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使用再造編碼及快取技術之低成本高可用性點

對點儲存方法 
研究生：黎光明                指導教授：袁賢銘 

 

國立交通大學資訊科學與工程研究所 

摘要 

高的資料可靠度是分散式儲存系統的重要特性之一。錯誤更正碼(erasure 

code)是一個常用的方法來產生冗餘(redundancy)的資料，不過這個方法需要原始

檔案來產生冗餘的資料。而再造編碼(Regenerating Code)分散式地蒐集多個節點

(peer)的資料來產生冗餘，則不需要維護一份原始的檔案。不過這樣做也有一些

缺點，存取時無法只透過一個節點(peer)來取得資料，加上編碼時需要更多的節

點 (peer)同時提供資訊才能達到比傳統方法更好的效率，而這在點對點

(Peer-to-Peer)的環境下是一個嚴苛的條件。 

我們在不額外維護一份原始檔案的條件下，利用最近下載完的節點(peer)中

的使用最近最少使用演算法的快取(LRU cache)中的資料來提高存取的效率以及

降低編碼的成本，我們用模擬的方式，在不同快取大小以及不同節點可靠度(peer 

availability)之下，記錄最近存取檔案的節點的資訊。在實驗中，我們將一個檔案

被分成 7 個區塊(block)，並且發現這些被記錄的節點在快取大小為 64 個檔案區

塊(block)的條件下，有 83%以上的比例可以改善存取效率和編碼成本。  
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Abstract 

High data availability is one of the important properties in P2P storage system. 

To support the property, erasure coding is a common method to generate redundant 

data, but the technique requires an original file in the creating process. Regenerating 

Code solves the problem through collecting encoding information in a distributed way; 

so it does not need to save the replica. However, there are still some drawbacks in the 

design. When accessing a file, the peer cannot only communicate to one peer to get 

enough file blocks. Besides, in the encoding procedure, the scheme suggests that the 

number of connected peers should be large enough, larger than the number of 

decoding blocks, so that the maintenance cost can be lower than the traditional way. 

The suggestion is a harsh condition in P2P environment because there should be 

simultaneously more peers alive and keep the file blocks in the system. 

On the condition that the system does not store a replica additionally, we utilize 

the data in the LRU cache of the peer last accessed a file to improve the access 

performance, and reduce the maintenance cost. Our scheme records the information of 

peers last accessed files to achieve the goal. Through the simulation, we experimented 

with different cache size under various peer availabilities. The experiments results 

showed that both the access performance and maintenance cost are improved at least 

83% in the Regenerating Code scheme when the cache size is 64 file blocks, where a 

file is divided into 7 blocks.  
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1. Introduction 

1.1. Preface 

In the age of knowledge explosion, information growth in the Internet is very fast. 

Computers today need more powerful processing ability and larger storage capacity to 

face the information growth. Powerful workstations or servers having limited 

scalability for storage and limited computing power for service can’t satisfy the 

requirement, whereas Peer-to-Peer storage system supporting high scalability, good 

performance and fault tolerance becomes a practical and better solution. However, it 

is not trivial to design a Peer-to-Peer storage system. In the paper [32] , they indicate 

that there are several techniques to design a Peer-to-Peer storage system, namely data 

redundancy, data placement, failure detection and data maintenance. In this thesis, we 

focus on the data redundancy which considers how to use optimal space and 

bandwidth cost in Peer-to-Peer storage system to approach the goal of data 

availability. 

1.2. Motivation 

Although there are many designs for Peer-to-Peer (P2P) storage systems, such as 

OceanStore[28] , CFS[19] , PAST[31] and Total Recall[23] , we are interested in the 

application of P2P storage system. Multimedia Content Discovery and Delivery 

(mCDN) architecture [33]  is an interesting application where P2P storage system 

plays an important role. mCDN architecture is a new architecture for Content delivery 

networks (CDNs), and can combine many CDN services to support a variety of 

business models. It defines three layers (Shown in Figure 1-1 Layered mCDN 
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architecture, from [33] ). First, Content Service Layer contains all entities providing 

functionality to the end users of mCDN and content service. Second, Content 

Distribution Layer is responsible for distributing and maintaining content and 

metadata. Third, Network Infrastructure Layer contains all components observing 

network state and trigger mCDN related work events. 

 
Figure 1-1 Layered mCDN architecture. From [33]  

 

A P2P storage system can be used in Content Distribution Layer to provide 

content service. It can place optimally the content to each peer and allow users access 

quickly the requested content. For P2P storage system, the data availability will 

impact directly the service quality, so we are concerned about it in system design. In 

the web application, the data availability that end users expect is at least three nines 

(99.9%) [34] . To achieve high availability, it can’t avoid spending more storage space. 

Replication scheme and erasure coding scheme were common methods to create 

redundant data before, but recently Network Coding is gradually popular and is 
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applied to generate redundant data. Regenerating Code [8] utilizes the property of 

Network Coding to solve some problems occurring in erasure coding, but meanwhile 

their scheme is not efficient for requesting. It is very critical for web application to 

supply fast response to users, so our work is to overcome the drawback to make their 

scheme more practical in web application. 

1.3. Problem Description 

For the data redundancy research, the previous comparisons concentrated on 

replication and erasure coding and the two targets, low storage cost and low 

bandwidth cost, are the key analysis points in the design of P2P storage system. 

Unlike to replication scheme just distributing full replica to other peers, erasure 

coding scheme requires an encoding process before sending coding blocks. The 

replication scheme is simpler, but erasure coding scheme offering better storage 

efficiency is the winner in their comparisons; nevertheless, erasure coding scheme has 

to exist a full file before the system start to generate new coding blocks, which is a 

limitation of redundancy mechanism causing erasure coding scheme to keep 

additionally one full replica in system, which is called hybrid scheme. Hybrid scheme 

including the advantage of two schemes reduces the cost of bandwidth and storage 

space and becomes the best one in later analysis. 

Regenerating code breaks the limitation by using the linear relationship of 

Network Coding, which is that coding blocks can be generated through collecting 

enough existing coding blocks. They surprisingly show the result and find that hybrid 

scheme complicates the redundancy management and has the bottleneck in disk I/O 

because storing the full replica, so advocate that coding scheme should only manage 

one type of redundancy. In their analysis, they conclude that their scheme spend lower 

cost of storage and bandwidth than hybrid scheme but is useful for backup application 
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due to lower access performance. Besides, we consider that their generating method 

has a condition, which is that there must be enough, more than the same setting of 

erasure coding, peers alive in P2P storage system. In the dynamic environment, the 

peers will join and leave at any time, so the success probability of their method is 

lower. For example, we suppose there are 14 coding blocks allocated to 14 different 

peers in a P2P storage system, and then the probability of 7 of the 14 peers 

concurrently occurring is higher than the probability of 13 of the 14 peers. 

In short, our work is to extend their scheme to support efficient data service in 

web application. 

1.4. Research Objective 

Through the observation above, the problem is how to extend their scheme in 

request aspect by following their central idea, only storing one type of redundancy. 

We start at this point and put in other idea next. In the research [27] , they take user 

download behavior into account. As a result, the system only pays little overhead to 

make hybrid scheme get better. Similarly, we consider that even the system just owns 

coding blocks, but in runtime a whole file will be reconstructed in the system when 

some peer wants to read it. In real system, each peer usually allocates some storage 

space for its LRU cache to save used data. The full copy will take place there, so our 

research objective is how to exploit it before it is replaced in cache and the peer leaves 

the P2P system. 

1.5. Research Contribution 

We implement our scheme which lets Regenerating Code system more useful for 

content service in a discrete-event packet level simulator, p2psim [21] . Our scheme 

basically follows the Regenerating Code scheme and sets a LRU cache with some 
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fixed size to each peer in the P2P environment. At each access, the system records the 

information of peers last accessed files and then that will be the first choice when the 

system wants to generate new coding block or some peer wants to access a file. We do 

some experiments with two parameters, cache size and peer availability. The 

experiment results showed that in different peer availability the LRU cache with size 

of 64 blocks can help to accelerate the most access in Regenerating Code system. In 

addition, we find that in P2P environment even though we set the LRU cache size 

very large the benefit is limited because each peer may leave and carry the data away. 

Finally, even if the file blocks in cache are not enough to reconstruct the original file, 

the peer still can decrease the connection times. Then the bandwidth cost is down and 

the success probability of encoding is higher since the peer only needs to connect to 

fewer peers. 

On the other hand, based on our research, we consider that it is possible that P2P 

storage systems don’t need to additionally maintain a full file. Although the authors of 

Regenerating Code want to use the Regenerating Code to achieve the goal, the access 

performance of the scheme is not acceptable for content service. In our research, we 

overcome the drawback and then the goal is possible. 

1.6. Thesis Outline 

We arrange the remainder of this thesis as follows. In chapter 2, we introduce 

some associated knowledge and show the details of each redundancy scheme, which 

will assist to understand and analyze the redundancy policy. In chapter 3, we describe 

how we use the LRU cache to decrease the cost of access and maintenance. In chapter 

4, we explain the design of experiments and analyze the improvement. In chapter 5, 

we discuss how to use P2P storage system in mCDN architecture. Finally, in chapter 6, 

we conclude our design and analysis.  
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2. Background and Related Work 

2.1. Background 

2.1.1. Peer-to-Peer (P2P) Network 

With regard to the P2P network, most computer users might associate with some 

well-known P2P application in thinking, such as BitTorrent and Skype. The P2P 

architecture can connect all participants and cumulate all the bandwidth and 

computing in the P2P network to provide all kinds of services for the members in P2P 

network and it is unlike traditional client/server architecture, or called server-based 

architecture, which relies on relatively low number of servers to serve overall clients. 

It allows users to access to its resources by other systems and supports resource 

sharing, which requires fault-tolerance, self-organization, and massive scalability 

properties. [17] With the powerful properties above, it becomes an important research 

target and a useful application today. 

There are many classifications of P2P networks. For example, it can be classified 

by what they can be used for, such as file sharing, telephony, media streaming and 

discussion forums. Other classification may be according to the degree of 

centralization. We here introduce one of unstructured and structured P2P networks. 

[17]  The P2P network consists of all the participating peers as network nodes. If a 

peer knows the location of the other peer, then there is a directed edge from the 

former node to the latter. Any P2P network can use the links to form a graph, and this 

classification uses the characteristic to classify the P2P networks as unstructured or 

structured. The unstructured P2P network organize peers in a random graph either in a 
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flat or hierarchical manner, so it can be easily constructed as a new peer that wants to 

join the network can copy existing links of another node and then form its own links 

over time. The main disadvantage with unstructured P2P networks is that the queries 

may not always be resolved. Because the queries have to be flooded through the 

network to find as many peers as possible, they may not be successful to find all the 

peers in the network. Structured P2P network usually has a distributed hash table 

(DHT) to resolve the problem for the reason that DHTs propose a determined object 

locating service. There are already some studies about its abstraction, such as Chord 

[15] , Pastry.[14] and the study [13] , and some applications using it, such as these 

papers [16] [20] , CFS[19] , OceanStore[28] and PAST[31] . 

On the other hand, there is an important requirement to the P2P application, 

which is due to that the P2P network is an overlay network on the Internet. Sometimes 

two nodes are logically near, but their distance is very long physically, so some 

research uses some methods, such as response time, to judge if two nodes are near 

really. The problem may reduce the service performance of P2P storage system as the 

peer does not connect to the nearest peer owned files to get the data. In the mCDN, 

this is a requirement in content service. 

2.1.2. Network Coding 

In recent years, Network Coding is gradually popular. The research domain 

began at the paper [5] , where showed Network Coding can increase the network 

throughput, and in the multicast case can achieve the maximum data rate theoretically 

possible. In the later research [2] [3] , they demonstrated that linear Network Coding 

can achieve maximum multicast capacity, and then linear Network Coding is enough 

to use. Following them, in [1] and [9] they proved random linear Network Coding can 

achieve maximum multicast capacity when the field size is large enough. Finally, to 
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make Network Coding more practical, in [7] they gave deterministic polynomial time 

algorithms for designing linear codes for directed acyclic graphs with edges of unit 

capacity.  

Besides these theory research above, in [4] , an instant primer for network coding 

which explains what network coding does and how it does it, points out some 

practical consideration. There is an example used in P2P environment from [35] 

where they use linear Network Coding to design a single source P2P file sharing. 

The core notion of network coding is to allow mixing of data at intermediate 

network nodes; therefore, many collisions of data flows can be eliminated. It 

overthrows the concept of conventional routing which considers that encoding at 

intermediate network nodes is not efficient. Network Coding can use in many places, 

such as throughput, wireless resources, security, complexity, and resilience to link 

failures [11] , and in [12] they surveyed some emerging applications of Network 

Coding, namely network monitoring, operation of switches, on-chip communication, 

and distributed storage. 

2.2. Related Work 

2.2.1. Distributed Storage System  

A number of studies about distributed storage [6] [36] [37] [38] [39] made use of 

Network Coding to acquire data in the sensor network. In [30] they proposed a 

scheme for P2P content distribution of large files that is based on network coding. 

Their work improved the efficiency of file downloading and the robustness of the 

system. The study [18] , using Network Coding by means of presenting a detailed 

performance analysis of the P2P system, also contributed to P2P content distributed 

system. For the data maintenance in distributed storage system, the paper [8] they 
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presented fundamental bounds and constructions for network codes that need to be 

maintained over time.  

The data redundancy strategies for the system were compared and evaluated in 

[22] [24] [25] [26] . Erasure coding scheme with higher storage and bandwidth 

savings is better than replication scheme when the peer availability is low. The main 

consideration includes storage, bandwidth and overhead of encoding complexity. 

Another research in [10] proved that erasure coding brings the advantage if the 

condition below is satisfied. The two key parameters in system are the storage 

overhead S and peer availability μ and then S and μ should obey S *μ > 1. 

Other research [27] [29] tried to adopt the hybrid scheme, namely erasure coding and 

replication, to get the efficient access from replication scheme and reach more optimal 

tradeoff between benefits of erasure coding and its overhead. The hybrid scheme 

actually is successful to achieve the goal, but in [8] [25] they argued that hybrid’s 

reduced bandwidth is limited. Therefore, in the Regenerating Code system, there is 

only one type data maintaining there.  

2.2.2. Redundancy Scheme 

Here we introduce the details of the three redundancy strategies, replication, 

erasure coding and hybrid that were analyzed before. 

Replication scheme is the simplest of the three. In the P2P system, each file will 

be duplicated and kept in n different peers, where n is the redundancy setting in the 

system. When any peer wants to access the file, it just chooses one to request the file. 

If all the n replicas are disappeared, then the file is unavailable. For each file, the 

system will maintain its copies to the required number. The number n is depended on 

system availability target, 1 − 𝜀𝜀  , which has some number of nines. The equation is 

determined as below, where p is the peer availability which is independent and 
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identically distributed in the system. 

𝜀𝜀 =  (1 − 𝑝𝑝)𝑛𝑛                                                               (1) 

which upon solving for n yields 

𝑛𝑛 =
log 𝜀𝜀

log⁡(1 − 𝑝𝑝)
                                                         (2) 

In the erasure coding scheme, each file is divided into k blocks and the k blocks 

are encoded into n coding blocks. When collecting any k of n coding blocks, a peer 

can decode them to recovery the original file and retrieve it. On the other hand, when 

the system wants to create new a coding block, the encoding peer must get either a 

copy of original file or k coding blocks. A well-known erasure code is Reed-Solomon 

code [40] which is a class of Maximum Distance Separable codes (MDS). If there are 

fewer than k coding blocks existing in the system, then the file is unavailable. We 

exhibit the redundancy analysis as follows. The redundancy factor is 𝑟𝑟 = 𝑛𝑛
𝑘𝑘
 in the 

scheme and the assumption about availability is the same to replication scheme. 

1 − 𝜀𝜀 = ��
𝑟𝑟 ∗ 𝑘𝑘
𝑖𝑖
� 𝑝𝑝𝑖𝑖

𝑟𝑟∗𝑘𝑘

𝑖𝑖=𝑘𝑘

(1 − 𝑝𝑝)𝑟𝑟∗𝑘𝑘−𝑖𝑖                                       (3) 

In [41] , using algebraic simplifications and the normal approximation to the 

binomial distribution, they get the following formula for the erasure coding 

redundancy factor: 

𝑟𝑟 =
𝑛𝑛
𝑘𝑘

=

⎝

⎛
𝜎𝜎𝜀𝜀�

𝑝𝑝(1 − 𝑝𝑝)
𝑘𝑘 + �𝜎𝜎𝜀𝜀

2𝑝𝑝(1 − 𝑝𝑝)
𝑘𝑘 + 4𝑝𝑝

2𝑝𝑝
⎠

⎞

2

                           (4) 

where 𝜎𝜎𝜀𝜀  is the number of standard deviations in a normal distribution for the 

required level of availability. 

The hybrid scheme has both the coding blocks and the full file in the system and 

the coding blocks and the full file are allocated to different peers in the system. The 

file is unavailable when both the full file is not presenting and the number of coding 
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blocks is smaller than k. In the scheme, the benefit is that the full copy can support not 

only encoding but also access. The redundancy factor corresponds to increasing the 

redundancy factor of erasure coding by 1. The related formula is similar to erasure 

coding and the assumption is also the same as before. 

1 − 𝜀𝜀 = 1 − (1 − 𝑝𝑝)�1 −��
𝑟𝑟 ∗ 𝑘𝑘
𝑖𝑖
� 𝑝𝑝𝑖𝑖

𝑟𝑟∗𝑘𝑘

𝑖𝑖=𝑘𝑘

(1 − 𝑝𝑝)𝑟𝑟∗𝑘𝑘−𝑖𝑖�                                      (5) 

The equation is derived in [27]  

𝑟𝑟 = 1 +
𝑛𝑛
𝑘𝑘

= 1 +

⎝

⎛
𝜎𝜎𝜀𝜀�

𝑝𝑝(1 − 𝑝𝑝)
𝑘𝑘 + �𝜎𝜎𝜀𝜀

2𝑝𝑝(1 − 𝑝𝑝)
𝑘𝑘 + 4𝑝𝑝

2𝑝𝑝
⎠

⎞

2

                           (6) 

Here the 𝜺𝜺 is derived as below where 𝜺𝜺′  is equal to the 𝜺𝜺 in erasure coding 

scheme and the equation (5) is used. 

1 − 𝜀𝜀′ = ��
𝑟𝑟 ∗ 𝑘𝑘
𝑖𝑖
� 𝑝𝑝𝑖𝑖

𝑟𝑟∗𝑘𝑘

𝑖𝑖=𝑘𝑘

(1 − 𝑝𝑝)𝑟𝑟∗𝑘𝑘−𝑖𝑖                                    (7) 

𝜀𝜀′ =
𝜀𝜀

1 − 𝑝𝑝
                                                                                 (8) 

2.2.3. Regenerating Code 

Regenerating Code, a new technique using linear network codes and proposed in 

[8] , allows a new node to download functions of the stored data from the surviving 

nodes, which is the different point to erasure coding. The pair (𝑛𝑛 , 𝑘𝑘) is that there are 

n coding blocks for each file in the system and any k of the n coding block can 

reconstruct the file. The decoding requirement, namely the k number, is the same to 

erasure coding. They exploited information flow graph, a particular graphical 

representation of a distributed storage system, to analyze how Regenerating Code 

works and its principle, and showed that there is a fundamental tradeoff between 

storage and repair bandwidth. There are two special cases of the storage-bandwidth 
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tradeoff──Minimum-Storage Regenerating (MSR) Codes with the best storage 

efficiency and Minimum-Bandwidth Regenerating (MBR) Codes with the minimum 

repair bandwidth. 

An illustrated example is in Figure 2-1 from [8] . It is a (4,2)-Minimum-Storage 

Regenerating Code. A file is divided into two blocks and then each block contains two 

packets with the same size, so each peer stores two packets. For the decoding, a peer 

should retrieve any two blocks to reconstruct the file. When creating a block, the new 

peer mixes the packets from three other peers which do not send their information but 

generate smaller parity packets of their data and forward them. The coefficients of 

linear operation are selected at random. In the case, the repair bandwidth is smaller 

than the size of original file. In contrast, erasure coding scheme has to access the 

original file to generate a new encoded block. 

 
Figure 2-1 A repair for a (4,2)-Minimum-Storage Regenerating Code, from [8]  

 

There is an important number d, which is the communication number of 

repairing a coding block. For example, d is equal to three in the 

(4,2)-Minimum-Storage Regenerating Code but d is equal to two in the (4,2)-erasure 

code. It is clear that d in the Regenerating Code is larger than erasure code, and in 

their analysis the benefits of the Regenerating Code, due to the saving of the storage 

and bandwidth, are better as d is larger. Therefore, they let d be very close to n in their 
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analysis to get more optimal results, which is that they set d=n-1. The relationship of 

the storage and bandwidth of MSR and MBR is showed as follows and the complete 

proof of this theorem is given in the Appendix of [8]  . 

(α𝑀𝑀𝑀𝑀𝑀𝑀 , γ𝑀𝑀𝑀𝑀𝑀𝑀) = �
ℳ
𝑘𝑘

,
ℳ𝑑𝑑

𝑘𝑘(𝑑𝑑 − 𝑘𝑘 + 1)�                                          (9) 

(α𝑀𝑀𝑀𝑀𝑀𝑀 , γ𝑀𝑀𝑀𝑀𝑀𝑀) = �
2ℳ𝑑𝑑

2𝑘𝑘𝑘𝑘 − 𝑘𝑘2 + 𝑘𝑘
,

2ℳ𝑑𝑑
2𝑘𝑘𝑘𝑘 − 𝑘𝑘2 + 𝑘𝑘

�                 (10) 

Where α is the block size, β is the packet size, γ = 𝑑𝑑 β and ℳ is the original file 

size. 

  



 

14 

3. Regenerating Code with Cache 

In this chapter, we describe our scheme in detail. In the section 3.1, we interpret 

the setting of Regenerating Code and the assumption where our scheme is suitable to 

use. In section 3.2, we demonstrate how we design the P2P storage system. Finally, in 

the section 3.3, we analyze and illustrate the lookup and redundancy maintenance 

through some cases expected to make our system better in runtime. 

3.1. System assumption and setting 

Suppose all peers in the P2P storage system have two types of storage space, 

permanent space and temporary space. The files in permanent space will exist in the 

system until the peer crashes or leaves, but the files in temporary space may be 

replaced if the space is full. The replacement rule follows the algorithm of the LRU 

cache. Here we name the permanent space “database” and name the temporary space 

“LRU cache”. Our work adopts Chord[15] to maintain routing tables for lookup and 

query management. Each peer and each file have their unique id. 

The target of file availability is set to 99.9%. We utilize the (𝑛𝑛, 7)-Regenerating 

Code to encode the files where n is decided by the peer availability and 7 is used and 

analyzed in DHash++[20] , and we set 𝑑𝑑 = 13. Then each file is divided into 7 

blocks and each block contains 7 packets (see Figure 3-1). Clearly, the total packet 

number in a file is 49, and these packets are used to generate the coding blocks. Each 

packet in the coding blocks also stores its combination coefficients related to the 49 

packets in the initial file (see Figure 3-2 ). 
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Figure 3-1 The relationship between the blocks and packets in a file 

 

 
Figure 3-2 The composition of a coding block 

 

For the linear combination, we let the field be large enough to be able to decode 

successfully and suppose the packet size be also large enough to neglect the storage 

overhead of the coefficients. 

We choose the MSR codes, a case of Regenerating Code, to implement in the 

P2P storage system. By our setting above, we get the pair of the block size and repair 
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bandwidth �𝑀𝑀
7

, 13𝑀𝑀
49
� from formula (9). The MSR codes here require communicating 

with 13 different peers to encode a new coding block. If there are not sufficient peers 

in the system, we change the way to collect 7 different blocks, which is the same as 

erasure coding scheme. 

3.2. System design 

Our scheme is fundamentally based on the scheme in [27] . The difference is that 

we encode with Regenerating code, take the LRU cache into account and add some 

information in DHT as the peers are requesting to make the access and the encoding 

more efficient. Overall, each peer is responsible for three works, indexer, register and 

maintenance, which controls the data placement, the data lookup and the data 

availability in the P2P storage system. These mechanisms are supported by the Chord 

protocol in the bottom layer. 

For the indexer and the register, each peer periodically registers the unique file 

IDs of all the holding blocks in its database with some indexers of the file. Here the 

coding blocks in each peer belonged to the same file have the same ID but own 

different coefficients. When the indexers receive the report, they record a new index 

including the IP of the reporting peer and the file IDs in the report into their index 

table and they set a timer to decide if they should remove these indexes. The indexer 

can use the timer to detect the situations of the indexed peers, namely the peers are 

alive or not, in the system. The first indexer is decided by the hash function used in 

DHT H(ID) and others are the adjacent and continuous successors of the first indexer. 

We illustrate this in Figure 3-3 .  
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Figure 3-3 A peer registers the block d to 3 indexers  

 

For the maintenance, each peer is assigned to manage the blocks of the some 

files according to the hash function H(ID), and then it periodically evaluates the 

number of registered blocks in its index table. If the number is under the redundancy 

target, it invokes the event of generating new coding blocks to increase the 

availability of the file before communicating with other indexers and confirm that the 

redundancy actually is not enough. 

Next, we explain how to request a file and how to create a new coding block. In 

the two operations, each peer will check both its database and LRU cache before 

request to other peer and each requested peer also replies the holding information of 

the requesting file through its database and LRU. The communication has two steps as 

a peer wants to request a file from the target peer. First, the peer requests a file to the 

target peer, and then the target peer compares all its owning blocks ID with the file ID 
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to produce a list of block information only containing the 49 coefficients of each 

block. Second, the requesting peer uses the list to get the blocks it does not have from 

the target peer and the transporting of the blocks occurs at this step. Owing to the two 

steps, the requesting peer can avoid downloading the owned blocks. 

For the request, the indexers will always additionally index the peer for each file 

that last requested the file, and send the information of both the peer and registered 

peers to the requesting peer. When requesting a file d, the peer will choose the first 

indexer to get the peer information of the file. After getting back the peer list, the 

requesting peer will connect to the last requested peer first. The peer then follows the 

peer list to collect 7 independent blocks. If the information is still not enough, the peer 

attempts to look up other indexers. If all indexers can’t provide sufficient information, 

it will try again later until its max lookup time. After collecting the 7 independent 

blocks successfully, the peer decodes the blocks and put them back to its LRU cache 

for the next access. 

For the mechanism of creating a new coding block, we introduce another type of 

the indexed peers. It is similar to the above that the indexers always additionally 

index the peer for each file that last requested the file but not among the registered 

members. The reason is that we want to index a peer holding the most blocks to 

become the first choice to let it generate a new coding block by itself, and this can 

save the maintaining cost. When the indexers decide to create a new coding block, 

they notify the peer indexed above first and then randomly choose other peers not in 

the list of the registered members to generate the new coding blocks and the list of 

the registered members for the file is in the notification for the notified peers. The 

chosen peers with 7 coding blocks in LRU cache generate the coding block by 

themselves. If the coding blocks are not enough in LRU cache, they request the last 

accessed peer first. If that peer has 7 blocks, then the coding block is generated by 
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the peer. If not, they then choose the registered members, and have two choices  

which depend on the number of the gathered and useful peers for creating the coding 

block. If the number is equal or larger than 13, then it follows the Regenerating Code 

to create a coding block. If unfortunately the number is smaller than 13 then it turns 

to collect 7 blocks to reconstruct the file and create a new coding block. Finally, if 

the number is smaller than 7, like the request process, it tries to request the indexers 

again later to get more information and follow the steps before until time out occurs. 

The flow chart of the process appears in Figure 3-4 . 

 
Figure 3-4 The flow char of creating a coding block 

3.3. System analysis 

Our analyses have two parts. One is about the request and the other is about the 

generating of a coding block. In the section, there are some figures which show the 
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analyses of the hybrid scheme (See Figure 3-5 shown below), the Regenerating Code 

scheme (See Figure 3-6 shown below) and the Regenerating Code scheme with LRU 

cache scheme (See Figure 3-7 (Case 1) and Figure 3-8 (Case 2) shown below). The 

setting of (n, k) is (4,2) below. We analyze the differences among these schemes to 

explain why we design our scheme. The scenario is that there are four peers, Peer 1 to 

Peer 4, store individually a coding block of the file. When the Peer 4 crashed, Peer 5 

is notified to generate a coding block. In addition, Peer 6 shows how to requests the 

file in each scheme. We want to explain the difference among these schemes. 

 
Figure 3-5 Analysis of the hybrid scheme 

 

In the Figure 3-5, we show the analysis of the hybrid scheme. Peer 7 is an 

important peer storing a replica in the hybrid scheme. When generating a coding 

block, Peer 7 can directly forward a coding block to Peer 5, and when requesting the 

file, Peer 7 also can directly forward the whole file to Peer 6. If Peer 7 crashes, Peer 6 

still can access the file through communicating with two of the first three peers. But 

Peer 5 can’t get a coding block until the file is reconstructed by some peer. Usually 

the system can wait to index some peer accessed the file, like Peer 6, later; however, if 
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the waiting time is so long that some of the first thee peer may crash in the period, 

then the redundancy in the system may be not enough to create a coding block. 

Therefore, sometimes the system has to maintain a whole replica additionally. The 

extra overhead is the drawback of the erasure coding scheme. The advantages of the 

scheme are that the access only requires connecting to one peer and the bandwidth 

cost of the generating is one coding block, a half of the file, as the replica is present. 

 
Figure 3-6 Analysis of the Regenerating Code 

 

In the Figure 3-6, it is the analysis of the Regenerating Code. The replica is not 

maintained in the system. All the requesting and the generating are finished by 

collecting enough coding blocks. The needed number for the requesting is two, but 

the number for generating is different. Peer 5 gathers three smaller coding block, a 

coded packet with the size of a quarter of the file. Consequently, the bandwidth cost is 

three fourths of the file but the cost is higher than hybrid scheme at ideal case. In the 

example, the number d in the Regenerating Code is 3. If d is larger, for example, in 

our experiment the value is 13 and (n, k)  =  (14,7), then the bandwidth cost will be 

close to the hybrid scheme where the value of our setting is 13
49

 of the file and the 
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value of hybrid scheme is 1
7
 of the file. We can find that the cost is gradually close to 

the size of the coding block as d is larger, but still larger than hybrid scheme. 

Nevertheless, that the number d close to n is larger implies that there must be so many 

peers simultaneously existing in the system, which is a rigorous condition in dynamic 

environment. The probabilities of at least any d peers of the n peers are alive 

concurrently in the P2P environment at different peer availability are shown in Table 

3-1 . Here the peer availability is independent and identically distributed. The last two 

rows are the setting in our experiment. 

 

Table 3-1 The successful probabilities of the encoding of the Regenerating Codes 

Peer availability Value of n Value of d Probability 

0.9 14 13 0.5846 

0.65 21 20 0.0003 

0.4 42 41 close to 0 

0.65 21 13 0.5237 

0.4 42 13 0.7589 

 

We consider that LRU cache can reduce the bandwidth in the system without 

keeping the entire file, so our scheme additionally index two peers for each file, the 

last accessed peer and the peer which last accessed the file but not among the 

registered members, to exploit the cache more sufficiently. The two cases that the 

LRU cache can decrease the cost are shown in Figure 3-7 and Figure 3-8. One is the 

indexed peers have partial blocks, the other is they have enough blocks. Another point 

to use the data is that there is linear relationship between the coding blocks and raw 

blocks. The requested coding blocks in cache will be decoded for access and then are 

transformed into the raw blocks. If the raw blocks and the coding blocks are 
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independent, the two types of the blocks also can reconstruct the file. Furthermore, if 

there are some coding blocks in the LRU cache of the peer generating a coding block, 

the peer can use these blocks to create the coded packets by itself; therefore, the peer 

does not need to collect d coded packets. 

 
Figure 3-7 Analysis of the Regenerating Code with LRU cache (Case 1) 

 

In the Figure 3-7, the indexed peers do not have enough blocks, this case is one 

block; as a result, they only have to communicate with fewer peers to finish their tasks. 

There is still another case like this, which is that the peer last accessed the file holds 

partial coding blocks but Peer 6 has no blocks. In our (14,7) setting, if it has 4 

coding blocks, then Peer 6 only lack 3 coding blocks after just one connection. For the 

cost, when the connection times become fewer, the bandwidth is less too. Although 

LRU cache can bring the benefit, there is a problem when the peers use the coding 

blocks in LRU cache. That is the peer may collect the repeated blocks or dependent 

blocks which can’t support the decoding, so sometimes not all the blocks in cache are 

helpful. The requesting peer has to check the coefficients of these blocks before 
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retrieving the blocks. 

 
Figure 3-8 Analysis of the Regenerating Code with LRU cache (Case 2) 

 

In the Figure 3-8, the indexed peers have entire file. Fortunately, Peer 5 can 

generate by itself, and Peer 6, like hybrid scheme, just connect to one peer to read the 

file. 

Briefly, if the indexed peers own the whole file, the benefit is equal to save a 

replica the system. Even if they only have a partial file, the connection cost still goes 

down.  
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4. Experimental Result and Analysis 

4.1. Experimental Setup 

We attempt to evaluate the performance improved by the additionally indexed 

peers in P2P storage system. We implement our scheme in P2PSim [21] , a discrete 

event packet level simulator that can simulate structured overlays only. The simulated 

network comprises 1024 peers, and each peer alternately crashes and rejoins in the 

network. The interval between successive events for each peer is exponentially 

distributed with a mean of given time. Each peer has a database, a LRU cache and an 

index table. When a peer crashes or leaves, all stored data and indexes are cleared. 

When a peer rejoins, it changes to a different IP and also uses different DHT id. There 

are 1000 different files with the same size in the system and all files have the same 

accessed probability. At the beginning, all file are randomly allocated to these peers. 

These peers will use the files to generate enough coding blocks to those randomly 

chosen peers. 

The main two parameters are the peer availability and cache size. The values of 

each parameter are shown in Table 4-1 and Table 4-2 . The goal of the file availability 

is 99.9%. We choose the peer availability first and then set different cache size. The 

experiment time is 6 hours when peer availability is 0.9. In order to let the number of 

lookup of the peers be 40, we increase the experiment time in the experiments with 

lower peer availability. We collect the data only during the second half of the 

experiment time. 
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Table 4-1 Individual parameters for each peer availability 

Parameter Value  

Peer availability 90% 65% 40% 

Time (hours) 6 
90
65

∗ 6 
9
4
∗ 6 

Data redundancy 2 3 6 

Data redundancy (blocks) 14 21 42 

 

Table 4-2 Common parameters for all peer availability 

Parameter Value  

Cache size (blocks) 8, 16, 32, 64, 128 

Average requested files per peer 40 

Average requested blocks per peer 40 * 7 = 280 

Target availability 99.9% 

 

4.2. Evaluation and Analysis 

4.2.1. Experimental results of access 

When accessing a file, a peer will check its LRU cache first. If it does not own 7 

blocks, it will request the indexed peer to reduce the connection times. If the indexed 

peer owns 7 blocks in its LRU cache, the accessing peer only requires one connection 

time to get the whole blocks rather than requires several connection times to collect 7 

blocks. We show the access performance, connection times, improved by the indexed 

peers through three types of the request cases, the peers having 7 blocks, the peers 

having no block and the peers having partial blocks. In addition to the three types of 
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the request cases, there are some cases that the accessing peer has 7 blocks in its LRU 

cache and then does not need to request other peers, called other cases below. The 

three tables, Table 4-3 , Table 4-4 and Table 4-5 show the percentages of the four 

types among total request cases for each peer availability. Furthermore, the 

percentages of the type of the request cases that the indexed peers have 7 blocks for 

three peer availabilities are shown in Figure 4-1. The values below are the average of 

5 trials. 

Table 4-3 The access results for peer availability = 0.9 

 The indexed 

peers have 7 

blocks 

The indexed 

peers have 

partial blocks 

The indexed 

peers have no 

block  

Other cases 

8 45.76% 28.44% 25.70% 0.10% 

16 69.21% 16.29% 14.30% 0.20% 

32 86.35% 7.41% 5.85% 0.39% 

64 91.51% 4.62% 3.09% 0.77% 

128 91.30% 4.55% 2.67% 1.48% 

 

Table 4-4 The access results for peer availability = 0.65 

 The indexed 

peers have 7 

blocks 

The indexed 

peers have 

partial blocks 

The indexed 

peers have no 

block  

Other cases 

8 38.72% 30.34% 30.83% 0.10% 

16 60.69% 19.89% 19.21% 0.21% 

32 80.87% 10.18% 8.58% 0.37% 

64 89.06% 5.98% 4.20% 0.76% 

128 89.74% 5.34% 3.41% 1.51% 

Block 
number 

Cache 

size 

Block 
number 

Cache 

size 
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Table 4-5 The access results for peer availability = 0.4 

 The indexed 

peers have 7 

blocks 

The indexed 

peers have 

partial blocks 

The indexed 

peers have no 

block  

Other cases 

8 28.00% 37.96% 33.92% 0.13% 

16 48.54% 26.47% 24.78% 0.21% 

32 68.97% 16.64% 14.01% 0.38% 

64 83.51% 9.18% 6.51% 0.81% 

128 85.25% 8.10% 5.07% 1.58% 

 

 
Figure 4-1 The access results of the case the indexed peers have 7 blocks for each peer availability 

 

Through the results above, we can observe that the optimal choice of cache size 

is 64. The values are at least 83%. 

In our experiments, we take advantage of the LRU cache to improve the access 

performance. Below, we compare the connection times of our scheme with the pure 

Regenerating Code scheme which only detects the database during the process of 
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access. For the connection times, we just compare those connections the peer actually 

gets at least one blocks. We ignore the connections for searching the information of 

peers and blocks. 

In the pure Regenerating Code scheme, if a peer owns a coding block of the file 

in database, it only requires 6 connection times to collect 7 blocks. If not, a peer then 

requires 7 connection times. The percentages of the cases of 6 and 7 in each 

comparison are according to the statistics in our experiments. 

In our scheme, the indexed peers can help to reduce the connection times 

because they may own more than 1 block. If they own 7 blocks, then it is the ideal 

case that the peer only needs 1 connection. 

In the Table 4-6, “Before” means the values of the pure scheme and “After” 

means the values of our scheme. 

 

Table 4-6 Comparison of the connection times for each availability 

 0.9 0.65 0.4 

Before After Before After Before After 

8 6.99  4.22  6.97  4.61  6.92  5.14  

16 6.98  2.70  6.97  3.18  6.90  3.85  

32 6.99  1.69  6.97  1.97  6.89  2.60  

64 6.98  1.44  6.97  1.57  6.88  1.89  

128 6.98  1.39  6.97  1.45  6.88  1.70  

 

In the Figure 4-2 , Figure 4-3 and Figure 4-4 , we individually show the 

comparison of connection times for each peer availability. 

peer 
availability 

cache 

size 
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Figure 4-2 Comparison of the connection times for peer availability = 0.9  

 

 
Figure 4-3 Comparison of the connection times for peer availability = 0.65 
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Figure 4-4 Comparison of the connection times for peer availability = 0.4 

 

We can observe the connection times can reduce to less than 2 after the cache 

size is larger than 64. The value is very close to the ideal case. 

4.2.2. Experimental results of generating redundant data 

In our scheme, there are four ways to generate a coding block. The main way to 

improve the cost of maintenance is that the coding blocks are generated by the 

indexed peers. Besides, there are the three ways to generate a coding block, 

generating by itself, generating through Regenerating Code and generating by 

reconstructing the file. The three tables, Table 4-7, Table 4-8, Table 4-9, show the 

percentages of the four ways among total generating cases. Furthermore, the 

percentages of the way of generating a coding block by the indexed peers for three 

peer availabilities are shown in Figure 4-5. Also, all values are the average of 5 trials. 
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Table 4-7 The results of generating redundancy for peer availability = 0.9  

 

By indexed peers 
By Regenerating 

Code 

By reconstructing the 

file 
By itself 

8 44.95% 52.21% 0.38% 2.47% 

16 68.92% 28.12% 0.20% 2.77% 

32 86.08% 10.96% 0.07% 2.89% 

64 91.59% 5.15% 0.04% 3.22% 

128 91.58% 4.41% 0.03% 3.98% 

 

 

Table 4-8 The results of generating redundancy for peer availability = 0.65  

 

By indexed peers 
By Regenerating 

Code 

By reconstructing the 

file 
By itself 

8 35.99% 57.88% 0.01% 6.12% 

16 58.03% 35.30% 0.01% 6.66% 

32 78.57% 14.81% 0.00% 6.61% 

64 86.67% 6.52% 0.00% 6.81% 

128 87.58% 5.08% 0.00% 7.34% 
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Table 4-9 The results of generating redundancy for peer availability = 0.4  

 

By indexed peers 
By Regenerating 

Code 

By reconstructing the 

file 
By itself 

8 27.57% 67.38% 0.01% 5.04% 

16 50.50% 45.49% 0.00% 4.01% 

32 72.18% 24.74% 0.00% 3.08% 

64 87.85% 9.65% 0.00% 2.50% 

128 90.16% 6.90% 0.00% 2.93% 

 

 
Figure 4-5 The results of generating redundancy by the indexed peers for each peer availability 

 

The values in Figure 4-5 are the values of the first column of the three tables 

above. We can find that the optimal cache size is 64 where the value is at least 86% 

and the values of the case that peer availability is 0.65 are lower than the case that 

peer availability is 0.4 as cache size is larger than 64. The reason is that the 
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generated by the peer itself is higher as peer availability is 0.65. 

The target of the comparison of generating redundancy is the same as the 

comparison of access. Assume the file size is M and then the block size is 1
7
𝑀𝑀. That 

the coding block is generated by another peer owning a whole file is the ideal case 

whose bandwidth cost is 1
7
𝑀𝑀. We analyze the pure scheme first. It is according to the 

theoretical value of the Regenerating Code in our setting. The value is 13
49
𝑀𝑀. 

In our scheme, there are four types of cases: 

 The coding block is generated by itself. The cost is 0. 

 The coding block is generated by the indexed peer. The cost is 1
7
𝑀𝑀. 

 The coding block is generated by the process of Regenerating Code. The cost is 

13
49
𝑀𝑀. 

 The coding block is generated by the process of reconstructing the file. The cost 

is M. 

We calculate the average cost as below. 

𝑃𝑃1 ∗ 0 + 𝑃𝑃2 ∗
1
7
𝑀𝑀 + 𝑃𝑃3 ∗

13
49

𝑀𝑀 + 𝑃𝑃4 ∗ 𝑀𝑀                       (11) 

where 𝑃𝑃1,  𝑃𝑃2, 𝑃𝑃3 and 𝑃𝑃4 are the percentages of each cases in our experiments. 

In the Table 4-10, “Before” means the values of the pure scheme and “After” 

means the values of our scheme. The unit is M and ideal value is 1
7
 which is close to 

0.143. 
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Table 4-10 Comparison of the cost of maintenance for each peer availability 

 0.9 0.65 0.4 

Before After Before After Before After 

8 0.265  0.207  0.265  0.205  0.265  0.218  

16 0.265  0.175  0.265  0.177  0.265  0.193  

32 0.265  0.153  0.265  0.152  0.265  0.169  

64 0.265  0.145  0.265  0.141  0.265  0.151  

128 0.265  0.143  0.265  0.139  0.265  0.147  

 

In Figure 4-6 , Figure 4-7 and Figure 4-8 , we individually show the comparison 

of the average cost of maintenance for each peer availability. 

 

 
Figure 4-6 Comparison of the average cost of generating a coding block for peer availability = 0.9 
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Figure 4-7 Comparison of the average cost of generating a coding block for peer availability = 0.65 

 

 
Figure 4-8 Comparison of the average cost of generating a coding block for peer availability = 0.4 
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5. Discussion 

In the chapters above, we had discussed the design of P2P storage system. Here 

we discuss how the design is mapped on to the content distributed components in 

mCDN [33] . There are four related components for content service, CDN origin 

servers called CDN_Origin for short, CDN edge servers called CDN_EDS for short, 

optimal content placement called OCP for short and the content provider service 

called CPS for short, and a related architecture, Peer-to-Peer Search Middleware 

called P2P_SMW for short, in the mCDN architecture. In the Table 5-1 we list the 

description of these components. 

 

Table 5-1 The description of the content distributed components in mCDN 

Component Description 

CPS 
CPS triggers the CDN_Origin to take the appropriate actions for 

the distribution of the content entity 

CDN_Origin 

CDN_Origin fetches the content entity together with the 

corresponding metadata from the CPS and distributes it according 

to the schedule 

CDN_EDS CDN_EDS stores the content entity 

OCP 

OCP supports the evaluation of the optimal placement of new 

content and the evaluation of the location of the “closest” content 

in the content retrieval scenario 

P2P_SMW 

P2P_SMW is a supporting P2P infrastructure used by the 

CDN_EDS and OCP components during the content location 

discovery 
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The scenario is that the content is scheduled for distribution from the content 

origin server (CDN_Origin) to the edge servers (EDSs). First, a message is 

broadcasted announcing the content transmission to the edge servers (OCP 

components). The OCP component in the EDS decides whether to store the content, 

when it broadcasts, on the basis of different parameters (e.g., number of replica in the 

CDN) and context conditions (e.g., high number of requests from clients). 

The three major components related to P2P storage system are CDN_Origin, 

CDN_EDS and OCP. These components are responsible for evaluating optimal 

content locations, distributing the content to corresponding edge servers and 

discovering optimal content locations matching user requests. 

Following the description above, it is clear to map the components of mCDN 

onto those of P2P storage system. The difference is that the indexers in mCDN are 

responsible for more tasks, such as the evaluation of the location, as OCP does. 

 

Table 5-2 The mapping results 

Content distributed components in mCDN Components of the P2P storage system 

CDN_Origin The peers own the files 

OCP The indexers 

CDN_EDS The peers for storing the files 
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6. Conclusion and Future Work 

6.1. Conclusion 

In the thesis, we extra index two types of the peer information, one is the 

information of the peer last accessed a file and the other is the information of the peer 

last accessed a file but not among the registered members, to improve the access 

performance and to reduce the maintenance cost. The experiment results indicate that 

there are two factors showing dramatic improvement, peer availability and cache size. 

In addition, although the influence of the second type of the peer information is low, 

the bandwidth cost in the case is zero. Finally, the first type of the peer information 

successfully achieves our goal, and the optimal choice of cache size is 64. 

On the other hand, based on our research, we consider that it is possible that P2P 

storage systems do not need to additionally maintain a full file. Although the authors 

of Regenerating Code want to use the Regenerating Code to achieve the goal, the 

access performance of the scheme is not acceptable for content service. In our 

research, we overcome the drawback and then the goal is possible. 

6.2. Future Work 

For the theoretical improvement, in our scheme, the improvement of the indexed 

peers last accessed but not among the registered members is not clear, within 7%. We 

will abandon it and attempt to index the two peers last accessed a file to reduce the 

requirement of the cache size and to make more improvement. 

For the application of P2P storage systems, our practical future work will focus 

on how to follow the mCDN architecture to implement a P2P storage system. The 
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work will implement P2P storage systems and some APIs of mCDN.  
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