3R F AR R
PR AL

Major-Requirement-First Imitating Learning for

Software Architecture Design of Web Based System

dOE AR 4 L A~ E =3

A o REIREEY
F’}ﬁ\% /% m@ ’Eﬁ 7}:‘%{‘)J-

Major-Requirement-First Imitating Learning for Software
Architecture Design of Web Based System

Student : Tsu-Yuan Hsueh

oy ey
Advisor : Dr. Shian-Shyong Tseng

R F Y R

B2 2 < F
AL il S T A
oL
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
In partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

BSR4 LA E

MARH#RFREIREEY
PR kSR

FLopRN hRRRIEER BL

Hr2id A FFagm
FAE E 1 AR A

>

ﬁﬂﬁg&ﬁﬁﬁf&ﬁg@?&?ﬁﬁJJ’iféﬁﬂﬁ‘ﬁ?ﬁﬁ
ESPAI PIER AP RN ETROPRETAEF LR TR L REHY Y
ﬁWUr&%%ﬂ%%ﬂﬁ%Jgﬁ%w&g&&@?ﬁﬁ&ﬁ%a?%ﬁﬁ’
ARESF I FHERER L c AP RORF R E T BRSNS KR
o I EA K A BB E RA RGP E - - 20k F P AR B
O ROEEFIFD cRREBREAPERE - FRESEY LA AP
£ - B AT R A MKW RN T2 R0 - EHESK
FARIA IR RO RU AL DA o BT R AR
ﬁ%?ﬁ%i%%ﬂﬁ%ﬁﬁﬁ’%@E@%?%?ﬁﬁéim%ﬁﬁgﬁﬁ%
BATEY o BfS > FHREFEFAPRDDRE RG-S Y W ERER
e AT A A KRS b G F Y R L RS

—=\

A

MeEF PR, P E SR, RSV, RREY LA, X
FRE

Major-Requirement-First Imitating Learning for
Software Architecture Design of Web Based System

Student: Tsu-Yuan Hsueh Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science

National Chiao Tung University

Abstract

Software architecture design is an important issue to transform design concepts
into implementation ability, where the ideas of decomposition, abstraction, and
encapsulation of functionality are usually used to simplify the complexity of the
system’s requirements. This thesis focusing on the logic tier of web-based system uses
“Video Rental Management System (VRMS)” as our teaching case to teach learners
how to design the software architecture. Major-Requirement-First strategy (MRFS),
the main idea of this thesis, applies scaffolding instruction theory to guide learners
imitating the system architecture design from major functionalities of VRMS to
detailed components by providing all the necessary scaffolds. Based upon MRFS, we
develop the Major-Requirement-First Imitating Learning System (MRFILS), where a
knowledge structure of VRMS is constructed and maintained according to System
Requirement Ontology (SRO), and the Recursive Descent Dialog Approach (RDDA)
is proposed to acquire the teacher’s knowledge of teaching cases and generate the
SRO. Accordingly, the schedule of an imitating procedure can present the learning
materials and provide personalized learning for learners with guidance using an
Object-Oriented Learning Activity (OOLA) System. Finally, the experimental results
show that our teaching approach is useful for learners to gain the software architecture
design concepts of VRMS, and we will add adaptive learning in MRFILS for the

future work.

Keywords: Software architecture design, object-oriented programming, imitating

learning, web-based system design, scaffolding instruction.

B AAALILSA £ FAFROE I ERR F R L cawm L
FHREL S5 At 2o PREALF R AL L AT - B
GRTE S BIEL Y AN AP R ANE L A E o R A
et H o g a g e PR &R A ar 24 [M hd kit it
FRRE S FEARECERP K B PEI Y TR AR AR

ERERINI T % TR T EEL R IEY SHEFE K8
Eod TR L AR FALHE 0 RAG S ALY auER s et o R
Nghe Ao teh > AN B VBT A ERR IR R IFL
kT B EAR o R RAYRHT R TR THEP AR
HE R Lo M A B S £ EA SR A R EfoER
2 ORPFHHHE P CRP R I PR AN R AR AL
L B AR

ZE /1]’

2009 & 71 = F5 %

Table of Content

Page

Table OF CONENT ..o e Vi
LISE OF FIQUIES ...ttt viii
LISt OF TADIES ... bbb IX
LiSt OF DETINITIONS ...ttt X
LiSt OF AlGOMTtNMSceiiiiiiiieice e Xi
LISt OF EXAMPIES ..o Xii
Chapter 1. INtrOAUCTIONc..oiviiiiiiieieee e 1
Chapter 2. Related WOTK...........iiiiiiieese skt 5
2.1 Web-Based System Design LeaArniNgcc.coceiieiviiineniinieienene s 6
2.1.1 Traditional Teaching ApPProaches............ccciivvererinieeieneie e 6

2.1.2 Design MethodoIOgIEScoiiiiieniieiiie e 6

2.2 Programming Learning in @=Learningcccceoieeerireniinieeienene e 8
2.2.1 Object-Oriented Programming Learningc.ccocveveevverenenenenenennnnns 8

2.2.1 Other Programming Learning ISSUEScccovererireeienenie e 10

Chapter 3. Imitating Learning Guidance ApPProachccocovvirieieieienenese s 12
3.1 General Program ASSIGNMENTScoiiirieieienie e 12

3.2 Major-Requirement-First Strategy (MRFS)cccocoiiiiiiiiicee s 13
Chapter 4. Major-Requirement-First Imitating Learning System (MRFILS) 17
4.1 Knowledge ACQUISITION PhaSecoiiiiiiiiiee e 19
4.1.1 System Requirement Ontology (SRO)........cccoviriiiiiiiiieiee e 19

4.1.2 Recursive Descent Dialog Approach (RDDA).......cccccevivviveivereseenen. 21

4.2 Knowledge ACqUISItION PNESEccoieiiiieiicie e 25

Vi

4.2.1 Algorithm of Major-Requirement-First Strategy..........cccccovevvrennnnnne 25

4.2.2 Major-Requirement-First Guidance Transformation System 28

4.3 LeAINING PNASE.....ciiiiieiieiie ettt st reene s 31
4.3.1 Object-Oriented Learning Activity (OOLA) Systemccccceevvvrennee. 31

Chapter 5. System Implementation and EXPerimentcocoovveieieninencnenineeens 32
5.1 System IMpIeMENTALIONcc.ooviiiiiiiiieee e 32
5.1.1 Teaching Materials Construction Phase...........c.ccocuevieieiencnencncnienn 32

5.1.2 Software Architecture Design Learning Phase..........ccccocevvieninininne. 34

5.2 EXPEITMENT ..ottt bbbt 36

5.3 DISCUSSION ...tttk bbbttt bbb b e 38
Chapter 6. Conclusion and FUuture WOrKcooiiie e 39
References........oovvvvevveeene S e ariil RO, R ... 40

vii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.

List of Figures

Page

Typical catalogs of Computer Science curriculums..........ccceeeveevveieseenenn, 5
Three-tier architeCtUIEcooiiiiieiii e 7
Traditional program asSigNMENt...........ccviieiieereeiie e 12
Progressive program asSigNMeNt..........cccveieererieereeieseeseesie e e eseesseessens 13
Top-down program asSIgNMENT..........ccecviiieiieereeiee e 15
The class diagram of Video Rental Management System (VRMS)............. 16
The system architecture of MRFILS ..o 17
The examples 0f VRMS_SRO ...t 21
Object-oriented deSIgN PrOCESS.cue. eieeveireriirreniieieeieeeie et 22
. The example of VRMS_SRO CONStruction proCessccooeevrvevereennen. 24
The flowchart of Major-Requirement-First Strategy (MRFS) 27
Major-Requirement-First Guidance Transformation System.................... 28
The example of MRFS Scheduler ..., 29
The example of OOLA TranSfOrMer...........cooieeieiene s 30
The system architecture of OOLA SYSteM........cccoeiiieiininiiiseceeeee 31
The snapshot of teaching materials construction phasecccceevennen. 33
The snapshot of software architecture design learning phase 35
The results for learning efficacy and satisfaction............c.cccccocvviiininnn, 37

viii

List of Tables

Page
Table 1. The detailed information of program scaffoldsccccccovveviviiiiiciiriiennn, 14
Table 2. QUESLION tEMPIALES.........eciieieceece et 22
Table 3. Learning guidance templatescccoveveiieiiere e 30
Table 4. The QUESLIONNAITE ITEIMScviiieii e 36
Table 5. The format of a typical five-level Likert degree.......cc.cccoocevvveviviveiieineiennnn, 37

List of Definitions

Definition 1. System Requirement Ontology (SRO)

List of Algorithms

Algorithm 1. Recursive Descent Dialog Approach (RDDA)ccccvevveveiievveinene

Algorithm 2. Major-Requirement-First Strategy (MRFS)

Xi

List of Examples

Page
Example 1. Major-requirement-first strategy for program assignments...................... 15
Example 2. Parts 0f VRMS _SROccoiiiiiieicc et 20
Example 3. RDDA Scaffolds Constructing SYStemcccceveieeveeieiiesie e, 24
Example 4. MRFS SChedUIET..........coviee e 28
Example 5. OOLA TransfOrmMerocci oot 29

Xii

Chapter 1. Introduction

With the growth of Internet, many Internet service providers, such as
Google, Yahoo, etc., who have provided a huge amount of web applications for
various web services. In order to develop such web applications, the system
architecture design becomes a crucial task. Currently, the most popular web system
architecture design mechanism, named Three-Tier Architecture [1], consists of
presentation tier, logic tier, and data tier to implement user interface, business logic,
and data /0O, respectively. Among these three tiers, logic tier is responsible to handle
complicated computations and program control-flows, so it usually becomes a

bottleneck when novice programmers who just begin to learn web application design.

In the construction process of web application logic tier, designers are supposed
to clearly understand the system requirements, and then the concepts of
decomposition, abstraction, and encapsulation of functionality [1-4] are usually used
to transform the requirements into the system design and simplify the complexity of
requirements to each program component. We take a web application “Video Rental
Management System (VRMS)* as an example, whose logic tier design contains various
requirements of member management, video management, online item management
and data passing, and this teaching case is simple and suitable for novice learners to
learn the software architecture design. Thus, a learner, who wants to construct a
VRMS, needs to consider the following design problems: How to divide the
requirements into different components to simplify the individual computation logics?
How to merge the computation results from different components to generate the final

outputs? How to cope with data encapsulation and passing? In other words, the

concept of software architecture design [3, 4] is a very important learning objective

for constructing web application.

In the traditional software architecture design learning, lectures and imitating
learning are the major methods for learners to gain the design idea. Among them,
lecturers can teach learners the abstract concept of software architecture design, but
learners usually can not easily apply the concepts to a real software design. As we
know, imitating learning lets learners imitate the design of teaching cases [5] or class
diagrams [1-3] to learn the real design experience, but it is still difficult to help
learners understanding the major idea of the previous design from the detailed
component implementation without any guidance and explanation. Another researches
use project-based learning [6, 7] to teach learners software architecture design, where
teachers guide learners to construct the main program in the project and gain the real
design concepts and construction experience. This teaching approach can contribute
significant learning efficacy, but it is very time consuming for teachers to run a

project.

Most computer-assisted programming learning systems [8-11] aim to assist
learners learning the syntax and semantic rules of programming language, but
software architecture design is still inadequate for learning because the abstract design
concepts are difficult to be implemented as the fixed learning rules in learning system.
Therefore we propose a learning system, which can guide learners to imitate the
design of a given learning project case to reduce teachers’ loading of guiding learners

to complete a project.

In order to help learners understanding why and how the software architecture
design can satisfy the abstract requirements, Major-Requirement-First Strategy
(MRFS) is proposed to guide learners to imitate program architectures from major

2

functionalities of the system to detailed components. According to scaffolding
instruction theory [12, 13], all the required scaffolds, including usable library
packages and suggestions, are provided for learners to assist them completing the
Imitating tasks in the top-down imitating manner. This teaching approach can make
learners understand the overall configuration of the system first, so they will easily
comprehend the task and the design of each detailed component. Accordingly, we
develop the Major-Requirement-First Imitating Learning System (MRFILS),
where a knowledge structure of our teaching case, Video Rental Management System
(VRMS), is constructed and maintained based on System Requirement Ontology
(SRO), and the Recursive Descent Dialog Approach (RDDA) is proposed to acquire
the teacher’s knowledge of teaching cases to generate the SRO by a series of
dialogues. Based upon SRO, an imitating procedure which is scheduled by MRFS can
present the learning materials and provide personalized learning for learners using an
Object-Oriented Learning Activity (OOLA) System [14], which guides the learners to

learn the software architecture design of VRMS.

Finally, we have done a real experiment to evaluate the learning efficacy and
satisfaction of learners. The experimental results show that most of learners think this
top-down imitating learning can make them understand the software architecture
design effectively, and implementing the task with library packages supporting will

easily comprehend how to design these used objects afterward.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce
some related works about the web-based system design learning and programming
learning in e-learning. Chapter 3 describes our main idea, Major-Requirement-First

Strategy (MRFS), and we propose a Major-Requirement-First Imitating Learning

System (MRFILS) in Chapter 4. Next, Chapter 5 discusses the system implementation

and experiment. Finally, we give the conclusion and future works in Chapter 6.

Chapter 2. Related Work

In general Computer Science curriculums, computer programming and practical
techniques for implementation and application in computer system are important
abilities for students. Figure 1 shows the typical catalogs of Computer Science
curriculums [15]. From the coding’s aspects such as semantic and syntax rules of
programming language, data structure and algorithm, to the requirement’ aspects like
requirement analysis, system design, testing and deployment, the learners can gain the
software development ability through taking lessons in a series of Computer Science

curriculums.

However, as a result of the difficulty for learners to combine design concepts
with implementation ability in construction phase [16], there still exists a gap between
basic programming skills and software engineering abilities. Thus, the software
architecture design learning [3, 4] aims to solve the issues about how to design the
program architecture from requirement’s aspects to coding’s aspects. And in this
thesis, we focus on the software architecture design learning of web-based system.
The following sections will introduce related studies about present programming

learning.

Requirement

Requirement Analysis
System Design
Software Testing
Software Deployment
Project Management

Software Architecture
Design

Algorithm

Data Structure

Semantic & Syntax Rules

Coding

Figure 1. Typical catalogs of Computer Science curriculums

2.1 Web-Based System Design Learning

2.1.1 Traditional Teaching Approaches

General programming capability on web-based system design can be learned by
lectures, case study, or project-based learning. Lecturer gives lessons about basic
concepts of web-based system development to learners, but the concept may be too
abstract to link the concept with their implementation ability. Case study [1-3] is to
consult relevant books, such as codes tracing to imitate related design concepts or use
class diagram to figure out the whole system architecture. These imitating learning
approaches are very difficult for helping learners understanding the design procedure
and the physical meaning of the whole system architecture design without the ability
of guidance and explanation. In project-based learning [6, 7], learners who explore
real-world problems and challenges can be inspired to obtain a deeper knowledge of
the subjects they're studying, but the teachers usually can not afford one-on-one

instruction.

Therefore, there are some issues which are required to be proved in this thesis as
follows: combine learner’s implementation ability with design concepts, provide an
appropriate guiding mechanism, make teaching cases contain semantic meaning, and

reduce the teacher’s loading for one-on-one instruction.
2.1.2 Design Methodologies

In web-based system design [17], there are many methodologies such as
Client-Server Architecture [18], Model-View-Controller Architecture, Component
Based Methodology [19], and Model Driven Architecture [20], etc. Among these
methodologies, three-tier architecture is a popular way for web-based system design

[1]. Apart from the usual advantages of modular software with well defined interfaces,
6

three-tier architecture also allows any of the three tiers to be upgraded or replaced

independently as requirements or technology change.

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,

makes logical decisions and - GET LIST OF ALL a ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and : D SIS ;
processes data between the two
surrounding layers.
e — ——] —
QUERY SALE 2

SALE 3

Data tier SALE 4
Here information is stored and retrieved
from a database or file system. The

information is then passed back to the
logic tier for processing, and then

eventually back to the user.
ti—

—l-

Storage
Database

Figure 2. Three-tier architecture

Three-tier architecture is composed of presentation tier, logic tier and data tier.
Figure 2 briefly describes the utility of each tier. Presentation tier converts and
displays application data into a human-legible form, and it also provides an
application’s user controls. Logic tier implements business logic and translates the
reality into programming objects. Data tier provides data storage and data access
mechanisms to the application. Except for the user interface of presentation tier and
the data 1/0 of data tier, the logic tier is responsible to handle complicated
computations and program control-flows. For novice programmers who just begin to
learn web application design, the logic tier design usually becomes a bottleneck for

them. Thus, in this thesis we focus on the software architecture design of logic tier.

2.1.3 Software Architecture Design

Designing, developing, and evolving complex software systems require a
mastery of analytical and technical skills, as well as knowledge of appropriate
processes, architectures and design patterns. Software architects building complex
systems must create the illusion of simplicity through decomposition, abstraction, and
encapsulation of functionality. The following issues will be discussed in software
architecture design learning: the way to distribute the functionalities of software into
different components, the components design to handle the logic computation, the
responsibility of each component, the data and logic encapsulations, and the program

control-flow, etc.

Surveying the researches about software architecture design learning, most
researches adopt project-based learning to teach the design concepts by
implementation. For example, Woei-Kae Chen and Yu Chin Cheng [6] designed an
object-oriented programming (OOP) laboratory course where the students are required
to implement a small-to-medium scale interactive computer game with
framework-assisted. The students use the pre-define objects and source codes from
teachers to modify and re-design the game scenario. The teaching assistants need to
give all the students one-on-one instructions for guiding them to complete the lab, and

it is a very time-consuming job.

2.2 Programming Learning in e-Learning

2.2.1 Object-Oriented Programming Learning

Object-oriented programming (OOP) is a programming paradigm which uses
objects and their interactions to design applications and computer programs, and it is

very popular to be used in web-based system development. In the OOP learning
8

researches of e-learning domain, most issues are relevant to teach the basic coding
abilities and OO concepts such as inheritance, abstraction, encapsulation and

polymorphism. The followings are relevant literature reviews about OOP learning

Stelios Xinogalos et al. [11] proposed a programming environment, objectKarel,
which incorporates e-lessons, hands-on activities, an easy to use structure editor for
developing and editing programs, program animation, explanatory visualization,
highly informative and friendly error messages for novice programmers to develop

programs.

J.Baltasar Garcia Perez-Schofield et al. [8] developed an interactive
object-oriented environment, Visual Zero, which allows learners to concentrate on
objects and their relationships from the very beginning, and thus helps the learners
achieving a high degree of knowledge about the object-oriented programming

paradigm.

Matthew Conway et al. [10] developed a 3D programming environment, Alice,
to teach entry level Computer Science students basic programming concepts without
exposing them to all the intricate details of a full-blown programming language.
Using Alice, students accomplish their programming tasks by a series of mouse clicks
and drag-and-drop maneuvers, and it eliminates from syntax and logical errors of

programming.

The Lifelong Kindergarten research group at the MIT Media Lab [21] developed
a new programming language, Scratch, to help the learners creating their own
interactive stories, animations, games, music and arts. The learners can learn
important mathematical and computational ideas, while also learn to think creatively,

reason systematically, and work collaboratively.

2.2.1 Other Programming Learning Issues

In addition to basic coding ability, there are some researches about data structure,

algorithm, structured query language (SQL) and design pattern.

Jaime Galvez et al. [22] presented a blended e-learning experience consisting of
supplying an undergraduate student population with a learning tool called OOPS

and a testing system called SIETTE to teach data structure.

Maria Kordaki et al. [9] presented a modeling, student-centered methodology for
the design of a constructivist computer environment, the SORTING environment, for
the learning of sorting algorithms, within a context consisting of interactive, multiple

and linked representation systems.

Claus Pahl and Clair Kenny [23] presented an automated learning and skills
training system for a database programming environment that promotes procedural
knowledge acquisition and skills training. The system provides meaningful
knowledge-level feedback such as correction of student solutions and personalized

guidance through recommendations.

Zoran Jeremic et al. [24] presented the evaluation of DEPTHS (Design Patterns
Teaching Help System), an intelligent tutoring system (ITS) for teaching software
design patterns. Furthermore, there are other studies of software development in
general showing that adherence to common software design principles, guidelines,

and rules [25].

However, most of the aforementioned researches provide computer-assisted
programming learning systems or assisting tools to help learners learning the basic
coding abilities of object-oriented programming, but there is no research providing the

learning system to assist the software architecture design learning. In order to provide

10

the learners one-on-one instruction in a cost effective manner and reduce the teacher’s
loading, we decide to construct an intelligent tutoring system for software architecture

design learning.

11

Chapter 3. Imitating Learning Guidance Approach

3.1 General Program Assignments

Generally, after a series of lectures in the programming course, the teacher
usually assigns homework to make learners obtain a deeper knowledge of the design
concepts they have learned. Figures 3 ~ 5 show three different implementation
processes of program assignment, where the teacher uses the Video Rental
Management System (VRMS) project as an example to make the students think how to
design this project. The horizontal axis means the assignment iteration, which is set by
teacher according to the project’s features like the amount of functionality or
component. And the vertical axis means the expected completeness degree of the

project, called expected program progress.

Expected Program Progress

100% ==, == =—— = Major
4 A Requirement
75%
50%
25%
Assignment
» |teration

Figure 3. Traditional program assignment

Figure 3 shows that traditional program assignment assigns a whole VRMS
project to students in one time. The teacher requests students to apply the knowledge
which have been learned from the course to accomplish this project, but the scope of
VRMS project is too big for students to know how to start implementing it. Hence, the

students usually have trouble with this wide-scope assignment.

12

Expected Program Progress

1OO%A— — — Major
Requirement
75%
50%
25%
Assignment
Iteration
0o 1 2 n

Figure 4. Progressive program assignment

Figure 4 shows that in progressive program assignment, the teacher segments the
VRMS project into several assignments according to the constructing procedure from
basic components to major requirements, and the learners are asked to complete parts
of programs progressively. This bottom-up manner can make learners understand the
constructing process, but they have no idea about why and how the design of basic

components and its details.

3.2 Major-Requirement-First Strategy (MRFS)

Hence, we propose a teaching strategy named Major-Requirement-First
Strategy (MRFS) to help learners easily understanding how to design the VRMS
project. This teaching strategy adopts a top-down imitating learning mechanism which
guides the learners from the major requirements of VRMS to basic components and

apply the ideas of Scaffolding Instruction Theory [12, 13].

As mentioned in scaffolding instruction theory, the Zone of Proximal
Development (ZPD) [12, 13] noted that it is also very efficient for learners to use their
prerequisite knowledge to help themselves developing new knowledge. So we intend

to combine the learners’ implementation ability and request them to complete the

13

project by imitating the software architecture which is designed by teachers in

advance.

Moreover, scaffolding instruction theory also mentioned that building some

scaffolds for learners and assisting them to complete the target they can’t accomplish

before, and then gradually dismantling the scaffolds they have learned, is an

effective way to get the learning objectives. So we provide the necessary scaffold

which called program scaffolds, such as component requirements, interface and

usable objects of each component, relationships between the components, library

packages and source codes to assist learners to implement from the major

requirements with these imitating information and library supporting. The detailed

information of program scaffolds is shown in Table 1.

Table 1. The detailed information of program scaffolds

Program Scaffold

System Requirement

Description

Describe the main target of this system.

Class Requirement

Describe the requirement and design concepts of this class.

Method Requirement

Describe the requirement and utility of this method.

Interface Describe what methods are included in this class.
Usable Objects Describe what objects will be used in this method.
Relationship Describe the relationship between two components.

Library Package

A program library used for this component implementation.

Source Code

A solution code created by teacher for this component.

Class Diagram

An overall configuration of this system.

Therefore, based on scaffolding instruction theory, MRFS guides learners to

imitate the program architectures from major functionalities of system to detailed

14

components through a series of implementations with program scaffolds supporting.
As shown in Figure 5, top-down program assignment applies the idea of MRFS,
where the teachers have to construct the necessary program scaffolds and segment the
VRMS project into progressive assignments in advance, and then assign a task which
iIs the major functionality of VRMS to students. After the students finish the
assignment with program scaffolds supporting like library, they will continue to finish
the detailed components of major functionality. Consequently, the learners can figure
out the overall configuration of VRMS first, and then they will easily comprehend the
design concepts of each detailed component. The learning efficacy of MRFS will be

compared with general program assignments in our experiment in Chapter 5.

Expected Program Progress

100%A—*— — — Major

Requirement
75%
Program }
Scaffolds

50%
Program }
Scaffolds
Program

Scaffolds Assignment
Iteration

25%

QF S -7 - il

Figure 5. Top-down program assignment
Example 1. Major-requirement-first strategy for program assignments

Figure 6 shows our teaching case in this thesis, Video Rental Management
System (VRMS), which is represented by class diagram. VRMS is a common
web-based system which can offer user convenient services about online video rental,
such as video introduction, video search, popular video recommendation, subscribe
and relend for video, online comment and member management, etc. Besides the user
interface and database 1/O, the learners are supposed to focus on logic tier design of

VRMS.
15

The teacher will segment the project into several assignments, and ask the
learners to complete the assignments from “MemberMgr”, “VideoMgr” or
“OnlineMgr”, the major functionalities of VRMS, to detailed components. If the
“MemberMgr” task is assigned to learners, all the information about the task like
design concepts, component requirements, interface, usable objects and library
packages like “DBMgr”, “MemberInfo”, etc. should also be provided to assist learners
implementing this class. The learners can imitate the software architecture design of
VRMS through a sequence of implementations with guidance and program scaffolds

supporting in this top-down imitating manner.

Major-requirement-first strategy is not only adaptive for VRMS but also suitable
for use in logic tier design of web-based system, and the learners can get the software

architecture design concepts easily in this top-down imitating manner.

[VideoRentalManagementSystem |

¥ ¥
MemberMgr VideoMgr OnlineMgr
register() Search() Comment{)
login) Inguire() Order()
modify() Relend()
logaut() r‘
J'_‘ _vlr 'L \ v
<<interfaces> DBMgr Video Cart
Memberinfo Fetch() VideolD VidealD
MemberiD Insert() MName Sumary
Sex Update() Genre
Delete() Actor
Profile
Portfolio
gﬂsxmberln MemberlD
Sex
N_ame Password
Birthday Level
Address s
CellPhone LoginTimes

Figure 6. The class diagram of Video Rental Management System (VRMS)

16

Chapter 4. Major-Requirement-First Imitating

Learning System (MRFILS)

For the purpose to provide the learners one-on-one instruction in a cost effective
manner and reduce the teacher’s loading, we develop the Major-Requirement-First
Imitating Learning System (MRFILS). MRFILS provides guidance and necessary
assistance for learners and assists them imitating the software architecture design of

teaching cases which are constructed by teachers.

In order to apply MRFILS, the teachers have to construct necessary teaching
materials for learners to imitate the software architecture design, and the learners need
to have enough coding ability of object-oriented programming for implementation.
The goal for this intelligent tutoring system is to help teachers constructing a
knowledge structure of teaching case, and then applying a guiding mechanism to
generate an imitating procedure, next guiding learners to imitate the software
architecture design of teaching case through a series of implementations with program

scaffolds supporting.

(MRF Guidance \

RDDA Scaffolds Transformation
€| Constructing Scaffolds System
System Repository A
MRFS Scheduler

Knowledge Acquisition Phase
J

ilmitating Procedur

OOLA)
Transformer
N\ -/

Learning Phase Knowledge Transformation Phase

Program Library
Packages

@

€—>| O0OLASystem

O0LA

Figure 7. The system architecture of MRFILS

17

The MRFILS is composed of three phases, including knowledge acquisition
phase, knowledge transformation phase and learning phase. The overall picture of

system architecture is shown in Figure 7.

Firstly, in knowledge acquisition phase, the teachers construct the program
scaffolds by the RDDA Scaffolds Constructing System, which applies the Recursive
Descent Dialog Approach (RDDA) to acquire the teacher’s knowledge of teaching
case through a series of dialogues. After the construction, the program scaffolds that
are stored in scaffolds repository will be composed into a knowledge structure of

teaching case, named System Requirement Ontology (SRO).

Next, in knowledge transformation phase, MRFS scheduler applies
Major-Requirement-First Strategy (MRFS) on SRO to schedule an imitating
procedure, and then OOLA Transformer arranges different learning guidance
templates for imitating procedure to transform an Object-Oriented Learning Activity

(OOLA) [14].

At last, in learning phase, Object-Oriented Learning Activity (OOLA) System
retrieves learning activities and necessary program library packages from Learning
Activity Management System (LAMS) [14] and scaffolds repository to present the
guiding information and learning contents for learners. The following sections will

introduce the detail of each phase in MRFILS.

18

4.1 Knowledge Acquisition Phase

4.1.1 System Requirement Ontology (SRO)

For imitating learning, we need to construct teaching cases in advance.
According to the features of logic tier design of web-based system, we define a
knowledge structure named System Requirement Ontology (SRO) to maintain our

teaching case, Video Rental Management System (VRMS).

Traditional learning content of programming case doesn’t take the physical
meanings of components and the relationships between components into account, so
it’s difficult for learners to get the design concepts of system. Thus, we think the SRO
should contain semantic meanings like component’s utility and physical meaning of
interaction, and then we can apply MRFS to schedule an appropriate imitating
procedure based on the information. Accordingly, the knowledge representation of
SRO is defined as Definition 1, where p means the total number of node set and q

means the total number of relationship set.
Definition 1. System Requirement Ontology (SRO)

® SRO = (N, R) : Composed of a set of nodes denoting to N and a set of
relationships denoting to R.

® N ={ng, ny, n,..., Ny} : A set of nodes denoting the downstream nodes of n.

® R = {r, ry r3..., rgy : A set of relationships denoting the downstream
relationships of r.

® n; = (nType;, Name;, Requirement;, Interface;, ClassQuantity;, UsableObject;) :

Composed of component type, component name, component requirements,

19

component interface, the quantity of class under the component, and the names of

usable objects, accordingly.

® r; = (rType;, From;, To;) : Composed of relationship type, relationship original

node, relationship terminal node, accordingly.

® nType;e{System, Class, Method} :

System node is the root of SRO.
Class node is the class name of system.

Method node is the method name of class.

® Typeje{ Be-composed-of, Contain, Use-data, Use-function, Such-as} :

Be-composed-of relationship describes what major functional classes
constitute System node.

Contain relation describes what Method nodes are included in Class node.
Use-data relation indicates which data-storage Class node is used by Method
node.

Use-function relation indicates which functional Class node is used by
Method node.

Such-as relation is similar to inheritance, and it is connected with two Class

nodes.

Example 2. Parts of VRMS_SRO

Figure 8 presents the utilities of three types of nodes and five types of

relationships in VRMS_SRO, which is instantiated from SRO and used to maintain

the knowledge structure of VRMS. Figure 8 (a) shows that VRMS is composed of

major functionalities like “MemberMgr” class and “VideoMgr” class. Figure 8 (b)

shows that “MemberMgr” class contains the interface such as “Register” method and

“Login” method. Figure 8 (c) shows that “Register” method uses a data-storage object

20

called “Memberinfo” which stores the information about member to handle data
encapsulation. Figure 8 (d) shows that “Register” method uses a functional object
called “DBMgr” which communicates with database to handle logic computation.
And Figure 8 (e) shows that “Profile” class and “Portfolio” class inherit from

“Memberlnfo” class.

‘ VRMS system MemberMgr class
ﬁ|—1¢ be-composed-of h‘—icomain
MemberMgr VideoMgr class Register Login method

(b)

(a)

Memberlnfo = cfass

Register method Register method
\L use-data l use-function \]/_H such-as

MemberInfo = cigss DBMgr class Profile Portfolio class

(©) (d) ()
Figure 8. The examples of VRMS_SRO

4.1.2 Recursive Descent Dialog Approach (RDDA)

After defining the SRO, we have to help teachers constructing this ontology. We
propose the Recursive Descent Dialog Approach (RDDA), which is a systematic
procedure to allow teachers to input relevant program scaffolds of VRMS. RDDA
adopts a top-down dialogue mechanism built from a set of mutually-recursive
procedures to construct SRO from major functionalities of VRMS to basic
components by asking a series of questions about teacher’s design concepts of VRMS.
The question templates described in Table 2 are defined based upon basic
object-oriented design (OOD) process [5], which is shown in Figure 9. And the

detailed algorithm of RDDA is shown in Algorithm 1.

21

Table 2. Question templates

Node Type Question Template

%gﬁ lﬂj B RPN EPEAIE RPN tﬁjfjx

G 353 2 RO ¢

Class rﬁﬁtflﬁ (e KR = oz “}T—j\[] Interface £ fif

i A= T e < O B R S R VR S
IS 5 T SO PA P L e P

System

Method

[[Define system requirements]]

" Decompose to objects il

Define major requirements
4 |
" Define interface il

‘ Define method requirements I
N “ Define usable objects & relationships \l

Figure 9. Object-oriented design process

22

Algorithm 1: Recursive Descent Dialog Approach (RDDA)

Denotation :

S : The stack which is used for Depth-First Search (DFS)

Input: The program scaffolds of teaching case, Question Templates (QT)
Output: System Requirement Ontology (SRO)

While (There exists node n; which needs to be constructed for teacher)
{
Push node n; into S.
While (S is not empty)
{
Pop a node n; from S.

Based on n; type, use the corresponding QT to compose the dialogue and
ask all necessary information about node n; from teacher.

Acquire the teacher’s answer and construct a node
n; = (nType;, Name;, Requirement;, Interface;, 0, UsableObject;).

Add n; to N.
For each relationship r;e { The output relationships of n; }

{

Based on n; type, use the corresponding QT to compose the dialogue
and ask all necessary information about r; from teacher.

Acquire the teacher’s answer and construct a relationship
ri = (rType;, From;, To;).

Add rjtoR.
Push Toj into S.

}
Construct a SRO = (N, R).

Foreachnodeny € N

{

According to the relationships and nodes of SRO to compute the class quantity
under node ny, and then modify ClassQuantityy.

}
Return SRO.

Algorithm 1. Recursive Descent Dialog Approach (RDDA)
23

Example 3. RDDA Scaffolds Constructing System

RDDA Scaffolds Constructing System adopts a series of dialogues to acquire the
knowledge from the teacher and construct a SRO of teaching case. Figure 10 shows
the example of VRMS_SRO construction process, where VRMS_SRO is an instance
of SRO. Firstly, RDDA Scaffolds Constructing System asks the system name, system
requirement and major functionalities from the teacher. And then according to major
functionalities, where we use “MemberMgr” for example to ask the class requirement,
class interface and their relationships. Next, based upon the interface of
“MemberMgr”, we choose a method “Register” for example to ask the method
requirement, usable objects like “MemberInfo” and “DBMgr” and their relationships
like “use-data” and ‘“use-function”, accordingly. Rules like that, at last RDDA
Scaffolds Constructing System will request the teacher to upload the library package,
source codes and class diagram. According to this constructing process, the teacher

can construct a complete VRMS_SRO by RDDA Scaffolds Constructing System.

What’s the system name?

‘ System

be-composed-of
What’s the major functions \L \]/
of this system? Memberiigr VideoMgr OnlineMgr
contain ¢_1_¢
What’s the interface of R
“Membergr”? Register Login
use-datai lﬁ use-function
What’s the method
requirement of “Register”? Memberlnfo DBMgr
What's the relationship between
; VRMS_SRO

“Register” and “Memberinfo”?

Figure 10. The example of VRMS_SRO construction process

24

4.2 Knowledge Acquisition Phase

4.2.1 Algorithm of Major-Requirement-First Strategy

The algorithm of MRFS is shown in Algorithm 2 and represented by the
flowchart in Figure 11. The main algorithm of MRFS is Depth-First-Search (DFS)
with heuristic functions to determine the search path. DFS needs a stack to store
temporal nodes, and a queue to store the imitating procedure as output. The heuristic
functions are based on the class quantity under each node and the weight of each
relationship type, where we define the weight of “Use-function” relationship is 2, the
weight of “Use-data ” relationship is 1, and the others are 0 to schedule the priority of
imitation. We think that imitating the functional components first will easily
comprehend what is supposed to do in next step, so we set “Use-function” with high
priority than “Use-data”. If the relationship types are equal, we will compare the class

quantity under the node, where the larger quantity possesses the higher priority.

25

Algorithm 2: Major-Requirement-First Strategy (MRFS)

Denotation :

S : The stack which is used for Depth-First Search (DFS)
A : The array which is used for heuristic computation

Q : The queue which stores the imitating procedure
Input: System Requirement Ontology (SRO)

Output: Q (Imitating Procedure)

If (There exists a root node n; of SRO)
{
Push n;j to Q.
While (n; contains any output relationship)

{
Do

{

For each relationship r; € { The output relationships of n; }
{
Insert the relationship r; into A.

Compare the rType; with the type of relationships in A, and sort these
relationships according to relationship type from max to min.
(“Use-function” = 2, “Use-data” = 1, others = 0)

If (A contains relationships r[] whose type is equal to rType;)

Compare ClassQuantity; with the class quantity of nodes which
are terminal nodes of relationships in r[], and sort these
relationships according to class quantity from max to min.

}
For each relationship rj in A
Push To;j into S.
IWhile (S is not empty)
Pop one node ng from S.
Get a node n; = ny.
Push n¢ to Q.

}
Return Q.

Algorithm 2. Major-Requirement-First Strategy (MRFS)
26

Input System Requirement
Ontology (SRO)

v

Get the root of SRO as
present node

v

Does present
— node contain any —_—
output relation?

v

Insert all output nodes of
present node into A

v

Sort A according to output
relationships’ type of
present node

Sort A according to output
nodes’ class quantity of
present node where the

output relationships’ type
is equal

v

Push all nodes of Ato S
from min to max

v

— Is S empty? a—

v

Pop one node from S as
present node and push it

toQ

— Output Q

Figure 11. The flowchart of Major-Requirement-First Strategy (MRFS)

27

4.2.2 Major-Requirement-First Guidance Transformation System (MRFGTS)

In knowledge transformation phase, MRFGTS is composed of MRFS Scheduler
and OOLA Transformer. MRFS Scheduler uses the SRO which constructed by RDDA
Scaffolding Constructing System to apply MRFS to schedule an imitating procedure,
and then OOLA Transformer transform this imitating procedure into a learning
activity of OOLA system [14]. The internal procedure of MRFGTS is shown in Figure

12.

. MRFS . Imitating - OOLA]

| ~ ';. |
- 'l ccheduler - _“Procedure .~ - Transformer | - OO0LA

|

|

|

I

[.

. Major-Requirement-First Guidance Transformation System

Figure 12. Major-Requirement-First Guidance Transformation System
Example 4. MRFS Scheduler

Figure 13 presents the example of MRFS Scheduler. Based upon the MRFS
algorithm, we get the “VRMS” node which is the root of VRMS_SRO at first and push
it into the imitating procedure. And then we check the output nodes and output
relationships of “VRMS” node, where the three major functional nodes
“MemberMgr”, “VideoMgr” and “OnlineMgr” contain the same relationships
“be-composed-of”’. So we will check the class quantity of these output nodes, and find
out the largest one. Suppose that “MemberMgr” node has the largest class quantity of
the three output nodes, we push it into the learning precedure, and check the output
nodes and relationships again. Suppose there exists “Register” and “Login” method
nodes and the relationships are as same as “Contain” relationship, and the “Register”

node has large class quantity than “Login” node, so we push the “Register” node into

28

the imitating procedure. Accordingly, there are two objects will be used in the
“Register” method, so we choose the “use-function” relationship which has high
priority than “use-data” relationship and push “DBMgr” node into the imitating
procedure. Rules like that, then we will push “InsertProfile”, “InsertPortfolio”,
“MemberiInfo”, “Profile”, “Portfolio” nodes and so on into the learning queue

sequentially based on MRFS.

System Requirement Ontology Imitating Procedure

* ™
Major-Requirement-FirstStrategy

YRMS
|_mws | e
r 1
be-composed-of _
J/ \L Register
d L 1
VideoMgr Onlinehgr DBMgr

- InsertProfile
L 1

InsertPortfolio
T 1

contain §_=

Memberinfo
T 1

Profile
T 1

Portfalio
r 1

>
I Profile I

Portfolio " InsertProfile I InsertPortfolio

VRMS_SRO V

Figure 13. The example of MRFS Scheduler

Example 5. OOLA Transformer

In order to use OOLA System to present the learning contents, we need to
transform the imitating procedure into an Object-Oriented Learning Activity (OOLA)
in advance. As shown in Figure 14, after getting the imitating procedure from MRFS
Scheduler, we arrange different learning guidance templates which are presented in
Table 3 according to the type of nodes. The imitating procedure will attach different
learning contents and learning resources which are constructed in knowledge
acquisition phase to create the learning units, and then transform the imitating

procedure into OOLA rules, which are used to arrange the learning sequence.
29

Afterwards, OOLA Transformer can generate an OOLA based on learning units and

OOLA rules.
Imitating Procedure OOLA
= B
VRMS Introduction
Memberiigr Req:rrr:ﬁem
B Analysis
Register r =
a—y Class
DBMgr Me"l'bj:“gr
Insell.tprc:file + M::::{t'gr
InsarltPort‘follo Register
Memberinfo Task 2
T— Register
Profile o e
T 1 Class
Portfolio AL
=T e
Figure 14. The example of OOLA Transformer
Table 3. Learning guidance templates
Node Type Learning Guidance Template
Learning Introduction, system requirement analysis, major
Caai functionality requirements, and guiding
System information.
Learning Class diagram.
Resource
Learning Class requirement, interface, method requirements,
G impending method tasks, complete method list,
Class guiding information, and task information.
;gsgﬂlrgg Class diagram, source code, library package.
Learning Method requirement, usable object interface, usable
o object requirements, guiding information, and task
Method information.
IF\:::(EE:’EE Class diagram, source code, library package.

30

4.3 Learning Phase

4.3.1 Object-Oriented Learning Activity (OOLA) System

Object-Oriented Learning Activity (OOLA) System [14] is an expert system
with a graphical authoring tool, which can assist teachers to design adaptive learning
activity, and a web based learning system, which can steer learners learning using a
rule inference engine. The teacher can arrange learning sequence, edit learning

contents and manage the learning resources to provide a learning activity to learners.

Designing Phase Executing Phase
Learning earning
Sequencing Sequencing
ﬂi’ \Gra Graph $
S’?é Graphical :T';LTIE Class Generating h Rule based adaptive
authoring process Method learning method
Learners

Teachers ‘. £

|
. Search
N

Display .~

Learning
Content
Repaositor

Test |Application I
Item Program [*~
Bank | Repository

;
A4

Figure 15. The system architecture of OOLA System

Figure 15 shows designing phase and executing phase in OOLA System. In the
designing phase, an adaptive learning activity can be designed via the graphical
authoring process to teachers easily integrating various learning resources, which are
provided by learning resource repositories, and a rule class generating method is also
proposed to generate the rule class of learning sequencing controls. In the executing
phase, the learning sequencing graph and the rule class are used in rule based adaptive

learning method to conduct an adaptive learning to learners.

Therefore, in the learning phase of MRFILS, an OOLA which is already attached
necessary learning contents and learning resources will guide the learners to learn the

software architecture design.

31

Chapter 5. System Implementation and Experiment

5.1 System Implementation

We have implemented a Major-Requirement-First Imitating Learning System
(MRFILS) on web-based environment to evaluate the proposed ideas. The following
sections will demonstrate the Teaching Materials Construction Phase and the

Software Architecture Design Learning Phase.
5.1.1 Teaching Materials Construction Phase

This phase we use a dialogue mechanism to acquire teachers’ design knowledge
of Video Renal Management System (VRMS). MRFILS will ask teachers a series of

questions and request them to input the program scaffolds by a systematic process.

As shown in Figure 16, these pictures present the construction process for the
teaching materials of VRMS. At first, the teacher is requested to input the system
name, system requirement (see Figure 16 (a)), and names of major functionalities (see
Figure 16 (b)). Based upon one of major functionalities, MRFILS continues to ask this
class requirement, interfaces and relationships (see Figure 16 (c)). Next, choosing one
method among the interfaces to ask the method requirement, usable objects,
relationships (see Figure 16 (d)), and usable methods (see Figure 16 (e)). And then
keeping on asking the questions about the class requirement, interfaces and
relationships of usable objects (see Figure 16 (f)). After a series of questions, the
teacher is demanded to commit the source codes, and MRFILS will compile them to

library packages automatically.

32

L EERRRERN TSRS

R

Video Rental Management System ‘
THRERK

"‘—)E%*E%?J:ﬁﬁéi » IR ARER ERE AT LI e A A TR

& BEAEME S - REEEER - THERSENG LY - EREEE
HOThRER BN EuT LUERAT AR B S8 BMDvD -

S%%5 [MemberManager] & { public string register(Profile profile,
Portfolio portfolio) ' ;2 /EMethoddy

ERIHHOE ARTRALR

THRER K

iEfEeched I EHEBER MFSEM] ERBLATENN @S M A MR
FRLSETERE SEREMEMEIETERIERE » IMRFRE | BeSEEmEsmaimy
1R - MIRTIERE | SEEEEMEEERER - </bro</bry

ofilefllportiolid 0F :</br>

MID) ~ $£48 (Name) * B (Sex) ~ £ (Birthday) +
lphene) ~ fEAE (Rddress) ~ BAYERIREE (Idencifier) o </br>

P EEHEIRIR (MID) ~ BB (Fassvord) » FEER (Level) ~ BA
OB (Times) ~ BICEH (Fostliun) « </br>

R - IR :
1 |

@

£%%5: 7. [Video Rental Management System] £ELI3ER7EE R 15 (class
name) :

1. MemberManager

. |VideoManager

3. ‘Onlmemanaged

(b)

F57 [MemberManager] i (B EEET5

Hil B Interface a7

TRERK :
resed] : AERSTESHM e827 - g8l - ST HME - HEE
IR EFEAE -
Interface *
1. |Dumlc string register(Profile profile, Partfolio partfolio) | Dezagsms
2. |Dumlc string legin{string mid, string password) | DEsA#EmE
3 |Dumlc string medify(Profile profile, Partfolio partfolio) | DEsA#EmE
4. |numi: string logout(string loginkey) | [WEE.S-0 T

©

REECRZRK
TSk T AR EL R o
BB AR |

LI R Sowrce Codes (FHEENARY, ZpfE) *

©)

3. |DBManager

Use-Function '+

(d)

EEME [MemberManager] E7 / public string register(Profile profile,
Portfolio portfolio) ! & » =% FEILI TiEES7(FE EMethods?

EEE {8 FETMethods(LL' ; "HER) -

1. Profile

2. Portfolic

3. DBManager

O

%= [DBManager] i (EiE R ERTTeEEF LL R Interface S (72
REmE ¢

[EER] ERs0If00acaba oo ilBAINTE EBEH Insere » Seleces
{odify ~ De

Interface :
1 ‘puhl\chnn\ insertProfile(Profile profile) | WEE. -0
2 ‘puhl\c baool insertPortiolio(Portfolio porticlio) | OesAE3mmE
3 ‘puhl\cPruﬁ\eletcanﬁ\e[slrmgmm: | OesAE3mmE
4. ‘puhl\cannlmTetcnPumnIm(smng mid) | Og=mgmmz
5. ‘punhc bool updateProfile(Profile profile) | OewEssmmes
6. ‘punhcnoo\ updatePaortfalio(Portfolio portfolia) | OewEssmmes
7. ‘punhc bool checkMID(string mid) | WEE -0
8. ‘puhl\chnm insertLoginKey(string loginKey) | OesAE3mmE
9. ‘puhl\chnm deleteLoginKey(string loginKey)| | RESEERIE

®

Figure 16. The snapshot of teaching materials construction phase

33

5.1.2 Software Architecture Design Learning Phase

This phase we use Object-Oriented Learning Activity (OOLA) System to present
the learning target “VVRMS”, which is constructed by teacher in Teaching Materials
Construction Phase. OOLA System will provide necessary learning contents and
learning resources for learners and guide them to design the system architecture by

imitating the compositions of each component and component’s design.

Figure 17 shows the learning process, where OOLA System offers guiding
information to instruct the learners why and how the component design is in each
step. First of all, the learning system provides the introduction about this imitating
learning approach and a task to create a project (see Figure 17 (a)). And then the
learners can get the system requirement analysis (see Figure 17 (b)), one of major
functional classes introduction with a task and a library download link for learners to
start implementing this class with library package supporting (see Figure 17 (c)).
After that, the OOLA System provides the method information of this class and a task
(see Figure 17 (d)) for learners to complete this method. Next, it continues to provide
the class information which was used by previous method and a library package for
task implementation (see Figure 17 (e)). Such as this top-down imitating learning
procedure, the learners can gain these software architecture design concepts through a

sequence of implementations.

34

Introduction public string register(Profile profile, Portfolio portfolio)

SRR - ER— ﬂﬁgaﬁmﬁz LTy [y apm | BETAURB " Memberhanager SE{EClassIBIEHY] {publc sring register(Profle profle, Portfio portiolc)} JE{EMethod
X @%Eﬂﬁm SRR % LY SRR D B S (NS

PR e At L s ot G LD P—— B R
Tearning By Doing (B) ZELBHNIRIA TG 5 7 SHEHE 129005 - ERSERHE KLU & SRS LU T AL e Tas

R T B EER M EBTRER LR

Requirement :

—1@'&%):}#]}5 IEEEREFSR ERET LD ST AR IR DVDEY - AAAE i EMethod FTEMATSR © & 85, FRAEMESRIIAE BT HES AL, - FILUSHED
Ik EERHE ﬁfjtﬁ.@@ﬁfﬁﬂ%%r %:&fﬁ%%mmaﬁsﬁﬁm%ﬁu@%? mhﬁﬁé’l ﬁﬁtEméEE’E ZlﬂigEEE : ?E‘%ééﬁ%fﬁ?é%i??ﬁﬁ?ﬂ@‘i © PIRTIERE © &AE
B R S ERDVD - AR FERRETEA, o

(i A #profileFportfolioZZHA0 T *
o profile : 4Zer B HEIE(MID) - £ (Name) - 1471 (sex) - 2£H(Birthday) + %% (Cellphone) ~ 1%

BPESEE L ST AT) T f;maﬁm o fgﬁ%ﬁ@g@%}l i(Aress) « £ BRI (dentifier)
E Top-Dow FAAAIES il | : SHESEIMID) - TE word) - €8 V. - - =
S L T+ o T s | e e L s e
LA o B SR RS —RERE T E :
Design (KRR 51 Use-Object Interfaces & Requirements :
+ DBManager ©

Task public bool insertProfile(Profile profile) ! insertProfile

SEBEER crosof Vistal Stadio 200 Ti3HHE— RS - BIBRECHRAIR UATES - WS HERREE * DBManager :
EEE « public bool insertPortfalia(Portfolio portfalio) © insertPortfalio

+ DBManager ©
= public bool checkMID(string mid) ¢ checkMID

« Portfolio :

0
& ARkt #Attributes ©

System Requirement Analy
Task ©
B AT o TR SEPSURITTE T)Memberanagera FRETHE—(ENethodlLigy
« public string register(Profile profile, Portfolio portfolio)

oD Manas s IARIRRIFHRMA LA B FERATOL brar B ethod »

PEEEHE, AEEETEEHM €AFA - SAISY - EETHATE . HEEEER)
%‘E"JE% BHEL—E#E [L—25]
SO [T

LLER SR EIERS , SRR SR MR 8 — S BT R
e (d)

BREL—FHE L5
EEERECRME [T—$)

(b)

MemberManager

DBManager

BT {public sring register(Profie profile, Portfotio portfolio)} 51 Method FEIRT FDBManager; SE{EIE

BRI (SN EEERG &

FHEI T EhREL —#Y " MemberManagera SE{BEEFI

FESAHRE E ClassH TR ER L R Interface S L TERRALTERY Task

E Class{YTRER R LAR: Interface®F |\ TERAIL FER7 Task

Requirement

Requirement : PEMEEE, : EBSQLAIDaabaseliEEIA T A nsert - Select - Modify - Delete)
g e

| BREE BASTERIR | QAR SRS SRBLHE | HREERR pe

Interface & Method-Requirements * ([EE BB ZEET Methods)
Interface & Method-Requirements : (B FSEIHEZHAY Methods)
+ public bool deleteLoginKey(string loginKey)
« public string logout(string loginKey) deleteloginkey
SEfEMethodFTIEIREYERRE "E BTN, » XEHERIRILE i Loginkey . .) . R
« public bool insertLoginKey(string loginKey)

{87 iloginkeyZERADT * insertLoginKey
® loginKey * EERETRES FRILE B AR - ERAILARIESE SR -) o
+ public bool checkMIDstring mid,
* publi string modity(rofile profile, portfolia pnnfullu] checkMID
SEfEMethodFTEETERR & - IBHRIEA B (Profile) k&,

(Portfolio) » FRIEHE" E?MB’J%KEEEF& EE?%&E’JQEEHT‘@
{# A #profileflportfolicRAAIT :

g - + public bool updatePortfolio{Portfolio portfolio)
updatePartfalio

o profile : L& & BEAE(MID) » #-4(Name) 5] (Sex) + 2£H (Birthday) ~ FHREES * public bool updateProfile(Profile profile)
(Cellphone) ~ {EhE(Address) « B43555H8 (1dentifier) « < updateProfile

® portfolio : E&E SIESK(MID) « FFHE (Password) « & B Z iR (Level) - BAZRE(Times) . . P
T EBh(PostNum) = * public Portfolio fetchPortfolio(string mid)

fetchportfolio

ing login(string mid, string password)

EvethodFIEEEERR FEAEA . « BASHE IR ERIEENEHNE 85

+ public Profile fetchprofile(string mid)

F(PortfoliofZ¥H T IERE » ANSIERE * portfoliof 1B AEL BN AR fetchprofile
4 inKey ° 2MIFTIE
! SRR RIS + public bool insertPortfolioj io portfolio)

nsertPortfolio

ﬁAmmwdTDpass wordZFFFEI T :

* public bool msenPro[r!eﬂPmlr!e profile;

nsertp

o mid | &85
® password : ﬁg” % o

o public string register(Profile profile, Portfolio portfolio}
g e B e R
. s :)
i B Task * FfLibrary
{BAHprofileTIportfoll EFHIT : 51— (AR P DB Mansgery + TR & FRRLbrary « 77 HESRESY TS | Lo BE T
R DT ey (O AR ST S, A PR, FRERES R AT (a1 A S - BRI AT B Lbran - AST

(Cellphone) - {Ehik(Address) + 535R5EH8 (1dentifier) FRAILibrary) o $8 iR Interface 5887 b SRS HR A SR |# TRELAR
o portfolio : &S EIEIR(MID) - 88 (Password) - HESH (Level) - BAKEN(Times) « Ao

S ERA(PostNum) =
EHELL - [L—5]
EEEDEE [T

Task © FEELibrary
18 ERBINE " MemberManagers TR &M MLibrary » EIIER © 25) LaaRe -)%E

rUD?\%% *WHE TRIE) ARERESESEREHIA] (R AICIIA S > 815 ATI0A R Library » 00
%ﬁ‘Fﬁ&E’JLﬂ:rar) » I8 bt Interfaces S ETERTHIAYAER] b - MARIRERIPIR IR D HTAES 91208 ﬁﬁ%ﬁf’?ﬁt

Ei8E E—F#E 5]
EOEEE [T—8]

©

Figure 17. The snapshot of software architecture design learning phase
35

5.2 Experiment

To evaluate the efficacy of Major-Requirement-First Strategy (MRFS) in
software architecture design learning, we choose 10 graduate students who have
enough coding ability of object-oriented programming (C#) from Computer Science
in National Chiao Tung University. We design the Video Rental Management System
(VRMS) as the teaching case and use Major-Requirement-First Imitating Learning
System (MRFILS) to teach software architecture design. After a series of guidance by
MRFILS, we use a questionnaire which is shown in Table 4 to evaluate the learning
efficacy and satisfaction of learners. We apply the five-level Likert Scale which is the
most widely used scale in survey research and it rates from 1 to 5 to specify the
respondent’s agreement level to a statement. The five-level Likert degree is shown in

Table 5 and the results for learning efficacy and satisfaction is shown in Figure 18.

Table 4. The questionnaire items

Questionnaire Items

QL. Is the guiding procedure useful to construct the VRMS?

Q2. Is the information provided in each implementation process sufficient
to construct the task?

Q3. Do you think that the library provided in each implementation process
is useful to complete the task?

Q4. Do you think that using the library first and then construct these objects
later will easily comprehend what should be considered in these objects?

Q5. Do you think that this top-down imitating manner will easily
understand why and how the software architecture design is than traditional
bottom-up implementation?

Q6. Do you think that the learning efficacy of this system is better than
other learning approaches such as lectures or case study?

Q7. Please give a grade (1~5) for this learning system.

36

Table 5. The format of a typical five-level Likert degree

Degree Meaning
1 Strongly disagree
2 Disagree
3 Neither agree nor disagree
4 Agree
5 Strongly agree

al Q2 Q3 04 Qs Q6 Q7
M Likert Scale

Figure 18. The results for learning efficacy and satisfaction

The results show that most of learners think this top-down imitating learning can
help them understanding the software architecture design effectively than bottom-up
implementation and traditional learning approaches like lectures or case study. And
implement the programs with library packages supporting will easily comprehend
how to design these used objects. Otherwise, some learners think the information of
learning contents need to be more sufficient, and some learners don’t agree with the

guiding procedure where the system provided.

37

5.3 Discussion

Finally, we also interview the learners and ask the impressions for MRFILS,

there are some comments on this system as below:
® Major-Requirement-First Strategy (MRFS)

Several learners think that this top-down imitating manner is a good idea for
learning system design. Because traditional implementation manner is
bottom-up, even they have the system requirements, architectural blue print, and
UML diagrams for reference, it is still difficult to understand how to implement

the system for learners who just begin to learn the web-based system design.
® | earning contents

Several learners think that we should provide more UML diagrams rather than
only one Class Diagram, such as Use Case Diagram, Activity Diagram, and
Sequence Diagram, etc., and point out the present status and what they have
done. The learners believe that the information of UML diagrams will make
themselves clearly understand the complete degree of system and the design

procedure.
® Guiding procedure

Because the guiding procedure is scheduled by MRFILS, where we design some
heuristic algorithms to prioritize the imitating sequence, several learners think
that we can provide more imitating sequences for them to choose rather than

only one choice.

The above comments are very significant for improving this computer-assisted

learning system, and we will take these comments into account in the future work.

38

Chapter 6. Conclusion and Future Work

In this thesis, we propose a top-down imitating learning manner named
Major-Requirement-First Strategy (MRFS) and apply this teaching approach to
construct an intelligent tutoring system named Major-Requirement-First Imitating
Learning System (MRFILS) to teach software architecture design of logic tier in
web-based system. The teachers can use MRFILS to construct teaching materials,
where we adopt a web-based system called “Video Rental Management System
(VRMS)” as our teaching case. MRFILS provides learners one-on-one instruction and
assistance to guide them imitating the software architecture design of VRMS through
a series of implementations with scaffolding instruction, and it will significantly
reduce the loading of teachers. Finally, we have done a real experiment to evaluate the
learning efficacy and satisfaction of learners. The experimental results show that
MRFILS can help learners gaining the software architecture design concepts of

VRMS effectively.

In the near future, we would like to embed diagnostic tests in the guiding process
to evaluate the learning performance and learning status, and add some imitating
learning guidance rules to provide adaptive learning for learners. Thus, the learners
can get more flexible guiding procedure and more appropriate learning contents in the

learning process.

39

References

Grady Booch, Building Web Applications with UML. 2000: Addison Wesley.

Grady Booch, Visual Modeling With Rational Rose 2002 AND UML. 2003:

Addison Wesley.

Jeff Garland, Richard Anthony, Large-Scale Software Architecture: A Practical

Guide using UML. 2003: Wiley.

David Garlan, Mary Shaw, An Introduction to Software Architecture. Advances

in Software Engineering and Knowledge Engineering, January 1994.

Grady Booch, Robert A.Maksichuk, Object-Oriented Analysis And Design With

Applications. 2007: Addison Wesley.

Woei-Kae Chen, Yu-Chin Cheng, Teaching Object-Oriented Programming
Laboratory With Computer Game Programming. IEEE Transactions on

Education, AUGUST 2007. VOL..50, NO.3.

Liang-Yi Li, Gwo-Dong Chen, A Coursework Support System for Offering
Challenges and Assistance by Analyzing Students’ Web Portfolios. Educational

Technology & Society, 2009. Vol. 12: p. 205-221.

J. Baltasar Garcia Perez-Schofield, Emilio Garcia Rosello, Francisco Ortin Soler,
Manuel Perez Cota, Visual Zero: A persistent and interactive object-oriented
programming environment. Journal of Visual Languages and Computing 2008.

Vol. 19 p. 380-398.

Maria Kordaki, Micael Miatidis, George Kapsampelis, A Computer Environment
For Beginners’ Learning of Sorting Algorithms: Design and pilot Evaluation.

Computers & Education, 2008. Vol. 51: p. 708-723.

40

10.

11.

12.

13.

14.

15.

16.

17.

Matthew Conway, Steve Audia, Tommy Burnette et al., Alice: Lessons Learned
From Building A 3D System For Novices, in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. April 2000: The Hague,

The Netherlands. p. 486-493.

Stelios Xinogalos, Maya Satratzemi, Vassilios Dagdilelis, An Introduction to
Object-Oriented Programming with A Didactic Microworld: ObjectKarel.

Computers & Education, 2006. Vol. 47: p. 148-171.
Rachel VVan Der Stuyf, November 2002: Scaffolding As A Teaching Strategy.

Lev Semenovich Vygotskii, Michael Cole, Vera John-Steiner, Sylvia Scribner,
Mind in Society: The Development of Higher Psychological Processes. 1978:

Harvard University Press.

Huan-Yu Lin, Shian-Shyong Tseng, Jun-Ming Su, Jui-Feng Weng, Design and
Implementation of an Object Oriented Learning Activity System, in Proc. of the
10th World Multi-Conference on Systemics, Cybernetics and Informatics

(WMSCI). July, 2006: Orlando, Florida, USA.

Computer Science (Catalog). 2006; Available from:

http://beloit.edu/~huss/cs/CS%20Catalog.html.

Jungwoo Ryoo, Frederico Fonseca, David S.Janzen, Teaching Object-Oriented
Software Engineering through Problem-Based Learning in the Context of Game
Design, in 21st Conference on Software Engineering Education and Training,

IEEE Computer Society. 2008.

Michael Lang, Brian Fitzgerald, Web-based Systems Design: A Study of
Contemporary Practices and an Explanatory Framework Based on

"Method-in-Action”. Requirements Engineering, 2007. Vol. 12.
41

http://beloit.edu/~huss/cs/CS%20Catalog.html

18.

19.

20.

21.

22.

23.

24.

25.

Robert Orfali, Dan Harkey, Client/Server Programming with Java and CORBA.

2nd ed. 1998: John Wiley & Sons, Inc.

Seung C. Lee, Ashraf I. Shirani, A Component Based Methodology for Web

Application Development. Systems and Software, 2004. Vol. 71.

Dimitrios A. Kateros, Georgia M. Kapitsaki, Nikolaos D. Tselikas and lakovos S.
Venieris, A Methodology for Model-Driven Web Application Composition, in

IEEE International Conference on Services Computing. 2008.

Lab, T.L.K.R.G.a.t. M.M. SCRATCH. Available from: http://llk.media.mit.edu.

Jaime Galvez, Eduardo Guzman, Ricardo Conejo, A Blended E-Learning
Experience in A Course of Object Oriented Programming Fundamentals.

Knowledge-Based Systems, 2009.

Claus Pahl, Claire Kenny, Interactive Correction and Recommendation for
Computer Language Learning and Training. IEEE Transactions on Education

and Data Engineering, June 2009. Vol. 21.

Zoran Jeremi¢, Jelena Jovanovi¢, Dragan Gasevi¢, Evaluating an Intelligent
Tutoring System for Design Patterns: the DEPTHS Experience. Educational

Technology & Society, 2009. Vol. 12: p. 111-130.

L. Briand, C. Bunse, and J. Daly, A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs. IEEE Transactions

on Software Engineering, 2001. Vol. 27: p. 513-530.

42

http://llk.media.mit.edu/

