ontology (SRO)

Output: Q (Imitating Procedure)

If (There exists a root node ni of SRO)

{

Push ni to Q.

While (ni contains any output relationship)

{

Do

{

For each relationship rj  { The output relationships of ni }

{

Insert the relationship rj into A.

Compare the rTypej with the type of relationships in A, and sort these

relationships according to relationship type from max to min.

(“Use-function” = 2, “Use-data” = 1, others = 0)

If (A contains relationships r[] whose type is equal to rTypej)

Compare ClassQuantityj with the class quantity of nodes which

are terminal nodes of relationships in r[], and sort these

relationships according to class quantity from max to min.

}

For each relationship rj in A

Push Toj into S.

}While (S is not empty)

Pop one node nk from S.

Get a node ni = nk.

Push nk to Q.

}

}

Return Q.

Algorithm 2. Major-Requirement-First Strategy (MRFS)

27

Figure 11. The flowchart of Major-Requirement-First Strategy (MRFS)

Yes

No

Input System Requirement
Ontology (SRO)

Get the root of SRO as
present node

Does present
node contain any
output relation?

Is S empty?

Insert all output nodes of
present node into A

Push all nodes of A to S
from min to max

Pop one node from S as
present node and push it

to Q

Output Q

Yes

No

Sort A according to output
relationships’ type of

present node

Sort A according to output
nodes’ class quantity of
present node where the

output relationships’ type
is equal

28

4.2.2 Major-Requirement-First Guidance Transformation System (MRFGTS)

In knowledge transformation phase, MRFGTS is composed of MRFS Scheduler

and OOLA Transformer. MRFS Scheduler uses the SRO which constructed by RDDA

Scaffolding Constructing System to apply MRFS to schedule an imitating procedure,

and then OOLA Transformer transform this imitating procedure into a learning

activity of OOLA system [14]. The internal procedure of MRFGTS is shown in Figure

12.

Figure 12. Major-Requirement-First Guidance Transformation System

Example 4. MRFS Scheduler

Figure 13 presents the example of MRFS Scheduler. Based upon the MRFS

algorithm, we get the “VRMS” node which is the root of VRMS_SRO at first and push

it into the imitating procedure. And then we check the output nodes and output

relationships of “VRMS” node, where the three major functional nodes

“MemberMgr”, “VideoMgr” and “OnlineMgr” contain the same relationships

“be-composed-of”. So we will check the class quantity of these output nodes, and find

out the largest one. Suppose that “MemberMgr” node has the largest class quantity of

the three output nodes, we push it into the learning precedure, and check the output

nodes and relationships again. Suppose there exists “Register” and “Login” method

nodes and the relationships are as same as “Contain” relationship, and the “Register”

node has large class quantity than “Login” node, so we push the “Register” node into

29

the imitating procedure. Accordingly, there are two objects will be used in the

“Register” method, so we choose the “use-function” relationship which has high

priority than “use-data” relationship and push “DBMgr” node into the imitating

procedure. Rules like that, then we will push “InsertProfile”, “InsertPortfolio”,

“MemberInfo”, “Profile”, “Portfolio” nodes and so on into the learning queue

sequentially based on MRFS.

Figure 13. The example of MRFS Scheduler

Example 5. OOLA Transformer

In order to use OOLA System to present the learning contents, we need to

transform the imitating procedure into an Object-Oriented Learning Activity (OOLA)

in advance. As shown in Figure 14, after getting the imitating procedure from MRFS

Scheduler, we arrange different learning guidance templates which are presented in

Table 3 according to the type of nodes. The imitating procedure will attach different

learning contents and learning resources which are constructed in knowledge

acquisition phase to create the learning units, and then transform the imitating

procedure into OOLA rules, which are used to arrange the learning sequence.

30

Afterwards, OOLA Transformer can generate an OOLA based on learning units and

OOLA rules.

Figure 14. The example of OOLA Transformer

Table 3. Learning guidance templates

Node Type Learning Guidance Template

System

Learning

Content

Introduction, system requirement analysis, major

functionality requirements, and guiding

information.

Learning

Resource
Class diagram.

Class

Learning

Content

Class requirement, interface, method requirements,

impending method tasks, complete method list,

guiding information, and task information.

Learning

Resource
Class diagram, source code, library package.

Method

Learning

Content

Method requirement, usable object interface, usable

object requirements, guiding information, and task

information.

Learning

Resource
Class diagram, source code, library package.

31

4.3 Learning Phase

4.3.1 Object-Oriented Learning Activity (OOLA) System

Object-Oriented Learning Activity (OOLA) System [14] is an expert system

with a graphical authoring tool, which can assist teachers to design adaptive learning

activity, and a web based learning system, which can steer learners learning using a

rule inference engine. The teacher can arrange learning sequence, edit learning

contents and manage the learning resources to provide a learning activity to learners.

Figure 15. The system architecture of OOLA System

Figure 15 shows designing phase and executing phase in OOLA System. In the

designing phase, an adaptive learning activity can be designed via the graphical

authoring process to teachers easily integrating various learning resources, which are

provided by learning resource repositories, and a rule class generating method is also

proposed to generate the rule class of learning sequencing controls. In the executing

phase, the learning sequencing graph and the rule class are used in rule based adaptive

learning method to conduct an adaptive learning to learners.

Therefore, in the learning phase of MRFILS, an OOLA which is already attached

necessary learning contents and learning resources will guide the learners to learn the

software architecture design.

32

Chapter 5. System Implementation and Experiment

5.1 System Implementation

We have implemented a Major-Requirement-First Imitating Learning System

(MRFILS) on web-based environment to evaluate the proposed ideas. The following

sections will demonstrate the Teaching Materials Construction Phase and the

Software Architecture Design Learning Phase.

5.1.1 Teaching Materials Construction Phase

This phase we use a dialogue mechanism to acquire teachers’ design knowledge

of Video Renal Management System (VRMS). MRFILS will ask teachers a series of

questions and request them to input the program scaffolds by a systematic process.

As shown in Figure 16, these pictures present the construction process for the

teaching materials of VRMS. At first, the teacher is requested to input the system

name, system requirement (see Figure 16 (a)), and names of major functionalities (see

Figure 16 (b)). Based upon one of major functionalities, MRFILS continues to ask this

class requirement, interfaces and relationships (see Figure 16 (c)). Next, choosing one

method among the interfaces to ask the method requirement, usable objects,

relationships (see Figure 16 (d)), and usable methods (see Figure 16 (e)). And then

keeping on asking the questions about the class requirement, interfaces and

relationships of usable objects (see Figure 16 (f)). After a series of questions, the

teacher is demanded to commit the source codes, and MRFILS will compile them to

library packages automatically.

33

Figure 16. The snapshot of teaching materials construction phase

(a)

(b)

(c)

(d)

(e)

(f) (g)

34

5.1.2 Software Architecture Design Learning Phase

This phase we use Object-Oriented Learning Activity (OOLA) System to present

the learning target “VRMS”, which is constructed by teacher in Teaching Materials

Construction Phase. OOLA System will provide necessary learning contents and

learning resources for learners and guide them to design the system architecture by

imitating the compositions of each component and component’s design.

Figure 17 shows the learning process, where OOLA System offers guiding

information to instruct the learners why and how the component design is in each

step. First of all, the learning system provides the introduction about this imitating

learning approach and a task to create a project (see Figure 17 (a)). And then the

learners can get the system requirement analysis (see Figure 17 (b)), one of major

functional classes introduction with a task and a library download link for learners to

start implementing this class with library package supporting (see Figure 17 (c)).

After that, the OOLA System provides the method information of this class and a task

(see Figure 17 (d)) for learners to complete this method. Next, it continues to provide

the class information which was used by previous method and a library package for

task implementation (see Figure 17 (e)). Such as this top-down imitating learning

procedure, the learners can gain these software architecture design concepts through a

sequence of implementations.

35

Figure 17. The snapshot of software architecture design learning phase

(b)

(e)

(d)

(a)

(c)

36

5.2 Experiment

To evaluate the efficacy of Major-Requirement-First Strategy (MRFS) in

software architecture design learning, we choose 10 graduate students who have

enough coding ability of object-oriented programming (C#) from Computer Science

in National Chiao Tung University. We design the Video Rental Management System

(VRMS) as the teaching case and use Major-Requirement-First Imitating Learning

System (MRFILS) to teach software architecture design. After a series of guidance by

MRFILS, we use a questionnaire which is shown in Table 4 to evaluate the learning

efficacy and satisfaction of learners. We apply the five-level Likert Scale which is the

most widely used scale in survey research and it rates from 1 to 5 to specify the

respondent’s agreement level to a statement. The five-level Likert degree is shown in

Table 5 and the results for learning efficacy and satisfaction is shown in Figure 18.

Table 4. The questionnaire items

Questionnaire Items

Q1. Is the guiding procedure useful to construct the VRMS?

Q2. Is the information provided in each implementation process sufficient

to construct the task?

Q3. Do you think that the library provided in each implementation process

is useful to complete the task?

Q4. Do you think that using the library first and then construct these objects

later will easily comprehend what should be considered in these objects?

Q5. Do you think that this top-down imitating manner will easily

understand why and how the software architecture design is than traditional

bottom-up implementation?

Q6. Do you think that the learning efficacy of this system is better than

other learning approaches such as lectures or case study?

Q7. Please give a grade (1~5) for this learning system.

37

Table 5. The format of a typical five-level Likert degree

Degree Meaning

1 Strongly disagree

2 Disagree

3 Neither agree nor disagree

4 Agree

5 Strongly agree

Figure 18. The results for learning efficacy and satisfaction

The results show that most of learners think this top-down imitating learning can

help them understanding the software architecture design effectively than bottom-up

implementation and traditional learning approaches like lectures or case study. And

implement the programs with library packages supporting will easily comprehend

how to design these used objects. Otherwise, some learners think the information of

learning contents need to be more sufficient, and some learners don’t agree with the

guiding procedure where the system provided.

38

5.3 Discussion

Finally, we also interview the learners and ask the impressions for MRFILS,

there are some comments on this system as below:

 Major-Requirement-First Strategy (MRFS)

Several learners think that this top-down imitating manner is a good idea for

learning system design. Because traditional implementation manner is

bottom-up, even they have the system requirements, architectural blue print, and

UML diagrams for reference, it is still difficult to understand how to implement

the system for learners who just begin to learn the web-based system design.

 Learning contents

Several learners think that we should provide more UML diagrams rather than

only one Class Diagram, such as Use Case Diagram, Activity Diagram, and

Sequence Diagram, etc., and point out the present status and what they have

done. The learners believe that the information of UML diagrams will make

themselves clearly understand the complete degree of system and the design

procedure.

 Guiding procedure

Because the guiding procedure is scheduled by MRFILS, where we design some

heuristic algorithms to prioritize the imitating sequence, several learners think

that we can provide more imitating sequences for them to choose rather than

only one choice.

The above comments are very significant for improving this computer-assisted

learning system, and we will take these comments into account in the future work.

39

Chapter 6. Conclusion and Future Work

In this thesis, we propose a top-down imitating learning manner named

Major-Requirement-First Strategy (MRFS) and apply this teaching approach to

construct an intelligent tutoring system named Major-Requirement-First Imitating

Learning System (MRFILS) to teach software architecture design of logic tier in

web-based system. The teachers can use MRFILS to construct teaching materials,

where we adopt a web-based system called “Video Rental Management System

(VRMS)” as our teaching case. MRFILS provides learners one-on-one instruction and

assistance to guide them imitating the software architecture design of VRMS through

a series of implementations with scaffolding instruction, and it will significantly

reduce the loading of teachers. Finally, we have done a real experiment to evaluate the

learning efficacy and satisfaction of learners. The experimental results show that

MRFILS can help learners gaining the software architecture design concepts of

VRMS effectively.

In the near future, we would like to embed diagnostic tests in the guiding process

to evaluate the learning performance and learning status, and add some imitating

learning guidance rules to provide adaptive learning for learners. Thus, the learners

can get more flexible guiding procedure and more appropriate learning contents in the

learning process.

40

References

1. Grady Booch, Building Web Applications with UML. 2000: Addison Wesley.

2. Grady Booch, Visual Modeling With Rational Rose 2002 AND UML. 2003:

Addison Wesley.

3. Jeff Garland, Richard Anthony, Large-Scale Software Architecture: A Practical

Guide using UML. 2003: Wiley.

4. David Garlan, Mary Shaw, An Introduction to Software Architecture. Advances

in Software Engineering and Knowledge Engineering, January 1994.

5. Grady Booch, Robert A.Maksichuk, Object-Oriented Analysis And Design With

Applications. 2007: Addison Wesley.

6. Woei-Kae Chen, Yu-Chin Cheng, Teaching Object-Oriented Programming

Laboratory With Computer Game Programming. IEEE Transactions on

Education, AUGUST 2007. VOL.50, NO.3.

7. Liang-Yi Li, Gwo-Dong Chen, A Coursework Support System for Offering

Challenges and Assistance by Analyzing Students’ Web Portfolios. Educational

Technology & Society, 2009. Vol. 12: p. 205-221.

8. J. Baltasar Garcia Perez-Schofield, Emilio Garcia Rosello, Francisco Ortin Soler,

Manuel Perez Cota, Visual Zero: A persistent and interactive object-oriented

programming environment. Journal of Visual Languages and Computing 2008.

Vol. 19 p. 380-398.

9. Maria Kordaki, Micael Miatidis, George Kapsampelis, A Computer Environment

For Beginners’ Learning of Sorting Algorithms: Design and pilot Evaluation.

Computers & Education, 2008. Vol. 51: p. 708-723.

41

10. Matthew Conway, Steve Audia, Tommy Burnette et al., Alice: Lessons Learned

From Building A 3D System For Novices, in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. April 2000: The Hague,

The Netherlands. p. 486-493.

11. Stelios Xinogalos, Maya Satratzemi, Vassilios Dagdilelis, An Introduction to

Object-Oriented Programming with A Didactic Microworld: ObjectKarel.

Computers & Education, 2006. Vol. 47: p. 148-171.

12. Rachel Van Der Stuyf, November 2002: Scaffolding As A Teaching Strategy.

13. Lev Semenovich Vygotskiĭ, Michael Cole, Vera John-Steiner, Sylvia Scribner,

Mind in Society: The Development of Higher Psychological Processes. 1978:

Harvard University Press.

14. Huan-Yu Lin, Shian-Shyong Tseng, Jun-Ming Su, Jui-Feng Weng, Design and

Implementation of an Object Oriented Learning Activity System, in Proc. of the

10th World Multi-Conference on Systemics, Cybernetics and Informatics

(WMSCI). July, 2006: Orlando, Florida, USA.

15. Computer Science (Catalog). 2006; Available from:

http://beloit.edu/~huss/cs/CS%20Catalog.html.

16. Jungwoo Ryoo, Frederico Fonseca, David S.Janzen, Teaching Object-Oriented

Software Engineering through Problem-Based Learning in the Context of Game

Design, in 21st Conference on Software Engineering Education and Training,

IEEE Computer Society. 2008.

17. Michael Lang, Brian Fitzgerald, Web-based Systems Design: A Study of

Contemporary Practices and an Explanatory Framework Based on

"Method-in-Action". Requirements Engineering, 2007. Vol. 12.

http://beloit.edu/~huss/cs/CS%20Catalog.html

42

18. Robert Orfali, Dan Harkey, Client/Server Programming with Java and CORBA.

2nd ed. 1998: John Wiley & Sons, Inc.

19. Seung C. Lee, Ashraf I. Shirani, A Component Based Methodology for Web

Application Development. Systems and Software, 2004. Vol. 71.

20. Dimitrios A. Kateros, Georgia M. Kapitsaki, Nikolaos D. Tselikas and Iakovos S.

Venieris, A Methodology for Model-Driven Web Application Composition, in

IEEE International Conference on Services Computing. 2008.

21. Lab, T.L.K.R.G.a.t.M.M. SCRATCH. Available from: http://llk.media.mit.edu.

22. Jaime Galvez, Eduardo Guzman, Ricardo Conejo, A Blended E-Learning

Experience in A Course of Object Oriented Programming Fundamentals.

Knowledge-Based Systems, 2009.

23. Claus Pahl, Claire Kenny, Interactive Correction and Recommendation for

Computer Language Learning and Training. IEEE Transactions on Education

and Data Engineering, June 2009. Vol. 21.

24. Zoran Jeremić, Jelena Jovanović, Dragan Gašević, Evaluating an Intelligent

Tutoring System for Design Patterns: the DEPTHS Experience. Educational

Technology & Society, 2009. Vol. 12: p. 111-130.

25. L. Briand, C. Bunse, and J. Daly, A controlled experiment for evaluating quality

guidelines on the maintainability of object-oriented designs. IEEE Transactions

on Software Engineering, 2001. Vol. 27: p. 513-530.

http://llk.media.mit.edu/

