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Abstract

Semantic similarity measure plays an important noleformation Retrieval and Natural
Language Processing. In this paper we propose & @agnt-based semantic similarity
measure and apply it into the biomedical domairvidus work in semantic web related
applications have used various semantic similan@asures. Despite the usefulness of these
applications, measuring semantic similarity betweemterms remains a challenging task.
The proposed method exploits pagé .c':ounts retl.J.r;.néldebWeb search engine. We define
various similarity scores for two.given terfAendQ, using the page counts for the queRes
Q andP AND Q Moreover, we propose anovel approach to comgrrgantic similarity
based upon lexico-syntactic pattern_s ﬁéing pagatsolihe different similarity scores are
integrated with support vector machin.e'é and decisiee classifier models, to leverage a
robustness of the measures. Experimental resulte\aca correlation coefficient of 0.798 on
the dataset provided by A. Hliaoutakis, 0.705 andhtaset provide by T. Pedersen et al with

physician scores and 0.496 with expert scoresectisely.

Keywords: biomedical terminologgemantic similarity, web minning
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Chapter 1 Introduction

With the rapid growth of today's internet, in ordiefacilitate the management and
search, various information documents has transgdrimto electronic documents. All types
of information documents on the internet increasedifficulty of information retrieval.
Research of semantic similarity between concepdban an integral part of information
retrieval and natural language processing.

The existence of semantic equivalence classes batlggical items in English makes it
highly desirable to use thesauri of synonymous eptscfor document retrieval (DR) and
information retrieval (IR) applications. The isgagarticularly acute in the biomedical
domain due to stringent completeness requiremenssich as patient cohort identification.
We believe that measures of semantie similarityiogrove the performance of such systems.
For example, a user’s query for “congestivé hé&aittire” could be expanded to include the
semantically similar terms of cardiac decompensapollmonary edema, ischemic
cardiomyopathy and volume overload_;l Clearly, pulargredema does not denote the same or
even a similar disorder as congestive_h_eart faﬂ_nuteunder the patient cohort identification
conditions it could be considered as an equivaeatch term.

Semantic similarity refers to human judgments efdlegree to which a given pair of
concepts. Measures of semantic similarity are aatmntechniques that attempt to imitate
human judgments of relatedness. Semantic similarégsures are classified into two main
categories such as ontology-based and corpus-basedirst class is to measure the semantic
similarity between two conceptg, c2 by calculate the distance between the concepsiod
the ontology tree or hierarchy [1, 2]. The secolad< of techniques measures the difference
of information content of the two concepts as afiom of their probability of occurrence in a
corpus. In this class, the techniques use macharaing, rule-based, statistical-based or

other corpus-based approaches [2, 3, 4]. The cdrassd approach uses the information



available in the corpus to measure similarity betveoncepts or entities. In our research we
use the corpus-based technique to measure the Sesianlarity between concepts.

By using corpus-based approach how many corpusimportant issue in many Natural
Language Processing (NLP) tasks. In 2001, (Banlgri&01) advocated for the creative
using very large corpus as an alternative to stiphted algorithms. They demonstrated the
idea on a lexical disambiguation problem. The pFobivas to choose which of 2-3
commonly confused concepts were appropriate favengcontext. They show that even
using a very simple algorithm, the results contimaproving log-linearly with more training
data, even out to a billion concepts. They conchhdé getting more data may be a better idea
than fine tuning algorithms. The Web is providingptecedented access to the information as
well as interacting with people’s dailyllliyes. Tg_dlaahe obvious source of largest data is the
b, o by

Using the web as training and.testing corpus ma@ihg ever-increasing attention. The
web has been used as a corpus for a variety oftlléds such as machine translation
(Grefenstette 98; Resnik 99; Cao &_Li '62; Way & @h3), question answering: (Dumais et
al. 02; Soricut & Brill 04), word sense .d'isambig'juat(IVIihaIcea & Moldovan 99; Rigau et al.
02; Santamar’ia et al. 03; Zahariev 04), extraatiosemantic relations, (Chklovski & Pantel
04; Idan Szpektor & Coppola 04; Shinzato & Toris@#3, anaphora resolution: (Modjeska
et al. 03), prepositional phrase attachment: (\ddlkCalvo & Gelbukh 03), language
modeling: (Zhu & Rosenfeld 01; Keller & Lapata 08¢gmantic similarity(Danushka
Bollegala & Yutaka Matsuo 07). In our research wappsed a method for semantic
similarity measurement between concepts using walrh engine and apply it into
biomedical domain.

The rest of this thesis is organized as follows:

In chapter 2 we provide the necessary technicddraond and analysis of related work.

In chapter 3 we are going to introduce our simyameasurement methodology.

2



In chapter 4 we make the experiments and preserexperiment results.

In chapter 5 we highlight the conclusions from she&dy, and propose future work.




Chapter 2 Background and Related Work

In this chapter, the first three sections are goingeport some technical background
related to our research, we will introduce Googl X Search API in chapter 2.1, supervised
learning methods used for classification and reggo@sof support vector machine (SVM) in
chapter 2.2 and decision tree classification methathapter 2.3, for the following two
sections described the SNOMED-CT ontology and tle&M ontology in chapter 2.4 and
chapter 2.5 respectively. Finally we introduce fmajor categories of ontology-based

semantic similarity measurement methods in chghter

2.1 Google AJAX Search API

The Google AJAX Search APl is made up of four majasses of components:

The first class google.search.S'e'érchCOntr_c.)I b'rts\/titie user interface and coordination
over numbers of searcher objects, each searchestofjdesigned in order to perform
searches and return a specific class of results.

The second class google.search,Search Is als@sieectass which all "searchers" inherit.
It defines the interface that all searchc_e.r. servieee to implement.

The third class GResult is also a bése claés tizaipsulates the search results produced
by the searcher objects.

The last class is google.search.SearcherOptioiss;ldss configures the behavior of
searcher objects when we add to a search control.

The detail discussion of how to use the Google ABearch APl command is in

appendix A.

2.2 Support Vector Machine
Support vector machine (SVM) is a supervised legymnethod used for classification
and regression. SVM has been using widely becauseligh generalization ability and the

wide area of applications.



In two-class classification problem, a training Sert{(xk, yQ}, k=1,2,....n X,

describes the input patternsdtdimensional feature spaoce,€ Rd. The class Iabebssk
confirms as responsesgffrom either of the two class, and are assigned aithlue of +1 or
-1. Our purpose is to find the hyperplane of tHeWing equation

Ve(X) = w x+b, )

define the pairw, b), such as the linear classifier

1(x) = sign[w x +b]. @®.4

d
wherew € R andb € R. When the data of the two classes are separateittbatisfies

wx, +b=1 if y,= +1. 2.5)

wx, +b<-1 if = -1, 5 ' (2.6)

If the setSis linear separable, the hyperplane can-be comhinedne inequality as

follows

vi[w'x, +b]=1, for k=1, 2, .... n 2.7)

For the linear separable s2twe would like to find the hyperplane with largesargin.
In other words, we would like the distance betwiem classes of training data as large as

possible. The distanakw, b| x) from a pointx to the hyperplanen( b) is

d(w. b x) i%
(p.8
The marginM is given by
M(w.,D)= {I}]:.‘];iil_l: d(w. b x,)+ {11_11;1_}5{} d(w.b|x,) 2.9)
o wex, + b _|wex, +D|
= mn —F———+ mn —7¢r————
I T



= min |w-:'.:;_+b|+ min |w-xk—b|)
- 1} : fx =+l _

X = k-

In Figure 2.1, the optimal hyperplane is given bgximizing the margim, subject to

the constraints of equation 2.4.

A

Class 1 Optimal hyperplane

O O
0 g

Maximum Class 2

>

Figure 2.1: Maximum-margin hyperplane in linearaable case

The optimal hyperplane can be found by solvingftlewing equation

e 1
minimize Jy(w)=— wiw,
2 (2.10)

subjectto ¥, [“'ka +b]z1l, fork=1,2.....n
Searching the optimal hyperplane is a quadratignarmming (QP) problem. This

problem can be solved by constructing a Lagrangian

L(w.b:a)= %wrw = o (v, [wx, +b]-1),
2 = (2.11)



whereakzo are Lagrange multipliers. In order to find theda point we need to

minimize this function ovew andb and maximize it over the nonnegative Lagrange

muItipIiersakZO. At the saddle point, obtains

— =W —Za’_:__}'k):k =0,

ow = (2.12)
C_'L = Zlafi_j'k =0.

ch k=] 2:(3)

Substitute equations 2.12 and 2.13 into 2.11, besdire following QP problem as the

dual problem

i I & r 4
maximize Jp(@)=—— > W VX X000+ &.
TR T (2.14)

[

subject to Zlai_j'k =0.
The Karush-Kuhn-Tucker (KKT) theorem plays an impot role of SVM. Thus solving

the SVM problem is equivalent to find_'t_he solatigiier KKT condition. According to this,

the solution of equation 2.14 has the .equality-«"

a (vi(w-x, +b)-1)=0, for k=1, 2. .... n.
(0 (W, D)D) 2.15)
To construct the optimal hyperplane x + b, from equation 2.12 it follows that

W= Z{T""" X
k=1 (216)

and the scalds can be determined from the KKT conditions of equa®.15, such that

the linear SVM classifier takes the form
¥v(x)= sign(z @V XiX +b).
k=l (2.17)

At the same time, each training samypklés associated with Lagrange coefficieal‘(ltThe

sample whose coefﬁcien’&is nonzero is called support vector.



In the previous section, the SVM solution is tingér separable classification problem.

However, most of cases are not linear separableant@n example in Figure 2.2.

A
Class 1 Optimal hyperplane
O
Q
O O
U g
Maximum Class 2

>

Figure 2.2: Maximum-margin-hyperplane in nonlinseparable case

o Fie d
To solve the problem which is not linear separabRR , it is done by taking additional
slack variables in the problem formulation. In arttetolerate misclassification, we have to
modify the set of inequality equation 2.7 into

wix, +b]=1-&, for k=1, 2, ..., n,
Vi[w'x, +b] sy 10T n (2.18)

where slack variablékzo. In the primal weight space the optimization peaiobecomes

minimize J,(w. &)= 1 wa e &,
2 < (2.19)

Ij‘_.k_[wrxi_ +b]z1-&

subject to t . oofork=1.2, ... n,
s =0
Sk

wherec is a real constant. On the analogy of what was flonihe separable case, the



solution to equation 2.19 is reduced to a QP opgtton problem

] I 1 i . n
maximize Jp(@)=-— PIRIALD vb -ACAE N
= k1=l k=1 (220)

-
H

| >y, =0

subject to < i

[0z, =c.k=12...n.
and the KKT conditions are defined as

o (v, (WX, +b) =1+ &)=0, for k = 1. 2, ..., n. (2.21)

':C_'iy.i-)‘.:'fc =0. for k=1, 2, .... n. (222)

The training data corresponding to non-mkmalue is called support vector, but there

are two types of support vector in nOh-separakrké.cm the case Oagk < ¢, the corresponding

support vectoxksatisfies the equalitieyls((w x+hb)y=1 andék: 0. This has no difference with

separable case. In another casec, th‘elcorresp-ondinq(is not null and the corresponding
support vector(kdoes not satisfy equation2.18. We refer such samector as error. The

pointxk corresponding Witlmk: 0 is classified correctly and far away from tleeidion

margin.

To extend linear SVM classifiers to nonlinear SVMssifiers is straightforward. The
case where a linear boundary is inappropriateeN¥M can map the input vectointo a
high dimensional feature spageln Figure 2.3, a construction of the linear sepag
hyperplane is done in this high dimensional feasyr@ce, after a nonlinear mappw(g) of

the input data to the feature space.



A Input space A Feature space

o@o
O
OD -
= o(x)
o O _’__>
0 ]
D///ighgx““x
O Ooo
> >

Figure 2.3: Mapping the training data into a higmehsional feature space b{x)
where a linear separation is made, correspondiagianlinear separation in the original

input space

The optimization problem of-equation 2.19 becomes

. . ) 1 ] )
minimize J,(w,&)=—w'w+ C‘Z & :
2 = 6 | (2.23)

|3V o) +Dl21-4

_ Lfork=1.2....n
|5 20

subject to

Construct the Lagrangian

Liw,b.& a.v) 2.24)

= J(w, E}_iak(j’lk [“'Tg-::(xk}—b]—l— - iw:k
k=l k=1

1 n H n " ) L] .
- E“J“'_('Z &= o [wra;-:l(xk)—b]+ Yo=Y o & - vé,
k=1 k=1 k=1 k=1 k=1
with Lagrange multiplier&kzo,vkzo fork=1, 2, ...,n. The solution is given by the

saddle point of the Lagrangian

maxmin L(w, b, & a.v).
1 -

@.v Wb,

(2.25)
which obtains

10



oL I
—=0—-w LV, (X, )
5“ — e R (.k
5L il

—=0— o, v, =0

s Z] ;

L

—=0—c—a,—v, =0

og,

(2.26)
Re-substituting 2.26 into 2.24, the primal quadrptogramming problem 2.23 becomes
a dual form as follows

L(w.b. & a.v)

2.27)
-3

Z{TA—C{} _‘TJ,J;EJ{XA_)TQ)(K{)+Z(C‘ — 0 =V )S
=1 1=1 =

i i i i
s v omie VT ,
- Z Zﬂ}aﬂ (X)) o(x;) - Z o, yb+ Zax
k=1 121 k=

|
noom

1
-3 o, v, V,@(x,) r:::'(ljj+Zc:f
k=1 i=1

Finally, finding the optimal hyperplane in featummci is the solution to

maximize J. (Cf:l——gz VoV, 0(X, ) o(x, e, o + z.::rk
k1=

(2.28)
_ Zaf ¥, =0
subjectto <

|

k=1
Oza,=c.k=L2....n

A key property of the SVM is that only the quam#tithat one needs to compute are

T
scalar products, of the form(xl) -qo(xl). Therefore, it is convenient to introduce thecatied

kernel function Kthat is

K(x,. %) = @(x,) 9(x)).

(2.29)
The definition of kernel function that satisfies iMer's theorem can be used as
inner-production. Two examples of kernels usedViviSare

11



Polynomials:

K(x,.x,)=(x,x,+1)?, for ¢>0,

(2.30)
whereq is a constant. Wheq= 1, the kernel is the linear kernel.
Radial basis Function:
e
- =
Kx,.x)=e ' (2.31)

whereo is a positive parameter to control the radius. Kegeonly show that the

Gaussian (RBF) kernel indeed there is an innerymtoaf two vectors in an infinite

dimensional space. Assumre& Rando >0

| Egp==ill | | l=mpe-x )t )
| | |

K x) =¢ - (2.32)
_I_::_‘+_IE1I| X
=g o g T
— _IFE_IF 2xx,. 12X .i_.
=€ [1+( 2 ) 1 ( 2 ) 2 )
'i_i 2 2 23 22 .
=e 7 v‘[]-]+\/ 1111.-\] X, + —X, - X 4]
1l 1l 2!.[:,5--]- 2!_{5—)
= o(x)" o(x,)
where
’— 2 2? )
p(x)=e 7 [L 1||11 X. ’2”: o x°, -]
Lo L(o)”
(2.33)
Finally, the nonlinear SVM classifier takes inte@ ttorm
v(x)=sign[> o, v, K(x,.x,)+Db].
- (2.34)

We can see that only support vector will affectrébgult in the prediction stage. In

general, the number of support vector is not lafgerefore we can say SVM is used to find

12



important data (support vector) from training data.

2.3 Decision Tree

Decision tree has been constructed and used famdi@ing and classification, this
technique is helpful to reveal explicit relationshietween attributes among huge dataset. The
decision tree is constructed in a recursive, toprdand divide-and —conquer manner. A
decision tree consists of three types of nodesidicy decision nodes, chance nodes and end
nodes. There are three popular rules applied utimnaatic creation of classification trees.

The Gini rule splits off a single group as largeassible, whereas the entropy and twoing
rules find multiple groups comprising as close &tf the samples as possible. Both of the
algorithms process recursively down tlh_e_ tree l_smipping criteria.

The Gini rule is typically used by .programs.t_.ﬁdiljne decision trees using the CART
algorithm. Gini rule is based on-squared brobahﬂibf membership for each target category
in the node. It reaches its zero When_all caseh;ginnode fall into target category. Suppose y
values are in {1, 2,..., m}, and I, §) _:.b:.robability of.getting valugin nodei. That is/f(i, j)

is the proportion of records assigned to notte which y =j.

m

7=t 7k (2.1)
Information gain is used by programs that are baseithe ID3, C4.5 and C5.0

algorithm.

m

Ie(i) = = Y f(3,5)log, £(3,5)
)= (2.2)

Decision trees have several advantages. Firstsimple to understand and requires little
data preparation. People can easy to understamglaietree models after a brief explanation
and data is no need to normalization. Second pibssible to validate a model by using

statistical tests and perform well with large datth short time. Large amounts of data can be
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analyzed using personal computers to enable staleasdo take decisions based on its

analysis.

2 < 154269

10432399 wl < 0254225
¥2 < 13.7685 11 < 0.457499 1l < 0.357(
synanym
%1 = 0.338453 ¥l < 03936581 4272 < 14.6646 %2 <13.319 %2 < 16,94
syHanym
#2 < 13.5084 ¥2 < 12.6625 x1 < 0279436 ¥2 < 10,2015 #1 < 0.35539,
SYNONGME Y NOFGmONY M synonym nonsynonym
2 = 11161 12 <négs1 b Ja] b %1 < 0.372659 11 < 0.5637131 x1 < 0.597308 synihans Ronym
Class probabilities: JricEgmny ynangrEynany
synonym = 0.857
nonsynonym = 0,143
» ¥2 < 121825 1] < D@EI06S #1 <[] A9ETT
SYNONgREYNONym sYnoAym nofsynanym SYNOmEms ynonym synanym
®2 < 11 8741 x] = (0890552
nonsyRonym nonsynoswIonym NoRSY DAY AT
wl < (1800401
syRTYm nonsyhosgmahy m

NONSyYNOSYmoNym

Figure 2.4: Decision tree

2.4 SNOMED-CT

SNOMED-CT stands for Systemiiéd Nomenclature of iled Clinical Term is an
ontological resource that has a wide coverageatlinical domain. It is produced by the
College of American Pathologists. SNOMED-CT is uedndexing clinical decision
support, clinical trials, electronic medical recgrtdCU monitoring, medical research studies,
computerized physician order entry, disease suavnei, imaging indexing and consumer
health information services. The current versianiuded inUMLSin May 2004 (2004AA)
contains more than 360,000 concepts, 975,000 syneayd 1,450,000 relationships
organized into 18 hierarchies. The concepts anddescriptions are linked with semantic
relationships including associated etiology, asged morphology, is-a, assists, treats,
prevents, has property, has specimen, associgiedraphy, has object, has manifestation,

associated with, classifies, clinically associatith, has ingredient, mapped to, mapped from,
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measures, used by, anatomic structure is physacabp

2.5 MeSH

MeSH (Medical Subject Headings) [5, 6] is a hielnézal ontology of medical
terminologies suggested by the U.S National Libiriledicine. There are 21,973 main
headings and 15 subtrees in MeSH (22,568 in 200d%H concepts correspond to MeSH
describes terms of several property, the most itapoof them are the following:

MeSH Headings (MH): These are term names or idergiftised in MEDLINE as the
indexing terms for documents. A MH term belongsa tncept, and is to label the meaning
that corresponds to the concept reflects.

Entry Terms: These terms are polilr_lt_ers t_o_the Meretlare the synonym terms of the
MH with the same concept. . %

MeSH Tree Number: The tree.numbers are the positbthe terms in the MeSH.

MeSH Scope Note: The text descriptions of the Mé&Shhs. This piece of text provides

a type of definition.

2.6 Semantic Similarity Measurement Methods

This section introduces several ontology-based austiior computing the similarity
between concepts or classes. Semantic similarigsares is useful for performing tasks such
as retrieving results to user queries, representaind redundancy of retrieved resources, and

checking ontology for coherency.

2.6.1 Edge-Counting Measures
The first category to measure semantic similariysiders wheréwo conceptgl and
c2 are in the taxonomy. The following measuremenedas a simplified version of

spreading activation theof8, 9]. The more similar two concepts are, the nlimies there
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are between the concepts and the more closelgdelaey are [10].
Wu and Palmer [11]: This similarity measure conssdbe position of conceptd and
c2 related to the position of the lowest common cphceAs there may be multiple parents

for each concept, two concepts can share parentuitiiple paths.

2H
Ny + No 4+ 2H

Hf.’”u.'&plf-"l ) | =
(2.35)

N1 andN2 is the number of edge frood andc2 respectively to the lowest common
conceptc, andH is the number of edge frooto the root of the taxonomy. It ranges from 1 to
0.

Li [12]: The following similarity measure, which gwines the shortest path length
between two conceptd andc2, L, and .t.he- depth Iin the taxonomy of the lowest commo
conceptc, H, in a non-linear function.. < %

BH —BH
aL €

simp (e, ca) = e T —ah
f,-j'H s f,—-j'H

(2.36)
wherea= 0 andf= 0 scaling the co_ntribution of shortest path leragtld depth respectively.
The optimal parameters afandg are 0.2 and 0.6 respectively. It is thus obvida this

measure ranges from 1 to 0.

2.6.2 Information Content Measures

The information content is estimated by the freqyesf that concept in a large corpus of
text. Information content requires the count ofjfrency of every concept include the
frequency of all subsumed concepts in a hierarEbyinstance, the frequency for the concept
of disease would include frequency of influenza faurerculosis. The concept corresponds to
the root of the hierarchy has the maximum frequegsaoyt includes the frequency of all other
concept in the hierarchy. Thus, the frequency efttigher concepts in the hierarchy is always

equal or greater than the lower concepts in theafghy in the hierarchy.
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The information content of each conceps$ computed as following:

IC(¢) = —log (M)
freq(root) (2.37)
Resnik [13]: This measure uses the information eaindf the shared parents.

Sim,s(cy,¢2) = IC(les(eq, ¢r)), (2.38)

If two terms share more information in common thiem more similar they are. The
information shared by two terms is indicated byitifermation content that subsume them in
the hierarchy. This measure provides us with inétram such as the size of the corpus. A
large numerical value indicates a large corpusthiéamore, the score from comparing a term
with itself depends on where in the hierarchy #rentis. The less the term occurs the higher
the score of the term.

Jiang and Conrath [14]: Scale thé'iﬁforrﬁéthn conod the subsuming concept by the
information content of the individual concepts.ng"aand Conrath are different. The Jiang and

Conrath compute the inverse of similarity.of cortsefi andc2 as:

dist;c,(c1,c2) = 1C(¢y) + [(,'(c,';;) -2 [C(!crs(crl .Ca)) (2.39)
2.6.3 Feature-Based Measures

Until now, the features of the terms are not takém account. However, these features
of a term contain valuable information about theteThe following measure including the
features of terms in order to compute similarityween different concepts, but it ignores the
position of the terms in the hierarchy.

Tversky [15]: This measure is based on the featirédse terms. We suppose that each
term is described by a set of words indicatingpitsperties. If two terms have more common

characteristics and the less non-comrmloaracteristics, the more similar the terms are.

| {_-'1_ i (_‘_-2 |
[C1 1 Ca] + K|Cy \ Ca| + (5 — 1)[Cy \ Oy

Hf'-'r”'fver'sky ' 1, 2 ' =

(2.40)
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2.6.4 Hybrid Measures

This method compare two concepisandc2 combine some of the above approaches,
considering the path connecting the two conceptisarhierarchy.

Rodriguez [16]: This approach can be used for singlcross ontology similarities. The
similarity function is a weighted sum of the simitg values for features, neighborhoods and
synonym sets.

S(a”,b%) = wy - Sw(a?, b7) + wy - Su(a?, b7) 4wy - Sp(a®, b) (2.41)

whereww +wutwn = 1, Sw, StandSnare similarity functions. The functior&y Suand
Snare the similarity between synonym sets, featunesn@ighborhoods of ontology p and b

of ontology g and are calculated by equation2.42.

AN B
AN B| +alA\ B|+ (1 —a)|B\ A|

Sila,b I =

(2.42)

In this methodx is computed acco_.fqling to equatioh 2.43, butdisreomputed as a

factor of the depth where the two Comp_ared cqnamaim each hierarchy.

dic1.0mis) (., r "< dliea ¢ K
o ) ﬁ 'r‘rl-rl'rﬂlis-lE'r‘rl-"}"més.l-
ey, 2 ) = dl:ﬁ:i.fnus:l JF' ) ) . Jrf ) ) \
1 _W e, Cmis ) = G C2, Crpis |-

(er.ca (2.43)

whered(cl, c2 =d(c1, cmi$ + d(c2, cmis.
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Chapter 3 Methodology

We propose a method which exploits page-count tasore semantic similarity between
a given pair of concepts. In chapter 3.1, we dbsapur sample construction. In chapter 3.2,
we describe our feature definitions. We then dbscai feature selection strategy in chapter
3.3. We rank the features by F-score accordingeo ability to express semantic similarity.
We use two-class support vector machines (SVMs)daadsion tree to find the optimal
combination of features and training samples. TV &nd decision tree are trained to
classify synonymous term-pairs and non-synonymems-pairs and convert the output of
SVM and decision tree into a posterior probabiltfe define the semantic similarity between
two concepts as the posterior probability that thelpng to the synonymous-terms (positive)
class. The SVM and decision tree model aré‘intrednchapter 3.4 and chapter 3.5,

respectively.

3.1 Sample Construction

For our experiment we decided_ t(.)":.use two websitggdvide synonymous and
non-synonymous training sets from W.h.i.Ch our éyakemnain a classifier. Our training set was
drawn from the MedTerms Dictionary section of thebgite

MedicineNet.contfttp://www.medterms.com/script/main/hp.smown in figure 3.1). For

the synonymous training set, we select one term fkedTerms Dictionary randomly and

manually then query the website synonymshigi(//www.synonyms.net/synonyjghown

in figure 3.2) for the synonym. We repeat this gaare until 1500 synonymous term pairs
was collected. For the non-synonymous trainingwetselect two terms from MedTerms

Dictionary randomly and check synonyms.héf{://www.synonyms.net/synonyjtb make

sure that the term pair was not synonymous. Weatdpes procedure until 1500

non-synonymous term pairs was collected.
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Figure 3.1: MedicineNet.com website
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ABBREVIATIONS  CONVERSIONS DEFINITIONS QUOTATIONS SYNONYMS ZIP CODES REFERENCES Bookmatk & Share 47

syaonyms

.net
Search for Synonyms:
Alphabetically: ABCDEFGHIJELMNOPQRETUV WIXTYZ# random synonym
What are Synonyms? What is Synonyms.net?
Synonyins are different words with identical or at least Synonyins.net is the web's most comprehensive synonymns
similar meanings. Words that are synonyns are said to be resource. To use Synonyms.net, simply type a word in the
synonymous, and the state of being a synonymn is called search box and click the *Search® button. & list of
synonymy. An example of synonymns are the words car and synonyms for the different word senses will be returned
automobile, or announcements and declarations. followed with images and translation options.
ADVERTISEMENT Some sample synonyms
Game Arnazing  Dictionary Prominent
Online MBA Wholesalers Feel Infant Tpset Moniker
Please Insane Resignation Interesting
Online MBA Degree Melting Good Itnagination Trust
Stay Funny Believe Modern
. _ Swreet Lowve Manifest Cornpetition
Addiction Treatment War Fres Surprise Goal
Diog Heaven Peace Joy

Figure 3.2: synonyrﬁs;net website

3.2 Feature Definitions

In this section we defined five sifn-i:larity featumsd described ten lexico-syntactic
pattern based features, we considefe'd--page cmirthefquery P AND Q as an
approximation of co-occurrence of two concepts & @on the Web. However, page counts
do not accurately express semantic similarity hierquery P AND Q. For example, the search
engine returns the page count 1150 for the queappdbmen AND breadbasket, whereas the
same is 107000 for abdomen AND awareness. But,abdas more semantically similar to
breadbasket than awareness, query for the page ebandomen AND awareness is about
one hundred times greater than those for the calalgmen and breadbasket. So we must
consider the page counts not just for the quernNP A, but also for the individual concepts
P and Q to assess semantic similarity between Rand

We use five popular modified co-occurrence meagr@sDice, Jaccard, Overlap

(Simpson), PMI (Point-wise mutual information) a@&D (Normalized google distance) to
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compute semantic similarity. For the remaindehad paper we use the notation H(P) to
denote the page counts for the query P.

Therein,P N Qdenotes the conjunction query P AND Q. It is pdssibat two
concepts may appear on some pages purely accigegitan the scale and noise in Web data.
In order to reduce the adverse effects attributeblandom co-occurrences, if the page count
for the queryP M Qis less than a threshote5 then we set the coefficient to zero.

WebDice coefficient is a variant of the Dice coa#nt. WebDice(P, Q) is defined as
follow:

WebDice( P, Q)

0 it HiPNQ)<c
= ZH{FNQ) K
TP T otherwise.

(3.1)
The WebJaccard coefficient beteen concépts P aivdeQJaccard(P, Q), is defined as

follow: i

WebJaccard( P, )

{r} if HIPMQ) < e
= H{FP g i
HETH(O-HFng) Ctherwise. (32)
We define WebOverlap, WebOverlap(P, Q), as,
WebOwerlap( P, ()
{D if H{PNQ) < e
= Hi{Fmid) o
—m(H(P) gy Otherwise. (3.3)
WebOverlap is the modification to the Overlap (Ssmp) coefficient.
We define WebPMI as a form of PMI using page coastfollow:
WebPMI( P, Q)
{[I fH(PNQ)<ec
—_ Hi{Fma !
loge | grmg=r) otherwise.
N @

Here,N is the number of documents indexed by Google. RBritibes in equation 3.4 are

estimated by the maximum likelihood principle. Tadatlate PMI accurately by equation 3.4,
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we must knowN, the number of documents indexed by Google. Altinoeistimating the
number of documents indexed by a search enginag¥8j interesting task, it is beyond the
scope of this paper. We ¢t= 1000000000000 according to the number of indgeapes
reported by Google 7/25/2008 10:12:00 AM.

The following equation is developed by Rudi L. Bilisi and Paul M.B. Vit'anyi [19]
which is based on information distance and Kolmogaomplexity using Google as search
engine and the web as database. The method i€alplelito other search engines and
databases. We apply the equation as a featurenstraot a method to automatically extract
similarity of words and phrases from the web usBapgle page counts. The web is the
largest database, and the context information edtey billions of users averages out to

provide automatic semantics of useful quality.

NGD(P, Q)
0 if H(PNQ) < e
= max(log H(P),log H(Q)) — log H(PNQ) ot herwise.

logN' — min(log H(P), log H(Q)) (3.5)

Phrases such &sown as, is a, pért'of, is an examplalbindicate various semantic
relations. Some of such phrases are useful fouocagtsynonymous relation. For example,
apoptosis known as programmed cell death is a carlynused pattern in our daily life. From
this example, we form the pattePrknown as Qwhere we replace the two concepts
ApoptosisandProgrammed cell deathy two wildcards P and Q. By the phrase known as we
can conclude that P and Q are synonymous condgyatsdentifying the exact set of words
that convey the semantic relationship between wvwepts is remaining a challenging
problem which requires deeper semantic analysigieder, such an analysis is not feasible
considering the numerous ill-formed sentences. lincertain which patterns are useful for
capturing synonymy. John McCrae and Nigel Coll&f][proposed a method that
automatically generates regular expression pattéiragpands seed patterns in a heuristic

search and then develops a feature vector dependitite occurrence of pairs in each pattern.
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We use the eleven patterns mentioned in John Mc&rdéNigel Collier’'s papeand replace *
by empty string, then we define the ten pattermmswshin table 3.1 as our features. There are
two reasons why we replace * by empty string. Festson is Google did not provide query
for the regular expression. Another reason isithdbhn McCrae and Nigel Collier's
experiment many of the patterns were inflexible avadched very rarely so they simply
allowed * to match the empty string,

For each pair of concepts, we replace two wildc&dsd Q of the patterns in table 3.1
by two concepts and query Google search engintéopage counts. If the concepts are
synonymous there will be more page counts thanatghon-synonymous. However, page
counts do not accurately express semantic simyileoitthe query. For example, the search
engine returns the page count 92 for tlhe_que_r)apbptosis known as programmed cell
death”, whereas the same is 34 for .“d.engue fev.e.v.vhras breakbone fever”. Since apoptosis
and programmed cell death are-synonymous concefuises dengue fever and breakbone
fever. But the page count of “apoptosis known agyammed cell death” is about three times
greater than those for the query “denghe fever knasvbreakbone fever”. So we must
consider the page counts not just for the querﬁcFWh as Q, but also for the P AND Q to
assess semantic similarity between P and Q. Sawedhe page count of P known as Q by
the page count of P AND Q. For the remaining tettepas we use the equation 3.6 to assess

semantic similarity between P and Q.

WebPattern(P.Q)
{U if HiParrern) < c
- LD arsers)

H(Prig) otherwise. (3.6)

Table 3.1: Lexico-syntactic patterns

Pattern
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of P (Q)

P(Q

and P (Q

P@Q

against P (Q

prevalenceof P Q

patientswith P Q

P known as Q

P

P, Q

3.3 Feature Selection Strategy

The purpose of feature selection |s to seléct sointiee best features because data set
contains features on the model often more thaniredjfor the establishment.

For example, the data set may contain 500 featardsscribe the characteristics of data
set, but may only have 50 features will be usecteéate a specific model. If you are in the
establishment of this model do not need those featso that we can reduce the need of CPU,
memory and storage space.

Even if the resource is not a problem, you willalguwant to remove unnecessary
features, because they may reduce the quality deitadave been exploring for the following
reasons:

Certain feature is either cumbersome or superfludhis situation will make it more

difficult for meaningful patterns of informationdad.
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To find the model of high-quality, most of the algiom needs to provide
high-dimension data sets much larger training data. Feature selection help to solve too
many low-value information or high-value information the problem of too few.

Generally speaking, the selection of features atoulate the scores of each feature,
and then only with the best scores of selectedifeat You can adjust the high threshold.
Feature selection will be in shape before the imgletation of the model, can automatically
choose from the data sets are most likely to bd usthe model features.

In this paper, we use F-score [21] our featurecsiele strategy. It is a simple technique
which measures the discrimination of two sets af nreimbers. Given training vectogs k =
1, ... ,n, if the number of positive and negatha&ances are+ andn- respectively, then the

score of theth feature is defined as:

(35“ _ 5]2 + (f‘— ,f:-)z

Fii) = - 5 - 5
A Y () —2) 4 A ¥ (o) - 20)
L=1 k=1 . (37)
I B :
where i, Ti | *i  are the average of thih feature of all, positive, and negative
) B - (=)

data sets, respectiveli’k.i s theith feature of théth positive instance, an” * is theith
feature of thé&kth negative instance. The numerator indicates iwichination between the
positive and negative sets, and the denominatacates the one within each of the two sets.
The larger the score is, the more discriminative fdature is. Therefore, we use this score as
a feature selection strategy. We calculate thedfeswith each features from 100 to 1500

training samples and averaged the scores for eathrés.
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Figure 3.3: Both features of this data have lowas@s in equation 3.6 the denominator is
much larger than the numerator

3.4 Support Vector Machine Model
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Figure 3.4: Support vector machine model flow chart

In section 3.2 we defined fifteen similarity scotesng page counts. Section 3.3

described a strategy to rank the features accotditigeir ability to express synonymy. In this
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section we describe leverage of a semantic sirtyilaxeasurement through integration of all
the similarity scores described in previous sestion

For each pair of conceptB,(Q), we create a feature vecterFirst, we query Google
and collect page counts for P, Q, P AND Q and eégicb-syntactic patterns. Second, we
calculate fifteen features by the equations mestian section 3.2. After that we use equation
3.6 to rank the features according to their abiitgxpress synonymy. Finally we yields a 15
dimensional feature vectér. We form such feature vectors for all synonymoaisg(positive
training samples) as well as non-synonymous paggdtive training samples). We then train
a two-class SVM with feature vectors. After we h&ragned a SVM using synonymous and
non-synonymous pairs, we can use it to computeehgntic similarity between two given
concepts. Following the same method we used torgenieature vectors for training, we
create a feature vectbn for the giveh bair of con.ée.p'tﬁ’c( Q), between which we need to
measure the semantic similarity. The semantic aniyl betweerPo and @ as the posterior
probability ProbFo\synonymousthat feature vectdro belongs to the synonymous (positive)
class. -

Being a large-margin classifier, thé outpuf of &f\VSis the distance from the decision
hyperplane. However, this is not a calibrated past@robability. We use sigmoid functions
to convert this distance into a posterior probab(see [22] for a detailed discussion on this
topic). In our research we use libsvm 2.89 [23]logr including C-SVC (C=1) and nu-SVC
(nu=0.5) to do the experiment (see [24] for a diedadliscussion on this topic of C-SVC and

nu-SVC).

3.5 Decision Tree Model
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Figure 3.5: Decision tree model flow chart

In section 3.2 we defined fifteen similarity scotssng page counts. Section 3.3
described a strategy to rank the featuress accotdititeir ability to express synonymy. In this
section we describe leverage of @ semantic sifhilareasurement through integration of all
the similarity scores described in previoué sestion
For each pair of conceptB,(Q), we crea:llt_e a feature vecferFirst, we query Google and
collect page counts for P, Q, P AND Q__and ten exsyntactic patterns. Second, we
calculate fifteen features by the equations mestian section 3.2. After that we use equation
3.6 to rank the features according to their abiitgxpress synonymy. Finally we yields a 15
dimensional feature vectér. We form such feature vectors for all synonymoaisg(positive
training samples) as well as non-synonymous paggdtive training samples). We then train
a two-class CART decision tree with feature vectdfter we have trained a CART decision
tree using synonymous and non-synonymous pairsawelse it to compute the semantic
similarity between two given concepts. Following same method we used to generate
feature vectors for training, we create a featwetorFo for the given pair of concept®q|
Qo), between which we need to measure the semantilasty. The semantic similarity

betweerPo and @ as the posterior probability Prdta{synonymousthat feature vectdfo
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belongs to the synonymous (positive) class. Inresearch we use decision tree toolbox [25]

in Matlab to do the experiment.
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Chapter 4 Experiment Results

There are several methodologies to assess theaagonir similarity values computed by
a given similarity measure [26]. One of them isise the similarity measure in an application
that requires similarity between concepts like infation retrieval. Another is to compare the
computed similarity scores of the measure agdmeshtiman similarity scores using, for
example, correlation coefficient (Pearson). Anothethodology requires a dataset of concept
pairs scored for similarity by experts. In our @®h, we calculate the correlation coefficient
to evaluate the proposed measure.

We introduce two datasets of our experiments téuaet@ the proposed semantic
similarity measure in chapter 4.1. Then we intr@aar experiment environment in chapter
4.2. After that we compare the similarity’'scoresduced by the proposed measure against
[27] dataset. We analyze the behavior of the proposedume with the different number of
features from 2 to 15, training samples from 100360 and classifiers including C-SVC,
nu-SVC, based on four kernels(linear_'kernel SVMMeX(Polynomial kernel degree 2) ,
SVM-3(Polynomial kernel degree 3), ar_ld RBF), anciglen tree in chapter 4.3. The
correlations against [28] dataset are shown intelnap4. The comparisons with other

methods are shown in chapter 4.5.

4.1 Datasets

There are no standard human rating benchmark datasa@omedical domain. To
evaluate our methods, we used dataset 1 [27] ecen®& biomedical (MeSH) concept pairs.
The human scores in this dataset are the averadgaded scores of reliable doctorsble
4.1 contains the first 36 pairs of this dataset Tbncept pairs in bold, in Table 4.1, are the
ones that contains a term that was not found in SED-CT.

The dataset 2 [28] of 30 concept pairs from Pexstees al., which was annotated by 9
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medical index experts and 3 physicians. The conga&ips$ in bold, in Table 4.2, are the ones
that contains a term that was not found in MeSHhHair was annotated on a 4 scale:
unrelatedl), marginally relate@®), related3) and practically synonymo(#y. Table 4.2
contains only 30 pairs of this dataset. The avecageslation between experts is 0.78, and

between physicians is 0.68.

Table 4.1: Dataset 1 of 36 biomedical concept pairs

Concept 1 Concept 2 H

Anemia Appendicitis 0.031
Dementia Atopic Dermatitis 0.06R2
Bacterial Pneumonia Malaria 0.156
Osteoporosis Patent Ductus Arteriosus 0.156
Amino Acid Sequence Anti<Bacterial Agents 0.166
Acquired Immunodeficiency . -

Congenital Heart Defects 0.062
Syndrome
Otitis Media Infantile Colic 0.156
Meningitis Tricuspid Atresia 0.031
Sinusitis Mental Retardation 0.031
Hypertension Kidney Failure 0.5
Hyperlipidemia Hyperkalemia 0.156
Hypothyroidism Hyperthyroidism 0.406
Sarcoidosis Tuberculosis 0.406
Vaccines Immunity 0.593
Asthma Pneumonia 0.375
Diabetic Nephropathy Diabetes Mellitus 0.5
Lactose Intolerance Irritable Bowel Syndrome 0.468
Urinary Tract Infection Pyelonephritis 0.656
Neonatal Jaundice Sepsis 0.187
Sickle Cell Anemia Iron Deficiency Anemia 0.437
Psychology Cognitive Science 0.593
Adenovirus Rotavirus 0.43Y
Migraine Headache 0.718
Myocardial Ischemia Myocardial Infarction 0.75
Hepatitis B Hepatitis C 0.562
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Carcinoma Neoplasm 0.7%
Pulmonary Valve Stenosis Aortic Valve Stenosis 0.53
Failure To Thrive Malnutrition 0.62%
Breast Feeding Lactation 0.843
Antibiotics Antibacterial Agents 0.937
Seizures Convulsions 0.843
Pain Ache 0.875
Malnutrition Nutritional Deficiency 0.875
Measles Rubeola 0.906
Chicken Pox Varicella 0.968
Down Syndrome Trisomy 21 0.875

Table 4.2: Dataset 2 of 30 biomedical concept mirted in the order of the averaged

physician’s scores

Concept 1 o " Concept 2 Phy Exp
Renal Failure Kidney. Fai_luré 4 4
Heart Myo'cardium 3.3 3
Stroke Infarct 3 2.8
Abortion _l\hiscérriage. 3 3.3
Delusion Schizophrenia” 3 2.2
Congestive Heart Failure 1“7 Pulmonary Edema 3 1
Metastasis Adenocarcinoma 2.7 18
Calcification Stenosis 2.7 2
Diarrhea Stomach Cramps 2.3 13
Mitral Stenosis Atrial Fibrillation 2.3 1.3
Chronic Obstructive _

, Lung Infiltrates 2.3 1.8

Pulmonary Disease
Rheumatoid Arthritis Lupus 2 1.1
Brain Tumor Intracranial Hemorrhage 2 1.3
Carpal Tunnel Syndrome Osteoarthritis 2 1
Diabetes Mellitus Hypertension 2
Acne Syringe 2 1
Antibiotic Allergy 1.7 1.2
Cortisone Total Knee Replacement 17 1
Pulmonary Embolus Myocardial Infarction 1.7 1.2
Pulmonary Fibrosis Lung Cancer 17 14
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Cholangiocarcinoma Colonoscopy 1.8 1
Lymphoid Hyperplasia Laryngeal Cancer 13 1
Multiple Sclerosis Psychosis 1
Appendicitis Osteoporosis 1

Rectal Polyp Aorta 1 1
Xerostomia Alcoholic Cirrhosis 1 1
Peptic Ulcer Disease Myopia 1 1
Depression Cellulitis 1 1
Varicose Ven Entire Knee Meniscus 1 1
Hyperlipidemia Metastasis 1 1

4.2 Experiment Environment
® Hardware: CPU Intel Pentium 4, RAM 2.0GB.

® Software: Windows XP Professional, Matlab 7.3.B%VM 2.89.
4.3 Parameter Optimization |

4.3.1 Classifier Models
We use C-SVC, nu-SVC, based on four kernels(likeamel SVM, SVM-2(Polynomial

kernel degree 2) , SVM-3(Polynomial kernel degrgeaBd RBF), and decision tree.

4.3.2 Number of features and training samples

In this section, we list the ranked features byfeature selection strategy (illustrated in
Section 3.3). We use the following feature selecaquation F-score. It is a function to
measure the discrimination of two sets of real nersbResults of the ranked features are
shown in Table 4.3. Features with the highggt value is NGD (rank=1F(i)=0.2751).
Followed by a series of features such as WebPMké&2, F(1)=0.237),, P (Q(rank=3,
F(i))=0.1648 andP/Q (rank=2,F(i)=0.1632)

In the first experiment, in order to determine dipéimum combination of features and
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training samples, we trained the classifiers matibin 4.3.1 with 15 features (ranked
according to their ability to capture the synonymsjl different numbers of samples starting

from 100 to 1500 and calculated the correlatiorffcoent against the dataset 1, respectively.

Table 4.3: Features with highest F-scores

Rank Feature F(i)
1 NGD 0.2751
2 WebPMI 0.237
3 ,P(Q 0.1648
4 P/Q 0.1632
5 P(Q) 0.1606
6 P,Q 0.1585
7 WebOverlap 0.1173
8 WebDicel ! 1 hasl 0.0555
9 WebdJaccard . .| 0.0347
10 of P(Q) | 0.0185

11 and P (Q 0.0093
12 against P(Q 1. ' 0.0027
13 patients with P Q 0.0017
14 P knownas Qi 0.0014
15 prevalence of P Q 0.0011

Experimental results using C-SVC with linear keraied summarized in Figure 4.1. The
maximum correlation coefficient of 0.758 is achiéweth 9 features and 1500 training
samples.
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C-SVC(Linear)

00.6-0.8
m0.4-0.6
m0.2-04
m0-0.2

O
samples 9 ’bQ '\'@

Figure 4.1:Correlation vs. No of features and training sampkag C-SVC with linear
kernel

Experimental results using C- VC wi 1 omiafjoee=2 kernel are summarized in
Figure 4.2. The maximum correlati 776 is achieved with 7 features and
1200 training samples.

.

C-SVC(Poly=2

00.6-0.8
m0.4-0.6
m0.2-04
m0-0.2

Figure 4.2:Correlation vs. No of features and training sampkag C-SVC with polynomial
degree=2 kernel
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Experimental results using C-SVC with polynomiatjcee=3 kernel are summarized in

Figure 4.3. The maximum correlation coefficien0of59 is achieved with 13 features and
300 training samples.

C-SVC(Poly=3)

0.8
0.6
correlation 0.4 0.6-0.8
0.2 m0.4-0.6
0 m0.2-0.4
m0-0.2

Figure 4.3:Correlation vs. No of featu '_ S ‘* -

2 SEIE
Experimental results using C \/!'5 with RB

maximum correlation coefficient of 0:61
samples.

kernel summarized in Figure 4.4. The
nidweith 10 features and 1100 training
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C-SVC(RBF)

0.8
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Figure 4.4:Correlation vs. No of features and training sampkag C-SVC with RBF kernel

samples.
gg @0.6-0.8
04 m0.4-0.6
correlation 0% ' _::__ mO0.2-0.4
81 45 =7 14 m0-0.2
06 10 m-0.2-0
L A N 6 features m-0.4--0.2
gﬁb él) ~ LA .
YN .¢,°° $ o 2 m-0.6-0.4
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samples N @Q

Figure 4.5:Correlation vs. No of features and training sampkag nu-SVC with linear
kernel

Experimental results using nu-SVC with polynomiagjcee=2 kernel are summarized
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in Figure 4.6. The maximum correlation coefficien©0.766 is achieved with 11 features and
300 training samples.

nu-SVC(Poly=2)

£0.6-0.8
m0.4-0.6
m0.2-04
m0-0.2
m-0.2-0
m-0.4--0.2
m-0.6--0.4

conelation

Experimental results usin

in Figure 4.7. The maximum correlati _ iCi€ 36 is achieved with 12 features and
300 training samples.

0.8 il

0.6 I
0.6-0.8
correlation 0.4 0406
" 14 0-2-0.4
0 s 10 m0.2-0.
O i A m0-0.2
S o s 7 b teatres
'é'? ”)Q C)Q fd_{ /*//
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Figure 4.7:Correlation vs. No of features and training sampkag nu-SVC with
polynomial degree=3 kernel

Experimental results using nu-SVC with RBF kerrrel summarized in Figure 4.8. The
maximum correlation coefficient of 0.743 is achiéweth 11 features and 100 training
samples.

nu-SVC(RBF)

0.8
0.6
[ 0.6-0.8
comrelation 0.4 W 0.4-0.6
0I2 - = .
) m0.2-0.4
QQ (N " - ,’/ : 6 features 0-0.2
NS o LA
Yo S 2
RO
samples % .\’@

_ _ 2 SWLE _ |
Figure 4.8:Correlation vs. No Gi:‘if afﬂres and ttg?ilng sampkrg nu-SVC with RBF

iemen ™

Experimental results using decision tree are sunzein Figure 4.9. The maximum
correlation coefficient of 0.734 is achieved witfedtures and 1300 training samples.
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Decision Tree
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Figure 4.9:Correlation vs. No of features and training sampkgag decision tree
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We experimented with dlﬂerewt kerr:gal ty[?eslaswn in Table 4.4. Best performance
is achieved with the linear kernel of nu- SVC whleborts a correlation coefficient of 0.798.
Pt
When higher degree kernels such as qdﬁifﬁﬂt‘(ﬁmimdegree 2) and cubic(Polynomial

degree=3) of nu-SVC are used, corre1at|om/v|tmhman ratings decreases. Second best is

the C-SVC with quadratic(Polynomial degree=2) kernwhich reports a correlation

coefficient of 0.776.

Table 4.4: Correlation vs. No of samples and festwvith different models

Modd Maximum Number of Number of
correlation samples features
C-SVC(Linear) 0.758 1500 9
C-SVC(Poly=2) 0.776 1200 7
C-SVC(Poly=3) 0.759 300 13
C-SVC(RBF) 0.612 1100 10
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nu-SVC(Linear 0.798 900 7
nu-SVC(Poly=2 0.766 300 11
nu-SVC(Poly=3 0.736 300 12
nu-SVC(RBF) 0.743 100 11
Decision Tree 0.734 1300 5

In the second experiment, we trained the classifieentioned in 4.3.1 with the
optimized feature numbers and sample numbers digiednm the first experiment and
calculated the correlation coefficient againstdagaset 2 with 28 concept pairs out of 30.
Because the concelping infiltrateswas not found in the SNOMEDCT terminology and the
conceptentire knee meniscuppeared i(la-ss thaﬁ _fh'e-thresm;dﬁ that we set in section 3.2.
4.4 Results

Figure 4.10 shows the results 6f'-ﬁ1aximdm correfaitiodataset 1 of different
classifiers mentioned in 4.3.1. Best .pérformancmltmeved with the linear kernel of nu-SVC,

which reports a correlation coefficient of 0.798.
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Ml Datasetl

classifier

Figure 4.10: Correlation vs. Classifiers of datdsefith human scores

linear kernel of nu-SVC, which reports a correlat'mnefficient of 0.705.
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Figure 4.11: Correlation vs. CIaSS|f|ers of datésetith physician scores
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different classifiers mentioned rfm 34%&% edeéature numbers and sample

numbers determined in the first ex‘b*gt;xment Be mance is achieved with the linear

g o - .-.._
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kernel of nu-SVC, which reports a correlation cmméht of 0.496.
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Figure 4.12: Correlations vs. Classifiers of dat2seith expert scores
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Table 4.5 show that proposed methcrd ea]nﬁs the$ngberelat|on of 0.798 in dataset 1, 0.705

|"\.|--. |

in dataset 2 with physician scores and O 496 lasth wtth expert scores using C-SVC with

linear kernel. , '-"..':.':"’- 856 B

Table 4.5: Correlation vs. Dataset 1 and Dataséti?physician scores and expert scores of

different models

Model Dataset 1 Dataset 2(Phy) Dataset 2(Exp)
C-SVC(Linear) 0.758 0.689 0.482
C-SVC(Poly=2) 0.776 0.698 0.479
C-SVC(Poly=3) 0.759 0.649 0.395
C-SVC(RBF) 0.612 0.388 0.171
nu-SVC(Linear 0.798 0.705 0.496
nu-SVC(Poly=2 0.766 0.671 0.424
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nu-SVC(Poly=3 0.736 0.641 0.384

nu-SVC(RBF) 0.743 0.632 0.373

Decision Tree 0.734 0.519 0.336

4.5 Comparison

We score the concept pairs in dataset 1 and dé&tasehg the proposed semantic
similarity measures. Results are shown in TableaddbTable 4.7. Proposed method earns the
highest correlation of 0.798 in dataset 1, 0.708ataset 2 with physician scores and 0.496 in
dataset 2 with expert scores. It shows the higtiestarity score for the four concept-pairs
includingmigraineandheadache, measlesdrubeola, chicken poandvaricella, down
syndromeandtrisomy 21 Lowest similatity-is reported facquired immunodeficiency
syndromeandcongenital heart defecta dta,:tset 1 it shows the highest similarity sdomre
the four concept-paimdiabetes meIIituandhypertensionLowest similarity is reported for

lymphoid hyperplasiandlaryngeal cahggin dtatset 2.

Table 4.6: Dataset 1 with human similarity sconed proposed scores

Concept 1 Concept 2 H Proposed
Anemia Appendicitis 0.031 0.697477
Dementia Atopic Dermatitis 0.062 0.37108
Bacterial Pneumonia Malaria 0.156 0.444349
Osteoporosis Patent Ductus Arteriosus 0.156 0.241837
Amino Acid Sequence Anti-Bacterial Agents 0.156 6365
Acquired Immunodeficiency _

Congenital Heart Defects 0.062 0.210191

Syndrome
Otitis Media Infantile Colic 0.156 0.520515
Meningitis Tricuspid Atresia 0.031 0.2562p4
Sinusitis Mental Retardation 0.031 0.333204
Hypertension Kidney Failure 0.5 0.955846
Hyperlipidemia Hyperkalemia 0.156 0.567689
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Hypothyroidism Hyperthyroidism 0.406 0.999451
Sarcoidosis Tuberculosis 0.406 0.995609
Vaccines Immunity 0.593 0.796828
Asthma Pneumonia 0.375 0.998126
Diabetic Nephropathy Diabetes Mellitus 0.5 0.950368
Lactose Intolerance Irritable Bowel Syndrome 0.4680.883431
Urinary Tract Infection Pyelonephritis 0.656 0.92687
Neonatal Jaundice Sepsis 0.187 0.595683
Sickle Cell Anemia Iron Deficiency Anemia 0.437 864.73
Psychology Cognitive Science 0.593 0.999995
Adenovirus Rotavirus 0.437 0.9826[12
Migraine Headache 0.718 1
Myocardial Ischemia Myocardial Infarction 0.75 03838
Hepatitis B Hepatitis C 0.562 0.999997
Carcinoma Neoplasm 0.75 0.889407
Pulmonary Valve Stenosis Aortic Valve Stenosis 0.53| 0.960003
Failure To Thrive Malnutrition 0.625 0.934162
Breast Feeding Lactation 0.843 0.975854
Antibiotics Antibacterial Agents 0.937 0.952958
Seizures Convulsions 0.843 0.999996
Pain FAche ; 0.875 0.830473
Malnutrition Nutritional Deficiency 0.875 0.92306
Measles Rubeola’ 0.906 1
Chicken Pox Varicella 0.968 1
Down Syndrome Trisomy 21 0.875 1
Correlation 1 0.798

Table 4.7: Dataset 2 with human similarity sconed proposed scores

Concept 1 Concept 2 Phy Exp Proposed
Renal Failure Kidney Failure 4 4 0.975028
Heart Myocardium 3.3 3 0.910151
Stroke Infarct 3 2.8 0.924018
Abortion Miscarriage 3 3.3 0.993801
Delusion Schizophrenia 3 2.2 0.5
Congestive Heart Failure Pulmonary Edema 1/4 8983
Metastasis Adenocarcinoma 2.7 1.8 0.880069
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Calcification Stenosis 2.7 2 0.747826
Diarrhea Stomach Cramps 2.3 1.3 0.999967
Mitral Stenosis Atrial Fibrillation 2.3 1.3 0.962D9
Chronic Obstructive _
, Lung Infiltrates 2.3 1.8 0.349326
Pulmonary Disease
Rheumatoid Arthritis Lupus 2 1.1 0.997619
Brain Tumor Intracranial Hemorrhage 2 1.3 0.54715
Carpal Tunnel Syndrome Osteoarthritis 2 1.1 0.8177
Diabetes Mellitus Hypertension 2 1 0.999908
Acne Syringe 2 1 0.349637
Antibiotic Allergy 1.7 1.2 0.849417
Cortisone Total Knee Replacement 1.7 1 0.279371
Pulmonary Embolus Myocardial Infarction 1.7 1.2 4N 906
Pulmonary Fibrosis Lung Cancer 1.7 1.4 0.705904
Cholangiocarcinoma Colonoscopy 1.3 1 0.351643
Lymphoid Hyperplasia Laryngeal Cancer 1.3 1 0.28146
Multiple Sclerosis “ Psychosis' & 1 1 0.415343
Appendicitis Qsteoporosis 1 1 0.569876
Rectal Polyp Aorta 1 1 | 0.296103
Xerostomia Alcoholic Cirrhosis |- 1 1 0.247209
Peptic Ulcer Disease : ~Myopia ' 1 1 0.2417p1
Depression . Cellulitis« 1 1 0.375917
Varicose Vein Entire Knee Meniscus 1 1 NaN
Hyperlipidemia Metastasis 1 1 0.29335%2
Correlation 0.7050.496

Table 4.8 show the results of correlations with haracores for our proposed scores
(nu-SVC with 7 features and 900 training sample&)aithe dataset 1, because we could find
only 34 out of the 36 concept pairs in SNOMED-&Tsome terms cannot be found, so we
used 34 pairs, experimented on SNOMED-CT, and comadpaith four other measures:
SembDist, Path length, Leacock & Chodorow, Wu & Ralfi29], [30], [31],[32]. Our measure

achieves the best correlations compared with dthermethods.
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Table 4.8: Absolute correlations with human scaisag SNOMED-CT on dataset 1

SNOMED-CT
Measure Dataset 1
SemDist 0.726(2)
Path length 0.422(5)
Leacock &
0.6 (3)
Chodorow

Wu & Palmer 0.498(4)
Proposed 0.802(1)

Table 4.9 show the results of cb'r;elations v;/ithsitian and expert scores for our
proposed scores (nu-SVC with 7_featuresI and Q(ﬂﬁ]nmsamples) using the dataset 2,
experimented on SNOMED-CT; and Gompared With dieptmeasures: Path length, Leacock
& Chodorow, Lin, Resnik, Jlang & Conrath and Ve(‘Acbksect 1M notes) [30], [31], [33],
[34], [35], [36]. Our measure achieves the besteiatlons with physician scores and fifth

best correlations with expert scores compared atltler six methods.

Table 4.9: Absolute correlations with human scaisag SNOMED-CT on dataset 2

SNOMED-CT
Measure Dataset 2(Phy) Dataset 2(Exp)
Path length 0.512(4) 0.731(2)
Leacock & Chodorow 0.358(7) 0.497(5)
Lin 0.522(3) 0.565(4)
Resnik 0.534(2) 0.61(3)
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Jiang & Conrath 0.506(5) 0.741(2)

Vector(All sect, 1M notes) 0.436(6) 0.497(5)

Proposed 0.706(1) 0.496(6)

Table 4.10 show the results of correlations witmhan scores for our proposed scores
( nu-SVC with 7 features and 900 training sampls#) g the dataset 1, experimented on
MeSH, and compared with eleven other measures: &nHath length, Leacock &
Chodorow, Wu & Palmer, LinJiang & ConrathResnik,Li, Lord, Tversky,Rodriguez [29],
[30], [31], [32], [33] , [35], [34], [37, [38] |15], [39]. Our measure achieves the fourth best

correlations compared with otheleven methods.

Table 4.10: Absolute correlations with human scoreeg MeSH on dataset 1

. MeSH
Measure "~ Dataset 1
SemDis:t“ . 0.825(1)
Path length 0.765(5)
Leacock &

0.82(2)
Chodorow

Wu & Palmer 0.811(3)

Lin 0.723(6)
Jiang &
0.71(8)
Conrath
Resnik 0.718(7)
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Li 0.705(9)

Lord 0.701(10)
Tversky 0.67(11)
Rodriguez 0.69(12)

Proposed 0.798(4)
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Table 4.11 show the results of correlations witligddian and expert scores for our
proposed scores ( nu-SVC with 7 features and @00itilg samples) using the dataset 2,
because we could find only 25 out of the 30 conpapt in SNOMED-CTas some terms
cannot be found, so we used 25 pairs experimemedasH, and compared with five other
measures: SemDist, Path length, Leacock & Chodovéw& Palmer, Choi & Kim [29], [30],
[31] , [32], [40]. Our measure achieves the bestatations with physician scores and sixth

best correlations with expert scores compared atltler five methods.

Table 4.11: Absolute correlations with human scoiesg MeSH on dataset 2

MeSH

Measure _Dataset 2(Phy) Dataset 2(Exp)
SemDist 0.666(3)." 0.863(1)
Path length 0.627(5) _ . 0.744(4)
Leacock & | |

10.672(2) 0.857(2)

Chodorow

Wu & Palmer 0.652(4) 0.794(3)
Choi & Kim 0.56(6) 0.724(5)
Proposed 0.723(1) 0.539(6)
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Chapter 5 Conclusions and Future Work

5.1 Conclusions

In this paper, we proposed a measure that utipage counts to calculate semantic
similarity robustly between two given conceptsamnits. The method consists of fifteen
features apply support vector machines and decistenclassifier models. Training data were
manually collected from two websites: MedicineNetc& synonyms.net. Proposed method
outperformed all the baselines on two datasetdgA torrelation coefficient 0.798 with
human ratings was found for semantic similaritytlos dataset provided by A. Hliaoutakis.
With physician’s ratings, correlation coefficierit@705 was found for semantic similarity on
the dataset provide by T. Pedersen et al; the latioe coefficient of 0.496 with expert’s
ratings was found. Only 7 features and 900 traismgples are necessary to leverage the
proposed method using nu-SVC wifh linear kerhéﬂ:ﬂhtrasting feature of our method
compared to the ontology- based semantic similang@sures is that our method requires no
taxonomies, such as SNOMED-CT or/MeSH, for calooaof similarity. Therefore, the
proposed method can be applied in_ rﬁé’hy tasks waromomies are not up-to-date or do not
exist. We also realize that our study rhéasuresim@much closer correlations with
physician scores than those with medical expersvaver, all the ontology measures are

reversed.

5.2 Future Work
Further study can be summarized:

® \We can enhance the models by using more lexicasiotpatterns that can capture the
synonymous concept pairs more precisely.

® \We can use another feature selection strategyctease the accuracy.

® We intend to apply the proposed semantic similanigasure in automatic synonym
extraction, query suggestion and name alias retiogni
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Appendix

A. Google AJAX Search API

The following command performs a Web search (/agces/search/web), for Kidney

Failure (q=Kidney%20Failure).
curl -e http://www.my-ajax-site.com \
'http://ajax.googleapis.com/ajax/services/searchRvel.0&q=Kidney%20Failure '

The response has a Content-Type of text/javasatipirset=utf-8. The response below
that the responseData is identical to the results.

{"responseData™: {

"results™: [

{

"GsearchResultClass": "GwebSéér.ch",. |

"unescapedUrl™: "http://en.Wikipedia.org/Wiki/KidylgFaiIure",

"url™: "http://en.wikipedia.org/wiki/Ki;jney_FaiIurb

"visibleUrl": "en.wikipediaorg", .

"cacheUrl" -
"http://WWW.googIe.com/search?q\uOOBdcache:TwrPﬁh\dQ]:en.wikipedia.org",
"title": "\u003cb\u003eKidney Failure\u003c/b\u003¢&ikipedia, the free
encyclopedia”,

"titteNoFormatting™: "Kidney Failure - Wikipediahe free encyclopedia”,
"content™: "\[1\] In 2006, she released her debiotian..."

3

{

"GsearchResultClass": "GwebSearch",

"unescapedUrl": "http://www.imdb.com/name/nm0385296

"url": "http://www.imdb.com/name/nm0385296/",

"visibleUrl": "www.imdb.com",

"cacheUrl"

"http://www.google.com/search?q\u003dcache: 1i34kskad :www.imdb.com”,
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“title": "\u003cb\u003eKidney Failure\u003c/b\u003e

"titteNoFormatting™: "Kidney Failure",

"content”: "Self: Zoolander. Socialite \u003cb\ué8&iney Failure\u003c/b\u003e..."
2

1,

"cursor™: {

"pages": [

{ "start": "0", "label": 1},

{ "start™: "4", "label": 2 },

{ "start™; "8", "label": 3},

{ "start": "12","label": 4 }

I |
"estimatedResultCount™: "28600'(')-",
"currentPagelndex™: 0,
"moreResultsUrl":
http://www.google.com/search?(_)ig\u003dutf8\u0026'@&aiutf8...
}

}

, "responseDetails”: null, "responseStatus": 200}

B. 100 synonymous concept pairsof training data

Concept 1 Concept 2
Abdomen Tummy
Abducens Nerve Abducent Nerve
Abortifacient Aborticide
Achondroplasia Achondroplasty
Achromycin Tetracycline
Bacteria Bacterium
Basophil Basophile
Bedsore Decubitus Ulcer
Benzene Benzol
Blastoma Embryonal Carcinosarcoma
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Calamine

Hemimorphite

Carbohydrate

Saccharide

Cardiac murmur

Heart murmur

Catabolism

Destructive Metabolism

Cardiovascular system

Circulatory system

Breakbone Fever

Dandy Fever

Dermis Derma
Diaphragmatic Hernia Hiatal Hernia
Dizziness Giddiness
Dropsy Eedema
Echinococcosis Hydatidosis

Ectopic pregnancy

Ectopic gestation

Electrocardiogram

Cardiogram

Electrophoresis

Dielectrolysis

Facial Nerve

Seventh Cranial Nerve

Farsightedness

_Longsightedness

Fascioliasis

Fasciolosis

First Cranial Nerve

Olfactory Nerve

Fistula

Eistulous Withers

Gallus Gallus

Red Jungle Fowl

Gamma Radiation ~Gamma Ray
Gangrene Necrosis

Gargoylism Lipochondrodystrophy
Genital Wart Venereal Wart

Goiter Struma

Hallucination Delusion

Heat Prostration

Heat Exhaustion

Hemochromatosis

Iron Overload

Hepatocarcinoma

Hepatocellular Carcinoma

Herpes Genitalis

Genital Herpes

Heterosexuality

Heterosexualism

lleus Intestinal Obstruction
Implantation Nidation
Infant Babe

Inguinal Canal

Canalis Inguinalis

Intersex

Androgyne

Intestine

Gut
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lodine

lodin

lontophoresis

Electromotive Drug Administrati

Joint Articulatio
Jaundice Icterus

Keloid Cheloid
Kinetosis Motion sickness
Knee Genu

Kyphosis Humpback
Labyrinthitis Otitis Interna

Lachrymal Gland

Lacrimal Gland

Lactase Deficiency

Lactose Intolerance

Lateral Epicondylitis

Tennis Elbow

Leishmaniasis

Leishmaniosis

Lienal Artery

Splenic Artery

Limb

Arm

Lymphopathia Venereum

_Lymphogranuloma Venereum

Male Erecticle Dysfunction

Erectile Dysfunction

Malignant Hepatoma |

Hepatocellular Carcinoma

Mandibular Joint

Temporomandibular Joint

Mediterranean Anemia i

Thalassaemia

Medication -M'edicar_nent
Meiosis Miosis
Melasma Chloasma
Nausea Sickness

Necrobiosis Lipoidica Diabeticoru

Necrobiosis Lipoidica

Neocortex

Neopallium

Nephrolith

Kidney Stone

Nervus Glossopharyngeus

Glossopharyngeal Nerve

Neurogliacyte

Glial Cell

Oesophageal Reflux

Esophageal Reflux

Onchocerciasis

River Blindness

Orthodontics Orthodontia
Paleostriatum Pallidum

Palpebra Eyelid

Parasite Sponge

Pars Nervosa Posterior Pituitary
Pedigree Ancestry
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Periodontitis

Periodontal Disease

Peristalsis Vermiculation

Phenol Phenylic Acid

Pituitary Gland Pituitary Body

Plastic Surgery Reconstructive Surgery
Rachischisis Spina Bifida

Rale Rattle

Regional lleitis

Regional Enteritis

Restriction Enzyme

Restriction Endonuclease

Retinal Detachment

Detachment of the Retina

Sandfly Fever

Pappataci Fever

Seborrheic Dermatitis

Seborrheic Eczema

Second Cranial Nerve

Optic Nerve

Shingles

Zoster

Sixth Cranial Nerve

Abducent Nerve

Tenth Cranial Nerve

Wandering Nerve

Third Cranial Nerve

Oculomotor Nerve

Tympanic Cavity

Middle Ear

Uterus

Womb

C. 100 non-synonymous concept-pair s of training data

Concept 1 Concept 2
Abdomen Awareness
Abortifacient Cramp
Absinthe Absinthe
Acathisia Odor
Aflatoxin Smallpox
Adenovirus Somnambulism
Adventitia Spine
Bacteriophage Humpback
Balantidiasis Keloid
Balantidium Keratin
Bariatrics Kindred
Barotrauma Kinship
Bedsore Kyphosis
Beriberi Lactation
Bevacizumab Lassitude
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Cadaver

Caudate Nucleus

Caffeine

Cavernous Hemangioma

Calamine

Cavernous Sinus

Cavernous Sinus Thrombosis

Calcaneus

Celiac Disease

Herpes Zoster

Developmental Delay Impact
Developmental Disorder Implantation
Diabetic Ketoacidosis Impotence
Diabetic Nephropathy Incision
Diabetic Neuropathy Incubator

Ear Piercing

Attention Deficit Disorder

Ear Wax

Attention Deficit Hyperactivity
Disorder

Eastern Equine Encephalitis

Hypoglossal Nerve

Ebola Virus

Pituitary Gland

Ectodermal Dysplasia

Intestinal Obstruction

Facies Suekling
Family Suﬁspot
Farsightedness Travel
Fascia i Tug
Fasciculation Vertigo

Gait Inflammation
Gait Coated Stent
Galactorrhea Inflammation
Galactose Inflammation
Galactosemia Injury
Habitual Abortion Dermis

Hair Follicle Development
Hallucination Fontanel
Hallucination Cyclic Citrullinated Peptide

Hallucinogen

Fontanelle

Ibuprofen Cholesterol
Ichthyosis Cilium
Ichthyosis Vulgaris Middle Ear
Icterus Clavicle
Idiopathic Pulmonary Fibrosis Middle Ear
Jaundice Deglutition
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Jaundice

Sandhoff Disease

Jaw Deglutition
Jejunostomy Dehydration
Jejunum Ergocalciferol

Kaposi Sarcoma

Laparoscopic Cholecystectomy

Kartagener Syndrome

Tennis Elbow

Karyokinesis Impairment

Karyotype Innovation

Keloid Knowledge

Lab Ataxy

Labia Atmosphere

Labor Atrophy

Labor Scleredema Adultorum
Labyrinth Audiometry
Macrobiotic Diet Tick Fever

Macular Hole Oral Cavity

Meibomian Gland

Sevénth Cranial Nerve

Magnesium Deficiency. |

Kawasaki Disease

Magnetic Resonance Elastograbr

y.~.Cystic Fibrosis

Naegleria Fowleri i

Acoustic Nerve

Nasal Septum

. Eighth Cranial Nerve

Natriuretic Peptide Glial Cell

Natural Immunity Glial Cell

Natural killer cell Posterior Pituitary
Obstetrical Forceps Renal pelvis
Occipital Bone Hip Joint

Occupational Medicine

Proteolytic Enzyme

Oculocutaneous Albinism

Periodontal Disease

Olfaction

Tarsal Tunnel Syndrome

Paleostriatum

Tetralogy of Fallot

Parasite

Thanatophoric dysplasia

Parasitemia

Therapeutic Touch

Paresthesia

Thoracic Aorta

Paroxysm Thoracic Duct

Quackery Thyroid Cartilage
Quiescence Thyroid Hormone Receptor
Rabies Accessory
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Race

Accessory

Radial Keratotomy

Prostate Cancer

Radiation

Accessory

Radiation

Thyroid Stimulating Hormone

Radiation Fibrosis

Roseola Infantum

Radical Neck Dissection

Temporal Lobe Epilepsy

Sabin Vaccine

Sebaceous Gland

Saccular Aneurysm

Seborrheic Dermatitis

Safe Sex

Optic Nerve

Salivary Gland

Testicular Cancer

Salk Vaccine Blood Poisoning
Xerostomia Lung Cancer
Yerba Mate Knee Joint
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