X
2
13
‘IR
JL
Hid
oo
o

E-¥ P2P # PR T R LR &

Distributed Video Storage Management for a P2P Time-Shift
Streaming System

w

;B*:,
E]ﬂ‘

mly

SRR I

e TTEEE ICE

RERKEIL+NENRB

BHEPOP PR R i A G bR

Distributed Video Storage Management for a P2P Time-Shift Streaming System

R S A Student : Wei-Kai Liao
p Ry kP Advisor : Ming-Feng Chang

T E o1 op o

T R

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

;J_;‘:J’__i:a\‘]g],i‘__L,_{;E/\H

P

$-41 P2P B pF B Nk sz B2 A

N
P2

B i I ERRIERPE R

By PP B IRA R SRR PO E AR R T 1518 P2P
Rk BRI R IR APRIE P

e
1N
34

R R BTl R S b

VI = RES R fﬁﬁ'f'ﬁv%z—g M %R BEE AR B i Jﬂf&afrﬁv 1LHE
S EWEMEE R LRZRGTEDOFTIRES

AR F e PREZ B R o P TRy E AT PR
FIED G A ESER PP B B S A PR - £ 4 PP ﬁ:ﬂ*g P
B BA ARG 2 Bl B Eo Wv}— BARF RAeBEE s
{é?%?llf;ﬁﬁogﬁ?%fgﬁ{?}? E]g/nLE\‘ %}Fg'g'/u‘u"

APPSR o BRY X DS Efo- BEY IR E AP
H-BFE2h MEDREGTBRANRCOE N EHBI RN R Bkt 2
o E R HED N FACEA PR AP AP B - ST

Distributed Video Storage Management for

a P2P Time-Shift Streaming System

Student: Wei-Kai Liao Advisor: Prof. Ming-Feng Chang

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

P2P multimedia streaming today can be categorized into live streaming and
video-on-demand (VoD) streaming; both “adopt P2P techniques to provide
multimedia streaming services. However, live streaming users can only watch
the latest media contents but ‘cannot watch previous ones. Although VoD
streaming users can watch what they want at any given time, they cannot watch
live media content.

Although there are many studies about P2P live streaming and P2P VoD
streaming, there are no P2P streaming systems that can provide both live and
time-shift streaming at the same time. In this thesis, we propose a storage policy
for P2P time-shift streaming contents. Based on the storage policy, we
implement a P2P streaming system that can providing time-shift streaming and
live streaming at the same time.

In our streaming system, each peer maintains a short-term storage and a
long-term storage. We propose an algorithm to turn part of media contents in
short-term storage to long-term storage. Besides, in order to prevent the size of
media content exceed the size of storage; we also propose a replacement policy.

BRGSO A TRAAEEEY - BRI LRSS o BT
SN B BRI ITE - FER G > tE B RIGIERE R 5, - %
BT DIEASE RS oL » FARBGEHTE K EBIE T - REREZORBARAIEE - 5T
FTiE i F € mPER -

Bt R E = EC > 2 [FSE A [E S > AR IR A
Bl —REEH S > MR ERGAR A 0 o RS - 5L - R EE
o PGSR HER ARSI D ER

AR R ERHIZE A > BE R EROREIHME 2 02 BHYSCRr > HATEL
NECRIEY 58 RRERSE

VN
WS 8 TS 81 f2AT § T LT

PERRL L ANE AN

iii

Contents

BB ettt e e e et et e b e et e e e e et e e te b e e e teeteareeereeeeares i
ADSEFACT ...t e e e s e e e e e e e e ene e i
o FOTTR TR iii
CONTENTS ... e iv
TS o) T [N USSR Vi
Chapter 1 INtrOQUCTION.coiiiieieiie et nre s 1
1.1 Current deVelOPMENT......c.ui e 1

1.2 IMOTIVALION ...t i e ettt 2

1.3 ODJECHIVE ... ittt a2 eh et ettt et et st e b e e eneenas 3

1.4 SUMIMAIY w.eeiiiiiee it ebsae s einn et e e et A RRE e 2ttt e et e e et e e snbe e e nnbeeennbeeennnees 4
Chapter 2 Related WOTK ...t i i esssassissusssnsas e adesstiessesseesseessessessessesessesssessessses 5
2.1 Classification of P2P streaming Methodsccccoovvviiiicccccee e 5

2.2 Data TranSMISSIONc.veieiiierieitiiiesie ettt 7

2.3 P2P lIVE SIrEAMINGeeveeieciieiieeie et sie ettt e st ae e e e sre e 8

2.4 P2P VOD SIrEAMING.....cuiiiiiiiiiiieitisiesiee sttt sae e sbe e 9

2.5 P2P live streaming with Time-shift streaming Features...............c.cccoceevereneee. 11
Chapter 3 SYSTEM DESION......ccvi ettt e e e e 14
3.1 SYSIEM OVEIVIEW.........oiiiiicieieieeetete et 14

3.2 Sreaming FOMMAL........coviiiiieeie et 16

3.3 Storage ArChITECIUIEccveiieie e 19

3.3.1 Short-term storage and LONG-termM SLOTAgEc.eeererrierierierie e eieeeeie e 21

iv

3.3.2 Operation Of SOrt-terM StOrAgEc.voiieirierieere e 22

3.3.3 Operation Of LONG-TErM STOTAGEoveveiierieie ettt sttt 24

3.4 LIV SLIEAMINGveeettieeieee sttt s et s ittt et e ettt e e st e e et e e st e e nnbe e e nnbeeennneeen 27

3.5 Time-Shift SrEAMINGeeeiiiiiii e s e e s e e e e 28

3.5.1 GOSSIP Target SEIECTION.coveiieiciie e 28

3.5.2 GOSSIP SBAICH ...ueviceiciee et r e re e e ne e 30
Chapter 4 System Implementation and Analysis..........c.cccooeveiieiiecii e, 31
4.1 INUBX SEIVET ...ttt bbbt 31

4.2 SYSTEM ANAIYSIS ...t 32
Chapter 5 Conclusions and FUture WOork ... 35
REFEIENCE ... B it i e 36

List of Figures

Figure 2.1 IPTV architecture for time-Shift...........ceivuerreresieeseesieseeseeeeseeseeseesneseesseeses 12
FIQure 3.1 System ArCHILECIUE.eiveeieeeieetiesieeie sttt st sre e 15
Figure 3.2-1 An example of stream depCOMPOSItION.vveveereerreeeeseesireeesreeseeseesseeeesseeses 17
Figure 3.2-2 Streaming format in OUF SYSEEM.........eeiveiiueeiieeiieesreeiteesreesieesreesreessreesreesnnes 18
Figure 3.3 Live streaming group and time-shift Streaming groupsccvevveveeresreeseeseesseesnns 20
Figure 3.3.1 Peers in time-Shift groUpcueeireeiiieeiieeiieesie e s esie e sre e sie et snre e sae e 21
Figure 3.3.2-1 Operations of SNOI-terM StOrAGEervrevereerreeieseesreeeesreesseseeseeseesseesees 22
Figure 3.3.2-2 De-registration 0f SNOFt-TErM STOTAgE e itebeerresrreereeireesieesreesreessreesaeesnnes 23
Figure 3.3.3-1 Turn short-term storage to Long=term StOrage ...cste..verveerveeeerrrerieeeesreseeseeneas 24
Figure 3.3.3-2 Algorithm of I0Rg-term StOFATE: .ereeueeerreeiteas i arreeteestreesteessreesseessneesseessnes 26
Figure 3.5 Sub-streaming registration time of €aCh PEEI-... ../t b rrerrerreerieie e sie e see e 29
Figure 4.1-1 RegiStration MESSAJE tsrirusessssstesassaesseeesseesseessesssseessessssesssesssssssessnes 31
FIgure 4.1-2 FEedhack MESSAEvverveereerreeireeseesreesseaseesseessesseesseesseassesseessesssesseessessessses 32
Figure 4.2 (a) Storage range of 0Ng-termM SOTAGEvveeveeivreeveeireesieesreesieessreesreessreesaeesnnes 33
Figure 4.2 (b) Storage range of I0Ng-terM StOrAgEeveevereerreeeeseesieeeesreessesseeseessesseesees 33

vi

Chapter 1 Introduction

1.1 Current Development

In client-server network architecture, each computer acts as either a client or
server. Client-server architecture illustrates the relationship between two computers in
which one is a client, which makes service requests to another computer, a server. The
upside of client-server architecture is easy to handle and extend its scale. However,
with the increase of the requests by the clients, the server may be soon overloaded,

and unable to deliver or poorly deliver the requested data.

In contrast to client-server architecture, peer to peer (P2P) architecture
illustrates another relationship between two computers in network architecture. In
recent years, P2P networks and P2P applications have been emerging as one of the
most promising approaches to address the scalability problem. Unlike client-server
networks, where network information:is stored on a centralized server and made
available to tens, hundreds, ‘or thousands of clients,. in"P2P network, all peers have
equivalent function, they share a part of their own resource such as storage capacity,
file content, computing power to other peers. In other words, in P2P network, all peer
acts as both a client and a server at.the same_time.and collaborate with each other

instead of relying on centralized servers.

It is obvious that P2P network is good in scalability. Beside it provides for peers
an easy way to share and exchange information without the need of costly and
difficult to maintain the central server. The first P2P application is Naptster [1], that
was used for mp3 music file sharing. Napster totally overthrows the traditional
client-server network architecture. After that, P2P-related applications for file sharing
develop rapidly. ezPeer [2], eDonkey [3], eMule [4], Kazaa [5] and BitTorrent [6] are

very popular file sharing software at present.

In addition to file sharing, there are some P2P applications also applied in other
domain such as telephony and video streaming. Skype [7], a famous P2P telephony

application, routes voice packets from callers to callees over P2P network, and allows

users to make phone calls over the Internet. Skype realizes real-time voice

communication over P2P network.

1.2 Motivation

P2P streaming is another emerging domain on P2P applications, such as
PPStream [8], PPlive [9], etc. In general, P2P streaming system can be categorized
into two basic typologies: (1) In P2P live streaming systems, users choose from
different channels and watch the live content together. In other words, users claim
synchronous video content, in order to maintain the playback quality. Reducing
end-to-end delay is an important issue in P2P live streaming system. (2) In P2P
VoD (Video-on-Demand) streaming systems, the users may choose a specific movie

and play it at any time because the video has been recorded in advance.

However, these two streaming system do not'provide users watch time-shift
streaming (or called live-shift streaming). In time-shift streaming systems, users can
watch a live streaming with arbitrary offset of time, i.e., users can watch a live
program from the beginning even when this live program has already started playing
for a while. For example, someone likes to watch a ball game from the beginning but
he misses the start time of the game, or-someone likes to replay some spectacular
moments in a program. These are very practical situations but there is no P2P
streaming system that can provide time-shift streaming at present. That is because
there are some difficult problems in developing and designing a P2P time-shift

streaming system.

Since in both P2P VoD and time-shift streaming, users play a program at any
time, the video content they claim are asynchronous, we can treat P2P time-shift
streaming as a special case of P2P VoD system. The main difference between these
two streaming systems is the length of video. In P2P VoD streaming system, the
length of video are always fixed, but in P2P time-shift streaming, the length of video
can be very long. Obviously, if a time-shift streaming system wants to provide users
watch arbitrary offset of live content, storage policy for time-shift video content is a

serious problem.

Although there are many studies about P2P live streaming and P2P VoD
streaming, quite few studies can support P2P live and time-shift streaming at the same
time. LiveShift [10], P2TSS [11] and IPTV [12] are the only three studies mention
about time-shift streaming, but all of the three studies are just prototypes and have not
been implemented. On the other hand, studies about P2P VoD are very plentiful.
Huang analyzes Microsoft client-server VoD system and outcomes that P2P VoD
system can decrease the overhead of the VoD server. Because in P2P VoD streaming
system, storing vast video content by using the storage of peers, and enabling peers to
share their stored video content instead of always requesting video content from VoD
servers. To conclude our above discussion, it is worth to design a P2P time-shift
streaming system, using P2P network architecture to decrease the overhead of a
dedicated time-shift server and to provide time-shift streaming and live streaming at

the same time.

1.3 Objective

In this thesis, we propose a P2P time-shift streaming system which can play live
streaming and time-shift streaming. Although P2P time-shift streaming is different
from P2P live and P2P VoD streaming functionally, by studying documents of P2P
live streaming and P2P VoD streaming,” we conclude that our P2P time-shift

streaming system should cope well with the following issues:
(1) Storage and search policy of the time-shift streaming content.
(2) Management of live and time-shift group.
(3) Transmission architecture for live streaming and time-shift streaming.
(4) Prefetch policy for time-shift streaming content.

These four issues are associated with storage policy. Therefore, the storage
policy is the most important in our system. We propose an effective storage policy
that not only decides how to use storage efficiently and what video content should be

stored but also helps peers sharing and delivering their video content efficiently.

3

Our P2P time-shift streaming system has been designed based on our proposed
storage policy. We believe our work is valuable since there are no existing P2P

streaming systems that can actually provide time-shift and live streaming at the same
time.

1.4 Summary

The remaining part is organized as follows. Chapter 2 describes the current work
in P2P streaming researches related to our system. Chapter 3 shows our system design
in details. Chapter 4 presents the system implementation and system analyzsis. Finally,
we give our conclusions in Chapter 5.

Chapter 2 Related Work

In this chapter, first we describe three overlay topologies used in P2P streaming
systems and explain the data transmission. Then we introduce the current work of P2P
live and P2P VoD streaming. There are a few researches on P2P streaming that have

time-shift function, and we will give a briefly introduction.
There are three important criterions in designing P2P streaming systems.

1. Setup delay, means the time from the user tunes on one channel to the time the

video is visible.

2. End-to-end delay, also called playback delay, means the delay between source

and the receiver.

3. Playback continuity means the percentage of received packet.

2.1 Classification of P2P Streaming Methods

Despite P2P live streaming systems and P2P VoD streaming systems are quite
different. Their basic overlay topology can be classified into three categories:

tree-based overlay and mesh-based overlay.

(1) Tree-based overlay
1. Single-tree streaming
The tree-based method constructs a tree-shaped graph. The source node transmits
media streaming data to interior nodes and the interior nodes forward the data to their

downstream nodes, which means every node receives data from its parent. The
5

architectures of Narada [13] and NICE [14] are both tree-based. This intuitional
method has less SETUP delay, and no need to transmit extra messages to maintain the

overlay. But the tree-based method suffered some disadvantages:

1. it’s not load-balancing; most nodes in tree-shaped topology are leaf nodes, but
these nodes don’t have to forward data to another node. On the other hand, interior

nodes must contribute its bandwidth.

2. it’s not robust and resilient. In this system, every node has a parent. If the parent
suddenly fails, the downstream nodes lose data instantly. For a system in a high churn
environment, the tree must be destroyed and rebuilt frequently, which will cause

much overhead.

2. Multi-tree streaming
To resolve the problems of single-tree systems, it-has been proposed to build

multiple trees for delivering data. This-method.can minimize the effect of churn and
effectively utilize available resources in the.-system. The source node of the
multiple-tree will split a video stream into more than two substreams and deliver the
substreams to the distinct multiple trees. This method distributes the forwarding load
among nodes and exploits the bandwidth of the links among the nodes. SplitStream
[15] and CoopNet [16] are multiple-tree based architecture.
(2) mesh- based method

Mesh-based overlays implement a mesh distribution graph. Each node in the
system connects to partial nodes in the overlay. And each node has a buffer map
which represents its available data, and nodes exchange the buffer maps. Each node
must identify where the available chunks are, and pulls the chunks it requires.

Successful systems like PPLive [9], CoolStreaming [17], and SopCast [18] are
6

mesh-based methods. Mesh-based systems have long SETUP delay and have the
overhead of extra control messages exchange. But this kind of systems offers good

resilience to node failures.

2.2 Data Transmission

In the early stage, there are two mechanism of data transmission in P2P
streaming system. One is push-based mechanism; another is pull-based mechanism.
Both of the two has its own drawback, in order to overcome the drawbacks, a hybrid
mechanism was proposed, called push-pull mechanism.

1. Push mechanism

The push mechanism means that when a peer has received data, this peer
forwards the received data to other peers in the network, without explicit requests
from other peers. The forwarding decision is based on some predetermined routing
algorithm, and the same algorithm /is globally used over the whole network. The
problem in push-based systems is recovering the lost data, since the lack of requests
for data. For example, if a connection between two peers is broken, a sending peer

will fail to forward the data to the receiving peer across this broken connection.

2. Pull mechanism

In a pull-based system, a peer receives a packet from other peers must request it
prior to receiving. After receiving a packet, peer must notify other peers about the
packet it received in order to pass the stream along in the network, thus enabling other
peers to request the data. However, if for some reason a packet is not received by a

peer, it may request it from one or more peers announcing to have that packet. This

7

results in better resilience in reception, because in case of a failure the receiving peer
can redirect request packets to another peer having the desired data. An obvious
weakness in the pull-based mechanism is SETUP-delay, since in pull-based

mechanism peers always take much more effort to get needed data.
3. push-pull mechanism

The newly trend is push-pull mechanism, retrieving the advantages of
push-based and pull-based mechanism. In this hybrid mechanism, peers send request
message to parent instead of sending request message for each data. For example, a

peer pulls/requests one block and its parent push/forwards ten block to him.

2.3 P2P live Streaming

P2P live streaming overlay can be classified “into tree-based overlay and
mesh-based overlay. In tree-based overlay, the-root of the tree is the source of the live
content. The live content spread from the root to other peers. Peers must transmit

streaming that it just received.

In ADSL client, since its gap between upload bandwidth and download
bandwidth is wide, i.e., 2M bits for download bandwidth and 256K bits for upload
bandwidth, the upload bandwidth usually makes serious bottleneck in multicast tree.
In order to utilize upload bandwidth efficiently and provide more reliable media

transmission, in recent year, most P2P streaming systems adopt multi-tree structure.

The advantage of multi-tree structure is that the transmission delay is usually

shorter because the streaming data is transmitted along the fixed paths. However,
8

when peer churn, which represents the phenomenon that peers join and leave the
system very often, occurs frequently, the delay caused by re-construction of the
multi-tree topology grows; therefore the system could not support smooth streaming

transmission.

In order to overcome the peer churn issue, many systems adopt mesh structure,
which is so-called data-driven infrastructure. These systems do not build a specific
overlay network or transmission paths in advance. Instead, they use gossip-based
protocol to exchange media contents each peer needs. According to how peers require
media content, tree-based structure can be classified into push-based structure since
the parent nodes voluntarily transmit data to their child nodes, while mesh structure
can be classified into pull-based ‘structure since the peers request what they want

among all peers and the requested peers transmit data to'them thereafter.

2.4 P2P VoD Streaming

Video-on-demand service (VoD) allows users to watch any point of video at any
time. Compared with live streaming, VoD offers more flexibility and convenience to
users and truly realizes the goal of watch whatever you want whenever you want. VoD
has been identified as the key feature to attract consumers to IPTV service.

However, in the early days, in some P2P VoD streaming systems, such as P2Cast
and P2\VoD, users can only watch the video from the beginning. Both P2Cast and
P2Vod adopt single-tree structure. In P2Cast, each peer uses large disk storage to store
the beginning part of video and the part of the close-at-hand video segment, and

provides these parts for the newly joined peers in the future. In P2Vod, peers that

watch near region of video content form a generation. Peers belong to the same
generation must keep the consistency of their playback buffer. This mechanism
simplifies the complexity in recovering the multicast tree after peer churn occurs, but
the cost is decreasing the utilization of storage, since in the same generation, all peers
store the same video content. Besides, in P2Cast and P2Vod, the newly joined peers
cannot contribute all of video content that they had due, this constrain is due to the
cache policy and session establishment in their systems. Another system, oStream
[19], users can watch random part of the video, but the video playing would be broken

for a while if peers as the children of the newly joined peer.

Recently, most P2P VoD streaming systems adopt mesh overlay network. BASS
[20] uses BitTorrent protocol to.download the video content. When close to the
playback deadline but the video content has not been arrived yet, the peer will get the
video content from the VoD server directly. From its simulation, this mechanism helps
reducing 34% of the bandwidth of the VoD server when upload bit rate equals to play
rate in VoD client. Although BASS.reduces the overhead of VoD server, with the

increasing of users, the VoD still requires more bandwidth to serve client.

Besides, in BitTorrent, peers share data based on tit-for-tat principle. This
tit-for-tat is not suitable for P2P VoD streaming, in P2P streaming, video content are
delay-sensitive, i.e., peers must receive data in time, however, tit-for-tat principle
usually make delay increasing. PONDER [21] employs the mesh-based approach
similar to BitTorrent but adopts some new mechanisms to accommodate the VoD

service.

PONDER divides video into multiple equal-size segments called sub-clips, and

each sub-clip divided into multiple equal-size segments called chunk. In PONDER,

10

each peer select serving peer base on the same principle, the principle makes the peer
that request urgent video content have higher priority to be served. By adopting this
principle, each peer can receive maximum video content before the deadline of
playback buffer. If peers cannot receive video content before the deadline of playback
buffer, peers can receive from VoD server directly. PONDER has better efficiency
than BASS, when upload bit rate is 112% to play rate, PONDER can decrease 93%

bandwidth overhead of VoD server.

Many commercial P2P VoD streaming systems appear to provide streaming
services and successfully attract a huge amount of users in recent years, such as
PPLive, Joost [22], PPStream, UUSee [23] and GridCast [24]. More and more new
P2P VoD streaming systems with better quality or even more fascinating features will

arise in the near future.

2.5 P2P Live Streaming with Time-Shift Streaming Features

P2TSS, LiveShift and IPTV are the only three researches we found that
providing users watch time-shift streaming. But so far, all of these are just prototypes
and have not been implemented into well-organized systems yet. We will give a brief
a brief introduction of these researches.

P2TSS can provide live and time-shift streams. To achieve this, it uses two
distributed cache algorithms, Initial Play-out Position Caching and Live Stream
Position Caching. These algorithms enable peers to locally decide which video blocks
to cache for sharing with other peers. Its simulation results show that P2TSS achieves
low server stress by utilizing the local cache and upload bandwidth of peers.

LiveShift is a software prototype designed to take full advantage of P2P
11

networks for both transmission of live video and storage of past video data. In order to
the video data for time-shift, video packets must include timing information. Peers
receiving a live or time-shifted streaming and store the video in a memory buffer.
When the buffer reaches a predefined storage size, the segment then may be stored on
a long-lasting storage. After storing the segment, the peer adds a reference to the
segment in the DHT. Each peer only has to store some video content that they just

watched.

IPTV provides four main functions: live streaming, VoD streaming, PVR
(Personal Video Recorder) and time-shift streaming. Figure 2.1 shows the system

architecture of the IPTV.

€ Peer-to-Peer
ey MUItiCaST

live streaming

cacheserver cache server

Figure 2.1 IPTV architecture for time-shift

It contains three modules: Proxy, Cache and Client. The Proxy node receives
media content from source and transmits this content using multicast. It also caches
the content and publishes the metadata from where the Cache and Client node can

12

obtain them. The Cache node receives the multicast content and then subsequently
writes it in a file. The Client node plays the content received either by multicast or by
P2P methods. For live content, the Client joins the multicast group to receive the
stream. For time-shift content, the Client node first obtains the metadata from the
Proxy node and retrieves a list of peers, including other Client nodes and Cache nodes,
and then starts to download the content through P2P if transmitted from Client nodes

or directly if transmitted from Cache nodes.

13

Chapter 3 System Design

P2P time-shift streaming is similar to P2P VoD streaming. The main difference
between these two streaming systems is the length of video. In P2P VoD streaming
system, the length of video are always fixed, but in P2P time-shift streaming, the
length of video is infinite due to the time is also infinite. Obviously, in P2P time-shift

streaming, storage policy is a serious problem.

For this reason, we propose a storage policy to implement out P2P time-shift
streaming system. Based on our storage policy, providing users can watch time-shift

video smoothly. Our storage policy will cope with the following issue well:
(1) Deciding what kind of streaming packet should be stored.
(2) How to efficiently exploit the storage space with limited size.

(3) How a peer adds its reference about what it has been stored.

Furthermore, following-the storage policy; we also-propose other detailed issues
including:

(1) How data transmission in live streaming and time-shift streaming.
(2) Why need to form time-shift group.

(3) How to form a time-shift group.

We will introduce the overview of our system at first, and then introduce our

storage policy and other detailed issues.

3.1 System Overview

Our system contains four main parts: live streaming peers, time-shift streaming

peers, a bootstrap server and an index server. The Figure 3.1 depicts our system

14

architecture and simply introduces the relation between each two entities in the

system.

“————3 COmmunication

~

/

Time-shift streaming peers

Figure 3.1..System Architecture

The peers watching live streaming (live peers) form a live streaming peer group.
Peers in the live streaming group exchange buffer maps (BM) representing the
availability of latest blocks in buffer to each other and then request the desired media
blocks according to the information in it. Newly joined peer in this group first
contacts the bootstrap server and then the bootstrap server randomly gives it a list of
active peers in the system to initiate content retrieval. After starting to download the
particular files, peers need to register those requested data to the index server and then
index server replies feedback message to tell the peers whether to store it or not. The

de-register function is also needed to delete the blocks to utilize the limited storage

15

space.

The bootstrap server records all the information of the active peers watching live
streaming in the system. It functions only when a newly joined peer wants to acquire a
peer list to initiate the content retrieval procedure or when an existing peer in the live
streaming group has no peer to exchange media blocks. The bootstrap server will

simply give the peer a list with partial active peers.

The peer watching time-shift streaming first queries the index server for the
desired media block. The index server then sends back a list of peers having that
specific block. Then the peer adds these feedback peers as its gossip targets and
request media blocks among them until all of its gossip targets disappear or no desired
blocks are found among all of its gossip targets. The time-shift peers also need to
register the requested blocks to the-index server and then index server replies
feedback message to tell whether to store the blocks or net. The de-register function is

needed as usual.

The index server provides peers with register and query function. Whenever a
peer stores a new block, it needs to register to the index server. The index server
determines whether a peer to store a media block for the future use or not with its

decision making strategy.

3.2 Streaming Format

Here streaming format means the format of streaming packet. How we deal with
the streaming format, have great impact on our storage policy. Our streaming format
adopts mechanism similar to the existed P2P live streaming system Coolstreaming,

but we need to modify it, since our streaming format must be suitable not only for live
16

streaming but also time-shift streaming.

In CoolStreaming, the video streaming is divided into blocks with equal size, and
each block is assigned a sequence number to represent its playback order in the
streaming. And also divide each video stream into multiple sub-streamings without
any coding, in which each node can retrieve any sub-stream independently from
different parent nodes. The Figure 3.2-1 is an example of streaming decomposition in

CoolStreaming.

single stream of blocks with Sequence number {1,2,3,4......13}

......

I EN EN/EN EN CN A E

0

For sub-streams {S1,52,53,S4} %’_

2

s CEEIRIC] e :

sz [le 3]][| seuess 13

ss 37l J[| eeeee %
s4la 8 |12] || | +eee--

Figure 3.2-1 An example of stream decomposition

This subsequently reduces the impact due to a parent departure or failure, and
further helps to achieve better transmission efficiency. In the Figure 3.2-1, a video
streaming is decomposed into 4 sub-streamings by grouping video blocks according
to the following scheme: the i-th sub-stream contains blocks with sequence numbers
(4n +i), where n is a non-negative integer, and is a positive integer from 1 to 4. This

implies that a node can at most receive sub-streams from 4 parent nodes.

17

Our proposed streaming format preserver most mechanism of CoolStreaming..

The Figure 3.2-2 shows our streaming format.

streaming o a1 H2 ”3 ”4 A EE ow w58 H59 H60 H61 o e e
l - i
[Sub-streaml 1 ||12|]21|[31]laa]||s2| .E]\lﬂlj
Sub-stream 2 2 |[12][22][32 |[42][52| - [o2][202 -

Sub-stream 10 |10H20“30||40”50| | —
J

I
segment

Figure 3.2-2 Streaming format in-our system

In our system, the smallest streaming unit is block, the video streaming is
divided into blocks with equal size; each block size is 1 second. In order to let users
can query for watching time-shift streaming in the future, we assign each block
sequence number according to the Network Time Protocol (NTP). For example, block
sequence number, 20090720172358 represents 2009/7/20 17:23:58. In the Figure
3.2-2, for simply illustration, number 1~110 represents the sequence number of
blocks.

The concept of sub-streaming has great assistance in transmission. Each video
streaming is divided into 10 sub-streamings without any coding. Differ from
CoolStreaming, we need to store sub-streamings for future used in time-shift

streaming. Each sub-streaming contains 10 blocks. The Figure 3.2-2 shows in

18

sub-stream 1, block 1 ~ block 91 are stored as one sub-streaming. Block 101 is the tip
block of another sub-stream. And each sub-streaming is represented by the sequence
number of its last block. For example, block 92 represents sub-streaming <2, 12, 22,
32, 42, 52, 62, 72, 82, 92>. Furthermore, in our system, in order to simply register
procedure; sub-streaming is the smallest unit in storage and transmission. In other
words, we store or transmit the whole integrity sub-streaming once time.

At last, we define segment as consecutives blocks in 100 seconds. In other words,

each segment contains 10 sub-streaming.

3.3 Storage Architecture

Before introducing our proposed- storage architecture, we analyze the feature of
our expected P2P steaming system, since the storage architecture makes the following

issues involve to each other:
(1) Storage and search policy-fortime-shift streaming.
(2) The management of live streaming group and time-shift streaming groups.
(3) The transmission architecture of live and time-shift streaming.

We consider that peers that watch close video content should form a group,
because they have great possibility to exchange/share their video data. As the Figure

3.3 reveals, the video content was produced without stopping like the time goes on.

19

Streaming
Pasition
{ LY
yl———— — — — — — | Live group(ty)
bty o)
TS groupitytsy

} TS groupity,t:)

I

|

|

|

|

|

|

I %

)

| .
cufh

g AN -
\Live group(t)) ——. j
ek e e e e el) — <) TS groupitt))

\ | Nl o
) TS grbup(ts.t)
|

|
|
|
|
ly |~ _ -T; _ = = JI— —_— —‘%;TS aroupils,Ly)
| |

t |5} 4 Time

Figure 3.3 Live streaming group and time-shift streaming groups

Furthermore, the Figure -3.3 reveals .some time-shift groups and live group
(represented by circle). Live-group contains all’ of the users that watch live content;
time-shift group gathers some users that their streaming positions are close. Time-shift
groups in the same vertical axis are existed at the same time; time-shift groups in the
same horizontal axis are watching the same streaming position. All of these groups are
dynamic and moving toward 45 degree east of due north in their position, like the

arrow in the Figure 3.3.

In general, live group has much more peers than time-shift group. In live
streaming, since we can expect there are many peers in live group, peers can easy to
and only to share/exchange their live content to each other, therefore in live group,

peers only need to contact bootstrap node to get a list of peers as its neighbors.

However, in time-shift streaming, we expect there are few peers in each one

time-shift group, which means peers may only receive video content from limited

20

number of peers. Therefore, it is more difficult to efficiently transmit video content

and that’s why collaboration between peers in one time-shift group is important.

3.3.1 Short-team storage and Long-term storage

In our proposed storage architecture, each peer has a short-term storage and a
long-term storage. The main purpose of short-term storage is encouraging
transmission efficiency by utilizing upload bandwidth of peers in time-shift group, for
more efficient in transmission short-term storage is placed in buffer memory. For each
peer, no matter what live peers or time-shift peers, peers store they just watched video
content in their short-term storage. Here we define size of each short-term storage is
consecutives 100 seconds, that is equal to a size of segment, contains 100 blocks, 10

sub-streamings.

In the Figure 3.3.1, peer A, B and C are watching time-shift content. The
streaming position of A between streaming position of.B is less than 100 seconds.
Therefore B can directly and fully. receive video content from the short-term storage
of A if A has enough upload bandwidth. However, since the streaming position of A

and C is over than 100 seconds, C cannot retrieve video content from peer A or B.

Streaming
Pog@on

h

-—

'S w
il e

Time-Shift
group

> Time

Figure 3.3.1 Peers in time-shift group
21

The transmission fashion is not only constraint among time-shift peers, time-shift
peers can also retrieve time-shift content from the short-term storage of live peers, if

streaming positions of time-shift peers within 100 seconds from live streaming.

On the other hand, the main purpose of long-term storage is to backup video
content for time-shift peers and tries to maintain longer coverage of video. Obviously,
it has great difference from short-term storage; we need an algorithm to decide what
should be store in the long-term storage and we place the long-term storage in the disk

space. The algorithm will be discussed in the following section.

3.3.2 Operation of Short-term storage

As mention above, both live peers and time-shift peers has its own short-term
storage, which contains the last 100 seconds.video content that they just watch. The

Figure 3.3.2-1 illustrates each peer has 3 segments with-length of 100 seconds at the

same time.
De-register
1 Register
v
Index server |
Choice some turn to
long-term A N
(\ Loading.......
100s 100s 100s ‘ 100s 100s
K sec
| |)
1 1

De-Register Register for
this segment this segment

Figure 3.3.2-1 Operations of short-term storage

22

(1) In the first segment is loading the newly video content;

(2) In the second segment, from (K-100) second to K second, is the newest
segment that contains integrity 100 seconds video content. Peer maintains
this segment as its short-term storage and registers this segment into index
server, so that other peers can reference its short-term storage. We use the

Figure 3.3.2-2 to depict the register procedure.

[o1 §11 [21 [31 [a1 [s1 |61 |71 |81 |o1 |01
[}

(02 112 [22 [32 |42 [52 |62 |72 [82 |92 [102}

(03 {13 [23 [33 |43 [53 |63 |73 |83 |93 |103
T

(04 114 |24 |34 |44 [54 [6a |74 |84 [0 |104]

(09 119 [29 |39 |49 |59 |69 |79 |89 |99 |109|

10 izo |30 |40 [50 |60 |70 |80 |90 |100@

Figure 3.3.2-2. De-registration of short-term storage

In this case, the newest segment contains block 11 ~ block 110, peer only
needs to register the last block (block 110) within this segment, that
represents the sub-streaming <20, 30, 40, 50, 60, 70, 80, 90, 100, 110> and
then index server add remain sub-streamings, sub-streaming 109,
sub-streaming 108, sub-streaming 107, sub-streaming 106, sub-streaming
105, sub-streaming 104, sub-streaming 103, sub-streaming 102 and

sub-streaming 101.

23

(3) In the third segment, from (K-200) second to (K-100) second, is the past
segment. Peer replaces this segment and does de-register procedure for this

segment from index server.

Notice that the three operations: loading, register, de-register, works at the same

time and works once in 100 seconds.

3.3.3 Operation of Long-term storage

Streaming packets that store in long-term storage is originated from short-term
storage. The long-term storage somehow is a kind of backup storage, letting users can
reference time-shift video content. In last section, peers de-register the pass segment,
and then we select part of the pass segment-turn to as long-term storage. Absolutely,
turn the entire pass short-term storage ,is. not-ideal method, since we hope to the

coverage of time-shift video content as wild as possible.

For this reason, in order-to prevent peers-only concentrating on storing certain of
sub-streamings, we assume that'the number of replicas for each sub-streaming in one
live or time-shift group, 3 is enough. We use the Figure 3.3.3-1 to depict the

procedure of turning short-term storage as long-term storage.

io1 (11 [21 [31 [a1 [51 [e2 [71 [81 [;2 E101|

[ioz |12 [22 [32 |42 |52 [62 [72 |82 |92 102

ios |13 |23 [33 [43 [53 [63 [73 |83 [93 103]

[04 |14 [2a [3a [4a [54 [6a |72 [8a [9a |104]

09 [19 |29 [39 [49 [59 [69 |79 |89 |99 [109]

10 (20 [30 |40 [50 |60 |70 |80 |90 |1m 110 |

24

Figure 3.3.3-1 Turn short-term storage to Long-term storage

In this case, a peer is going to de-register the pass segment that contains block 1
~ block 100. The peer only needs to de-register the last block (block 100) within this
segment, that represents the sub-streaming <10, 20, 30, 40, 50, 60, 70, 80, 90, 100>
and then index server dose the remain de-register procedure, i.e. de-register the

sub-streaming 91 ~ sub-streaming 99.

After de-register procedure, index sever judges which sub-streamings among the
segment that just de-register should turn as long-term storage. Each sub-streaming

will be up against two scenarios:

(1) Turned as long-term storage

(2) Dropped anyway

In the first scenario, index server maintains- this registration without doing
anything. And then notifies the peer the decision, after the peer receives this notify,
drops this sub-streaming from its short-term- storage and places this sub-streaming to

its long-term storage.

In the second scenario, index server deletes the entry of the sub-streaming, that
implies peers cannot reference this sub-streaming from this peer anymore. And then
notifies the peer the decision, after the peer receives this notify, simply drops this

sub-streaming from its short-term storage.

In the case of the Figure 3.3.3-1, index server preserves sub-streamings 92, 93,

94. The judgment is based on the algorithm, shows as the Figure 3.3.3-2.

25

« N<30

— Turn long-term anyway

« 30<=N<100

— Turn whole sub-streaming to long-term based on ID of peers

* 100<=N

— Turn sub-stream to long-term at 1/3 probability (stillbase on
ID of peers)

Figure 3.3.3-2 Algorithm of long-term storage

N indicates the number of peers in one group. Although we hope to keep the
number of replica is more than 3, we don’t want the number of replica too much so
that affect the coverage of time-shift video content. When N < 30, index server
notifies peers turn whole sub-streaming as long-term storage. When 30 <= N < 100,
turns the sub-streaming to long-term-based on the number, 1D%10. Peers turn the
sub-streaming if the peer ID%10 equals to the sub-streaming 1D%10. For example,
peer 13734 turns the sub-streaming 20090713093154 to its long-term storage. When
100 <= N, except following the last rule,-advance turns each sub-streaming with 1/3
probability. For example, peer 13734 turns the sub-streaming 20090713093154 to its

long-term storage with 1/3 probability.

Finally, since long-term storage has fixed storage space, we need to perform
replacement policy. In our system, each peer counts its number of successful
transferred time of each sub-streaming. Obviously, the higher the count number of
each sub-streaming, the more replicas is in the system. If there are two or more
sub-streamings with the same count number, peers prioritize replacing the former

sub-streaming.

We perform this replacement policy based the same principle again, lengthen the
26

coverage of media content. However, the strategy of replacing the highest count
number of sub-streaming, maybe meet a situation; all peers maintain less popular

media content. This result indicates that there is trade-off between these two issues.

3.4 Live Streaming

In live streaming, our system adopts the mechanism similar to CoolStreaming. In
live streaming, peers use buffer map to exchange and share their live content. The
buffer map represents the availability of latest bocks in buffer and is composed of two
vectors. The first vector records the serial number of the latest received block in each
of the sub-stream. For example, since we have 10 sub-streams, the first vector looks
like <11, 22, 13, 24, 35, 16, , 20>, It represents that the peer has received block
with serial number 11 in sub-stream 1, block with serial number 22 in sub-stream 2,

and so on.

The second vector specifies which sub-stream to subscribe from other partners.
For example, if a peer P wants to subscribe sub-stream 1,2 and 5 from the partner P’,
P sends out <1, 1, 0,0, 1, 0, O, ..., 0> to P’. The “1” represents that P wants to
subscribe this sub-stream and “0” stands for that P does not want to subscribe this
sub-stream. If a peer wants to subscribe sub-stream N, it simply does this by

periodically exchanging BM with the information of the second vector.

After exchanging BM, in content delivery, we adopt hybrid push-pull mechanism
to exchange media content among the peers. A peer P pulls at first by subscribing a
sub-stream from one of its partner P’ through the second vector of the buffer map.
Then P’ will start pushing all the consecutive media blocks of that sub-stream which

is available to P. Since a peer needs to pull for all the blocks of each sub-stream from
27

its partners in the pull mechanism, the hybrid mechanism helps reduce the traffic
overhead by simply pulling the first block of each sub-stream. The multiple

sub-stream mechanism also helps reduce time used for retrieving media content.

3.5 Time-Shift Streaming

Our system provides time-shift streaming which allows users to watch a live
stream with an arbitrary offset at any given time. In our system, the time-shift peer

first sends the query message with two fashions.

(1) At first, peers send query message for its desired media contents. The index
server then returns a list_of peers having the specific contents, and the

requesting peer will try to add itself as a .member in a certain time-shift
group.
(2) If the peer is in onetime-shift group,-it-queries its desired media content by

using gossip search.

Time-shift groups in our system actually are organized by gossip members of
peers. Section 3.5.1 introduces gossip target selection: section 3.5.2 introduces gossip
search.

3.5.1 Gossip Target Selection

A time-shift peer A queries the desired block from the index server at first with
specific time T. The index server then queries the nearest block equal to T or after T,
and finds a list of peers having that specific block. Since lots of peers may be found as
the gossip targets and too many gossip targets may induce too much traffic overhead

due to the exchange of gossip messages. So we design how to select gossip target

28

based on the inference - the nearer the time a peer watches from one peer, the higher
probability it has the blocks it will need in the near future. We can use the registration

time to represent the time that peers watched the video content.

Assume peer A is the newly time-shift peer and peer B, C, D, E and F have the
specific media block that A queries. The Figure 3.5 shows the block registration time
of each peer. The order of registration time from the nearest to the most far compared

to currenttime is B, C, D, E and F.

.
| |

A B & ¥ E F

The Modia Block Regisivation Time of Eack Peay

Figure 3.5 Sub-streaming registration time of each peer

Since the media block of B has:the nearest registration time compared to current
time, B has the most probability that it watches this media block most recently.
Moreover, B may have the short-term storage that A will need in the near future. So
the index server first adds B into the list that will be sent to A. Then the index server
adds C, D and E whose registration time of that block are no more than 100 seconds
compared to the nearest peer B since we think the peers (ex: F) with registration time
of the block more than 100 seconds compared to B may not watch this media block
recently and may not have the blocks A will need with higher probability in the near
future. So the list now contains B, C, D and E. Then the index server sends the list to

peer A and peer A adds the peers in the list as its gossip targets.

29

3.5.2 Gossip Search

After peer P locates the desired block from the index server, suppose a list with
N peers having this block is sent back from the index server, P first finds the peer
having short-term blocks indicating in the list. P sends the request message to one of
the peers having the short-term blocks. These requested peers then compute their own
residual upload bandwidth and request achieve rate. The one with the highest residual
upload bandwidth pushes all the short-term blocks it owns to P. If two or more peers
have the same residual upload bandwidth, choose the one with the highest request
achieve rate since it could handle the request with higher probability. If no peer

having short-term blocks is found, P. then-performs gossip search.

P sends request message.(with TTL = 2 and timeout TT) to all its gossip targets.
Suppose N’ peers having this block are found. These N’ peers send back reply
message with residual upload bandwidth-and request achieve rate to P. P receives the
reply messages and records the information on-it."Then P chooses the one (P’) with
the highest residual upload bandwidth within all N’ peers and P’ starts to push all the
consecutive blocks it owns to P. If two or more peers have the same residual upload

bandwidth, choose the one with the highest request achieve rate.

If no peer having the desired block is found in the gossip search, P queries the

index server directly since none of its gossip targets has the block.

30

Chapter 4

System Implementation and Analysis

There are three components in our system, a bootstrap server, an index server
and streaming peers, each with different functionalities. The bootstrap server and the
index server are implemented with Java socket. Each of them creates a thread to serve

a connecting peer individually.

4.1 Index server

Interaction between peers and index server is an important part in our system.
Peers register to by sending the registration message, shows as the Figure 4.1-1; we

depict these six columns one by one.

Register | Peer ID | Block SN time Block SN | Block SN

Figure 4.1-1 Registration message
1. This column is fixed, notify index server to deal with remain columns.
2. Each peer fills its ID in this column.
3. Each peer fills the sequence number of block that it wants to register.
4. Mark its registration time.

5. Fill the sequence number of the last block in the sub-streaming that peers want

to replace and de-register from its long-term storage.

6. Fill the sequence number of the last block in the pass segment that peers want

to de-register from its short-term storage.

31

Index server sends feedback message to peers after it received registration
message, using the fourth column, “time”, to count how many peers has been register
for this sub-streaming within 100 seconds. The result of counting is the “N” as we
mentioned in section 3.3.3. And then index server judges which sub-streaming should

be turned into long-term storage based on the “N”.

The feedback message only informs peers should turn which sub-streamings
from short-term storage to long-term storage. Figure 4.1-2 is the feedback message

format.

store/not store Block SN

Figure 4.1-2 Feedback message

Following the example-of the Figure 3.3.3-1, index server sends feedback
message as following: <not-store 91, store 92, store 93, store 94, not store 95, not

store 96, not store 97, not store'98, not store 99, not store 100>,

4.2 System analysis

In our system, we use long-term storage to provide video content for user
watching time-shift video. Therefore, the coverage range of time-shift video content is

an important issue.

We can use the Figure 4.2 (a) and the Figure 4.2 (b) to analyze the algorithm in
our index server, which already mentioned in section 3.3.3. These two figures are
based on the same condition: (1) each peer has long-term storage with 200 MB. (2)
All peers are watching live content, and without any peers request time-shift content,

since we want to simplify the replacement policy.
32

We compare our algorithm with “store whole segment” and “store whole

sub-streaming”.

“Store whole segment” means turn whole short-term storage to long-term storage
without any alternation. “Store whole segment” means we turn each sub-streaming
based on the ID of the peer and the ID of the sub-streaming, but without considering

the number of users.

Storage range (seconds) Long term storage : 200MB
16000 Without any Time-Shift
14000
12000
10000

808?1 ==store whole segment
= ===store whole sub-stream
6000 :
— e "0Ufa|80rlthm
40
PRe

2000

0

= ™~ mg:ﬁﬂﬂ umbper or Feers

Figure 4.2 (a) Storage range of long-term storage

Number of replica (each block) Long term Storage - 900MB

Without any Time-Shift

160

140

120

100

80 —=store whole segment

==store whole sub-stream
60 ;
our algorithm
40
20
#
O | —
=t hmma:f_‘uﬂv umbper or Feers

Figure 4.2 (b) Number of replica of block

33

The Figure 4.2 (a) indicates the coverage range of time-shift video content;
the Figure 4.2 (b) indicates the number of replicas of each sub-streaming. The
Figure 4.2 (a) illustrates that our algorithm can increase the storage range with
increasing of number of users, the other two methods can only maintain the fixed
storage range. However, in the Figure 4.2 (b), the other two methods show the
replicas are increasing violently with increasing of number of peers, instead of

increasing slowing by adopting our algorithm.

This is a trade-off problem, we consider it is worth to barter the number of
replicas for the storage range, since we believe lengthening the storage range is
more important, besides the number of replicas is still growing with the number

of peers, although it grows slowly.

34

Chapter 5

Conclusions and Future Work

P2P streaming services today can be classified into two individual categories —
P2P live streaming and P2P VoD streaming. A user watching live streaming may want
to watch the previous video contents, i.e., the video contents just played 30 minutes
ago or an hour ago. However, few P2P streaming systems support both live streaming
and time-shift streaming at the same time nowadays according to our literature search,

and most of them are just prototypes and have not been implemented yet.

In this thesis we propose an effective storage policy for P2P time-shift streaming.
Each peer has its own short-term storage and-long-term storage. The short-term
storage is continuous video-content that just been' played back at the peer. The
long-term storage stores segments of media content-for time-shift viewers. We
lengthen the coverage range -of time-shift media content as far as possible by the

process of turning short-term to long-term storage and the storage replacement policy.

However, in our system, most computations are handled by the index server. In
the future work, the index servers can be replaced by a DHT structure implemented in
every peer and thereafter we can query and form groups without the help of dedicated
servers. A live and time-shift streaming service can be implemented in a pure P2P

network architecture in the future.

35

References

[1]Napster, http://free.napster.com/

[2] ezPeer, http://web.ezpeer.com/

[3] eDonkey, http://www.zeropaid.com/edonkey/
[4] eMule, http://www.emule.com/

[5] KaZaa, http://www.kazaa.com/

[6] BitTorrent, http:// www.bittorrent.com/

[7] Skype, http://www.skype.com

[8] PPStream, http://www.ppstream.com/

[9] pplive, http://mwvww.pplive.com/

[10] F. V. Hecht, T. Bocek, C. Morariu, D. Hausheer, B. Stiller, “LiveShift:
Peer-to-peer live streaming with distributed time-shifting,” in 8th International
Conference on Peer-to-Peer Computing (P2P'08)

[11] S. Deshpande, J. Noh, “P2TSS: Time-shifted and live streaming of video in
peer-to-peer systems,” Multimedia-and Expo, 2008 IEEE International Conference on

[12] Diego Gallo, Charles: Miers, Vlad Coroama, and Tereza Carvalho, “A
Multimedia Delivery Architecture for IPTV ‘with P2P-based Time-Shift Support,” in
Consumer Communications and Networking Canference, 2009. CCNC 2009. 6th
IEEE

[13] Y. H. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast,” IEEE J.
Sel. Areas Commun., vol.20, pp. 1-12, Oct. 2002.

[14] Z. Liu, H. Yu, D. Kundur, M. Merabti, “On Peer-to-Peer Multimedia Content
Access and Distribution” in Proc. International Conference on Multimedia and Expo,
pp.557-560. Jul. 2006.

[15] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron, A. Singh,
“Splitstream: High-bandwidth content distribution in a cooperative environment,” in
Proc. nineteenth ACM symposium on Operating systems principles, pp. 292-303. Oct.
2003.

[16] V. N. Padmanabhan, H. J. Wang , P. A. Chou, K. Sripanidkulchai, “Distributing
streaming media content using cooperative networking,” in Proc. 12th international
workshop on Network and operating systems support for digital audio and video, pp.
177-186. Apr. 2002.

36

[17] X. Zhang, J. Liu, B. Li, and Y.-S.P. Yum,” CoolStreaming/DONet: a data-driven
overlay network for peer-to-peer live media streaming,” in Proc. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, pp. 2102-2111,
Mar. 2005.

[18] SopCast, http://www.sopcast.com/

[19] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: peer-to-peer patching
scheme for VoD service,” WWW, May 2003.

[20] T. Do, K. A. Hua, and M. Tantaoui, “P2VoD: providing fault tolerant
video-on-demand streaming in peer-to-peer environment,”IEEE ICC, vol. 3, June
2004.

[21] C. Dana, D. Li, D. Harrison, and C. Chuah, “Bass: Bittorrent assisted streaming
system for video-on-demand,” in International workshop on multimedia signal
processing (MMsP), 2005.

[22] “Joost”, http://www.joost.com/.
[23] “UUSee”, http://www.uusee.com/.
[24] “GridCast”, http://www.gridcast.cn/.

37

