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生醫領域語意相似度測量 

學生：張文勇 

 

指導教授：謝筱齡 

 林正中 

國立交通大學資訊科學與工程所 碩士班 

摘要摘要摘要摘要    

 語意相似性度計算在信息檢索和自然語言處理領域扮演重要的角色。在本文中，我

們提出了一種基於網頁數的語意相似性度計算方法並應用到生物醫學領域。以往的研究

中語意網相關的應用已經使用了各種語意相似度計算的方法。儘管語意相似度計算應用

範圍甚廣，但是測量兩個詞之間的語意相似度仍然是一個具有挑戰性的任務。本文提出

的方法利用搜尋引擎傳回的網頁數來計算語意相似度。給予兩個詞 P 和 Q ，利用網頁

數的查詢 P 和 Q 和 P AND Q 以及所定義的公式作為計算整合我們提出的一種新方法使用

一些句法查詢其出現的網頁數來計算語意相似度。將這些不同的相似分數分別使用支持

向量機和決策樹學習，再計算其出現於同義字類別的機率作為語意的相似度。兩組數據

實驗結果顯示，在第一組(A. Hliaoutakis 所提出)可以達到 0.798 的相關係數 ，在第

二組(T. Pedersen 等人所提出)以醫生的分數為基準可以達到 0.705 的相關係數 ，以醫

學專業人員的分數為基準可以達到 0.496 的相關係數。 

 

 

 

關鍵字：生醫術語、語意相似度、網路探勘 
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Semantic Similarity Measurement in Biomedical Domain 

 

student：Wen-Yung Chang 

 

Advisors：Dr. Sheau-Ling Hsieh 

  Dr. Cheng-Chung Lin 

 

Abstract 

Semantic similarity measure plays an important role in Information Retrieval and Natural 

Language Processing. In this paper we propose a page-count-based semantic similarity 

measure and apply it into the biomedical domain. Previous work in semantic web related 

applications have used various semantic similarity measures. Despite the usefulness of these 

applications, measuring semantic similarity between two terms remains a challenging task. 

The proposed method exploits page counts returned by the Web search engine. We define 

various similarity scores for two given terms P and Q, using the page counts for the queries P, 

Q and P AND Q. Moreover, we propose a novel approach to compute semantic similarity 

based upon lexico-syntactic patterns using page counts. The different similarity scores are 

integrated with support vector machines and decision tree classifier models, to leverage a 

robustness of the measures. Experimental results achieve a correlation coefficient of 0.798 on 

the dataset provided by A. Hliaoutakis, 0.705 on the dataset provide by T. Pedersen et al with 

physician scores and 0.496 with expert scores, respectively. 
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Chapter 1 Introduction 

With the rapid growth of today's internet, in order to facilitate the management and 

search, various information documents has transformed into electronic documents. All types 

of information documents on the internet increased the difficulty of information retrieval. 

Research of semantic similarity between concepts has been an integral part of information 

retrieval and natural language processing. 

The existence of semantic equivalence classes between lexical items in English makes it 

highly desirable to use thesauri of synonymous concepts for document retrieval (DR) and 

information retrieval (IR) applications. The issue is particularly acute in the biomedical 

domain due to stringent completeness requirements on such as patient cohort identification. 

We believe that measures of semantic similarity can improve the performance of such systems. 

For example, a user’s query for ‘‘congestive heart failure’’ could be expanded to include the 

semantically similar terms of cardiac decompensation, pulmonary edema, ischemic 

cardiomyopathy and volume overload. Clearly, pulmonary edema does not denote the same or 

even a similar disorder as congestive heart failure but under the patient cohort identification 

conditions it could be considered as an equivalent search term. 

Semantic similarity refers to human judgments of the degree to which a given pair of 

concepts. Measures of semantic similarity are automatic techniques that attempt to imitate 

human judgments of relatedness. Semantic similarity measures are classified into two main 

categories such as ontology-based and corpus-based. The first class is to measure the semantic 

similarity between two concepts c1, c2 by calculate the distance between the concept nodes in 

the ontology tree or hierarchy [1, 2]. The second class of techniques measures the difference 

of information content of the two concepts as a function of their probability of occurrence in a 

corpus. In this class, the techniques use machine learning, rule-based, statistical-based or 

other corpus-based approaches [2, 3, 4]. The corpus-based approach uses the information 
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available in the corpus to measure similarity between concepts or entities. In our research we 

use the corpus-based technique to measure the semantic similarity between concepts. 

By using corpus-based approach how many corpus is an important issue in many Natural 

Language Processing (NLP) tasks. In 2001, (Banko & Brill 01) advocated for the creative 

using very large corpus as an alternative to sophisticated algorithms. They demonstrated the 

idea on a lexical disambiguation problem. The problem was to choose which of 2-3 

commonly confused concepts were appropriate for a given context. They show that even 

using a very simple algorithm, the results continue improving log-linearly with more training 

data, even out to a billion concepts. They conclude that getting more data may be a better idea 

than fine tuning algorithms. The Web is providing unprecedented access to the information as 

well as interacting with people’s daily lives. Today, the obvious source of largest data is the 

web. 

Using the web as training and testing corpus is attracting ever-increasing attention. The 

web has been used as a corpus for a variety of NLP tasks such as machine translation 

(Grefenstette 98; Resnik 99; Cao & Li 02; Way & Gough 03), question answering: (Dumais et 

al. 02; Soricut & Brill 04), word sense disambiguation (Mihalcea & Moldovan 99; Rigau et al. 

02; Santamar´ıa et al. 03; Zahariev 04), extraction of semantic relations, (Chklovski & Pantel 

04; Idan Szpektor & Coppola 04; Shinzato & Torisawa 04), anaphora resolution: (Modjeska 

et al. 03), prepositional phrase attachment: (Volk 01; Calvo & Gelbukh 03), language 

modeling: (Zhu & Rosenfeld 01; Keller & Lapata 03), semantic similarity(Danushka 

Bollegala & Yutaka Matsuo 07). In our research we proposed a method for semantic 

similarity measurement between concepts using web search engine and apply it into 

biomedical domain. 

The rest of this thesis is organized as follows: 

In chapter 2 we provide the necessary technical background and analysis of related work. 

In chapter 3 we are going to introduce our similarity measurement methodology. 
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In chapter 4 we make the experiments and present the experiment results. 

In chapter 5 we highlight the conclusions from the study, and propose future work. 
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Chapter 2 Background and Related Work 

In this chapter, the first three sections are going to report some technical background 

related to our research, we will introduce Google AJAX Search API in chapter 2.1, supervised 

learning methods used for classification and regression of support vector machine (SVM) in 

chapter 2.2 and decision tree classification method in chapter 2.3, for the following two 

sections described the SNOMED-CT ontology and the MeSH ontology in chapter 2.4 and 

chapter 2.5 respectively. Finally we introduce four major categories of ontology-based 

semantic similarity measurement methods in chapter 2.5. 

 

2.1 Google AJAX Search API 

The Google AJAX Search API is made up of four major classes of components: 

The first class google.search.SearchControl provides the user interface and coordination 

over numbers of searcher objects, each searcher object is designed in order to perform 

searches and return a specific class of results. 

The second class google.search.Search is also the base class which all "searchers" inherit. 

It defines the interface that all searcher services have to implement. 

The third class GResult is also a base class that encapsulates the search results produced 

by the searcher objects. 

The last class is google.search.SearcherOptions, this class configures the behavior of 

searcher objects when we add to a search control. 

The detail discussion of how to use the Google AJAX Search API command is in 

appendix A. 

 

2.2 Support Vector Machine 

Support vector machine (SVM) is a supervised learning method used for classification 

and regression. SVM has been using widely because of its high generalization ability and the 

wide area of applications. 
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In two-class classification problem, a training set S = {(x
k
, y

k
)}, k = 1, 2,…, n. x

k 

describes the input patterns in d-dimensional feature space, x
k 
∈ R

d
. The class labels y

k 

confirms as responses of x
k 
from either of the two class, and are assigned with a value of +1 or 

-1. Our purpose is to find the hyperplane of the following equation 

                                                 (2.3) 

define the pair (w, b), such as the linear classifier 

                                               (2.4) 

where w ∈ R
d 
and b ∈ R. When the data of the two classes are separable then it satisfies 

                                         (2.5) 

                                        (2.6) 

If the set S is linear separable, the hyperplane can be combined into one inequality as 

follows 

                                (2.7) 

For the linear separable set S, we would like to find the hyperplane with largest margin. 

In other words, we would like the distance between two classes of training data as large as 

possible. The distance d(w, b| x) from a point x to the hyperplane (w, b) is 

                                               (2.8) 

The margin M is given by 

                        (2.9) 
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In Figure 2.1, the optimal hyperplane is given by maximizing the margin M, subject to 

the constraints of equation 2.4. 

 

Figure 2.1: Maximum-margin hyperplane in linear separable case 

 

The optimal hyperplane can be found by solving the following equation 

                                          (2.10) 

 

Searching the optimal hyperplane is a quadratic programming (QP) problem. This 

problem can be solved by constructing a Lagrangian 

                         (2.11) 
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where α
k
≥0 are Lagrange multipliers. In order to find the saddle point we need to 

minimize this function over w and b and maximize it over the nonnegative Lagrange 

multipliers α
k
≥0. At the saddle point, obtains 

                                           (2.12) 

                                                  (2.13) 

Substitute equations 2.12 and 2.13 into 2.11, becomes the following QP problem as the 

dual problem 

                       (2.14) 

 

The Karush-Kuhn-Tucker (KKT) theorem plays an important role of SVM. Thus solving 

the SVM problem is equivalent to find the solution under KKT condition. According to this, 

the solution of equation 2.14 has the equality 

                       (2.15) 

To construct the optimal hyperplane w · x + b, from equation 2.12 it follows that 

                                                   (2.16) 

and the scalar b can be determined from the KKT conditions of equation 2.15, such that 

the linear SVM classifier takes the form 

                                         (2.17) 

At the same time, each training sample x
k 
is associated with Lagrange coefficient α

k
. The 

sample whose coefficient α
k 
is nonzero is called support vector. 
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In the previous section, the SVM solution is to a linear separable classification problem. 

However, most of cases are not linear separable where is an example in Figure 2.2. 

 

Figure 2.2: Maximum-margin hyperplane in nonlinear separable case 

 

To solve the problem which is not linear separable in R
d
, it is done by taking additional 

slack variables in the problem formulation. In order to tolerate misclassification, we have to 

modify the set of inequality equation 2.7 into 

                          (2.18) 

where slack variable ξ
k
≥0. In the primal weight space the optimization problem becomes 

                                (2.19) 

 

where c is a real constant. On the analogy of what was done for the separable case, the 
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solution to equation 2.19 is reduced to a QP optimization problem 

                       (2.20) 

 

and the KKT conditions are defined as 

                  (2.21) 

                                (2.22) 

The training data corresponding to non-zero α
k 
value is called support vector, but there 

are two types of support vector in non-separable case. In the case 0< α
k 
< c, the corresponding 

support vector x
k 
satisfies the equalities y

k
(w

T
x + b) = 1 and ξ

k 
= 0. This has no difference with 

separable case. In another case α
k 
= c, the corresponding ξ

k 
is not null and the corresponding 

support vector x
k 
does not satisfy equation 2.18. We refer such support vector as error. The 

point x
k 
corresponding with α

k 
= 0 is classified correctly and far away from the decision 

margin. 

To extend linear SVM classifiers to nonlinear SVM classifiers is straightforward. The 

case where a linear boundary is inappropriate to the SVM can map the input vector x into a 

high dimensional feature space Z. In Figure 2.3, a construction of the linear separating 

hyperplane is done in this high dimensional feature space, after a nonlinear mapping φ(x) of 

the input data to the feature space. 
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Figure 2.3: Mapping the training data into a high dimensional feature space by φ(x) 

where a linear separation is made, corresponding to a nonlinear separation in the original 

input space 

 

The optimization problem of equation 2.19 becomes 

                                (2.23) 

 

Construct the Lagrangian 

                                                  (2.24) 

 

 

with Lagrange multipliers α
k
≥0, v

k
≥0 for k = 1, 2, …, n. The solution is given by the 

saddle point of the Lagrangian 

                                            (2.25) 

which obtains 
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                                     (2.26) 

Re-substituting 2.26 into 2.24, the primal quadratic programming problem 2.23 becomes 

a dual form as follows 

                                                  (2.27) 

 

 

 

Finally, finding the optimal hyperplane in feature space Z is the solution to 

                (2.28) 

 

A key property of the SVM is that only the quantities that one needs to compute are 

scalar products, of the form φ(x
k
)
T
·φ(x

l
). Therefore, it is convenient to introduce the so-called 

kernel function K, that is 

                                           (2.29) 

The definition of kernel function that satisfies Mercer’s theorem can be used as 

inner-production. Two examples of kernels used in SVM are 
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Polynomials: 

                                  (2.30) 

where q is a constant. When q = 1, the kernel is the linear kernel. 

Radial basis Function: 

                                             (2.31) 

where σ is a positive parameter to control the radius. Here we only show that the 

Gaussian (RBF) kernel indeed there is an inner product of two vectors in an infinite 

dimensional space. Assume x ∈ R and σ＞0 

                                        (2.32) 

 

 

 

 

where 

                           (2.33) 

Finally, the nonlinear SVM classifier takes into the form 

                                    (2.34) 

We can see that only support vector will affect the result in the prediction stage. In 

general, the number of support vector is not large. Therefore we can say SVM is used to find 
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important data (support vector) from training data. 

 

2.3 Decision Tree 

Decision tree has been constructed and used for data mining and classification, this 

technique is helpful to reveal explicit relationship between attributes among huge dataset. The 

decision tree is constructed in a recursive, top-down and divide-and –conquer manner. A 

decision tree consists of three types of nodes including decision nodes, chance nodes and end 

nodes. There are three popular rules applied into automatic creation of classification trees. 

The Gini rule splits off a single group as large as possible, whereas the entropy and twoing 

rules find multiple groups comprising as close to half the samples as possible. Both of the 

algorithms process recursively down the tree until stopping criteria. 

The Gini rule is typically used by programs that induce decision trees using the CART 

algorithm. Gini rule is based on squared probabilities of membership for each target category 

in the node. It reaches its zero when all cases in the node fall into target category. Suppose y 

values are in {1, 2,..., m}, and let f(i, j) = probability of getting value j in node i. That is, f(i, j) 

is the proportion of records assigned to node i for which y = j. 

                           (2.1) 

Information gain is used by programs that are based on the ID3, C4.5 and C5.0 

algorithm. 

                                     (2.2) 

Decision trees have several advantages. First, it is simple to understand and requires little 

data preparation. People can easy to understand decision tree models after a brief explanation 

and data is no need to normalization. Second, it is possible to validate a model by using 

statistical tests and perform well with large data with short time. Large amounts of data can be 
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analyzed using personal computers to enable stakeholders to take decisions based on its 

analysis. 

 

Figure 2.4: Decision tree 

 

2.4 SNOMED-CT 

SNOMED-CT stands for Systemized Nomenclature of Medicine Clinical Term is an 

ontological resource that has a wide coverage of the clinical domain. It is produced by the 

College of American Pathologists. SNOMED-CT is used for indexing clinical decision 

support, clinical trials, electronic medical records, ICU monitoring, medical research studies, 

computerized physician order entry, disease surveillance, imaging indexing and consumer 

health information services. The current version included in UMLS in May 2004 (2004AA) 

contains more than 360,000 concepts, 975,000 synonyms and 1,450,000 relationships 

organized into 18 hierarchies. The concepts and their descriptions are linked with semantic 

relationships including associated etiology, associated morphology, is-a, assists, treats, 

prevents, has property, has specimen, associated topography, has object, has manifestation, 

associated with, classifies, clinically associated with, has ingredient, mapped to, mapped from, 



 

 15

measures, used by, anatomic structure is physical part of. 

 

2.5 MeSH 

MeSH (Medical Subject Headings) [5, 6] is a hierarchical ontology of medical 

terminologies suggested by the U.S National Library of Medicine. There are 21,973 main 

headings and 15 subtrees in MeSH (22,568 in 2004). MeSH concepts correspond to MeSH 

describes terms of several property, the most important of them are the following: 

MeSH Headings (MH): These are term names or identifiers used in MEDLINE as the 

indexing terms for documents. A MH term belongs to a concept, and is to label the meaning 

that corresponds to the concept reflects. 

Entry Terms: These terms are pointers to the MH, there are the synonym terms of the 

MH with the same concept. 

MeSH Tree Number: The tree numbers are the positions of the terms in the MeSH. 

MeSH Scope Note: The text descriptions of the MeSH terms. This piece of text provides 

a type of definition. 

 

2.6 Semantic Similarity Measurement Methods 

This section introduces several ontology-based methods for computing the similarity 

between concepts or classes. Semantic similarity measures is useful for performing tasks such 

as retrieving results to user queries, representation and redundancy of retrieved resources, and  

checking ontology for coherency. 

 

2.6.1 Edge-Counting Measures 

The first category to measure semantic similarity considers where two concepts c1 and 

c2 are in the taxonomy. The following measurement based on a simplified version of 

spreading activation theory [8, 9]. The more similar two concepts are, the more links there 
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are between the concepts and the more closely related they are [10]. 

Wu and Palmer [11]: This similarity measure considers the position of concepts c1 and 

c2 related to the position of the lowest common concept c. As there may be multiple parents 

for each concept, two concepts can share parents by multiple paths. 

                                  (2.35) 

N1 and N2 is the number of edge from c1 and c2 respectively to the lowest common 

concept c, and H is the number of edge from c to the root of the taxonomy. It ranges from 1 to 

0. 

Li [12]: The following similarity measure, which combines the shortest path length 

between two concepts c1 and c2, L, and the depth in the taxonomy of the lowest common 

concept c, H, in a non-linear function. 

                                 (2.36) 

where α≧ 0 and β≧ 0 scaling the contribution of shortest path length and depth respectively. 

The optimal parameters of α and β are 0.2 and 0.6 respectively. It is thus obvious that this 

measure ranges from 1 to 0. 

 

2.6.2 Information Content Measures 

The information content is estimated by the frequency of that concept in a large corpus of 

text. Information content requires the count of frequency of every concept include the 

frequency of all subsumed concepts in a hierarchy. For instance, the frequency for the concept 

of disease would include frequency of influenza and tuberculosis. The concept corresponds to 

the root of the hierarchy has the maximum frequency, so it includes the frequency of all other 

concept in the hierarchy. Thus, the frequency of the higher concepts in the hierarchy is always 

equal or greater than the lower concepts in the hierarchy in the hierarchy. 
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The information content of each concept c is computed as following: 

                                        (2.37) 

Resnik [13]: This measure uses the information content of the shared parents. 

                                     (2.38) 

If two terms share more information in common then the more similar they are. The 

information shared by two terms is indicated by the information content that subsume them in 

the hierarchy. This measure provides us with information such as the size of the corpus. A 

large numerical value indicates a large corpus. Furthermore, the score from comparing a term 

with itself depends on where in the hierarchy the term is. The less the term occurs the higher 

the score of the term. 

Jiang and Conrath [14]: Scale the information content of the subsuming concept by the 

information content of the individual concepts. Jiang and Conrath are different. The Jiang and 

Conrath compute the inverse of similarity of concepts c1 and c2 as: 

                (2.39) 

 

2.6.3 Feature-Based Measures 

Until now, the features of the terms are not taken into account. However, these features 

of a term contain valuable information about the term. The following measure including the 

features of terms in order to compute similarity between different concepts, but it ignores the 

position of the terms in the hierarchy. 

Tversky [15]: This measure is based on the features of the terms. We suppose that each 

term is described by a set of words indicating its properties. If two terms have more common 

characteristics and the less non-common characteristics, the more similar the terms are. 

       (2.40) 
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2.6.4 Hybrid Measures 

This method compare two concepts c1 and c2 combine some of the above approaches, 

considering the path connecting the two concepts in the hierarchy. 

Rodriguez [16]: This approach can be used for single or cross ontology similarities. The 

similarity function is a weighted sum of the similarity values for features, neighborhoods and 

synonym sets. 

        (2.41) 

where ww +wu+wn = 1, Sw, Su and Sn are similarity functions. The functions Sw, Su and 

Sn are the similarity between synonym sets, features and neighborhoods of ontology p and b 

of ontology q and are calculated by equation 2.42. 

                    (2.42) 

In this method α is computed according to equation 2.43, but hereαis computed as a 

factor of the depth where the two compared concepts are in each hierarchy. 

             (2.43) 

where d(c1, c2) = d(c1, cmis) + d(c2, cmis). 
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Chapter 3 Methodology 

We propose a method which exploits page-count to measure semantic similarity between 

a given pair of concepts. In chapter 3.1, we describe our sample construction. In chapter 3.2, 

we describe our feature definitions. We then describe a feature selection strategy in chapter 

3.3. We rank the features by F-score according to their ability to express semantic similarity. 

We use two-class support vector machines (SVMs) and decision tree to find the optimal 

combination of features and training samples. The SVM and decision tree are trained to 

classify synonymous term-pairs and non-synonymous term-pairs and convert the output of 

SVM and decision tree into a posterior probability. We define the semantic similarity between 

two concepts as the posterior probability that they belong to the synonymous-terms (positive) 

class. The SVM and decision tree model are introduce in chapter 3.4 and chapter 3.5, 

respectively. 

 

3.1 Sample Construction 

For our experiment we decided to use two websites to provide synonymous and 

non-synonymous training sets from which our system to train a classifier. Our training set was 

drawn from the MedTerms Dictionary section of the website 

MedicineNet.com(http://www.medterms.com/script/main/hp.asp)(shown in figure 3.1). For 

the synonymous training set, we select one term from MedTerms Dictionary randomly and 

manually then query the website synonyms.net(http://www.synonyms.net/synonym/)(shown 

in figure 3.2) for the synonym. We repeat this procedure until 1500 synonymous term pairs 

was collected. For the non-synonymous training set, we select two terms from MedTerms 

Dictionary randomly and check synonyms.net(http://www.synonyms.net/synonym/) to make 

sure that the term pair was not synonymous. We repeat this procedure until 1500 

non-synonymous term pairs was collected. 
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Figure 3.1: MedicineNet.com website 
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Figure 3.2: synonyms.net website 

 

3.2 Feature Definitions 

In this section we defined five similarity features and described ten lexico-syntactic 

pattern based features, we considered page counts for the query P AND Q as an 

approximation of co-occurrence of two concepts P and Q on the Web. However, page counts 

do not accurately express semantic similarity for the query P AND Q. For example, the search 

engine returns the page count 1150 for the query of abdomen AND breadbasket, whereas the 

same is 107000 for abdomen AND awareness. But, abdomen is more semantically similar to 

breadbasket than awareness, query for the page count of abdomen AND awareness is about 

one hundred times greater than those for the query abdomen and breadbasket. So we must 

consider the page counts not just for the query P AND Q, but also for the individual concepts 

P and Q to assess semantic similarity between P and Q. 

We use five popular modified co-occurrence measures [17] Dice, Jaccard, Overlap 

(Simpson), PMI (Point-wise mutual information) and NGD (Normalized google distance) to 



 

 22

compute semantic similarity. For the remainder of this paper we use the notation H(P) to 

denote the page counts for the query P. 

Therein, P ∩ Q denotes the conjunction query P AND Q. It is possible that two 

concepts may appear on some pages purely accidentally given the scale and noise in Web data. 

In order to reduce the adverse effects attributable to random co-occurrences, if the page count 

for the query P ∩ Q is less than a threshold c=5 then we set the coefficient to zero. 

WebDice coefficient is a variant of the Dice coefficient. WebDice(P, Q) is defined as 

follow: 

                                 (3.1) 

The WebJaccard coefficient between concepts P and Q, WebJaccard(P, Q), is defined as 

follow: 

                         (3.2) 

We define WebOverlap, WebOverlap(P, Q), as, 

                              (3.3) 

WebOverlap is the modification to the Overlap (Simpson) coefficient. 

We define WebPMI as a form of PMI using page counts as follow: 

                              (3.4) 

Here, N is the number of documents indexed by Google. Probabilities in equation 3.4 are 

estimated by the maximum likelihood principle. To calculate PMI accurately by equation 3.4, 
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we must know N, the number of documents indexed by Google. Although estimating the 

number of documents indexed by a search engine [18] is an interesting task, it is beyond the 

scope of this paper. We set N = 1000000000000 according to the number of indexed pages 

reported by Google 7/25/2008 10:12:00 AM. 

The following equation is developed by Rudi L. Cilibrasi and Paul M.B. Vit´anyi [19] 

which is based on information distance and Kolmogorov complexity using Google as search 

engine and the web as database. The method is applicable to other search engines and 

databases. We apply the equation as a feature to construct a method to automatically extract 

similarity of words and phrases from the web using Google page counts. The web is the 

largest database, and the context information entered by billions of users averages out to 

provide automatic semantics of useful quality. 

               (3.5) 

Phrases such as known as, is a, part of, is an example of all indicate various semantic 

relations. Some of such phrases are useful for capturing synonymous relation. For example, 

apoptosis known as programmed cell death is a commonly used pattern in our daily life. From 

this example, we form the pattern P known as Q, where we replace the two concepts 

Apoptosis and Programmed cell death by two wildcards P and Q. By the phrase known as we 

can conclude that P and Q are synonymous concepts. But, identifying the exact set of words 

that convey the semantic relationship between two concepts is remaining a challenging 

problem which requires deeper semantic analysis. However, such an analysis is not feasible 

considering the numerous ill-formed sentences. It is uncertain which patterns are useful for 

capturing synonymy. John McCrae and Nigel Collier [20] proposed a method that 

automatically generates regular expression patterns. It expands seed patterns in a heuristic 

search and then develops a feature vector depending on the occurrence of pairs in each pattern. 
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We use the eleven patterns mentioned in John McCrae and Nigel Collier’s paper and replace * 

by empty string, then we define the ten patterns shown in table 3.1 as our features. There are 

two reasons why we replace * by empty string. First reason is Google did not provide query 

for the regular expression. Another reason is that in John McCrae and Nigel Collier’s 

experiment many of the patterns were inflexible and matched very rarely so they simply 

allowed * to match the empty string, 

For each pair of concepts, we replace two wildcards P and Q of the patterns in table 3.1 

by two concepts and query Google search engine for the page counts. If the concepts are 

synonymous there will be more page counts than that are non-synonymous. However, page 

counts do not accurately express semantic similarity for the query. For example, the search 

engine returns the page count 92 for the query of “apoptosis known as programmed cell 

death”, whereas the same is 34 for “dengue fever known as breakbone fever”. Since apoptosis 

and programmed cell death are synonymous concepts so does dengue fever and breakbone 

fever. But the page count of “apoptosis known as programmed cell death” is about three times 

greater than those for the query “dengue fever known as breakbone fever”. So we must 

consider the page counts not just for the query P known as Q, but also for the P AND Q to 

assess semantic similarity between P and Q. So we divide the page count of P known as Q by 

the page count of P AND Q. For the remaining ten patterns we use the equation 3.6 to assess 

semantic similarity between P and Q. 

                (3.6) 

 

Table 3.1: Lexico-syntactic patterns 

    Pattern 
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of P (Q) 

P (Q) 

and P (Q 

, P (Q 

against P (Q 

prevalence of P Q 

patients with P Q 

P known as Q 

P/Q 

P, Q 

 

3.3 Feature Selection Strategy 

The purpose of feature selection is to select some of the best features because data set 

contains features on the model often more than required for the establishment. 

For example, the data set may contain 500 features to describe the characteristics of data 

set, but may only have 50 features will be used to create a specific model. If you are in the 

establishment of this model do not need those features so that we can reduce the need of CPU, 

memory and storage space. 

Even if the resource is not a problem, you will usually want to remove unnecessary 

features, because they may reduce the quality of models have been exploring for the following 

reasons: 

Certain feature is either cumbersome or superfluous. This situation will make it more 

difficult for meaningful patterns of information found. 
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To find the model of high-quality, most of the algorithm needs to provide 

high-dimension data sets much larger training data sets. Feature selection help to solve too 

many low-value information or high-value information on the problem of too few. 

Generally speaking, the selection of features is to calculate the scores of each feature, 

and then only with the best scores of selected features. You can adjust the high threshold. 

Feature selection will be in shape before the implementation of the model, can automatically 

choose from the data sets are most likely to be used in the model features. 

In this paper, we use F-score [21] our feature selection strategy. It is a simple technique 

which measures the discrimination of two sets of real numbers. Given training vectors xk, k = 

1, . . . ,n, if the number of positive and negative instances are n+ and n− respectively, then the 

score of the ith feature is defined as: 

            (3.7) 

where , ,  are the average of the ith feature of all, positive, and negative 

data sets, respectively;  is the ith feature of the kth positive instance, and  is the ith 

feature of the kth negative instance. The numerator indicates the discrimination between the 

positive and negative sets, and the denominator indicates the one within each of the two sets. 

The larger the score is, the more discriminative this feature is. Therefore, we use this score as 

a feature selection strategy. We calculate the F-score with each features from 100 to 1500 

training samples and averaged the scores for each features. 
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Figure 3.3: Both features of this data have low scores as in equation 3.6 the denominator is 

much larger than the numerator 

 

3.4 Support Vector Machine Model 

 

 

Figure 3.4: Support vector machine model flow chart 

 

In section 3.2 we defined fifteen similarity scores using page counts. Section 3.3 

described a strategy to rank the features according to their ability to express synonymy. In this 
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section we describe leverage of a semantic similarity measurement through integration of all 

the similarity scores described in previous sections. 

For each pair of concepts (P, Q), we create a feature vector F. First, we query Google 

and collect page counts for P, Q, P AND Q and ten lexico-syntactic patterns. Second, we 

calculate fifteen features by the equations mentioned in section 3.2. After that we use equation 

3.6 to rank the features according to their ability to express synonymy. Finally we yields a 15 

dimensional feature vector F. We form such feature vectors for all synonymous pairs (positive 

training samples) as well as non-synonymous pairs (negative training samples). We then train 

a two-class SVM with feature vectors. After we have trained a SVM using synonymous and 

non-synonymous pairs, we can use it to compute the semantic similarity between two given 

concepts. Following the same method we used to generate feature vectors for training, we 

create a feature vector F0 for the given pair of concepts (P0, Q0), between which we need to 

measure the semantic similarity. The semantic similarity between P0 and Q0 as the posterior 

probability Prob(F0\synonymous) that feature vector F0 belongs to the synonymous (positive) 

class. 

Being a large-margin classifier, the output of an SVM is the distance from the decision 

hyperplane. However, this is not a calibrated posterior probability. We use sigmoid functions 

to convert this distance into a posterior probability (see [22] for a detailed discussion on this 

topic). In our research we use libsvm 2.89 [23] toolbox including C-SVC (C=1) and nu-SVC 

(nu=0.5) to do the experiment (see [24] for a detailed discussion on this topic of C-SVC and 

nu-SVC). 

 

3.5 Decision Tree Model 
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Figure 3.5: Decision tree model flow chart 

 

In section 3.2 we defined fifteen similarity scores using page counts. Section 3.3 

described a strategy to rank the features according to their ability to express synonymy. In this 

section we describe leverage of a semantic similarity measurement through integration of all 

the similarity scores described in previous sections. 

For each pair of concepts (P, Q), we create a feature vector F. First, we query Google and 

collect page counts for P, Q, P AND Q and ten lexico- syntactic patterns. Second, we 

calculate fifteen features by the equations mentioned in section 3.2. After that we use equation 

3.6 to rank the features according to their ability to express synonymy. Finally we yields a 15 

dimensional feature vector F. We form such feature vectors for all synonymous pairs (positive 

training samples) as well as non-synonymous pairs (negative training samples). We then train 

a two-class CART decision tree with feature vectors. After we have trained a CART decision 

tree using synonymous and non-synonymous pairs, we can use it to compute the semantic 

similarity between two given concepts. Following the same method we used to generate 

feature vectors for training, we create a feature vector F0 for the given pair of concepts (P0, 

Q0), between which we need to measure the semantic similarity. The semantic similarity 

between P0 and Q0 as the posterior probability Prob(F0\synonymous) that feature vector F0 
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belongs to the synonymous (positive) class. In our research we use decision tree toolbox [25] 

in Matlab to do the experiment. 
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Chapter 4 Experiment Results 

There are several methodologies to assess the accuracy of similarity values computed by 

a given similarity measure [26]. One of them is to use the similarity measure in an application 

that requires similarity between concepts like information retrieval. Another is to compare the 

computed similarity scores of the measure against the human similarity scores using, for 

example, correlation coefficient (Pearson). Another methodology requires a dataset of concept 

pairs scored for similarity by experts. In our research, we calculate the correlation coefficient 

to evaluate the proposed measure. 

We introduce two datasets of our experiments to evaluate the proposed semantic 

similarity measure in chapter 4.1. Then we introduce our experiment environment in chapter 

4.2. After that we compare the similarity scores produced by the proposed measure against 

[27] dataset. We analyze the behavior of the proposed measure with the different number of 

features from 2 to 15, training samples from 100 to 1500 and classifiers including C-SVC, 

nu-SVC, based on four kernels(linear kernel SVM, SVM-2(Polynomial kernel degree 2) , 

SVM-3(Polynomial kernel degree 3), and RBF), and decision tree in chapter 4.3. The 

correlations against [28] dataset are shown in chapter 4.4. The comparisons with other 

methods are shown in chapter 4.5. 

 

4.1 Datasets 

There are no standard human rating benchmark datasets in biomedical domain. To 

evaluate our methods, we used dataset 1 [27] contains 36 biomedical (MeSH) concept pairs. 

The human scores in this dataset are the average evaluated scores of reliable doctors. Table 

4.1 contains the first 36 pairs of this dataset. The concept pairs in bold, in Table 4.1, are the 

ones that contains a term that was not found in SNOMED-CT. 

 The dataset 2 [28] of 30 concept pairs from Pedersen et al., which was annotated by 9 
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medical index experts and 3 physicians. The concept pairs in bold, in Table 4.2, are the ones 

that contains a term that was not found in MeSH. Each pair was annotated on a 4 scale: 

unrelated(1), marginally related(2), related(3) and practically synonymous(4). Table 4.2 

contains only 30 pairs of this dataset. The average correlation between experts is 0.78, and 

between physicians is 0.68. 

 

. 

Table 4.1: Dataset 1 of 36 biomedical concept pairs 

Concept 1 Concept 2 H 

Anemia Appendicitis 0.031 

Dementia Atopic Dermatitis 0.062 

Bacterial Pneumonia Malaria 0.156 

Osteoporosis Patent Ductus Arteriosus 0.156 

Amino Acid Sequence Anti-Bacterial Agents 0.156 

Acquired Immunodeficiency 

Syndrome 
Congenital Heart Defects 0.062 

Otitis Media Infantile Colic 0.156 

Meningitis Tricuspid Atresia 0.031 

Sinusitis Mental Retardation 0.031 

Hypertension Kidney Failure 0.5 

Hyperlipidemia Hyperkalemia 0.156 

Hypothyroidism Hyperthyroidism 0.406 

Sarcoidosis Tuberculosis 0.406 

Vaccines Immunity 0.593 

Asthma Pneumonia 0.375 

Diabetic Nephropathy Diabetes Mellitus 0.5 

Lactose Intolerance Irritable Bowel Syndrome 0.468 

Urinary Tract Infection Pyelonephritis 0.656 

Neonatal Jaundice Sepsis 0.187 

Sickle Cell Anemia Iron Deficiency Anemia 0.437 

Psychology Cognitive Science 0.593 

Adenovirus Rotavirus 0.437 

Migraine Headache 0.718 

Myocardial Ischemia Myocardial Infarction 0.75 

Hepatitis B Hepatitis C 0.562 
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Carcinoma Neoplasm 0.75 

Pulmonary Valve Stenosis Aortic Valve Stenosis 0.531 

Failure To Thrive Malnutrition 0.625 

Breast Feeding Lactation 0.843 

Antibiotics Antibacterial Agents 0.937 

Seizures Convulsions 0.843 

Pain Ache 0.875 

Malnutrition Nutritional Deficiency 0.875 

Measles Rubeola 0.906 

Chicken Pox Varicella 0.968 

Down Syndrome Trisomy 21 0.875 

 

Table 4.2: Dataset 2 of 30 biomedical concept pairs sorted in the order of the averaged 

physician’s scores 

Concept 1 Concept 2 Phy Exp 

Renal Failure Kidney Failure 4 4 

Heart Myocardium 3.3 3 

Stroke Infarct 3 2.8 

Abortion Miscarriage 3 3.3 

Delusion Schizophrenia 3 2.2 

Congestive Heart Failure Pulmonary Edema 3 1.4 

Metastasis Adenocarcinoma 2.7 1.8 

Calcification Stenosis 2.7 2 

Diarrhea Stomach Cramps 2.3 1.3 

Mitral Stenosis Atrial Fibrillation 2.3 1.3 

Chronic Obstructive 

Pulmonary Disease 
Lung Infiltrates 2.3 1.8 

Rheumatoid Arthritis Lupus 2 1.1 

Brain Tumor Intracranial Hemorrhage 2 1.3 

Carpal Tunnel Syndrome Osteoarthritis 2 1.1 

Diabetes Mellitus Hypertension 2 1 

Acne Syringe 2 1 

Antibiotic Allergy 1.7 1.2 

Cortisone Total Knee Replacement 1.7 1 

Pulmonary Embolus Myocardial Infarction 1.7 1.2 

Pulmonary Fibrosis Lung Cancer 1.7 1.4 
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Cholangiocarcinoma Colonoscopy 1.3 1 

Lymphoid Hyperplasia Laryngeal Cancer 1.3 1 

Multiple Sclerosis Psychosis 1 1 

Appendicitis Osteoporosis 1 1 

Rectal Polyp Aorta 1 1 

Xerostomia Alcoholic Cirrhosis 1 1 

Peptic Ulcer Disease Myopia 1 1 

Depression Cellulitis 1 1 

Varicose Vein Entire Knee Meniscus 1 1 

Hyperlipidemia Metastasis 1 1 

 

4.2 Experiment Environment 

� Hardware: CPU Intel Pentium 4, RAM 2.0GB. 

� Software: Windows XP Professional, Matlab 7.3.0, LIBSVM 2.89. 

 

4.3 Parameter Optimization 

 

4.3.1 Classifier Models 

We use C-SVC, nu-SVC, based on four kernels(linear kernel SVM, SVM-2(Polynomial 

kernel degree 2) , SVM-3(Polynomial kernel degree 3), and RBF), and decision tree. 

 

4.3.2 Number of features and training samples 

In this section, we list the ranked features by our feature selection strategy (illustrated in 

Section 3.3). We use the following feature selection equation F-score. It is a function to 

measure the discrimination of two sets of real numbers. Results of the ranked features are 

shown in Table 4.3. Features with the highest F(i) value is NGD (rank=1, F(i)=0.2751). 

Followed by a series of features such as WebPMI (rank=2, F(i)=0.237), , P (Q (rank=3, 

F(i)=0.1648) and P/Q (rank=2, F(i)=0.1632) 

In the first experiment, in order to determine the optimum combination of features and 
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training samples, we trained the classifiers mentioned in 4.3.1 with 15 features (ranked 

according to their ability to capture the synonyms) and different numbers of samples starting 

from 100 to 1500 and calculated the correlation coefficient against the dataset 1, respectively. 

 

Table 4.3: Features with highest F-scores 

Rank Feature F(i) 

1 NGD 0.2751 

2 WebPMI 0.237 

3 , P (Q 0.1648 

4 P/Q 0.1632 

5 P(Q) 0.1606 

6 P, Q 0.1585 

7 WebOverlap 0.1173 

8 WebDice 0.0555 

9 WebJaccard 0.0347 

10 of P (Q) 0.0185 

11 and P (Q 0.0093 

12 against P (Q 0.0027 

13 patients with P Q 0.0017 

14 P known as Q 0.0014 

15 prevalence of P Q 0.0011 

 

Experimental results using C-SVC with linear kernel are summarized in Figure 4.1. The 

maximum correlation coefficient of 0.758 is achieved with 9 features and 1500 training 

samples. 

 



 

 36

 

Figure 4.1: Correlation vs. No of features and training samples using C-SVC with linear 

kernel 

 

Experimental results using C-SVC with polynomial degree=2 kernel are summarized in 

Figure 4.2. The maximum correlation coefficient of 0.776 is achieved with 7 features and 

1200 training samples. 

 

 

Figure 4.2: Correlation vs. No of features and training samples using C-SVC with polynomial 

degree=2 kernel 
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Experimental results using C-SVC with polynomial degree=3 kernel are summarized in 

Figure 4.3. The maximum correlation coefficient of 0.759 is achieved with 13 features and 

300 training samples. 

 

 

Figure 4.3: Correlation vs. No of features and training samples using C-SVC with polynomial 

degree=3 kernel 

 

Experimental results using C-SVC with RBF kernel are summarized in Figure 4.4. The 

maximum correlation coefficient of 0.612 is achieved with 10 features and 1100 training 

samples. 
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Figure 4.4: Correlation vs. No of features and training samples using C-SVC with RBF kernel 

 

     Experimental results using nu-SVC with linear kernel are summarized in Figure 4.5. 

The maximum correlation coefficient of 0.798 is achieved with 7 features and 900 training 

samples. 

 

 
Figure 4.5: Correlation vs. No of features and training samples using nu-SVC with linear 

kernel 

 

Experimental results using nu-SVC with polynomial degree=2 kernel are summarized 
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in Figure 4.6. The maximum correlation coefficient of 0.766 is achieved with 11 features and 

300 training samples. 

 

 
Figure 4.6: Correlation vs. No of features and training samples using nu-SVC with 

polynomial degree=2 kernel 

 

Experimental results using nu-SVC with polynomial degree=3 kernel are summarized 

in Figure 4.7. The maximum correlation coefficient of 0.736 is achieved with 12 features and 

300 training samples. 
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Figure 4.7: Correlation vs. No of features and training samples using nu-SVC with 

polynomial degree=3 kernel 

 

Experimental results using nu-SVC with RBF kernel are summarized in Figure 4.8. The 

maximum correlation coefficient of 0.743 is achieved with 11 features and 100 training 

samples. 

 

 

Figure 4.8: Correlation vs. No of features and training samples using nu-SVC with RBF 

kernel 

 

Experimental results using decision tree are summarized in Figure 4.9. The maximum 

correlation coefficient of 0.734 is achieved with 5 features and 1300 training samples. 
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Figure 4.9: Correlation vs. No of features and training samples using decision tree 

 

     We experimented with different kernel types as shown in Table 4.4. Best performance 

is achieved with the linear kernel of nu-SVC, which reports a correlation coefficient of 0.798. 

When higher degree kernels such as quadratic(Polynomial degree=2) and cubic(Polynomial 

degree=3) of nu-SVC are used, correlation with the human ratings decreases. Second best is 

the C-SVC with quadratic(Polynomial degree=2) kernel, which reports a correlation 

coefficient of 0.776. 

 

Table 4.4: Correlation vs. No of samples and features with different models 

Model 
Maximum 

correlation 

Number of 

samples 

Number of 

features 

C-SVC(Linear) 0.758 1500 9 

C-SVC(Poly=2) 0.776 1200 7 

C-SVC(Poly=3) 0.759 300 13 

C-SVC(RBF) 0.612 1100 10 
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nu-SVC(Linear) 0.798 900 7 

nu-SVC(Poly=2) 0.766 300 11 

nu-SVC(Poly=3) 0.736 300 12 

nu-SVC(RBF) 0.743 100 11 

Decision Tree 0.734 1300 5 

 

In the second experiment, we trained the classifiers mentioned in 4.3.1 with the 

optimized feature numbers and sample numbers determined in the first experiment and 

calculated the correlation coefficient against the dataset 2 with 28 concept pairs out of 30. 

Because the concept lung infiltrates was not found in the SNOMEDCT terminology and the 

concept entire knee meniscus appeared less than the threshold c=5 that we set in section 3.2. 

 

4.4 Results 

Figure 4.10 shows the results of maximum correlation in dataset 1 of different 

classifiers mentioned in 4.3.1. Best performance is achieved with the linear kernel of nu-SVC, 

which reports a correlation coefficient of 0.798. 
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Figure 4.10: Correlation vs. Classifiers of dataset 1 with human scores 

 

Figure 4.11 shows the results of maximum correlation in dataset 2 with physician 

scores of different classifiers mentioned in 4.3.1 and the optimized feature numbers and 

sample numbers determined in the first experiment. Best performance is achieved with the 

linear kernel of nu-SVC, which reports a correlation coefficient of 0.705. 
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Figure 4.11: Correlation vs. Classifiers of dataset 2 with physician scores 

 

Figure 4.12 shows the results of maximum correlation in dataset 2 with expert scores of 

different classifiers mentioned in 4.3.1 and the optimized feature numbers and sample 

numbers determined in the first experiment. Best performance is achieved with the linear 

kernel of nu-SVC, which reports a correlation coefficient of 0.496. 
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Figure 4.12: Correlations vs. Classifiers of dataset 2 with expert scores 

 

Table 4.5 show that proposed method earns the highest correlation of 0.798 in dataset 1, 0.705 

in dataset 2 with physician scores and 0.496 in dataset 2 with expert scores using C-SVC with 

linear kernel. 

 

Table 4.5: Correlation vs. Dataset 1 and Dataset 2 with physician scores and expert scores of 

different models 

Model Dataset 1 Dataset 2(Phy) Dataset 2(Exp) 

C-SVC(Linear) 0.758 0.689 0.482 

C-SVC(Poly=2) 0.776 0.698 0.479 

C-SVC(Poly=3) 0.759 0.649 0.395 

C-SVC(RBF) 0.612 0.388 0.171 

nu-SVC(Linear) 0.798 0.705 0.496 

nu-SVC(Poly=2) 0.766 0.671 0.424 
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nu-SVC(Poly=3) 0.736 0.641 0.384 

nu-SVC(RBF) 0.743 0.632 0.373 

Decision Tree 0.734 0.519 0.336 

 

4.5 Comparison 

We score the concept pairs in dataset 1 and dataset 2 using the proposed semantic 

similarity measures. Results are shown in Table 4.6 and Table 4.7. Proposed method earns the 

highest correlation of 0.798 in dataset 1, 0.705 in dataset 2 with physician scores and 0.496 in 

dataset 2 with expert scores. It shows the highest similarity score for the four concept-pairs 

including migraine and headache, measles and rubeola, chicken pox and varicella, down 

syndrome and trisomy 21. Lowest similarity is reported for acquired immunodeficiency 

syndrome and congenital heart defects in dtatset 1. It shows the highest similarity score for 

the four concept-pairs diabetes mellitus and hypertension. Lowest similarity is reported for 

lymphoid hyperplasia and laryngeal cancer in dtatset 2. 

 

Table 4.6: Dataset 1 with human similarity scores and proposed scores 

Concept 1 Concept 2 H Proposed 

Anemia Appendicitis 0.031 0.697477 

Dementia Atopic Dermatitis 0.062 0.37108 

Bacterial Pneumonia Malaria 0.156 0.444349 

Osteoporosis Patent Ductus Arteriosus 0.156 0.248374 

Amino Acid Sequence Anti-Bacterial Agents 0.156 0.56565 

Acquired Immunodeficiency 

Syndrome 
Congenital Heart Defects 0.062 0.210191 

Otitis Media Infantile Colic 0.156 0.520515 

Meningitis Tricuspid Atresia 0.031 0.256254 

Sinusitis Mental Retardation 0.031 0.333204 

Hypertension Kidney Failure 0.5 0.955846 

Hyperlipidemia Hyperkalemia 0.156 0.567689 
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Hypothyroidism Hyperthyroidism 0.406 0.999451 

Sarcoidosis Tuberculosis 0.406 0.995609 

Vaccines Immunity 0.593 0.796828 

Asthma Pneumonia 0.375 0.998126 

Diabetic Nephropathy Diabetes Mellitus 0.5 0.950368 

Lactose Intolerance Irritable Bowel Syndrome 0.468 0.883431 

Urinary Tract Infection Pyelonephritis 0.656 0.990715 

Neonatal Jaundice Sepsis 0.187 0.595683 

Sickle Cell Anemia Iron Deficiency Anemia 0.437 0.686173 

Psychology Cognitive Science 0.593 0.999995 

Adenovirus Rotavirus 0.437 0.982612 

Migraine Headache 0.718 1 

Myocardial Ischemia Myocardial Infarction 0.75 0.993638 

Hepatitis B Hepatitis C 0.562 0.999997 

Carcinoma Neoplasm 0.75 0.889407 

Pulmonary Valve Stenosis Aortic Valve Stenosis 0.531 0.960003 

Failure To Thrive Malnutrition 0.625 0.934162 

Breast Feeding Lactation 0.843 0.975854 

Antibiotics Antibacterial Agents 0.937 0.952958 

Seizures Convulsions 0.843 0.999996 

Pain Ache 0.875 0.830473 

Malnutrition Nutritional Deficiency 0.875 0.92306 

Measles Rubeola 0.906 1 

Chicken Pox Varicella 0.968 1 

Down Syndrome Trisomy 21 0.875 1 

Correlation 1 0.798 

 

Table 4.7: Dataset 2 with human similarity scores and proposed scores 

Concept 1 Concept 2 Phy Exp Proposed 

Renal Failure Kidney Failure 4 4 0.975028 

Heart Myocardium 3.3 3 0.910151 

Stroke Infarct 3 2.8 0.924013 

Abortion Miscarriage 3 3.3 0.993801 

Delusion Schizophrenia 3 2.2 0.5 

Congestive Heart Failure Pulmonary Edema 3 1.4 0.998988 

Metastasis Adenocarcinoma 2.7 1.8 0.880069 
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Calcification Stenosis 2.7 2 0.747826 

Diarrhea Stomach Cramps 2.3 1.3 0.999967 

Mitral Stenosis Atrial Fibrillation 2.3 1.3 0.962097 

Chronic Obstructive 

Pulmonary Disease 
Lung Infiltrates 2.3 1.8 0.349326 

Rheumatoid Arthritis Lupus 2 1.1 0.997619 

Brain Tumor Intracranial Hemorrhage 2 1.3 0.54715 

Carpal Tunnel Syndrome Osteoarthritis 2 1.1 0.8177 

Diabetes Mellitus Hypertension 2 1 0.999998 

Acne Syringe 2 1 0.349637 

Antibiotic Allergy 1.7 1.2 0.849412 

Cortisone Total Knee Replacement 1.7 1 0.279371 

Pulmonary Embolus Myocardial Infarction 1.7 1.2 0.940106 

Pulmonary Fibrosis Lung Cancer 1.7 1.4 0.705904 

Cholangiocarcinoma Colonoscopy 1.3 1 0.351643 

Lymphoid Hyperplasia Laryngeal Cancer 1.3 1 0.241465 

Multiple Sclerosis Psychosis 1 1 0.415343 

Appendicitis Osteoporosis 1 1 0.569876 

Rectal Polyp Aorta 1 1 0.296103 

Xerostomia Alcoholic Cirrhosis 1 1 0.247209 

Peptic Ulcer Disease Myopia 1 1 0.241701 

Depression Cellulitis 1 1 0.375917 

Varicose Vein Entire Knee Meniscus 1 1 NaN  

Hyperlipidemia Metastasis 1 1 0.293352 

Correlation 
  

0.705 0.496 

 

Table 4.8 show the results of correlations with human scores for our proposed scores 

(nu-SVC with 7 features and 900 training samples) using the dataset 1, because we could find 

only 34 out of the 36 concept pairs in SNOMED-CT as some terms cannot be found, so we 

used 34 pairs, experimented on SNOMED-CT, and compared with four other measures: 

SemDist, Path length, Leacock & Chodorow, Wu & Palmer [29], [30], [31],[32]. Our measure 

achieves the best correlations compared with other four methods. 
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Table 4.8: Absolute correlations with human scores using SNOMED-CT on dataset 1 

SNOMED-CT 

Measure Dataset 1 

SemDist 0.726(2) 

Path length 0.422(5) 

Leacock & 

Chodorow 
0.6 (3) 

Wu & Palmer 0.498(4) 

Proposed 0.802(1) 

 

Table 4.9 show the results of correlations with physician and expert scores for our 

proposed scores (nu-SVC with 7 features and 900 training samples) using the dataset 2, 

experimented on SNOMED-CT, and compared with six other measures: Path length, Leacock 

& Chodorow, Lin, Resnik, Jiang & Conrath and Vector(All sect, 1M notes) [30], [31], [33], 

[34], [35], [36]. Our measure achieves the best correlations with physician scores and fifth 

best correlations with expert scores compared with other six methods. 

 

Table 4.9: Absolute correlations with human scores using SNOMED-CT on dataset 2 

SNOMED-CT 

Measure Dataset 2(Phy) Dataset 2(Exp) 

Path length 0.512(4) 0.731(2) 

Leacock & Chodorow 0.358(7) 0.497(5) 

Lin 0.522(3) 0.565(4) 

Resnik 0.534(2) 0.61(3) 
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Jiang & Conrath 0.506(5) 0.741(1) 

Vector(All sect, 1M notes) 0.436(6) 0.497(5) 

Proposed 0.706(1) 0.496(6) 

 

Table 4.10 show the results of correlations with human scores for our proposed scores 

( nu-SVC with 7 features and 900 training samples) using the dataset 1, experimented on 

MeSH, and compared with eleven other measures: SemDist, Path length, Leacock & 

Chodorow, Wu & Palmer, Lin, Jiang & Conrath, Resnik, Li, Lord, Tversky, Rodriguez [29], 

[30], [31] , [32], [33] , [35], [34] , [37, [38] , [15], [39]. Our measure achieves the fourth best 

correlations compared with other eleven methods. 

 

Table 4.10: Absolute correlations with human scores using MeSH on dataset 1 

MeSH 

Measure Dataset 1 

SemDist 0.825(1) 

Path length 0.765(5) 

Leacock & 

Chodorow 
0.82(2) 

Wu & Palmer 0.811(3) 

Lin 0.723(6) 

Jiang & 

Conrath 
0.71(8) 

Resnik 0.718(7) 
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Li 0.705(9) 

Lord 0.701(10) 

Tversky 0.67(11) 

Rodriguez 0.69(12) 

Proposed 0.798(4) 
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Table 4.11 show the results of correlations with physician and expert scores for our 

proposed scores ( nu-SVC with 7 features and 900 training samples) using the dataset 2, 

because we could find only 25 out of the 30 concept pairs in SNOMED-CT as some terms 

cannot be found, so we used 25 pairs experimented on MeSH, and compared with five other 

measures: SemDist, Path length, Leacock & Chodorow, Wu & Palmer, Choi & Kim [29], [30], 

[31] , [32], [40]. Our measure achieves the best correlations with physician scores and sixth 

best correlations with expert scores compared with other five methods. 

 

Table 4.11: Absolute correlations with human scores using MeSH on dataset 2 

MeSH 

Measure Dataset 2(Phy) Dataset 2(Exp) 

SemDist 0.666(3) 0.863(1) 

Path length 0.627(5) 0.744(4) 

Leacock & 

Chodorow 
0.672(2) 0.857(2) 

Wu & Palmer 0.652(4) 0.794(3) 

Choi & Kim 0.56(6) 0.724(5) 

Proposed 0.723(1) 0.539(6) 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

In this paper, we proposed a measure that utilizes page counts to calculate semantic 

similarity robustly between two given concepts or terms. The method consists of fifteen 

features apply support vector machines and decision tree classifier models. Training data were 

manually collected from two websites: MedicineNet.com & synonyms.net. Proposed method 

outperformed all the baselines on two datasets. A high correlation coefficient 0.798 with 

human ratings was found for semantic similarity on the dataset provided by A. Hliaoutakis. 

With physician’s ratings, correlation coefficient of 0.705 was found for semantic similarity on 

the dataset provide by T. Pedersen et al; the correlation coefficient of 0.496 with expert’s 

ratings was found. Only 7 features and 900 training samples are necessary to leverage the 

proposed method using nu-SVC with linear kernel. A contrasting feature of our method 

compared to the ontology- based semantic similarity measures is that our method requires no 

taxonomies, such as SNOMED-CT or MeSH, for calculation of similarity. Therefore, the 

proposed method can be applied in many tasks where taxonomies are not up-to-date or do not 

exist. We also realize that our study measures produce much closer correlations with 

physician scores than those with medical experts. However, all the ontology measures are 

reversed. 

 

5.2 Future Work 

    Further study can be summarized: 

� We can enhance the models by using more lexico-syntactic patterns that can capture the 

synonymous concept pairs more precisely. 

� We can use another feature selection strategy to increase the accuracy. 

� We intend to apply the proposed semantic similarity measure in automatic synonym 

extraction, query suggestion and name alias recognition. 
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Appendix 

A. Google AJAX Search API 

 

The following command performs a Web search (/ajax/services/search/web), for Kidney 

Failure (q=Kidney%20Failure). 

curl -e http://www.my-ajax-site.com \ 

'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q= Kidney%20Failure ' 

The response has a Content-Type of text/javascript; charset=utf-8. The response below 

that the responseData is identical to the results. 

{"responseData": { 

"results": [ 

{ 

"GsearchResultClass": "GwebSearch", 

"unescapedUrl": "http://en.wikipedia.org/wiki/Kidney_Failure", 

"url": "http://en.wikipedia.org/wiki/Kidney_Failure", 

"visibleUrl": "en.wikipedia.org", 

"cacheUrl": 

"http://www.google.com/search?q\u003dcache:TwrPfhd22hYJ:en.wikipedia.org", 

"title": "\u003cb\u003eKidney Failure\u003c/b\u003e - Wikipedia, the free 

encyclopedia", 

"titleNoFormatting": "Kidney Failure - Wikipedia, the free encyclopedia", 

"content": "\[1\] In 2006, she released her debut album..." 

}, 

{ 

"GsearchResultClass": "GwebSearch", 

"unescapedUrl": "http://www.imdb.com/name/nm0385296/", 

"url": "http://www.imdb.com/name/nm0385296/", 

"visibleUrl": "www.imdb.com", 

"cacheUrl": 

"http://www.google.com/search?q\u003dcache:1i34KkqnsooJ:www.imdb.com", 
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"title": "\u003cb\u003eKidney Failure\u003c/b\u003e", 

"titleNoFormatting": "Kidney Failure", 

"content": "Self: Zoolander. Socialite \u003cb\u003eKidney Failure\u003c/b\u003e..." 

}, 

... 

], 

"cursor": { 

"pages": [ 

{ "start": "0", "label": 1 }, 

{ "start": "4", "label": 2 }, 

{ "start": "8", "label": 3 }, 

{ "start": "12","label": 4 } 

], 

"estimatedResultCount": "286000", 

"currentPageIndex": 0, 

"moreResultsUrl": 

http://www.google.com/search?oe\u003dutf8\u0026ie\u003dutf8... 

} 

} 

, "responseDetails": null, "responseStatus": 200} 

 

B. 100 synonymous concept pairs of training data 

Concept 1 Concept 2 

Abdomen Tummy 

Abducens Nerve Abducent Nerve 

Abortifacient Aborticide 

Achondroplasia Achondroplasty 

Achromycin Tetracycline 

Bacteria Bacterium 

Basophil Basophile 

Bedsore Decubitus Ulcer 

Benzene Benzol 

Blastoma Embryonal Carcinosarcoma 
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Calamine Hemimorphite 

Carbohydrate Saccharide 

Cardiac murmur Heart murmur 

Catabolism Destructive Metabolism 

Cardiovascular system Circulatory system 

Breakbone Fever Dandy Fever 

Dermis Derma 

Diaphragmatic Hernia Hiatal Hernia 

Dizziness Giddiness 

Dropsy Eedema 

Echinococcosis Hydatidosis 

Ectopic pregnancy Ectopic gestation 

Electrocardiogram Cardiogram 

Electrophoresis Dielectrolysis 

Facial Nerve Seventh Cranial Nerve 

Farsightedness Longsightedness 

Fascioliasis Fasciolosis 

First Cranial Nerve Olfactory Nerve 

Fistula Fistulous Withers 

Gallus Gallus Red Jungle Fowl 

Gamma Radiation Gamma Ray 

Gangrene Necrosis 

Gargoylism Lipochondrodystrophy 

Genital Wart Venereal Wart 

Goiter Struma 

Hallucination Delusion 

Heat Prostration Heat Exhaustion 

Hemochromatosis Iron Overload 

Hepatocarcinoma Hepatocellular Carcinoma 

Herpes Genitalis Genital Herpes 

Heterosexuality Heterosexualism 

Ileus Intestinal Obstruction 

Implantation Nidation 

Infant Babe 

Inguinal Canal Canalis Inguinalis 

Intersex Androgyne 

Intestine Gut 
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Iodine Iodin 

Iontophoresis Electromotive Drug Administration 

Joint Articulatio 

Jaundice Icterus 

Keloid Cheloid 

Kinetosis Motion sickness 

Knee Genu 

Kyphosis Humpback 

Labyrinthitis Otitis Interna 

Lachrymal Gland Lacrimal Gland 

Lactase Deficiency Lactose Intolerance 

Lateral Epicondylitis Tennis Elbow 

Leishmaniasis Leishmaniosis 

Lienal Artery Splenic Artery 

Limb Arm 

Lymphopathia Venereum Lymphogranuloma Venereum 

Male Erecticle Dysfunction Erectile Dysfunction 

Malignant Hepatoma Hepatocellular Carcinoma 

Mandibular Joint Temporomandibular Joint 

Mediterranean Anemia Thalassaemia 

Medication Medicament 

Meiosis Miosis 

Melasma Chloasma 

Nausea Sickness 

Necrobiosis Lipoidica Diabeticorum Necrobiosis Lipoidica 

Neocortex Neopallium 

Nephrolith Kidney Stone 

Nervus Glossopharyngeus Glossopharyngeal Nerve 

Neurogliacyte Glial Cell 

Oesophageal Reflux Esophageal Reflux 

Onchocerciasis River Blindness 

Orthodontics Orthodontia 

Paleostriatum Pallidum 

Palpebra Eyelid 

Parasite Sponge 

Pars Nervosa Posterior Pituitary 

Pedigree Ancestry 
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Periodontitis Periodontal Disease 

Peristalsis Vermiculation 

Phenol Phenylic Acid 

Pituitary Gland Pituitary Body 

Plastic Surgery Reconstructive Surgery 

Rachischisis Spina Bifida 

Rale Rattle 

Regional Ileitis Regional Enteritis 

Restriction Enzyme Restriction Endonuclease 

Retinal Detachment Detachment of the Retina 

Sandfly Fever Pappataci Fever 

Seborrheic Dermatitis Seborrheic Eczema 

Second Cranial Nerve Optic Nerve 

Shingles Zoster 

Sixth Cranial Nerve Abducent Nerve 

Tenth Cranial Nerve Wandering Nerve 

Third Cranial Nerve Oculomotor Nerve 

Tympanic Cavity Middle Ear 

Uterus Womb 

 

C. 100 non-synonymous concept pairs of training data 

Concept 1 Concept 2 

Abdomen Awareness 

Abortifacient Cramp 

Absinthe Absinthe 

Acathisia Odor 

Aflatoxin Smallpox 

Adenovirus Somnambulism 

Adventitia Spine 

Bacteriophage Humpback 

Balantidiasis Keloid 

Balantidium Keratin 

Bariatrics Kindred 

Barotrauma Kinship 

Bedsore Kyphosis 

Beriberi Lactation 

Bevacizumab Lassitude 
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Cadaver Caudate Nucleus 

Caffeine Cavernous Hemangioma 

Calamine Cavernous Sinus 

Cavernous Sinus Thrombosis Calcaneus 

Celiac Disease Herpes Zoster 

Developmental Delay Impact 

Developmental Disorder Implantation 

Diabetic Ketoacidosis Impotence 

Diabetic Nephropathy Incision 

Diabetic Neuropathy Incubator 

Ear Piercing Attention Deficit Disorder 

Ear Wax 
Attention Deficit Hyperactivity 

Disorder 

Eastern Equine Encephalitis Hypoglossal Nerve 

Ebola Virus Pituitary Gland 

Ectodermal Dysplasia Intestinal Obstruction 

Facies Suckling 

Family Sunspot 

Farsightedness Travel 

Fascia Tug 

Fasciculation Vertigo 

Gait Inflammation 

Gait Coated Stent 

Galactorrhea Inflammation 

Galactose Inflammation 

Galactosemia Injury 

Habitual Abortion Dermis 

Hair Follicle Development 

Hallucination Fontanel 

Hallucination Cyclic Citrullinated Peptide 

Hallucinogen Fontanelle 

Ibuprofen Cholesterol 

Ichthyosis Cilium 

Ichthyosis Vulgaris Middle Ear 

Icterus Clavicle 

Idiopathic Pulmonary Fibrosis Middle Ear 

Jaundice Deglutition 



 

 63

Jaundice Sandhoff Disease 

Jaw Deglutition 

Jejunostomy Dehydration 

Jejunum Ergocalciferol 

Kaposi Sarcoma Laparoscopic Cholecystectomy 

Kartagener Syndrome Tennis Elbow 

Karyokinesis Impairment 

Karyotype Innovation 

Keloid Knowledge 

Lab Ataxy 

Labia Atmosphere 

Labor Atrophy 

Labor Scleredema Adultorum 

Labyrinth Audiometry 

Macrobiotic Diet Tick Fever 

Macular Hole Oral Cavity 

Meibomian Gland Seventh Cranial Nerve 

Magnesium Deficiency Kawasaki Disease 

Magnetic Resonance Elastography Cystic Fibrosis 

Naegleria Fowleri Acoustic Nerve 

Nasal Septum Eighth Cranial Nerve 

Natriuretic Peptide Glial Cell 

Natural Immunity Glial Cell 

Natural killer cell Posterior Pituitary 

Obstetrical Forceps Renal pelvis 

Occipital Bone Hip Joint 

Occupational Medicine Proteolytic Enzyme 

Oculocutaneous Albinism Periodontal Disease 

Olfaction Tarsal Tunnel Syndrome 

Paleostriatum Tetralogy of Fallot 

Parasite Thanatophoric dysplasia 

Parasitemia Therapeutic Touch 

Paresthesia Thoracic Aorta 

Paroxysm Thoracic Duct 

Quackery Thyroid Cartilage 

Quiescence Thyroid Hormone Receptor 

Rabies Accessory 
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Race Accessory 

Radial Keratotomy Prostate Cancer 

Radiation Accessory 

Radiation Thyroid Stimulating Hormone 

Radiation Fibrosis Roseola Infantum 

Radical Neck Dissection Temporal Lobe Epilepsy 

Sabin Vaccine Sebaceous Gland 

Saccular Aneurysm Seborrheic Dermatitis 

Safe Sex Optic Nerve 

Salivary Gland Testicular Cancer 

Salk Vaccine Blood Poisoning 

Xerostomia Lung Cancer 

Yerba Mate Knee Joint 

 


