f

T I Ak

BRI EET R

H + W X

RTEHFE Y SR G HER Rip 4 FATRT D
e BA PR Y 2 0 REgR A

Register Allocation of JIT Compiler for Mixed-Width ISA
for Code Size Reduction
SRS A

R Egr EL

PoE AR 4 L+ A~ L -0

AR SRR LAIL RS FOTRF O3 B
£ R R B 2 RS AR TR

Register Allocation of JIT Compiler for Mixed-Width ISA
for Code Size Reduction

o4 g Student : Tian-Yuan Yang
i EEs T EE Advisor : Dr. Jyh-Jiun Shann
Wil + F
FASE 1 A g
L=
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
In partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science and Engineering
December 2009

Hsinchu, Taiwan, Republic of China

PERRY AR D

BTEGEEY SHRE FLL RS BRI O E
A fe i B R AR A

SR R f# e B

3 &

itq*ﬁ% PR BEAS R A Y LR DT RO ELF RSB) S

TER AR P - R B A CRERRRLBERE - Ao
SHOBERRET A BALE RS B R ARA- BB LG F S 32 =AY
Pedp S G 16) AR R AT AL e e a2 dok
AR 0 ARG hiEdy £ B AR AR S P AR e R - g b - B B
Yo R R PR GRS s B R Y ey 4
RF At 3R e ARG L GO EREER S SR Y
APAEHRET RS BAEERD T - BRI TELFEDL IS EFY

eI ‘13 /ﬁﬂ"‘ pER E'J 26%%55“ p2:8 ‘ﬁ‘/}f’:\‘ °

Register Allocation of JIT Compiler for Mixed-Width ISA
for Code Size Reduction

Student: Tian-Yuan Yang advisor : Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

In embedded system, memory is a precious resource, and that reducing program
code size becomes an important issue. One promising approach for code reduction is
employing “mixed-width instruction set architecture (ISA)”. This kind of architecture
usually provides two fixed width instruction sets, a long instruction set (usually 32-bit)
and a short instruction set (usually 16-bit). In other words, program can be compiled
into native code by using these two kinds of instructions mixedly. Obviously, the
more short instructions are used in the program, the smaller program will be.
However, there are some limitations for using short instructions. For example, they
can only encode smaller range of immediate value and a subset of whole architecture
registers. The short of registers is the most important issue among all limitations.
Consequently, a register allocation which can allocate register more appropriately is
needed for mixed-width ISA. In this thesis we propose a fast specific register
allocation algorithm for JIT compiler which is more suitable for mixed-width
instruction set architecture than traditional ones and get about 26% code size

reduction with neglectable performance loss.

2 B2

BARSA g i HAr: ok AL EY Jh e iE 0 3 A
I Ap AT S e R A iR B FEF RN o KRS T A
FYed b s B#HrREL R PREREBLER N RRP O E
BEF A RELEHY L R EE AT T BRI - R

HAQHRPE S bE AR L 2P S B s o

EMHEFEE L FLLS Nenfler > 3 WEAF T Mz RE T H w4 o

h‘w’t

GECRESS R NI EA U A SA ER

TAGA G o RS SR SR S B e LR B Nk AN SR S R

o

BANAFIF > BEP-FFTaw Bt 4 SR -

BERMHADFAER L BFORFER T - B AN P ETRD

=~ ~ 2009.12.01

Table of Contents

ADSTIACE ..ottt et et b et a bt et eb et il
Table OF CONENESociieiieeiieiie ettt ettt ettt sate e beeseaeeseesnseenseeenns v
LSt OF FIGUIES ...ttt ettt ettt ettt e et e eseeenbeenseeennas \%
Chapter 1 = INtrodUCHION.........eovuieeiieiieeie ettt ettt st e esbeesneeensees 1
1.1 Research Motivation.........c.eeeuierieiiieie ettt 4

1.2 Research ObJECtIVEeevuiiiiiiiie ettt 5

1.3 Organization of this thesisccccciiriiiiiiiiiiieiece e 6
Chapter 2 Background...........c.eecuieiiiiiiiiiiciiee ettt 7
2.1 Mixed-width ISAcooiiiiie e 7
2.1.1 Limitations of S-Format instructionscceceeeveerieenveenieennnenne. 8

2.1.2 Mechanisms of mode SWitCh..........coecieriieiiieniiiiiieie e, 10

2.13 Alignment issue of instruction fetch...........ccocoveviiniiniininnns 13

2.2 Register allocation algorithmscceeeeeviienieniiiiiiiiiieeee e 15
2.2.1 Live intervalsccoeiiiiiieieciec e 16

222 Algorithm of LSRA ..ot 18

2.3 Summary of background...........cccceeiiiiiiiiiiiiie e 19
Chapter 3 Hierarchical linear scan register allocation..........c..cccceeceevievienieneencnnen. 20
3.1 Compiler Back-end for Mixed-width ISAcccooiiiiiiiiiiieeeee 20

3.2 Design of HLSRAcoooiiiieetieeeeteeeeee et 23
3.2.1 INSHUCLION LYPES...eieueiiiiieiieiiieiie ettt ettt et ste et e sareeeens 23

322 REGISTET SELS .oouvveiuiieiiieiieeiie ettt ettt ettt ettt 24

323 Register active lists of HLSRAcooviiiiiiiiiiieeeeen 24

324 Priorities Of HLSRAoooiiiiiiiieieeeeeeeeee e 25

3.2.5 Spilling of HLSRAoooiiiiiiieeeee e 27

3.2.6 ALGOTItRM ... 28

Chapter 4 EXPEIrIMENt.........cocuieiiieiieriieiiienie ettt eete et seee et eebeessaeseseesaee e 32
4.1 ENVITONMENT.....ootiiiiiiiieciieie ettt s 32

4.2 Parameter Determinationccccveerieeieeniienieeniesie e e e 33

4.3 Evaluation ReSUltsc.ccoieiiieiiiiiiieieccee e 34
Chapter 5 Conclusions and Future Workcccccoeviiviiiiiiniiiiieeee e 37
5.1 CONCIUSION vttt ettt et 37

5.2 FUuture WOtkcoooiiiiieiieeeee e 38

List of Figures

Figure 1-1: Java virtual machine (JVM).......cccccoviiiniieiiiniiiieieeeeeeee 3
Figure 1-2: Distribution of limitations of S-Format instructions................... 4
Figure 2-1: L- and S-Format inStructionsc.ccceceevueeieneenenieneenenieneens 8
Figure 2-2: Example of a program which consists of L- and S-Format 12
Figure 2-3: An example for mode switching by instruction encoding 12
Figure 2-4: Example of misaligned problem in mixed-width ISAs............. 14
Figure 2-5: Start, end and use point at an intervalccoceeeereneinennenne. 17
Figure 2-6: Flow chart of linear scan register allocation..............ccccccueeueee. 18
Figure 3-1: Different frameworks of Compiler back-end............cccceeenene. 22
Figure 3-2: L- and S-Format of arithmetic INS..........c.ccconiiiininiiinee 22
Figure 3-3: RegisteSetS and RegisterSetL...........ccovveviviinieniniencenicniee, 24
Figure 3-4Figure 3-4: An example for priorities of intervals 27
Figure 3-5Figure 3-5: An example of HLSRAccocoviiiiniiniiiiiee 28
Figure 3-6Figure 3-6: Hierarchical Linear Scan Register Allocation.......... 29
Figure 3-7Figure 3-7: Algorithm of HLSRAcccooiiiiiiiniiieee 31
Figure 4-1Figure 4-1: S-Format translation rate...........ccccecevvenerreeneennenne 33
Figure 4-2: S-Format translation rate.............ccocevveerienieriieneenenienceeeee 34
Figure 4-3: Spill code percentageccceeveveeveerieneenienieneeeeeeseeeee 35
Figure 4-4: Code $1z€ 1€dUCIONcc.eevueeiirieiiniieieeieeeeeeeee e 35
Figure 4-5: S-Format limitation distribution.............ccccceceveiieniencnnennenne. 36

Chapter 1 Introduction

In recent years, RISC processors are increasingly being used to design embedded
systems. Using such architecture in embedded system provides certain advantages,
such as increased design flexibility, high computing power and low on-chip power
consumption. However, RISC processor systems suffer from the problem of poor

code density which may require more ROM for storing program code [1].

One promising approach for reducing code size is to employ “Mixed-width
instruction set architecture (ISA)” where the processors support different fixed-width
instruction sets [2]. In general, there are 32- and 16- bit width instruction sets in
Mixed-width ISAs, called L-Format (32bits) and S-Format (16bits) instruction sets. In
these ISAs, most L-Format instructions have equivalent S-Format instructions, which
means that the same operation could be achieved by either L- or S-Format instruction.
Therefore, the more S-Format instructions are used in program the smaller program
will be. However, there are several limitations of S-Format instructions such as
limited operations, fewer bits to index registers and hold immediate values. Due to
these limitations, using S-Format instructions should be under estimation and
consideration. Moreover, when processor switches execution mode between L-Format
and S-Format, there must be a mechanism to specify the execution mode, called
“mode switch”. There are two type of switching mechanisms: “By mode switching
instruction” and “By instruction encoding”. In present, mixed-width ISA with
mode-switch by instruction encoding is a trend so that our research targets this kind of

architecture. More description of mixed-width ISA will be introduced in Chapter 2.

In consideration of variant platforms in embedded systems, portability is an
important issue for embedded application development. High portability can decrease
development cost. In this case, JAVA is a suitable programming language [3]. In
JAVA platform, JAVA compiler is different from traditional compiler, such as C-
compiler; it translates JAVA codes into bytecodes, an intermediate representation,
rather than native codes. These bytecodes will be executed by execution engines of
JAVA virtual machine (JVM) [4] which runs above underlying physical machine as
shown in Figure 1-1.

There are two kinds of execution engines in JVM: interpreter which interprets
and executes one bytecode at once; Just-In-Time compiler (JIT compiler) which
translates a segment of bytecodes into native codes and then executes them.
Interpreter has short interactive time but lower performance. In contrast, JIT compiler
has better performance but need more startup time than interpreter. JIT compiler is a
dynamic compiler for runtime environment, which is used during execution.
Therefore, light weight and efficient optimizations (such as a fast register allocation)

are important for JIT compiler to reduce compilation overhead.

T
I
Class files | Class Loader
(Java byte code) I Sub-system
I

,,,,,,,,,,,,,,,,,,,, EE

PC Native
Method Java .
Heap register | | method
area stacks
s stacks

Run time data areas

5 I

Native method

> .
Execution engine interface

Interpreter .
compiler
Native method libraries

Java virtual machine

= 2 N

Operating system

E

Hardware

Figure 1-1: Java virtual machine (JVM)

Using RISC processor to design embedded system is a trend, but as what we
mentioned before, it suffers from the problem of poor code density. Although there is
an approach such as mixed-width ISA to ease this problem, it still needs some specific
compiler optimizations to improve code density for mixed-width ISA. Moreover,
these specific optimizations should be fast for JIT compiler because JIT compiler is
important execution engine for improving application performance in JAVA and

JAVA is a popular and appropriate programming language for embedded application

development.

1.1 Research Motivation

So far we have introduced the mixed-width ISA: an approach to reduce code size
by supporting L- and S-Format instruction sets. By observing the code produced by
traditional compiler, we have discovered that even employing mixed-width ISA with
mode switch by instruction encoding, most instructions cannot be formed in S-Format
because of the limitations such as insufficient bits for indexing registers and holding
immediate value, which means code size is not decreased much. As shown in Figure
1-2, there are only about 38 percents of instructions can be translated into S-Format
and about 55 percents of instructions can’t because their operands’ register numbers
are out of the range of the registers that can be indexed by S-Format instructions.

Therefore, if we can implement a particular register allocation for mixed-width
ISA with mode-switch by instruction encoding, the code size reduction may be
improved. Because we want to apply this design to JIT compiler to improve code

density, the time complexity of the algorithm must be as low as possible.

S-Format limitation distribution

100%
90%
80%
70%
60% -
50% -
40% -
30% 7
20%
10% -
0% -

O Limit of Imm/OP

DO Limit of Operand Register

@ S-Format Instr.

Figure 1-2: Distribution of limitations of S-Format instructions

1.2 Research Objective

To make more instructions to fit the limitation of operand registers, we propose a
fast register allocation algorithm which takes consideration of S-Format limitations to
improve code density. Here we name our design “Hierarchical Linear Scan Register
Allocation” (HLSRA), since it allocates register hierarchically through one linear
scanning. Along with that we want to apply HLSRA into the JIT compiler, there are
two main goals to accomplish:

(1) Reducing code size

HLSRA will allocate registers according to a specific policy which is
designed with consideration of register limitation of S-Format instruction.
Therefore, the usage of registers will be more appropriate for mixed-with
ISA and there will be more instructions meeting register limitation.
Therefore, more instructions can be translate into S-Format instructions and
code size reduction will be increased

(2) Low time complexity

In dynamic compiler, such as JIT compiler, compilation time makes a
great impact on performance. Hence, our design has to be fast and efficient
for such run-time environments. To make our design fast, we will

implement it based on a known fast register allocation algorithm.

1.3 Organization of this Thesis

The remaining chapters of this thesis are organized as follows: In Chapter 2, we
will provide background knowledge about mixed-width ISA and the register
allocation algorithm which related to our research. In Chapter 3, we will introduce the
basis of our design, and then describe the algorithm of “Hierarchical Linear Scan
Register Allocation”. Chapter 4 will demonstrate the simulation environment and
results of this work. And finally, Chapter 5, a summary and future work will be made

and discussed.

Chapter 2 Background

In the first part of this chapter, we will describe more detail about the
mixed-width ISA, including limitations of S-Format instruction, mechanism of mode
switch and instruction alignment. In the second part, a fast traditional register
allocation algorithm called “linear scan register allocation” will be introduced. At last,

we will give a summary of this chapter.

2.1 Mixed-width ISA

Code size is an important issue in embedded system all the time, especially in
RISC embedded processor which has suffered from the problem of poor code density.
Consequently, mixed-width instruction set architectures (ISAs) have been proposed to
make a good tradeoff between performance and code size. There are several
mixed-width ISAs provided commercially, for examples, ARM’s ARM/Thumb ISA
[5], MIPS’ MIPS32/MIPS16 ISA [6], Andes’ AndeStar ISA [7], and etc. For example,
there are two different width instruction sets in MIPS’s architecture: the one called
MIPS32 is a 32-bit width instruction set, and the other called MIPS16 is a 16-bit
width instruction set. For convenience, we call them L- (32-bit) and S-Format (16-bit
width) instruction sets, as shown in Figure 2-1. Certainly there might be different
instruction length besides 32 and 16 bits in a mixed width ISA. However there exists
only these two instruction length in current mixed width ISAs. So the followed

contents of our thesis are introduced in this presupposition.

32-bit

ry
Y

L-F t

I OP code I rd5 I 1s5 I Imm Instr(l)lgtrilgn
16-bit

= > S-Format

OP code I rd3 I rs3 I Imm Instruction

Figure 2-1: L- and S-Format instructions

In these ISAs, the program could be composed of L- and S-Format instructions
and the code density may be improved. Because of the limitations of S-Format
instructions, the usage of S-Format instructions could not be unlimited when
compiling the program into native code. Moreover, there should be a mechanism to
specify change between different instruction sets. There are two mode switch
mechanisms used in present mixed-width ISAs. Subsequently, more details of
limitations of S-Format instructions and mode switch mechanisms will be discussed

in the following section.

2.1.1 Limitations of S-Format Instructions

In this section, limitations of S-Format instruction and how these limitations affect

code size reduction will be described.

1. Limited operations:

One of the limitations is that S-Format instruction set usually does not
support all the operations include in L-Format instruction set. Since the
number of bits of opcode is limited, only commonly used operations have
S-Format instructions. Moreover, some complex operations need more fields
and bits than S-Format instructions have. For example, in MIPS32/16, some
L-Format instructions do not have equivalent S-Format, such as the

instructions “abs.fmt”, “add.fmt”, “c.cond.fmt”, etc. Since these operations are

few and seldom used, this limitation might only affect code size reduction

slightly.

2. Limited operand registers:

The second limitation is that there are fewer bits for S-Format
instructions to index operand registers. For example, in MIPS32/16, L-Format
instructions have 5 bits to index operand registers, but S-Format ones have
only 3 bits, i.e, there are only eight registers can be accessed by S-Format
instructions.

In order to encode an instruction in S-Format, all of its register operands
must be allocated to the S-Format indexable registers. Otherwise, if any one of
its register operand is out of the register indexing range, this instruction must
be encoded in L-Format.

Accordingly, the usage of registers has significant impact on S-Format
translation rate. Unfortunately the traditional register allocation algorithms
only try to allocate registers to reduce the amount of spill codes, but do not
specify which registers should be allocated according to the register limitation

of S-Format.

3. Limited immediate value:

The last limitation is that there are fewer bits for S-Format instructions
to store immediate value. For example, in MIPS32/16, there are 16 bits for
L-Format instructions to present immediate values but only 4~11 bits for
S-Format ones. If the immediate value exceeds the range that can be presented
by an S-Format instruction, then the instruction can only be encoded in

L-Format.

Although large immediate values may have impact on the translation
rate, the extent of this impact depends on how complier manages constants. If
compilers use a constant pool to hold these large values, the affection can

almost be neglected.

2.1.2 Mechanisms of Mode Switch

In this section, details of mechanisms of mode switch for mixed-width
ISAs, such as how a program switches between two format instructions, are
described. In the first mechanism, special instructions are used to switch a
program between two format instructions. In the second one, instructions

have specified encoding to indicate which format they are.

1. Mechanism I: Switching by mode-switch instruction

With first kind of mechanism, specific instructions, called “mode switch
instructions”, are used while programs need to switch between L- and
S-Format instructions. As shown in Figure 2-2(a), each function in the
program consists of only L- or S-Format instructions with some necessary
mode switch instructions when it calls or returns to different format function.
For example, in ARM/Thumb, while switching between different format
functions, the original “call* and “return” instructions have to be replaced with
proper mode switch instructions, such as “BLX”, “BL” etc. And then these
mode switch instructions will switch program between two formats according
to the information given by compiler. These extra mode switch instructions

will cause code size increasing. Besides, some instructions lost opportunity to

10

be formed in S-Format due to that all instructions in the same function usually

are formed in the same format.

2. Mechanism Il: Switching by instruction encoding

With the second kind of mechanism, each instruction needs to have a
special encoding to notify processor which format it is. For example, as shown
in Figure 2-3, use the MSB (most significant bit) of an instruction to indicate
which format it is, where the MSB is “zero” or “one” means that the
instruction is either L- or S-Format. Therefore, each instruction can be
translate into S-Format individually if it meets the limitations of S-Format, as
shown in Figure 2-2(b). In this case, there will be more opportunities to
translate instructions into S-Format to reduce code size. Therefore,
mixed-width ISA with mode-switch by instruction encoding becomes the trend

in embedded RISC processor design.

11

Func 2 (32-bit instrs.) Func 2
BB1: e o o . BB1: e o
e e o o] o o
[) [) [] [] [) [)
L) o [] [] [[[) [)
[) L) [] ° o o L) [)
[] [] [] ° [) [) o L)
[[[] [] [) [)
[] [] [] [] [) [)
BB2: | ¢ o o o | BB2: e o o o
° ° [[o o
[) [) [] [] [) [)
€CalbFunc + CalbFunc v
o o ° [) [] [) [) []

:Mode switch Instr.
(a) (b)

Figure 2-2: Example of a program which consists of L- and S-Format instructions with
(a) Mode switching by mode-switch instructions

(b) Mode switching by instruction encoding

n V////////////////////A L-Format instruction
II 7//////////A S-Format instruction

Figure 2-3: An example for mode switching by instruction encoding

12

2.1.3 Alignment Issue of Instruction Fetch

In a mixed width ISA processors, instruction alignment is an important
issue which needs to be concerned. Usually the length of L-Format
instructions is the twice of that of S-Format ones However, the instruction
fetching width of processor is usually the same as the length of L-Format. Two
different lengths of instructions in a program may cause misaligned problem.

This problem can be easily solved in mechanism 1 (switching by
mode-switch instruction). For example, if there is odd number of instructions
in a function with S-Format, misaligned problem occurs. In such case, an extra
S-Format “nop” instruction needs to be added, as shown in Figure 2-4(a)

In mechanism II, the problem is harder to be solved because those L-
and S-Format instructions are mixed in a program. To solve this problem the
support of architecture is needed. While the processor fetches a word (32 bits)
of instructions, one of three possible cases may be occurred, as shown in
Figure 2-4(b). In case 1 and 2, one L-Format or two S-Format instructions are
fetched in one cycle. So that processor can decode them without extra work. In
case 3, the first half word is an S-Format instruction and the other half is the
first part of another L-Format instruction. Therefore the other part of L-Format
instruction is needed and provided by word fetched next cycle. So a fetch
buffer is needed to store the first half of L-Format instruction temporarily.
When the remained part of one L-Format instruction is acquired, the processor
will combine two parts into one instruction and decode it. On the whole,
instruction alignment problem in mixed width ISA is trivial but needed to be

noticed.

13

Case 1
Case 2
Case 3

(a) (b)

Figure 2-4: Example of misaligned problem in mixed-width ISAs

(a) Example for mode switching by mode-switch

(b) Example for mode switching by instruction encoding

14

2.2 Register Allocation Algorithms

Register allocation is an essential optimization in a compiler. While compiling a
program, the compiler will assume that there are infinite temporal registers, called
virtual registers, available at first. Then, the compiler will allocate physical registers
to virtual registers in program before it emits native codes. Mapping these virtual
registers to limited physical registers is a known NP-complete problem [8]. For this
reason, the solution of nowadays register allocation algorithms is usually base on
some known heuristics. There are two well known register allocation algorithms:

Graph Coloring and Linear Scan register allocation.

In graph coloring register allocation algorithm, register allocation has been
mapped to graph coloring problem to solve [8]. At, the algorithm analyzes the
program and builds an interference graph. Each node in the graph presents a virtual
register in program. If there is an edge exists between two nodes, it means that life
times of these two virtual registers overlap. And then, the algorithm solves register
allocation as solving graph coloring problem. This algorithm has variant versions and
been widely used in compilers in the present day. The time complexity of the
algorithm is O(n?), where n is the number of virtual registers. This algorithm usually

produces efficient results in a reasonable time.

In linear scan register allocation algorithm (LSRA), all virtual registers are
treated as intervals which present the flat life time of virtual registers and allocated to
physical registers in a linear scan [9]. In the beginning, the algorithm analyses the
program and builds an interval list. The intervals are stored in this list and sorted in

order of increasing start points. And then, the algorithm scans the list and allocates

15

registers to each interval in linear time. This algorithm usually produces less efficient

code than graph coloring algorithm does, but its time complexity is O(n).

In dynamic compilers, such as just-in-time compiler in JAVA virtual machine,
compilation time is an important issue. So, optimizations in it must be fast and
efficient. In consideration of this demand, linear scan register allocation is suitable to
use in dynamic compilers. Because of this reason, the algorithm which we proposed is
designed based on linear scan register allocation. Detail of linear scan algorithm will

be described in the following subsections.

2.2.1 Live Intervals

LSRA treats virtual registers as intervals while allocating physical
registers. These intervals called “live intervals” which present how long virtual
registers live in program. While building intervals, the liveness of each virtual
register is needed. This information will be calculated by an iterative pass
called liveness analysis [10]. The pass will calculate correct liveness for each
virtual registers by analysis control flow graph. Before introducing LSRA

there are some structures and states needed to be known first.

As shown in Figure 2-5, start and end points of intervals are the
positions where the first instruction defines the value of the virtual register and
the last instruction use it. Meanwhile defined point is the positions where the
instructions define the value of the virtual register. Use point is the positions
where the instructions use the value of the virtual register. Live intervals can

be built by one pass program scan. LSRA only needs to know start and end

16

points of intervals while allocating registers, but our design also needs to know

the define and use points .

There are three possible states of intervals while LSRA processing
intervals. One is unhandled state; it means that the interval has not been
processed by LSRA. State of all intervals is unhandled initially. Another is
unexpired state; it means that the interval has been processed and still live in
this time point. The other is expired state; it means that the interval is no

longer live.

def ADD VR1,VEZ, I Start point

use ADDi VR4.VR1.imm1

use ANDVR5VR1.VR4 @

use SUBU VR6.VR1,VR5 ‘

use ORVR7VR1,VRS

o End point
Interval of VR1

Figure 2-5: Start, end and use point at an interval

17

2.2.2 Algorithm of LSRA

The overall flowchart of linear scan register allocation algorithm is

shown in Figure 2-6.

Intermediate
Representation
‘ Analysis ‘

v

—»‘ Selection ‘

v

‘ Expiration ‘

Physical Reg.
available ?
Yes
<

| Allocation |

ive interval list
empty?
Yes
Assembly code with
Physical Reg.

Figure 2-6: Flow chart of linear scan register allocation

Spilling

First of all, the algorithm analyzes the program to build an intervals list
(LI) and prepares an empty register active list (RAL). LI stores the intervals
which have not been processed and stores them by the increasing order of their
start points. RAL stores the unexpired intervals by thedecreasing order of their
end points and records which physical registers are occupied.

Then, LSRA selects an interval whose start point is the smallest of all
from the LI, and uses the start point of the selected interval to remove those

18

intervals that end before it from RAL. After that, LSRA finds a free register
and allocate it to the selected interval.

If there is no free register, the algorithm will choose an interval whose
end point is farthest from RAL and compare it to the newly selected interval.
If the end point of the interval from RAL is farther than the new interval,
LSRA will spill the interval from RAL and free the occupied physical register,
and then allocate this register to the newly selected interval. Otherwise, LSRA
spills the newly selected interval. After scanning all intervals, the compiler
maps all virtual register to physical registers and generates necessary spill

codes.

2.3 Summary of Background

For mixed-width ISA with mode-switch by instruction encoding, we have study
the effects caused by the limitations of S-Format on code size reduction. As describe
in section 1.1 and 2.1, we found that the limitation of operand registers is the most
critical one. This is because that traditional register allocation algorithm assigns
register number casually. The reason why traditional register allocation algorithms do
that is because they consider the number of spill code only but not which physical
register should be assigned to each virtual register, and this may cause that less
instructions can be translated into S-Format. Therefore, the traditional register
allocation does not suit for this problem apparently. For this reason, in order to
increase translation rate of S-Format instruction, we have to design a specific register
allocation algorithm. Moreover, we will design this algorithm based on LSRA

because we want to apply it on JIT compiler.

19

Chapter 3

Hierarchical Linear Scan Register Allocation

This thesis proposes a fast register allocation algorithm that not only determines
which virtual register should be stored in the physical register to decrease spill code,
but also evaluate which virtual register should be assigned to the register can be
indexed by S-Format instruction. This specific algorithm is based on linear scan
register allocation (LSRA) and called “Hierarchical linear scan register allocation
(HLSRA)”. We choose LSRA as foundation is because of its fast compilation time
and efficient. Therefore it is suitable for dynamic compiler such as just-in-time
compiler in JAVA virtual machine.

The basic idea of the proposed algorithm is allocating the registers which can be

accessed by S-Format instruction to the virtual registers that are most commonly used.

3.1 Compiler Back-end for Mixed-width ISA

In general, traditional compiler back-ends consist of three stages, which are
instruction selection, instruction scheduling, and register allocation, as shown in
Figure 3-1(a). The first stage, instruction selection, maps intermediate representations
(IR) to correspondent machine instructions, where the operand registers of these
instructions are virtual registers. The second stage, instruction scheduling, schedules
instructions for hiding possible pipeline stall to increase performance. Finally, the

third stage, register allocation allocates physical registers to virtual registers.

20

However, in mixed-width ISA with mode-switch by instruction encoding, an
instruction may be represented in L- or S-Formats. Therefore, an extra stage is added
into compiler back-end for this kind of ISAs, as shown in Figure 3-1(b). In this
compiler back-end, the first stage is instruction selection, where this stage maps an
operation to temporary instruction called INS. Each INS may have L- or both L- and
S-Format. The second stage, instruction scheduling does the same thing as in
traditional compiler back-end. The third stage, register allocation may apply specific
algorithm for mixed-width ISA or not while allocating registers. At the end, the added
stage, instruction formatting, decides which format should instructions be according
to their opcode and operands (e.g. register operands and immediate value). For
example, if an arithmetic INS “add” has L-Format and S-Format instructions as
shown in Figure 3-2, the instruction formatting stage will check whether this INS
meets all limitations of S-Format instruction. If it does, then instruction formatting
translates “add” into “adds”; if not, it will be formed into L-Format. Finally assembler

will encode the instructions in corresponding formats.

21

Intermediate re
niermecgiaie !

Instruction selection

Map IR to instruction (INS)

s 8

Instruction scheduling

Schedule for optimization

. 5

Register allocation

Allocate and assign registers

Lo i ______
Mixed-width Assembly code
with physical registers

(a)

Intermediate re
niermeglate re

Instruction selection

Map IR to instruction (INS)

-

Instruction scheduling

Schedule for optimization

-

Register allocation

Allocate and assign registers

-

Instruction formatting

Translate INS into L- or S-Format

Mixed-width Assembly code
with physical registers

(b)

Figure 3-1: Different frameworks of Compiler back-end

(a) Traditional compiler back-end
(b) Compiler back-end for mixed-width ISA

32-bit
| »|
M add I rd5 I 185 I rd5 I offset I
16-bit
}41 i | i | ; | e L- and S-Format of
e ! i add instruction

Figure 3-2: L- and S-Format of arithmetic INS

3.2 Design of HLSRA

In this section we will define some terms and structures for our design. Firstly
we classify instructions of program into three types. And then we describe the data
structures (e.g., register set, register active list) and priority functions which is needed

in our design. At last we will describe the algorithm of our design

3.2.1 Instruction Types

In mixed-width ISA, most instructions have multiple formats. For our

design, we classify instructions in program into three types.

1. L-INS (L-Format INS): L-INS is an instruction without S-Format or
which cannot be encoded in S-Format because it has exceeding immediate

value.

2. S-INS (S-Format INS): S-INS is an instruction which has both L- and
S-Format, and definitely meets all limitations of S-Format, for examples,
JR and NOP. JR has only one operand register so that it has enough bits
for indexing register, so it can access the whole physical registers.
Furthermore, NOP does not have any operands, thus, it can be encoded in

S-Format definitely.

3. U-INS (Uncertain-Format INS): U-INS is an instruction which has both
L- and S-Format and can be translated into S-Format if and only if it

meets limitation of operand registers.

23

3.2.2 Register Sets

In our design, the physical registers are divided into two sets,
RegisterSets and RegisterSet;. S-Format instruction can only access the
registers in RegisterSets, but L-Format instruction can access the registers in
both sets. As shown in Figure 3-3, for example, if there are three bits in
S-Format instruction and five bits in L-Format for register indexing, then
register rO~r7 are in RegisterSets and register r8~r31 are in RegisterSet;.
Registers and Register; represent the registers in RegisterSets and RegisterSet;
respectively. The number of free registers in RegisterSets and RegisterSet;, are

named as FRSNg and FRSN;.

RegSets RegSet,

Figure 3-3: RegisteSets and RegisterSet,
3.2.3 Register Active Lists of HLSRA

In traditional LSRA, there is only one register active list (RAL) and its
size is the number of physical registers. Because HLSRA divides original
register set into two separate register sets, it has to prepare two register active
lists, called RALg and RAL;. The size of RALg and RAL; are the same as the
size of RegisterSets and RegisterSet;. Besides, HLSRA has to maintain these

RALs and record the interval which has minimal priority during register

24

allocation. The intervals which have minimal priority in RALg and RAL are

named as mlg and ml;.

3.2.4 Priorities of HLSRA

While allocating registers to intervals, if there is no free physical
register, an interval need to be spilled. In LSRA, whether an interval should be
spilled or not depends on its end-point. In HLSRA, we use a different heuristic

approach to decide which interval should be spilled.

In our design, the physical register set is divided into two sets, RegisterSetg
and RegisterSet;. Therefore there are two types of priorities, Prioritys and
Priority;, for allocating registers in these register sets respectively. When there
is no free register in these register sets, priorities are used to decide which
interval should be spilled. For example, while HLSRA trying to allocate register
in RegisterSets and there is no free register, it will use Prioritys to choose
spilled interval. These priorities are estimated according to the information
about intervals. Since Prioritys and Priority; are used to handle different
situation, they take different parameters into consideration.

Prioritys take three things into consideration. Firstly HLSRA want to make
as many U-INSs as possible to meet limitation of operand registers, thus it takes
the number of U-INSs which use the value of the interval into consideration. In
the second, if the instruction which defines the interval is U-INS, we will also
consider the number of operand registers which has been assign to Registers of
this instruction. For example, if there are two Registers used for operands of the
U-INS, this U-INS will be translated into S-Format while a Registers is

allocated to the interval which is defined by the U-INS. At last, we account life

25

range of the interval too. Life range presents the time that an interval will
occupy a register. If a physical register is allocated to the interval whose life
range is short, the register won’t be occupied too long. Therefore this register
will be available soon and allocated to other intervals. Thus, the interval whose
life range is shorter than others should have higher priority to acquired physical

register. The priority function of Prioritys is as follow

Priorityg = w (1)

N; presents the number of U-INSs which use the value of the interval;
S presents the number of operand registers which is Registers of the
instruction which first defines the interval. LR presents life range of the
interval. For example, as show in Figure 3-4, the number of U-INSs which
use interval(VR1) is N; = 3, and the number of allocated operand register

which is Registers is S = 2, and life range of the interval is LR = 8.

Priorityy, is similar to Prioritys. First Priority; consider the number of
instructions which use the interval; the more instructions use the value of
the interval, the more spill codes will be produced if it is spilled. Second,
life range of the interval is also taken into consideration like Prioritys. The

priority function of Priorityy is as follow
o Ny
Priority;, = R e (2)
Ny presents the number of instructions which use the interval and LR
presents life range of the interval. For examples, as show in Figure 3-4, the

number of instructions which use interval(VR1) is N, = 4 and life range of

the interval is LR = 8.

26

Interval of VR1

0 def
ADD VR1,

1 use
ADDi VR4, VR1.imm1

L-INS

Registers
)

use
AND VR5VR1.VR4

U-INS

use
SUBU VR6.VR1.VR5

8 U-INS
@® uc
OR VR7.VR1,VR5

U-INS

Figure 3-4Figure 3-4: An example for priorities of intervals

3.2.5 Spilling of HLSRA

In LSRA, the interval which has not been allocated to any physical register
is spilled into memory directly. In our design, the interval which has not been
allocated to Registers might be allocated to Register;. Although those U-INSs
which use this interval cannot be translated into S-Format due to the register
limitation, allocating Register; to the interval might bring some benefit (such as
less spill code). For this reason, there are Spills and Spilly for storing the
interval which will be spilled. The intervals in Spills and Spill; are named as I
and I.

Spills stores the interval which has not been allocated to Registers.
Subsequently, HLSRA will remove the interval from Spills and try to allocate it

Registery rather than spill it into memory directly.

27

Spill. stores the interval which has not been allocated to Register;.
According to our design, this interval has no chance to get physical register so

spilling pass will remove the interval from Spillp and spill it into memory.

3.2.6 Algorithm

The basic idea of our design is allocating registers in RegisterSets and
RegisterSet; sequentially. As show in Figure 3-5, for example, while allocating
a register to an interval, such as interval (VRss), HLSRA allocates Registers
first. If there is no free register in RegisterSets, HLSRA will compare Prioritys
of interval (VRse) and the interval which has lowest Prioritys in RALg (mlg).
According comparison result, the interval which has higher Prioritys will be
allocated to Registers. Next, HLSRA will try to allocate Registery, to the interval
which cannot be allocated to Registers. If there is still no free registers, HLSRA

will select an interval in RAL; with lowest priority and spill it into memory.

s (@S - | <::| 59

R 1

ez ()
rar, [@I@I@ — -~ e e
Reg8

9 10 a2s msm mEx =ms mss mms mmw wem mmx 31

Memory

[
1

Figure 3-5Figure 3-5: An example of HLSRA

28

Intermediate
Representation

‘ Analysis ‘
A

—»{ Selection ‘

Y

‘ Expiration ‘

— b

‘ Allocationg ‘ Allocation

No
Is Spills empty?

‘ Allocation, ‘

ive interval list
empty?

Yes

Assembly code with
physical Regs.

Figure 3-6Figure 3-6: Hierarchical Linear Scan Register Allocation

The overall flow chart of the HLSRA is as shown in Figure 3-6, HLSRA
allocates physical registers hierarchically. At first, analysis pass scans the
program to build live intervals, gets interval information needed by HLSRA
(such as the number of U-INSs which use this interval, life range, etc) and
stores these intervals by increasing order of their start point into interval list (LI).
Then selection pass selects an interval from LI, and then expiration pass uses
the start point of selected interval to expire the intervals in RALs and RAL;.
After expiration pass, HLSRA starts allocating a physical register to the selected

interval.

29

Allocationg processes the selected interval and tries to allocate Registers. In
the beginning Allocations checks FRSNs to see if there are available registers in
RegisterSets. If FRSNg is greater than zero, Allocationg will allocate one of
these free registers to the selected interval. While FRSNg is equal to zero, there
is no free register available. In this case, Allocations has to decide which
interval should be placed into Spills. The interval in Spills will be processed by
Allocationy later.

To determine which interval should be put into Spills, Allocationg chooses
the interval whose Prioritys is smallest from RALg called mls, and compares it
with the selected interval. If Prioritys of selected interval is greater than
Prioritys of mlg, Allocationg will remove mls from RALg and put it into Spillg,
and then the Registers which was occupied by mlg will be allocated to the

selected interval; otherwise the selected interval will be put into Spills.

If Spills is not empty after finishing Allocations, Allocation; will remove
the interval called Is from Spills and process it; otherwise HLSRA finish this
round of iteration.

To processing Is, like Allocations, Allocation, checks FRSNy to see if
there are available registers in RegisterSet;. If FRSNy is greater than zero,
Allocation;, will allocate one of these free registers to Is. If FRSN| is equal to
zero, there is no free register available. In this case, Allocation; selects the
interval whose Priority;, is smallest from RAL called ml;, and compares it with
the interval (IL) of Spills. If Priorityr of I is greater than Priorityy of mly,
Allocation;, will remove ml; from RAL; and put it into Spill;, and then the
Register, which was occupied by ml. will be allocated to Is; otherwise put Ig
into Spilly.

30

If Spillp is not empty after finishing Allocation;, spilling pass will be
started to spill the interval in Spilly; otherwise HLSRA finish this round of

iteration. The pseudo code of HLSRA is shown in Figure 3-7.

Procedure HLSRA
Il intervals stored in LI are sorted by increasing order of start point
forall interval; € LI do
Calculate priorities for interval;
Expire(RALs) and Expire(RAL,)
if FRSNs > 0 then
Allocate Registersto interval;
else

Compare Prioritys(mls) to Prrioritys(i)
if Prioritys(mls) < Prioritys(i) then
Remove mls and put it into Spills Allocations
Allocate Registers which is occupied to interval;
Update RAL ¢
else
Put interval; into Spils
endif
endif
if Spills = @ then
if RSN, > 0 then
Allocate Register, to Ig

else
Compare Priority; (ml,) to Prriority; (Is)
if Priority; (ml.) < Priority; (ls) then
Remove ml, and put it into Spill_
Allocate Register, which is occupied to Is
Update RAL,

Allocation,

else
Put I into Spill,
endif
endif
if Spill. = @ then
Spill Iy
endif
endfor

Figure 3-7Figure 3-7: Algorithm of HLSRA

31

Chapter 4 Experiment

In the first part of this chapter, we will describe the experiment environment,
including the instruction set architecture, used compiler back-end and benchmarks. In
the second part, we will show how to decide parameters using in our experiments. At
last, we will discuss the evaluation result about S-Format translation rate and

influence of spill code for HLSRA.

4.1 Environment

In our experiments, we propose a pseudo mixed-width ISA with mode switch by
instruction base on MIPS32/16, called MIPSe. All of the instructions have same
number of formats in MIPSe and MIPS32/16, for example, instruction “add” has L-
and S-Format in MIPSe as same in MIPS32/16. There is only switch mode of MIPSe
different from MIPS32/16. In MIPSe, we assume that MSB of instruction op-code
indicates the format of this instruction. All benchmarks used in this experiment were
selected from SPEC INT2000 [11], Mibench[12], and Mediabench[13].

According to MIPS32/16 ISA and our design, the available registers in each
register sets are as follows: RegisterSets = r1 ~ r7 (10 is used as zero in MIPS32/16, so
it cannot be used) and the number of FRSNg = 7; RegisterSet;, = r10~125 (r8~19 is
reservedto process spill code, r26~127 is reserved for OS kernel and r28~r31 are
reserved for calling convention) and the number of FRSN = 16.

The Low-Level Virtual Machine (LLVM) [14] is a compiler infrastructure. It
provides language- and target-independent components for building compilers. There
are several targets which are supported by LLVM, such as MIPS, ARM, x86,
PowerPC, etc. We modified the LLVM compiler back-end to produce the INSs with

virtual registers as inputs for HLSRA.

32

4.2 Parameter Determination

While calculating Prioritys for each interval, HLSRA have to concern about the
number of U-INSs that use the value of the interval (N;) and the number of operand
registers which are Registers of the instruction which first defines the interval (S). In
another words, we have to adjust a which controls the weight between N; and S to get
best S-Format translation rate. In our experiments, S-Format translation rate means
that the percentage of the instructions which can be translated into S-Format over all

instructions. The results are shown in Figure 4-1.

S-Format Translation Rate

54.00%
52.00% &
0 00% A f‘/

48.00% /

46.00%

52.22%

44.00%

42.00%

40-00% T T T T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

avalue

Figure 4-1Figure 4-1: S-Format translation rate

In the above figure, X-axis presents a value, Y-axis presents S-Format translation
rate. HLSRA can achieves best S-Format translation rate when o equals one.
Obviously, the number of U-INSs that use the value of the interval is the most

important parameter for HLSRA to reduce code size.

33

4.3 Evaluation Results

In this section, we will illustrate evaluation results for HLSRA. The value of a is
set to 1.0 according to the result obtained in section 4.2. As shown in Figure 4-2, we
illustrate evaluation result for HLSRA and compare it to the result of LSRA. As
expected, HLSRA achieves 52.22% S-Format translation rate and there is 13% more

than which LSRA can make.

S-Format Translation Rate

70.00%

60.00% -
50.00% -
40.00% -
30.00% -
20.00% - LSRA

10.00% - B HLSRA

0.00% -

Figure 4-2: S-Format translation rate

As shown in Figure 4-3, number of spill codes which produced by HLSRA
accounted for 8% of all instructions on the average. We can see that HLSRA has
generated slightly more spill code than LSRA. The reason why this happens is
described below. LSRA decides which interval should be spilled according to their
end point to decrease number of spill codes. Although how HLSRA decides which
interval should be spilled is similar to LSRA, HLSRA chooses interval according to
their priorities to decrease code size. Therefore, HLSRA will produce more spill

codes than LSRA

34

Spill Code Percentage

25.00%

20.00%

15.00%

8.77%

10.00%

5.00% T 42
¥ HLSRA
0.00%
" Xe) > 2
AR I N R
& % GJ N <& \O N &§ & o ©
N N N O 0) <& v
R G ’ : PR S
¢ N R e -
o C <
N & N & & x\z

LSRA

Figure 4-3: Spill code percentage

In Figure 4-4, we show the code size reduction achieved by HLSRA and

compare it to the result of LSRA. The code size reduction is the number of

instructions which can be translated into S-Format divide by two since each L-format

instruction is twice the length of an S-format instruction.

Code Size Reduction

35.00%

30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

LSRA
H HLSRA

Figure 4-4: Code size reduction

At last, we illustrate distribution of S-Format limitations in all programs which

were produced by HLSRA and compare it to LSRA, as shown in Figure 4-5. The

Y-axis is the percentage of instructions. In the figure, the top block, green colored, is

the percentage of instructions which have no S-Format instructions or the immediate

35

value is oversized. The middle block, red colored, is the percentage of instructions
which cannot be formed in S-Format due to register limitation. And the bottom block,
blue colored, is those instructions whose register number and immediate value are in

the range of S-Format instructions.

The number of instruction which can be translated into S-Format is increased in
programs processed by HLSRA. The HLSRA eases the problem of register limitation
and makes 14% more instructions converted into S-Format than LSRA does. These
instructions were not formed in S-Format due to register limitation originally in code
produced by LSRA. By the proposed HLSRA, about 52% translation rate of S-Format

instructions in programs is achieved

B S-FormatInstr. O Limit of Operand Register O Limit of Inm/OP
100% =

90% H—H 1 I
80% - Ei=IRIE=Ir I B |
70% 1 HHH I H—H— H

60% - - H

50% | I

40%

30% -

20% -

10% -

0%

‘?4/ I N
I
e
I
I N
I

NYENY NIENY NYENY NYENY NN NN N NIENY N NN D
éggy \‘?@‘_&v »"QS:‘?Q? \‘?Qs:éy \‘?Qy#v 4{?@ SR \%st?qy P R 4{?’@
SR G R G S N R
A ~ S o . x & <
¢ ‘?o@& 6"’0@"& e '{é"oc°§ \0"{\:{‘\9 8@::\5’6 -'\\&.’ob’be 9°'be"§g (?SJQS?’ AQ’@Q@%
& &S MO S R S
< & &8

Figure 4-5: S-Format limitation distribution

36

Chapter 5 Conclusions and Future Work

In this chapter, we will make conclusions and discuss some possible future works
for this thesis.

5.1 Conclusion

In this thesis, we presented hierarchical linear scan register allocation (HLSRA)
algorithm which allocates registers more friendly for mixed-width ISA with mode
switch by instruction encoding than traditional register allocation algorithms like
LSRA. Because the registers which can be accessed by S-Format instruction are
allocated to intervals which have been mostly used by U-INSs, HLSRA 1is supposed to

ease the affect brought by limitation of operand registers for code size reduction.

To achieve the goal described previously, we modify the allocation pass to fit the
demand of mixed-width ISA, where allocation pass has been separated into two parts.
Compared to LSRA, this modification will not increase time complexity. In addition,
this design only brought neglectable overheads, such as producing a little more spill

codes than LSRA and extra data structure, such as Spills and Spilly.

Overall, our design makes S-Format instruction rate increasing to about 52% on
the average. As discovered in Section 4.3, there are still 42% instructions could not be
formed in S-Format due to register limitation in HLSRA. The reason why this part
cannot be improved by our design is described as follow. Firstly, because there exist
over eight intervals live simultaneously at many execution points in the programs,
there are certainly some instructions which cannot be formed in S-Format due to
register limitation. Secondly, HLSRA cannot use more efficient but complex methods,
such as iterative heuristic policies, because of the demand of low compilation time for

dynamic compilers.
37

5.2 Future Work

As we mention in section 5.1, since the design for dynamic compiler must be fast,

complex optimizations are not suitable. Consequently, there are some aspects of

future works for our thesis.

[1]

[2]

The First possible future work is to modify HLSRA to get better S-Format
translation rate. Perhaps we can modify our design with a little more time
consuming policy. There are some possible modifications.

The First possible modification is adapting a little more complex priority
calculation methods, for example, building interference graph for small scope of
intervals and using this graph to calculate priorities.

The Second one is to split interval while spilling it. Our design will spill
whole interval when it cannot get a register rather than split it. When HLSRA
spills an interval, it can insert extra store instructions into this interval to split it
into two intervals: previous and remain intervals, and spills remain interval only.
In this way, the previous interval will not be spilled and less spill code will be

produced.

The second possible future work is to apply other fast optimization for
increasing S-Format translation rate. As introduced in Section 3.1, there are
instruction selection, instruction scheduling and register allocation in
compiler-backend. In our thesis, a specific register allocation is proposed for
mixed-width ISA to increasing S-Format translation rate. Therefore using a
specific instruction scheduling for mixed-width ISA may achieve the same goal.

The purpose of traditional instruction scheduling is decreasing instruction

dependency for performance. For increasing S-Format translation rate, the

38

specific instruction scheduling could consider the more information while

scheduling instruction, such as which formats instructions have, etc.

[3] The third possible future work is applying our design to some other
commercial mixed-width ISAs with mode switch by instruction encoding,
such as ARM’s Thumb-2, MIPS’ new microMIPS. We can get more
information about how our design affects code size reduction and execution
performance through this work. Presently we cannot do that because there are

no suitable compiler backends for these ISAs.

39

Reference

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Aviral Shrivastava, Partha Biswas, Ashok Halambi, Nikil Dutt, Alex Nicolau,
"Compilation Framework for Code Size Reduction Using Reduced Bit-Width
ISAs (rISAs)", ACM Transactions on Design Automation of Electronic Systems,
Vol. 11, No. 1, January 2006, Pages 123—146.

Arvind Krishnaswamy, Rajiv Gupta, "Mixed-Width Instruction Set",
Communications of the ACM, v.46, n.§, August 2003.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Java Language Specification,
Addison-Wesley Longman Publishing, 2000.

Tim Lindholm, Frank Yellin, Java Virtual Machine Specification,
Addison-Wesley Longman Publishing, 1999.

ARM Architecture Reference Manual, http://www.arm.com/

MIPS32™ Architecture For Programmers, http://www.mips.com.tw/

AndeStar™ [SA, http://www.andestech.com/

Gregory Chaitin, "Register allocation and spilling via graph coloring", Computer
Languages, Vol. 6, pp. 47-57, 1981.

Massimiliano Poletto, Vivek Sarkar, "Linear scan register allocation", ACM
Transactions on Programming Languages and Systems (TOPLAS), Volume 21 ,

Issue 5, (September 1999) Pages: 895 — 913.

[10] Andrew W. Appel, Jens Palsberg, Modern Compiler Implementation in Java,

Cambridge University Press, 2002

[11] SPEC INT2000 http://www.spec.org/cpu2000/CINT2000/

[12] Mibench http://www.eecs.umich.edu/mibench/

[13] Mediabench http://euler.slu.edu/~fritts/mediabench/

[14] Low-Level Virtual Machine, http://llvm.org/

40

