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手持裝置行人追蹤系統 

 

研究生：陳依廷 指導教授：曾煜棋 教授 

易志偉 教授 

國立交通大學 

資訊科學與工程研究所 

 
摘要 

為了改進全球定位系統的缺點，例如：定位準確度、室內訊號不良，近年

來個人導航系統成為了一個熱門的研究題目。大部份的個人導航系統均以計步器

為基礎並利用微機電系統實作，藉由在使用者身上黏貼微機電系統來收集、分析

資料，來計算使用者行走的步數、距離及方向，以便追蹤使用者的移動路徑。微

機電系統黏貼的位置可分為：腳或腳踝、腰間、手持…等，由於使用者的手會產

生不規則的抖動或振動，因此實作手持裝置定位的難度，相較於其他黏貼位置來

得更加困難。 

在本研究中，利用微機電系統實作了手持裝置行人追蹤系統，所使用的裝

置包括加速度計及磁力計；此系統包含了三個模組：計步模組、步距模組及方向

模組。計步模組藉由檢查加速度資訊並抓取步行樣本，來偵測使用者是否有走路

的行為，同時濾除使用者手部的振動對裝置造成的雜訊；步距模組利用計步模組

所抓取的步行樣本來估算此樣本所對應的步距；方向模組則利用磁力強度和加速
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度資訊來計算手持裝置的歐拉角和手持角度。 

藉由整合上述三個模組的輸出資訊，我們實作了行人追蹤系統。使用者只

需手持此系統的硬體裝置（約一般手持裝置大小），系統即可追蹤使用者的移動

軌跡並輸出；此系統可應用在各種手持裝置上，進行室內及室外的個人定位；未

來將會與全球定位系統整合，以改善全球定位系統之缺點，對於都市、室內及室

外的個人導航都相當有幫助，同時也可應用於提供行動定位服務與家庭看護上。 

 

關鍵字：個人導航系統、全球定位系統、加速度計、磁力計、計步器、微機電系

統、室內/室外定位、行動定位服務 
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Abstract 

The Personal Navigation System (PNS) becomes a popular research topic recently 

because people want to improve the shortcomings of Global Positioning System (GPS) 

such as accuracy and indoor usability. A lot of such systems are pedometer-based 

system which could be implemented using Micro Electro-Mechanical Systems 

(MEMS) and attached to different positions on a human body. The handheld 

pedometer is less than other locations such as foot and waist because the device held 

by one's hand has more noises and it is more difficult to model the human walking 

pattern. 

In this paper, a Pedestrian Tracking System (PTS) is designed for handheld 

devices and implemented using accelerometers and magnetometers. It is composed of 

three modules: stepping module, stride module and direction module. The stepping 
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module detects a step occurrence of user through pattern matching in acceleration and 

filters the noises like shaking and vibrations. The stride module acquires the 

parameters of a step pattern from stepping module, and calculate the corresponding 

stride length of the step pattern. The direction module uses magnetic intensity and 

accelerations to evaluate the Euler angles and holding angles of a device. 

By integrating the outputs of stepping module, stride module and direction module, 

the Pedestrian Tracking System is implemented. This system, which can be embedded 

into cellphones or PDAs easily, is feasible for indoor or outdoor personal positioning 

with a given initial position. In the future, the PTS could be integrated with the GPS 

for improving the positioning accuracy of both. It is very helpful for personal 

navigation in urban areas, indoor and outdoor environments and could be applied in 

providing location based services and home healthcare, etc. 

 

Keywords：Personal navigation system, global positioning system, accelerometer, 

magnetometer, pedometer, MEMS, indoor/outdoor location, location based services.  
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Chapter 1

Introduction

By the evolution of semiconductor technology, the Micro Electro-Mechanical

Systems (MEMS) are rising, too. The volume of MEMS becomes smaller and

the capability becomes stronger. In addition, the accuracy is good enough

for most applications. At the same time, the penetration of handheld devices

such as PDAs and cellphones is above 100 percent and these handheld de-

vices become one part of our daily life. Integrating inexpensive MEMS into

handheld devices will not increase the weight, size and cost of the devices

too much. Instead, these embedded MEMS can enhance the capability of

handheld devices and provide users with more services.

The Global Positioning System (GPS) is so popular in recent years that

new generation cellphones and PDAs have built-in GPS. Because weather

or terrain will affect the quality of the satellite signal, commercial GPS,

which has accuracy of about 10 meters, is not accurate enough for personal

positioning. Besides, GPS does not work indoors because the signal is blocked

by buildings. Therefore, hoping to overcome the shortcomings of GPS is

getting considerable concern in the Personal Navigation System (PNS). A

lot of PNS are pedometer-based systems which count how many steps a user

takes for estimating his walking distance. Thus the pedometer is the key of

the pedometer-based PNS because the accuracy of positioning depends on
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the accuracy of step counters.

To track the trajectory of human, devices are attached to a human body.

There are four wearing and holding positions where the devices attached to a

human body: 1) instep or ankle [1], [2], [3]; 2) waist [4], [5]; 3) chest [6]; and

4) handheld, in the bottom-up order. The noises of the accelerometer will

intensify with the raising of the attached position. While the accelerometer

attached to the foot or ankle, there is a reset point in a human walking

cycle when the foot fully touches the ground. The acceleration and velocity

are zero at this moment. It helps the correction of the accumulative errors

caused by the accelerometer. However, the chest and the waist cases do not

have this characteristic to correct the accumulative errors. Little literature

considers the handheld devices. This paper focuses on handheld devices,

which have not only accumulative errors as the chest and the waist devices,

but have additional vibrations caused by hands, it makes the outputs of

device unstable and difficult to be processed.

In this paper, a tri-axial accelerometer and a tri-axial magnetometer are

used for implementing an accurate Pedestrian Tracking System (PTS) for

handheld devices. There are two advantages for positioning by handheld

devices. First, the user does not need to attach devices to his body, so

inconvenience will be reduced. Second, due to no need for wireless commu-

nication equipment in our system, the risk of disconnection or packet loss

will be avoided. Furthermore, only a tri-axial accelerometer and a tri-axial

magnetometer are used instead of relatively expensive gyroscopes in our sys-

tem. Therefore, PTS is an economical handheld devices solution to track the

trajectory of human.

This system is composed of three modules: step module, stride length

module and direction module. They provide three essential information for

pedestrian positioning: step count, stride length and walking direction, re-

2



spectively. By measuring the variation of accelerations during a human walk-

ing cycle, we find a human walking pattern. Based on this finding, assisting

by noise filters, the step module can accurately detect steps. Most of the re-

lated works attached devices on waist, foot or chest. However, for handheld

devices, detecting steps needs more effort because there are a lot of noises

due to hand vibrations while the user is walking. It is easy to do a wrong

judgement and the walking pattern is difficult to be recognized. This module

checks the accelerometer outputs in real time and detects if there is a walk-

ing motion. It is capable to detect steps accurately in both flat walking and

stair walking. Even the influence due to shaking devices and hand vibrations

could be eliminated by the noise filters.

The second essential information for personal positioning is the distance,

which means how long people (or automobile) moves from one location to

another. Many different methods of estimating the displacement of the ob-

ject are developed, such as acceleration double-integration, machine learning,

Data Mining and the Regression Analysis. The integration method [2], [7],

and the regression analysis [1], [5], [4] are common used in the relative re-

searches. The former indicates the displacement of an object can be evalu-

ated by double-integrating the acceleration data while it moves, it is useful for

foot-mounted device because of the feature that the acceleration and velocity

of foot are zero when subject static stands which is helpful for eliminating

the accumulative errors in integration every step. But, the double-integration

method is unsuitable for handheld posture.

To estimate the stride length (also called walking distance) of user, the

Regression Analysis is used in this study. By observing the experimental

statistics of step pattern, it is found that some parameters which are used for

step detection and noise filtering are correlative with the stride length. After

analyzing these parameters, the transform equation between the parameters

3



and stride length is derived, and the stride length could be estimated exactly

through the transform equation. An experiment is performed to verify the

accuracy of the stride length estimation equation in Section 5.3.

The last essential information for personal positioning is the walking di-

rection which means the heading of people, and it affects the location de-

termination of personal positioning. The magnetometer and gyroscope are

common used in DR module for direction estimation, and serveral differences

between these two MEMS are illustrated in Table 1.1.

Table 1.1: A comparison of magnetometer and gyroscope.

Magnetometer Gyroscope
Output Magnetic field intensity Angular velocity
Purpose Calculate absolute direction Calculate angle variation
Price Low High

Accuracy Low High
Disadvantage Sensitive to magnetic force Exist accumulative errors

Because the walking direction calculation module is developed for per-

sonal positioning, the absolute direction information is necessary. Thus, the

magnetometer which provides absolute direction is elected to be the core of

walking direction module.

The magnetometer which senses the magnetic field intensity of Earth is

considered as the electronic compass. It has a maximum value while the axis

points to North Pole of the Earth, it is called Earth vector. By calculating the

rotation between Earth vector and measured magnetic vector, the orientation

of device is estimated and represented in Euler angles: yaw, pitch and roll,

and the yaw angle is considered as the walking direction. The relative changes

of orientation between the user and the device also can be figured out by the

relation among the components of accelerations.

For pedestrian, the step count, stride length, and the walking direction

4



information could be integrated into an Inertial Navigation System (INS) or

Dead Reckoning (DR) module, which can provide relative moving informa-

tion indoors or outdoors. Moreover, INS could be integrated with GPS to

overcome the drawback of GPS. The integrated pedestrian navigation system

is more suitable than any navigation system using GPS only. It has higher

accuracy and shorter response time. An accurate positioning system plays

an important role in location-based service systems, which are promising in

the near future.

The rest of this paper is organized as follows. We introduce the relative

researches briefly in Chapter 2. The system architecture and equipments of

PTS are illustrated in Chapter 3. The methodology for detecting the walking

cycle are described in Chapter 4. Chapter 5 describes how we estimate the

stride length by using regression analysis. In Chapter 6, the methods of

calculating walking direction, and the holding angle are introduced. The

integrated system and the experimental results of it are illustrated in Chapter

7. Chapter 8 is our conclusions.
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Chapter 2

Related Work

2.1 Step Detection

Step detection needs to judge whether a human is walking or not and calcu-

late the steps by examining the data received from the MEMS attached to

his body. There are three methods using these data to detect steps: peak de-

tection, zero crossing detection and flat zone detection [4]. The zero crossing

detection method has weak ability to filter noise because the user may shake

the device unconsciously. The flat zone detection method is only suitable

for foot-mounted case. Thus, the peak detection which detects the peaks of

signal is used in this paper.

In [1], a tri-axial accelerometer and an uni-axial gyroscope are attached

to a subject’s foot instep. It defined a gait cycle as four phases and used

a finite-state algorithm to detect the step occurrence. The angular velocity

is used as the main information for step detection, hence the only axis of

the gyroscope must be aligned to the subject’s ankle rotation axis. By inte-

grating the accelerometer and the gyroscope outputs, step detection becomes

more accurate and the accumulative errors could be eliminated through the

cooperation of these MEMS [2]. However, the gyroscope is more expensive

than the accelerometer and there are accumulative errors when the user holds

6



the device in his hand.

From a waist-mounted accelerometer, [5] found that the variation of ac-

celerations caused by walking is a sinusoid-like pattern occurring in both

forward and vertical acceleration. To detect the positive and the negative

peak pair in both axes, test the gradient from the positive to the negative

peak in forward acceleration, then the step cycle is determined. [5] also used

a gyroscope for estimating the gravity vector. The method used in waist-

mounted devices can not be applied to handheld devices because the axes of

waist-mounted devices are easy to be fixed by the belt clips, but the hand of

human can not be fixed, causing unstable outputs of devices.

A human activity detection system was developed in [6]. The paper classi-

fied human behaviors such as walking, running and fall by testing the tri-axial

accelerometer signals, the signal magnitude area and the signal magnitude

vector, but it did not cope with the noises.

2.2 Stride Length Estimation

The stride duration, which indicate the duration from one step to the next,

is considered as a factor of stride length estimation. Human spends little

time from one step to another in high speed, that is, the faster human walks,

the shorter the stride duration is. In [1], the stride duration was measured

accurately by using a foot-mounted gyroscope, and the conversion equation

between the stride length and durations obtained by using regression analy-

sis. It needs to attached the gyroscope to user’s insteps for measuring step

duration. Because the stride length, which is equivalent to the displacement,

is relative to the acceleration of subject, the accelerometer is used widely

for evaluating the walking distance of human. Another parameters such as

forward and vertical acceleration difference between the peak and trough in

a step pattern are used in regression analysis [5]. The gyroscope and ac-

7



celerometer are used for calculating the vertical axis of subject and helping

the horizontal axis calculation in this research. In [4], it used both the walk-

ing frequency, which is the reciprocal of the stride duration, and the variance

of the accelerometer signals during one step as the elements of regression

analysis.

By double-integrating the acceleration data while device moves, the dis-

placement is obtained, and the flat-zone of acceleration which only appears

in foot-mounted case is applied to correct the drifts in acceleration and ve-

locity [2]. The acceleration of gravity also affect the result of acceleration

integration. [7] used gyroscope and accelerometer to eliminate the gravity

from the measured acceleration vector accurately by computing and track-

ing the orientation of device. It shows an excellent experimental results in

horizontal plane moving, but it can’t be applied in varied environments such

as walking and driving.

2.3 Walking Direction Calculation

By double-integrating the acceleration acquired from a foot-mounted ac-

celerometer, the foot sagittal orientation is calculated [1], and the 3-D dis-

placements is also estimated [2]. But the method of integrating is unavailable

in handheld posture as described in previous chapter. In [8], an uni-axial and

a bi-axial magnetometer were attached to the chest of subject and measured

the magnetic field for calculating the Euler angles. The rotation matrix

between two magnetic field vectors which are measured at two moments is

determined by the quaternion, and the Euler angles is obtained by the ro-

tation matrix. However, it didn’t consider the inclination and declination of

Earth, which affect the measured magnetic field and change according to the

longitude and latitude.

[6] used a chest-mounted tri-axial accelerometer to determine the human

8



falling direction, it is classified to only four directions: frontal, back, left and

right. In [5], it first removes the gravitational acceleration, which is calcu-

lated by the waist-mounted accelerometer and gyroscope, from the measured

acceleration, then used the principal component analysis to determine the

forward direction of the subject. The forward direction in [5] indicates the

angle difference between the heading of the device and the heading of the

subject, it isn’t the absolute walking direction. In [7], the accelerometer and

gyroscope were used for tracking the orientation of the device, and it couldn’t

provide the absolute walking direction, too.

In [9], a digital compass was implemented by using a bi-axial accelerome-

ter and a bi-axial magnetometer. The direction is represented in Euler angles,

the pitch and roll angles are obtained by using the accelerometer outputs,

and the yaw angle is calculated by pitch, roll and the bi-axial magnetometer

outputs. Because there is only a bi-axial magnetometer, it couldn’t cope

with 3-D rotation. To deal with 3-D rotation, a tri-axial magnetometer and

tri-axial accelerometer are used [10]. A smart toothbrush was developed to

classify the brushing patterns by estimating the rotation of toothbrush. The

method of calculating pitch and roll is same as [9], and the yaw angle is

calculated by pitch, roll and the tri-axial magnetometer outputs.
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Chapter 3

System Architecture

3.1 Instrumentation

An Inertial Measurement Unit (IMU), 3DM-GX1, MicroStrain Inc., is used in

the PTS. It is composed of one tri-axial accelerometer, one tri-axial gyroscope

and one tri-axial magnetometer, but only the accelerometer and magnetome-

ter are utilized in our system. The x-axis of the accelerometer points forward

of the device when it is placed on a flat plane, the y-axis points to the right of

it, and the z-axis points downward, and the axes of the magnetometer align

to those of accelerometer. The output range of the accelerometer is ±5g, the

outputs of magnetometer is ±1.2 Gauss, and the maximum sampling rate of

both is 350Hz.

3.2 System Module

The architecture of our system is illustrated in Figure 3.1. A tri-axial ac-

celerometer and a tri-axial magnetometer are used in the system. The Pro-

cessing Unit (PU), such as notebooks and PDAs, read 3D accelerations and

magnetic intensities from the accelerometer and magnetometer via RS-232

interface, then store them in a sample buffer. These signals are successively

processed by three modules: the stepping module, stride module and direc-

10



Figure 3.1: System architecture of PTS.
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tion module. The stepping module, including the acceleration decomposition

module, the step detection module and the noise filter as Figure 3.2, acquires

the accelerometer output and determines the step occurrence using accel-

eration. The stride module acquires the parameters, which are calculated

Figure 3.2: Stepping module architecture.

through step module and used for step detection, from the stepping module

and uses them to estimate the stride length of a user. The direction module,

which is composed of the holding angle module and Euler angle module as

Figure 3.3, acquires the process acceleration information from the step mod-

ule, then calculates the Euler angle and holding angle, outputs the walking

direction of a user. The information about the step count, stride length and

walking direction is acquired and displayed on the display device.

12



Figure 3.3: Direction module architecture.
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Chapter 4

Stepping Module

As described earlier, the accuracy of the step counter is the key to

the pedometer-based PNS. To improve the positioning accuracy of the

pedometer-based PNS, a robust step detection system is necessary. The

goal is very apparent: we cannot overcount or undercount the steps.

In Section 4.1, we introduce how to purify the accelerometer output by de-

composing it into two parts: vertical and horizontal accelerations. In Section

4.2 we introduce the step detecting algorithm, and the algorithm is enhanced

to detect steps for stair walking in Section 4.3. In Section 4.4, the noise filter

is illustrated.

4.1 Acceleration Decomposition

The output of accelerometer is decomposed into two components: z (verti-

cal) and xy (horizontal). The z component is the component of accelerometer

reading in the direction of the gravity. Since the wearing orientation of the

tri-axial accelerometer is not fixed at the human body, the z direction is in

fact unknown. The z direction is obtained by average the accelerometer read-

ing for a period of time as the accelerometer remains static. We adopt this

approach by including a simple threshold to filter the hyperactive accelerom-

eter output. Specifically, let
−→
A i−m,

−→
A i−m+1,. . . ,

−→
A i−1 be the accelerometer

14



output vectors over the period. We first filter out those vectors that are be-

low a lower bound Lg or over an upper bound Ug. Then the average of these

remaining vectors, denoted by
−→
A g

i , is a vector along the z direction. This

approach accommodates the
−→
A g

i to a dynamic environment such as human

walking.

According to
−→
A g

i , we decompose the next vector
−→
A i into z- and xy-

components. As Figure 4.1 shows, the z-component of
−→
A i is calculated as

−→
A z

i =

−→
A i · −→A g

i∣∣∣−→A g
i

∣∣∣
2

−→
A g

i . (4.1)

It follows that the xy-component of
−→
A i is

−→
A xy

i =
−→
A i −−→A z

i . (4.2)

Figure 4.1: Acceleration decomposition.

4.2 Step Detection - Flat Case

A pattern matching method is used for detecting the occurrence of step. The

variations of vertical acceleration when a user walks are used to recognize the

15



walking pattern. The vertical acceleration we use here means
∣∣∣−→A z

i

∣∣∣ −
∣∣∣−→A g

i

∣∣∣.
Because

∣∣∣−→A z
i −

−→
A g

i

∣∣∣, the norm of the inertial vertical acceleration, is always

positive, we use
∣∣∣−→A z

i

∣∣∣−
∣∣∣−→A g

i

∣∣∣ instead to extract more information.

Figure 4.2 shows the vertical acceleration while a subject straight walks

5 steps. There are five cosine-like waveforms. A waveform which includes
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Figure 4.2: Use sliding window technique (solid square) to capture a step
pattern in the vertical acceleration while a subject walks 5 steps.

one peak and two troughs is recognized as a step pattern. A step pattern is

a candidate for a real step. To detect this pattern, a sliding window (solid

square in the figure) is placed on the vertical acceleration samples and used

for scanning vertical accelerations in real time. The window size is fixed, and

correlates with the sampling rate of device and the duration of step cycle. If

the size is too small, the step pattern cannot be appeared. On the contrary,

if the size is too large, the window will contain more than one waveform,

leading a underestimate for the step count. It is because that there is a risk

that wrong step pattern might be recognized, and it will be discussed later.

Therefore, the sliding window size should be adjust to contain only one single

step pattern for preventing step lost.
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The system recognizes a step pattern by the following steps: 1) the sys-

tem searches the point with the maximum acceleration in the window, and

denote this point by P0 and mark it with a solid circle in Figure 4.2; 2) the

window searches backward (left of P0) for P1, the left point with minimum

acceleration in the window, and forward (right of P0) for P2, the right point

with minimum acceleration in the window. Both P1 and P2 are marked with

a dash circle each in Figure 4.2. The step pattern is formed by P1-P0-P2.

After checking the step pattern with a noise filter (detail is later), we can

make sure if the step pattern represents a real step. The sliding window will

start from P2 to avoid counting duplicately after this pattern is determined

as a normal step. Otherwise, the window slides forward by several samples.

Thus, it is normal that a point may be checked in different time slot, in other

words, the P2 of step n may be the P1 of step n + 1.

4.3 Step Detection - Stair Case

Different walking scenarios, such as walking in a flat plane and walking up-

stairs, will result in the same kind of cosine-like but different period or am-

plitude waveforms. Take stair walking as an example, the time period and

amplitude of the step pattern in stair walking case are greater than those in

flat walking case. The reason is that while a user goes downstairs, the height

difference between each stairstep will cause stronger impact and the user also

needs to spend more time walking the stairsteps while going upstairs. Hence

the duration of a step cycle extended. For these reasons, the height and

width of the sliding window are greater than those in flat walking.

Figure 4.3 shows the vertical accelerations in flat walking, same as Figure

4.2, with extended sliding window, and the P1-P0-P2 waveform should be

chosen as a step pattern in normal situation. In fact, there are two step

patterns in the window, and P3 is higher than P0, P4 is lower than P2,
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Figure 4.3: Apply an extended sliding window to the vertical accelerations
during a subject walks on a flat plane.

resulting in P3, P1 and P4 are chosen. Thus a wrong step pattern candidate

is ready to be examined. If the outcome of checking process is true, the

window will start from P4 and lose one step. Or, the window slides forward

and checks the same pattern again. It is still false until the P1 and P0 are out

of window and this also leads to the same result: one step is lost. Finding

a window size applicable in all cases is difficult. Thus, the double sliding

windows are used instead of single sliding window.

As shown in Figure 4.4, an additional smaller sliding window (dash square

in the figure) is fixed into the larger one on the center of it. The sizes of the

outer window and inner window are defined as W and w respectively. The

system searches the maximum acceleration in the inner window as P0. To

prevent choosing wrong maximum, w is small enough to contain only one

peak and satisfies that w < S, where S is the shortest duration of a step

pattern. After finding P0, system starts to search for P1 and P2 in the outer

window, it should contain just two minimums and the size of it satisfies

W < 3S. Then, the checking process begins to start. Figure 4.4 shows the
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Figure 4.4: Use double sliding windows technique in the vertical accelerations
during a subject walks 5 steps on a flat plane.

double sliding windows technique is applied in flat walking case and Figure

4.5 shows the same technique applied in stair climbing case.

4.4 Noise Filtering

To check if a step pattern candidate is a normal step, some parameters or

indices are defined. Each parameter has its own lower bound L· and upper

bound U·, and these bounds also can be figured out from experiments. This

checking process is called as noise filtering.

In Figure 4.2, let the coordinates of Pi are (ti, ai) for i = 0, 1 and 2.

Define T = t2 − t1, the duration between P1 and P2. People usually walk

in a regular frequency, hence the time interval of each step is bounded. The

durations induced by shaking or vibrations are beyond the regular range of

T , so they are easy to be discarded through the following restriction on a

normal step:

LT < T < UT . (Cond. 1)
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Figure 4.5: Use double sliding window technique in the vertical accelerations
during a subject goes downstairs 5 steps.

Define

∆A1 = a0 − a1 (4.3)

and

∆A2 = a0 − a2. (4.4)

Similarly, ∆A1 and ∆A2 for shaking or vibrations are also beyond the regular

scope for walking, so they are easily weeded out by

L∆A < ∆Ai < U∆A, i = 1, 2, (Cond. 2)

where L∆A and U∆A represent the common lower bound and the common

upper bound of ∆Ai respectively. Another parameter RA , the ratio of ∆A1

to ∆A2, is near 1 in normal step case. By checking the following condition

of RA,

LRA
< RA < URA

, (Cond. 3)

we can decide whether a pattern is a normal step or not.

Let
∣∣∣−→A xy

i

∣∣∣ be the norm of the horizontal acceleration of the i-th data

counting from P1 and l the sample number from P1 to P2. Define Ih, the
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magnitude of horizontal accelerations, as

Ih =
l∑

i=0

∣∣∣−→A xy
i

∣∣∣ ∆t. (4.5)

Walking will cause a change in accelerations not only in the vertical axis

but also in the horizontal axis. A subject’s jumping will cause strong ac-

celerations in vertical axis and less in horizontal axis, thus the horizontal

accelerations are sum as the magnitude index of forward accelerations. Ih is

examined for helping judge if a user is jumping by

LIh < Ih < UIh . (Cond. 4)

The Fast Fourier Transform (FFT) is also applied to evaluate the measured

step pattern. In FFT, finite periodic functions xn could be written as

xn =
1

N

N−1∑

k=0

Xke
i 2π

N
kn, n = 0, . . . , N − 1, (4.6)

where Xk indicate the Fourier magnitude at frequency k, n is the sample

number in time domain, and N is the amount of the components. The ei 2π
N

kn

could be represented as

ei 2π
N

kn = cos
2π

N
kn + i sin

2π

N
kn, (4.7)

which is the sum of sines and cosines. In other words, while the curve of xn

is similar to the composite of m sines or cosines, the value of Xm would be

outstanding. The sequence xn are transformed into Xn by the FFT according

to the formula:

Xk =
N−1∑
n=0

xne
−i 2π

N
kn, k = 0, . . . , N − 1. (4.8)

Let xn be the sequence of vertical accelerations from P1 to P2 and transform

them from time domain to frequency domain Xn. The high value of X1 may
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Figure 4.6: The FFT transform results of the samples from P1 to P2 in Figure
4.2. The magnitude at frequency 1 which is defined as X1 is the greatest one.

indicate there is only one cosine-wave in a step pattern. Figure 4.6 shows

the transform results of the step pattern within the sliding window in Figure

4.2. Finally, the value of X1 obtained by FFT of a step pattern is checked

through the condition:

LX1 < X1 < UX1 . (Cond. 5)

By finding the peak and troughs in the sliding window and checking the

values of the parameters above, the step occurrence is determined. Figure

4.7 summarizes the flowchart of step detection and noise filtering.

4.5 Experimental Results

Two kinds of experiments are performed to verify the accuracy and reliability

of step detection module. The acceleration samples are logged in 50Hz, and

Table 4.1 lists the threshold settings for detecting steps and filtering noises.

22



Figure 4.7: Flowchart of step detection and noise filtering.
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Table 4.1: Threshold settings for step detection and noise filtering.

Item Value
Lower bound Upper bound

w 10
W 42∣∣∣−→A g

∣∣∣ 0.9775 1.02

T 0.3 0.84
∆A1 and ∆A2 0.0095625 0.28

RA 0.5 3
Ih 0.006 0.142375
X1 0.057375 1.7

4.5.1 Step Detection Accuracy

In this experiment, each of five subjects held the accelerometer and followed

two types of pre-defined courses. One is walking 100 steps on the flat corridor

freely with no specified speed, direction and route constraints. The other is

going upstairs from the first floor to the third floor, then turning 180◦ and

going downstairs to the first floor. There are 23 stairs between each floor,

thus each of the subjects will walk 92 stairs totally. The experimental results

of flat walking are illustrated in Table 4.2. The average accuracy is above 95

Table 4.2: Accuracy of step detection in flat walking case.

Subject Total steps Step counts Accuracy
A 100 100 100.00%
B 100 98 98.00%
C 100 95 95.00%
D 100 96 96.00%
E 100 98 98.00%

Average 100 97.4 97.40%

percent in flat walking case and there is a very low rate of step lost in our
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system. Table 4.3 and Table 4.4 show the stair walking case experimental

results. The accuracy of going downstairs is lower than both going upstairs

Table 4.3: Accuracy of step detection in going upstairs case.

Going upstairs
Subject Total steps Step counts Accuracy

A 46 45 97.83%
B 46 46 100.00%
C 46 42 91.30%
D 46 45 97.83%
E 46 40 86.96%

Average 46 43.6 94.78%

Table 4.4: Accuracy of step detection in going downstairs case.

Going downstairs
Subject Total steps Counting steps Accuracy

A 46 41 89.13%
B 46 42 91.30%
C 46 41 89.13%
D 46 37 80.43%
E 46 39 84.78%

Average 46 40 89.86%

and flat walking because the subjects sometimes jumped from one stair to

the next one. Jumping causes abnormal accelerations, resulting in the raise

of system error rate. If some thresholds are loosed, the noise-proof ability

would be reduced. It is a tradeoff between step detection accuracy and noise

resistance.

25



4.5.2 Noise Resistance

In this experiment, each subject shakes and swings the accelerometer with

any direction and strength 100 times, and the system records the step counts.

Table 4.5 lists the statistics of this experiment. The results exhibit a strong

noise resistance by step detection module.

Table 4.5: Performance of noise filter.

Subject Shaking times Step counts Filtered rate
A 100 3 97.00%
B 100 1 99.00%
C 100 2 98.00%
D 100 4 95.00%
E 100 2 98.00%

Average 100 2.4 97.60%
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Chapter 5

Stride Module

Because the step detection module described in previous chapter has no ca-

pability of calculating the walking distance of user, a stride length estimation

module is required. It acquires the parameters of the step pattern from the

stepping module and uses them to calculate the stride length. By sum the

stride length every step, the total walking distance of user is derived.

In Section 5.1, we introduce why we use regression analysis, and what

parameters are used for estimating the stride length. How to evaluate the

transform equations between a step pattern and stride length are illustrated

in Section 5.2.

5.1 Variable Selection

After careful consideration, the regression analysis method is chose as the

method of estimating stride length in the proposed system rather than the

double-integration method. Because a foot-mounted accelerometer senses

zero velocity and acceleration when the user’s foot touches the ground fully.

This feature is helpful to eliminate the accumulative errors produced by the

integration process. Nevertheless, in handheld posture, the accelerometer

always senses a lot of vibrations which caused by user’s hand, and it is hard

to ask user to freeze his hand for correcting the results of double-integration.
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Thus, the regression analysis method is more suitable than double-integration

method for handheld posture.

Let D be the stride length of a step pattern, x be the parameter of a

step pattern, we use regression analysis to obtain the regression equation d

as follow

D = d (x) (5.1)

where D is the dependent variable, and x is the independent variable used

in regression analysis.

First, a training process was performed for observing and analyzing the

variation of parameters. A subject walked straight several steps with steady

speed, then, the step parameters and the actual step length were recorded

every step. By the way, the first and last step patterns are discarded for

eliminating unsteady patterns. The experimental statistics are illustrated

in Table 5.1, where ∆Asum indicates the sum of ∆A1 and ∆A2, the other

parameters are introduced and used for detecting step occurrence in previous

chapter. In Table 5.1, the ∆Asum and X1 show higher correlation between

stride length and the value of parameter than other parameters thus this

study focuses on analyzing these two parameters.

Table 5.1: The statistics of parameters in the training process.

Stride length (cm) T ∆Asum RA Ih X1

30 0.6587 0.0643 0.9992 0.0183 0.1327
40 0.6567 0.0874 0.9942 0.0194 0.187
50 0.6497 0.1019 1.0029 0.0204 0.2336
60 0.6065 0.1277 1.0132 0.0236 0.3364
70 0.5877 0.1694 1.0274 0.0252 0.4796
80 0.5878 0.2099 1.0643 0.0311 0.6191
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5.2 Regression Analysis

A lot of experiments are performed for sample collection. Figure 5.1 shows

the experimental statistics and illustrates the relationship between ∆Asum

and the stride length. The curve in it is similar to a parabola rather than
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Figure 5.1: The relationship between ∆Asum and stride length with regression
equations.

an oblique line. Therefore, not only the linear equation (dash line), but the

quadratic polynomial equations (solid line) are also used in the following

analyses. The same feature appears in X1 as Figure 5.2, too. Table 5.2

illustrates the coefficients and r2 of the regression equations, and the r2,

which measures how successful the equation is in explaining the variation of

the stride length, is evaluated through

r2 = 1−
∑

i (yi − di)
2

∑
i (yi − y)2 (5.2)

where yi is the measured stride length, y indicate the average of yi, and di

is the estimated stride length. The r2 indicates a good estimation while it is
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Figure 5.2: The relationship between X1 and stride length with quadratic
regression.

close to 1, and all the values of r2 in quadratic regression are greater than

the corresponding one in linear regression.

Table 5.2: Coefficients and r2 of the regression equations, where d (x) =
p1 + p2x + p3x

2.

Linear
x p1 p2 p3 r2

∆Asum 19.427 326.33 0 0.9239
X1 29.873 93.627 0 0.9135

Quadratic
x p1 p2 p3 r2

∆Asum -2.1 681 -1279.6 0.9542
X1 15.819 187.7747 -125.2949 0.949

Because both r2 of quadratic equations are similar and close to 1, we

consider using multiple regression analysis, which uses multiple independent

variables, to improve the estimating accuracy. We set ∆Asum and X1 as the

independent variables, and Table 5.3 illustrates the coefficients and r2 of the
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evaluated multiple linear and quadratic regression equations.

Table 5.3: Coefficients and r2 of the multiple regression equations, where
d (x, y) = p1 + p2x + p3y + p4xy + p5x

2 + p6y
2.

p1 p2 p3 p4 p5 p6 r2

Linear 21.4971 258.6245 19.7258 0 0 0 0.9247
Quadratic -4.9 1011.9 -95.7 5097.7 -9706.9 -778.2 0.9591

The values of r2 both in linear and quadratic multiple regression equations

are greater than the corresponding ones in Table 5.2, thus we consider that

the multiple regression equation is more reliable than the equations only uses

one independent variable. Figure 5.3 shows the result of multiple regression

analysis. Let D be the estimated stride length, the estimating equation in

0.05 0.1 0.15 0.2 0.25
0.2

0.4
0.630

40

50

60

70

80

90

Magnitude
Sum of amplitude differences [G]

St
ri

de
 le

ng
th

 [
cm

]

Stride length vs. Amplitude & FFT
Linear regression
Quadratic regression

Figure 5.3: Result of multiple regression analysis.
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our system is defined as follow:

D = −4.9 + 1011.9∆Asum − 95.7X1 + 5097.7 (∆Asum) (X1) (5.3)

− 9706.9 (∆Asum)2 − 778.2 (X1)
2 .

Thus, the stride length corresponds to a step pattern is estimated.

5.3 Experimental Results

In this experiment, each of six subjects held the accelerometer and walked

straight 20 steps with unrestricted stride length. The total walking distance is

measured after, and the estimated distance which is the sum of the estimated

length each step is recorded. Table 5.4 shows the experimental results of

stride length estimation, and the results of multiple linear regression d (A,X)

and multiple quadratic regression d2 (A,X) are compared.

Table 5.4: Accuracy of stride length estimation.

Subject Total distance (m) d (A,X) Accuracy d2 (A,X) Accuracy
A 13.06 12.29 94.13% 12.77 97.77%
B 11.21 11.93 93.58% 11.61 96.40%
C 12.52 13.28 93.96% 13.40 92.97%
D 11.57 12.08 95.61% 12.24 94.23%
E 11.07 11.00 99.38% 11.23 98.55%
F 10.70 11.27 94.70% 10.98 97.38%

Average 95.23% 96.22%
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Chapter 6

Direction Module

The walking distance of a user is computable through integrating the out-

comes of the stepping module and stride module, but the exact location is

still unknown without a walking direction calculation module. Assume the

initial position of the user is known, the trajectory of him is computable by

integrating the walking distance and walking direction. The direction module

is designed to calculate the walking direction of user for personal positioning,

it calculates the orientations of device and the heading direction of human.

In Section 6.1, we give the definitions of the coordinate system and the

rotation matrices. In Section 6.2, we describes how to calculate the Euler

angles, which indicate the orientations of the device, by using magnetometer

and accelerometer information. An issue of the holding angle of a handheld

devices which affects the walking direction calculation in a DR module is

discussed next. How to calculate the forward acceleration, which is used for

evaluating the holding angle, is described in Section 6.3. In Section 6.4, the

method of calculating holding angle by quaternion is introduced.

6.1 Rotation Matrices

First, we give the definitions of the body coordinate system, Earth coordi-

nate system and the rotation sequence between them. The body coordinate
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system is fixed to the device, including accelerometer and magnetometer,

and rotates with it, the x-axis of it points forward when it is placed on a flat

plane, the y-axis points to the right of it, and the z-axis points downward.

The Earth coordinate system is fixed to the Earth and the x-axis of it is

always pointing to north, y-axis pointing to east, and the z-axis pointing to

the center of Earth, like the gravity. The Earth coordinate system is trans-

formed to the body coordinate system by the following: 1) rotate around the

z-axis by the yaw (ψ) angle; 2) rotate around the new y-axis by the pitch

(θ) angle; and 3) rotate around the new x-axis by the roll (ϕ) angle. All the

rotations above are right-handed, and three rotation matrices are established

as follows:

Rx (ϕ) =




1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ




Ry (θ) =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 (6.1)

Rz (ψ) =




cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1




where Rx (ϕ), Ry (θ) and Rz (ψ) are the rotation matrices around x-, y-, and

z-axis, respectively. Therefore, any vector
−→
V E, which is measured in Earth

coordinate, could be transformed to the vector
−→
V B in body coordinate by

the following:

−→
V B = Rx (ϕ) Ry (θ) Rz (ψ)

−→
V E (6.2)

=




cos ψ cos θ sin ψ cos θ − sin θ
cos ψ sin θ sin ϕ− sin ψ cos ϕ sin ψ sin θ sin ϕ + cos ψ cos ϕ cos θ sin ϕ
cos ψ sin θ cos ϕ + sin ψ sin ϕ sin ψ sin θ cos ϕ− cos ψ sin ϕ cos θ cos ϕ


−→V E
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6.2 Euler Angle Calculation

While the device is placed on a plane, the output vector of accelerometer
−→
AE =

(
0 0 −

∣∣∣−→A g
∣∣∣

)T

, and the relationship between the calculated grav-

ity
−→
A g and

−→
AE is described as follow:




Ag
x

Ag
y

Ag
z


 = Rx (ϕ) Ry (θ) Rz (ψ)




0
0

−
∣∣∣−→A g

∣∣∣


 (6.3)

=




∣∣∣−→A g
∣∣∣ sin θ

−
∣∣∣−→A g

∣∣∣ cos θ sin ϕ

−
∣∣∣−→A g

∣∣∣ cos θ cos ϕ




where Ag
x, Ag

y and Ag
z indicate the x-, y- and z-axis components of

−→
A g. Thus

the tilt angles, including roll and pitch, could be evaluated by using
−→
A g as:

θ = arcsin


 Ag

x∣∣∣−→A g

∣∣∣


 , and (6.4)

ϕ = arcsin


 −Ag

y∣∣∣−→A g

∣∣∣ cos θ




To stabilize the calculating results, we use the components of
−→
A g instead

of the components of instantaneous accelerometer output. Figure 6.1 and

Figure 6.2 are the illustrations of (6.4).

The heading angle, the main purpose in this study, is calculated by using

θ, ϕ, and the magnetometer information. We revise the equations introduced

in [10] as follows. First, define three magnetic vectors which are measured by

magnetometer: body vector, level vector, and Earth vector. The body vector
−→
MB =

(
MB

x MB
y MB

z

)T
is the instantaneous magnetometer output, and

the level vector
−→
ML =

(
ML

x ML
y ML

z

)T
is the magnetometer output while
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Figure 6.1: Use accelerometer outputs to evaluate pitch angle.

Figure 6.2: Use accelerometer outputs to evaluate roll angle.

36



the device is placed on a horizontal plane, or both the pitch and roll are zero.

The Earth vector
−→
ME =

(
ME

x ME
y ME

z

)T
is the magnetometer output

while the x-axis points to North Pole of the Earth, the y-axis points to East,

and the z-axis points to the center of Earth. The components of
−→
ME is based

on the inclination and declination of Earth and changes with the longitude

and latitude. The relationship between these vectors is described as follows:

−→
ML = Rz (ψ)

−→
ME (6.5)

−→
MB = Rx (ϕ) Ry (θ)

−→
ML (6.6)

= Rx (ϕ) Ry (θ) Rz (ψ)
−→
ME

To obtain ψ, first we calculate
−→
ML by:




ML
x

ML
y

ML
z


 = Ry (θ)−1 Rx (ϕ)−1−→MB (6.7)

=




cos θ sin θ sin ϕ sin θ cos ϕ
0 cos ϕ − sin ϕ

− sin θ cos θ sin ϕ cos θ cos ϕ







MB
x

MB
y

MB
z




where
−→
MB is acquired by magnetometer, and the Rx (ϕ) and Ry (θ) are evalu-

ated through θ and ϕ, which are obtained by (6.4). The value of ME
y depends

on the declination of Earth, and because the effect of the declination is slight

enough to be neglected, we ignore ME
y and revise (6.5) as:




ML
x

ML
y

ML
z


 =




cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1







ME
x

0
ME

z


 (6.8)

=




cos ψME
x

− sin ψME
x

ME
z




Thus, the ψ is evaluated by:

ψ = tan−1

(
−ML

y

ML
x

)
(6.9)
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The effect of the inclination is eliminated through this equation, and Figure

6.3 is the illustration of (6.9).

Figure 6.3: Use magnetometer outputs to evaluate yaw angle.

6.3 Forward Acceleration Calculation

Sometimes the user heading direction is different from the handheld device

heading direction, it will cause many erroneous computations in direction

and location prediction in common DR module because the calculated di-

rection is not the true walking direction. The following sections illustrate

an useful algorithm for calculating the pitch, roll and relative yaw angles,

which indicate the angle between user heading and handheld device heading,

using accelerometer and quaternion. It makes the PTS cope with the situ-

ation while the user heading direction is different from the device heading

direction.

In theory, walking causes great acceleration in forward and backward

directions, and small acceleration in lateral, thus [5] used the principal com-

ponent analysis to determine the forward direction of a subject with a waist-
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mounted device. However, the principal component of horizontal acceleration

is not obvious for handheld posture in practice because of the hand vibra-

tions. To figure out the forward acceleration of a human from horizontal

acceleration, two conditions are set for filtering the insignificant acceleration

vectors: 1) similar to gravity calculation, we set a threshold for horizontal

accelerations, but the inactive samples are filtered instead of the hyperactive

samples because a great quantity of inactive samples will cover the forward

acceleration. Those vectors that are over a lower bound LF and below an

upper bound UF are filtered out; 2) a feature appearing in the handheld

devices is used. It is considered that the forward acceleration of the user

usually reflects on the x- and z-axis of a handheld device because user would

like to watch the display (the negative of z-axis) of it. Therefore, the z-axis

of device is close to the forward acceleration while θ ≥ 45◦, and the x-axis

does so while θ < 45◦. This feature helps us judging whether the direction

of an acceleration vector is forward or backward, and the forward vectors

will not be compensated by the backward vectors. If the z-component of

a horizontal acceleration vector is negative, this vector will be filtered out

while θ ≥ 45◦, and a vector whose x-component is negative will be filtered

out while θ < 45◦, too. After filtering the insignificant vectors through the

conditions above, the forward acceleration
−→
Fn of user relative to the handheld

device is evaluated by accumulating the remaining vectors as:

−→
Fn =

n∑
i=n−s+1

−→
A xy

i (6.10)

where s is the required number of sample to evaluate a reliable result. By

accumulating the filtered horizontal accelerations, the lateral acceleration

would be compensated and only the forward acceleration remains.

The accumulating method makes the forward acceleration of user more

stable, but it also results in a problem of cool start, it takes serveral samples
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to accumulate
−→
Fn in the beginning. To deal with this problem, we propose

a method of reversing backward accelerations for reducing the time cost.

Because the vectors of forward and bakcward acceleration are in the same

axis but opposite directions, thus the reversed backward vectors are similar

to the forward vectors. Base on this idea, (6.10) is revised as:

−→
Fn

′ =
n∑

i=n−s+1

−→
A xy′

i (6.11)

−→
A xy′

i =





−→
A xy

i , if θ ≥ 45◦ and the z-component of
−→
A xy

i ≥ 0

or θ < 45◦ and the x-component of
−→
A xy

i ≥ 0

−−→A xy
i , otherwise.

By reversing the backward vectors and accumulate them with the forward

vectors, the
−→
Fn

′, which is the augmentative
−→
Fn, takes less time to converge

on a reliable result.

6.4 Holding Angle Calculation

The original forward acceleration unit vector of the device is defined as
−→
Fo =

[
1 0 0

]T
. To evaluate the relative Euler angles between

−→
Fo and

−→
Fn

′,

the quaternion, described and used for dealing with magnetometer outputs

in [8], is applied. The rotation axis −→v =
[

vx vy vz

]T
and angle δ of the

transformation from
−→
Fo to

−→
Fn

′ is determined in following:

−→v =

−→
Fo ×−→Fn

′
∣∣∣−→Fo ×−→Fn

′
∣∣∣

(6.12)

δ = arccos



−→
Fo · −→Fn

′
∣∣∣−→Fo

∣∣∣
∣∣∣−→Fn

′
∣∣∣


 (6.13)

thus the quaternion is:

Q =




cos
(

δ
2

)
sin

(
δ
2

)
vx

sin
(

δ
2

)
vy

sin
(

δ
2

)
vz


 (6.14)
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The rotation of a vector can be defined by three Euler angles, and the rotation

matrix is:

Rn
o = Rx(ϕ

′)Ry(θ
′)Rz(ψ

′) (6.15)

where ϕ′, θ′, and ψ′ indicate the Euler angles calculated by using the ac-

celerometer information, Rx(ϕ
′), Ry(θ

′) and Rz(ψ
′) indicate the rotation ma-

trix around x-, y- and z-axis, Rn
o is the rotation matrix from

−→
Fo to

−→
Fn. The

rotation matrix of quaternion which is equivalent to Mn
o is defined as follows:

Rn′
o =




cos δ + (1− cos δ)v2
x (1− cos δ)vxvy − (sin δ)vz (1− cos δ)vxvz + (sin δ)vy

(1− cos δ)vyvx + (sin δ)vz cos δ + (1− cos δ)v2
y (1− cos δ)vyvz − (sin δ)vx

(1− cos δ)vzvx − (sin δ)vy (1− cos δ)vzvy + (sin δ)vx cos δ + (1− cos δ)v2
z




(6.16)

we can evaluate the elements of Rn′
o by using the elements of Q. Because

of the equivalence between Rn′
o and Rn

o , the yaw, roll and pitch angles are

obtained by the following equations:

ψ′ = arctan

(
Rn′

o (1, 2)

Rn′
o (1, 1)

)

θ′ = arcsin (−Rn′
o (1, 3)) (6.17)

ϕ′ = arctan

(
Rn′

o (2, 3)

Rn′
o (3, 3)

)

the ψ′ is the orientation difference between user and handheld device. The

true walking direction is obtained by summing ψ and ψ′. This information is

helpful to eliminate the computation error caused by the heading difference

between user and device, and it is an economical solution for tracking relative

angles without using gyroscope.

6.5 Experimental Results

There are two experiments: one is for verifying the accuracy of the yaw angle

calculation, another is for verifying the accuracy of roll and pitch, and the

practicality of holding angle calculation.
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6.5.1 Yaw Angle Accuracy

In this experiment, the device, composed of accelerometer, magnetometer

and gyroscope, is placed on a horizontal plane and rotates following a pre-

determined course:

1. Align the x-axis of device to North and y-axis to East by a compass,

then start to record the yaw angle.

2. Rotate it clockwise with slow speed for preventing the erroneous com-

putation of gyroscope.

3. Stop for a while when the degree is a multiple of 30◦ until it reaching

360◦.

4. Repeat step 1) - 3) in counterclockwise.

The records of magnetometer are compared with the gyroscope which

possesses a high accuracy in short term rotation and synchronized with mag-

netometer. The full results are illustrated in Table 6.1 and Table 6.2 with the

average degree differences between magnetometer and gyroscope. The calcu-

lated results of magnetometer exhibits a good accuracy with about 5◦ errors.

However, it is not as good as gyroscope, but it has no accumulative errors

and provides the absolute direction information which a gyroscope doesn’t

provide.

6.5.2 Holding Angle Accuracy

First, we want to decide how many samples should be used for accumulat-

ing forward acceleration, thus a training process is performed. The subjects

straight walks 60 steps and holds the device with 0◦ holding angle, the cal-

culating results of
−→
Fn

′, the augmentative
−→
Fn, are illustrated in the following
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Table 6.1: Calculated yaw angles (clockwise), using the magnetometer and
gyroscope.

Clockwise
Degree Magnetometer Error Gyroscope Error

0◦ -0.76◦ 0.76◦ -0.132◦ 0.132◦

30◦ 28.76◦ 1.24◦ 29.796◦ 0.204◦

60◦ 58.434◦ 1.566◦ 60.743◦ 0.743◦

90◦ 85.406◦ 4.594◦ 88.955◦ 1.045◦

120◦ 114.88◦ 5.12◦ 119.832◦ 0.168◦

150◦ 144.215◦ 5.785◦ 149.598◦ 0.402◦

180◦ 174.573◦ 5.427◦ 179.801◦ 0.199◦

210◦ 203.779◦ 6.221◦ 208.132◦ 1.868◦

240◦ 236.829◦ 3.171◦ 239.956◦ 0.044◦

270◦ 266.897◦ 3.103◦ 268.446◦ 1.554◦

300◦ 296.705◦ 3.295◦ 296.96◦ 3.04◦

330◦ 329.293◦ 0.707◦ 328.379◦ 1.621◦

360◦ 359.083◦ 0.917◦ 358.092◦ 1.908◦

Table 6.2: Calculated yaw angles (counterclockwise), using the magnetome-
ter and gyroscope.

Counterclockwise
Degree Magnetometer Error Gyroscope Error

0◦ -1.564◦ 1.564◦ -0.524◦ 0.524◦

-30◦ -31.431◦ 1.431◦ -30.819◦ 0.819◦

-60◦ -62.865◦ 2.865◦ -61.543◦ 1.543◦

-90◦ -93.068◦ 3.068◦ -90.594◦ 0.594◦

-120◦ -122.84◦ 2.84◦ -119.34◦ 0.66◦

-150◦ -154.927◦ 4.927◦ -149.867◦ 0.133◦

-180◦ -185.57◦ 5.57◦ -179.349◦ 0.651◦

-210◦ -215.396◦ 5.396◦ -208.723◦ 1.277◦

-240◦ -245.914◦ 5.914◦ -239.062◦ 0.938◦

-270◦ -274.717◦ 4.717◦ -268.71◦ 1.29◦

-300◦ -301.919◦ 1.919◦ -296.943◦ 3.057◦

-330◦ -331.712◦ 1.712◦ -327.738◦ 2.262◦

-360◦ -361.779◦ 1.779◦ -358.237◦ 1.763◦
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Figure 6.4: A calculating result of yaw using the forward acceleration.

figures. Figure 6.4 shows the calculated yaw angle, Figure 6.5 and Figure

6.6 show the same of pitch and roll, respectively. The long-term pitch and

roll, which are considered as the true pitch and roll, are calculated by the

long-term
−→
A g (with m > 1000) of the corresponding log files in off-line. The

results of reversing backward acceleration exhibit a good stability and less

degree error than non-reversing backward acceleration in all three Euler an-

gles. It takes about 400 to 600 samples to converge on a reliable result, thus

we set s to 600 in the next experiments.

In this experiment, the subjects straight walks 60 steps and holds the

device with different holding angles: -40◦, -20◦, 0◦, 20◦, 40◦. The calculated

holding angle ψ′ are recorded during the subject walks and compared with

the true holding angles in Table 6.3.
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Figure 6.5: A calculating result of pitch using the forward acceleration.
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Figure 6.6: A calculating result of roll using the forward acceleration.

Table 6.3: Accuracy of holding angle calculation.

Holding Angle -40◦ -20◦ 0◦ 20◦ 40◦

ψ′ -36.765◦ -14.95◦ -4.682◦ 17.128◦ 33.727◦

Error 3.235◦ 5.05◦ 4.682◦ 2.872◦ 6.273◦

45



Chapter 7

Pedestrian Tracking System

By integrating the outputs of stepping module, stride module and direction

module, the pedestrain tracking system is implemented. Let Di be the stride

length of i-th step, φi be the walking direction, which is obtained by inte-

grating the yaw angle and the holding angle of a device, of i-th step. Define

Pi = (xi, yi) as the displacement of a human after walking i steps, it is repre-

sented by the 2-D Cartesian coordinate system and could be simply evaluated

by

xi+1 = xi + Di sin φi (7.1)

yi+1 = yi + Di cos φi

where x- and y-axis in our coordinate system points to East and North,

respectively.

We performed the experiments with several different routes, the initial

position P0 in these experments is set as (0, 0). The calculated trajectories

are recorded and illustrated in the following. Figure 7.1 shows the tracking

result of a human walking along a rectangular grassplot in clockwise, and

Figure 7.2 is the result of a human walking along an indoor corridor.
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Figure 7.1: Comparison of tracking result and real path in outdoor environ-
ment.
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Figure 7.2: Comparison of tracking result and real path in indoor environ-
ment.
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Chapter 8

Conclusions

In this paper, a pedestrian tracking system is designed for handheld devices

and implemented using accelerometers and magnetometers. It is composed

of three modules: stepping module, stride module and direction module.

This paper presents some methods to detect pedestrian step occurrence

and prevent erroneous step determination for handheld devices. An accurate

step detection module is implemented using the accelerometer. The exper-

imental results exhibit an excellent step counting accuracy in flat walking

and stair walking case, and possess a stout noise resistance ability.

An useful method of estimating the human walking distance by using

the regression analysis is also described. Two specific parameters, including

the amplitude and the Fourier magnitude of a step pattern, are used for

calculating the stride length. The stride module is implemented using only the

accelerometer and integrated with the stepping module to evaluate how long

people walks in real time. The accuracy of it is verified by the experiments,

it shows a good stride length estimation. The accuracy could be increased

by executing more experiments and collecting more parameter samples. The

regression analysis is useful for estimating walking distance, but performing

the pre-trained process is necessary. It will cost a lot of time for improving

the estimating accuracy.
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A method of calculating human walking direction is presented, it is able

to evaluate a 3-D rotation, which is represented in Euler angles. A holding

angle calculating algorithm is proposed next, it is capable of solving the

erroneous positioning results, caused by the orientation difference between

user and device, of the common DR system.

The PTS is implemented by integrating the outputs of stepping module,

stride module and direction module. This system, which can be embedded

into cellphones or PDAs easily, is feasible for indoor or outdoor personal

positioning with a given initial position. In the future, the PTS could be

integrated with the GPS for improving the positioning accuracy of both. It

is very helpful for personal navigation in urban areas, indoor and outdoor

environments.

In addition, the device sampling rate reduction is also considered for

saving energy consumption as a future work. It is possible that all the prede-

termined thresholds of the parameters for step detection need to be adjusted

to recognize the human step pattern effectively in lower sampling rate. How-

ever, decreasing the sampling rate of the device may cause a problem that

no obvious peaks and troughs appear in acceleration thus step pattern is

unrecognizable.
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