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I 

 

一個雲端計算平台上針對互動式工作流程應用

的最小負載分配法之動態資源供應架構 

 
研究生: 周暉禎    指導教授: 王豐堅 博士 

國立交通大學 

資訊科學與工程研究所 

新竹市大學路 1001 號 

碩士論文 

 

摘要 

 
藉由雲端計算 “用多少計算資源算多少錢” 的原則，應用程式提供者有著更

實惠的計算資源消費方式。而在這樣的平台上，對於互動式工作流程的應用，尚

有確保服務品質的問題待解決，例如：計算資源分配、動態資源供應等。本篇論

文提出一互動式工作流程於雲端計算上的架構。透過模擬方式，我們為互動式工

作流程應用在請求分派上，估算各種負載評判度量，並找出最有效用且達到負載

平衡的度量為剩餘工作量（Remaining tasks）。我們也提出一用來動態供應資源

的 REM_DRP 自動控制器，以有效地及時應變動態的工作量。對於應用提供者，

實驗結果說明在最低的資源成本下，本架構在動態負載中能對請求的服務提供較

短的回應時間。 

 

 

 

 

 

關鍵字: 互動式工作流程，雲端計算，資源分配，負載平衡，動態資源供應。 
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A Framework of Dynamic Resource 
Provisioning Based on Least Load Dispatching 
Method for Interactive Workflow Applications       

on Cloud Computing Platform 
 

 

Student: Hui-Zhen Zhou    Advisor: Feng-Jian Wang 

Institute of Computer Science and Engineering 

National Chiao Tung University 

1001 University Road, Hsinchu, Taiwan 300, ROC 

 

Abstract 

 
    Cloud computing opens new opportunities for application providers because 

with the policy “add as needed and pay as used” they can economize the cost 

consumption for computing resources. In cloud environments, issues such as resource 

allocation and dynamic resource provisioning based on users’ Qos constraints are yet 

to be addressed for interactive workflow applications. In this thesis, we propose a 

framework for interactive workflow applications on the cloud platform. Using 

simulation, workload estimation for interactive workflows is investigated 

comprehensively, and the most effective load metric, remaining tasks, for load 

balancing dispatching is presented. The proposed REM_DRP, as an auto-scaling 

algorithm to automate resource provisioning, provides an in-time reaction to dynamic 

workloads. Experimental results show that this framework offers application 

providers better maintenance of QoS-satisfied response time under time-varying 

workload, at the minimum cost of resource usage.   

 

 

 

Keywords: Interactive Workflow, Cloud Computing, Resource Allocation, Load 

Balancing, Dynamic Resource Provisioning. 
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Chapter 1 Introduction 

 

Cloud computing [20] has become the most-mentioned computing environment 

and some cloud computing service providers have began to provide commercial 

services, such as Amazon’s EC2 [22], where users are charged according to the 

amount of computing resources they actually use. With the power and flexibility of 

cloud computing, companies around the world may realize their objectives effectively, 

especially in both technical and economic aspects. 

 

Figure 1 illustrates a possible cloud computing scenario where the cloud consists 

of multiple clusters located at different places worldwide for providing different users 

with resources near them. Users need rent, instead of buying the computing resources. 

Applications are plugged into the cloud and acquire computing services as they want 

without knowing where the resources are located. Users pay for resources they 

actually use without any huge hardware/software investment in advance. The cloud 

computing service providers make the profits by providing high-quality services 

through efficiently allocating the resources on demand. In this thesis, we present a 

framework handling the execution of interactive workflow applications on a cloud 

computing platform. 
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Figure 1. Cloud computing environment. 

 

An interactive workflow [28] is used for controlling user navigation, performing 

view play, and interacting with the user for clicking buttons and hyperlinks. Unlike 

scientific workflows [29, 30], which can be applied with a complex static scheduling 

to minimize the makespan [31, 32], interactive workflows are involved with human 

interactions and mainly consider the factors such as response time, stability and 

security, etc. Thus, the computational behaviors in interactive workflows are more 

similar to those in web-based applications than those in scientific workflows. 

 

In such a scenario, application developers are asked to accomplish two goals 

simultaneously: minimized user response time and minimized resource usage cost. 

The activities to accomplish both goals maybe conflict. For example, user response 

time can be shortened by using more computing resources while the cost may be 
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reduced by using fewer resources. Since the workload of an application service 

usually varies with time, a dynamic resource provisioning mechanism may help to 

achieve the goal instead. To deal with the issue, this thesis proposes a dynamic 

resource provisioning manager REM_DRP （ REMaining tasks based Dynamic 

Resource Provisioning） . REM_DRP provides scalable processing power with 

dynamic resource provisioning mechanisms, where the number of servers used is 

dynamically adapted to the time-varying incoming request workload. To evaluate our 

framework and mechanisms, we applied GridSim [24] to simulate the cloud 

environment.  In the simulation, the workload estimation for interactive workflows is 

investigated comprehensively. To evaluate the performance of REM_DRP, we 

compare it with the QuID [4], is a dynamic resource provisioning approach proposed 

recently.  

 

The remainder of the thesis is organized as follows. Chapter 2 presents literature 

survey related to our work. Chapter 3 describes our scalable framework for interactive 

workflow applications on the cloud. Chapter 4 presents dispatching methods for 

workload balancing, our simulation environment, and experimental results. Chapter 5 

presents our dynamic resource provisioning algorithm and its performance evaluation. 

Chapter 6 concludes the thesis and points out some future research directions.  
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Chapter 2 Related Work 

 

2.1 Related work 

 

The appearance of cloud computing revolutionizes how organizations operate 

and people work. However, new challenges are introduced while companies benefit 

from the planning flexibility in technical and economic aspects. Harold et al. [20] 

address some challenges and opportunities of automated control in cloud computing. 

In accordance with the cloud computing context, they present a proportional 

thresholding mechanism to enhance stability for feedback controllers. In utility 

computing, a similar feedback control policy for adaptive resource provisioning is 

discussed in [21]. They both dynamically adjust the resource shares in individual tiers 

in order to meet the QoS requirement for multi-tier web applications, whereas our 

approach aims for interactive workflow applications.  

 

Cloud computing is an emerging platform for distributed and parallel processing. 

In general, job scheduling in a parallel or distributed system may entail two parts of 

work. The first part of work mainly determines the execution sequence for the jobs 

waiting in the queue. The second part chooses an appropriate resource for allocating 

the job selected by the first part of work, therefore sometimes is called resource 

allocation. Job scheduling in parallel or distributed systems is a well-known 

NP-complete problem [26]. So, many heuristics-based [1, 16] or AI-based [5] 

algorithms have been proposed and most of them require meticulous system 

monitoring to get workload information for calculations. The objectives of resource 

allocation are either to minimize the number of servers needed to meet the service’s 
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QoS targets or to maximize the throughput in a fixed-number resource cluster. Many 

studies for resource allocation have been presented recently [2-13].  

 

Our work on request dispatching is related to several previous research efforts on 

optimizing resources utilization and load balancing for an application. Kaushik et al 

[3] devise an approach called ReDAL（Request Distribution for the Application Layer）

for distributing requests across a cluster of web application servers. In their approach, 

a running resource is characterized lightly-loaded or heavily-loaded state. To balance 

the load among resources, ReDAL augment the traditional session-affinity based 

schemes [25] with techniques such as load measurement for state monitoring, least 

loaded dispatching for requests, and a capacity reservation scheme for the near-future 

expected load. Lior et al. [6] present a proportional share scheduler for fair resource 

allocation of homogeneous nodes in a cluster. It maintains fair resource allocation 

dynamically by preemptive process migration. Under SOA, BangYu et al. [7] propose 

a dynamic resource allocation scheme for workflow-based composite services. 

Through estimating the future workload of each service and the given service 

transition probabilities（TPC-W [23]）, they use performance matrixes to maximize the 

number of requests completed under limited resources. 

 

 To enable load management across resource clusters, Marcos and Buyya [9] 

propose a cost-aware resource exchange mechanism. The mechanism takes into 

account the economic compensation of resource providers and considers the cost for 

one Grid to acquire computational resources from another. By using request 

redirection across Grids and the ‘submit to the least loaded resource’ policy at the 

gateway, it leads to an overall increase in requests served and balances the load 
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among all the resources. The work in [10] develops a heuristic-based switching 

algorithm to allocate the resources in different server pools to applications 

dynamically. Several examples of switching policies are proposed in [18, 19]. Their 

policies focus on workload balancing among limited clusters while ours concentrate 

on how to dynamically provision an adequate amount of resources to an application at 

runtime. 

 

 In the context of the dynamic resource provisioning, S. Ranjan et al. [13] 

introduce three mechanisms for web clusters. The first mechanism, QuID [4], 

optimizes the performance within a cluster by dynamically allocating servers 

on-demand. The second, WARD [8], is a request redirection mechanism across the 

clusters. The third one is a cluster decision algorithm that selects QuID or WARD 

under different workload conditions. For multi-tier internet applications, Bhuvan et al. 

[12] propose a provisioning technique which employs two methods that operate at two 

different time scales: predictive provisioning at the time-scale of hours or days, and 

reactive provisioning at time scales of minutes to respond to a peak load. As shown in 

Figure 2.1 [12], they model a multi-tier application as a network of queues where each 

queue at a tier represents a server, and the queues from a tier feed into the next tier. 

Given the request arrival rate and per-tier response time, the number of servers needed 

at each tier is computed individually by the proposed algorithm. While the above 

techniques are aimed for multi-tier web applications, our work in this thesis targets at 

interactive workflow applications. 
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Figure 2.1. Architecture of a 3-tier internet application. [12] 

 
2.2 GridSim toolkit 
 

In this section, we briefly introduce the GridSim toolkit. We use GridSim [24] as 

the simulation environment for conducting the experiments in this thesis.  GridSim is 

a discrete event simulator built on top of the simulation package SimJava [27] and can 

be used to model and simulate various entities in parallel and distributed computing 

environments. The Simjava package provides the basic discrete event simulation 

infrastructure for the entire simulation environment. GridSim controls all the entities, 

delivers the events, and advances the simulation time. As Figure 2.2 shows, our 

simulation environment is constructed by instantiating entities which are the instances 

of classes extended from the classes in GridSim API and SimJava API.  

 

 
Figure 2.2. Simulation environment. 
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Our simulation entity classes are listed in Table 4.1. Each entity in the simulation 

environment is running in its own thread, executing the body() method that handles 

events. Once an entity is created, its Input and Output entities are created 

automatically by GridSim. As shown in Figure 2.2 [33], six entities are connected 

together via their Input and Output entities, and can communicate with each other by 

sending and receiving event objects. 

 

 

Fig. 2.3. A flow diagram in GridSim based simulations. [33] 

 

Figure 2.4 [33] describes the flow of information transmitted between entities via 

their Input and Output entities. Entity A sends an event or data objects to entity B via 

the send() method. The parameters of send() specify the information such as the 

originator, event type, the destination, the transmitted data, etc. The delivery of the 

data object will be handled by GridSim. A central object Sim_system of SimJava 

maintains a timestamp ordered queue of future events. It pops events off the queue, 

advances the simulation time accordingly. Finally, entity B receives this object by the 

Receive( ) method. 
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Fig. 2.4. Entity communication model via the Input and Output entities. [33] 

 

2.3 QuID 

 

In this section, we briefly introduce QuID in [4].  

Given parameters as follows:   

 N, current number of servers 

 X, the number of task completions in the previous measurement interval 

 A, the number of task arrivals in the previous measurement interval 

 U, U = 1 2 3( ... ) /NU U U U N+ + + + , where iU  is the utilization rate of resource i 

 α , the target utilization rate 

 

In QuID, the required number of resources for the next interval, N’, is defined based 

on the following equations. 

/D U X=                          (2.1) 

' max( , )*U A X D=             (2.2) 
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' * '/N N U α= ⎡ ⎤⎢ ⎥                     (2.3) 

 QuID is a utilization-targeted algorithm. It first computes the average utilization 

demand per completion with (2.1). Secondly, the normalized utilization for the next 

interval is obtained by (2.2). Finally, it computes the upper bound on the number of 

resources needed to achieve the target utilizationα by (2.3). If 'N N> , QuID initiates 

request to acquire ( ' )N N−  resources, otherwise releasing ( ')N N−  resources. 
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Chapter 3 A scalable computing framework for Interactive 

Workflow Applications on the Cloud 

  

This chapter presents a scalable framework for interactive workflow applications 

on the cloud computing platform. The framework deals with the scenario that an 

interactive workflow application, hosted on a cloud computing platform, runs many 

workflow instances simultaneously according to the incoming user requests. Since the 

amount of incoming requests changes with time and the cloud platform is a 

pay-per-use service, the application has to dynamically manage the resources it uses 

to maintain acceptable response time and reduce the total cost of resource 

consumption under various workloads. 

 

In the framework, each resource, representing a distinct computing server, is 

capable of processing multiple interactive workflow requests. Prior to ready for 

service, the required data and workflow definitions have to be deployed to the 

resources in some way, e.g. the Amazon machine image（AMI）of Amazon EC2 [22]. 

An AMI, to be dynamically deployed in the Amazon Elastic Compute Cloud, is a 

pre-built package of software containing applications, libraries, data and associated 

configuration settings.  

 

To efficiently utilize resources, there are two key issues considered in the 

framework. The first is finding the least loaded resource for dispatching incoming 

requests. The second issue deals with dynamic resource provisioning（DRP）for 

adaptively handling dynamic workloads. With resource state monitoring, each 

workflow enactment request will be sent to the least loaded resource for service. Least 
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load dispatching algorithm [2] is more effective than algorithms without the feedback 

loop which are easier to implement using only the information in the client requests. 

The idea of least load dispatching is a greedy approach that assumes the least loaded 

resource becomes idle first and thus produces the shortest request response. Therefore, 

the effectiveness of least load dispatching largely depends on how to accurately 

capture the computing load on each resource. To find the most effective load metric, 

several candidate load metrics are proposed and evaluated with simulation studies, 

which will be presented in chapter 4. Our strategy for dynamic resource provisioning 

is presented in chapter 5. The policy will be compared with the one in [4]. In the 

dynamic resource provisioning strategy, the most effective load metric evaluated for 

request dispatching is used to represent the resources’ load status.  In the following, 

we first introduce the components of the framework and then describe how they 

cooperate with each other. 

 

 

Figure 3.1. The diagram of the framework. 
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Fig.XXX shows an overview of the framework in handling user requests for an 

interactive workflow application running on a resource cloud. The architecture 

consists of four main components Dispatcher, Resource Allocator, Dynamic Resource 

Provisioning Manager（DRP）, and Resource Manager. The major capabilities of each 

component are listed as bellow: 

 

 Dispatcher 

 Receiving requests of workflow enactment. 

 Fetching the ID of the least loaded resource from the Resource 

Allocator. 

 Initiating an instance of the corresponding workflow definition on the 

least loaded resource according to the request. 

 Dispatching each workflow enactment request to the least loaded 

resource. 

 Resource Allocator 

 Retrieving the running resources list and their latest load information 

from the Resource Manager. 

 Finding the least loaded resource according to the load information 

among running resources. 

 Informing the Dispatcher the least loaded resource ID. 

 Dynamic Resource Provisioning Manager 

 Retrieving the running resources list and their latest load information 

from the Resource Manager. 

 Based on REM_DRP, determining nextR , the number of running 

resources for the next time interval. 
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 Initiating a resource provisioning request to the Resource Manager 

when nextR  is not equal to the current number of running resources. 

 Resource Manager 

 Monitoring the state of the resource pool: running resources, 

suspended resources, idle resources. 

 Adding or releasing running resources when receiving a resource 

provisioning request. 

 

When a user sends a workflow enactment request to the system, Dispatcher 

serves as the front-end guard of the entire system. According to the request, 

Dispatcher initializes and puts a workflow instance on the resource with the least load, 

returned by Resource Allocator. Consequently, as shown in Fig.3.2, when the user 

interacts with a workflow instance, corresponding events are triggered during user 

navigation, and designated tasks in the workflow are submitted to the workflow 

engine on the resource for execution. During interaction, the workflow instance 

responds the execution results to the user and stores the results into the database. We 

apply a session affinity based scheme, that all subsequent requests at a workflow are 

handled by the same application server. Tasks on a resource are executed in a 

non-preemptive FCFS（First-come, first-served）order. 
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Fig. 3.2. An example of multiple workflow instances running on a resource. 

 

Fig. 3.3 depicts how Resource Manager interacts with the Resource Allocator 

and the DRP. 

 

Fig. 3.3. Cooperation among the Resource Allocator, the Resource Manager, and 

the DRP Manager. 
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Resource Manager is an entity similar to the Grid Information Service（GIS） 

which is responsible for grid resource registration and services discovery in a typical 

grid environment [34]. As shown in Fig.3.2, Resource Monitor on each resource is 

responsible for monitoring and recording the resource’s load status. Resource 

Manager combines all state monitors to monitor the state of each resource, and stores 

load metrics such as tasks waiting queue length, response time, arrival rate, task queue 

waiting time, resource utilization, etc. Based on the load information, Resource 

Allocator can identify the least loaded resource and passes the ID of that resource to 

Dispatcher. Additionally, the Resource Manager also complies with the decision made 

by the DRP. For each schedule interval, the DRP fetches the load information from 

the Resource Manager, diagnoses the state of running resources, and initiates requests 

to the Resource Manager to acquire or release resources whenever needed. 

 

In the resource pool, all the resources are classified into three groups according 

to their status: running, suspended, idling. In the running group, the resources can 

accept new workflow enactment requests. When making a dispatching decision, 

Resource Allocator considers the load information of running resources only. The 

number of running resources is determined by the DRP. If DRP asks Resource 

Manager to release resources, Resource Manager shifts designated running resources 

into the suspended group in a last-in-first-out order. Resources in the suspended group 

take no more workflow enactment requests while serving the existing workflow 

instances. They are shifted into the idle group after all its workflow instances are done. 

On the contrary, when more resources are needed, Resource Manager can select 

resources from either the suspended group or idle group. The difference between the 

suspended resources and the idle ones is that it needs a preparing time for the latter to 
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get ready as running resources, while the suspended resources needn't. A resource 

preparing time is typically the time to initialize the workflow engine or for booting the 

operating system [13]. Therefore, Resource Manager first reinstates resources from 

the suspended group since they can be used immediately. If no resources are available 

in the suspended group, Resource Manager has to wait the selected idle resources for 

a warm-up time period. 
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Chapter 4 Least Load Dispatching for Workload Balancing 

 

For interactive workflows, which are stateful session-based applications, the 

observed response time is the major concern to the served clients. To ensure that 

stable and acceptable response times are continuously met, the policy must be fair 

enough, e.g., the workload is load-balanced among the available resources. However, 

resource allocation for interactive workflows is different from that for scientific 

workflows which can be applied with a complex static mapping. Moreover, the load 

metric of resources is hard to evaluate. So, to comprehensively explore the workload 

of each resource upon dispatching, several candidate load metrics are proposed and 

compared. Our approach for workload balancing is based on the least loaded policy 

which is state-aware and assumes to use no dedicated resources. The last condition 

indicates that our approach is resource-blind and suitable in a heterogeneous 

environment. 

 

4.1  Load Metrics 

 

 
Fig. 4.1 Workload parameters upon resource execution. 
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Fig. 4.1 shows the workload parameters of a resource when users’ workflows are 

executed concurrently. Each workload parameter is defined as follows: 

 

1）Arrival rate 

The arrival rate of a resource is the number of new tasks arriving at the 

resource’s waiting queue within a time-interval. If the arrival rate increases, the 

queue length increases based on queueing theory so does the response time of a 

task. 

 

2）Average response time 

Let ijr  be the response time that the task j  of workflow i  executed on 

resource R within a time-interval monitored. Then the average response time of R 

can be obtained by ( )ijaverage r , where ijr  is the sum of (1) transmission time of 

the request to the resource, (2) waiting time for the instantiated task in the waiting 

queue of R, (3) processing time of the task at resource R, and (4) transmission time 

of the result back to the user. 

 

3）Remaining tasks 

A task in an interactive workflow is executed only when all its preceding tasks 

for the input condition complete and the instantiation event is triggered. The 

number of remaining tasks of a resource can be defined as all unexecuted tasks for 

workflows served. Since the information of task number of a workflow can be 

retrieved from a workflow repository, we might use the number of remaining tasks 

to predict the future workload. 
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4）WF counts 

The number of workflows served at a resource. 

 

5）Utilization rate 

The utilization rate of a resource can be defined as the percentage of the time 

spent for tasks execution within a time-interval. Unlike the above metrics, 

utilization rate has a limited applicable range. It is an effective load metric only 

when its value is below 100%. On heavily loaded systems, the utilization rate is at 

most 100%, therefore it can not effectively distinguish different load levels further. 

Utilization rate is thus excluded in the following experimental comparisons. 

 

4.2 Simulation environment 

 

The details of GridSim toolkit are introduced in Chapter 2. In the following we 

briefly introduce the entities for the simulations in this thesis and describe how they 

operate. The major entities in our simulation environment are listed in Table. 4.1. The 

parameters for configuring a simulation case, as listed in Table 4.2, are set in the 

SimulationMain class. When the simulation environment extended from GridSim 

package is initiated, all entities and their corresponding Input and Output entities are 

instantiated. Whenever an entity is instantiated, it waits for events and takes 

appropriate actions according to the event type. 

 

The Requester entity issues events to Dispatcher entity to simulate incoming 

workflow enactment requests. The request arrivals are modeled as a Poisson process 
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with rate X, which is a configurable parameter in our simulation environment. When 

Dispatcher entity receives the event, it retrieves the ID of the least leaded resource 

from ResourceAllocator entity and dispatches a UserEntity to the resource for running 

a randomly generated workflow. Each UserEntity corresponds to a workflow 

execution. A UserEntity suspends itself to simulate a user thinking time between 

contiguous tasks in the workflow. A UserEntity submits a task to the resource only 

when all its preceding tasks have finished execution. The memory used by a 

UserEntity is released when all tasks in the workflow are completed. 

 

For each resource, ResourceManager entity specifies a corresponding 

ResourceMonitor entity to record the execution information for each task, such as 

submission time, waiting time, execution start time, finish time, etc. 

ResourceManager entity maintains three resource lists: running list, suspended list, 

idling list. Each list is a linked list containing resource ID’s. ResourceManager entity 

manipulates the lists according to the provisioning requests from DRP_Manager entity. 

ResourceAllocator entity retrieves load information about each resource from 

ResourceManager entity to find the least loaded resource for request dispatching. 

DRP_Manager, with the help of ResourceManager, periodically diagnoses the total 

load of all running resources for decision making on dynamic resource adjustment. 

The simulation continues until no more events are generated and all generated events 

have been processed. After the simulation finishes, the simulation report is stored in 

an excel file for performance investigation. 
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Entity class Functionality 

SimulationMain 

 

GridSim initialization, entities creation, 

simulation parameters 

Requester  Modeling request arrivals as a Poisson process 

Dispatcher  Dispatching requests 

UerEntity  Each user entity running a workflow 

ResourceAllocator  Resource Allocator 

Resource  resources 

ResourceManager  Resource manager 

ResourceMonitor  Resource monitor 

DRP_Manager  DRP Manager 

ResStamp  TimeStamp object ; attributes : (clock, running resources) 

ResTimeStamp  TimeStamp object ; attributes : (exeStartTime, exeEndTime) 

Table 4.1 Simulation entities 
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Parameter Description 

Resource_number  Resources number for the entire simulation 

Workflow_number  Workflows number for the entire simulation 

rounds  How many rounds for dispatching 

(each with different request arrivals) 

Request_arrival_interval  Smaller value means faster arrival rate 

Measurement_interval_resTime 

Measurement_interval_arriRate 

Measurement_interval_utilization 

Measurement interval of response time, 

arrival rate, and utilization rate. 

Run_initial  Number of initial running resources 

DRP_interval  Measurement interval of REM_DRP and QuID 

Utilization_rate  Target utilization rate of QuID 

Workload_limit  Workload limit of REM_DRP 

Dispatching_metric  Load metric for dispatching 

Warm_up_time  Warm‐up time for idling resources 

Table 4.2 Simulation parameters. 
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Workflow tasks are modeled as Gridlet objects and executed on GridSim 

resources. A Gridlet object contains all the information related to a task and the 

execution details such as the task length, the size of input and output files, the task 

originator, etc. Task execution time and user thinking time are generated from the 

negative exponential distributions with the mean values of 3 seconds and 7 seconds 

respectively based on the TPC benchmark [23]. The Transaction Processing 

Performance Council (TPC) defines transaction processing and database benchmarks 

and delivers trusted results to the industry. TPC-W is a benchmark for Web 

applications. The task length is expressed in terms of the time it takes to run on a 

standard resource PE (Processing Element) with a MIPS rating of 100. Therefore, in 

our simulation environment, the processing capability of a resource is expressed in 

MIPS (Millions of Instructions Per Second). The workflow model in our simulations 

is summarized in Table 4.3. 

 

Workflow tasks 4 ~ 15 (random generation) 

Task execution time 3 sec. (negative exponential distribution) 

User thinking time 7 sec. (negative exponential distribution) 

Maximum degree of a task 3 

Input file size 100 bytes 

Output file size 100bytes 

Table 4.3 Workflow model. 

 

4.3 Simulation Setup 

 

Based on the workflow model in section 4.3, we set up a simulation and evaluate 
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the results. The parameters used to configure the simulation environment are listed in 

Table 4.4. We model request arrivals at the resource cluster with a Poisson distribution 

of rate 2.2 and 2.0 in the homogeneous and the heterogeneous environments 

respectively. The task execution time and user thinking time are generated according 

to the TPC-W benchmark for Web workloads. In all our simulations, the measurement 

interval for obtaining the request arrivals and the average response time are listed in 

Table 4.4. In the heterogeneous environment, there are six 100-MIPS resources, six 

200-MIPS resources, and four 400-MIPS resources. The resource cluster is 

inter-connected by 100Mbps. The measurement intervals of arrival rate and response 

time are decided by running a series of simulations of 900 workflows using various 

arrival rate and response time measurement intervals. The values in Table 4.4 deliver 

the shortest average response time in the simulations. We also include random 

selection and the Round-Robin load balancing algorithm in the experiments for 

performance comparison. 

 

  Homogeneous  Heterogeneous 

Request arrival interval  2.2 (Poisson distribution)  2.0 (Poisson distribution) 

Task execution time  3 sec. (negative exponential 

distribution) 

3sec. (negative exponential 

distribution) 

User thinking time  7 sec. (negative exponential 

distribution) 

7 sec. (negative exponential 

distribution) 

Arrival rate measurement 

interval 

35 sec.  60 sec. 

Response time 

measurement interval 

15 sec.  15 sec. 

 

 

computing speed 

 

100 MIPS * 16 

100 MIPS * 6,   

200 MIPS * 6,   

400 MIPS * 4. 

Table 4.4 Simulation setup in homogeneous and heterogeneous environment. 
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To evaluate the effectiveness of each load metric, we define two performance 

metrics: the degree of load balancing and stability. Both of them are mainly calculated 

based on the task response times through the entire simulation. 

Let 

 ()avg  be the mean of a set of numbers. 

 ()dev  be the standard deviation of a set of numbers. 

 ijR  denote the average response time of resource i  between time 5j − and j .

（The value of the average response time is calculated every 5 second through 

the entire simulation.） 

 ( )j ijd dev R= , for all running resources at time j. 

jd  denotes the degree of load balancing among resources at time j. 

 

Thus, the degree of load balancing and stability of the entire simulation can be 

obtained by the following equations. Since they are mainly calculated based on the 

standard derivation of response times, smaller value indicates better performance. 

 The degree of load balancing = avg ( jd  | j = 5, 10, 15 …end of simulation). 

 The degree of stability = dev ( jd  | j = 5, 10, 15… end of simulation). 
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4.4  Performance Evaluation 
 Homogeneous environment 

 
Figure 4.2  Average response time for each load metric. 

 

Figure 4.3  Stability and degree of load balancing for each load metric. 
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Simulation results, depicted in Fig. 4.2~4.5, show that Round-Robin does not 

perform well, especially in the heterogeneous environment. The following discusses 

the performance of other metrics. 

 

Arrival rate and response time are the most frequently used load metrics in web 

applications. The former performs better than the latter in the homogeneous 

environment while the result is contrary in the heterogeneous environment. The two 

metrics are based on information collected in the past. Sometimes, past information 

cannot accurately predict the future workload.  Moreover, as shown in Figure 4.6, 

these time-interval based metrics have a potential problem that it’s hard to find a 

perfect interval for collecting an appropriate amount of load information. Once an 

interval is decided, any load variation outside the interval is ignored. 

 

Obviously, the remaining tasks metric outperforms the others and is a good 

indicator of possible further workload for interactive workflow applications in both 

homogeneous and heterogeneous environments. The remaining tasks metric not only 

gives a more detailed load information than the WF counts do but also seizes the 

counteraction between request arrivals and completed tasks. Our simulation can 

conclude that a desirable basis for determining load might be the number of 

unfinished requests on an interactive workflow application. 
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Figure 4.6 Different scales of measurement interval for the response time metric. 
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For least load dispatching, all arriving requests will be sent to the same least 

loaded resource between two workload updates. This may overload the resource and 

lead to poor performance. To alleviate the potential problem, we modify the least load 

dispatching as follows. Upon request dispatching, if the least loaded resource is the 

same as the one in the preceding dispatching, the system dispatches the request to the 

secondly least loaded resource instead. Figure 4.7 shows that the modified least load 

dispatching outperforms the original one. 

 

 
Fig. 4.7 Performance gained from the policy “don’t always dispatch requests to the 

least loaded resource.” 
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Chapter 5 Dynamic Resource Provisioning 

 

 In traditional server hosting environments, each application is equipped with a 

fixed amount of resources. Since the amount of incoming requests usually changes 

with time, the request response time may be poor. Today, cloud computing allows 

customer applications to be deployed efficiently and economically: add as needed and 

pay as used. The applications running on the cloud computing platform have to 

dynamically adjust the amount of resources for use in order to achieve acceptable 

performance at the minimum costs. QuID [4] is recently proposed as such a dynamic 

resource provisioning (DRP) approach. In this chapter, we propose an auto-scaling 

algorithm denoted as REM_DRP (REMaining tasks based DRP) to dynamically 

provide an adequate amount of resources to an application. In the following, we 

introduce the idea behind our approach. Performance evaluations are presented in 

section 5.3. 

  

5.1  REM_DRP Algorithm 

 

REM_DRP is assumed to work on a homogeneous cloud platform which 

contains all resources at the same speed. To maintain acceptable response time, in 

REM_DRP, each resource is configured with a workload limit Rw and a threshold 

value for the entire system is Rw*|R|, where |R| is the number of running resources. 

The workload limit on each resource is based on the load metric of remaining tasks 

described in Chapter 4. When the total system workload exceeds the threshold value, 

the system would deploy additional resources to share the workload. On the other 

hand, if the system workload is below the threshold value the system would remove 
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some resources to reduce the costs of resource usage. We also define equation 5.1 and 

5.2 to compute the number of resource(s) to be added or removed in each decision 

respectively, where T is the workload limit on each resource represented by the 

number of tasks.  

( ) /moreR RemainingTasks Threshold T= −⎡ ⎤⎢ ⎥          (5.1) 

 ( ) /lessR Threshold RemainingTasks T= −⎢ ⎥⎣ ⎦      (5.2) 

 

 
Figure 5.1 illustration of dynamic workloads 

 

 Figure 5.1 is an example to describe how REM_DRP work. We mark three 

different conditions of workload in Figure 5.1. Zones A and B are examples whose 

number of remaining tasks of the running resources exceed the implicit threshold, 

while zone C is the contrary. In REM_DRP, the system is asked to add resources in 

Zone A if the arrivals exceed the completions but not in zone B since the workload is 

declining. Zone C characterizes that the running resources are underutilized and the 

unnecessary resources are removed regardless of the number of arrivals or 

completions. A decision making algorithm in REM_DRP is defined as follows to 

dynamically adjust the number of resources used. 
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Decision Making Algorithm 

Input: |R|=current number of running resources;  

|rem|: remaining tasks of all running resources;  

|ari| = the number of task arrivals for all resources in the previous measurement interval; 

|done| = the number of completed tasks for all resources in the previous measurement interval; 

T = workload limit on each resource (number of tasks). 

Output : |R’|: the required number of resources for the next interval 

1 if |rem| > ( |R| * T) 

2     if |done| < |ari|         

3         get moreR  by equation (5.1) 

4         |R’| = |R| + moreR  

5     else  

6         |R’| = |R| 

7 else if |rem| < ( |R| * T ) 

8     get lessR  by equation (5.2) 

9     |R’| = |R|− lessR   

10 else 

11     |R’| = |R| 

 

The QuID algorithm is introduced in Chapter 2. Before comparing their performance, 

we illustrate the simulation setup. 

 

5.2  Simulation Setup 
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 To compare the effectiveness for REM_DRP and QuID, there were two 

experiments conducted. There are at most 16 resources available in the first 

experiment and 50 resources in the second. In both experiments, three workloads of 

different arrival rates are run. Remaining tasks metric is used for dispatching. 

Moreover, the warm-up time of idling resources is 20 seconds and 4 resources are 

assumed to be ready for accepting requests at the beginning of experiments. 

Simulation parameters are summarized in Table 5.1. 

 

Simulation parameters  Experiment 1 Experiment 2 

Total resources      16  50 

3 rounds (workflows)  { 300,    400,    200 }   

Request arrival interval  { 3.5,    2.5,    4.5 } 

Initial/minimum running 

resources 

4 

Warm‐up time    20 sec. 

    Load metric for dispatching        Remaining tasks metric 

Table 5.1 Simulation parameters 

 

Parameters of REM_DRP and QuID are listed in Table 5.2. Parameters of QuID are 

chosen based on a series of simulations as shown in Table 5.3, 5.4. 

 

   REM_DRP  QuID 

Measurement interval 3 sec.  60 sec. 

Utilization rate       75% 

Table 5.2 Parameters of REM_DRP and QuID 
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  (Utilization rate = 75%) 

Interval (sec.)  30 45 60 75 90 120

response time    19.2   21.52 13.31 21.42 18.63 52.29

resources 10 11.79   12.63   12.91   12.09   12.69

Table 5.3 Performance of different utilization rate measurement intervals. 

 

(measurement interval = 60) 

Utilization (%)  50 65 75 85 90 

response time 18.65 15.85 13.31 29.37 30.82

resources 14.61   12.71   12.63   11.44   11.15

Table 5.4 Performance of different utilizations. 

 

In the experimental results, the average resource usage avgR  is computed by the 

following equation:  

( )avg iR avg r= , i = 1,2,3,4 … end of simulation.  

ir  denotes the number of running resources at time i. The unit of time is second. 

 

5.3  Performance Evaluation 

 

Experimental results are summarized in Table 5.5. Figure 5.2 -5.5 show the 

details of variations on response time and resource usage during the experiments. For 

REM_DRP, the workload limit on each resource is set to 9 tasks in the very beginning. 

The value 9 was determined by simulation studies on the performance of various 

values for the workload limit. The results indicate that REM_DRP can outperform the 
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others when there is a wider range for resource amount determination as in 

experiment 2. For comparison with QuID, in experiment 1, where at most 16 

resources are available, REM_DRP has shorter response time than QuID by 31%, but 

0.63 resource more in resource usage. In experiment 2, REM_DRP outperforms QuID 

in both response time and resource usage. Comparing with the static provisioning 

approach, let the target response time be 8.2 seconds, REM_DRP requires roughly 

11.96 resources in average while static provisioning requires 16 resources. From 

another aspect, let the resources usage be 12 for economic reasons, REM_DRP 

provides an average response time of 8.3 seconds and static provisioning provides 

22.36 seconds. REM_DRP is two times quicker. However, since REM_DRP set 

resources dynamically, it may use more than 12 resources sometimes. 

 

Utilization rate is used in QuID for measuring the workload on each resource. 

One potential drawback of utilization rate for DRP is that when utilization rate 

reaches 100%, it cannot effectively calculate the amount of resources to increase.  

Moreover, utilization rate is a time-interval based measurement, such as arrival rate 

and average response time. Therefore, it is a crucial issue to determine an appropriate 

measurement interval. However, this is difficult. As shown in Table 5.3, response time 

and resource usage are not monotonically increasing or decreasing with the 

measurement intervals.   
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  Static provisioning Dynamic resource provisioning 

Experiment 1 : 

4 ~ 16 resources 

Experiment 2 : 

4 ~ 50 resources 

Fixed 16 

Resources 

Fixed 12 

Resources 
REM_DRP QuID REM_DRP QuID 

Avg. 

response 

time (sec.) 

8.2  22.36 9.03  13.1  8.3  13.31 

Avg. 

resource 

usage 

16 12 12.2 11.57 11.96 12.63 

Table 5.5. Simulation results. 
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Figure 5.2. REM_DRP in experiment 1, 16 resources available. 

 

 

Figure 5.3. QuID in experiment 1, 16 resources available. 
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Figure 5.4. REM_DRP in experiment 2, 50 resources available. 

 

 

Figure 5.5. QuID in experiment 2, 50 resources available. 
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Chapter 6  Conclusions and future work 

 

 Applications require the capability of adjusting the amount of deployed resources 

dynamically in order to take benefits of the pay-only-what-you-consume policy on the 

cloud platform. This thesis proposes a framework for developing interactive workflow 

applications on the cloud platform. Currently many server applications adjust the 

amount of resources at runtime manually. The framework in this thesis allows 

applications to automatically manage the amount of resources according to the system 

workload. It offers application providers the benefits of maintaining QoS-satisfied 

response time under time-varying workload at the minimum cost of resource usage.   

 

The framework mainly deals with two issues: dynamic request dispatching and 

resource provisioning. For dynamic request dispatching, an improved least load 

dispatching approach is proposed which adopts a load metric of remaining tasks based 

on the characteristics of interactive workflow applications. Experimental results based 

on simulations indicate that remaining tasks can achieve better dispatching 

performance with arrival rate and response time which are commonly used in existing 

dispatching methods.   

 

For dynamic resource provisioning, REM_DRP is proposed as a feedback 

controller to automate resource provision by taking advantage of the characteristics of 

interactive workflow applications. Experimental results show that REM_DRP 

outperforms static provisioning and the utilization rate based QuID approach in both 

average response time and resource usage.   
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 The interactive workflow applications in this thesis are assumed to be in the form 

of directed acyclic graphs. A possible future extension of our framework is to handle 

more complicated types of interactive workflows such as those containing loops or 

conditional branches.  Another future direction is to deal with multi-tier web 

applications. 
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