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在即時編譯器中針對混合固定長度指令集所設計的暫存器

分配演算法以求縮減程式碼 

 

研究生：楊天元                                   指導教授：單智君                

 

摘要 

在嵌入式系統中儲存程式的記憶體是相當重要的資源，於是減少程式碼的大小成

為了重要的議題。其中一種解決方法是用“混合寬度指令集架構＂。一般而言，

這樣的架構提供了兩種固定長度指令集，能夠執行一般指令(通常為 32 位元)以

及短指令(通常為 16 位元)。在這樣的架構中程式可由兩種指令組合而成，如果

程式使用了越多的短指令其程式碼大小就越小。然而短指令上有著一些限制，例

如只能使用較短立即值範圍以及存取較少的暫存器，這些都影響了程式中短指令

使用的比例多寡，其中如何分配可被短指令存取的暫存器影響最大。這篇論文中

我們針對混合寬度指令集架構提出了一個適用於即時編譯器的快速暫存器演算

法，這個演算法能得到 26%程式碼縮減。 
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Abstract 
In embedded system, memory is a precious resource, and that reducing program 

code size becomes an important issue. One promising approach for code reduction is 

employing “mixed-width instruction set architecture (ISA)”. This kind of architecture 

usually provides two fixed width instruction sets, a long instruction set (usually 32-bit) 

and a short instruction set (usually 16-bit). In other words, program can be compiled 

into native code by using these two kinds of instructions mixedly. Obviously, the 

more short instructions are used in the program, the smaller program will be. 

However, there are some limitations for using short instructions. For example, they 

can only encode smaller range of immediate value and a subset of whole architecture 

registers. The short of registers is the most important issue among all limitations. 

Consequently, a register allocation which can allocate register more appropriately is 

needed for mixed-width ISA. In this thesis we propose a fast specific register 

allocation algorithm for JIT compiler which is more suitable for mixed-width 

instruction set architecture than traditional ones and get about 26% code size 

reduction with neglectable performance loss. 

  



 

iii 
 

致謝及序言 

首先感謝我的指導老師 單智君教授，在我碩士生涯中對我細心教誨，不時的討

論並指點我正確的方向，使我在這些年中獲益匪淺。老師對學問的嚴謹更是我輩

學習的典範。同時，也感謝口試委員，楊武教授與雍忠教授，由於教授們的指導

與建議，才使得此篇論文更加完整與充實。另外，也感謝實驗室的另一位老師，

鍾崇斌教授，在每次的報告之中給予學生指導與建議。  

感謝奕緯學長、裕生學長給予我的幫助，不僅僅是研究相關的建議與花費心力的

討論，在平日生活相處上也給予我許多寶貴的經驗，讓我在完成學業之餘也豐富

了我的人生。同時也謝謝實驗室的學長姐、同儕以及學弟妹，在我的碩士生涯中

給予我許多幫助，與你們一同留下的回憶此生難以忘懷。 

最後要謝謝我的家人與親友，你們的支持與陪伴，一直是我精神上最堅強的

支柱。 

楊天元 2009.12.01 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

Table of Contents 
Abstract .......................................................................................................................... ii 
Table of Contents .......................................................................................................... iv 
List of Figures ................................................................................................................ v 
Chapter 1 Introduction ................................................................................................ 1 

1.1 Research motivation ................................................................................... 4 
1.2 Research objective ..................................................................................... 5 
1.3 Organization of this thesis ......................................................................... 6 

Chapter 2 Background ................................................................................................ 7 
2.1 Mixed-width ISA ....................................................................................... 7 

2.1.1 Limitations of S-Format instructions ............................................. 8 
2.1.2 Mechanisms of mode switch ........................................................ 10 
2.1.3 Alignment issue of instruction fetch ............................................ 13 

2.2 Register allocation algorithms ................................................................. 15 
2.2.1 Live intervals ............................................................................... 16 
2.2.2 Algorithm of LSRA ..................................................................... 18 

2.3 Summary of background .......................................................................... 19 
Chapter 3 Hierarchical linear scan register allocation .............................................. 20 

3.1 Compiler Back-end for Mixed-width ISA ............................................... 20 
3.2 Design of HLSRA .................................................................................... 23 

3.2.1 Instruction types ........................................................................... 23 
3.2.2 Register sets ................................................................................. 24 
3.2.3 Register active lists of HLSRA .................................................... 24 
3.2.4 Priorities of HLSRA .................................................................... 25 
3.2.5 Spilling of HLSRA ...................................................................... 27 
3.2.6 Algorithm ..................................................................................... 28 

Chapter 4 Experiment ............................................................................................... 32 
4.1 Environment ............................................................................................. 32 
4.2 Parameter Determination ......................................................................... 33 
4.3 Evaluation Results ................................................................................... 34 

Chapter 5 Conclusions and Future Work ................................................................. 37 
5.1 Conclusion ............................................................................................... 37 
5.2 Future Work ............................................................................................. 38 



 

v 
 

 

List of Figures 

Figure 1-1: Java virtual machine (JVM) ........................................................ 3 
Figure 1-2: Distribution of limitations of S-Format instructions ................... 4 
Figure 2-1: L- and S-Format instructions ...................................................... 8 
Figure 2-2: Example of a program which consists of L- and S-Format ...... 12 
Figure 2-3: An example for mode switching by instruction encoding ........ 12 
Figure 2-4: Example of misaligned problem in mixed-width ISAs ............. 14 
Figure 2-5: Start, end and use point at an interval ....................................... 17 
Figure 2-6: Flow chart of linear scan register allocation ............................. 18 
Figure 3-1: Different frameworks of Compiler back-end ............................ 22 
Figure 3-2: L- and S-Format of arithmetic INS ........................................... 22 
Figure 3-3: RegisteSetS and RegisterSetL ................................................... 24 
Figure 3-4Figure 3-4: An example for priorities of intervals ...................... 27 
Figure 3-5Figure 3-5: An example of HLSRA ............................................ 28 
Figure 3-6Figure 3-6: Hierarchical Linear Scan Register Allocation .......... 29 
Figure 3-7Figure 3-7: Algorithm of HLSRA ............................................... 31 
Figure 4-1Figure 4-1: S-Format translation rate .......................................... 33 
Figure 4-2: S-Format translation rate ........................................................... 34 
Figure 4-3: Spill code percentage ................................................................ 35 
Figure 4-4: Code size reduction ................................................................... 35 
Figure 4-5: S-Format limitation distribution................................................ 36 

 

 

 



 

1 
 

Chapter 1  Introduction 

In recent years, RISC processors are increasingly being used to design embedded 

systems. Using such architecture in embedded system provides certain advantages, 

such as increased design flexibility, high computing power and low on-chip power 

consumption. However, RISC processor systems suffer from the problem of poor 

code density which may require more ROM for storing program code [1].  

One promising approach for reducing code size is to employ “Mixed-width 

instruction set architecture (ISA)” where the processors support different fixed-width 

instruction sets [2]. In general, there are 32- and 16- bit width instruction sets in 

Mixed-width ISAs, called L-Format (32bits) and S-Format (16bits) instruction sets. In 

these ISAs, most L-Format instructions have equivalent S-Format instructions, which 

means that the same operation could be achieved by either L- or S-Format instruction. 

Therefore, the more S-Format instructions are used in program the smaller program 

will be. However, there are several limitations of S-Format instructions such as 

limited operations, fewer bits to index registers and hold immediate values. Due to 

these limitations, using S-Format instructions should be under estimation and 

consideration. Moreover, when processor switches execution mode between L-Format 

and S-Format, there must be a mechanism to specify the execution mode, called 

“mode switch”. There are two type of switching mechanisms: “By mode switching 

instruction” and “By instruction encoding”. In present, mixed-width ISA with 

mode-switch by instruction encoding is a trend so that our research targets this kind of 

architecture. More description of mixed-width ISA will be introduced in Chapter 2. 
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In consideration of variant platforms in embedded systems, portability is an 

important issue for embedded application development. High portability can decrease 

development cost. In this case, JAVA is a suitable programming language [3]. In 

JAVA platform, JAVA compiler is different from traditional compiler, such as C- 

compiler; it translates JAVA codes into bytecodes, an intermediate representation, 

rather than native codes. These bytecodes will be executed by execution engines of 

JAVA virtual machine (JVM) [4] which runs above underlying physical machine as 

shown in Figure 1-1.  

There are two kinds of execution engines in JVM: interpreter which interprets 

and executes one bytecode at once; Just-In-Time compiler (JIT compiler) which 

translates a segment of bytecodes into native codes and then executes them. 

Interpreter has short interactive time but lower performance. In contrast, JIT compiler 

has better performance but need more startup time than interpreter. JIT compiler is a 

dynamic compiler for runtime environment, which is used during execution. 

Therefore, light weight and efficient optimizations (such as a fast register allocation) 

are important for JIT compiler to reduce compilation overhead. 
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Figure 1-1: Java virtual machine (JVM) 

Using RISC processor to design embedded system is a trend, but as what we 

mentioned before, it suffers from the problem of poor code density. Although there is 

an approach such as mixed-width ISA to ease this problem, it still needs some specific 

compiler optimizations to improve code density for mixed-width ISA. Moreover, 

these specific optimizations should be fast for JIT compiler because JIT compiler is 

important execution engine for improving application performance in JAVA and 

JAVA is a popular and appropriate programming language for embedded application 

development. 
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1.1 Research Motivation 

So far we have introduced the mixed-width ISA: an approach to reduce code size 

by supporting L- and S-Format instruction sets. By observing the code produced by 

traditional compiler, we have discovered that even employing mixed-width ISA with 

mode switch by instruction encoding, most instructions cannot be formed in S-Format 

because of the limitations such as insufficient bits for indexing registers and holding 

immediate value, which means code size is not decreased much. As shown in Figure 

1-2, there are only about 38 percents of instructions can be translated into S-Format 

and about 55 percents of instructions can’t because their operands’ register numbers 

are out of the range of the registers that can be indexed by S-Format instructions.  

Therefore, if we can implement a particular register allocation for mixed-width 

ISA with mode-switch by instruction encoding, the code size reduction may be 

improved. Because we want to apply this design to JIT compiler to improve code 

density, the time complexity of the algorithm must be as low as possible. 

 

Figure 1-2: Distribution of limitations of S-Format instructions 
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1.2 Research Objective 

To make more instructions to fit the limitation of operand registers, we propose a 

fast register allocation algorithm which takes consideration of S-Format limitations to 

improve code density. Here we name our design “Hierarchical Linear Scan Register 

Allocation” (HLSRA), since it allocates register hierarchically through one linear 

scanning. Along with that we want to apply HLSRA into the JIT compiler, there are 

two main goals to accomplish: 

(1) Reducing code size 

HLSRA will allocate registers according to a specific policy which is 

designed with consideration of register limitation of S-Format instruction. 

Therefore, the usage of registers will be more appropriate for mixed-with 

ISA and there will be more instructions meeting register limitation. 

Therefore, more instructions can be translate into S-Format instructions and 

code size reduction will be increased 

(2) Low time complexity 

In dynamic compiler, such as JIT compiler, compilation time makes a 

great impact on performance. Hence, our design has to be fast and efficient 

for such run-time environments. To make our design fast, we will 

implement it based on a known fast register allocation algorithm. 
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1.3 Organization of this Thesis 

The remaining chapters of this thesis are organized as follows: In Chapter 2, we 

will provide background knowledge about mixed-width ISA and the register 

allocation algorithm which related to our research. In Chapter 3, we will introduce the 

basis of our design, and then describe the algorithm of “Hierarchical Linear Scan 

Register Allocation”. Chapter 4 will demonstrate the simulation environment and 

results of this work. And finally, Chapter 5, a summary and future work will be made 

and discussed. 
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Chapter 2  Background 

In the first part of this chapter, we will describe more detail about the 

mixed-width ISA, including limitations of S-Format instruction, mechanism of mode 

switch and instruction alignment. In the second part, a fast traditional register 

allocation algorithm called “linear scan register allocation” will be introduced. At last, 

we will give a summary of this chapter.  

2.1 Mixed-width ISA 

Code size is an important issue in embedded system all the time, especially in 

RISC embedded processor which has suffered from the problem of poor code density. 

Consequently, mixed-width instruction set architectures (ISAs) have been proposed to 

make a good tradeoff between performance and code size. There are several 

mixed-width ISAs provided commercially, for examples, ARM’s ARM/Thumb ISA 

[5], MIPS’ MIPS32/MIPS16 ISA [6], Andes’ AndeStar ISA [7], and etc. For example, 

there are two different width instruction sets in MIPS’s architecture: the one called 

MIPS32 is a 32-bit width instruction set, and the other called MIPS16 is a 16-bit 

width instruction set. For convenience, we call them L- (32-bit) and S-Format (16-bit 

width) instruction sets, as shown in Figure 2-1. Certainly there might be different 

instruction length besides 32 and 16 bits in a mixed width ISA. However there exists 

only these two instruction length in current mixed width ISAs. So the followed 

contents of our thesis are introduced in this presupposition. 
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Figure 2-1: L- and S-Format instructions 

In these ISAs, the program could be composed of L- and S-Format instructions 

and the code density may be improved. Because of the limitations of S-Format 

instructions, the usage of S-Format instructions could not be unlimited when 

compiling the program into native code. Moreover, there should be a mechanism to 

specify change between different instruction sets. There  are  two  mode  switch 

mechanisms  used  in  present  mixed‐width  ISAs.  Subsequently,  more  details  of 

limitations of S‐Format  instructions and mode switch mechanisms will be discussed 

in the following section. 

2.1.1  Limitations of S-Format Instructions 
In this section, limitations of S-Format instruction and how these limitations affect 
code size reduction will be described. 

1. Limited operations: 

One of the limitations is that S-Format instruction set usually does not 

support all the operations include in L-Format instruction set. Since the 

number of bits of opcode is limited, only commonly used operations have 

S-Format instructions. Moreover, some complex operations need more fields 

and bits than S-Format instructions have. For example, in MIPS32/16, some 

L-Format instructions do not have equivalent S-Format, such as the 

instructions “abs.fmt”, “add.fmt”, “c.cond.fmt”, etc. Since these operations are 
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few and seldom used, this limitation might only affect code size reduction 

slightly. 

2. Limited operand registers: 

The second limitation is that there are fewer bits for S-Format 

instructions to index operand registers. For example, in MIPS32/16, L-Format 

instructions have 5 bits to index operand registers, but S-Format ones have 

only 3 bits, i.e, there are only eight registers can be accessed by S-Format 

instructions.  

In order to encode an instruction in S-Format, all of its register operands 

must be allocated to the S-Format indexable registers. Otherwise, if any one of 

its register operand is out of the register indexing range, this instruction must 

be encoded in L-Format.  

Accordingly, the usage of registers has significant impact on S-Format 

translation rate. Unfortunately the traditional register allocation algorithms 

only try to allocate registers to reduce the amount of spill codes, but do not 

specify which registers should be allocated according to the register limitation 

of S-Format. 

3. Limited immediate value:  

The last limitation is that there are fewer bits for S-Format instructions 

to store immediate value. For example, in MIPS32/16, there are 16 bits for 

L-Format instructions to present immediate values but only 4~11 bits for 

S-Format ones. If the immediate value exceeds the range that can be presented 

by an S-Format instruction, then the instruction can only be encoded in 

L-Format.  
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Although large immediate values may have impact on the translation 

rate, the extent of this impact depends on how complier manages constants. If 

compilers use a constant pool to hold these large values, the affection can 

almost be neglected. 

 

2.1.2  Mechanisms of Mode Switch 

In this section, details of mechanisms of mode switch for mixed-width 

ISAs, such as how a program switches between two format instructions, are 

described. In the first mechanism, special instructions are used to switch a 

program between two format instructions. In the second one, instructions 

have specified encoding to indicate which format they are.  

1. Mechanism I: Switching by mode-switch instruction 

With first kind of mechanism, specific instructions, called “mode switch 

instructions”, are used while programs need to switch between L- and 

S-Format instructions. As shown in Figure 2-2(a), each function in the 

program consists of only L- or S-Format instructions with some necessary 

mode switch instructions when it calls or returns to different format function. 

For example, in ARM/Thumb, while switching between different format 

functions, the original “call“ and “return” instructions have to be replaced with 

proper mode switch instructions, such as “BLX”, “BL” etc. And then these 

mode switch instructions will switch program between two formats according 

to the information given by compiler. These extra mode switch instructions 

will cause code size increasing. Besides, some instructions lost opportunity to 
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be formed in S-Format due to that all instructions in the same function usually 

are formed in the same format. 

2. Mechanism II: Switching by instruction encoding 

With the second kind of mechanism, each instruction needs to have a 

special encoding to notify processor which format it is. For example, as shown 

in Figure 2-3, use the MSB (most significant bit) of an instruction to indicate 

which format it is, where the MSB is “zero” or “one” means that the 

instruction is either L- or S-Format. Therefore, each instruction can be 

translate into S-Format individually if it meets the limitations of S-Format, as 

shown in Figure 2-2(b). In this case, there will be more opportunities to 

translate instructions into S-Format to reduce code size. Therefore, 

mixed-width ISA with mode-switch by instruction encoding becomes the trend 

in embedded RISC processor design. 
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Figure 2‐2: Example of a program which consists of L‐ and S‐Format instructions with 

(a) Mode switching by mode-switch instructions  
(b) Mode switching by instruction encoding 

 

 

 

Figure 2‐3: An example for mode switching by instruction encoding 
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2.1.3  Alignment Issue of Instruction Fetch 
In a mixed width ISA processors, instruction alignment is an important 

issue which needs to be concerned. Usually the length of L-Format 

instructions is the twice of that of S-Format ones However, the instruction 

fetching width of processor is usually the same as the length of L-Format. Two 

different lengths of instructions in a program may cause misaligned problem.  

This problem can be easily solved in mechanism I (switching by 

mode-switch instruction). For example, if there is odd number of instructions 

in a function with S-Format, misaligned problem occurs. In such case, an extra 

S-Format “nop” instruction needs to be added, as shown in Figure 2-4(a) 

In mechanism II, the problem is harder to be solved because those L- 

and S-Format instructions are mixed in a program. To solve this problem the 

support of architecture is needed. While the processor fetches a word (32 bits) 

of instructions, one of three possible cases may be occurred, as shown in 

Figure 2-4(b). In case 1 and 2, one L-Format or two S-Format instructions are 

fetched in one cycle. So that processor can decode them without extra work. In 

case 3, the first half word is an S-Format instruction and the other half is the 

first part of another L-Format instruction. Therefore the other part of L-Format 

instruction is needed and provided by word fetched next cycle. So a fetch 

buffer is needed to store the first half of L-Format instruction temporarily. 

When the remained part of one L-Format instruction is acquired, the processor 

will combine two parts into one instruction and decode it. On the whole, 

instruction alignment problem in mixed width ISA is trivial but needed to be 

noticed.  
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Figure 2‐4: Example of misaligned problem in mixed‐width ISAs 

(a) Example for mode switching by mode‐switch 

            (b) Example for mode switching by instruction encoding 
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2.2 Register Allocation Algorithms 

Register allocation is an essential optimization in a compiler. While compiling a 

program, the compiler will assume that there are infinite temporal registers, called 

virtual registers, available at first. Then, the compiler will allocate physical registers 

to virtual registers in program before it emits native codes. Mapping these virtual 

registers to limited physical registers is a known NP-complete problem [8]. For this 

reason, the solution of nowadays register allocation algorithms is usually base on 

some known heuristics. There are two well known register allocation algorithms: 

Graph Coloring and Linear Scan register allocation.  

In graph coloring register allocation algorithm, register allocation has been 

mapped to graph coloring problem to solve [8]. At, the algorithm analyzes the 

program and builds an interference graph. Each node in the graph presents a virtual 

register in program. If there is an edge exists between two nodes, it means that life 

times of these two virtual registers overlap. And then, the algorithm solves register 

allocation as solving graph coloring problem. This algorithm has variant versions and 

been widely used in compilers in the present day. The time complexity of the 

algorithm is O(n2), where n is the number of virtual registers. This algorithm usually 

produces efficient results in a reasonable time. 

In linear scan register allocation algorithm (LSRA), all virtual registers are 

treated as intervals which present the flat life time of virtual registers and allocated to 

physical registers in a linear scan [9]. In the beginning, the algorithm analyses the 

program and builds an interval list. The intervals are stored in this list and sorted in 

order of increasing start points. And then, the algorithm scans the list and allocates 
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registers to each interval in linear time. This algorithm usually produces less efficient 

code than graph coloring algorithm does, but its time complexity is O(n). 

In dynamic compilers, such as just-in-time compiler in JAVA virtual machine, 

compilation time is an important issue. So, optimizations in it must be fast and 

efficient. In consideration of this demand, linear scan register allocation is suitable to 

use in dynamic compilers. Because of this reason, the algorithm which we proposed is 

designed based on linear scan register allocation. Detail of linear scan algorithm will 

be described in the following subsections. 

 

2.2.1  Live Intervals 
LSRA treats virtual registers as intervals while allocating physical 

registers. These intervals called “live intervals” which present how long virtual 

registers live in program. While building intervals, the liveness of each virtual 

register is needed. This information will be calculated by an iterative pass 

called liveness analysis [10]. The pass will calculate correct liveness for each 

virtual registers by analysis control flow graph. Before introducing LSRA 

there are some structures and states needed to be known first. 

As shown in Figure 2-5, start and end points of intervals are the 

positions where the first instruction defines the value of the virtual register and 

the last instruction use it. Meanwhile defined point is the positions where the 

instructions define the value of the virtual register. Use point is the positions 

where the instructions use the value of the virtual register. Live intervals can 

be built by one pass program scan. LSRA only needs to know start and end 
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points of intervals while allocating registers, but our design also needs to know 

the define and use points . 

There are three possible states of intervals while LSRA processing 

intervals. One is unhandled state; it means that the interval has not been 

processed by LSRA. State of all intervals is unhandled initially. Another is 

unexpired state; it means that the interval has been processed and still live in 

this time point. The other is expired state; it means that the interval is no 

longer live.  

 
Figure 2‐5: Start, end and use point at an interval 
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2.2.2  Algorithm of LSRA 
The overall flowchart of linear scan register allocation algorithm is 

shown in Figure 2-6. 

 
Figure 2‐6: Flow chart of linear scan register allocation 

 

First of all, the algorithm analyzes the program to build an intervals list 

(LI) and prepares an empty register active list (RAL). LI stores the intervals 

which have not been processed and stores them by the increasing order of their 

start points. RAL stores the unexpired intervals by thedecreasing order of their 

end points and records which physical registers are occupied.  

Then, LSRA selects an interval whose start point is the smallest of all 

from the LI, and uses the start point of the selected interval to remove those 
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intervals that end before it from RAL. After that, LSRA finds a free register 

and allocate it to the selected interval. 

If there is no free register, the algorithm will choose an interval whose 

end point is farthest from RAL and compare it to the newly selected interval. 

If the end point of the interval from RAL is farther than the new interval, 

LSRA will spill the interval from RAL and free the occupied physical register, 

and then allocate this register to the newly selected interval. Otherwise, LSRA 

spills the newly selected interval.  After scanning all intervals, the compiler 

maps all virtual register to physical registers and generates necessary spill 

codes. 

 

2.3 Summary of Background  

For mixed-width ISA with mode-switch by instruction encoding, we have study 

the effects caused by the limitations of S-Format on code size reduction. As describe 

in section 1.1 and 2.1, we found that the limitation of operand registers is the most 

critical one. This is because that traditional register allocation algorithm assigns 

register number casually. The reason why traditional register allocation algorithms do 

that is because they consider the number of spill code only but not which physical 

register should be assigned to each virtual register, and this may cause that less 

instructions can be translated into S-Format. Therefore, the traditional register 

allocation does not suit for this problem apparently. For this reason, in order to 

increase translation rate of S-Format instruction, we have to design a specific register 

allocation algorithm. Moreover, we will design this algorithm based on LSRA 

because we want to apply it on JIT compiler. 
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Chapter 3   

Hierarchical Linear Scan Register Allocation 

This thesis proposes a fast register allocation algorithm that not only determines 

which virtual register should be stored in the physical register to decrease spill code, 

but also evaluate which virtual register should be assigned to the register can be 

indexed by S-Format instruction. This specific algorithm is based on linear scan 

register allocation (LSRA) and called “Hierarchical linear scan register allocation 

(HLSRA)”. We choose LSRA as foundation is because of its fast compilation time 

and efficient. Therefore it is suitable for dynamic compiler such as just-in-time 

compiler in JAVA virtual machine.  

The basic idea of the proposed algorithm is allocating the registers which can be 

accessed by S-Format instruction to the virtual registers that are most commonly used.  

 

3.1 Compiler Back-end for Mixed-width ISA 

In general, traditional compiler back-ends consist of three stages, which are 

instruction selection, instruction scheduling, and register allocation, as shown in 

Figure 3-1(a). The first stage, instruction selection, maps intermediate representations 

(IR) to correspondent machine instructions, where the operand registers of these 

instructions are virtual registers. The second stage, instruction scheduling, schedules 

instructions for hiding possible pipeline stall to increase performance. Finally, the 

third stage, register allocation allocates physical registers to virtual registers. 
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However, in mixed-width ISA with mode-switch by instruction encoding, an 

instruction may be represented in L- or S-Formats. Therefore, an extra stage is added 

into compiler back-end for this kind of ISAs, as shown in Figure 3-1(b). In this 

compiler back-end, the first stage is instruction selection, where this stage maps an 

operation to temporary instruction called INS. Each INS may have L- or both L- and 

S-Format. The second stage, instruction scheduling does the same thing as in 

traditional compiler back-end. The third stage, register allocation may apply specific 

algorithm for mixed-width ISA or not while allocating registers. At the end, the added 

stage, instruction formatting, decides which format should instructions be according 

to their opcode and operands (e.g. register operands and immediate value). For 

example, if an arithmetic INS “add” has L-Format and S-Format instructions as 

shown in Figure 3-2, the instruction formatting stage will check whether this INS 

meets all limitations of S-Format instruction. If it does, then instruction formatting 

translates “add” into “adds”; if not, it will be formed into L-Format. Finally assembler 

will encode the instructions in corresponding formats. 
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Figure 3‐1: Different frameworks of Compiler back‐end 

(a) Traditional compiler back‐end 

(b) Compiler back-end for mixed-width ISA 
 

 
Figure 3-2: L- and S-Format of arithmetic INS 

add rd5 rs5 offset

adds rd3 rs3 rt3

rd5

L- and S-Format of 
add instruction
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3.2  Design of HLSRA 

In this section we will define some terms and structures for our design. Firstly 

we classify instructions of program into three types. And then we describe the data 

structures (e.g., register set, register active list) and priority functions which is needed 

in our design. At last we will describe the algorithm of our design 

3.2.1  Instruction Types 

In mixed-width ISA, most instructions have multiple formats. For our 

design, we classify instructions in program into three types. 

1. L-INS (L-Format INS): L-INS is an instruction without S-Format or 

which cannot be encoded in S-Format because it has exceeding immediate 

value. 

2. S-INS (S-Format INS): S-INS is an instruction which has both L- and 

S-Format, and definitely meets all limitations of S-Format, for examples, 

JR and NOP. JR has only one operand register so that it has enough bits 

for indexing register, so it can access the whole physical registers. 

Furthermore, NOP does not have any operands, thus, it can be encoded in 

S-Format definitely. 

3. U-INS (Uncertain-Format INS): U-INS is an instruction which has both 

L- and S-Format and can be translated into S-Format if and only if it 

meets limitation of operand registers. 
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3.2.2  Register Sets  

In our design, the physical registers are divided into two sets, 

RegisterSetS and RegisterSetL. S-Format instruction can only access the 

registers in RegisterSetS, but L-Format instruction can access the registers in 

both sets. As shown in Figure 3-3, for example, if there are three bits in 

S-Format instruction and five bits in L-Format for register indexing, then 

register r0~r7 are in RegisterSetS and register r8~r31 are in RegisterSetL. 

RegisterS and RegisterL represent the registers in RegisterSetS and RegisterSetL 

respectively. The number of free registers in RegisterSetS and RegisterSetL are 

named as FRSNS and FRSNL. 

 

Figure 3-3: RegisteSetS and RegisterSetL 

3.2.3  Register Active Lists of HLSRA 

In traditional LSRA, there is only one register active list (RAL) and its 

size is the number of physical registers. Because HLSRA divides original 

register set into two separate register sets, it has to prepare two register active 

lists, called RALS and RALL. The size of RALS and RALL are the same as the 

size of RegisterSetS and RegisterSetL. Besides, HLSRA has to maintain these 

RALs and record the interval which has minimal priority during register 
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allocation. The intervals which have minimal priority in RALS and RALL are 

named as mIS and mIL. 

3.2.4  Priorities of HLSRA 

While allocating registers to intervals, if there is no free physical 

register, an interval need to be spilled. In LSRA, whether an interval should be 

spilled or not depends on its end-point. In HLSRA, we use a different heuristic 

approach to decide which interval should be spilled.  

In our design, the physical register set is divided into two sets, RegisterSetS 

and RegisterSetL. Therefore there are two types of priorities, PriorityS and 

PriorityL, for allocating registers in these register sets respectively. When there 

is no free register in these register sets, priorities are used to decide which 

interval should be spilled. For example, while HLSRA trying to allocate register 

in RegisterSetS and there is no free register, it will use PriorityS to choose 

spilled interval. These priorities are estimated according to the information 

about intervals. Since PriorityS and PriorityL are used to handle different 

situation, they take different parameters into consideration.  

PriorityS take three things into consideration. Firstly HLSRA want to make 

as many U-INSs as possible to meet limitation of operand registers, thus it takes 

the number of U-INSs which use the value of the interval into consideration. In 

the second, if the instruction which defines the interval is U-INS, we will also 

consider the number of operand registers which has been assign to RegisterS of 

this instruction. For example, if there are two RegisterS used for operands of the 

U-INS, this U-INS will be translated into S-Format while a RegisterS is 

allocated to the interval which is defined by the U-INS. At last, we account life 
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range of the interval too. Life range presents the time that an interval will 

occupy a register. If a physical register is allocated to the interval whose life 

range is short, the register won’t be occupied too long. Therefore this register 

will be available soon and allocated to other intervals. Thus, the interval whose 

life range is shorter than others should have higher priority to acquired physical 

register. The priority function of PriorityS is as follow 

PriorityS
N S

LR
     ………. (1) 

N1 presents the number of U-INSs which use the value of the interval; 

S presents the number of operand registers which is RegisterS of the 

instruction which first defines the interval. LR presents life range of the 

interval. For example, as show in Figure 3-4, the number of U-INSs which 

use interval(VR1) is N1 = 3, and the number of allocated operand register 

which is RegisterS is S = 2, and life range of the interval is LR = 8. 

PriorityL is similar to PriorityS. First PriorityL consider the number of 

instructions which use the interval; the more instructions use the value of 

the interval, the more spill codes will be produced if it is spilled. Second, 

life range of the interval is also taken into consideration like PriorityS. The 

priority function of PriorityL is as follow 

PriorityL
N
LR

     ………. (2) 

N2 presents the number of instructions which use the interval and LR 

presents life range of the interval. For examples, as show in Figure 3-4, the 

number of instructions which use interval(VR1) is N2 = 4 and life range of 

the interval is LR = 8. 



 

27 
 

 
Figure 3-4Figure 3-4: An example for priorities of intervals 

.  

 

3.2.5  Spilling of HLSRA 

In LSRA, the interval which has not been allocated to any physical register 

is spilled into memory directly. In our design, the interval which has not been 

allocated to RegisterS might be allocated to RegisterL. Although those U-INSs 

which use this interval cannot be translated into S-Format due to the register 

limitation, allocating RegisterL to the interval might bring some benefit (such as 

less spill code). For this reason, there are SpillS and SpillL for storing the 

interval which will be spilled. The intervals in SpillS and SpillL are named as IS 

and IL. 

SpillS stores the interval which has not been allocated to RegisterS. 

Subsequently, HLSRA will remove the interval from SpillS and try to allocate it 

RegisterL rather than spill it into memory directly. 
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SpillL stores the interval which has not been allocated to RegisterL. 

According to our design, this interval has no chance to get physical register so 

spilling pass will remove the interval from SpillL and spill it into memory. 

 

 

3.2.6  Algorithm 

The basic idea of our design is allocating registers in RegisterSetS and 

RegisterSetL sequentially. As show in Figure 3-5, for example, while allocating 

a register to an interval, such as interval (VR56), HLSRA allocates RegisterS 

first. If there is no free register in RegisterSetS, HLSRA will compare PriorityS 

of interval (VR56) and the interval which has lowest PriorityS in RALS (mIS). 

According comparison result, the interval which has higher PriorityS will be 

allocated to RegisterS. Next, HLSRA will try to allocate RegisterL to the interval 

which cannot be allocated to RegisterS. If there is still no free registers, HLSRA 

will select an interval in RALL with lowest priority and spill it into memory. 

 

 

 

Figure 3-5Figure 3-5: An example of HLSRA 
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Figure 3-6Figure 3-6: Hierarchical Linear Scan Register Allocation 

The overall flow chart of the HLSRA is as shown in Figure 3-6, HLSRA 

allocates physical registers hierarchically. At first, analysis pass scans the 

program to build live intervals, gets interval information needed by HLSRA 

(such as the number of U-INSs which use this interval, life range, etc) and 

stores these intervals by increasing order of their start point into interval list (LI). 

Then selection pass selects an interval from LI, and then expiration pass uses 

the start point of selected interval to expire the intervals in RALS and RALL. 

After expiration pass, HLSRA starts allocating a physical register to the selected 

interval. 
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AllocationS processes the selected interval and tries to allocate RegisterS. In 

the beginning AllocationS checks FRSNS to see if there are available registers in 

RegisterSetS. If FRSNS is greater than zero, AllocationS will allocate one of 

these free registers to the selected interval. While FRSNS is equal to zero, there 

is no free register available. In this case, AllocationS has to decide which 

interval should be placed into SpillS. The interval in SpillS will be processed by 

AllocationL later. 

To determine which interval should be put into SpillS, AllocationS chooses 

the interval whose PriorityS is smallest from RALS called mIS, and compares it 

with the selected interval. If PriorityS of selected interval is greater than 

PriorityS of mIS, AllocationS will remove mIS from RALS and put it into SpillS, 

and then the RegisterS which was occupied by mIS will be allocated to the 

selected interval; otherwise the selected interval will be put into SpillS. 

If SpillS is not empty after finishing AllocationS, AllocationL will remove 

the interval called IS from SpillS and process it; otherwise HLSRA finish this 

round of iteration. 

To processing IS, like AllocationS, AllocationL checks FRSNL to see if 

there are available registers in RegisterSetL. If FRSNL is greater than zero, 

AllocationL will allocate one of these free registers to IS. If FRSNL is equal to 

zero, there is no free register available. In this case, AllocationL selects the 

interval whose PriorityL is smallest from RALL called mIL, and compares it with 

the interval (IL) of SpillS. If PriorityL of IL is greater than PriorityL of mIL, 

AllocationL will remove mIL from RALL and put it into SpillL, and then the 

RegisterL which was occupied by mIL will be allocated to IS; otherwise put IS 

into SpillL.  
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If SpillL is not empty after finishing AllocationL, spilling pass will be 

started to spill the interval in SpillL; otherwise HLSRA finish this round of 

iteration. The pseudo code of HLSRA is shown in Figure 3-7. 

Procedure HLSRA 
// intervals stored in LI are sorted by increasing order of start point  
forall intervali  LI do 

Calculate priorities for intervali 
Expire(RALS) and Expire(RALL) 
if FRSNS > 0 then 
 Allocate RegisterS to intervali 
else 
 Compare PriorityS(mIS) to PrriorityS(i) 
 if PriorityS(mIs) < PriorityS(i) then 
  Remove mIS and put it into SpillS 
  Allocate RegisterS which is occupied to intervali 
  Update RALS 
 else  
  Put intervali into SpilS 

 endif 
endif 
if SpillS    then 
 if RSNL > 0 then 
  Allocate RegisterL to IS 
 else 

Compare PriorityL(mIL) to PrriorityL(IS) 
  if PriorityL(mIL) < PriorityL(IS) then 
   Remove mIL and put it into SpillL 
   Allocate RegisterL which is occupied to IS 
   Update RALL 
  else  

  Put IS into SpillL 

   endif 
 endif 
if SpillL    then 
 Spill  IL 
endif 

endfor 
Figure 3-7Figure 3-7: Algorithm of HLSRA 

 

 

AllocationS 

AllocationL 
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Chapter 4  Experiment 
In the first part of this chapter, we will describe the experiment environment, 

including the instruction set architecture, used compiler back-end and benchmarks. In 

the second part, we will show how to decide parameters using in our experiments. At 

last, we will discuss the evaluation result about S-Format translation rate and 

influence of spill code for HLSRA.   

4.1  Environment 
In our experiments, we propose a pseudo mixed-width ISA with mode switch by 

instruction base on MIPS32/16, called MIPSe. All of the instructions have same 

number of formats in MIPSe and MIPS32/16, for example, instruction “add” has L- 

and S-Format in MIPSe as same in MIPS32/16. There is only switch mode of MIPSe 

different from MIPS32/16. In MIPSe, we assume that MSB of instruction op-code 

indicates the format of this instruction. All benchmarks used in this experiment were 

selected from SPEC INT2000 [11], Mibench[12], and Mediabench[13].  

According to MIPS32/16 ISA and our design, the available registers in each 

register sets are as follows: RegisterSetS = r1 ~ r7 (r0 is used as zero in MIPS32/16, so 

it cannot be used) and the number of FRSNS = 7; RegisterSetL = r10~r25 (r8~r9 is 

reservedto process spill code, r26~r27 is reserved for OS kernel and r28~r31 are 

reserved for calling convention ) and the number of FRSNL = 16.  

The Low-Level Virtual Machine (LLVM) [14] is a compiler infrastructure. It 

provides language- and target-independent components for building compilers. There 

are several targets which are supported by LLVM, such as MIPS, ARM, x86, 

PowerPC, etc. We modified the LLVM compiler back-end to produce the INSs with 

virtual registers as inputs for HLSRA.  



 

33 
 

4.2  Parameter Determination 
While calculating PriorityS for each interval, HLSRA have to concern about the 

number of U-INSs that use the value of the interval (N1) and the number of operand 

registers which are RegisterS of the instruction which first defines the interval (S). In 

another words, we have to adjust α which controls the weight between N1 and S to get 

best S-Format translation rate. In our experiments, S-Format translation rate means 

that the percentage of the instructions which can be translated into S-Format over all 

instructions. The results are shown in Figure 4-1. 

 

Figure 4-1Figure 4-1: S-Format translation rate   
 

 

In the above figure, X-axis presents α value, Y-axis presents S-Format translation 

rate. HLSRA can achieves best S-Format translation rate when α equals one. 

Obviously, the number of U-INSs that use the value of the interval is the most 

important parameter for HLSRA to reduce code size.  
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4.3  Evaluation Results  

In this section, we will illustrate evaluation results for HLSRA. The value of α is 

set to 1.0 according to the result obtained in section 4.2. As shown in Figure 4-2, we 

illustrate evaluation result for HLSRA and compare it to the result of LSRA. As 

expected, HLSRA achieves 52.22% S-Format translation rate and there is 13% more 

than which LSRA can make. 

 

 
Figure 4-2: S-Format translation rate   

As shown in Figure 4-3, number of spill codes which produced by HLSRA 

accounted for 8% of all instructions on the average. We can see that HLSRA has 

generated slightly more spill code than LSRA. The reason why this happens is 

described below. LSRA decides which interval should be spilled according to their 

end point to decrease number of spill codes. Although how HLSRA decides which 

interval should be spilled is similar to LSRA, HLSRA chooses interval according to 

their priorities to decrease code size. Therefore, HLSRA will produce more spill 

codes than LSRA 
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Figure 4-3: Spill code percentage 

In Figure 4-4, we show the code size reduction achieved by HLSRA and 

compare it to the result of LSRA. The code size reduction is the number of 

instructions which can be translated into S-Format divide by two since each L-format 

instruction is twice the length of an S-format instruction.  

   

Figure 4-4: Code size reduction 

At last, we illustrate distribution of S-Format limitations in all programs which 

were produced by HLSRA and compare it to LSRA, as shown in Figure 4-5. The 

Y-axis is the percentage of instructions. In the figure, the top block, green colored, is 

the percentage of instructions which have no S-Format instructions or the immediate 
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value is oversized. The middle block, red colored, is the percentage of instructions 

which cannot be formed in S-Format due to register limitation. And the bottom block, 

blue colored, is those instructions whose register number and immediate value are in 

the range of S-Format instructions. 

The number of instruction which can be translated into S-Format is increased in 

programs processed by HLSRA. The HLSRA eases the problem of register limitation 

and makes 14% more instructions converted into S-Format than LSRA does. These 

instructions were not formed in S-Format due to register limitation originally in code 

produced by LSRA. By the proposed HLSRA, about 52% translation rate of S-Format 

instructions in programs is achieved 

 

Figure 4-5: S-Format limitation distribution 
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Chapter 5  Conclusions and Future Work  
In this chapter, we will make conclusions and discuss some possible future works 

for this thesis. 

5.1  Conclusion  

In this thesis, we presented hierarchical linear scan register allocation (HLSRA) 

algorithm which allocates registers more friendly for mixed-width ISA with mode 

switch by instruction encoding than traditional register allocation algorithms like 

LSRA. Because the registers which can be accessed by S-Format instruction are 

allocated to intervals which have been mostly used by U-INSs, HLSRA is supposed to 

ease the affect brought by limitation of operand registers for code size reduction.  

To achieve the goal described previously, we modify the allocation pass to fit the 

demand of mixed-width ISA, where allocation pass has been separated into two parts. 

Compared to LSRA, this modification will not increase time complexity. In addition, 

this design only brought neglectable overheads, such as producing a little more spill 

codes than LSRA and extra data structure, such as SpillS and SpillL.  

Overall, our design makes S-Format instruction rate increasing to about 52% on 

the average. As discovered in Section 4.3, there are still 42% instructions could not be 

formed in S-Format due to register limitation in HLSRA. The reason why this part 

cannot be improved by our design is described as follow. Firstly, because there exist 

over eight intervals live simultaneously at many execution points in the programs, 

there are certainly some instructions which cannot be formed in S-Format due to 

register limitation. Secondly, HLSRA cannot use more efficient but complex methods, 

such as iterative heuristic policies, because of the demand of low compilation time for 

dynamic compilers.  
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5.2  Future Work  

As we mention in section 5.1, since the design for dynamic compiler must be fast, 

complex optimizations are not suitable. Consequently, there are some aspects of 

future works for our thesis. 

[1] The First possible future work is to modify HLSRA to get better S-Format 

translation rate. Perhaps we can modify our design with a little more time 

consuming policy. There are some possible modifications.  

The First possible modification is adapting a little more complex priority 

calculation methods, for example, building interference graph for small scope of 

intervals and using this graph to calculate priorities.  

The Second one is to split interval while spilling it. Our design will spill 

whole interval when it cannot get a register rather than split it. When HLSRA 

spills an interval, it can insert extra store instructions into this interval to split it 

into two intervals: previous and remain intervals, and spills remain interval only. 

In this way, the previous interval will not be spilled and less spill code will be 

produced.  

[2] The second possible future work is to apply other fast optimization for 

increasing S-Format translation rate. As introduced in Section 3.1, there are 

instruction selection, instruction scheduling and register allocation in 

compiler-backend. In our thesis, a specific register allocation is proposed for 

mixed-width ISA to increasing S-Format translation rate. Therefore using a 

specific instruction scheduling for mixed-width ISA may achieve the same goal.  

The purpose of traditional instruction scheduling is decreasing instruction 

dependency for performance. For increasing S-Format translation rate, the 
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specific instruction scheduling could consider the more information while 

scheduling instruction, such as which formats instructions have, etc.   

[3] The third possible future work is applying our design to some other 

commercial mixed-width ISAs with mode switch by instruction encoding, 

such as ARM’s Thumb-2, MIPS’ new microMIPS. We can get more 

information about how our design affects code size reduction and execution 

performance through this work. Presently we cannot do that because there are 

no suitable compiler backends for these ISAs. 
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