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以 搜 尋 式 測 試 方 法 偵 測 程 式 溢 位 弱 點 

學生：黃琨翰                     指導教授：黃世昆 老師 

 

國立交通大學資訊科學與工程學系﹙研究所﹚碩士班 

 

摘        要 

緩衝區溢位攻擊是一種最惡名昭彰的軟體安全問題。有些工具已經被發展作

為緩衝區溢位弱點偵測之用。儘管有偵測的能力，大部分的現有工具無法產生能

夠觸發溢位的測試案例。我們提出一個新的方法來解決針對溢位偵測的測試案例

產生問題。這個方法使用搜尋式結構測試，能夠找到測試輸入使得程式執行走到

目標點,也就是溢位產生的地方。搜尋式測試方法的概念是將產生測試資料以公式

化轉換為搜尋的問題。在搜尋式測試中，一個被稱作鏈結方法的資料相依分析技

巧可以幫助處理因為資料相依引起的搜尋失敗。鏈結方法被應用在找出影響緩衝

區存取是否越界的程式敘述，接著產生抽象路徑引導程式執行滿足緩衝區溢位的

條件。論文中展示的兩個最佳化技巧可以減少鏈結方法中在不必要路徑上的花

費。在結果評估中顯示，與原有的搜尋式方法相比，我們的方法可以以較有效率

的方式來偵測緩衝區溢位。 
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ABSTRACT 

 

Buffer overflow attacks are one of the most notorious software security problems. 

A few tools have been developed to detect buffer overflow vulnerabilities. In spite of the 

detection capability, most of the existing tools can not generate test cases to trigger an 

overflow. We propose a new approach that addresses the issue of test case generation for 

buffer overflow detection. The approach uses search-based structural testing to find test 

inputs that drive program execution to reach the target node where a buffer overflow 

could occurs. The idea of search-based testing is to formulate the test data generation for 

a program under test as a search problem. In search-based testing, a data dependence 

analysis technique called the Chaining Approach can help to handle the search failure due 

to data dependencies. The Chaining Approach is applied to identify the program 

statements that have influence on whether a buffer accesses is out of bound or not, then 

abstract paths are derived to lead the program execution to satisfy a buffer overflow 

condition. Two optimization techniques are presented to reduce the cost of exercising 

unnecessary paths in the Chaining Approach. The evaluation results show that our 

approach can find test data for buffer overflow detection in a more efficient way than 

using the original approach in search-based testing. 
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1. Introduction 

1.1 Motivation 

Software is under constant scrutiny and often suffers from attacks nowadays. 

Buffer overflow attacks are one of prevalent and persistent security problems. As 

reported by the recent statistics of CERT advisories in Table 1 [1], software flaws over 

50% are caused by buffer overflows since 2000 to 2004. Till June 2009, 38% of the 60 

most severe vulnerabilities posted by CERT/CC were resulted from buffer overflows [2]. 

Even in recent years, the ubiquitous vulnerability still accounts for large amount in 

advisories of security organizations. In Table 2 which is derived from the recent data of 

US-CERT technical cyber security alerts [3], we summarize the number of security 

alerts related to buffer overflows explicitly for the last six years. The table shows that 

the percentage of explicitly buffer overflow related alerts is still high from 2004 to 2006, 

while the percentage declines afterward. One possible reason caused the interesting 

phenomenon is that many alerts from 2007 to 2009 are obtained from updates of 

software providers, and they do not provide much detail information about patched 

vulnerabilities. In general, a significant part of software vulnerabilities is resulted from 

buffer overflows, no matter directly or indirectly. 

 

 

 

 

 

 

 

 



 

2 

 

Table 1. Summary of recent CERT advisories (Last updated: 2004) 

Year Advisories Buffer Overflow 

related Advisories 

Percentage of Buffer 

Overflows 

1996 27 5 19% 

1997 28 15 54% 

1998 13 7 54% 

1999 17 8 47% 

2000 22 3 14% 

2001 37 19 51% 

2002 37 21 57% 

2003 28 18 64% 

2004 9 7 78% 

Total 218 103 47% 

 

Table 2. Summary of US-CERT technical cyber security alerts 

Year Alerts Explicitly Buffer 

Overflow Related 

Percentage of Buffer 

Overflows 

2004 27 12 44% 

2005 22 12 55% 

2006 39 15 38% 

2007 42 11 26% 

2008 38 2 5% 

2009 15 2 13% 

Total 183 54 30% 

 

If a buffer overflow occurs in a program without appropriate bound checking, that 

will cause program crashes, undesired behaviors, or even unauthorized access to victim 

computers. In the worst case, an attacker can run malicious code on the victim machine 
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and even gain the control over the machine as an administrator. Thus, the damage due to 

the software vulnerability can make a great security impact on the whole system. 

In order to mitigate the risks associated with buffer overflows, several different 

approaches for detecting and eliminating the vulnerabilities have been proposed. The 

existing detection techniques include statically analyzing source code and detecting 

buffer overflows during program execution. 

1.1.1 Static Analysis 

Static approaches exploit information provided in program semantics to perform 

source code analysis, such as identifying the usage of vulnerable functions and checking 

out-of-bound buffer accesses. Static analysis tools provide an effective way for 

vulnerability detection, because they check source code automatically without test cases. 

However, the fact of high false positive rate makes static tools have unacceptable 

performances in practical usage. For example, Splint [4], a static tool for checking 

vulnerabilities and errors in C programs, has an average false-positive rate of 50% [5].  

1.1.2 Dynamic Analysis 

The basic idea of dynamic analysis is to execute programs under test and detect the 

vulnerabilities at run-time. The existing tools can be divided into executable monitoring 

tools and compiler-based tools. Executable monitoring tools wrap the binary executable 

directly, and intercept the function calls of memory operation. So that memory 

manipulations in program can be monitored. For instance, Valgrind [6] is a binary 

instrumentation framework for dynamic program analysis, such as memory debugging 

and memory leak detection. Compiler-based tools insert instrumentation code to 

program source for monitoring at compile time. By retrieving the run-time information 

from instrumented code, dynamic analysis tools can check whether potential 

vulnerabilities exist or not. C Range Error Detector (CRED) [7] performs buffer overrun 

detection by maintaining a data structure for memory objects.  

Dynamic detection is capable of finding out buffer overflows without any false 

positives, which static tools cannot achieve. But the accurate result is at the cost of slow 

performance, since a program needs to be instrumented with extra checking code for 
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run-time monitoring. So the program under dynamic test is significantly slower than the 

original one. 

1.2 Problem Description and Objective 

Although static and dynamic analysis tools have their own pros and cons, 

combination of both is a good way to take advantages of the two different approaches. 

Static testing has been well-developed, while there are still research issues in dynamic 

testing. In an automatic dynamic testing framework, detection and input generation 

approaches are both required. However, most dynamic detection tools do not provide an 

efficient way to generate test cases capable of reaching the condition of buffer 

overflows in the program under test. In this paper, we propose an efficient approach of 

test case generation that leads the execute path to where buffer overflows occur. The 

proposed approach is based on search-based testing and a data flow analysis technique 

called Chaining Approach. If the search finds test data which executes the target 

statement but fails to trigger the buffer overflow condition, the Chaining Approach 

performs data flow analysis to identify some paths other than current one. By traversing 

these paths, buffer overflow can occur with more chances. Two optimization strategies 

are introduced to reduce the overhead of the Chaining Approach, and the performance 

of the whole search process can be improved. A static checker is also integrated into our 

testing framework to prevent from paying too much run-time overhead on unnecessary 

testing target. Briefly, the goal of this paper is to detect buffer overflow vulnerabilities 

via efficient automatic generation of test data. We evaluate the new approach by 

applying it to three simple test objects and a real vulnerability. In the comparison of 

different configurations of optimization strategies, the search with appropriate strategies 

outperforms the original search. 

The main contributions of this paper are listed as follows: 

1. We propose an efficient approach of test data generation for buffer overflow 

detection. Using search-based testing to generate test cases and invoking the 

Chaining Approach as a backup strategy for search failures, two optimization 

strategies are presented to improve the whole search process. The experiment 
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results show that the proposed approach reduces the overhead of the Chaining 

Approach, and improves the performance of the test case generation. 

2. We introduce an approach to improve the data flow analysis technique: the 

Chaining Approach. The proposed optimization strategies can be applied to the 

test case generation not only for buffer overflow detection but also for general 

search-based test data generation. According to the characteristics of the 

program under test, the level of improvement could vary. As shown in the 

evaluation results, the strategies should be applied based on the control structure 

or data flow information of the program under test to gain the best improvement. 

In the next section, the related works are discussed. Section 3 provides some 

background about our approach. In section 4, we present the overview of the proposed 

approach. And the followings are sections for implementation of the testing framework 

and experiment results. In final section are discussion and conclusion. 

 

 

 

 

 

 

 

 

 



 

6 

 

2. Background 

This section presents an overview of background to our approach, including 

search-based test data generation, computation of the objective function for covering 

buffer overflows, and the concept of the Chaining Approach. 

2.1 Search-based Test Data Generation 

In recent years automatic test data generation has been a topic of interest for many 

researchers, and there are two approaches with respect to generation methods are 

well-developed: constraint-based testing (CBT) [8-11] and search-based testing (SBT) 

[12]. While CBT models the input generation as a logical formula solving problem 

whose solutions are test input to a program, SBT represents test data finding as an 

optimization problem by searching the input space for relevant test data. This paper 

focus on search-based testing that is used to generate test data for buffer overflow 

detection as we will illustrate in later sections. As most works of SBT do, we describe 

automatic test generation as a process that finds program input so that the program 

execution is driven to a specific target statement, i.e. a selected code element. For 

example, where a buffer overflow may happen is chosen as a target for testing. 

Based on search heuristics, the approaches of search-based testing formulate test 

data generation as an optimization problem. The program input domain forms a search 

space, in which a heuristic function generates a search landscape. The test data is 

obtained by searching for minimum points on the landscape. In the initial step of the 

search process, the program under test is given randomly generated inputs. By 

monitoring execution flow on that input, we can keep track of explored paths. An 

objective function is applied to measure how close the explored paths are to cover the 

selected target. In the following iterations of testing, the input data will be changed to be 

suitable for testing criteria based on the objective value of explored paths, and 

uncovered paths including the target might be explored. In other words, the program 

execution is guided toward the test target by the value evaluated in an objective function. 

However, for different types of structural coverage criteria, different approaches have 

been proposed. Goal-oriented approach [13] was developed to focuses on covering a 
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specified target statement, while most of previous works use path-oriented approaches 

which achieve statement coverage of a selected path. To avoid the requirement of path 

selection, goal-oriented approach classifies branches in control flow graph to prevent 

the execution of undesired branches that leads to failure of target coverage.  

A key component of search-based testing is the search algorithm, which decides 

how to generate the input data. There have been various search algorithms to be utilized. 

Hill climbing [14], simulated annealing [15, 16], and evolutionary algorithms [17] have 

been adopted to generate test data. When considering the issue of selection of search 

algorithms, global optimization is more appropriate than local ones to prevent the trap 

of sticking in local optimum in the search landscape that could result in search failure. 

According to the idea, a global-optimized evolutionary algorithm is used in our 

proposed approach. 

Evolutionary algorithms are genetic meta-heuristic search techniques that simulate 

evolution as an optimization procedure to evolve candidate solutions. Using operators 

inspired from genetics and natural selection, evolutionary algorithms can be applied to 

difficult or even undecidable problems and have well approximating solutions. 

Evolutionary testing (ET) is a testing process that applies evolutionary algorithms to test 

data generation. The burgeoning approach have been widely studied in the literature and 

applied to software testing, especially in structural test data generation [18]. In recent 

years, many researchers in this field use genetic algorithms, a particular class of 

evolutionary algorithms, as the search techniques to find test data. In genetic algorithms, 

solutions are encoded as genetic structure called individuals or chromosomes. Search 

process is driven by two operations: mutation and crossover. Mutation modifies 

solutions randomly, whereas crossover does exchange and recombination of different 

partitions between individual solutions. In selection phase, each solution is evaluated 

based on an objective function known as fitness function in evolutionary algorithms to 

decide which ones will be retained and others will be discarded in the following 

process. 
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2.2 Objective Function 

As mentioned previously, an objective function measure how close an explored 

path on the generated test data is to cover the target statement. If some undesired branch 

is taken through an execution path, the objective function will give a value that indicates 

how far the program execution can take the alternating branch. In order to satisfy each 

branch predicate along the desired path, the objective function derived from the 

predicates that is assumed to be of the form a op b, where a and b are arithmetic 

expressions and op is a relational operator. As Table 3 shown, the objective function is 

calculated based on the relation of both operator a and b in binary predicates, where K is 

a failure constant that is added to differentiate values under true and false predicates if 

the test data is undesired. This objective function measure how ‘close’ the predicate is 

to being true. The search of test input is guided by the obtained objective value, and the 

path along desired predicates can be traversed by generating appropriate inputs. 
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Table 3. Objective function calculation. 

Relational predicate Objective function f 

boolean If TRUE then 0 else K 

ba   If 0)(  baabs  then 0 else Kbaabs  )(  

ba   If 0)(  baabs  then 0 else K 

ba   If 0 ba  then 0 else Kba  )(  

ba   If 0 ba  then 0 else Kba  )(  

ba   If 0 ab  then 0 else Kab  )(  

ba   If 0 ab  then 0 else Kab  )(  

ba   ))(),(min( bfaf  

ba   )()( bfaf   

a  Negation is moved inwards and propagated over a 

 

CFG Node  
s int void max(int a, int b) 
 { 

1 if ( a > b ) 
2 return a;    // target 
 else 

3 return b; 
 } 

Figure 1. Example function for objective value calculation. 

 

In the example of Figure 1, node 1 is a branching node and node 2 is the target. If 

given the input (a = 10, b = 20), program execution will traverse the undesired branch 

(1, 3) without reaching the target. At this moment the objective value for the branching 

node 2 is calculated according to the functions of Table 3. For the predicate for node 2, 
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a > b, the objective function is b - a + K. Under assumption that K is 0, the objective 

value is 20 - 10 = 10. Then the test data search process can change the program input 

and generate new inputs based on the calculated value, either in evolutionary algorithms 

or other search techniques. The zero objective value means the alternating branch is 

taken and the target is covered. 

Search-based testing can achieve various testing criteria by taking advantage of 

objective value calculation, while the most often used criterion is branch or statement 

coverage. When applying search-based testing to detect particular vulnerabilities (e.g. 

buffer overflows), an intuitive idea is to set where these vulnerabilities are located as the 

target. This may lead to execution of the target statement but do not make 

vulnerabilities to be detected, because some specific paths are required to traversed so 

that exceptional conditions related to these vulnerabilities can be exposed. For example, 

a buffer access where an overflow may occur is set as the test target. The existing 

approach could reach the target but may not make the buffer out of bound. In this case, 

additional terms need to be included in the objective function that guides the search 

toward regions of test input where buffer overflows are likely to be exposed. 

2.3 The Chaining Approach 

The existing methods that only use control information (e.g. control flow graph) 

about a program will have trouble in guiding the search for the correct solutions. The 

search failure due to data dependencies within the program shows that only control 

information is insufficient to handle various program structures. Take the function in 

Figure 2 as an example, where the target is the execution of node 5 that is influenced by 

a data dependence of variable b. To execute the target node, b has to be 1 that only 

happens when the input variable a is 0. The situation frequently occurs in many 

programs, but it cannot be handled by the methods making use of only control 

information. Actually, the search failure can be avoided in this case if data dependences 

related to the test target were also taken into consideration. In regard to this issue, the 

Chaining Approach [19], an extension of goal-oriented approach, uses data flow 

analysis to improve the chance of finding test data if control flow information fails to 

guide the search process. 
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CFG Node  

s int ca_example(int a) 

 { 

1 int b = 0; 

2 if (a == 0) 

3 b = 1; 

  

4      if (b == 1) 

5 return 1; // Target 

  

6 return 0; 

 } 

Figure 2. Example for the Chaining Approach. 

 

The basic idea of the Chaining Approach is to identify certain statements which 

define variables used in a "problem node", then construct abstract paths that lead to the 

execution of target by traversing the definition nodes prior to the problem node. A 

problem node is referred to as where search process has difficulties to find test data for 

preferred execution flow in control flow graph. Basically, the abstract paths referred to 

as "event sequences" is a sequence of executed nodes, where an event is an executed 

node. An event sequence consists of events and the order of each event means its order 

in an execution path. Formally speaking, an event is a tuple ei = (ni, Ci) where ni is a 

program node in control flow graph and Ci is a set of variables called "constraint set" in 

which each variable cannot be modified until the next event e(i+1), and an event sequence 

E = <e1, e2, ..., ek> is an sequence of events. 

Extending from the goal-oriented approach, the Chaining Approach serves as a 

backup strategy employed if the original method failed to search for appropriate 

solutions. At the beginning, the initial event sequence E0 = <(s, ), (t, )> contains the 

start node s and the target node t that each has an empty constraint set. Once the search 
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process encounters a problem node p at which test input cannot be found to alter the 

execution flow toward the preferred branch, data flow analysis is applied to identify last 

definitions of variables used at node p. Let one of the last definition nodes is di. A new 

event ed consists of node di and a appropriate constraint set that prevents the variable 

defined at di or previous nodes are redefined again and keeps a definition-free path. A 

new event sequence Ei (for i > 0) is formed by inserting new events and the problem 

event (p, ). If the input search cannot find test data to execute the path indicated by an 

event sequence, another problem node occurs and a new event sequence is generated in 

the same way. All generated event sequences are organized in a tree structure. Root of 

the tree is initial event sequence with the first encounter problem node. During the 

traversal of a tree node, child nodes with new event sequences are formed when 

encountering a new problem node. 

2.3.1 Example for the Chaining Approach 

In the given example of Figure 2, the target is execution of node 5. Initial event 

sequence is E0 = <(s, ), (5, )>. Without data flow information, methods without 

data flow information are hard to find input data to take true branch from node 4 where 

the predicate is (b == 1). Because the objective function only takes the branch distance 

at node 4 into account, and is not aware of  the data dependence that the b is only to be 

1 when a is 0. So node 4 is marked as a problem node and is inserted into the event 

sequence: 

E0 = <(s, ), (4, ), (5, )> 

Only variable b is used at node 4, then loop up the last definition for node 4 and two 

nodes are obtained: node 1 and 3. For each of both nodes, a new event consists of node 

itself and a constraint set with one element b. The effect of the constraint set is to keep 

the last definition of node 4 from redefinition. Two new event sequences are generated 

by placing event (1, {b}) and (3, {b}) before the problem node 4 in the event sequence 

E0 separately: 

E1 = <(s, ), (1, {b}), (4, ), (5, )> 

E2 = <(s, ), (3, {b}), (4, ), (5, )> 
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Searching input for E1 may not have any improvement since no more information is 

given to the search process, while E2 gives more branch distance information at node 2 

to guide the execution for covering the required node 3 that result in the true branch at 

node 4 executed. 

2.3.2 Formal Description 

The generation of an event sequence in the Chaining Approach is described as 

follows. Assume that E = <e1, e2, ..., ei, ei+1, ..., em> is the event sequence on which the 

search is finding input. Right after the event ei is executed, a problem node p is 

encountered. Suppose that at a program node only one variable is defined. Let d to be 

one of the last definitions of problem node p, and def(d) is a variable defined by d. Two 

new events are obtained from the problem node and its last definition: ed = <d, def(d)> 

and ep = <p,>. By inserting ed and ep into event sequence E, a new event sequence E' 

is generated. The position of ep in E' is right after ei, and ed is in a certain position that 

decides subpath from d to ei. Now the new event sequence E' is almost completed:  

E' = <e1, e2, ..., ek, ed, ek+1, ..., ei, ep, ei+1, ..., em>. 

Finally, the constraint set of some events in E' have to be modified to maintain the 

effect of last definitions. There are three cases should be applied the constraint set 

maintenance. 

1. Cp = Ci, the constraint set of ep is the same as the constraint set of the prior event ei. 

2. Cd = Ck  def(d), the constraint set of ed is the union of prior event's and one variable 

set defined at d. 

3. Cj = Cj  def(d), k+1 j i, merge def(d) with Cj to keep def(d) from redefinition 

between ek+1 and ei. 
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3. Related Work 

Even though evolutionary testing in previous work has advantages of global 

optimization as compared to traditional search techniques, it also suffers from a lack of 

data dependence information. P. McMinn et al. [20] have developed an approach that 

hybridizes evolutionary testing with the Chaining Approach to address the issue. Instead 

of taking only a target node into consideration, a new fitness function (i.e. objective 

function in ET) was defined to sum up how far each event ei is to be executed in the 

event sequence of the length l: 





l

i

eifitnessfitness
1

)(  

The result of experiments showed the hybrid approach can handle cases with data 

dependences, even with flag variables. 

The Chaining Approach is able to alleviate the problem caused by data 

dependencies inside the program under test. However, it cannot handle complex cases 

such as transitive data dependencies and the dependent situation inside a loop. Based on 

their previous work, P. McMinn et al. proposed an extended Chaining Approach [21] to 

handle the problem. The basic idea is using an "influence set" to keep track of all 

variables that affect the outcome at a problem node. In the event sequence generation 

process, definitions for all variables in the influence set are considered as nodes required 

to be executed prior to the problem node. Promising event sequences can be generated 

for complex data dependencies which are not possible to handle by the original 

approach. We use the similar combination of techniques in which the extended 

Chaining Approach to probe new promising paths and generate test data in evolutionary 

testing, but for vulnerability detection specifically. 

There have been several researchers applying meta-heuristic search techniques to 

check safety property violation or to detect software vulnerabilities. The approach 

presented by Tracey et al. [22] is to use search-based test data generation to find test 

input which can result in safety property violation. By measuring how far an identified 

hazard condition is to be satisfied, the fitness function gives the search the guidance 
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toward critical area of input domain. The outcome of experiment show the approach can 

be applied to safety property testing or exceptional condition testing. Another work of 

Tracey et al. [23] focused on generating test data for exception testing. Similar to the 

authors' previous work, genetic algorithms and the fitness function are used. The 

evaluation presents an efficient performance at exception testing that exceptional 

conditions are raised successfully in simple examples and a program of aircraft engine 

management. 

Grosso et al. [24] have used evolutionary testing to detect buffer overflow 

vulnerabilities. Potential vulnerabilities are identified by a static analyzer at first, and 

genetic algorithms are used to generate test data for triggering buffer overflows. Three 

fitness functions are defined to capture the testing criterion of buffer overflow coverage: 

vulnerable coverage fitness, nesting fitness, and buffer boundary fitness. The 

experiment results showed buffer boundary fitness, that is the fitness function using the 

distance from up limit of buffer access to buffer size, outperformed others. Weights of 

terms in the fitness function need manual effect to adjust their values, that keeps test 

data generation away from automation. In Grosso et al. [25], a dynamic fitness 

weighting method was proposed to address the issue. Via linear programming to solve a 

maximization problem, the dynamic fitness weighting is useful at fast detection of 

buffer overflow. As the evaluation presented, the dynamic weight fitness had better 

performance than previous basic boundary fitness. Our work has the same goal with 

both papers mentioned above, but we propose different approach that uses extended 

Chaining Approach to help the search to find test data and detects buffer overflow 

effectively. 
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4. Method 

4.1 Objective Function for Buffer Overflows 

 An objective function decides what input data the search will find to meet a given 

testing criterion. Common used testing criteria, such as branch coverage or statement 

coverage that try to cover specific code elements, is not sufficient for execution of a 

buffer overflow caused by an out-of-bound access. A potentially vulnerable buffer may 

be accessed in a legal range since exploitable input is not found to satisfy the 

exceptional condition. To define an objective function for buffer overflow coverage, 

relevant factors of the cause of buffer overflow is necessary to be taken into account. 

Three elements of the objective function are listed as follows: 

1. Out-of-bound distance: the distance from the size of a buffer to the upper limit 

within the range of buffer access when the access is out of bound. Obviously, a 

buffer overflow occurs when the distance value is positive. The out-of-bound 

distance is defined in the similar form of objective functions in Table 3. 

f1 = if (L-BS) > 0 then (L-BS) else 0, 

    where L is upper limit of the range of buffer access, BS is the buffer size. 

2. Number of tainted variables: the number of tainted variables that have a great 

influence on the access position of the buffer, e.g. buffer index. If more tainted 

variables are involved in the index expression of a buffer, the buffer could be 

controlled from input and result in buffer overflow with high likelihood. 

3. Depth of execution path: the depth of the execution path that is exercised by current 

input data. This element of the objective function is useful in the case with 

continuous buffer accesses. Let a buffer access is wrapped inside a loop, and the 

buffer index is increased when looping. As the loop is exercised many times and the 

execution path becomes longer and longer, the buffer could be be accessed out of 

bound with high probability. 

From these three elements, an overall objective function can be derived: 
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F = w1．OD + w2．NTF + w3．DEP, 

where OD is the out-of-bound distance; NTV is the number of taint flow; DEF is the 

depth of execution path; w1, w2, and w3 are weights of elements discussed as above. 

According to different situations, the weight value can be adjusted in the objective 

value calculation. If index value could be tainted by input variables, increasing the 

weight of NTV improves the chance of finding exploitable input data. If the potential 

overflowed buffer is continuously accessed, the overflow condition could be raised with 

a high probability by increasing the weight of DEF. Grosso et al. [25] have used linear 

programming to solve the wights as a maximization problem to achieve automation. 

4.2 Applying the Chaining Approach for Buffer Overflow Detection 

All three terms in the objective function defined above could have some 

corresponding data-dependency relationships in the program under test: 

1. The definitions of variables used in a buffer offset can affect the out-of-bound 

distance.  

2. The tainted variables are actually the variables data-depended on program input. 

3. An increasing buffer offset could result in a buffer overflow. Usually this is caused 

by increase the offset inside a loop and the execution path is long, where the 

variables in the offset define themselves. 

Because of these data-dependency relationships, we use the extended Chaining 

Approach with modification to achieve similar but more direct effects of the three 

terms. 

4.2.1 Extra Out-of-bound Checking 

 

Certain statements determine whether a buffer usage is out of bound or not. For 

example, definitions of an index variable could cause an overflow. A basic idea is to 

make these statements executed prior to the buffer access, so that program execution 

could be conducted to a buffer overflow. Let a buffer offset be the position where a 

buffer is accessed. Extended Chaining Approach is applied to figure out data 
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dependencies at the buffer offset, and construct event sequences that lead to a buffer 

overflow. 

To make extended Chaining Approach to keep track of the data dependencies of 

the buffer offset, an extra bound-checked if statement is instrumented to wrap the 

vulnerable buffer access which is set as the target. If the target cannot be executed, the 

added if will be regarded as a problem node and the Chaining Approach will try to 

identify the statements that can make the out-of-bound condition satisfied.  

As illustrated in Figure 3, a possible out-of-bound buffer access is transformed into 

a secure buffer access guided by an if statement which is an extra bound check by 

instrumentation. The new statement inside the if statement is set as the search target.  

 

Figure 3. Bound check instrumentation 

 

The extra bound check is also helpful to prevent the program crash which may 

result in abnormal state change in the search process. In test data generation for buffer 

overflow detection, the goal is the execution of an out-of-bound buffer access. The 

search process should be terminated when a buffer overflow is raised. Without run-time 

memory monitoring which slows down system performance significantly, however, a 

buffer anomaly is not acknowledged unless the program under test crashes. To identify 

buffer overruns, we instead add an out-of-bound check as a watch-point. 

int add_bound_check () 

{ 

    … 

if (access_range < 0 OR access_range >= buffer_size) 

return 1; // Set as search target 

    else 

        access_buffer; // Original statement 

    … 

} 
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4.2.2 Optimization Strategies for the Chaining Approach 

 

In a real program, there exists complex control flow and taint flow paths where 

statements that define buffer offsets reside, so a buffer overflow is triggered only when 

some long and specific paths through these critical statements are exercised. To 

generate the event sequences corresponding to the specific paths, the event sequence 

tree may grow into a large or complex structure. However, the original extended 

Chaining Approach could pay a lot of effort to traverse the tree and work on the event 

sequence of traversed node, but much effort of the tree traversal are not necessary. For 

the extended Chaining Approach dedicated to buffer overflow coverage, we proposed 

two optimization techniques to reduce the effort of the tree traversal and working on 

event sequences. 

 

4.2.2.1 Look-Ahead Strategy 

 

For a chain-like event sequence tree where the desired event sequence is at a deep 

node, default depth-first search (DFS) traversal can spend much time until reaching the 

desired node. In some cases that event sequences in a chain are similar that they share 

parts of events but differ in the number of a repeated event. The situation is common in 

the case with continuous buffer accesses for which an optimization technique called 

Look-Ahead strategy can be applied. 

Let a potentially vulnerable buffer is continuously accessed inside a loop and the 

event sequence tree is chain-shaped. The event of increasing the index or pointer to the 

buffer is repeated in the chain. What the Look-Ahead strategy does is similar to ‘jump’ 

to a descent node in a certain level deeper than current node. And ‘jump’ again if the 

event sequence can be exercised successfully, or backtrack to the next of recent 

successful node. Actually, the strategy inserts multiple copies of the event with a 

self-defined node, and adjusts the number of the inserted events according to the result 

of exercising on the new event sequence. The process is repeated until a buffer overflow 

is found or the number of try-and-error reaches a limitation. 

Look-Ahead strategy is integrated into the event sequence generation of extended 

Chaining Approach. To generate new event sequences, new events of last definitions for 
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a problem node are inserted. If one of event nodes has a self-defined statement, the node 

could be inserted into the old event sequence repeatedly to obtain new event sequences 

in the following process. Thus the self-defined node is identified as a LA_node. Let 

LA_num is the number of copies of a new event to be inserted. Initially, LA_num is set 

to 1 means that only one copy of self-defined event is inserted. If the same LA_node is 

encountered again in the next creation of new event sequences, multiple copies of the 

event with LA_node will be inserted. After exercising on the new event sequence, 

Look-Ahead procedure in Figure 4 is used to adjust LA_num to determine an 

appropriate number of copies for the event with LA_node. 
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Let LA_node be a node where exists a variable of the influence set defines itself inside a 
loop, LA_num be the Look-Ahead number, and LA_base be the base number 

Let last_index be the index of the last executed event in the event sequence, 
prev_insert_point be the index of the event after which the new events are inserted in 
the previous iteration, and current_node be the current node of the event sequence tree 

Look-Ahead procedure 

If (LA_node is identified) 

 If last_index   prev_insert_point 

  current_node  parent(current_node) 

  reset LA_node and LA_num 

 Else if (last_index < (prev_insert_point + LA_num)) 

  current_node  parent(current_node) 

  reset LA_node 

  LA_num  last_index – prev_insert_point 

 else 

  LA_num *= LA_base 

 Endif 

Endif  

parent(n) returns the parent node of node n 

Figure 4. Procedure of Look-Ahead strategy 

 

In the procedure, the current event sequence is divided into three segments. Which 

segment the last executed event is located decides how to adjust the value of LA_num. 

last_index is where the last executed event located in the event sequence. If the last 

executed event cannot execute more events after the prev_insert_point, the following 
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traversal is backtracked to the parent of the current node and related state variables are 

reset since even one new event cannot be exercised. If the last executed event is after 

prev_insert_point but does not exercise all the inserted new events, the next traversal is 

also backtracked to the parent of the current node. However, LA_num is set based on the 

affordable amount of the insert event. If all of new events are executed, LA_num is 

increased to insert more copies of the new event. Finally, the extended Chaining 

Approach generates new event sequences by inserting LA_num copies of the event with 

LA_node. 

Example 

Consider the function look_ahead_ex() in Figure 5. A buffer overflow may occur 

at node 5, which is set as the target. The last definition of index is at node 2 of a for loop 

in which an if-statement is used as a test for the quit from the loop. When the input buf 

has the content of eight Ns, the index i can be increased to 8 and result in the 

out-of-bound access at node 5. The probability of generating the exact input value is 

low, therefore, the index variable i is put into the influence set and extended Chaining 

Approach is invoked. As illustrated in Figure 6, the generated event sequence tree is 

like a chain. The initial event sequence is E0 = <s, 5>. The buffer overflow cannot be 

triggered via E0, then the last definition for variable i at node 5 is identified at node 2. A 

new event sequence is generated by inserting an event of node 2 into E0: 

E1 = <s, 2, 5> 

However, working on E1 still has nothing to do with detecting the buffer overflow. 

Since the last definition node for node 2 is itself, each new event sequence is formed by 

adding an event of node 2 into the parent's event sequence. Finally, the whole tree 

grows into the chain shape. Instead of sequential traversal in DFS strategy, Look-Ahead 

strategy is used to make the traversal more quickly. 
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CFG Node  

s int look_ahead_ex(char buf[8]) 

 { 

1 int i; 

2 for (i = 0; i < sizeof(buf); i++) 

3 if (buf[i] != ‘N’) 

4 break; 

5 buf[i] = ‘M’; // Possible buffer overflow! 

6 return 0; 

 } 

Figure 5. Example function for Look-Ahead strategy 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Event sequence tree derived from the example of Look-Ahead strategy. 

 

It is now demonstrated how the Look-Ahead strategy is applied to the example of 

Figure 5. Assume the base number LA_base has the value of 5. The first new event to be 

inserted is the event with node 2 at which the variable i is increase by one. So the event 

for node 2 is identified as Look-Ahead node (LA_node). Because the first generated 

event sequence E1 is exercised successfully, further event sequences would be desired. 

E0 = <s, 5> 

E1 = <s, 2, 5> 

E2 = <s, 2, 2, 5>

E9 = <s, 2, 2, …, 2, 5> 
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Note that LA_num has been increase to 5. And the new event sequence can now be 

generated that include five more events than E1: 

 

E2 = <s, 2, 2, 2, 2, 2, 2, 5> (with six 2s) 

 

E2 is feasible, but at node 5 there are still no any buffer overflows detected. In event 

sequence generation, the node 2 is encountered and the event for node 2 is identified 

again since the definition of i uses itself. And LA_num is multiplied by LA_base and 

increased to 25. The following event sequence will be generated from E2: 

 

E3 = <s, 2, 2, …, 2, 5> (with thirty-one 2s, where 6+25=31) 

 

This event sequence provides too many events for node 2 so that it is infeasible to 

execute. At most eight events for node 2 are affordable in this case. Assuming the last 

executed event is the eighth in the repeated events, the Look-Ahead strategy would 

adjust LA_num and a new event sequence is generated for the previous event sequence 

E1: 

 

E4 = <s, 2, 2, 2, 2, 2, 2, 2, 2, 5> (with eight 2s) 

 

This event sequence requires node 2 to be executed eight times, which results in the 

buffer overflow at node 5. 

 

4.2.2.2 Tainted-First Strategy 

 

If a buffer is tainted from input data, it can be controlled by malicious users and 

become vulnerable. Similarly, if a buffer offset at a buffer access statement is tainted 

from input data, a malicious user could control the access at an arbitrary position either 

out of bound or not. In other words, the tainted buffer offset has a high probability to 

cause a buffer overflow. Actually, a taint flow from input variables to the buffer offset 

is a relationship of data dependencies, from which relevant event sequences can be 

generated. With slight modification, extended Chaining Approach is able to figure out 
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the taint flow, and generate tainted event sequences which can be seen as taint flow 

paths. 

Let a potentially vulnerable buffer to be accessed with an offset in a program. 

Assume that there exists a taint flow from input variables to the buffer offset. Extended 

Chaining Approach is applied to handle the data dependencies related to the buffer. 

Before the process of event sequence generation, data flow analysis with respect to 

program input is done to realize which variable definitions have used input variables. If 

a new event has a node where program input is used to define other variables, the event 

sequence generated from the new event is referred to as a tainted event sequence. Since 

it is more possible to find buffer overflows via the tainted event sequences, they would 

be chosen in a high priority. 

 

 

 

 

 

 

 

 

 

 

 

 



 

26 

 

CFG Node  

s int Tainted_First_ex(char *s) { 

 int first, last; 

 u_int i; 

1 i = 0; 

2 while (isdigit(*s)){ 

3 i = i*10 + (*s – ‘0’); 

4 s++; 

 } 

5 first = i; 

6 s++; 

7 i = 0; 

8 while(isdigit(*s)) { 

9 i = i*10 + (*s – ‘0’); 

10 s++; 

 } 

11 last = i; 

12 if (first >= vec_max) 

13 first = vec_max – 1; 

14 if (last >= vec_max) 

15 last = vec_max – 1; 

16 while (first <= last) 

17 vec[first++] = i; 

18 return 0; 

 } 

Figure 7. Example for Tainted-First strategy 

Example 

For example, the function in Figure 7 is based on code from sendmail 8.11.0-5. 

The input string s is converted to two index value of first and last. The bound checks for 

the index variables are not proper because of a type casting side effect at node 12 and 14. 

Therefore, both checks can be bypassed by making indices negative. So it is possible to 
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overflow the buffer at node 17 where a negative index is regarded as a very large 

positive value. 

 

 

 

 

 

Figure 8. Data dependency graph of the example function for Tainted-First strategy. 

 

The data dependencies at node 17 are shown through the graph in Figure 8. If 

consider the tainted paths prone to the buffer overflow at node 17 and the data 

dependency relationship for the offset first, the three nodes {3, 5, 17} have to be passed 

orderly. The generated event sequence tree is illustrated in Figure 9. E5 is the first 

tainted event sequence to be identified since it is the first one that has the event of node 

5, where the input variable s is involved in the definition. Thus, the search would 

exercise on E5 prior to other event sequences, and the buffer overflow can be detected 

earlier than using the DFS strategy. 
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Figure 9. Event sequence tree of the example function for Tainted-First strategy. 

 

 

 

 

 

 

 

 

E0: <s, 17>

E1: <s, 5, 17> E2: <s, 13, 17> 

E4: <s, 3, 17>E3: <s, 1, 17> 

E5: <s, 3, 3, 17>
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5. Implementation 

The main components in our testing system are outlined in Figure 10 and explained 

in the remainder of this section. The system consists of two main components: static 

frontend and search-based test data generation. The latter is what we have implemented 

and developed the approach mentioned in the previous section. Through a static analysis 

of program source code, a set of potentially vulnerable code statements (referred to as 

suspects) are produced in the form of source code location (e.g. line number and buffer 

name). Provided with the program source and a suspect, search-based testing 

component uses heuristic techniques to generate test data on which the suspect is 

manifested through the reproduction of a buffer overflow.   

 

 

 

 

Figure 10. Test input generation process 

5.1 Static Frontend 

The static checking tool splint [4] is used as the frontend in our system to analyze 

the program under test and produce suspects in which buffer overflows could happen. 

Because static tools usually suffer from a high positive rate, the dynamic analysis 

approach, that is search-based testing, is used in combination with the static frontend. 

Thus, the reported suspects will be set as test targets of search-based testing to identify 

real vulnerabilities. 

 

5.2 Dynamic Component: Search-based Testing 

Program instrumentation is required to analyze a program at run-time. We use CIL 

Static  

Frontend 

Search-based test 

data generation 

Program Test input 
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[26] to instrument programs under test for information collection and computation for 

search-based test generation. CIL is an OCAML application for program analysis and 

transformation for C programs. Control flow and data flow graphs are constructed based 

on the corresponding analysis provided by CIL. The extra bound checking for buffer 

overflows is also inserted via the program analysis tool. 

 

The main parts of search-based testing have been implemented in C++. To 

facilitate the graph computation for control and data information, boot graph library [27] 

is included to take advantages of available graph search algorithms. As for input 

generation, a genetic algorithm library for C++ called GAlib [28] is used to develop the 

required functions. The input search process is integrated into the objective value 

calculation in GAlib. The basis of our approach, extended Chaining Approach proposed 

in [21], is deployed as a backup strategy in search-based testing.  

 

We have encountered two problems when using GAlib to perform search-based 

testing. The first is solution convergence: when all genomes in the population become 

similar, the search process will stop since no better solutions could occur. This often 

cause search failures if the genomes converge before the exact solution is found. The 

second problem is that the genetic algorithms may spend too much generations or 

iterations to search for the right solution when input domain is large but the expected 

input resides in a small area. 

 

In our implementation, a local search algorithm is hybridized with the genetic 

algorithm to address the issue. If the solution convergence occurs, Hill Climbing is 

invoked to find better test data. If the number of execution iterations exceeds a specific 

threshold, Hill Climbing is also invoked to search for other test data in case of that the 

search is trapped in the current state. 
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6. Results 

A set of case studies is designed to show how the proposed optimization strategies 

can improve the performance of the search-based testing with extended Chaining 

Approach with respect to buffer overflow detection. Three simple test objects are used 

as subjects of the experiments for the evaluation of different strategy configurations. To 

test the practical effectiveness of our approach, we choose a real vulnerability and 

perform the experiment. 

 

6.1 Test Objects 

 Each of these test objects has one-buffer-overflow vulnerability which is 

instrumented with an extra bound check and selected the true branch as the test target. 

The probability of entering each of targets is low enough since the buffer overflows 

occur only when some specific inputs are given. 

Continuous Access 

This test program can be seen in Figure 5 and was introduced in Section 4.2.2.1. There 

exists a continuous buffer access wrapped inside a loop, where the index is increased. A 

possible buffer overflow is located at node 5. Here the bounds check has been forgotten, 

and the mistake could result in an off-by-one overflow. 

Taint Flow 

The control structure of this test object is similar to the program of “Continuous 

Access”. The vulnerable buffer is also accessed after leaving the loop. However, inside 

the loop is a branch of taint flow while another branch is not tainted. What could be 

tainted is a definition for a buffer offset that decides the position of buffer access. 

Command Selection 

This program performs a command selection task and takes two arrays of five integer 

values. Each integer is read from an input array to determine which command will be 

executed. What the first command does is to check if the value read from another input 

array is positive. If the value is positive, an index is increased by one and a buffer is 

written. The buffer write is vulnerable because of a lack of bounds checking. 
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Multiple-level nested if statements make the control structure of the program complex 

and difficult for input search. 

tTflag Buffer Underrun: CVE-2001-0653 

The published vulnerability is the original version of the example in Figure 7. The 

tTflage() function can parse a command-line value and store the parsing result in a trace 

vector. The input parameter is a string that has the form of “x-y”, where x and y are 

transformed from characters to integers. Both x and y are assigned as the index values 

for the buffer access. Although there have been two bound checks to limit the values of 

x and y, it is possible to bypass the first check with a negative value. The problem is 

that the check does not limit the lower bound of x to zero. A very large value of x can 

be seen as negative and pass the check, and make the buffer overflowed. 

6.2 Experimental Setup 

 We ran each experiment with a fixed setting of the GAlib’s evolutionary algorithm. 

There are 50 individuals per generation that form only one population. The search 

process terminates if no solution has been found after 1000 generations. Real-valued 

encodings are used to represent valuables in programs. 

 Each experiment with each test object was repeated 20 times for four different 

strategy configurations:  

1. Original Approach: the extended Chaining Approach is used without any strategies 

enabled 

2. Look-Ahead: Only Look-Ahead strategy is enabled. 

3. Tainted-First: Only Tainted-First strategy is enabled. 

4. Look-Ahead & Tainted-First: Both of Look-Ahead and Tainted-First are enabled. 

The setting of the Chaining Approach is also set to fixed values. The maximum depth of 

event sequence tree is limited at 15. Look-Ahead number is set as 5. If the best objective 

value is not improved over two generations, Hill Climbing is used to search for other 

solutions. Furthermore, if the algorithm cannot get better objective value over 60 

generations, the Chaining Approach is invoked to seek better solutions. 
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6.3 Evaluation Results 

  Each experiment performed on each test object has a successful search rate of 

100%, no matter with what optimization strategies. This shows that the Original 

Approach is sufficient to handle all test programs, and the proposed strategies do not 

reduce the success rate. 

 Table 4 shows the average number of objective evaluations for four strategy 

configurations. To realize how the strategies improve the original approach, the 

comparison of objective evaluations of strategies based on Table 4 is illustrated in Table 

5. Notice that each strategy configuration is compared to Original Approach. The 

experiment results with respect to each test object are discussed below. 

Continuous Access 

This program features a continuously increased buffer index, resulting in the chaining 

mechanism could insert the same self-defined events to generate new event sequences. 

Thus, the characteristic of continuous buffer access make both Look-Ahead enabled 

configurations have obvious improvement over others. 

Taint Flow 

In the loop of the test object, taking the taint branch or the other without taint affects the 

search performance. With Tainted-First, the desired event sequences with taint flow are 

chosen prior to other sequences, so the buffer overflow is raised in a less number of 

objective evaluations. 

Command Selection 

It is required for the buffer overrun to following the taint flow from the input command 

string and increase the buffer index. Although Look-Ahead and Tainted-First can make 

the search to reduce a certain number of iterations, the improvement is not obvious 

since the complex control structure. 

tTflag Buffer Underrun: CVE-2001-0653 

The buffer index required two critical conditions to be out-of-bound. First, the index 

must bypass the bounds check or it will be redefined as a constant value. That is, the 

program execution should follow taint flow. Second, the index has to be large enough 
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and cause a sign change after the type casting in the bound check. Tainted-First is 

helpful in the first condition and Look-Ahead is for second one. The row data of 

tTfalge() in Table 5 shows that each of both strategies has its benefit, and the 

performance of combining both strategies is even better. 

 

Table 4. Average objective evaluations for each test object against different strategy 

configurations. 

Test Object Original 

Approach 

Look-Ahead Tainted-First Look-Ahead & 

Tainted-First 

Continuous Access 34854 13894 34963 13904

Taint Flow 21202 19917 15103 12709

Command Selection 39413 31555 34009 33805

tTflag() in sendmail 48931 29256 38129 27406

 

Table 5. Comparison of objective evaluations of strategies to the original approach 

without any optimization strategies. 

Test Object Original 

Approach 

Look-Ahead Tainted-First Look-Ahead & 

Tainted-First 

Continuous Access 100% 40% 100% 40%

Taint Flow 100% 94% 71% 60%

Command Selection 100% 80% 86% 86%

tTflag() in sendmail 100% 60% 78% 56%
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7. Conclusion 

 Search-based testing is an intelligent and efficient approach to generate test data 

for structural testing. As a backup mechanism for search failures, the Chaining 

Approach helps to handle the problems due to data dependencies. The well-developed 

test data generation approach has been applied to buffer overflow detection. This paper 

shows that search-based testing can be improved based on the characteristics of 

programs under test. The proposed optimization strategies, i.e. Look-Ahead and 

Tainted-First, reduce the overhead of the Chaining Approach, and also reduce the 

overall cost of the search process. 

 

 We performed the experimental studies with a real vulnerability of sendmail and 

three simple test objects. These test objects have different program structures and 

characteristics, so the performance of each strategies configuration varies. In the worst 

cases, it degenerates to the original approach. However, it was shown that our approach 

does decrease the number of objective evaluations in all cases, either in an individual 

strategy or a combination. The way to achieve the best improvement is to choose the 

suitable strategy configuration based on specific program features. 

 

 There are many interesting ways to extend this work. The test data generation for 

buffer overflow detection requires the run-time monitoring to retrieve the memory 

status. Via a run-time memory checker, e.g. Beagle [29] or MemCheck of Valgrind, 

search-based testing can be applied to detect more types of buffer overflows.  

 

Another interesting avenue is hybridizing search-based and constrain-based testing. 

There have been researchers proposed the integration to take the both advantages. Tao 

Xie et al. [30] presented an approach based on dynamic symbolic execution, also known 

as concolic testing, assisted with fitness-guided path exploration. Kobi et al. [31] have 

proposed an integration framework using evolutionary and concolic testing for 

object-oriented programs, in which one of test data generation methods is responsible 

for class method sequences and the other handles unit testing. Inspired from the 

previous work, an integration idea is to use search-based testing to find a path toward 

the specific vulnerability and cocolic testing is invoked to find test data that satisfy the 
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vulnerability condition. 
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